url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 1.72B
1.82B
| node_id
stringlengths 18
19
| number
int64 5.88k
6.08k
| title
stringlengths 5
280
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | draft
bool 2
classes | pull_request
dict | body
stringlengths 9
16.9k
⌀ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
null | state_reason
stringclasses 1
value | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/6009 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6009/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6009/comments | https://api.github.com/repos/huggingface/datasets/issues/6009/events | https://github.com/huggingface/datasets/pull/6009 | 1,792,059,808 | PR_kwDODunzps5U1mus | 6,009 | Fix cast for dictionaries with no keys | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006961 / 0.011353 (-0.004392) | 0.004390 / 0.011008 (-0.006618) | 0.103249 / 0.038508 (0.064741) | 0.048084 / 0.023109 (0.024975) | 0.351213 / 0.275898 (0.075315) | 0.416918 / 0.323480 (0.093439) | 0.005539 / 0.007986 (-0.002446) | 0.003555 / 0.004328 (-0.000774) | 0.079306 / 0.004250 (0.075055) | 0.066937 / 0.037052 (0.029884) | 0.382601 / 0.258489 (0.124112) | 0.406125 / 0.293841 (0.112284) | 0.032269 / 0.128546 (-0.096277) | 0.009133 / 0.075646 (-0.066514) | 0.354449 / 0.419271 (-0.064822) | 0.068978 / 0.043533 (0.025445) | 0.352314 / 0.255139 (0.097175) | 0.390398 / 0.283200 (0.107199) | 0.025640 / 0.141683 (-0.116043) | 1.553865 / 1.452155 (0.101710) | 1.601292 / 1.492716 (0.108576) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208310 / 0.018006 (0.190303) | 0.440076 / 0.000490 (0.439586) | 0.000363 / 0.000200 (0.000163) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029173 / 0.037411 (-0.008238) | 0.111323 / 0.014526 (0.096797) | 0.123001 / 0.176557 (-0.053556) | 0.180180 / 0.737135 (-0.556955) | 0.125804 / 0.296338 (-0.170534) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419919 / 0.215209 (0.204710) | 4.194515 / 2.077655 (2.116860) | 1.881234 / 1.504120 (0.377114) | 1.672914 / 1.541195 (0.131720) | 1.723102 / 1.468490 (0.254612) | 0.543584 / 4.584777 (-4.041193) | 3.822477 / 3.745712 (0.076765) | 1.837946 / 5.269862 (-3.431915) | 1.094975 / 4.565676 (-3.470701) | 0.066788 / 0.424275 (-0.357487) | 0.011689 / 0.007607 (0.004082) | 0.520983 / 0.226044 (0.294938) | 5.209245 / 2.268929 (2.940316) | 2.392916 / 55.444624 (-53.051708) | 2.060042 / 6.876477 (-4.816434) | 2.162291 / 2.142072 (0.020219) | 0.668472 / 4.805227 (-4.136755) | 0.144373 / 6.500664 (-6.356291) | 0.066152 / 0.075469 (-0.009318) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251256 / 1.841788 (-0.590532) | 15.161338 / 8.074308 (7.087030) | 14.416133 / 10.191392 (4.224741) | 0.166145 / 0.680424 (-0.514279) | 0.018168 / 0.534201 (-0.516033) | 0.433364 / 0.579283 (-0.145919) | 0.417484 / 0.434364 (-0.016880) | 0.502543 / 0.540337 (-0.037794) | 0.602904 / 1.386936 (-0.784032) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006946 / 0.011353 (-0.004407) | 0.004248 / 0.011008 (-0.006761) | 0.079707 / 0.038508 (0.041199) | 0.046226 / 0.023109 (0.023117) | 0.375864 / 0.275898 (0.099966) | 0.430740 / 0.323480 (0.107260) | 0.006222 / 0.007986 (-0.001764) | 0.003474 / 0.004328 (-0.000854) | 0.079622 / 0.004250 (0.075372) | 0.066666 / 0.037052 (0.029613) | 0.379487 / 0.258489 (0.120998) | 0.423002 / 0.293841 (0.129161) | 0.032836 / 0.128546 (-0.095710) | 0.008976 / 0.075646 (-0.066670) | 0.086578 / 0.419271 (-0.332693) | 0.055651 / 0.043533 (0.012118) | 0.360787 / 0.255139 (0.105648) | 0.384265 / 0.283200 (0.101065) | 0.025350 / 0.141683 (-0.116333) | 1.547880 / 1.452155 (0.095725) | 1.605850 / 1.492716 (0.113134) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184227 / 0.018006 (0.166220) | 0.442071 / 0.000490 (0.441582) | 0.002887 / 0.000200 (0.002687) | 0.000088 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031923 / 0.037411 (-0.005488) | 0.119093 / 0.014526 (0.104568) | 0.128704 / 0.176557 (-0.047853) | 0.187065 / 0.737135 (-0.550070) | 0.134135 / 0.296338 (-0.162204) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.455731 / 0.215209 (0.240522) | 4.562911 / 2.077655 (2.485256) | 2.247431 / 1.504120 (0.743311) | 2.053346 / 1.541195 (0.512151) | 2.049611 / 1.468490 (0.581121) | 0.546069 / 4.584777 (-4.038708) | 3.821852 / 3.745712 (0.076140) | 3.358497 / 5.269862 (-1.911364) | 1.667697 / 4.565676 (-2.897979) | 0.067968 / 0.424275 (-0.356307) | 0.012344 / 0.007607 (0.004737) | 0.550864 / 0.226044 (0.324820) | 5.496867 / 2.268929 (3.227939) | 2.680031 / 55.444624 (-52.764594) | 2.328673 / 6.876477 (-4.547804) | 2.436754 / 2.142072 (0.294682) | 0.681195 / 4.805227 (-4.124033) | 0.148761 / 6.500664 (-6.351904) | 0.067716 / 0.075469 (-0.007753) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353798 / 1.841788 (-0.487990) | 15.992965 / 8.074308 (7.918657) | 14.051539 / 10.191392 (3.860147) | 0.181087 / 0.680424 (-0.499337) | 0.018653 / 0.534201 (-0.515548) | 0.433499 / 0.579283 (-0.145784) | 0.428845 / 0.434364 (-0.005519) | 0.501100 / 0.540337 (-0.039238) | 0.603666 / 1.386936 (-0.783270) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#10cfa871a2f387fe9c6360e1873ea74c6d69ff67 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010983 / 0.011353 (-0.000370) | 0.005630 / 0.011008 (-0.005378) | 0.109967 / 0.038508 (0.071458) | 0.101580 / 0.023109 (0.078471) | 0.490205 / 0.275898 (0.214307) | 0.534653 / 0.323480 (0.211173) | 0.008365 / 0.007986 (0.000379) | 0.004317 / 0.004328 (-0.000012) | 0.082429 / 0.004250 (0.078179) | 0.080556 / 0.037052 (0.043504) | 0.494627 / 0.258489 (0.236138) | 0.544189 / 0.293841 (0.250348) | 0.049419 / 0.128546 (-0.079127) | 0.014033 / 0.075646 (-0.061613) | 0.370406 / 0.419271 (-0.048866) | 0.083468 / 0.043533 (0.039935) | 0.463829 / 0.255139 (0.208690) | 0.507516 / 0.283200 (0.224316) | 0.053266 / 0.141683 (-0.088417) | 1.778680 / 1.452155 (0.326525) | 1.916616 / 1.492716 (0.423900) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267646 / 0.018006 (0.249640) | 0.617824 / 0.000490 (0.617334) | 0.007720 / 0.000200 (0.007520) | 0.000139 / 0.000054 (0.000085) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034464 / 0.037411 (-0.002948) | 0.113626 / 0.014526 (0.099100) | 0.118911 / 0.176557 (-0.057646) | 0.194701 / 0.737135 (-0.542434) | 0.123431 / 0.296338 (-0.172907) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.606073 / 0.215209 (0.390863) | 6.086393 / 2.077655 (4.008738) | 2.568712 / 1.504120 (1.064593) | 2.260801 / 1.541195 (0.719606) | 2.411798 / 1.468490 (0.943307) | 0.876433 / 4.584777 (-3.708344) | 5.521280 / 3.745712 (1.775568) | 5.969722 / 5.269862 (0.699861) | 3.671028 / 4.565676 (-0.894649) | 0.097082 / 0.424275 (-0.327193) | 0.011354 / 0.007607 (0.003747) | 0.713842 / 0.226044 (0.487798) | 7.291172 / 2.268929 (5.022244) | 3.315272 / 55.444624 (-52.129352) | 2.777487 / 6.876477 (-4.098990) | 3.025449 / 2.142072 (0.883377) | 1.014115 / 4.805227 (-3.791112) | 0.217928 / 6.500664 (-6.282736) | 0.083097 / 0.075469 (0.007627) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.640060 / 1.841788 (-0.201728) | 25.342172 / 8.074308 (17.267864) | 22.776510 / 10.191392 (12.585118) | 0.227300 / 0.680424 (-0.453124) | 0.032233 / 0.534201 (-0.501968) | 0.507547 / 0.579283 (-0.071736) | 0.647044 / 0.434364 (0.212680) | 0.607019 / 0.540337 (0.066682) | 0.823548 / 1.386936 (-0.563388) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009576 / 0.011353 (-0.001777) | 0.009322 / 0.011008 (-0.001687) | 0.087184 / 0.038508 (0.048676) | 0.100795 / 0.023109 (0.077685) | 0.492138 / 0.275898 (0.216240) | 0.528386 / 0.323480 (0.204906) | 0.006689 / 0.007986 (-0.001296) | 0.004735 / 0.004328 (0.000406) | 0.085519 / 0.004250 (0.081269) | 0.072648 / 0.037052 (0.035595) | 0.496068 / 0.258489 (0.237579) | 0.549634 / 0.293841 (0.255793) | 0.049709 / 0.128546 (-0.078837) | 0.015077 / 0.075646 (-0.060569) | 0.099445 / 0.419271 (-0.319826) | 0.068080 / 0.043533 (0.024547) | 0.500426 / 0.255139 (0.245287) | 0.531437 / 0.283200 (0.248238) | 0.053176 / 0.141683 (-0.088507) | 1.827942 / 1.452155 (0.375787) | 1.914286 / 1.492716 (0.421570) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247658 / 0.018006 (0.229652) | 0.590805 / 0.000490 (0.590315) | 0.005319 / 0.000200 (0.005119) | 0.000165 / 0.000054 (0.000110) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036993 / 0.037411 (-0.000418) | 0.112944 / 0.014526 (0.098419) | 0.118964 / 0.176557 (-0.057593) | 0.194867 / 0.737135 (-0.542269) | 0.120816 / 0.296338 (-0.175523) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.638062 / 0.215209 (0.422853) | 6.246785 / 2.077655 (4.169130) | 2.957779 / 1.504120 (1.453659) | 2.739118 / 1.541195 (1.197924) | 2.795362 / 1.468490 (1.326872) | 0.890532 / 4.584777 (-3.694245) | 5.508198 / 3.745712 (1.762486) | 5.222315 / 5.269862 (-0.047547) | 3.152731 / 4.565676 (-1.412946) | 0.098344 / 0.424275 (-0.325931) | 0.008800 / 0.007607 (0.001193) | 0.757889 / 0.226044 (0.531845) | 7.545715 / 2.268929 (5.276787) | 3.694536 / 55.444624 (-51.750088) | 3.112872 / 6.876477 (-3.763605) | 3.182358 / 2.142072 (1.040285) | 1.028171 / 4.805227 (-3.777056) | 0.215223 / 6.500664 (-6.285441) | 0.085856 / 0.075469 (0.010387) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.853138 / 1.841788 (0.011350) | 25.939672 / 8.074308 (17.865364) | 23.118029 / 10.191392 (12.926637) | 0.250599 / 0.680424 (-0.429825) | 0.029942 / 0.534201 (-0.504259) | 0.508748 / 0.579283 (-0.070535) | 0.593966 / 0.434364 (0.159602) | 0.605499 / 0.540337 (0.065162) | 0.863827 / 1.386936 (-0.523109) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5d15950d99677e9473cdcd31cfd83aa17e313e28 \"CML watermark\")\n"
] | 2023-07-06T18:48:14 | 2023-07-07T14:13:00 | 2023-07-07T14:01:13 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6009",
"html_url": "https://github.com/huggingface/datasets/pull/6009",
"diff_url": "https://github.com/huggingface/datasets/pull/6009.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6009.patch",
"merged_at": "2023-07-07T14:01:13"
} | Fix #5677 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6009/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6009/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5996 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5996/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5996/comments | https://api.github.com/repos/huggingface/datasets/issues/5996/events | https://github.com/huggingface/datasets/pull/5996 | 1,779,294,374 | PR_kwDODunzps5UKP0i | 5,996 | Deprecate `use_auth_token` in favor of `token` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006134 / 0.011353 (-0.005219) | 0.003816 / 0.011008 (-0.007193) | 0.098226 / 0.038508 (0.059718) | 0.036830 / 0.023109 (0.013721) | 0.314551 / 0.275898 (0.038653) | 0.372251 / 0.323480 (0.048771) | 0.004762 / 0.007986 (-0.003224) | 0.003041 / 0.004328 (-0.001287) | 0.077651 / 0.004250 (0.073401) | 0.052445 / 0.037052 (0.015393) | 0.324632 / 0.258489 (0.066143) | 0.365724 / 0.293841 (0.071883) | 0.028069 / 0.128546 (-0.100477) | 0.008444 / 0.075646 (-0.067203) | 0.312767 / 0.419271 (-0.106505) | 0.047773 / 0.043533 (0.004240) | 0.305317 / 0.255139 (0.050178) | 0.332007 / 0.283200 (0.048807) | 0.018985 / 0.141683 (-0.122698) | 1.538022 / 1.452155 (0.085868) | 1.575898 / 1.492716 (0.083182) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204780 / 0.018006 (0.186774) | 0.428125 / 0.000490 (0.427635) | 0.003454 / 0.000200 (0.003254) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025064 / 0.037411 (-0.012348) | 0.099419 / 0.014526 (0.084893) | 0.111068 / 0.176557 (-0.065489) | 0.169775 / 0.737135 (-0.567361) | 0.112067 / 0.296338 (-0.184271) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429642 / 0.215209 (0.214433) | 4.275556 / 2.077655 (2.197901) | 1.914658 / 1.504120 (0.410539) | 1.706556 / 1.541195 (0.165361) | 1.754228 / 1.468490 (0.285738) | 0.563669 / 4.584777 (-4.021108) | 3.391501 / 3.745712 (-0.354211) | 1.791517 / 5.269862 (-3.478345) | 1.030704 / 4.565676 (-3.534973) | 0.070882 / 0.424275 (-0.353393) | 0.011351 / 0.007607 (0.003744) | 0.529438 / 0.226044 (0.303394) | 5.294316 / 2.268929 (3.025387) | 2.344653 / 55.444624 (-53.099972) | 1.997468 / 6.876477 (-4.879009) | 2.108932 / 2.142072 (-0.033140) | 0.676794 / 4.805227 (-4.128433) | 0.135058 / 6.500664 (-6.365607) | 0.065857 / 0.075469 (-0.009612) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231864 / 1.841788 (-0.609924) | 13.986694 / 8.074308 (5.912386) | 13.306600 / 10.191392 (3.115208) | 0.145520 / 0.680424 (-0.534904) | 0.016717 / 0.534201 (-0.517484) | 0.366303 / 0.579283 (-0.212980) | 0.391637 / 0.434364 (-0.042727) | 0.425445 / 0.540337 (-0.114892) | 0.507719 / 1.386936 (-0.879217) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006236 / 0.011353 (-0.005116) | 0.003766 / 0.011008 (-0.007242) | 0.076794 / 0.038508 (0.038286) | 0.037210 / 0.023109 (0.014101) | 0.378387 / 0.275898 (0.102489) | 0.425456 / 0.323480 (0.101977) | 0.004694 / 0.007986 (-0.003291) | 0.002921 / 0.004328 (-0.001407) | 0.076985 / 0.004250 (0.072735) | 0.052188 / 0.037052 (0.015136) | 0.394385 / 0.258489 (0.135896) | 0.432527 / 0.293841 (0.138686) | 0.029091 / 0.128546 (-0.099455) | 0.008364 / 0.075646 (-0.067282) | 0.082583 / 0.419271 (-0.336689) | 0.042928 / 0.043533 (-0.000605) | 0.375321 / 0.255139 (0.120182) | 0.391719 / 0.283200 (0.108519) | 0.019388 / 0.141683 (-0.122295) | 1.550644 / 1.452155 (0.098489) | 1.604882 / 1.492716 (0.112166) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236859 / 0.018006 (0.218853) | 0.418528 / 0.000490 (0.418039) | 0.000388 / 0.000200 (0.000188) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025548 / 0.037411 (-0.011863) | 0.100644 / 0.014526 (0.086118) | 0.109102 / 0.176557 (-0.067455) | 0.161694 / 0.737135 (-0.575441) | 0.112088 / 0.296338 (-0.184250) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.484128 / 0.215209 (0.268919) | 4.849952 / 2.077655 (2.772297) | 2.512769 / 1.504120 (1.008649) | 2.303295 / 1.541195 (0.762100) | 2.356699 / 1.468490 (0.888209) | 0.564181 / 4.584777 (-4.020596) | 3.421393 / 3.745712 (-0.324319) | 2.570875 / 5.269862 (-2.698987) | 1.474307 / 4.565676 (-3.091370) | 0.068035 / 0.424275 (-0.356240) | 0.011300 / 0.007607 (0.003693) | 0.587867 / 0.226044 (0.361823) | 5.862447 / 2.268929 (3.593519) | 3.004017 / 55.444624 (-52.440607) | 2.664989 / 6.876477 (-4.211488) | 2.740020 / 2.142072 (0.597948) | 0.680840 / 4.805227 (-4.124387) | 0.137001 / 6.500664 (-6.363663) | 0.068098 / 0.075469 (-0.007371) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.297362 / 1.841788 (-0.544426) | 14.207891 / 8.074308 (6.133583) | 14.087562 / 10.191392 (3.896170) | 0.149514 / 0.680424 (-0.530910) | 0.016566 / 0.534201 (-0.517635) | 0.367602 / 0.579283 (-0.211681) | 0.400692 / 0.434364 (-0.033671) | 0.432907 / 0.540337 (-0.107431) | 0.525924 / 1.386936 (-0.861012) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ec069feaaf6c28d4e4df76d344693b591a74c3f \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006223 / 0.011353 (-0.005130) | 0.003672 / 0.011008 (-0.007336) | 0.097451 / 0.038508 (0.058943) | 0.036243 / 0.023109 (0.013133) | 0.375650 / 0.275898 (0.099752) | 0.431652 / 0.323480 (0.108172) | 0.004758 / 0.007986 (-0.003227) | 0.002941 / 0.004328 (-0.001387) | 0.077383 / 0.004250 (0.073132) | 0.055342 / 0.037052 (0.018289) | 0.390335 / 0.258489 (0.131846) | 0.427867 / 0.293841 (0.134026) | 0.027619 / 0.128546 (-0.100927) | 0.008244 / 0.075646 (-0.067402) | 0.313499 / 0.419271 (-0.105773) | 0.054987 / 0.043533 (0.011454) | 0.394044 / 0.255139 (0.138905) | 0.398784 / 0.283200 (0.115584) | 0.026499 / 0.141683 (-0.115184) | 1.496907 / 1.452155 (0.044753) | 1.554465 / 1.492716 (0.061749) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.241197 / 0.018006 (0.223190) | 0.427856 / 0.000490 (0.427366) | 0.006264 / 0.000200 (0.006065) | 0.000218 / 0.000054 (0.000164) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025550 / 0.037411 (-0.011862) | 0.104426 / 0.014526 (0.089901) | 0.110310 / 0.176557 (-0.066246) | 0.173813 / 0.737135 (-0.563322) | 0.112129 / 0.296338 (-0.184209) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458806 / 0.215209 (0.243597) | 4.576351 / 2.077655 (2.498697) | 2.265670 / 1.504120 (0.761550) | 2.073230 / 1.541195 (0.532035) | 2.135283 / 1.468490 (0.666793) | 0.562506 / 4.584777 (-4.022271) | 3.375101 / 3.745712 (-0.370611) | 1.734393 / 5.269862 (-3.535469) | 1.026622 / 4.565676 (-3.539054) | 0.068144 / 0.424275 (-0.356131) | 0.011092 / 0.007607 (0.003485) | 0.562779 / 0.226044 (0.336734) | 5.608256 / 2.268929 (3.339328) | 2.706468 / 55.444624 (-52.738157) | 2.381607 / 6.876477 (-4.494869) | 2.451027 / 2.142072 (0.308954) | 0.671590 / 4.805227 (-4.133637) | 0.135749 / 6.500664 (-6.364915) | 0.065389 / 0.075469 (-0.010080) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244806 / 1.841788 (-0.596981) | 14.042150 / 8.074308 (5.967841) | 14.246612 / 10.191392 (4.055220) | 0.134309 / 0.680424 (-0.546114) | 0.017082 / 0.534201 (-0.517119) | 0.366043 / 0.579283 (-0.213240) | 0.400748 / 0.434364 (-0.033616) | 0.425695 / 0.540337 (-0.114643) | 0.509355 / 1.386936 (-0.877581) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006134 / 0.011353 (-0.005219) | 0.003980 / 0.011008 (-0.007028) | 0.078353 / 0.038508 (0.039845) | 0.038011 / 0.023109 (0.014902) | 0.375784 / 0.275898 (0.099886) | 0.433619 / 0.323480 (0.110139) | 0.004897 / 0.007986 (-0.003088) | 0.002981 / 0.004328 (-0.001347) | 0.077362 / 0.004250 (0.073112) | 0.056108 / 0.037052 (0.019056) | 0.395984 / 0.258489 (0.137495) | 0.427397 / 0.293841 (0.133556) | 0.029325 / 0.128546 (-0.099221) | 0.008498 / 0.075646 (-0.067148) | 0.082478 / 0.419271 (-0.336794) | 0.044085 / 0.043533 (0.000552) | 0.389923 / 0.255139 (0.134784) | 0.391180 / 0.283200 (0.107980) | 0.022452 / 0.141683 (-0.119231) | 1.507758 / 1.452155 (0.055603) | 1.530459 / 1.492716 (0.037743) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230928 / 0.018006 (0.212922) | 0.408484 / 0.000490 (0.407995) | 0.000806 / 0.000200 (0.000606) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025183 / 0.037411 (-0.012228) | 0.102292 / 0.014526 (0.087766) | 0.108142 / 0.176557 (-0.068415) | 0.161172 / 0.737135 (-0.575963) | 0.114476 / 0.296338 (-0.181862) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.482978 / 0.215209 (0.267769) | 4.816103 / 2.077655 (2.738448) | 2.505567 / 1.504120 (1.001447) | 2.302598 / 1.541195 (0.761404) | 2.371238 / 1.468490 (0.902748) | 0.567467 / 4.584777 (-4.017310) | 3.363407 / 3.745712 (-0.382306) | 1.746213 / 5.269862 (-3.523649) | 1.035468 / 4.565676 (-3.530208) | 0.068431 / 0.424275 (-0.355844) | 0.011069 / 0.007607 (0.003462) | 0.598241 / 0.226044 (0.372196) | 5.953927 / 2.268929 (3.684999) | 3.007493 / 55.444624 (-52.437132) | 2.629399 / 6.876477 (-4.247078) | 2.737201 / 2.142072 (0.595129) | 0.682456 / 4.805227 (-4.122771) | 0.137613 / 6.500664 (-6.363051) | 0.067941 / 0.075469 (-0.007528) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306015 / 1.841788 (-0.535772) | 14.359240 / 8.074308 (6.284932) | 14.187601 / 10.191392 (3.996209) | 0.138612 / 0.680424 (-0.541812) | 0.016708 / 0.534201 (-0.517493) | 0.366365 / 0.579283 (-0.212918) | 0.396982 / 0.434364 (-0.037382) | 0.426939 / 0.540337 (-0.113398) | 0.520064 / 1.386936 (-0.866872) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#21d0fd041a5eca02d3ee787396216ac613c662ac \"CML watermark\")\n",
"They use `token` and emit a deprecation warning if `use_auth_token` is passed instead (see https://github.com/huggingface/transformers/blob/78a2b19fc84ed55c65f4bf20a901edb7ceb73c5f/src/transformers/modeling_utils.py#L1933). \r\n\r\nI think we can update the `examples` scripts after merging this PR.",
"> I think we can update the examples scripts after merging this PR.\r\n\r\nWe should do a release before updated in the examples scripts no ? That's why it's an option to not have a deprecation warning until transformers and co are updated with the `token` arg",
"> We should do a release before updated in the examples scripts no ? That's why it's an option to not have a deprecation warning until transformers and co are updated with the token arg\r\n\r\nThis would avoid the warning only for the latest `datasets` release. TBH, I don't think this is worth the hassle, considering how simple it is to remove it.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007644 / 0.011353 (-0.003709) | 0.004667 / 0.011008 (-0.006341) | 0.117347 / 0.038508 (0.078839) | 0.050620 / 0.023109 (0.027510) | 0.415402 / 0.275898 (0.139504) | 0.485898 / 0.323480 (0.162418) | 0.005848 / 0.007986 (-0.002138) | 0.003736 / 0.004328 (-0.000592) | 0.089798 / 0.004250 (0.085547) | 0.069344 / 0.037052 (0.032292) | 0.441684 / 0.258489 (0.183195) | 0.468972 / 0.293841 (0.175131) | 0.036637 / 0.128546 (-0.091909) | 0.010219 / 0.075646 (-0.065427) | 0.394293 / 0.419271 (-0.024978) | 0.061462 / 0.043533 (0.017929) | 0.409448 / 0.255139 (0.154309) | 0.431557 / 0.283200 (0.148358) | 0.027795 / 0.141683 (-0.113888) | 1.837844 / 1.452155 (0.385690) | 1.862683 / 1.492716 (0.369967) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230500 / 0.018006 (0.212494) | 0.483139 / 0.000490 (0.482649) | 0.006517 / 0.000200 (0.006317) | 0.000143 / 0.000054 (0.000088) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033152 / 0.037411 (-0.004259) | 0.133673 / 0.014526 (0.119147) | 0.143853 / 0.176557 (-0.032704) | 0.215254 / 0.737135 (-0.521882) | 0.150676 / 0.296338 (-0.145662) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.503796 / 0.215209 (0.288587) | 5.049981 / 2.077655 (2.972326) | 2.399427 / 1.504120 (0.895307) | 2.167635 / 1.541195 (0.626441) | 2.257448 / 1.468490 (0.788958) | 0.641298 / 4.584777 (-3.943479) | 4.828676 / 3.745712 (1.082964) | 4.346069 / 5.269862 (-0.923793) | 2.103890 / 4.565676 (-2.461786) | 0.079115 / 0.424275 (-0.345160) | 0.013377 / 0.007607 (0.005770) | 0.621207 / 0.226044 (0.395162) | 6.190939 / 2.268929 (3.922011) | 2.920129 / 55.444624 (-52.524495) | 2.549225 / 6.876477 (-4.327252) | 2.719221 / 2.142072 (0.577149) | 0.790949 / 4.805227 (-4.014278) | 0.172032 / 6.500664 (-6.328632) | 0.077779 / 0.075469 (0.002310) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.432572 / 1.841788 (-0.409216) | 21.000031 / 8.074308 (12.925723) | 17.555093 / 10.191392 (7.363701) | 0.166646 / 0.680424 (-0.513778) | 0.020451 / 0.534201 (-0.513750) | 0.488767 / 0.579283 (-0.090516) | 0.737036 / 0.434364 (0.302672) | 0.621694 / 0.540337 (0.081356) | 0.732074 / 1.386936 (-0.654862) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008198 / 0.011353 (-0.003155) | 0.004987 / 0.011008 (-0.006021) | 0.090714 / 0.038508 (0.052206) | 0.053379 / 0.023109 (0.030270) | 0.425199 / 0.275898 (0.149301) | 0.514036 / 0.323480 (0.190556) | 0.006043 / 0.007986 (-0.001943) | 0.003888 / 0.004328 (-0.000441) | 0.088294 / 0.004250 (0.084043) | 0.073024 / 0.037052 (0.035971) | 0.435983 / 0.258489 (0.177494) | 0.514293 / 0.293841 (0.220452) | 0.039451 / 0.128546 (-0.089095) | 0.010439 / 0.075646 (-0.065207) | 0.096885 / 0.419271 (-0.322387) | 0.060165 / 0.043533 (0.016632) | 0.421053 / 0.255139 (0.165914) | 0.455545 / 0.283200 (0.172345) | 0.027234 / 0.141683 (-0.114449) | 1.768975 / 1.452155 (0.316820) | 1.842853 / 1.492716 (0.350137) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278940 / 0.018006 (0.260933) | 0.480709 / 0.000490 (0.480219) | 0.000436 / 0.000200 (0.000236) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034900 / 0.037411 (-0.002511) | 0.144893 / 0.014526 (0.130368) | 0.149567 / 0.176557 (-0.026989) | 0.213200 / 0.737135 (-0.523935) | 0.156735 / 0.296338 (-0.139604) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.535897 / 0.215209 (0.320687) | 5.336998 / 2.077655 (3.259343) | 2.685854 / 1.504120 (1.181734) | 2.470177 / 1.541195 (0.928983) | 2.547495 / 1.468490 (1.079004) | 0.642830 / 4.584777 (-3.941947) | 4.595866 / 3.745712 (0.850154) | 2.186696 / 5.269862 (-3.083165) | 1.317969 / 4.565676 (-3.247708) | 0.079268 / 0.424275 (-0.345007) | 0.013792 / 0.007607 (0.006185) | 0.662236 / 0.226044 (0.436192) | 6.604775 / 2.268929 (4.335847) | 3.355888 / 55.444624 (-52.088736) | 2.968911 / 6.876477 (-3.907565) | 3.121862 / 2.142072 (0.979790) | 0.794752 / 4.805227 (-4.010475) | 0.170800 / 6.500664 (-6.329864) | 0.078393 / 0.075469 (0.002924) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.601605 / 1.841788 (-0.240183) | 20.743553 / 8.074308 (12.669245) | 17.543968 / 10.191392 (7.352576) | 0.221884 / 0.680424 (-0.458540) | 0.020779 / 0.534201 (-0.513422) | 0.479677 / 0.579283 (-0.099606) | 0.516207 / 0.434364 (0.081843) | 0.564046 / 0.540337 (0.023709) | 0.711336 / 1.386936 (-0.675600) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#819bb4346434912eb405ce3f3e9f21dc25a2fe85 \"CML watermark\")\n",
"Yes, sounds great! Thanks",
"yup"
] | 2023-06-28T16:26:38 | 2023-07-05T15:22:20 | 2023-07-03T16:03:33 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5996",
"html_url": "https://github.com/huggingface/datasets/pull/5996",
"diff_url": "https://github.com/huggingface/datasets/pull/5996.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5996.patch",
"merged_at": "2023-07-03T16:03:33"
} | ... to be consistent with `transformers` and `huggingface_hub`. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5996/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5996/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6057 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6057/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6057/comments | https://api.github.com/repos/huggingface/datasets/issues/6057/events | https://github.com/huggingface/datasets/issues/6057 | 1,815,100,151 | I_kwDODunzps5sMDr3 | 6,057 | Why is the speed difference of gen example so big? | {
"login": "pixeli99",
"id": 46072190,
"node_id": "MDQ6VXNlcjQ2MDcyMTkw",
"avatar_url": "https://avatars.githubusercontent.com/u/46072190?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pixeli99",
"html_url": "https://github.com/pixeli99",
"followers_url": "https://api.github.com/users/pixeli99/followers",
"following_url": "https://api.github.com/users/pixeli99/following{/other_user}",
"gists_url": "https://api.github.com/users/pixeli99/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pixeli99/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pixeli99/subscriptions",
"organizations_url": "https://api.github.com/users/pixeli99/orgs",
"repos_url": "https://api.github.com/users/pixeli99/repos",
"events_url": "https://api.github.com/users/pixeli99/events{/privacy}",
"received_events_url": "https://api.github.com/users/pixeli99/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi!\r\n\r\nIt's hard to explain this behavior without more information. Can you profile the slower version with the following code\r\n```python\r\nimport cProfile, pstats\r\nfrom datasets import load_dataset\r\n\r\nwith cProfile.Profile() as profiler:\r\n ds = load_dataset(...)\r\n\r\nstats = pstats.Stats(profiler).sort_stats(\"cumtime\")\r\nstats.print_stats()\r\n```\r\nand share the output?"
] | 2023-07-21T03:34:49 | 2023-07-21T16:41:09 | null | NONE | null | null | null | ```python
def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
with open(metadata_path, 'r') as file:
metadata = json.load(file)
for idx, item in enumerate(metadata):
image_path = item.get('image_path')
text_content = item.get('text_content')
image_data = open(image_path, "rb").read()
yield idx, {
"text": text_content,
"image": {
"path": image_path,
"bytes": image_data,
},
"conditioning_image": {
"path": image_path,
"bytes": image_data,
},
}
```
Hello,
I use the above function to deal with my local data set, but I am very surprised that the speed at which I generate example is very different. When I start a training task, **sometimes 1000examples/s, sometimes only 10examples/s.**
![image](https://github.com/huggingface/datasets/assets/46072190/cdc17661-8267-4fd8-b30c-b74d505efd9b)
I'm not saying that speed is changing all the time. I mean, the reading speed is different in different training, which will cause me to start training over and over again until the speed of this generation of examples is normal.
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6057/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6057/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6034 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6034/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6034/comments | https://api.github.com/repos/huggingface/datasets/issues/6034/events | https://github.com/huggingface/datasets/issues/6034 | 1,804,501,361 | I_kwDODunzps5rjoFx | 6,034 | load_dataset hangs on WSL | {
"login": "Andy-Zhou2",
"id": 20140522,
"node_id": "MDQ6VXNlcjIwMTQwNTIy",
"avatar_url": "https://avatars.githubusercontent.com/u/20140522?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Andy-Zhou2",
"html_url": "https://github.com/Andy-Zhou2",
"followers_url": "https://api.github.com/users/Andy-Zhou2/followers",
"following_url": "https://api.github.com/users/Andy-Zhou2/following{/other_user}",
"gists_url": "https://api.github.com/users/Andy-Zhou2/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Andy-Zhou2/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Andy-Zhou2/subscriptions",
"organizations_url": "https://api.github.com/users/Andy-Zhou2/orgs",
"repos_url": "https://api.github.com/users/Andy-Zhou2/repos",
"events_url": "https://api.github.com/users/Andy-Zhou2/events{/privacy}",
"received_events_url": "https://api.github.com/users/Andy-Zhou2/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Even if a dataset is cached, we still make requests to check whether the cache is up-to-date. [This](https://huggingface.co/docs/datasets/v2.13.1/en/loading#offline) section in the docs explains how to avoid them and directly load the cached version.",
"Thanks - that works! However it doesn't resolve the original issue (but I am not sure if it is a WSL problem)",
"We use `requests` to make HTTP requests (and `aiohttp` in the streaming mode), so I don't think we can provide much help regarding the socket issue (it probably has something to do with WSL). "
] | 2023-07-14T09:03:10 | 2023-07-14T14:48:29 | 2023-07-14T14:48:29 | NONE | null | null | null | ### Describe the bug
load_dataset simply hangs. It happens once every ~5 times, and interestingly hangs for a multiple of 5 minutes (hangs for 5/10/15 minutes). Using the profiler in PyCharm shows that it spends the time at <method 'connect' of '_socket.socket' objects>. However, a local cache is available so I am not sure why socket is needed. ([profiler result](https://ibb.co/0Btbbp8))
It only happens on WSL for me. It works for native Windows and my MacBook. (cache quickly recognized and loaded within a second).
### Steps to reproduce the bug
I am using Ubuntu 22.04.2 LTS (GNU/Linux 5.15.90.1-microsoft-standard-WSL2 x86_64)
Python 3.10.10 (main, Mar 21 2023, 18:45:11) [GCC 11.2.0] on linux
>>> import datasets
>>> datasets.load_dataset('ai2_arc', 'ARC-Challenge') # hangs for 5/10/15 minutes
### Expected behavior
cache quickly recognized and loaded within a second
### Environment info
Please let me know if I should provide more environment information. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6034/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6034/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6077 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6077/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6077/comments | https://api.github.com/repos/huggingface/datasets/issues/6077/events | https://github.com/huggingface/datasets/issues/6077 | 1,822,486,810 | I_kwDODunzps5soPEa | 6,077 | Mapping gets stuck at 99% | {
"login": "Laurent2916",
"id": 21087104,
"node_id": "MDQ6VXNlcjIxMDg3MTA0",
"avatar_url": "https://avatars.githubusercontent.com/u/21087104?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Laurent2916",
"html_url": "https://github.com/Laurent2916",
"followers_url": "https://api.github.com/users/Laurent2916/followers",
"following_url": "https://api.github.com/users/Laurent2916/following{/other_user}",
"gists_url": "https://api.github.com/users/Laurent2916/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Laurent2916/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Laurent2916/subscriptions",
"organizations_url": "https://api.github.com/users/Laurent2916/orgs",
"repos_url": "https://api.github.com/users/Laurent2916/repos",
"events_url": "https://api.github.com/users/Laurent2916/events{/privacy}",
"received_events_url": "https://api.github.com/users/Laurent2916/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-07-26T14:00:40 | 2023-07-26T14:00:40 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
Hi !
I'm currently working with a large (~150GB) unnormalized dataset at work.
The dataset is available on a read-only filesystem internally, and I use a [loading script](https://huggingface.co/docs/datasets/dataset_script) to retreive it.
I want to normalize the features of the dataset, meaning I need to compute the mean and standard deviation metric for each feature of the entire dataset. I cannot load the entire dataset to RAM as it is too big, so following [this discussion on the huggingface discourse](https://discuss.huggingface.co/t/copy-columns-in-a-dataset-and-compute-statistics-for-a-column/22157) I am using a [map operation](https://huggingface.co/docs/datasets/v2.14.0/en/package_reference/main_classes#datasets.Dataset.map) to first compute the metrics and a second map operation to apply them on the dataset.
The problem lies in the second mapping, as it gets stuck at ~99%. By checking what the process does (using `htop` and `strace`) it seems to be doing a lot of I/O operations, and I'm not sure why.
Obviously, I could always normalize the dataset externally and then load it using a loading script. However, since the internal dataset is updated fairly frequently, using the library to perform normalization automatically would make it much easier for me.
### Steps to reproduce the bug
I'm able to reproduce the problem using the following scripts:
```python
# random_data.py
import datasets
import torch
_VERSION = "1.0.0"
class RandomDataset(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
version=_VERSION,
supervised_keys=None,
features=datasets.Features(
{
"positions": datasets.Array2D(
shape=(30000, 3),
dtype="float32",
),
"normals": datasets.Array2D(
shape=(30000, 3),
dtype="float32",
),
"features": datasets.Array2D(
shape=(30000, 6),
dtype="float32",
),
"scalars": datasets.Sequence(
feature=datasets.Value("float32"),
length=20,
),
},
),
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, # type: ignore
gen_kwargs={"nb_samples": 1000},
),
datasets.SplitGenerator(
name=datasets.Split.TEST, # type: ignore
gen_kwargs={"nb_samples": 100},
),
]
def _generate_examples(self, nb_samples: int):
for idx in range(nb_samples):
yield idx, {
"positions": torch.rand(30000, 3),
"normals": torch.rand(30000, 3),
"features": torch.rand(30000, 6),
"scalars": torch.rand(20),
}
```
```python
# main.py
import datasets
import torch
def compute_mean_std(
dataset: datasets.Dataset,
) -> dict[str, torch.Tensor]:
"""Compute the mean and standard deviation of each feature of the dataset.
Args:
dataset (`Dataset`): A huggingface dataset.
Returns:
dict: A dictionary containing the mean and standard deviation of each feature.
"""
result = {}
for key in dataset:
# extract data from dataset
data: torch.Tensor = dataset[key] # type: ignore
# reshape data, from (a, ..., b, c) -> (*, c)
data = data.reshape(-1, data.shape[-1])
# compute mean and std
mean = data.mean(dim=0) # (c)
std = data.std(dim=0) # (c)
# store in result
result[key] = torch.stack((mean, std))
return result
def apply_mean_std(
dataset: datasets.Dataset,
mean_std: datasets.Dataset,
) -> dict[str, torch.Tensor]:
"""Normalize the dataset using the mean and standard deviation of each feature.
Args:
dataset (`Dataset`): A huggingface dataset.
mean_std (`Dataset`): A huggingface dataset containing the mean and standard deviation of each feature.
Returns:
dict: A dictionary containing the normalized dataset.
"""
result = {}
for key in mean_std.column_names:
# extract data from dataset
data: torch.Tensor = dataset[key] # type: ignore
# extract mean and std from dict
mean = mean_std[key][0] # type: ignore
std = mean_std[key][1] # type: ignore
# normalize data
normalized_data = (data - mean) / std
result[key] = normalized_data
return result
# hack to force the map function to use the entire dataset
MAX_MAP_BATCH_SIZE = 1_000_000_000
# get dataset
ds = datasets.load_dataset(
path="random_data.py",
split="train",
).with_format("torch")
# compute mean/std of each feature
mean_std = ds.map(
desc="Computing mean/std", # type: ignore
remove_columns=ds.column_names, # type: ignore
function=compute_mean_std,
batch_size=MAX_MAP_BATCH_SIZE,
batched=True,
)
# normalize each feature of the dataset
ds_normalized = ds.map(
desc="Applying mean/std", # type: ignore
function=apply_mean_std,
batched=False,
fn_kwargs={
"mean_std": mean_std,
},
)
```
### Expected behavior
Using the previous scripts, the `ds_normalized` mapping completes in ~5 minutes, but any subsequent use of `ds_normalized` is really really slow, for example reapplying `apply_mean_std` to `ds_normalized` takes forever. This is very strange, I'm sure I must be missing something, but I would still expect this to be faster.
### Environment info
- `datasets` version: 2.13.1
- Platform: Linux-3.10.0-1160.66.1.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.10.12
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6077/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6077/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5988 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5988/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5988/comments | https://api.github.com/repos/huggingface/datasets/issues/5988/events | https://github.com/huggingface/datasets/issues/5988 | 1,773,257,828 | I_kwDODunzps5pscRk | 5,988 | ConnectionError: Couldn't reach dataset_infos.json | {
"login": "yulingao",
"id": 20674868,
"node_id": "MDQ6VXNlcjIwNjc0ODY4",
"avatar_url": "https://avatars.githubusercontent.com/u/20674868?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yulingao",
"html_url": "https://github.com/yulingao",
"followers_url": "https://api.github.com/users/yulingao/followers",
"following_url": "https://api.github.com/users/yulingao/following{/other_user}",
"gists_url": "https://api.github.com/users/yulingao/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yulingao/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yulingao/subscriptions",
"organizations_url": "https://api.github.com/users/yulingao/orgs",
"repos_url": "https://api.github.com/users/yulingao/repos",
"events_url": "https://api.github.com/users/yulingao/events{/privacy}",
"received_events_url": "https://api.github.com/users/yulingao/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Unfortunately, I can't reproduce the error. What does the following code return for you?\r\n```python\r\nimport requests\r\nfrom huggingface_hub import hf_hub_url\r\nr = requests.get(hf_hub_url(\"codeparrot/codeparrot-clean-train\", \"dataset_infos.json\", repo_type=\"dataset\"))\r\n```\r\n\r\nAlso, can you provide more info about your network (region, proxies, etc.)?"
] | 2023-06-25T12:39:31 | 2023-07-07T13:20:57 | 2023-07-07T13:20:57 | NONE | null | null | null | ### Describe the bug
I'm trying to load codeparrot/codeparrot-clean-train, but get the following error:
ConnectionError: Couldn't reach https://huggingface.co/datasets/codeparrot/codeparrot-clean-train/resolve/main/dataset_infos.json (ConnectionError(ProtocolError('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer'))))
### Steps to reproduce the bug
train_data = load_dataset('codeparrot/codeparrot-clean-train', split='train')
### Expected behavior
download the dataset
### Environment info
centos7 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5988/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5988/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5979 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5979/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5979/comments | https://api.github.com/repos/huggingface/datasets/issues/5979/events | https://github.com/huggingface/datasets/pull/5979 | 1,770,198,250 | PR_kwDODunzps5TrxS_ | 5,979 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5979). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008087 / 0.011353 (-0.003266) | 0.004691 / 0.011008 (-0.006317) | 0.121545 / 0.038508 (0.083037) | 0.057436 / 0.023109 (0.034326) | 0.368864 / 0.275898 (0.092966) | 0.457199 / 0.323480 (0.133719) | 0.006745 / 0.007986 (-0.001241) | 0.003689 / 0.004328 (-0.000640) | 0.090480 / 0.004250 (0.086229) | 0.071368 / 0.037052 (0.034316) | 0.372788 / 0.258489 (0.114299) | 0.429894 / 0.293841 (0.136053) | 0.037544 / 0.128546 (-0.091002) | 0.010142 / 0.075646 (-0.065505) | 0.420467 / 0.419271 (0.001196) | 0.064359 / 0.043533 (0.020826) | 0.370345 / 0.255139 (0.115206) | 0.405220 / 0.283200 (0.122020) | 0.028410 / 0.141683 (-0.113273) | 1.824845 / 1.452155 (0.372690) | 1.888109 / 1.492716 (0.395392) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234585 / 0.018006 (0.216578) | 0.499965 / 0.000490 (0.499476) | 0.000461 / 0.000200 (0.000261) | 0.000064 / 0.000054 (0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032294 / 0.037411 (-0.005117) | 0.131769 / 0.014526 (0.117243) | 0.146472 / 0.176557 (-0.030085) | 0.210035 / 0.737135 (-0.527100) | 0.145600 / 0.296338 (-0.150739) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507455 / 0.215209 (0.292246) | 5.080090 / 2.077655 (3.002435) | 2.506104 / 1.504120 (1.001984) | 2.297655 / 1.541195 (0.756460) | 2.324920 / 1.468490 (0.856430) | 0.645003 / 4.584777 (-3.939774) | 4.677856 / 3.745712 (0.932144) | 2.254179 / 5.269862 (-3.015683) | 1.280663 / 4.565676 (-3.285013) | 0.078809 / 0.424275 (-0.345466) | 0.014059 / 0.007607 (0.006452) | 0.628053 / 0.226044 (0.402009) | 6.327289 / 2.268929 (4.058360) | 2.957918 / 55.444624 (-52.486706) | 2.571568 / 6.876477 (-4.304909) | 2.708766 / 2.142072 (0.566694) | 0.772868 / 4.805227 (-4.032360) | 0.164835 / 6.500664 (-6.335829) | 0.075334 / 0.075469 (-0.000135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.471930 / 1.841788 (-0.369858) | 17.917340 / 8.074308 (9.843032) | 15.719327 / 10.191392 (5.527935) | 0.191999 / 0.680424 (-0.488424) | 0.022464 / 0.534201 (-0.511737) | 0.511038 / 0.579283 (-0.068245) | 0.512050 / 0.434364 (0.077686) | 0.608711 / 0.540337 (0.068373) | 0.749660 / 1.386936 (-0.637276) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008028 / 0.011353 (-0.003325) | 0.004908 / 0.011008 (-0.006100) | 0.092294 / 0.038508 (0.053786) | 0.053051 / 0.023109 (0.029942) | 0.453862 / 0.275898 (0.177964) | 0.512548 / 0.323480 (0.189068) | 0.004817 / 0.007986 (-0.003168) | 0.005330 / 0.004328 (0.001002) | 0.095600 / 0.004250 (0.091350) | 0.068763 / 0.037052 (0.031710) | 0.453654 / 0.258489 (0.195165) | 0.504995 / 0.293841 (0.211154) | 0.038123 / 0.128546 (-0.090423) | 0.010650 / 0.075646 (-0.064996) | 0.102854 / 0.419271 (-0.316417) | 0.062973 / 0.043533 (0.019440) | 0.430420 / 0.255139 (0.175281) | 0.465448 / 0.283200 (0.182248) | 0.029736 / 0.141683 (-0.111947) | 1.844225 / 1.452155 (0.392070) | 1.934685 / 1.492716 (0.441968) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227797 / 0.018006 (0.209791) | 0.467868 / 0.000490 (0.467378) | 0.004531 / 0.000200 (0.004331) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035632 / 0.037411 (-0.001780) | 0.145943 / 0.014526 (0.131417) | 0.151944 / 0.176557 (-0.024613) | 0.220519 / 0.737135 (-0.516616) | 0.159732 / 0.296338 (-0.136606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.520641 / 0.215209 (0.305432) | 5.184740 / 2.077655 (3.107086) | 2.538751 / 1.504120 (1.034631) | 2.316571 / 1.541195 (0.775377) | 2.387898 / 1.468490 (0.919408) | 0.614515 / 4.584777 (-3.970262) | 4.573142 / 3.745712 (0.827430) | 4.657052 / 5.269862 (-0.612809) | 2.159664 / 4.565676 (-2.406013) | 0.079713 / 0.424275 (-0.344562) | 0.014462 / 0.007607 (0.006855) | 0.656611 / 0.226044 (0.430566) | 6.481630 / 2.268929 (4.212702) | 3.135047 / 55.444624 (-52.309577) | 2.757502 / 6.876477 (-4.118975) | 2.851488 / 2.142072 (0.709415) | 0.790795 / 4.805227 (-4.014432) | 0.172358 / 6.500664 (-6.328306) | 0.080255 / 0.075469 (0.004786) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.571391 / 1.841788 (-0.270396) | 19.025224 / 8.074308 (10.950916) | 17.079230 / 10.191392 (6.887838) | 0.172823 / 0.680424 (-0.507601) | 0.021845 / 0.534201 (-0.512356) | 0.522286 / 0.579283 (-0.056998) | 0.510406 / 0.434364 (0.076042) | 0.604830 / 0.540337 (0.064493) | 0.735466 / 1.386936 (-0.651471) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4084609bdc40d173d1daa74ad2fe98f3ead72f8e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010025 / 0.011353 (-0.001328) | 0.005699 / 0.011008 (-0.005310) | 0.134194 / 0.038508 (0.095686) | 0.056154 / 0.023109 (0.033045) | 0.470091 / 0.275898 (0.194193) | 0.539225 / 0.323480 (0.215745) | 0.006659 / 0.007986 (-0.001326) | 0.004468 / 0.004328 (0.000140) | 0.110040 / 0.004250 (0.105790) | 0.074172 / 0.037052 (0.037119) | 0.497450 / 0.258489 (0.238961) | 0.535048 / 0.293841 (0.241207) | 0.051195 / 0.128546 (-0.077352) | 0.014926 / 0.075646 (-0.060721) | 0.461334 / 0.419271 (0.042062) | 0.073773 / 0.043533 (0.030240) | 0.450741 / 0.255139 (0.195602) | 0.474853 / 0.283200 (0.191653) | 0.036372 / 0.141683 (-0.105311) | 1.982873 / 1.452155 (0.530719) | 1.989912 / 1.492716 (0.497196) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287817 / 0.018006 (0.269811) | 0.613415 / 0.000490 (0.612926) | 0.007082 / 0.000200 (0.006882) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031119 / 0.037411 (-0.006292) | 0.129886 / 0.014526 (0.115361) | 0.143492 / 0.176557 (-0.033065) | 0.208536 / 0.737135 (-0.528600) | 0.147081 / 0.296338 (-0.149257) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.668312 / 0.215209 (0.453103) | 6.568609 / 2.077655 (4.490955) | 2.708788 / 1.504120 (1.204668) | 2.366737 / 1.541195 (0.825542) | 2.392598 / 1.468490 (0.924108) | 0.967582 / 4.584777 (-3.617195) | 5.582743 / 3.745712 (1.837031) | 3.021607 / 5.269862 (-2.248255) | 1.866402 / 4.565676 (-2.699275) | 0.115998 / 0.424275 (-0.308277) | 0.015571 / 0.007607 (0.007964) | 0.820069 / 0.226044 (0.594025) | 8.229725 / 2.268929 (5.960797) | 3.437068 / 55.444624 (-52.007557) | 2.902312 / 6.876477 (-3.974164) | 3.025874 / 2.142072 (0.883802) | 1.230359 / 4.805227 (-3.574868) | 0.237341 / 6.500664 (-6.263323) | 0.089923 / 0.075469 (0.014453) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.670970 / 1.841788 (-0.170818) | 19.667167 / 8.074308 (11.592859) | 21.624423 / 10.191392 (11.433031) | 0.231683 / 0.680424 (-0.448741) | 0.029145 / 0.534201 (-0.505056) | 0.543441 / 0.579283 (-0.035842) | 0.617510 / 0.434364 (0.183146) | 0.612662 / 0.540337 (0.072324) | 0.790589 / 1.386936 (-0.596347) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010324 / 0.011353 (-0.001029) | 0.005339 / 0.011008 (-0.005669) | 0.104762 / 0.038508 (0.066254) | 0.052631 / 0.023109 (0.029522) | 0.485864 / 0.275898 (0.209966) | 0.595768 / 0.323480 (0.272288) | 0.007417 / 0.007986 (-0.000569) | 0.005229 / 0.004328 (0.000900) | 0.100775 / 0.004250 (0.096524) | 0.067144 / 0.037052 (0.030092) | 0.522269 / 0.258489 (0.263780) | 0.592597 / 0.293841 (0.298756) | 0.051101 / 0.128546 (-0.077446) | 0.015277 / 0.075646 (-0.060369) | 0.115530 / 0.419271 (-0.303741) | 0.071922 / 0.043533 (0.028390) | 0.490208 / 0.255139 (0.235069) | 0.578936 / 0.283200 (0.295736) | 0.040382 / 0.141683 (-0.101301) | 1.986059 / 1.452155 (0.533904) | 2.040600 / 1.492716 (0.547883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300399 / 0.018006 (0.282393) | 0.624702 / 0.000490 (0.624212) | 0.004908 / 0.000200 (0.004708) | 0.000155 / 0.000054 (0.000100) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038031 / 0.037411 (0.000619) | 0.140353 / 0.014526 (0.125828) | 0.152600 / 0.176557 (-0.023956) | 0.219165 / 0.737135 (-0.517970) | 0.154232 / 0.296338 (-0.142106) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.698855 / 0.215209 (0.483646) | 7.125543 / 2.077655 (5.047889) | 3.251222 / 1.504120 (1.747102) | 2.953404 / 1.541195 (1.412209) | 3.051108 / 1.468490 (1.582618) | 0.962068 / 4.584777 (-3.622709) | 5.789579 / 3.745712 (2.043867) | 5.193271 / 5.269862 (-0.076591) | 2.757886 / 4.565676 (-1.807790) | 0.111865 / 0.424275 (-0.312410) | 0.014684 / 0.007607 (0.007077) | 0.875967 / 0.226044 (0.649923) | 8.818359 / 2.268929 (6.549430) | 4.165216 / 55.444624 (-51.279408) | 3.372059 / 6.876477 (-3.504418) | 3.486886 / 2.142072 (1.344813) | 1.232276 / 4.805227 (-3.572951) | 0.238967 / 6.500664 (-6.261697) | 0.091584 / 0.075469 (0.016115) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.850755 / 1.841788 (0.008968) | 20.058756 / 8.074308 (11.984448) | 23.761271 / 10.191392 (13.569879) | 0.231826 / 0.680424 (-0.448598) | 0.030119 / 0.534201 (-0.504082) | 0.532614 / 0.579283 (-0.046669) | 0.628968 / 0.434364 (0.194604) | 0.628403 / 0.540337 (0.088066) | 0.745648 / 1.386936 (-0.641288) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a8a797cc92e860c8d0df71e0aa826f4d2690713e \"CML watermark\")\n"
] | 2023-06-22T18:32:14 | 2023-06-22T18:42:22 | 2023-06-22T18:32:22 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5979",
"html_url": "https://github.com/huggingface/datasets/pull/5979",
"diff_url": "https://github.com/huggingface/datasets/pull/5979.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5979.patch",
"merged_at": "2023-06-22T18:32:22"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5979/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5979/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6062 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6062/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6062/comments | https://api.github.com/repos/huggingface/datasets/issues/6062/events | https://github.com/huggingface/datasets/pull/6062 | 1,818,341,584 | PR_kwDODunzps5WOj62 | 6,062 | Improve `Dataset.from_list` docstring | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008340 / 0.011353 (-0.003013) | 0.005053 / 0.011008 (-0.005955) | 0.103294 / 0.038508 (0.064786) | 0.069417 / 0.023109 (0.046308) | 0.436922 / 0.275898 (0.161024) | 0.461348 / 0.323480 (0.137868) | 0.006030 / 0.007986 (-0.001955) | 0.003727 / 0.004328 (-0.000601) | 0.076384 / 0.004250 (0.072134) | 0.056742 / 0.037052 (0.019689) | 0.439996 / 0.258489 (0.181507) | 0.469417 / 0.293841 (0.175577) | 0.044343 / 0.128546 (-0.084203) | 0.012634 / 0.075646 (-0.063013) | 0.359746 / 0.419271 (-0.059525) | 0.064842 / 0.043533 (0.021309) | 0.425960 / 0.255139 (0.170821) | 0.458568 / 0.283200 (0.175368) | 0.039802 / 0.141683 (-0.101881) | 1.687320 / 1.452155 (0.235165) | 1.806212 / 1.492716 (0.313496) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255484 / 0.018006 (0.237478) | 0.563039 / 0.000490 (0.562549) | 0.000445 / 0.000200 (0.000245) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027511 / 0.037411 (-0.009900) | 0.089185 / 0.014526 (0.074659) | 0.098397 / 0.176557 (-0.078160) | 0.163897 / 0.737135 (-0.573238) | 0.099905 / 0.296338 (-0.196434) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.612737 / 0.215209 (0.397528) | 6.209948 / 2.077655 (4.132294) | 2.756060 / 1.504120 (1.251940) | 2.402115 / 1.541195 (0.860920) | 2.422665 / 1.468490 (0.954175) | 0.834799 / 4.584777 (-3.749977) | 5.251699 / 3.745712 (1.505986) | 5.554141 / 5.269862 (0.284280) | 3.254699 / 4.565676 (-1.310977) | 0.095697 / 0.424275 (-0.328578) | 0.009406 / 0.007607 (0.001799) | 0.729025 / 0.226044 (0.502980) | 7.195521 / 2.268929 (4.926593) | 3.360264 / 55.444624 (-52.084361) | 2.696764 / 6.876477 (-4.179713) | 2.702796 / 2.142072 (0.560724) | 0.974420 / 4.805227 (-3.830808) | 0.195215 / 6.500664 (-6.305450) | 0.069754 / 0.075469 (-0.005715) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.553458 / 1.841788 (-0.288330) | 21.972436 / 8.074308 (13.898128) | 20.027392 / 10.191392 (9.836000) | 0.216950 / 0.680424 (-0.463474) | 0.032196 / 0.534201 (-0.502005) | 0.449884 / 0.579283 (-0.129399) | 0.586213 / 0.434364 (0.151849) | 0.537227 / 0.540337 (-0.003111) | 0.751022 / 1.386936 (-0.635914) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007859 / 0.011353 (-0.003493) | 0.004762 / 0.011008 (-0.006246) | 0.086023 / 0.038508 (0.047515) | 0.069218 / 0.023109 (0.046109) | 0.449312 / 0.275898 (0.173414) | 0.481687 / 0.323480 (0.158207) | 0.006318 / 0.007986 (-0.001668) | 0.004063 / 0.004328 (-0.000266) | 0.076917 / 0.004250 (0.072667) | 0.058034 / 0.037052 (0.020981) | 0.474265 / 0.258489 (0.215775) | 0.497736 / 0.293841 (0.203895) | 0.044587 / 0.128546 (-0.083959) | 0.013880 / 0.075646 (-0.061766) | 0.089233 / 0.419271 (-0.330038) | 0.058760 / 0.043533 (0.015227) | 0.439515 / 0.255139 (0.184376) | 0.473246 / 0.283200 (0.190047) | 0.042968 / 0.141683 (-0.098715) | 1.802647 / 1.452155 (0.350493) | 1.778563 / 1.492716 (0.285847) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.343741 / 0.018006 (0.325735) | 0.567409 / 0.000490 (0.566919) | 0.029727 / 0.000200 (0.029527) | 0.000147 / 0.000054 (0.000092) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031021 / 0.037411 (-0.006390) | 0.096659 / 0.014526 (0.082133) | 0.103341 / 0.176557 (-0.073215) | 0.169893 / 0.737135 (-0.567242) | 0.103280 / 0.296338 (-0.193058) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.584724 / 0.215209 (0.369515) | 5.792596 / 2.077655 (3.714941) | 2.683133 / 1.504120 (1.179013) | 2.367837 / 1.541195 (0.826643) | 2.378567 / 1.468490 (0.910076) | 0.803427 / 4.584777 (-3.781350) | 5.179017 / 3.745712 (1.433305) | 4.446323 / 5.269862 (-0.823538) | 2.771731 / 4.565676 (-1.793945) | 0.100943 / 0.424275 (-0.323332) | 0.009875 / 0.007607 (0.002268) | 0.725260 / 0.226044 (0.499216) | 7.149728 / 2.268929 (4.880800) | 3.646438 / 55.444624 (-51.798187) | 2.793858 / 6.876477 (-4.082618) | 2.971966 / 2.142072 (0.829894) | 0.998147 / 4.805227 (-3.807080) | 0.198004 / 6.500664 (-6.302660) | 0.072581 / 0.075469 (-0.002888) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.696737 / 1.841788 (-0.145051) | 22.615193 / 8.074308 (14.540884) | 20.272421 / 10.191392 (10.081029) | 0.237459 / 0.680424 (-0.442965) | 0.034774 / 0.534201 (-0.499427) | 0.484649 / 0.579283 (-0.094634) | 0.590263 / 0.434364 (0.155899) | 0.547833 / 0.540337 (0.007495) | 0.762109 / 1.386936 (-0.624827) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4bc3628b5a8f71ad7cfc014d8ba5e798f26becb7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011183 / 0.011353 (-0.000170) | 0.005267 / 0.011008 (-0.005741) | 0.108506 / 0.038508 (0.069997) | 0.083541 / 0.023109 (0.060431) | 0.452189 / 0.275898 (0.176291) | 0.496229 / 0.323480 (0.172749) | 0.004951 / 0.007986 (-0.003035) | 0.004452 / 0.004328 (0.000124) | 0.085133 / 0.004250 (0.080883) | 0.061291 / 0.037052 (0.024239) | 0.450453 / 0.258489 (0.191964) | 0.506456 / 0.293841 (0.212616) | 0.049784 / 0.128546 (-0.078762) | 0.014738 / 0.075646 (-0.060908) | 0.372603 / 0.419271 (-0.046669) | 0.065223 / 0.043533 (0.021690) | 0.467872 / 0.255139 (0.212733) | 0.500062 / 0.283200 (0.216862) | 0.040911 / 0.141683 (-0.100772) | 1.852970 / 1.452155 (0.400816) | 2.016996 / 1.492716 (0.524280) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.262620 / 0.018006 (0.244614) | 0.593925 / 0.000490 (0.593435) | 0.000413 / 0.000200 (0.000213) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035713 / 0.037411 (-0.001698) | 0.111403 / 0.014526 (0.096878) | 0.117259 / 0.176557 (-0.059298) | 0.201545 / 0.737135 (-0.535590) | 0.133111 / 0.296338 (-0.163228) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.597318 / 0.215209 (0.382109) | 5.882691 / 2.077655 (3.805036) | 2.572203 / 1.504120 (1.068083) | 2.248016 / 1.541195 (0.706821) | 2.359103 / 1.468490 (0.890613) | 0.852023 / 4.584777 (-3.732754) | 5.270831 / 3.745712 (1.525119) | 4.712915 / 5.269862 (-0.556947) | 3.124295 / 4.565676 (-1.441381) | 0.092045 / 0.424275 (-0.332230) | 0.007834 / 0.007607 (0.000227) | 0.695711 / 0.226044 (0.469666) | 7.011760 / 2.268929 (4.742831) | 3.333300 / 55.444624 (-52.111325) | 2.745889 / 6.876477 (-4.130587) | 3.153458 / 2.142072 (1.011385) | 1.011089 / 4.805227 (-3.794139) | 0.207467 / 6.500664 (-6.293197) | 0.079802 / 0.075469 (0.004333) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.703784 / 1.841788 (-0.138003) | 24.414340 / 8.074308 (16.340032) | 22.534528 / 10.191392 (12.343136) | 0.276129 / 0.680424 (-0.404295) | 0.027954 / 0.534201 (-0.506247) | 0.484261 / 0.579283 (-0.095022) | 0.605316 / 0.434364 (0.170952) | 0.557219 / 0.540337 (0.016882) | 0.802209 / 1.386936 (-0.584727) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009109 / 0.011353 (-0.002244) | 0.005376 / 0.011008 (-0.005632) | 0.085141 / 0.038508 (0.046633) | 0.100560 / 0.023109 (0.077450) | 0.482673 / 0.275898 (0.206775) | 0.551582 / 0.323480 (0.228103) | 0.006756 / 0.007986 (-0.001229) | 0.004171 / 0.004328 (-0.000158) | 0.084184 / 0.004250 (0.079933) | 0.069283 / 0.037052 (0.032230) | 0.517722 / 0.258489 (0.259233) | 0.542641 / 0.293841 (0.248801) | 0.047790 / 0.128546 (-0.080756) | 0.014063 / 0.075646 (-0.061583) | 0.110591 / 0.419271 (-0.308680) | 0.064373 / 0.043533 (0.020840) | 0.496636 / 0.255139 (0.241497) | 0.551906 / 0.283200 (0.268707) | 0.046187 / 0.141683 (-0.095496) | 1.864836 / 1.452155 (0.412681) | 1.923765 / 1.492716 (0.431049) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286558 / 0.018006 (0.268552) | 0.610353 / 0.000490 (0.609863) | 0.012647 / 0.000200 (0.012447) | 0.000162 / 0.000054 (0.000107) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037099 / 0.037411 (-0.000313) | 0.108608 / 0.014526 (0.094082) | 0.120386 / 0.176557 (-0.056170) | 0.183450 / 0.737135 (-0.553686) | 0.124860 / 0.296338 (-0.171479) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.629006 / 0.215209 (0.413797) | 6.309206 / 2.077655 (4.231551) | 2.878558 / 1.504120 (1.374438) | 2.616093 / 1.541195 (1.074898) | 2.668096 / 1.468490 (1.199606) | 0.865732 / 4.584777 (-3.719045) | 5.312433 / 3.745712 (1.566721) | 4.799352 / 5.269862 (-0.470509) | 3.142207 / 4.565676 (-1.423469) | 0.099591 / 0.424275 (-0.324684) | 0.009159 / 0.007607 (0.001552) | 0.730999 / 0.226044 (0.504954) | 7.486442 / 2.268929 (5.217513) | 3.657699 / 55.444624 (-51.786925) | 3.080094 / 6.876477 (-3.796383) | 3.320976 / 2.142072 (1.178904) | 1.089324 / 4.805227 (-3.715904) | 0.222831 / 6.500664 (-6.277833) | 0.083976 / 0.075469 (0.008507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.793181 / 1.841788 (-0.048607) | 25.307444 / 8.074308 (17.233136) | 21.321713 / 10.191392 (11.130321) | 0.216326 / 0.680424 (-0.464098) | 0.034298 / 0.534201 (-0.499903) | 0.497173 / 0.579283 (-0.082110) | 0.643550 / 0.434364 (0.209186) | 0.581213 / 0.540337 (0.040876) | 0.830973 / 1.386936 (-0.555963) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#24875bb8494c3a7803182b08c70747b1b1a6bf4d \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006886 / 0.011353 (-0.004467) | 0.004267 / 0.011008 (-0.006741) | 0.086182 / 0.038508 (0.047674) | 0.083405 / 0.023109 (0.060296) | 0.313717 / 0.275898 (0.037819) | 0.351476 / 0.323480 (0.027996) | 0.005702 / 0.007986 (-0.002284) | 0.003802 / 0.004328 (-0.000526) | 0.065759 / 0.004250 (0.061508) | 0.060056 / 0.037052 (0.023003) | 0.315871 / 0.258489 (0.057382) | 0.364520 / 0.293841 (0.070679) | 0.032067 / 0.128546 (-0.096479) | 0.008679 / 0.075646 (-0.066967) | 0.294968 / 0.419271 (-0.124303) | 0.054684 / 0.043533 (0.011152) | 0.314124 / 0.255139 (0.058985) | 0.337312 / 0.283200 (0.054113) | 0.025051 / 0.141683 (-0.116632) | 1.505242 / 1.452155 (0.053087) | 1.608263 / 1.492716 (0.115547) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266562 / 0.018006 (0.248556) | 0.579887 / 0.000490 (0.579397) | 0.004161 / 0.000200 (0.003961) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031153 / 0.037411 (-0.006258) | 0.087703 / 0.014526 (0.073177) | 0.103864 / 0.176557 (-0.072693) | 0.159032 / 0.737135 (-0.578104) | 0.102482 / 0.296338 (-0.193857) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405805 / 0.215209 (0.190596) | 4.050669 / 2.077655 (1.973014) | 2.064384 / 1.504120 (0.560264) | 1.892825 / 1.541195 (0.351630) | 2.001083 / 1.468490 (0.532593) | 0.478174 / 4.584777 (-4.106603) | 3.542580 / 3.745712 (-0.203132) | 3.319205 / 5.269862 (-1.950656) | 2.075868 / 4.565676 (-2.489808) | 0.057345 / 0.424275 (-0.366930) | 0.007459 / 0.007607 (-0.000148) | 0.483564 / 0.226044 (0.257520) | 4.827746 / 2.268929 (2.558818) | 2.579541 / 55.444624 (-52.865083) | 2.205125 / 6.876477 (-4.671352) | 2.489206 / 2.142072 (0.347133) | 0.575843 / 4.805227 (-4.229384) | 0.133010 / 6.500664 (-6.367654) | 0.061082 / 0.075469 (-0.014387) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286059 / 1.841788 (-0.555729) | 20.575173 / 8.074308 (12.500865) | 14.351692 / 10.191392 (4.160300) | 0.150401 / 0.680424 (-0.530022) | 0.018678 / 0.534201 (-0.515523) | 0.397860 / 0.579283 (-0.181423) | 0.419474 / 0.434364 (-0.014890) | 0.474492 / 0.540337 (-0.065846) | 0.659510 / 1.386936 (-0.727426) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006948 / 0.011353 (-0.004405) | 0.004305 / 0.011008 (-0.006703) | 0.064220 / 0.038508 (0.025712) | 0.083251 / 0.023109 (0.060142) | 0.388148 / 0.275898 (0.112250) | 0.417834 / 0.323480 (0.094354) | 0.005762 / 0.007986 (-0.002224) | 0.003803 / 0.004328 (-0.000525) | 0.066365 / 0.004250 (0.062114) | 0.061808 / 0.037052 (0.024756) | 0.390889 / 0.258489 (0.132400) | 0.430619 / 0.293841 (0.136778) | 0.031777 / 0.128546 (-0.096770) | 0.008781 / 0.075646 (-0.066865) | 0.070844 / 0.419271 (-0.348427) | 0.050552 / 0.043533 (0.007019) | 0.378420 / 0.255139 (0.123281) | 0.403273 / 0.283200 (0.120074) | 0.024578 / 0.141683 (-0.117105) | 1.494790 / 1.452155 (0.042636) | 1.549408 / 1.492716 (0.056692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.302668 / 0.018006 (0.284662) | 0.542235 / 0.000490 (0.541746) | 0.001847 / 0.000200 (0.001647) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031947 / 0.037411 (-0.005465) | 0.092220 / 0.014526 (0.077694) | 0.104525 / 0.176557 (-0.072031) | 0.162000 / 0.737135 (-0.575135) | 0.106795 / 0.296338 (-0.189543) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412035 / 0.215209 (0.196826) | 4.106527 / 2.077655 (2.028872) | 2.111529 / 1.504120 (0.607409) | 1.953201 / 1.541195 (0.412006) | 2.079258 / 1.468490 (0.610768) | 0.479562 / 4.584777 (-4.105215) | 3.606256 / 3.745712 (-0.139456) | 5.175250 / 5.269862 (-0.094612) | 3.292465 / 4.565676 (-1.273212) | 0.057726 / 0.424275 (-0.366549) | 0.008247 / 0.007607 (0.000640) | 0.486143 / 0.226044 (0.260098) | 4.859051 / 2.268929 (2.590123) | 2.675629 / 55.444624 (-52.768995) | 2.267448 / 6.876477 (-4.609029) | 2.567639 / 2.142072 (0.425567) | 0.580822 / 4.805227 (-4.224406) | 0.134942 / 6.500664 (-6.365722) | 0.063825 / 0.075469 (-0.011644) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.334421 / 1.841788 (-0.507367) | 20.481428 / 8.074308 (12.407120) | 14.227943 / 10.191392 (4.036551) | 0.170711 / 0.680424 (-0.509713) | 0.018212 / 0.534201 (-0.515989) | 0.397212 / 0.579283 (-0.182071) | 0.411934 / 0.434364 (-0.022430) | 0.478019 / 0.540337 (-0.062319) | 0.645434 / 1.386936 (-0.741502) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ef3d3f10886e23a65cce3bfd939b8ec0d5a5c2c1 \"CML watermark\")\n"
] | 2023-07-24T12:36:38 | 2023-07-24T14:43:48 | 2023-07-24T14:34:43 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6062",
"html_url": "https://github.com/huggingface/datasets/pull/6062",
"diff_url": "https://github.com/huggingface/datasets/pull/6062.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6062.patch",
"merged_at": "2023-07-24T14:34:43"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6062/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6062/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5923 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5923/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5923/comments | https://api.github.com/repos/huggingface/datasets/issues/5923/events | https://github.com/huggingface/datasets/issues/5923 | 1,737,436,227 | I_kwDODunzps5njyxD | 5,923 | Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility | {
"login": "ehuangc",
"id": 71412682,
"node_id": "MDQ6VXNlcjcxNDEyNjgy",
"avatar_url": "https://avatars.githubusercontent.com/u/71412682?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ehuangc",
"html_url": "https://github.com/ehuangc",
"followers_url": "https://api.github.com/users/ehuangc/followers",
"following_url": "https://api.github.com/users/ehuangc/following{/other_user}",
"gists_url": "https://api.github.com/users/ehuangc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ehuangc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ehuangc/subscriptions",
"organizations_url": "https://api.github.com/users/ehuangc/orgs",
"repos_url": "https://api.github.com/users/ehuangc/repos",
"events_url": "https://api.github.com/users/ehuangc/events{/privacy}",
"received_events_url": "https://api.github.com/users/ehuangc/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Based on https://github.com/rapidsai/cudf/issues/10187, this probably means your `pyarrow` installation is not compatible with `datasets`.\r\n\r\nCan you please execute the following commands in the terminal and paste the output here?\r\n```\r\nconda list | grep arrow\r\n``` \r\n```\r\npython -c \"import pyarrow; print(pyarrow.__file__)\"\r\n```\r\n\r\n\r\n",
"> Based on [rapidsai/cudf#10187](https://github.com/rapidsai/cudf/issues/10187), this probably means your `pyarrow` installation is not compatible with `datasets`.\r\n> \r\n> Can you please execute the following commands in the terminal and paste the output here?\r\n> \r\n> ```\r\n> conda list | grep arrow\r\n> ```\r\n> \r\n> ```\r\n> python -c \"import pyarrow; print(pyarrow.__file__)\"\r\n> ```\r\n\r\n\r\nHere is the output to the first command:\r\n```\r\narrow-cpp 11.0.0 py39h7f74497_0 \r\npyarrow 12.0.0 pypi_0 pypi\r\n```\r\nand the second:\r\n```\r\n/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/__init__.py\r\n```\r\nThanks!\r\n\r\n\r\n\r\n",
"after installing pytesseract 0.3.10, I got the above error. FYI ",
"RuntimeError: Failed to import transformers.trainer because of the following error (look up to see its traceback):\r\npyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject",
"I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem.\r\n\r\nDo we need to update dependencies? ",
"Please note that our CI properly passes all tests with `pyarrow-12.0.0`, for Python 3.7 and Python 3.10, for Ubuntu and Windows: see for example https://github.com/huggingface/datasets/actions/runs/5157324334/jobs/9289582291",
"For conda with python3.8.16 this solved my problem! thanks!\r\n\r\n> I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem.\r\n> \r\n> Do we need to update dependencies? I can work on that if no one else is working on it.\r\n\r\n",
"Thanks for replying. I am not sure about those environments but it seems like pyarrow-12.0.0 does not work for conda with python 3.8.16. \r\n\r\n> Please note that our CI properly passes all tests with `pyarrow-12.0.0`, for Python 3.7 and Python 3.10, for Ubuntu and Windows: see for example https://github.com/huggingface/datasets/actions/runs/5157324334/jobs/9289582291\r\n\r\n",
"Got the same error with:\r\n\r\n```\r\narrow-cpp 11.0.0 py310h7516544_0 \r\npyarrow 12.0.0 pypi_0 pypi\r\n\r\npython 3.10.11 h7a1cb2a_2 \r\n\r\ndatasets 2.13.0 pyhd8ed1ab_0 conda-forge\r\n```",
"> I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem.\r\n> \r\n> Do we need to update dependencies?\r\n\r\nThis solved the issue for me as well.",
"> I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem.\r\n> \r\n> Do we need to update dependencies?\r\n\r\nSolved it for me also",
"> 基于 [rapidsai/cudf#10187](https://github.com/rapidsai/cudf/issues/10187),这可能意味着您的安装与 不兼容。`pyarrow``datasets`\r\n> \r\n> 您能否在终端中执行以下命令并将输出粘贴到此处?\r\n> \r\n> ```\r\n> conda list | grep arrow\r\n> ```\r\n> \r\n> ```\r\n> python -c \"import pyarrow; print(pyarrow.__file__)\"\r\n> ```\r\n\r\narrow-cpp 11.0.0 py310h7516544_0 \r\npyarrow 12.0.1 pypi_0 pypi\r\n\r\n/root/miniconda3/lib/python3.10/site-packages/pyarrow/__init__.py",
"Got the same problem with\r\n\r\narrow-cpp 11.0.0 py310h1fc3239_0 \r\npyarrow 12.0.1 pypi_0 pypi\r\n\r\nminiforge3/envs/mlp/lib/python3.10/site-packages/pyarrow/__init__.py\r\n\r\nReverting back to pyarrow 11 solved the problem.\r\n"
] | 2023-06-02T04:16:32 | 2023-07-23T20:39:59 | null | NONE | null | null | null | ### Describe the bug
When trying to import datasets, I get a pyarrow ValueError:
Traceback (most recent call last):
File "/Users/edward/test/test.py", line 1, in <module>
import datasets
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module>
from .arrow_dataset import Dataset
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module>
from .arrow_reader import ArrowReader
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module>
import pyarrow.parquet as pq
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module>
from .core import *
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module>
from pyarrow.fs import (LocalFileSystem, FileSystem, FileType,
File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module>
from pyarrow._gcsfs import GcsFileSystem # noqa
File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs
ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject
### Steps to reproduce the bug
`import datasets`
### Expected behavior
Successful import
### Environment info
Conda environment, MacOS
python 3.9.12
datasets 2.12.0
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5923/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5923/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5970 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5970/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5970/comments | https://api.github.com/repos/huggingface/datasets/issues/5970/events | https://github.com/huggingface/datasets/issues/5970 | 1,766,010,356 | I_kwDODunzps5pQy30 | 5,970 | description disappearing from Info when Uploading a Dataset Created with `from_dict` | {
"login": "balisujohn",
"id": 20377292,
"node_id": "MDQ6VXNlcjIwMzc3Mjky",
"avatar_url": "https://avatars.githubusercontent.com/u/20377292?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/balisujohn",
"html_url": "https://github.com/balisujohn",
"followers_url": "https://api.github.com/users/balisujohn/followers",
"following_url": "https://api.github.com/users/balisujohn/following{/other_user}",
"gists_url": "https://api.github.com/users/balisujohn/gists{/gist_id}",
"starred_url": "https://api.github.com/users/balisujohn/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/balisujohn/subscriptions",
"organizations_url": "https://api.github.com/users/balisujohn/orgs",
"repos_url": "https://api.github.com/users/balisujohn/repos",
"events_url": "https://api.github.com/users/balisujohn/events{/privacy}",
"received_events_url": "https://api.github.com/users/balisujohn/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Here's a minimal way to reproduce the bug, for the sake of convenience.\r\n````\r\nfrom datasets import Dataset, DatasetInfo, load_dataset\r\n\r\n\r\nepisodes_dict = {\"test\":[1,2,3],\"test2\": [1,2,4]}\r\n\r\nhugging_face_dataset = Dataset.from_dict(\r\n episodes_dict, info=DatasetInfo(description=\"test_str\")\r\n)\r\nprint(hugging_face_dataset.info)\r\n\r\nhugging_face_dataset.push_to_hub(\"balisujohn/minari_test\", private=True)\r\n\r\nredownloaded_dataset= load_dataset(\"balisujohn/minari_test\")[\"train\"]\r\n\r\n\r\nprint(redownloaded_dataset.info)\r\n````\r\n",
"Thanks for reporting !\r\n\r\nFor now I would recommend uploading a separate JSON file for your metadata.\r\n\r\nAlternatively you can upload a second configuration of the dataset containing your metadata but this feature is not released yet (though you can already use it from [here](https://github.com/huggingface/datasets/pull/5331), it will be released soon)"
] | 2023-06-20T19:18:26 | 2023-06-22T14:23:56 | null | NONE | null | null | null | ### Describe the bug
When uploading a dataset created locally using `from_dict` with a specified `description` field. It appears before upload, but is missing after upload and re-download.
### Steps to reproduce the bug
I think the most relevant pattern in the code might be the following lines:
```
description_json_str = json.dumps(
{
"dataset_id": dataset.spec.dataset_id,
"env_name": dataset.spec.env_spec.id,
"action_space": serialize_space(dataset.spec.action_space),
"observation_space": serialize_space(dataset.spec.observation_space),
}
)
hugging_face_dataset = Dataset.from_dict(
episodes_dict, info=DatasetInfo(description=description_json_str)
)
```
Which comes from this function https://github.com/balisujohn/minarai/blob/8e023727f0a8488c4451651d9f7a79b981412c40/minari/integrations/hugging_face.py#L39
To replicate,
clone this branch of my Minari fork https://github.com/balisujohn/minarai/tree/dev-huggingface then run
```
python3.8 -m venv env
source env/bin/activate
python3 -m pip install -e .
python3 -m pip install pytest
```
The change the hugging face repo path in the test called `test_hugging_face_push_and_pull_dataset` in `tests/integrations/test_hugging_face.py` to one you have permissions to write to.
Then run:
```
pytest tests/integrations/test_hugging_face.py::test_hugging_face_push_and_pull_dataset
```
### Expected behavior
DATASET INFO BEFORE UPLOADING
DatasetInfo(description='{"dataset_id": "dummy-combo-test-v0", "env_name": "DummyComboEnv-v0", "action_space": "{\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [4.0], \\"high\\": [5.0]}]}", "observation_space": "{\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Dict\\", \\"subspaces\\": {\\"component_1\\": {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [-1.0], \\"high\\": [1.0]}, \\"component_2\\": {\\"type\\": \\"Dict\\", \\"subspaces\\": {\\"subcomponent_1\\": {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, \\"subcomponent_2\\": {\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [4.0], \\"high\\": [5.0]}, {\\"type\\": \\"Discrete\\", \\"dtype\\": \\"int64\\", \\"start\\": 0, \\"n\\": 10}]}}}}}]}]}"}', citation='', homepage='', license='', features={'observations': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'component_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'component_2': {'subcomponent_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'subcomponent_2': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Value(dtype='int64', id=None)}}}}}, 'actions': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None)}, 'rewards': Value(dtype='int64', id=None), 'truncations': Value(dtype='bool', id=None), 'terminations': Value(dtype='bool', id=None), 'episode_ids': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, config_name=None, version=None, splits=None, download_checksums=None, download_size=None, post_processing_size=None, dataset_size=None, size_in_bytes=None)
...
DATASET INFO AFTER UPLOADING AND DOWNLOADING
DatasetInfo(description='', citation='', homepage='', license='', features={'observations': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'component_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'component_2': {'subcomponent_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'subcomponent_2': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Value(dtype='int64', id=None)}}}}}, 'actions': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None)}, 'rewards': Value(dtype='int64', id=None), 'truncations': Value(dtype='bool', id=None), 'terminations': Value(dtype='bool', id=None), 'episode_ids': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, config_name=None, version=None, splits={'train': SplitInfo(name='train', num_bytes=4846, num_examples=60, shard_lengths=None, dataset_name='parquet')}, download_checksums={'https://huggingface.co/datasets/balisujohn/minari_test/resolve/8217b614ff9ba5edc1a30c7df430e92a46f65363/data/train-00000-of-00001-7c5900b93b35745e.parquet': {'num_bytes': 9052, 'checksum': None}}, download_size=9052, post_processing_size=None, dataset_size=4846, size_in_bytes=13898)
...
### Environment info
- `datasets` version: 2.13.0
- Platform: Linux-5.15.0-75-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.2
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5970/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5970/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5992 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5992/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5992/comments | https://api.github.com/repos/huggingface/datasets/issues/5992/events | https://github.com/huggingface/datasets/pull/5992 | 1,776,460,964 | PR_kwDODunzps5UAk3C | 5,992 | speedup | {
"login": "qgallouedec",
"id": 45557362,
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qgallouedec",
"html_url": "https://github.com/qgallouedec",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5992). All of your documentation changes will be reflected on that endpoint."
] | 2023-06-27T09:17:58 | 2023-06-27T09:23:07 | 2023-06-27T09:18:04 | CONTRIBUTOR | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5992",
"html_url": "https://github.com/huggingface/datasets/pull/5992",
"diff_url": "https://github.com/huggingface/datasets/pull/5992.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5992.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5992/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5992/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5978 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5978/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5978/comments | https://api.github.com/repos/huggingface/datasets/issues/5978/events | https://github.com/huggingface/datasets/pull/5978 | 1,770,187,053 | PR_kwDODunzps5Tru2_ | 5,978 | Release: 2.13.1 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006173 / 0.011353 (-0.005180) | 0.003773 / 0.011008 (-0.007235) | 0.099499 / 0.038508 (0.060991) | 0.037918 / 0.023109 (0.014809) | 0.321329 / 0.275898 (0.045431) | 0.379739 / 0.323480 (0.056259) | 0.004664 / 0.007986 (-0.003322) | 0.002943 / 0.004328 (-0.001385) | 0.077759 / 0.004250 (0.073509) | 0.055271 / 0.037052 (0.018219) | 0.329428 / 0.258489 (0.070939) | 0.378731 / 0.293841 (0.084890) | 0.027737 / 0.128546 (-0.100810) | 0.008566 / 0.075646 (-0.067081) | 0.313220 / 0.419271 (-0.106052) | 0.047101 / 0.043533 (0.003568) | 0.316211 / 0.255139 (0.061072) | 0.341826 / 0.283200 (0.058626) | 0.020838 / 0.141683 (-0.120845) | 1.550064 / 1.452155 (0.097909) | 1.706518 / 1.492716 (0.213801) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203093 / 0.018006 (0.185087) | 0.425345 / 0.000490 (0.424856) | 0.004800 / 0.000200 (0.004600) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024590 / 0.037411 (-0.012821) | 0.098115 / 0.014526 (0.083589) | 0.108274 / 0.176557 (-0.068282) | 0.170804 / 0.737135 (-0.566332) | 0.110560 / 0.296338 (-0.185778) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425251 / 0.215209 (0.210042) | 4.239075 / 2.077655 (2.161421) | 1.955601 / 1.504120 (0.451481) | 1.774796 / 1.541195 (0.233602) | 1.826641 / 1.468490 (0.358150) | 0.558777 / 4.584777 (-4.026000) | 3.361697 / 3.745712 (-0.384015) | 1.764468 / 5.269862 (-3.505394) | 1.032280 / 4.565676 (-3.533396) | 0.067872 / 0.424275 (-0.356403) | 0.010998 / 0.007607 (0.003391) | 0.525682 / 0.226044 (0.299637) | 5.254356 / 2.268929 (2.985427) | 2.384332 / 55.444624 (-53.060292) | 2.045578 / 6.876477 (-4.830898) | 2.170914 / 2.142072 (0.028841) | 0.674782 / 4.805227 (-4.130445) | 0.135351 / 6.500664 (-6.365314) | 0.066591 / 0.075469 (-0.008878) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.209181 / 1.841788 (-0.632606) | 14.044518 / 8.074308 (5.970210) | 13.184705 / 10.191392 (2.993313) | 0.130836 / 0.680424 (-0.549588) | 0.016582 / 0.534201 (-0.517619) | 0.360005 / 0.579283 (-0.219279) | 0.379519 / 0.434364 (-0.054845) | 0.422174 / 0.540337 (-0.118164) | 0.515546 / 1.386936 (-0.871390) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006293 / 0.011353 (-0.005060) | 0.003784 / 0.011008 (-0.007224) | 0.079248 / 0.038508 (0.040739) | 0.038452 / 0.023109 (0.015343) | 0.444727 / 0.275898 (0.168829) | 0.500535 / 0.323480 (0.177055) | 0.003455 / 0.007986 (-0.004531) | 0.002873 / 0.004328 (-0.001455) | 0.077439 / 0.004250 (0.073189) | 0.047855 / 0.037052 (0.010803) | 0.448049 / 0.258489 (0.189560) | 0.509517 / 0.293841 (0.215676) | 0.028359 / 0.128546 (-0.100188) | 0.008503 / 0.075646 (-0.067143) | 0.084961 / 0.419271 (-0.334310) | 0.042880 / 0.043533 (-0.000653) | 0.436628 / 0.255139 (0.181489) | 0.456574 / 0.283200 (0.173375) | 0.019539 / 0.141683 (-0.122144) | 1.561273 / 1.452155 (0.109118) | 1.572018 / 1.492716 (0.079301) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230250 / 0.018006 (0.212244) | 0.415189 / 0.000490 (0.414700) | 0.003213 / 0.000200 (0.003013) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025541 / 0.037411 (-0.011871) | 0.102326 / 0.014526 (0.087800) | 0.110258 / 0.176557 (-0.066298) | 0.162488 / 0.737135 (-0.574647) | 0.112782 / 0.296338 (-0.183556) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457936 / 0.215209 (0.242727) | 4.581503 / 2.077655 (2.503848) | 2.237659 / 1.504120 (0.733540) | 2.029960 / 1.541195 (0.488765) | 2.082911 / 1.468490 (0.614421) | 0.556485 / 4.584777 (-4.028292) | 3.384418 / 3.745712 (-0.361295) | 1.748809 / 5.269862 (-3.521053) | 1.034759 / 4.565676 (-3.530917) | 0.067500 / 0.424275 (-0.356776) | 0.011425 / 0.007607 (0.003818) | 0.561340 / 0.226044 (0.335295) | 5.623629 / 2.268929 (3.354701) | 2.733587 / 55.444624 (-52.711038) | 2.401578 / 6.876477 (-4.474899) | 2.524569 / 2.142072 (0.382496) | 0.673170 / 4.805227 (-4.132057) | 0.136681 / 6.500664 (-6.363983) | 0.068060 / 0.075469 (-0.007409) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.318651 / 1.841788 (-0.523137) | 14.362123 / 8.074308 (6.287815) | 14.385964 / 10.191392 (4.194572) | 0.149914 / 0.680424 (-0.530510) | 0.016877 / 0.534201 (-0.517324) | 0.358406 / 0.579283 (-0.220877) | 0.394349 / 0.434364 (-0.040015) | 0.422471 / 0.540337 (-0.117866) | 0.513807 / 1.386936 (-0.873129) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1b9ce11d1b94e6178df663ff5fcad029849d10fb \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006272 / 0.011353 (-0.005080) | 0.003903 / 0.011008 (-0.007105) | 0.100180 / 0.038508 (0.061672) | 0.037799 / 0.023109 (0.014690) | 0.385627 / 0.275898 (0.109729) | 0.446518 / 0.323480 (0.123038) | 0.004811 / 0.007986 (-0.003175) | 0.003032 / 0.004328 (-0.001296) | 0.077063 / 0.004250 (0.072812) | 0.055564 / 0.037052 (0.018512) | 0.397346 / 0.258489 (0.138857) | 0.443242 / 0.293841 (0.149401) | 0.027904 / 0.128546 (-0.100642) | 0.008386 / 0.075646 (-0.067260) | 0.315013 / 0.419271 (-0.104259) | 0.047943 / 0.043533 (0.004410) | 0.378443 / 0.255139 (0.123304) | 0.411472 / 0.283200 (0.128272) | 0.020465 / 0.141683 (-0.121218) | 1.526594 / 1.452155 (0.074439) | 1.547018 / 1.492716 (0.054301) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219377 / 0.018006 (0.201370) | 0.430254 / 0.000490 (0.429764) | 0.003218 / 0.000200 (0.003018) | 0.000072 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023667 / 0.037411 (-0.013744) | 0.099143 / 0.014526 (0.084617) | 0.106044 / 0.176557 (-0.070513) | 0.166186 / 0.737135 (-0.570949) | 0.108736 / 0.296338 (-0.187603) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437971 / 0.215209 (0.222762) | 4.363675 / 2.077655 (2.286021) | 2.011993 / 1.504120 (0.507873) | 1.845189 / 1.541195 (0.303994) | 1.831848 / 1.468490 (0.363358) | 0.562402 / 4.584777 (-4.022375) | 3.365259 / 3.745712 (-0.380453) | 1.781491 / 5.269862 (-3.488371) | 1.023454 / 4.565676 (-3.542223) | 0.067857 / 0.424275 (-0.356418) | 0.011076 / 0.007607 (0.003469) | 0.532267 / 0.226044 (0.306223) | 5.340344 / 2.268929 (3.071415) | 2.388649 / 55.444624 (-53.055976) | 2.055373 / 6.876477 (-4.821104) | 2.205047 / 2.142072 (0.062975) | 0.672909 / 4.805227 (-4.132318) | 0.135244 / 6.500664 (-6.365420) | 0.066184 / 0.075469 (-0.009285) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206838 / 1.841788 (-0.634950) | 13.967075 / 8.074308 (5.892767) | 13.143971 / 10.191392 (2.952579) | 0.143991 / 0.680424 (-0.536433) | 0.016673 / 0.534201 (-0.517527) | 0.376180 / 0.579283 (-0.203103) | 0.386550 / 0.434364 (-0.047814) | 0.440590 / 0.540337 (-0.099747) | 0.529974 / 1.386936 (-0.856962) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006299 / 0.011353 (-0.005054) | 0.003784 / 0.011008 (-0.007224) | 0.077875 / 0.038508 (0.039367) | 0.038689 / 0.023109 (0.015580) | 0.421684 / 0.275898 (0.145786) | 0.472649 / 0.323480 (0.149169) | 0.003570 / 0.007986 (-0.004415) | 0.004448 / 0.004328 (0.000120) | 0.077867 / 0.004250 (0.073616) | 0.049514 / 0.037052 (0.012462) | 0.375983 / 0.258489 (0.117494) | 0.470632 / 0.293841 (0.176791) | 0.028238 / 0.128546 (-0.100308) | 0.008462 / 0.075646 (-0.067185) | 0.082452 / 0.419271 (-0.336819) | 0.043617 / 0.043533 (0.000084) | 0.400874 / 0.255139 (0.145735) | 0.426191 / 0.283200 (0.142992) | 0.020602 / 0.141683 (-0.121081) | 1.567658 / 1.452155 (0.115504) | 1.572610 / 1.492716 (0.079893) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246144 / 0.018006 (0.228138) | 0.419402 / 0.000490 (0.418913) | 0.001691 / 0.000200 (0.001491) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026105 / 0.037411 (-0.011306) | 0.104734 / 0.014526 (0.090208) | 0.110257 / 0.176557 (-0.066300) | 0.161429 / 0.737135 (-0.575706) | 0.114367 / 0.296338 (-0.181972) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453352 / 0.215209 (0.238143) | 4.537924 / 2.077655 (2.460269) | 2.196193 / 1.504120 (0.692073) | 2.002087 / 1.541195 (0.460892) | 2.041722 / 1.468490 (0.573231) | 0.561643 / 4.584777 (-4.023134) | 3.449108 / 3.745712 (-0.296605) | 2.862800 / 5.269862 (-2.407062) | 1.387895 / 4.565676 (-3.177782) | 0.068076 / 0.424275 (-0.356199) | 0.011568 / 0.007607 (0.003961) | 0.559279 / 0.226044 (0.333235) | 5.598738 / 2.268929 (3.329809) | 2.676649 / 55.444624 (-52.767975) | 2.334588 / 6.876477 (-4.541889) | 2.376215 / 2.142072 (0.234142) | 0.673109 / 4.805227 (-4.132118) | 0.137587 / 6.500664 (-6.363077) | 0.069131 / 0.075469 (-0.006338) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.307332 / 1.841788 (-0.534456) | 14.536036 / 8.074308 (6.461728) | 14.173734 / 10.191392 (3.982342) | 0.145143 / 0.680424 (-0.535281) | 0.016662 / 0.534201 (-0.517539) | 0.366901 / 0.579283 (-0.212383) | 0.394498 / 0.434364 (-0.039866) | 0.430546 / 0.540337 (-0.109792) | 0.518950 / 1.386936 (-0.867986) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#682d21e94ab1e64c11b583de39dc4c93f0101c5a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008122 / 0.011353 (-0.003231) | 0.005585 / 0.011008 (-0.005424) | 0.121219 / 0.038508 (0.082711) | 0.047616 / 0.023109 (0.024507) | 0.440576 / 0.275898 (0.164678) | 0.491053 / 0.323480 (0.167573) | 0.004774 / 0.007986 (-0.003211) | 0.006758 / 0.004328 (0.002430) | 0.103852 / 0.004250 (0.099602) | 0.071560 / 0.037052 (0.034508) | 0.463107 / 0.258489 (0.204618) | 0.516904 / 0.293841 (0.223063) | 0.048052 / 0.128546 (-0.080494) | 0.013679 / 0.075646 (-0.061968) | 0.428383 / 0.419271 (0.009112) | 0.069468 / 0.043533 (0.025936) | 0.432593 / 0.255139 (0.177454) | 0.471810 / 0.283200 (0.188611) | 0.037541 / 0.141683 (-0.104142) | 1.823490 / 1.452155 (0.371335) | 1.922558 / 1.492716 (0.429842) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252315 / 0.018006 (0.234309) | 0.541757 / 0.000490 (0.541267) | 0.000373 / 0.000200 (0.000173) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030361 / 0.037411 (-0.007050) | 0.125928 / 0.014526 (0.111402) | 0.145102 / 0.176557 (-0.031455) | 0.209798 / 0.737135 (-0.527337) | 0.147349 / 0.296338 (-0.148990) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.627554 / 0.215209 (0.412345) | 5.917422 / 2.077655 (3.839767) | 2.491083 / 1.504120 (0.986963) | 2.147078 / 1.541195 (0.605883) | 2.167511 / 1.468490 (0.699021) | 0.903061 / 4.584777 (-3.681716) | 5.518537 / 3.745712 (1.772825) | 2.654348 / 5.269862 (-2.615514) | 1.645121 / 4.565676 (-2.920556) | 0.103782 / 0.424275 (-0.320493) | 0.013048 / 0.007607 (0.005441) | 0.756732 / 0.226044 (0.530687) | 7.622873 / 2.268929 (5.353945) | 3.122689 / 55.444624 (-52.321936) | 2.537735 / 6.876477 (-4.338742) | 2.640090 / 2.142072 (0.498018) | 1.128635 / 4.805227 (-3.676593) | 0.228089 / 6.500664 (-6.272575) | 0.086207 / 0.075469 (0.010738) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.561591 / 1.841788 (-0.280197) | 18.110299 / 8.074308 (10.035991) | 20.718017 / 10.191392 (10.526625) | 0.225741 / 0.680424 (-0.454682) | 0.031738 / 0.534201 (-0.502463) | 0.530789 / 0.579283 (-0.048495) | 0.607364 / 0.434364 (0.173000) | 0.581593 / 0.540337 (0.041256) | 0.726033 / 1.386936 (-0.660903) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009323 / 0.011353 (-0.002030) | 0.005360 / 0.011008 (-0.005649) | 0.103608 / 0.038508 (0.065100) | 0.050158 / 0.023109 (0.027049) | 0.499906 / 0.275898 (0.224008) | 0.561005 / 0.323480 (0.237525) | 0.005093 / 0.007986 (-0.002892) | 0.008285 / 0.004328 (0.003956) | 0.103446 / 0.004250 (0.099196) | 0.061478 / 0.037052 (0.024426) | 0.494016 / 0.258489 (0.235527) | 0.537550 / 0.293841 (0.243709) | 0.048829 / 0.128546 (-0.079717) | 0.017032 / 0.075646 (-0.058614) | 0.107748 / 0.419271 (-0.311524) | 0.065607 / 0.043533 (0.022074) | 0.488709 / 0.255139 (0.233570) | 0.512023 / 0.283200 (0.228823) | 0.032067 / 0.141683 (-0.109616) | 1.907585 / 1.452155 (0.455431) | 1.960994 / 1.492716 (0.468278) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278378 / 0.018006 (0.260371) | 0.551474 / 0.000490 (0.550985) | 0.006886 / 0.000200 (0.006686) | 0.000106 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030674 / 0.037411 (-0.006737) | 0.135179 / 0.014526 (0.120654) | 0.133703 / 0.176557 (-0.042853) | 0.198923 / 0.737135 (-0.538212) | 0.155108 / 0.296338 (-0.141231) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.690566 / 0.215209 (0.475357) | 6.789594 / 2.077655 (4.711940) | 2.940668 / 1.504120 (1.436549) | 2.562431 / 1.541195 (1.021236) | 2.554232 / 1.468490 (1.085742) | 0.888470 / 4.584777 (-3.696307) | 5.672318 / 3.745712 (1.926606) | 2.741626 / 5.269862 (-2.528236) | 1.818336 / 4.565676 (-2.747340) | 0.110434 / 0.424275 (-0.313841) | 0.014114 / 0.007607 (0.006507) | 0.830632 / 0.226044 (0.604588) | 8.270787 / 2.268929 (6.001859) | 3.723486 / 55.444624 (-51.721139) | 2.993671 / 6.876477 (-3.882806) | 2.918273 / 2.142072 (0.776201) | 1.105337 / 4.805227 (-3.699891) | 0.222976 / 6.500664 (-6.277688) | 0.085290 / 0.075469 (0.009820) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.816027 / 1.841788 (-0.025760) | 18.496850 / 8.074308 (10.422541) | 20.457032 / 10.191392 (10.265640) | 0.243533 / 0.680424 (-0.436891) | 0.027044 / 0.534201 (-0.507157) | 0.500752 / 0.579283 (-0.078531) | 0.620963 / 0.434364 (0.186599) | 0.607995 / 0.540337 (0.067658) | 0.722915 / 1.386936 (-0.664021) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#682d21e94ab1e64c11b583de39dc4c93f0101c5a \"CML watermark\")\n"
] | 2023-06-22T18:23:11 | 2023-06-22T18:40:24 | 2023-06-22T18:30:16 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5978",
"html_url": "https://github.com/huggingface/datasets/pull/5978",
"diff_url": "https://github.com/huggingface/datasets/pull/5978.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5978.patch",
"merged_at": "2023-06-22T18:30:16"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5978/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5978/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6037 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6037/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6037/comments | https://api.github.com/repos/huggingface/datasets/issues/6037/events | https://github.com/huggingface/datasets/issues/6037 | 1,805,887,184 | I_kwDODunzps5ro6bQ | 6,037 | Documentation links to examples are broken | {
"login": "david-waterworth",
"id": 5028974,
"node_id": "MDQ6VXNlcjUwMjg5NzQ=",
"avatar_url": "https://avatars.githubusercontent.com/u/5028974?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/david-waterworth",
"html_url": "https://github.com/david-waterworth",
"followers_url": "https://api.github.com/users/david-waterworth/followers",
"following_url": "https://api.github.com/users/david-waterworth/following{/other_user}",
"gists_url": "https://api.github.com/users/david-waterworth/gists{/gist_id}",
"starred_url": "https://api.github.com/users/david-waterworth/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/david-waterworth/subscriptions",
"organizations_url": "https://api.github.com/users/david-waterworth/orgs",
"repos_url": "https://api.github.com/users/david-waterworth/repos",
"events_url": "https://api.github.com/users/david-waterworth/events{/privacy}",
"received_events_url": "https://api.github.com/users/david-waterworth/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"These docs are outdated (version 1.2.1 is over two years old). Please refer to [this](https://huggingface.co/docs/datasets/dataset_script) version instead.\r\n\r\nInitially, we hosted datasets in this repo, but now you can find them [on the HF Hub](https://huggingface.co/datasets) (e.g. the [`ag_news`](https://huggingface.co/datasets/ag_news/blob/main/ag_news.py) script)",
"Sorry I thought I'd selected the latest version."
] | 2023-07-15T04:54:50 | 2023-07-17T22:35:14 | 2023-07-17T15:10:32 | NONE | null | null | null | ### Describe the bug
The links at the bottom of [add_dataset](https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html) to examples of specific datasets are all broken, for example
- text classification: [ag_news](https://github.com/huggingface/datasets/blob/master/datasets/ag_news/ag_news.py) (original data are in csv files)
### Steps to reproduce the bug
Click on links to examples from latest documentation
### Expected behavior
Links should be up to date - it might be more stable to link to https://huggingface.co/datasets/ag_news/blob/main/ag_news.py
### Environment info
dataset v1.2.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6037/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6037/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6069 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6069/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6069/comments | https://api.github.com/repos/huggingface/datasets/issues/6069/events | https://github.com/huggingface/datasets/issues/6069 | 1,820,831,535 | I_kwDODunzps5sh68v | 6,069 | KeyError: dataset has no key "image" | {
"login": "etetteh",
"id": 28512232,
"node_id": "MDQ6VXNlcjI4NTEyMjMy",
"avatar_url": "https://avatars.githubusercontent.com/u/28512232?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/etetteh",
"html_url": "https://github.com/etetteh",
"followers_url": "https://api.github.com/users/etetteh/followers",
"following_url": "https://api.github.com/users/etetteh/following{/other_user}",
"gists_url": "https://api.github.com/users/etetteh/gists{/gist_id}",
"starred_url": "https://api.github.com/users/etetteh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/etetteh/subscriptions",
"organizations_url": "https://api.github.com/users/etetteh/orgs",
"repos_url": "https://api.github.com/users/etetteh/repos",
"events_url": "https://api.github.com/users/etetteh/events{/privacy}",
"received_events_url": "https://api.github.com/users/etetteh/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"You can list the dataset's columns with `ds.column_names` before `.map` to check whether the dataset has an `image` column. If it doesn't, then this is a bug. Otherwise, please paste the line with the `.map` call.\r\n\r\n\r\n",
"This is the piece of code I am running:\r\n```\r\ndata_transforms = utils.get_data_augmentation(args)\r\nimage_dataset = utils.load_image_dataset(args.dataset)\r\n\r\ndef resize(examples):\r\n examples[\"pixel_values\"] = [image.convert(\"RGB\").resize((300, 300)) for image in examples[\"image\"]]\r\n return examples\r\n\r\ndef preprocess_train(example_batch):\r\n print(f\"Example batch: \\n{example_batch}\")\r\n example_batch[\"pixel_values\"] = [\r\n data_transforms[\"train\"](image.convert(\"RGB\")) for image in example_batch[\"pixel_values\"]\r\n ]\r\n return example_batch\r\n\r\ndef preprocess_val(example_batch):\r\n example_batch[\"pixel_values\"] = [\r\n data_transforms[\"val\"](image.convert(\"RGB\")) for image in example_batch[\"pixel_values\"]\r\n ]\r\n return example_batch\r\n\r\nimage_dataset = image_dataset.map(resize, remove_columns=[\"image\"], batched=True)\r\n\r\nimage_dataset[\"train\"].set_transform(preprocess_train)\r\nimage_dataset[\"validation\"].set_transform(preprocess_val)\r\n```\r\n\r\nWhen I print ds.column_names I get the following\r\n`{'train': ['image', 'label'], 'validation': ['image', 'label'], 'test': ['image', 'label']}`\r\n\r\nThe `print(f\"Example batch: \\n{example_batch}\")` in the `preprocess_train` function outputs only labels without images:\r\n```\r\nExample batch: \r\n{'label': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]}\r\n```\r\n\r\nThe weird part of it all is that a sample code runs in a jupyter lab notebook without any bugs, but when I run my scripts from the terminal I get the bug. The same code.",
"The `remove_columns=[\"image\"]` argument in the `.map` call removes the `image` column from the output, so drop this argument to preserve it.",
"The problem is not with the removal of the image key. The bug is why only the labels are sent to be process, instead of all the featues or dictionary keys.\r\n\r\nP.S. I just dropped the removal argument as you've suggested, but that didn't solve the problem, because only the labels are being sent to be processed"
] | 2023-07-25T17:45:50 | 2023-07-26T15:18:51 | null | NONE | null | null | null | ### Describe the bug
I've loaded a local image dataset with:
`ds = laod_dataset("imagefolder", data_dir=path-to-data)`
And defined a transform to process the data, following the Datasets docs.
However, I get a keyError error, indicating there's no "image" key in my dataset. When I printed out the example_batch sent to the transformation function, it shows only the labels are being sent to the function.
For some reason, the images are not in the example batches.
### Steps to reproduce the bug
I'm using the latest stable version of datasets
### Expected behavior
I expect the example_batches to contain both images and labels
### Environment info
I'm using the latest stable version of datasets | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6069/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6069/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5956 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5956/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5956/comments | https://api.github.com/repos/huggingface/datasets/issues/5956/events | https://github.com/huggingface/datasets/pull/5956 | 1,756,959,367 | PR_kwDODunzps5S_1o2 | 5,956 | Fix ArrowExamplesIterable.shard_data_sources | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005893 / 0.011353 (-0.005460) | 0.003682 / 0.011008 (-0.007327) | 0.098358 / 0.038508 (0.059850) | 0.028130 / 0.023109 (0.005020) | 0.305960 / 0.275898 (0.030062) | 0.334869 / 0.323480 (0.011390) | 0.003522 / 0.007986 (-0.004463) | 0.003683 / 0.004328 (-0.000645) | 0.079418 / 0.004250 (0.075168) | 0.037662 / 0.037052 (0.000609) | 0.310893 / 0.258489 (0.052404) | 0.341347 / 0.293841 (0.047506) | 0.027450 / 0.128546 (-0.101096) | 0.008381 / 0.075646 (-0.067265) | 0.316020 / 0.419271 (-0.103252) | 0.045079 / 0.043533 (0.001546) | 0.307806 / 0.255139 (0.052667) | 0.331804 / 0.283200 (0.048604) | 0.091806 / 0.141683 (-0.049877) | 1.492611 / 1.452155 (0.040457) | 1.551762 / 1.492716 (0.059046) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201640 / 0.018006 (0.183634) | 0.422776 / 0.000490 (0.422286) | 0.003734 / 0.000200 (0.003535) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025429 / 0.037411 (-0.011982) | 0.104699 / 0.014526 (0.090173) | 0.110505 / 0.176557 (-0.066051) | 0.171252 / 0.737135 (-0.565883) | 0.113131 / 0.296338 (-0.183208) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419914 / 0.215209 (0.204705) | 4.184414 / 2.077655 (2.106760) | 1.999263 / 1.504120 (0.495143) | 1.828669 / 1.541195 (0.287474) | 1.940366 / 1.468490 (0.471876) | 0.556939 / 4.584777 (-4.027838) | 3.389164 / 3.745712 (-0.356548) | 1.796323 / 5.269862 (-3.473538) | 1.048843 / 4.565676 (-3.516833) | 0.067315 / 0.424275 (-0.356960) | 0.011531 / 0.007607 (0.003923) | 0.517226 / 0.226044 (0.291182) | 5.167255 / 2.268929 (2.898326) | 2.431129 / 55.444624 (-53.013495) | 2.133913 / 6.876477 (-4.742564) | 2.359021 / 2.142072 (0.216948) | 0.666390 / 4.805227 (-4.138838) | 0.135147 / 6.500664 (-6.365517) | 0.064855 / 0.075469 (-0.010614) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.166530 / 1.841788 (-0.675258) | 14.060551 / 8.074308 (5.986242) | 14.171663 / 10.191392 (3.980271) | 0.285821 / 0.680424 (-0.394603) | 0.016867 / 0.534201 (-0.517334) | 0.369102 / 0.579283 (-0.210181) | 0.393580 / 0.434364 (-0.040784) | 0.423721 / 0.540337 (-0.116616) | 0.512559 / 1.386936 (-0.874377) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006674 / 0.011353 (-0.004679) | 0.004006 / 0.011008 (-0.007002) | 0.080160 / 0.038508 (0.041652) | 0.032508 / 0.023109 (0.009399) | 0.378168 / 0.275898 (0.102270) | 0.417796 / 0.323480 (0.094316) | 0.003706 / 0.007986 (-0.004280) | 0.002995 / 0.004328 (-0.001333) | 0.079275 / 0.004250 (0.075025) | 0.043690 / 0.037052 (0.006638) | 0.377717 / 0.258489 (0.119228) | 0.439801 / 0.293841 (0.145961) | 0.028438 / 0.128546 (-0.100108) | 0.008661 / 0.075646 (-0.066985) | 0.085280 / 0.419271 (-0.333991) | 0.043716 / 0.043533 (0.000183) | 0.370086 / 0.255139 (0.114947) | 0.403763 / 0.283200 (0.120563) | 0.095022 / 0.141683 (-0.046661) | 1.534376 / 1.452155 (0.082221) | 1.597658 / 1.492716 (0.104942) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240229 / 0.018006 (0.222223) | 0.496281 / 0.000490 (0.495792) | 0.002165 / 0.000200 (0.001965) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025330 / 0.037411 (-0.012081) | 0.102414 / 0.014526 (0.087888) | 0.112733 / 0.176557 (-0.063824) | 0.161181 / 0.737135 (-0.575955) | 0.114196 / 0.296338 (-0.182143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456808 / 0.215209 (0.241599) | 4.534937 / 2.077655 (2.457283) | 2.318834 / 1.504120 (0.814714) | 2.074085 / 1.541195 (0.532890) | 2.117409 / 1.468490 (0.648919) | 0.559110 / 4.584777 (-4.025667) | 3.371695 / 3.745712 (-0.374017) | 2.543154 / 5.269862 (-2.726708) | 1.360552 / 4.565676 (-3.205125) | 0.067602 / 0.424275 (-0.356674) | 0.011396 / 0.007607 (0.003789) | 0.561666 / 0.226044 (0.335622) | 5.607666 / 2.268929 (3.338737) | 2.802775 / 55.444624 (-52.641849) | 2.486162 / 6.876477 (-4.390315) | 2.390885 / 2.142072 (0.248813) | 0.667407 / 4.805227 (-4.137820) | 0.135948 / 6.500664 (-6.364717) | 0.067272 / 0.075469 (-0.008197) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.279664 / 1.841788 (-0.562124) | 15.188099 / 8.074308 (7.113791) | 14.380355 / 10.191392 (4.188963) | 0.140344 / 0.680424 (-0.540080) | 0.016832 / 0.534201 (-0.517369) | 0.364631 / 0.579283 (-0.214652) | 0.400306 / 0.434364 (-0.034058) | 0.430793 / 0.540337 (-0.109545) | 0.525923 / 1.386936 (-0.861013) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#48ca19cf1f4d1c99765a1f847c1f6b849496d99d \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008502 / 0.011353 (-0.002851) | 0.005946 / 0.011008 (-0.005062) | 0.131279 / 0.038508 (0.092771) | 0.035400 / 0.023109 (0.012291) | 0.423240 / 0.275898 (0.147342) | 0.470248 / 0.323480 (0.146768) | 0.004949 / 0.007986 (-0.003037) | 0.004544 / 0.004328 (0.000215) | 0.106856 / 0.004250 (0.102605) | 0.046579 / 0.037052 (0.009527) | 0.441135 / 0.258489 (0.182646) | 0.470401 / 0.293841 (0.176561) | 0.047231 / 0.128546 (-0.081315) | 0.017278 / 0.075646 (-0.058368) | 0.401937 / 0.419271 (-0.017335) | 0.067151 / 0.043533 (0.023619) | 0.453908 / 0.255139 (0.198769) | 0.422171 / 0.283200 (0.138971) | 0.123583 / 0.141683 (-0.018100) | 1.852895 / 1.452155 (0.400740) | 1.827282 / 1.492716 (0.334566) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246419 / 0.018006 (0.228413) | 0.576930 / 0.000490 (0.576440) | 0.007511 / 0.000200 (0.007312) | 0.000165 / 0.000054 (0.000111) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032732 / 0.037411 (-0.004680) | 0.130266 / 0.014526 (0.115740) | 0.150537 / 0.176557 (-0.026019) | 0.218554 / 0.737135 (-0.518582) | 0.148572 / 0.296338 (-0.147766) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.598611 / 0.215209 (0.383402) | 6.181219 / 2.077655 (4.103564) | 2.473468 / 1.504120 (0.969348) | 2.206374 / 1.541195 (0.665179) | 2.216707 / 1.468490 (0.748217) | 0.981295 / 4.584777 (-3.603482) | 5.716384 / 3.745712 (1.970672) | 5.882327 / 5.269862 (0.612466) | 2.761081 / 4.565676 (-1.804595) | 0.113544 / 0.424275 (-0.310731) | 0.015131 / 0.007607 (0.007524) | 0.850939 / 0.226044 (0.624894) | 8.046611 / 2.268929 (5.777682) | 3.340542 / 55.444624 (-52.104083) | 2.673692 / 6.876477 (-4.202785) | 2.926330 / 2.142072 (0.784257) | 1.176164 / 4.805227 (-3.629064) | 0.226745 / 6.500664 (-6.273919) | 0.085910 / 0.075469 (0.010441) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.483792 / 1.841788 (-0.357995) | 18.895009 / 8.074308 (10.820701) | 20.982461 / 10.191392 (10.791069) | 0.253085 / 0.680424 (-0.427339) | 0.031284 / 0.534201 (-0.502917) | 0.516569 / 0.579283 (-0.062714) | 0.635781 / 0.434364 (0.201417) | 0.604359 / 0.540337 (0.064022) | 0.725278 / 1.386936 (-0.661658) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009220 / 0.011353 (-0.002133) | 0.005792 / 0.011008 (-0.005216) | 0.099795 / 0.038508 (0.061287) | 0.033812 / 0.023109 (0.010703) | 0.459386 / 0.275898 (0.183488) | 0.518067 / 0.323480 (0.194587) | 0.005083 / 0.007986 (-0.002902) | 0.004145 / 0.004328 (-0.000183) | 0.103506 / 0.004250 (0.099255) | 0.050429 / 0.037052 (0.013377) | 0.478149 / 0.258489 (0.219660) | 0.531280 / 0.293841 (0.237440) | 0.047373 / 0.128546 (-0.081173) | 0.013647 / 0.075646 (-0.061999) | 0.115174 / 0.419271 (-0.304098) | 0.061099 / 0.043533 (0.017566) | 0.455002 / 0.255139 (0.199863) | 0.507765 / 0.283200 (0.224565) | 0.112219 / 0.141683 (-0.029464) | 1.873591 / 1.452155 (0.421436) | 1.952061 / 1.492716 (0.459345) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.283587 / 0.018006 (0.265581) | 0.587562 / 0.000490 (0.587073) | 0.001252 / 0.000200 (0.001052) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032706 / 0.037411 (-0.004705) | 0.137715 / 0.014526 (0.123189) | 0.131932 / 0.176557 (-0.044625) | 0.200042 / 0.737135 (-0.537094) | 0.159327 / 0.296338 (-0.137011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.624061 / 0.215209 (0.408852) | 6.386235 / 2.077655 (4.308580) | 2.908786 / 1.504120 (1.404666) | 2.589855 / 1.541195 (1.048660) | 2.387988 / 1.468490 (0.919498) | 0.952625 / 4.584777 (-3.632152) | 5.571641 / 3.745712 (1.825929) | 2.711154 / 5.269862 (-2.558708) | 1.788015 / 4.565676 (-2.777662) | 0.104488 / 0.424275 (-0.319787) | 0.015213 / 0.007607 (0.007606) | 0.798446 / 0.226044 (0.572401) | 8.011614 / 2.268929 (5.742686) | 3.711951 / 55.444624 (-51.732673) | 2.896881 / 6.876477 (-3.979595) | 3.172116 / 2.142072 (1.030043) | 1.136816 / 4.805227 (-3.668411) | 0.239254 / 6.500664 (-6.261410) | 0.081136 / 0.075469 (0.005667) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.798246 / 1.841788 (-0.043542) | 19.497108 / 8.074308 (11.422800) | 23.450258 / 10.191392 (13.258866) | 0.250021 / 0.680424 (-0.430403) | 0.029138 / 0.534201 (-0.505063) | 0.532984 / 0.579283 (-0.046299) | 0.638161 / 0.434364 (0.203797) | 0.615720 / 0.540337 (0.075382) | 0.770621 / 1.386936 (-0.616315) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7d8345c5f8a844ff44cfbb30cbda514ffe89bfd7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009120 / 0.011353 (-0.002233) | 0.005381 / 0.011008 (-0.005627) | 0.139719 / 0.038508 (0.101211) | 0.037229 / 0.023109 (0.014120) | 0.414633 / 0.275898 (0.138734) | 0.480313 / 0.323480 (0.156833) | 0.005027 / 0.007986 (-0.002959) | 0.005015 / 0.004328 (0.000687) | 0.108513 / 0.004250 (0.104263) | 0.056167 / 0.037052 (0.019115) | 0.407588 / 0.258489 (0.149099) | 0.518899 / 0.293841 (0.225058) | 0.048857 / 0.128546 (-0.079689) | 0.013694 / 0.075646 (-0.061952) | 0.418035 / 0.419271 (-0.001237) | 0.067755 / 0.043533 (0.024222) | 0.417740 / 0.255139 (0.162601) | 0.478622 / 0.283200 (0.195422) | 0.118290 / 0.141683 (-0.023393) | 1.901473 / 1.452155 (0.449319) | 1.978126 / 1.492716 (0.485409) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271960 / 0.018006 (0.253954) | 0.602745 / 0.000490 (0.602255) | 0.005371 / 0.000200 (0.005171) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029620 / 0.037411 (-0.007791) | 0.122402 / 0.014526 (0.107877) | 0.132645 / 0.176557 (-0.043911) | 0.212635 / 0.737135 (-0.524500) | 0.136901 / 0.296338 (-0.159438) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.644017 / 0.215209 (0.428808) | 6.597151 / 2.077655 (4.519496) | 2.454471 / 1.504120 (0.950351) | 2.151357 / 1.541195 (0.610163) | 2.290748 / 1.468490 (0.822258) | 0.970194 / 4.584777 (-3.614583) | 5.475275 / 3.745712 (1.729563) | 2.772658 / 5.269862 (-2.497204) | 1.785311 / 4.565676 (-2.780366) | 0.114503 / 0.424275 (-0.309772) | 0.015374 / 0.007607 (0.007767) | 0.768413 / 0.226044 (0.542368) | 7.956219 / 2.268929 (5.687290) | 3.272138 / 55.444624 (-52.172486) | 2.539638 / 6.876477 (-4.336839) | 2.713526 / 2.142072 (0.571454) | 1.181221 / 4.805227 (-3.624006) | 0.236327 / 6.500664 (-6.264337) | 0.089815 / 0.075469 (0.014345) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.521805 / 1.841788 (-0.319983) | 18.196529 / 8.074308 (10.122221) | 20.287324 / 10.191392 (10.095932) | 0.256959 / 0.680424 (-0.423465) | 0.028846 / 0.534201 (-0.505355) | 0.522354 / 0.579283 (-0.056929) | 0.600216 / 0.434364 (0.165852) | 0.607668 / 0.540337 (0.067331) | 0.762101 / 1.386936 (-0.624835) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009227 / 0.011353 (-0.002126) | 0.005398 / 0.011008 (-0.005610) | 0.094998 / 0.038508 (0.056490) | 0.036633 / 0.023109 (0.013524) | 0.493317 / 0.275898 (0.217419) | 0.517216 / 0.323480 (0.193736) | 0.005510 / 0.007986 (-0.002476) | 0.004249 / 0.004328 (-0.000079) | 0.107936 / 0.004250 (0.103685) | 0.050223 / 0.037052 (0.013171) | 0.580275 / 0.258489 (0.321786) | 0.551477 / 0.293841 (0.257636) | 0.048758 / 0.128546 (-0.079788) | 0.013954 / 0.075646 (-0.061692) | 0.107021 / 0.419271 (-0.312250) | 0.064416 / 0.043533 (0.020884) | 0.485225 / 0.255139 (0.230086) | 0.513862 / 0.283200 (0.230663) | 0.118848 / 0.141683 (-0.022835) | 1.755396 / 1.452155 (0.303241) | 1.970349 / 1.492716 (0.477633) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290743 / 0.018006 (0.272737) | 0.603293 / 0.000490 (0.602803) | 0.006814 / 0.000200 (0.006614) | 0.000156 / 0.000054 (0.000101) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029862 / 0.037411 (-0.007550) | 0.136530 / 0.014526 (0.122005) | 0.133728 / 0.176557 (-0.042829) | 0.194709 / 0.737135 (-0.542427) | 0.151080 / 0.296338 (-0.145258) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.649202 / 0.215209 (0.433993) | 6.637578 / 2.077655 (4.559923) | 3.040135 / 1.504120 (1.536015) | 2.671308 / 1.541195 (1.130113) | 2.722412 / 1.468490 (1.253922) | 0.953029 / 4.584777 (-3.631748) | 5.805002 / 3.745712 (2.059290) | 5.049939 / 5.269862 (-0.219922) | 2.284053 / 4.565676 (-2.281623) | 0.130399 / 0.424275 (-0.293876) | 0.014726 / 0.007607 (0.007119) | 0.932570 / 0.226044 (0.706526) | 8.576693 / 2.268929 (6.307765) | 4.032738 / 55.444624 (-51.411886) | 3.274715 / 6.876477 (-3.601762) | 3.513788 / 2.142072 (1.371716) | 1.130624 / 4.805227 (-3.674603) | 0.219597 / 6.500664 (-6.281067) | 0.081425 / 0.075469 (0.005956) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.735312 / 1.841788 (-0.106476) | 18.438587 / 8.074308 (10.364279) | 21.582310 / 10.191392 (11.390918) | 0.224040 / 0.680424 (-0.456384) | 0.027590 / 0.534201 (-0.506611) | 0.503598 / 0.579283 (-0.075685) | 0.624379 / 0.434364 (0.190015) | 0.571911 / 0.540337 (0.031574) | 0.723215 / 1.386936 (-0.663721) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9e40d28f2b0060a429c70827191fa5ff3ce8cf27 \"CML watermark\")\n"
] | 2023-06-14T13:50:38 | 2023-06-14T14:43:12 | 2023-06-14T14:33:45 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5956",
"html_url": "https://github.com/huggingface/datasets/pull/5956",
"diff_url": "https://github.com/huggingface/datasets/pull/5956.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5956.patch",
"merged_at": "2023-06-14T14:33:45"
} | ArrowExamplesIterable.shard_data_sources was outdated
I also fixed a warning message by not using format_type= in with_format() | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5956/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5956/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6006 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6006/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6006/comments | https://api.github.com/repos/huggingface/datasets/issues/6006/events | https://github.com/huggingface/datasets/issues/6006 | 1,788,855,582 | I_kwDODunzps5qn8Ue | 6,006 | NotADirectoryError when loading gigawords | {
"login": "xipq",
"id": 115634163,
"node_id": "U_kgDOBuRv8w",
"avatar_url": "https://avatars.githubusercontent.com/u/115634163?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/xipq",
"html_url": "https://github.com/xipq",
"followers_url": "https://api.github.com/users/xipq/followers",
"following_url": "https://api.github.com/users/xipq/following{/other_user}",
"gists_url": "https://api.github.com/users/xipq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/xipq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/xipq/subscriptions",
"organizations_url": "https://api.github.com/users/xipq/orgs",
"repos_url": "https://api.github.com/users/xipq/repos",
"events_url": "https://api.github.com/users/xipq/events{/privacy}",
"received_events_url": "https://api.github.com/users/xipq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"issue due to corrupted download files. resolved after cleaning download cache. sorry for any inconvinence."
] | 2023-07-05T06:23:41 | 2023-07-05T06:31:02 | 2023-07-05T06:31:01 | NONE | null | null | null | ### Describe the bug
got `NotADirectoryError` whtn loading gigawords dataset
### Steps to reproduce the bug
When running
```
import datasets
datasets.load_dataset('gigaword')
```
Got the following exception:
```bash
Traceback (most recent call last): [0/1862]
File "/home/x/.conda/envs/dataproc/lib/python3.8/site-packages/datasets/builder.py", line 1629, in _prepare_split_single
for key, record in generator:
File "/home/x/.cache/huggingface/modules/datasets_modules/datasets/gigaword/ea83a8b819190acac5f2dae011fad51dccf269a0604ec5dd24795b
64efb424b6/gigaword.py", line 115, in _generate_examples
with open(src_path, encoding="utf-8") as f_d, open(tgt_path, encoding="utf-8") as f_s:
File "/home/x/.conda/envs/dataproc/lib/python3.8/site-packages/datasets/streaming.py", line 71, in wrapper
return function(*args, use_auth_token=use_auth_token, **kwargs)
File "/home/x/.conda/envs/dataproc/lib/python3.8/site-packages/datasets/download/streaming_download_manager.py", line 493, in xope
n
return open(main_hop, mode, *args, **kwargs)
NotADirectoryError: [Errno 20] Not a directory: '/home/x/.cache/huggingface/datasets/downloads/6da52431bb5124d90cf51a0187d2dbee9046e
89780c4be7599794a4f559048ec/org_data/train.src.txt'
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "gigaword.py", line 38, in <module>
main()
File "gigaword.py", line 35, in main
train, dev, test = dataset.generate_k_shot_data(k=32, seed=seed, path="../data/")
File "/home/x/MICL/preprocess/fewshot_gym_dataset.py", line 199, in generate_k_shot_data
dataset = self.load_dataset()
File "gigaword.py", line 29, in load_dataset
return datasets.load_dataset('gigaword')
File "/home/x/.conda/envs/dataproc/lib/python3.8/site-packages/datasets/load.py", line 1809, in load_dataset
builder_instance.download_and_prepare(
File "/home/x/.conda/envs/dataproc/lib/python3.8/site-packages/datasets/builder.py", line 909, in download_and_prepare
self._download_and_prepare(
File "/home/x/.conda/envs/dataproc/lib/python3.8/site-packages/datasets/builder.py", line 1670, in _download_and_prepare
super()._download_and_prepare(
File "/home/x/.conda/envs/dataproc/lib/python3.8/site-packages/datasets/builder.py", line 1004, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/x/.conda/envs/dataproc/lib/python3.8/site-packages/datasets/builder.py", line 1508, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/home/x/.conda/envs/dataproc/lib/python3.8/site-packages/datasets/builder.py", line 1665, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.builder.DatasetGenerationError: An error occurred while generating the dataset
```
### Expected behavior
Download and process the dataset successfully
### Environment info
- `datasets` version: 2.13.1
- Platform: Linux-5.0.0-1032-azure-x86_64-with-glibc2.10
- Python version: 3.8.0
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6006/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6006/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5938 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5938/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5938/comments | https://api.github.com/repos/huggingface/datasets/issues/5938/events | https://github.com/huggingface/datasets/pull/5938 | 1,749,462,851 | PR_kwDODunzps5SmbkI | 5,938 | Make get_from_cache use custom temp filename that is locked | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007241 / 0.011353 (-0.004112) | 0.004574 / 0.011008 (-0.006434) | 0.120481 / 0.038508 (0.081973) | 0.040492 / 0.023109 (0.017383) | 0.391399 / 0.275898 (0.115501) | 0.422844 / 0.323480 (0.099365) | 0.004441 / 0.007986 (-0.003545) | 0.004544 / 0.004328 (0.000216) | 0.089482 / 0.004250 (0.085231) | 0.052939 / 0.037052 (0.015887) | 0.393649 / 0.258489 (0.135160) | 0.433852 / 0.293841 (0.140011) | 0.035882 / 0.128546 (-0.092664) | 0.010172 / 0.075646 (-0.065474) | 0.410331 / 0.419271 (-0.008940) | 0.061481 / 0.043533 (0.017948) | 0.405066 / 0.255139 (0.149927) | 0.417732 / 0.283200 (0.134532) | 0.121647 / 0.141683 (-0.020035) | 1.790624 / 1.452155 (0.338469) | 1.863398 / 1.492716 (0.370681) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250650 / 0.018006 (0.232644) | 0.489044 / 0.000490 (0.488554) | 0.010421 / 0.000200 (0.010222) | 0.000106 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030340 / 0.037411 (-0.007071) | 0.128318 / 0.014526 (0.113792) | 0.140463 / 0.176557 (-0.036093) | 0.205762 / 0.737135 (-0.531373) | 0.147996 / 0.296338 (-0.148342) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.493158 / 0.215209 (0.277949) | 4.858346 / 2.077655 (2.780691) | 2.242942 / 1.504120 (0.738822) | 2.010092 / 1.541195 (0.468897) | 2.076765 / 1.468490 (0.608275) | 0.636669 / 4.584777 (-3.948108) | 4.478027 / 3.745712 (0.732314) | 2.157843 / 5.269862 (-3.112019) | 1.305133 / 4.565676 (-3.260543) | 0.079220 / 0.424275 (-0.345055) | 0.013858 / 0.007607 (0.006251) | 0.604501 / 0.226044 (0.378457) | 5.950071 / 2.268929 (3.681143) | 2.738373 / 55.444624 (-52.706251) | 2.380275 / 6.876477 (-4.496201) | 2.517108 / 2.142072 (0.375035) | 0.772249 / 4.805227 (-4.032979) | 0.169874 / 6.500664 (-6.330790) | 0.078026 / 0.075469 (0.002557) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.450200 / 1.841788 (-0.391588) | 17.810965 / 8.074308 (9.736657) | 15.518998 / 10.191392 (5.327606) | 0.200469 / 0.680424 (-0.479954) | 0.020777 / 0.534201 (-0.513424) | 0.504556 / 0.579283 (-0.074727) | 0.518493 / 0.434364 (0.084129) | 0.615335 / 0.540337 (0.074998) | 0.754065 / 1.386936 (-0.632871) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007224 / 0.011353 (-0.004129) | 0.004663 / 0.011008 (-0.006345) | 0.092151 / 0.038508 (0.053643) | 0.038359 / 0.023109 (0.015250) | 0.486413 / 0.275898 (0.210515) | 0.521596 / 0.323480 (0.198116) | 0.004207 / 0.007986 (-0.003778) | 0.003745 / 0.004328 (-0.000583) | 0.089840 / 0.004250 (0.085589) | 0.050996 / 0.037052 (0.013943) | 0.498090 / 0.258489 (0.239601) | 0.533647 / 0.293841 (0.239806) | 0.035151 / 0.128546 (-0.093395) | 0.010293 / 0.075646 (-0.065354) | 0.099056 / 0.419271 (-0.320215) | 0.057365 / 0.043533 (0.013833) | 0.470652 / 0.255139 (0.215513) | 0.509801 / 0.283200 (0.226602) | 0.115650 / 0.141683 (-0.026033) | 1.810860 / 1.452155 (0.358705) | 1.896775 / 1.492716 (0.404059) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261887 / 0.018006 (0.243880) | 0.489919 / 0.000490 (0.489430) | 0.006117 / 0.000200 (0.005917) | 0.000134 / 0.000054 (0.000079) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035033 / 0.037411 (-0.002378) | 0.141093 / 0.014526 (0.126567) | 0.152613 / 0.176557 (-0.023943) | 0.218351 / 0.737135 (-0.518785) | 0.158366 / 0.296338 (-0.137972) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.542219 / 0.215209 (0.327010) | 5.479358 / 2.077655 (3.401703) | 2.749586 / 1.504120 (1.245466) | 2.537686 / 1.541195 (0.996491) | 2.582351 / 1.468490 (1.113861) | 0.636750 / 4.584777 (-3.948027) | 4.537501 / 3.745712 (0.791789) | 2.141392 / 5.269862 (-3.128469) | 1.279711 / 4.565676 (-3.285965) | 0.079227 / 0.424275 (-0.345048) | 0.014141 / 0.007607 (0.006534) | 0.662070 / 0.226044 (0.436025) | 6.572144 / 2.268929 (4.303215) | 3.321349 / 55.444624 (-52.123275) | 2.928219 / 6.876477 (-3.948258) | 3.002732 / 2.142072 (0.860659) | 0.773808 / 4.805227 (-4.031419) | 0.166017 / 6.500664 (-6.334647) | 0.076424 / 0.075469 (0.000955) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.584325 / 1.841788 (-0.257463) | 18.359247 / 8.074308 (10.284938) | 16.977875 / 10.191392 (6.786483) | 0.195381 / 0.680424 (-0.485043) | 0.021048 / 0.534201 (-0.513153) | 0.512237 / 0.579283 (-0.067047) | 0.511435 / 0.434364 (0.077071) | 0.592856 / 0.540337 (0.052518) | 0.711905 / 1.386936 (-0.675031) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d536e37b21a6dd5c122b6d8113994ec50846c5b5 \"CML watermark\")\n"
] | 2023-06-09T09:01:13 | 2023-06-14T13:35:38 | 2023-06-14T13:27:24 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5938",
"html_url": "https://github.com/huggingface/datasets/pull/5938",
"diff_url": "https://github.com/huggingface/datasets/pull/5938.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5938.patch",
"merged_at": "2023-06-14T13:27:24"
} | This PR ensures that the temporary filename created is the same as the one that is locked, while writing to the cache.
This PR stops using `tempfile` to generate the temporary filename.
Additionally, the behavior now is aligned for both `resume_download` `True` and `False`.
Refactor temp_file_manager so that it uses the filename that is locked:
- Use: `cache_path + ".incomplete"`, when the locked one is `cache_path + ".lock"`
Before it was using `tempfile` inside `cache_dir`, which was not locked: although very improbable name collision (8 random characters), this was not impossible when huge number of multiple processes.
Maybe related to "Stale file handle" issues caused by `tempfile`:
- [ ] https://huggingface.co/datasets/tapaco/discussions/4
- [ ] https://huggingface.co/datasets/xcsr/discussions/1
- [ ] https://huggingface.co/datasets/covost2/discussions/3
```
Error code: ConfigNamesError
Exception: OSError
Message: [Errno 116] Stale file handle
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 61, in compute_config_names_response
for config in sorted(get_dataset_config_names(path=dataset, use_auth_token=use_auth_token))
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 323, in get_dataset_config_names
dataset_module = dataset_module_factory(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1219, in dataset_module_factory
raise e1 from None
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1188, in dataset_module_factory
return HubDatasetModuleFactoryWithScript(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 907, in get_module
dataset_readme_path = self.download_dataset_readme_file()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 896, in download_dataset_readme_file
return cached_path(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 183, in cached_path
output_path = get_from_cache(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 611, in get_from_cache
http_get(
File "/usr/local/lib/python3.9/tempfile.py", line 496, in __exit__
result = self.file.__exit__(exc, value, tb)
OSError: [Errno 116] Stale file handle
```
- the stale file handle error can be raised when `tempfile` tries to close (when exiting its context manager) a filename that has been already closed by other process
- note that `tempfile` filenames are randomly generated but not locked in our code
CC: @severo | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5938/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5938/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6059 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6059/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6059/comments | https://api.github.com/repos/huggingface/datasets/issues/6059/events | https://github.com/huggingface/datasets/issues/6059 | 1,816,537,176 | I_kwDODunzps5sRihY | 6,059 | Provide ability to load label mappings from file | {
"login": "david-waterworth",
"id": 5028974,
"node_id": "MDQ6VXNlcjUwMjg5NzQ=",
"avatar_url": "https://avatars.githubusercontent.com/u/5028974?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/david-waterworth",
"html_url": "https://github.com/david-waterworth",
"followers_url": "https://api.github.com/users/david-waterworth/followers",
"following_url": "https://api.github.com/users/david-waterworth/following{/other_user}",
"gists_url": "https://api.github.com/users/david-waterworth/gists{/gist_id}",
"starred_url": "https://api.github.com/users/david-waterworth/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/david-waterworth/subscriptions",
"organizations_url": "https://api.github.com/users/david-waterworth/orgs",
"repos_url": "https://api.github.com/users/david-waterworth/repos",
"events_url": "https://api.github.com/users/david-waterworth/events{/privacy}",
"received_events_url": "https://api.github.com/users/david-waterworth/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [] | 2023-07-22T02:04:19 | 2023-07-22T02:04:19 | null | NONE | null | null | null | ### Feature request
My task is classification of a dataset containing a large label set that includes a hierarchy. Even ignoring the hierarchy I'm not able to find an example using `datasets` where the label names aren't hard-coded. This works find for classification of a handful of labels but ideally there would be a way of loading the name/id mappings required for `datasets.features.ClassLabel` from a file.
It is possible to pass a file to ClassLabel but I cannot see an easy way of using this with `GeneratorBasedBuilder` since `self._info` is called before the `dl_manager` is constructed so even if my dataset contains say `label_mappings.json` there's no way of loading it in order to construct the `datasets.DatasetInfo`
I can see other uses to accessing the `download_manager` from `self._info` - i.e. if the files contain a schema (i.e. `arrow` or `parquet` files) the `datasets.DatasetInfo` could be inferred.
The workaround that was suggested in the forum is to generate a `.py` file from the `label_mappings.json` and import it.
```
class TestDatasetBuilder(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=["label_1", "label_2"]),
}
),
task_templates=[TextClassification(text_column="text", label_column="label")],
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
]
def _generate_examples(self, filepath):
"""Generate AG News examples."""
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.DictReader(csv_file)
for id_, row in enumerate(csv_reader):
yield id_, row
```
### Motivation
Allow `datasets.DatasetInfo` to be generated based on the contents of the dataset.
### Your contribution
I'm willing to work on a PR with guidence. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6059/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6059/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6028 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6028/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6028/comments | https://api.github.com/repos/huggingface/datasets/issues/6028/events | https://github.com/huggingface/datasets/pull/6028 | 1,803,294,981 | PR_kwDODunzps5Vb3LJ | 6,028 | Use new hffs | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006665 / 0.011353 (-0.004688) | 0.004376 / 0.011008 (-0.006633) | 0.085529 / 0.038508 (0.047021) | 0.076372 / 0.023109 (0.053263) | 0.310019 / 0.275898 (0.034121) | 0.341404 / 0.323480 (0.017924) | 0.005666 / 0.007986 (-0.002320) | 0.003763 / 0.004328 (-0.000566) | 0.064678 / 0.004250 (0.060427) | 0.059283 / 0.037052 (0.022231) | 0.316194 / 0.258489 (0.057704) | 0.349397 / 0.293841 (0.055557) | 0.031199 / 0.128546 (-0.097347) | 0.008724 / 0.075646 (-0.066923) | 0.300236 / 0.419271 (-0.119035) | 0.068872 / 0.043533 (0.025339) | 0.308521 / 0.255139 (0.053382) | 0.331292 / 0.283200 (0.048092) | 0.028236 / 0.141683 (-0.113447) | 1.501365 / 1.452155 (0.049211) | 1.554334 / 1.492716 (0.061618) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238291 / 0.018006 (0.220285) | 0.565069 / 0.000490 (0.564580) | 0.001626 / 0.000200 (0.001426) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029777 / 0.037411 (-0.007634) | 0.082873 / 0.014526 (0.068347) | 0.099619 / 0.176557 (-0.076937) | 0.156572 / 0.737135 (-0.580563) | 0.099887 / 0.296338 (-0.196452) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401017 / 0.215209 (0.185808) | 3.827192 / 2.077655 (1.749537) | 1.861554 / 1.504120 (0.357434) | 1.699869 / 1.541195 (0.158674) | 1.720043 / 1.468490 (0.251553) | 0.486757 / 4.584777 (-4.098020) | 3.638125 / 3.745712 (-0.107587) | 5.844959 / 5.269862 (0.575097) | 3.454901 / 4.565676 (-1.110775) | 0.057650 / 0.424275 (-0.366625) | 0.007341 / 0.007607 (-0.000266) | 0.462698 / 0.226044 (0.236654) | 4.633472 / 2.268929 (2.364544) | 2.287607 / 55.444624 (-53.157017) | 2.057318 / 6.876477 (-4.819159) | 2.203657 / 2.142072 (0.061584) | 0.598136 / 4.805227 (-4.207091) | 0.134012 / 6.500664 (-6.366653) | 0.060824 / 0.075469 (-0.014645) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277752 / 1.841788 (-0.564036) | 20.013398 / 8.074308 (11.939089) | 14.372993 / 10.191392 (4.181601) | 0.169991 / 0.680424 (-0.510433) | 0.018344 / 0.534201 (-0.515857) | 0.396985 / 0.579283 (-0.182299) | 0.416289 / 0.434364 (-0.018075) | 0.458658 / 0.540337 (-0.081680) | 0.692980 / 1.386936 (-0.693956) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006689 / 0.011353 (-0.004664) | 0.004393 / 0.011008 (-0.006615) | 0.064069 / 0.038508 (0.025561) | 0.080717 / 0.023109 (0.057607) | 0.370090 / 0.275898 (0.094191) | 0.400432 / 0.323480 (0.076952) | 0.005613 / 0.007986 (-0.002372) | 0.003641 / 0.004328 (-0.000687) | 0.064771 / 0.004250 (0.060520) | 0.057555 / 0.037052 (0.020502) | 0.392156 / 0.258489 (0.133667) | 0.409842 / 0.293841 (0.116001) | 0.031500 / 0.128546 (-0.097047) | 0.008786 / 0.075646 (-0.066860) | 0.070342 / 0.419271 (-0.348929) | 0.048646 / 0.043533 (0.005113) | 0.360914 / 0.255139 (0.105775) | 0.387626 / 0.283200 (0.104426) | 0.022787 / 0.141683 (-0.118896) | 1.508915 / 1.452155 (0.056761) | 1.539719 / 1.492716 (0.047002) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257985 / 0.018006 (0.239979) | 0.550990 / 0.000490 (0.550501) | 0.000407 / 0.000200 (0.000207) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030183 / 0.037411 (-0.007228) | 0.086882 / 0.014526 (0.072356) | 0.102382 / 0.176557 (-0.074175) | 0.154745 / 0.737135 (-0.582390) | 0.104008 / 0.296338 (-0.192331) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426284 / 0.215209 (0.211075) | 4.240812 / 2.077655 (2.163158) | 2.261240 / 1.504120 (0.757120) | 2.085905 / 1.541195 (0.544710) | 2.160374 / 1.468490 (0.691883) | 0.481126 / 4.584777 (-4.103651) | 3.516234 / 3.745712 (-0.229478) | 3.325322 / 5.269862 (-1.944539) | 2.043307 / 4.565676 (-2.522369) | 0.056663 / 0.424275 (-0.367612) | 0.007786 / 0.007607 (0.000179) | 0.497614 / 0.226044 (0.271570) | 4.974529 / 2.268929 (2.705600) | 2.700018 / 55.444624 (-52.744606) | 2.393778 / 6.876477 (-4.482699) | 2.628202 / 2.142072 (0.486130) | 0.594316 / 4.805227 (-4.210911) | 0.147092 / 6.500664 (-6.353572) | 0.062207 / 0.075469 (-0.013262) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.315676 / 1.841788 (-0.526112) | 20.749251 / 8.074308 (12.674943) | 14.371553 / 10.191392 (4.180160) | 0.170249 / 0.680424 (-0.510175) | 0.018478 / 0.534201 (-0.515722) | 0.395710 / 0.579283 (-0.183573) | 0.409706 / 0.434364 (-0.024658) | 0.463454 / 0.540337 (-0.076884) | 0.615657 / 1.386936 (-0.771279) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c5a752d8e8ca0a6ed118b024ba03c1b4a2881177 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007224 / 0.011353 (-0.004129) | 0.004506 / 0.011008 (-0.006503) | 0.096729 / 0.038508 (0.058221) | 0.082394 / 0.023109 (0.059284) | 0.390954 / 0.275898 (0.115056) | 0.416647 / 0.323480 (0.093167) | 0.005894 / 0.007986 (-0.002092) | 0.003756 / 0.004328 (-0.000572) | 0.075800 / 0.004250 (0.071549) | 0.062683 / 0.037052 (0.025631) | 0.398959 / 0.258489 (0.140470) | 0.436624 / 0.293841 (0.142783) | 0.034650 / 0.128546 (-0.093896) | 0.009655 / 0.075646 (-0.065991) | 0.315761 / 0.419271 (-0.103511) | 0.060957 / 0.043533 (0.017424) | 0.385649 / 0.255139 (0.130510) | 0.394022 / 0.283200 (0.110822) | 0.024601 / 0.141683 (-0.117082) | 1.729586 / 1.452155 (0.277431) | 1.724153 / 1.492716 (0.231437) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207070 / 0.018006 (0.189063) | 0.466502 / 0.000490 (0.466012) | 0.010739 / 0.000200 (0.010540) | 0.000214 / 0.000054 (0.000160) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031633 / 0.037411 (-0.005779) | 0.095345 / 0.014526 (0.080819) | 0.105399 / 0.176557 (-0.071157) | 0.174173 / 0.737135 (-0.562962) | 0.104207 / 0.296338 (-0.192132) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435312 / 0.215209 (0.220103) | 4.265600 / 2.077655 (2.187946) | 2.056500 / 1.504120 (0.552380) | 1.848023 / 1.541195 (0.306828) | 1.946156 / 1.468490 (0.477666) | 0.557788 / 4.584777 (-4.026989) | 4.070289 / 3.745712 (0.324577) | 3.608027 / 5.269862 (-1.661835) | 2.214556 / 4.565676 (-2.351121) | 0.062623 / 0.424275 (-0.361652) | 0.008083 / 0.007607 (0.000476) | 0.491782 / 0.226044 (0.265738) | 4.989963 / 2.268929 (2.721035) | 2.575867 / 55.444624 (-52.868757) | 2.208045 / 6.876477 (-4.668431) | 2.364184 / 2.142072 (0.222112) | 0.633925 / 4.805227 (-4.171302) | 0.144323 / 6.500664 (-6.356341) | 0.067505 / 0.075469 (-0.007965) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.467219 / 1.841788 (-0.374569) | 22.334967 / 8.074308 (14.260659) | 15.715747 / 10.191392 (5.524355) | 0.175443 / 0.680424 (-0.504980) | 0.026165 / 0.534201 (-0.508036) | 0.490675 / 0.579283 (-0.088608) | 0.509211 / 0.434364 (0.074847) | 0.586303 / 0.540337 (0.045965) | 0.785052 / 1.386936 (-0.601884) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007893 / 0.011353 (-0.003460) | 0.004577 / 0.011008 (-0.006431) | 0.075781 / 0.038508 (0.037273) | 0.095492 / 0.023109 (0.072382) | 0.433259 / 0.275898 (0.157361) | 0.469386 / 0.323480 (0.145906) | 0.006317 / 0.007986 (-0.001669) | 0.003708 / 0.004328 (-0.000621) | 0.074417 / 0.004250 (0.070167) | 0.068605 / 0.037052 (0.031552) | 0.448701 / 0.258489 (0.190212) | 0.469131 / 0.293841 (0.175290) | 0.036647 / 0.128546 (-0.091899) | 0.010077 / 0.075646 (-0.065570) | 0.082457 / 0.419271 (-0.336815) | 0.063255 / 0.043533 (0.019722) | 0.428144 / 0.255139 (0.173005) | 0.451872 / 0.283200 (0.168672) | 0.033953 / 0.141683 (-0.107730) | 1.781752 / 1.452155 (0.329597) | 1.869014 / 1.492716 (0.376297) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223596 / 0.018006 (0.205590) | 0.470307 / 0.000490 (0.469818) | 0.005059 / 0.000200 (0.004859) | 0.000104 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038804 / 0.037411 (0.001393) | 0.117879 / 0.014526 (0.103353) | 0.140701 / 0.176557 (-0.035855) | 0.194672 / 0.737135 (-0.542463) | 0.132806 / 0.296338 (-0.163533) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.510109 / 0.215209 (0.294900) | 4.729457 / 2.077655 (2.651803) | 2.512113 / 1.504120 (1.007993) | 2.302553 / 1.541195 (0.761358) | 2.420462 / 1.468490 (0.951972) | 0.531682 / 4.584777 (-4.053095) | 4.061208 / 3.745712 (0.315496) | 3.588542 / 5.269862 (-1.681320) | 2.203187 / 4.565676 (-2.362489) | 0.065791 / 0.424275 (-0.358484) | 0.008839 / 0.007607 (0.001232) | 0.562041 / 0.226044 (0.335997) | 5.702340 / 2.268929 (3.433412) | 3.127609 / 55.444624 (-52.317015) | 2.823060 / 6.876477 (-4.053417) | 2.898675 / 2.142072 (0.756603) | 0.659589 / 4.805227 (-4.145638) | 0.148798 / 6.500664 (-6.351866) | 0.070787 / 0.075469 (-0.004682) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.478317 / 1.841788 (-0.363471) | 21.995400 / 8.074308 (13.921092) | 16.770729 / 10.191392 (6.579337) | 0.226333 / 0.680424 (-0.454091) | 0.021835 / 0.534201 (-0.512366) | 0.460373 / 0.579283 (-0.118910) | 0.479494 / 0.434364 (0.045130) | 0.529470 / 0.540337 (-0.010868) | 0.718066 / 1.386936 (-0.668870) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9a717b8eb80b0e50b25818127f79a35e0866fb14 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007824 / 0.011353 (-0.003529) | 0.004601 / 0.011008 (-0.006407) | 0.100025 / 0.038508 (0.061517) | 0.096046 / 0.023109 (0.072936) | 0.376226 / 0.275898 (0.100328) | 0.410905 / 0.323480 (0.087425) | 0.006048 / 0.007986 (-0.001938) | 0.003817 / 0.004328 (-0.000511) | 0.076624 / 0.004250 (0.072374) | 0.066390 / 0.037052 (0.029338) | 0.380098 / 0.258489 (0.121609) | 0.413603 / 0.293841 (0.119762) | 0.036546 / 0.128546 (-0.092001) | 0.009881 / 0.075646 (-0.065765) | 0.344338 / 0.419271 (-0.074934) | 0.061882 / 0.043533 (0.018350) | 0.368568 / 0.255139 (0.113429) | 0.397133 / 0.283200 (0.113934) | 0.027255 / 0.141683 (-0.114428) | 1.795099 / 1.452155 (0.342945) | 1.852443 / 1.492716 (0.359727) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247436 / 0.018006 (0.229430) | 0.494119 / 0.000490 (0.493629) | 0.004359 / 0.000200 (0.004159) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034765 / 0.037411 (-0.002647) | 0.104541 / 0.014526 (0.090015) | 0.113898 / 0.176557 (-0.062659) | 0.183634 / 0.737135 (-0.553501) | 0.116423 / 0.296338 (-0.179916) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458747 / 0.215209 (0.243538) | 4.555740 / 2.077655 (2.478085) | 2.217240 / 1.504120 (0.713121) | 2.039879 / 1.541195 (0.498684) | 2.088581 / 1.468490 (0.620091) | 0.588063 / 4.584777 (-3.996714) | 4.238226 / 3.745712 (0.492514) | 4.768060 / 5.269862 (-0.501802) | 2.857117 / 4.565676 (-1.708560) | 0.068742 / 0.424275 (-0.355533) | 0.008667 / 0.007607 (0.001059) | 0.549294 / 0.226044 (0.323249) | 5.464635 / 2.268929 (3.195706) | 2.744435 / 55.444624 (-52.700189) | 2.347660 / 6.876477 (-4.528816) | 2.616816 / 2.142072 (0.474743) | 0.703701 / 4.805227 (-4.101526) | 0.159749 / 6.500664 (-6.340915) | 0.071990 / 0.075469 (-0.003479) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.486599 / 1.841788 (-0.355188) | 22.745438 / 8.074308 (14.671130) | 16.822332 / 10.191392 (6.630940) | 0.184730 / 0.680424 (-0.495694) | 0.021267 / 0.534201 (-0.512934) | 0.467108 / 0.579283 (-0.112176) | 0.472674 / 0.434364 (0.038311) | 0.548094 / 0.540337 (0.007756) | 0.735885 / 1.386936 (-0.651051) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007746 / 0.011353 (-0.003607) | 0.004585 / 0.011008 (-0.006423) | 0.076943 / 0.038508 (0.038435) | 0.087473 / 0.023109 (0.064363) | 0.480099 / 0.275898 (0.204201) | 0.495271 / 0.323480 (0.171791) | 0.006348 / 0.007986 (-0.001638) | 0.003902 / 0.004328 (-0.000426) | 0.077586 / 0.004250 (0.073335) | 0.066467 / 0.037052 (0.029415) | 0.468741 / 0.258489 (0.210252) | 0.506778 / 0.293841 (0.212937) | 0.036877 / 0.128546 (-0.091669) | 0.010102 / 0.075646 (-0.065545) | 0.084419 / 0.419271 (-0.334852) | 0.058721 / 0.043533 (0.015188) | 0.453633 / 0.255139 (0.198494) | 0.481171 / 0.283200 (0.197971) | 0.028716 / 0.141683 (-0.112967) | 1.853048 / 1.452155 (0.400893) | 1.885847 / 1.492716 (0.393130) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192136 / 0.018006 (0.174130) | 0.484481 / 0.000490 (0.483991) | 0.002951 / 0.000200 (0.002751) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037949 / 0.037411 (0.000538) | 0.108364 / 0.014526 (0.093838) | 0.119542 / 0.176557 (-0.057014) | 0.188542 / 0.737135 (-0.548593) | 0.122011 / 0.296338 (-0.174327) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.483135 / 0.215209 (0.267926) | 4.849715 / 2.077655 (2.772060) | 2.497736 / 1.504120 (0.993616) | 2.314243 / 1.541195 (0.773048) | 2.412739 / 1.468490 (0.944249) | 0.564137 / 4.584777 (-4.020639) | 4.242273 / 3.745712 (0.496561) | 6.337843 / 5.269862 (1.067982) | 3.923250 / 4.565676 (-0.642426) | 0.066464 / 0.424275 (-0.357811) | 0.009217 / 0.007607 (0.001610) | 0.575667 / 0.226044 (0.349623) | 5.746187 / 2.268929 (3.477258) | 3.069655 / 55.444624 (-52.374969) | 2.674798 / 6.876477 (-4.201679) | 2.956535 / 2.142072 (0.814463) | 0.701043 / 4.805227 (-4.104185) | 0.157241 / 6.500664 (-6.343423) | 0.073175 / 0.075469 (-0.002294) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.609943 / 1.841788 (-0.231844) | 23.478594 / 8.074308 (15.404286) | 17.454437 / 10.191392 (7.263045) | 0.186422 / 0.680424 (-0.494002) | 0.021703 / 0.534201 (-0.512498) | 0.471704 / 0.579283 (-0.107579) | 0.480553 / 0.434364 (0.046189) | 0.552881 / 0.540337 (0.012544) | 0.722515 / 1.386936 (-0.664421) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#84645f80049cd00d9e0d4908faf3c3203fdcf21d \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007542 / 0.011353 (-0.003811) | 0.004692 / 0.011008 (-0.006316) | 0.099155 / 0.038508 (0.060647) | 0.089365 / 0.023109 (0.066256) | 0.370870 / 0.275898 (0.094972) | 0.422152 / 0.323480 (0.098673) | 0.006223 / 0.007986 (-0.001763) | 0.003852 / 0.004328 (-0.000476) | 0.075438 / 0.004250 (0.071188) | 0.065973 / 0.037052 (0.028921) | 0.381513 / 0.258489 (0.123024) | 0.416196 / 0.293841 (0.122355) | 0.035483 / 0.128546 (-0.093063) | 0.009884 / 0.075646 (-0.065762) | 0.341290 / 0.419271 (-0.077982) | 0.060546 / 0.043533 (0.017014) | 0.365101 / 0.255139 (0.109962) | 0.391058 / 0.283200 (0.107859) | 0.026325 / 0.141683 (-0.115358) | 1.815168 / 1.452155 (0.363013) | 1.834711 / 1.492716 (0.341994) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222177 / 0.018006 (0.204171) | 0.501151 / 0.000490 (0.500662) | 0.010202 / 0.000200 (0.010002) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034043 / 0.037411 (-0.003368) | 0.097884 / 0.014526 (0.083358) | 0.114022 / 0.176557 (-0.062534) | 0.186200 / 0.737135 (-0.550935) | 0.115555 / 0.296338 (-0.180783) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.485857 / 0.215209 (0.270648) | 4.959263 / 2.077655 (2.881608) | 2.501085 / 1.504120 (0.996965) | 2.234660 / 1.541195 (0.693465) | 2.238585 / 1.468490 (0.770095) | 0.645431 / 4.584777 (-3.939345) | 4.434311 / 3.745712 (0.688599) | 4.771491 / 5.269862 (-0.498371) | 2.778963 / 4.565676 (-1.786714) | 0.075615 / 0.424275 (-0.348660) | 0.009502 / 0.007607 (0.001895) | 0.546539 / 0.226044 (0.320495) | 5.464242 / 2.268929 (3.195314) | 2.894101 / 55.444624 (-52.550524) | 2.513761 / 6.876477 (-4.362715) | 2.719843 / 2.142072 (0.577770) | 0.678828 / 4.805227 (-4.126399) | 0.157839 / 6.500664 (-6.342825) | 0.071305 / 0.075469 (-0.004164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.496879 / 1.841788 (-0.344909) | 22.214452 / 8.074308 (14.140144) | 17.707541 / 10.191392 (7.516149) | 0.197008 / 0.680424 (-0.483416) | 0.024883 / 0.534201 (-0.509318) | 0.493611 / 0.579283 (-0.085672) | 0.500677 / 0.434364 (0.066313) | 0.569381 / 0.540337 (0.029044) | 0.773950 / 1.386936 (-0.612986) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007337 / 0.011353 (-0.004015) | 0.004572 / 0.011008 (-0.006436) | 0.091123 / 0.038508 (0.052615) | 0.079762 / 0.023109 (0.056652) | 0.450527 / 0.275898 (0.174629) | 0.525097 / 0.323480 (0.201617) | 0.005873 / 0.007986 (-0.002112) | 0.003797 / 0.004328 (-0.000532) | 0.076259 / 0.004250 (0.072009) | 0.062745 / 0.037052 (0.025692) | 0.465553 / 0.258489 (0.207064) | 0.546026 / 0.293841 (0.252186) | 0.035638 / 0.128546 (-0.092909) | 0.010086 / 0.075646 (-0.065560) | 0.109269 / 0.419271 (-0.310002) | 0.056765 / 0.043533 (0.013233) | 0.440887 / 0.255139 (0.185748) | 0.513325 / 0.283200 (0.230125) | 0.027206 / 0.141683 (-0.114476) | 1.863564 / 1.452155 (0.411409) | 1.918206 / 1.492716 (0.425490) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266479 / 0.018006 (0.248473) | 0.487971 / 0.000490 (0.487481) | 0.012246 / 0.000200 (0.012046) | 0.000119 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035281 / 0.037411 (-0.002130) | 0.102991 / 0.014526 (0.088465) | 0.114638 / 0.176557 (-0.061919) | 0.184117 / 0.737135 (-0.553018) | 0.117943 / 0.296338 (-0.178396) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.497897 / 0.215209 (0.282688) | 4.973806 / 2.077655 (2.896151) | 2.596146 / 1.504120 (1.092026) | 2.419694 / 1.541195 (0.878499) | 2.525784 / 1.468490 (1.057294) | 0.568021 / 4.584777 (-4.016756) | 4.296431 / 3.745712 (0.550719) | 3.690682 / 5.269862 (-1.579179) | 2.345965 / 4.565676 (-2.219712) | 0.066859 / 0.424275 (-0.357416) | 0.009093 / 0.007607 (0.001486) | 0.582616 / 0.226044 (0.356571) | 5.826528 / 2.268929 (3.557600) | 3.253222 / 55.444624 (-52.191403) | 2.798447 / 6.876477 (-4.078030) | 3.054609 / 2.142072 (0.912537) | 0.678816 / 4.805227 (-4.126411) | 0.157966 / 6.500664 (-6.342698) | 0.073797 / 0.075469 (-0.001672) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.599480 / 1.841788 (-0.242308) | 23.249738 / 8.074308 (15.175430) | 16.965406 / 10.191392 (6.774014) | 0.171390 / 0.680424 (-0.509034) | 0.021810 / 0.534201 (-0.512391) | 0.483339 / 0.579283 (-0.095944) | 0.496615 / 0.434364 (0.062251) | 0.583786 / 0.540337 (0.043448) | 0.741699 / 1.386936 (-0.645237) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7935cd2e564f5d1c66ed1acf731703724ba7a287 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006054 / 0.011353 (-0.005299) | 0.003706 / 0.011008 (-0.007302) | 0.080060 / 0.038508 (0.041552) | 0.061479 / 0.023109 (0.038370) | 0.327981 / 0.275898 (0.052083) | 0.356930 / 0.323480 (0.033450) | 0.004671 / 0.007986 (-0.003315) | 0.002901 / 0.004328 (-0.001428) | 0.062425 / 0.004250 (0.058174) | 0.046310 / 0.037052 (0.009258) | 0.323657 / 0.258489 (0.065168) | 0.370130 / 0.293841 (0.076289) | 0.027151 / 0.128546 (-0.101395) | 0.007850 / 0.075646 (-0.067797) | 0.262300 / 0.419271 (-0.156971) | 0.045456 / 0.043533 (0.001923) | 0.325569 / 0.255139 (0.070430) | 0.352962 / 0.283200 (0.069762) | 0.020156 / 0.141683 (-0.121527) | 1.429404 / 1.452155 (-0.022750) | 1.615032 / 1.492716 (0.122316) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187309 / 0.018006 (0.169303) | 0.428848 / 0.000490 (0.428358) | 0.003599 / 0.000200 (0.003399) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023260 / 0.037411 (-0.014151) | 0.072467 / 0.014526 (0.057941) | 0.082398 / 0.176557 (-0.094159) | 0.142573 / 0.737135 (-0.594562) | 0.082570 / 0.296338 (-0.213768) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426503 / 0.215209 (0.211294) | 4.267875 / 2.077655 (2.190220) | 2.189762 / 1.504120 (0.685642) | 2.027992 / 1.541195 (0.486798) | 2.053211 / 1.468490 (0.584721) | 0.503850 / 4.584777 (-4.080927) | 3.086444 / 3.745712 (-0.659268) | 3.319492 / 5.269862 (-1.950370) | 2.070714 / 4.565676 (-2.494962) | 0.057591 / 0.424275 (-0.366684) | 0.006407 / 0.007607 (-0.001200) | 0.501145 / 0.226044 (0.275100) | 5.017753 / 2.268929 (2.748825) | 2.643145 / 55.444624 (-52.801479) | 2.327440 / 6.876477 (-4.549037) | 2.460250 / 2.142072 (0.318178) | 0.589397 / 4.805227 (-4.215830) | 0.124948 / 6.500664 (-6.375716) | 0.060450 / 0.075469 (-0.015020) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.279870 / 1.841788 (-0.561918) | 18.115908 / 8.074308 (10.041600) | 13.570032 / 10.191392 (3.378640) | 0.132981 / 0.680424 (-0.547442) | 0.016942 / 0.534201 (-0.517259) | 0.333591 / 0.579283 (-0.245692) | 0.358844 / 0.434364 (-0.075520) | 0.395748 / 0.540337 (-0.144590) | 0.546213 / 1.386936 (-0.840723) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006062 / 0.011353 (-0.005291) | 0.003673 / 0.011008 (-0.007336) | 0.064726 / 0.038508 (0.026218) | 0.061854 / 0.023109 (0.038745) | 0.385343 / 0.275898 (0.109445) | 0.441284 / 0.323480 (0.117805) | 0.004830 / 0.007986 (-0.003156) | 0.002909 / 0.004328 (-0.001420) | 0.063874 / 0.004250 (0.059624) | 0.049331 / 0.037052 (0.012278) | 0.418484 / 0.258489 (0.159995) | 0.451397 / 0.293841 (0.157556) | 0.027665 / 0.128546 (-0.100881) | 0.008088 / 0.075646 (-0.067558) | 0.069625 / 0.419271 (-0.349646) | 0.043437 / 0.043533 (-0.000095) | 0.359789 / 0.255139 (0.104650) | 0.430206 / 0.283200 (0.147007) | 0.022308 / 0.141683 (-0.119375) | 1.461030 / 1.452155 (0.008875) | 1.513683 / 1.492716 (0.020966) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230958 / 0.018006 (0.212952) | 0.417553 / 0.000490 (0.417063) | 0.000802 / 0.000200 (0.000602) | 0.000066 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025421 / 0.037411 (-0.011991) | 0.077156 / 0.014526 (0.062630) | 0.087533 / 0.176557 (-0.089024) | 0.138048 / 0.737135 (-0.599087) | 0.089358 / 0.296338 (-0.206981) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439172 / 0.215209 (0.223963) | 4.409509 / 2.077655 (2.331854) | 2.491270 / 1.504120 (0.987150) | 2.308446 / 1.541195 (0.767252) | 2.378440 / 1.468490 (0.909950) | 0.499834 / 4.584777 (-4.084943) | 3.083168 / 3.745712 (-0.662544) | 2.867543 / 5.269862 (-2.402318) | 1.876354 / 4.565676 (-2.689323) | 0.057092 / 0.424275 (-0.367183) | 0.006955 / 0.007607 (-0.000653) | 0.513799 / 0.226044 (0.287754) | 5.126660 / 2.268929 (2.857731) | 2.917348 / 55.444624 (-52.527277) | 2.508035 / 6.876477 (-4.368441) | 2.698089 / 2.142072 (0.556016) | 0.586828 / 4.805227 (-4.218399) | 0.124740 / 6.500664 (-6.375924) | 0.062276 / 0.075469 (-0.013193) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291624 / 1.841788 (-0.550164) | 18.199968 / 8.074308 (10.125660) | 13.888139 / 10.191392 (3.696747) | 0.162955 / 0.680424 (-0.517469) | 0.017343 / 0.534201 (-0.516858) | 0.334683 / 0.579283 (-0.244600) | 0.352708 / 0.434364 (-0.081656) | 0.400629 / 0.540337 (-0.139708) | 0.539497 / 1.386936 (-0.847439) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e7976db7fe22c6b93a869488d07b8137ea6a0db4 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007500 / 0.011353 (-0.003853) | 0.004498 / 0.011008 (-0.006510) | 0.100239 / 0.038508 (0.061731) | 0.083424 / 0.023109 (0.060315) | 0.366664 / 0.275898 (0.090766) | 0.406641 / 0.323480 (0.083161) | 0.004577 / 0.007986 (-0.003409) | 0.004809 / 0.004328 (0.000480) | 0.076898 / 0.004250 (0.072647) | 0.064021 / 0.037052 (0.026969) | 0.375836 / 0.258489 (0.117347) | 0.413008 / 0.293841 (0.119167) | 0.036010 / 0.128546 (-0.092537) | 0.009655 / 0.075646 (-0.065991) | 0.342595 / 0.419271 (-0.076677) | 0.061846 / 0.043533 (0.018313) | 0.376543 / 0.255139 (0.121404) | 0.395858 / 0.283200 (0.112659) | 0.026792 / 0.141683 (-0.114891) | 1.775569 / 1.452155 (0.323414) | 1.865077 / 1.492716 (0.372360) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221521 / 0.018006 (0.203514) | 0.474604 / 0.000490 (0.474114) | 0.004354 / 0.000200 (0.004154) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032947 / 0.037411 (-0.004464) | 0.100454 / 0.014526 (0.085928) | 0.111955 / 0.176557 (-0.064602) | 0.179752 / 0.737135 (-0.557383) | 0.114282 / 0.296338 (-0.182056) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458261 / 0.215209 (0.243052) | 4.563536 / 2.077655 (2.485881) | 2.231928 / 1.504120 (0.727808) | 2.036751 / 1.541195 (0.495556) | 2.170413 / 1.468490 (0.701923) | 0.570825 / 4.584777 (-4.013952) | 4.505762 / 3.745712 (0.760050) | 5.033461 / 5.269862 (-0.236401) | 2.704989 / 4.565676 (-1.860687) | 0.067011 / 0.424275 (-0.357264) | 0.008568 / 0.007607 (0.000961) | 0.545151 / 0.226044 (0.319106) | 5.438984 / 2.268929 (3.170055) | 2.771818 / 55.444624 (-52.672806) | 2.393082 / 6.876477 (-4.483395) | 2.467173 / 2.142072 (0.325101) | 0.678849 / 4.805227 (-4.126379) | 0.160480 / 6.500664 (-6.340184) | 0.073681 / 0.075469 (-0.001788) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.532272 / 1.841788 (-0.309516) | 22.548741 / 8.074308 (14.474433) | 17.091044 / 10.191392 (6.899652) | 0.172100 / 0.680424 (-0.508324) | 0.022220 / 0.534201 (-0.511981) | 0.467871 / 0.579283 (-0.111412) | 0.491135 / 0.434364 (0.056771) | 0.548433 / 0.540337 (0.008096) | 0.733340 / 1.386936 (-0.653596) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007593 / 0.011353 (-0.003760) | 0.004656 / 0.011008 (-0.006352) | 0.076940 / 0.038508 (0.038431) | 0.085183 / 0.023109 (0.062073) | 0.447178 / 0.275898 (0.171280) | 0.469545 / 0.323480 (0.146065) | 0.006023 / 0.007986 (-0.001962) | 0.003808 / 0.004328 (-0.000520) | 0.076767 / 0.004250 (0.072517) | 0.065713 / 0.037052 (0.028661) | 0.445573 / 0.258489 (0.187084) | 0.481689 / 0.293841 (0.187848) | 0.036893 / 0.128546 (-0.091654) | 0.009976 / 0.075646 (-0.065670) | 0.084443 / 0.419271 (-0.334829) | 0.058829 / 0.043533 (0.015297) | 0.429291 / 0.255139 (0.174152) | 0.454016 / 0.283200 (0.170816) | 0.027289 / 0.141683 (-0.114394) | 1.806786 / 1.452155 (0.354632) | 1.887680 / 1.492716 (0.394964) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.241012 / 0.018006 (0.223006) | 0.470629 / 0.000490 (0.470139) | 0.003213 / 0.000200 (0.003013) | 0.000107 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036896 / 0.037411 (-0.000515) | 0.106932 / 0.014526 (0.092406) | 0.120333 / 0.176557 (-0.056223) | 0.186271 / 0.737135 (-0.550865) | 0.121581 / 0.296338 (-0.174758) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507782 / 0.215209 (0.292573) | 5.062932 / 2.077655 (2.985278) | 2.689539 / 1.504120 (1.185419) | 2.482978 / 1.541195 (0.941784) | 2.561320 / 1.468490 (1.092830) | 0.570664 / 4.584777 (-4.014113) | 4.346051 / 3.745712 (0.600339) | 6.479374 / 5.269862 (1.209513) | 4.096483 / 4.565676 (-0.469194) | 0.067564 / 0.424275 (-0.356711) | 0.009147 / 0.007607 (0.001540) | 0.596059 / 0.226044 (0.370015) | 5.963223 / 2.268929 (3.694295) | 3.201039 / 55.444624 (-52.243585) | 2.816581 / 6.876477 (-4.059896) | 3.047821 / 2.142072 (0.905748) | 0.687749 / 4.805227 (-4.117478) | 0.158174 / 6.500664 (-6.342490) | 0.073329 / 0.075469 (-0.002140) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.601346 / 1.841788 (-0.240441) | 23.712210 / 8.074308 (15.637902) | 16.567272 / 10.191392 (6.375880) | 0.224745 / 0.680424 (-0.455679) | 0.021662 / 0.534201 (-0.512539) | 0.471427 / 0.579283 (-0.107856) | 0.498751 / 0.434364 (0.064387) | 0.572047 / 0.540337 (0.031710) | 0.821868 / 1.386936 (-0.565068) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#34d0c9027c750adc89f3d04a6bf2e9cb95915da4 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006371 / 0.011353 (-0.004981) | 0.003749 / 0.011008 (-0.007259) | 0.084155 / 0.038508 (0.045647) | 0.072450 / 0.023109 (0.049340) | 0.308002 / 0.275898 (0.032104) | 0.340471 / 0.323480 (0.016991) | 0.005054 / 0.007986 (-0.002931) | 0.003176 / 0.004328 (-0.001152) | 0.064867 / 0.004250 (0.060616) | 0.054305 / 0.037052 (0.017252) | 0.321047 / 0.258489 (0.062558) | 0.345999 / 0.293841 (0.052158) | 0.030507 / 0.128546 (-0.098039) | 0.008299 / 0.075646 (-0.067347) | 0.287682 / 0.419271 (-0.131590) | 0.052048 / 0.043533 (0.008515) | 0.308322 / 0.255139 (0.053183) | 0.333220 / 0.283200 (0.050020) | 0.022698 / 0.141683 (-0.118985) | 1.474033 / 1.452155 (0.021879) | 1.544790 / 1.492716 (0.052074) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200612 / 0.018006 (0.182606) | 0.450934 / 0.000490 (0.450445) | 0.005383 / 0.000200 (0.005183) | 0.000200 / 0.000054 (0.000145) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027759 / 0.037411 (-0.009652) | 0.080935 / 0.014526 (0.066409) | 0.093041 / 0.176557 (-0.083516) | 0.148643 / 0.737135 (-0.588492) | 0.093463 / 0.296338 (-0.202876) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.381653 / 0.215209 (0.166444) | 3.810699 / 2.077655 (1.733044) | 1.866858 / 1.504120 (0.362738) | 1.716985 / 1.541195 (0.175790) | 1.788071 / 1.468490 (0.319581) | 0.481130 / 4.584777 (-4.103647) | 3.529798 / 3.745712 (-0.215914) | 3.982037 / 5.269862 (-1.287824) | 2.324866 / 4.565676 (-2.240811) | 0.056767 / 0.424275 (-0.367508) | 0.007306 / 0.007607 (-0.000301) | 0.459472 / 0.226044 (0.233428) | 4.602808 / 2.268929 (2.333879) | 2.332014 / 55.444624 (-53.112610) | 2.044858 / 6.876477 (-4.831619) | 2.204165 / 2.142072 (0.062093) | 0.577946 / 4.805227 (-4.227281) | 0.130900 / 6.500664 (-6.369764) | 0.059054 / 0.075469 (-0.016415) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.245211 / 1.841788 (-0.596576) | 19.176397 / 8.074308 (11.102089) | 13.995280 / 10.191392 (3.803888) | 0.171743 / 0.680424 (-0.508681) | 0.018038 / 0.534201 (-0.516163) | 0.392338 / 0.579283 (-0.186945) | 0.419370 / 0.434364 (-0.014994) | 0.477829 / 0.540337 (-0.062508) | 0.677409 / 1.386936 (-0.709527) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006513 / 0.011353 (-0.004840) | 0.003984 / 0.011008 (-0.007024) | 0.064516 / 0.038508 (0.026008) | 0.070504 / 0.023109 (0.047395) | 0.384509 / 0.275898 (0.108611) | 0.410564 / 0.323480 (0.087084) | 0.005310 / 0.007986 (-0.002675) | 0.003268 / 0.004328 (-0.001061) | 0.064684 / 0.004250 (0.060433) | 0.055367 / 0.037052 (0.018315) | 0.399108 / 0.258489 (0.140619) | 0.422740 / 0.293841 (0.128900) | 0.031624 / 0.128546 (-0.096922) | 0.008617 / 0.075646 (-0.067030) | 0.070929 / 0.419271 (-0.348342) | 0.049146 / 0.043533 (0.005613) | 0.385492 / 0.255139 (0.130353) | 0.407434 / 0.283200 (0.124234) | 0.021972 / 0.141683 (-0.119711) | 1.496135 / 1.452155 (0.043980) | 1.533739 / 1.492716 (0.041023) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226218 / 0.018006 (0.208211) | 0.443176 / 0.000490 (0.442686) | 0.000376 / 0.000200 (0.000176) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030315 / 0.037411 (-0.007097) | 0.086416 / 0.014526 (0.071890) | 0.097725 / 0.176557 (-0.078831) | 0.150407 / 0.737135 (-0.586728) | 0.099914 / 0.296338 (-0.196424) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409807 / 0.215209 (0.194598) | 4.099086 / 2.077655 (2.021431) | 2.103160 / 1.504120 (0.599040) | 1.927927 / 1.541195 (0.386733) | 1.977751 / 1.468490 (0.509261) | 0.476995 / 4.584777 (-4.107781) | 3.521835 / 3.745712 (-0.223877) | 3.237695 / 5.269862 (-2.032167) | 1.995953 / 4.565676 (-2.569724) | 0.056208 / 0.424275 (-0.368068) | 0.007660 / 0.007607 (0.000053) | 0.483537 / 0.226044 (0.257492) | 4.833974 / 2.268929 (2.565046) | 2.589115 / 55.444624 (-52.855510) | 2.228076 / 6.876477 (-4.648401) | 2.395271 / 2.142072 (0.253198) | 0.577534 / 4.805227 (-4.227694) | 0.131432 / 6.500664 (-6.369232) | 0.060999 / 0.075469 (-0.014471) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356043 / 1.841788 (-0.485745) | 19.470401 / 8.074308 (11.396093) | 14.091266 / 10.191392 (3.899874) | 0.166809 / 0.680424 (-0.513615) | 0.018782 / 0.534201 (-0.515419) | 0.394916 / 0.579283 (-0.184367) | 0.411378 / 0.434364 (-0.022986) | 0.466886 / 0.540337 (-0.073451) | 0.617369 / 1.386936 (-0.769567) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#601ae6c7baff33a600fd10b12940966024fd2221 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007590 / 0.011353 (-0.003762) | 0.004068 / 0.011008 (-0.006941) | 0.105479 / 0.038508 (0.066971) | 0.085614 / 0.023109 (0.062505) | 0.384325 / 0.275898 (0.108427) | 0.467867 / 0.323480 (0.144387) | 0.004652 / 0.007986 (-0.003333) | 0.005445 / 0.004328 (0.001117) | 0.079604 / 0.004250 (0.075353) | 0.066031 / 0.037052 (0.028978) | 0.426184 / 0.258489 (0.167695) | 0.480712 / 0.293841 (0.186871) | 0.037837 / 0.128546 (-0.090709) | 0.009765 / 0.075646 (-0.065882) | 0.351316 / 0.419271 (-0.067955) | 0.063634 / 0.043533 (0.020101) | 0.420297 / 0.255139 (0.165158) | 0.449169 / 0.283200 (0.165969) | 0.030947 / 0.141683 (-0.110736) | 1.840184 / 1.452155 (0.388029) | 1.934074 / 1.492716 (0.441357) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223483 / 0.018006 (0.205477) | 0.521086 / 0.000490 (0.520596) | 0.000379 / 0.000200 (0.000179) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032011 / 0.037411 (-0.005400) | 0.101474 / 0.014526 (0.086948) | 0.108652 / 0.176557 (-0.067904) | 0.173340 / 0.737135 (-0.563796) | 0.114186 / 0.296338 (-0.182153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478020 / 0.215209 (0.262811) | 4.645400 / 2.077655 (2.567746) | 2.590763 / 1.504120 (1.086643) | 2.383002 / 1.541195 (0.841807) | 2.482550 / 1.468490 (1.014060) | 0.572417 / 4.584777 (-4.012360) | 4.233436 / 3.745712 (0.487724) | 4.858823 / 5.269862 (-0.411038) | 2.838913 / 4.565676 (-1.726764) | 0.070010 / 0.424275 (-0.354265) | 0.009602 / 0.007607 (0.001995) | 0.538735 / 0.226044 (0.312691) | 5.534340 / 2.268929 (3.265411) | 2.915006 / 55.444624 (-52.529619) | 2.625132 / 6.876477 (-4.251345) | 2.537838 / 2.142072 (0.395766) | 0.667870 / 4.805227 (-4.137357) | 0.146330 / 6.500664 (-6.354334) | 0.071631 / 0.075469 (-0.003838) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.594686 / 1.841788 (-0.247101) | 22.311113 / 8.074308 (14.236804) | 17.603983 / 10.191392 (7.412591) | 0.195995 / 0.680424 (-0.484428) | 0.022254 / 0.534201 (-0.511947) | 0.479661 / 0.579283 (-0.099622) | 0.463626 / 0.434364 (0.029262) | 0.483465 / 0.540337 (-0.056873) | 0.676141 / 1.386936 (-0.710795) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006146 / 0.011353 (-0.005207) | 0.004856 / 0.011008 (-0.006152) | 0.067506 / 0.038508 (0.028998) | 0.073968 / 0.023109 (0.050859) | 0.470013 / 0.275898 (0.194115) | 0.479022 / 0.323480 (0.155542) | 0.005972 / 0.007986 (-0.002014) | 0.003846 / 0.004328 (-0.000483) | 0.075141 / 0.004250 (0.070890) | 0.058597 / 0.037052 (0.021544) | 0.481454 / 0.258489 (0.222965) | 0.515634 / 0.293841 (0.221793) | 0.034979 / 0.128546 (-0.093567) | 0.010385 / 0.075646 (-0.065261) | 0.072649 / 0.419271 (-0.346622) | 0.058183 / 0.043533 (0.014650) | 0.462138 / 0.255139 (0.206999) | 0.476093 / 0.283200 (0.192893) | 0.032918 / 0.141683 (-0.108765) | 1.820530 / 1.452155 (0.368375) | 1.626360 / 1.492716 (0.133644) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208970 / 0.018006 (0.190964) | 0.492478 / 0.000490 (0.491988) | 0.005487 / 0.000200 (0.005287) | 0.000140 / 0.000054 (0.000086) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037896 / 0.037411 (0.000484) | 0.089752 / 0.014526 (0.075227) | 0.107445 / 0.176557 (-0.069111) | 0.181260 / 0.737135 (-0.555876) | 0.105700 / 0.296338 (-0.190639) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.495031 / 0.215209 (0.279821) | 4.806939 / 2.077655 (2.729284) | 2.227928 / 1.504120 (0.723808) | 2.067117 / 1.541195 (0.525922) | 2.348982 / 1.468490 (0.880492) | 0.567201 / 4.584777 (-4.017576) | 4.166592 / 3.745712 (0.420880) | 3.654329 / 5.269862 (-1.615533) | 2.331092 / 4.565676 (-2.234584) | 0.062212 / 0.424275 (-0.362063) | 0.008775 / 0.007607 (0.001168) | 0.515413 / 0.226044 (0.289369) | 5.449300 / 2.268929 (3.180371) | 3.206574 / 55.444624 (-52.238050) | 2.600455 / 6.876477 (-4.276022) | 3.041162 / 2.142072 (0.899089) | 0.681899 / 4.805227 (-4.123328) | 0.155400 / 6.500664 (-6.345265) | 0.073933 / 0.075469 (-0.001537) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.572329 / 1.841788 (-0.269459) | 23.638519 / 8.074308 (15.564211) | 17.145663 / 10.191392 (6.954271) | 0.232690 / 0.680424 (-0.447734) | 0.028620 / 0.534201 (-0.505581) | 0.488105 / 0.579283 (-0.091178) | 0.490365 / 0.434364 (0.056001) | 0.599501 / 0.540337 (0.059164) | 0.708101 / 1.386936 (-0.678835) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4a761315900880a25b347ad19b78bd567cfce1f0 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005947 / 0.011353 (-0.005406) | 0.003577 / 0.011008 (-0.007431) | 0.081631 / 0.038508 (0.043122) | 0.058651 / 0.023109 (0.035541) | 0.342742 / 0.275898 (0.066843) | 0.384130 / 0.323480 (0.060650) | 0.004620 / 0.007986 (-0.003366) | 0.002885 / 0.004328 (-0.001444) | 0.063698 / 0.004250 (0.059448) | 0.048953 / 0.037052 (0.011901) | 0.367880 / 0.258489 (0.109391) | 0.407050 / 0.293841 (0.113209) | 0.027242 / 0.128546 (-0.101305) | 0.007914 / 0.075646 (-0.067733) | 0.262156 / 0.419271 (-0.157116) | 0.044750 / 0.043533 (0.001218) | 0.351613 / 0.255139 (0.096474) | 0.380284 / 0.283200 (0.097084) | 0.020080 / 0.141683 (-0.121603) | 1.498101 / 1.452155 (0.045946) | 1.543608 / 1.492716 (0.050892) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.180014 / 0.018006 (0.162008) | 0.436172 / 0.000490 (0.435682) | 0.003694 / 0.000200 (0.003494) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024389 / 0.037411 (-0.013022) | 0.072874 / 0.014526 (0.058348) | 0.083469 / 0.176557 (-0.093088) | 0.144600 / 0.737135 (-0.592536) | 0.084229 / 0.296338 (-0.212110) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.391636 / 0.215209 (0.176427) | 3.906941 / 2.077655 (1.829286) | 1.901944 / 1.504120 (0.397825) | 1.762702 / 1.541195 (0.221507) | 1.817970 / 1.468490 (0.349480) | 0.500345 / 4.584777 (-4.084432) | 3.011351 / 3.745712 (-0.734361) | 4.417763 / 5.269862 (-0.852098) | 2.689744 / 4.565676 (-1.875933) | 0.057765 / 0.424275 (-0.366511) | 0.006412 / 0.007607 (-0.001195) | 0.468156 / 0.226044 (0.242112) | 4.664975 / 2.268929 (2.396047) | 2.323355 / 55.444624 (-53.121270) | 1.984280 / 6.876477 (-4.892197) | 2.165215 / 2.142072 (0.023142) | 0.586950 / 4.805227 (-4.218278) | 0.124363 / 6.500664 (-6.376301) | 0.060702 / 0.075469 (-0.014767) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.238870 / 1.841788 (-0.602917) | 18.587360 / 8.074308 (10.513052) | 13.831674 / 10.191392 (3.640282) | 0.143542 / 0.680424 (-0.536882) | 0.016913 / 0.534201 (-0.517288) | 0.332314 / 0.579283 (-0.246969) | 0.345419 / 0.434364 (-0.088945) | 0.381257 / 0.540337 (-0.159081) | 0.537844 / 1.386936 (-0.849092) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006294 / 0.011353 (-0.005059) | 0.003714 / 0.011008 (-0.007294) | 0.062684 / 0.038508 (0.024176) | 0.063520 / 0.023109 (0.040411) | 0.389591 / 0.275898 (0.113693) | 0.444278 / 0.323480 (0.120798) | 0.004825 / 0.007986 (-0.003160) | 0.003010 / 0.004328 (-0.001318) | 0.062767 / 0.004250 (0.058517) | 0.051739 / 0.037052 (0.014686) | 0.434299 / 0.258489 (0.175810) | 0.452003 / 0.293841 (0.158162) | 0.027375 / 0.128546 (-0.101171) | 0.008135 / 0.075646 (-0.067511) | 0.067401 / 0.419271 (-0.351871) | 0.042752 / 0.043533 (-0.000780) | 0.367633 / 0.255139 (0.112494) | 0.433039 / 0.283200 (0.149840) | 0.021086 / 0.141683 (-0.120597) | 1.488024 / 1.452155 (0.035870) | 1.507767 / 1.492716 (0.015050) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230046 / 0.018006 (0.212040) | 0.428085 / 0.000490 (0.427595) | 0.002188 / 0.000200 (0.001988) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026705 / 0.037411 (-0.010706) | 0.082466 / 0.014526 (0.067940) | 0.089378 / 0.176557 (-0.087179) | 0.147287 / 0.737135 (-0.589849) | 0.090426 / 0.296338 (-0.205913) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430882 / 0.215209 (0.215672) | 4.296224 / 2.077655 (2.218569) | 2.229982 / 1.504120 (0.725862) | 2.048506 / 1.541195 (0.507311) | 2.129514 / 1.468490 (0.661024) | 0.502964 / 4.584777 (-4.081813) | 3.048125 / 3.745712 (-0.697587) | 4.208636 / 5.269862 (-1.061226) | 2.594015 / 4.565676 (-1.971661) | 0.057967 / 0.424275 (-0.366308) | 0.006875 / 0.007607 (-0.000732) | 0.513872 / 0.226044 (0.287828) | 5.126435 / 2.268929 (2.857506) | 2.691278 / 55.444624 (-52.753346) | 2.361723 / 6.876477 (-4.514754) | 2.511213 / 2.142072 (0.369141) | 0.593558 / 4.805227 (-4.211670) | 0.129332 / 6.500664 (-6.371332) | 0.064051 / 0.075469 (-0.011418) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289049 / 1.841788 (-0.552739) | 18.912363 / 8.074308 (10.838055) | 14.226500 / 10.191392 (4.035108) | 0.131392 / 0.680424 (-0.549032) | 0.016750 / 0.534201 (-0.517451) | 0.330078 / 0.579283 (-0.249205) | 0.347588 / 0.434364 (-0.086776) | 0.383234 / 0.540337 (-0.157103) | 0.510967 / 1.386936 (-0.875969) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d7892beb30bab0633b84398c5ea43d7e69fe38cc \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005974 / 0.011353 (-0.005379) | 0.003691 / 0.011008 (-0.007317) | 0.079410 / 0.038508 (0.040902) | 0.061769 / 0.023109 (0.038660) | 0.323310 / 0.275898 (0.047412) | 0.354325 / 0.323480 (0.030845) | 0.004794 / 0.007986 (-0.003191) | 0.002899 / 0.004328 (-0.001430) | 0.062104 / 0.004250 (0.057854) | 0.048973 / 0.037052 (0.011921) | 0.326497 / 0.258489 (0.068008) | 0.361347 / 0.293841 (0.067506) | 0.026741 / 0.128546 (-0.101805) | 0.007936 / 0.075646 (-0.067710) | 0.259168 / 0.419271 (-0.160104) | 0.044859 / 0.043533 (0.001327) | 0.319342 / 0.255139 (0.064203) | 0.343711 / 0.283200 (0.060511) | 0.022298 / 0.141683 (-0.119384) | 1.451595 / 1.452155 (-0.000560) | 1.573730 / 1.492716 (0.081014) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.173086 / 0.018006 (0.155080) | 0.432400 / 0.000490 (0.431910) | 0.003739 / 0.000200 (0.003539) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024477 / 0.037411 (-0.012934) | 0.073463 / 0.014526 (0.058937) | 0.083410 / 0.176557 (-0.093146) | 0.144760 / 0.737135 (-0.592376) | 0.084199 / 0.296338 (-0.212140) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.388251 / 0.215209 (0.173042) | 3.875375 / 2.077655 (1.797720) | 1.875515 / 1.504120 (0.371395) | 1.729282 / 1.541195 (0.188087) | 1.784732 / 1.468490 (0.316242) | 0.496985 / 4.584777 (-4.087792) | 3.030276 / 3.745712 (-0.715436) | 2.813192 / 5.269862 (-2.456669) | 1.868647 / 4.565676 (-2.697030) | 0.057376 / 0.424275 (-0.366899) | 0.006463 / 0.007607 (-0.001144) | 0.462153 / 0.226044 (0.236108) | 4.586583 / 2.268929 (2.317654) | 2.287730 / 55.444624 (-53.156894) | 1.972177 / 6.876477 (-4.904299) | 2.151592 / 2.142072 (0.009520) | 0.587169 / 4.805227 (-4.218058) | 0.127063 / 6.500664 (-6.373601) | 0.060297 / 0.075469 (-0.015172) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267651 / 1.841788 (-0.574136) | 18.426011 / 8.074308 (10.351703) | 14.050470 / 10.191392 (3.859078) | 0.148063 / 0.680424 (-0.532361) | 0.017112 / 0.534201 (-0.517089) | 0.330051 / 0.579283 (-0.249232) | 0.358730 / 0.434364 (-0.075634) | 0.392365 / 0.540337 (-0.147972) | 0.534650 / 1.386936 (-0.852286) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005936 / 0.011353 (-0.005417) | 0.003652 / 0.011008 (-0.007356) | 0.063066 / 0.038508 (0.024558) | 0.060617 / 0.023109 (0.037507) | 0.388293 / 0.275898 (0.112395) | 0.411422 / 0.323480 (0.087942) | 0.004691 / 0.007986 (-0.003295) | 0.002857 / 0.004328 (-0.001472) | 0.064198 / 0.004250 (0.059947) | 0.049124 / 0.037052 (0.012071) | 0.403601 / 0.258489 (0.145112) | 0.413619 / 0.293841 (0.119778) | 0.027279 / 0.128546 (-0.101267) | 0.008072 / 0.075646 (-0.067575) | 0.067890 / 0.419271 (-0.351381) | 0.041866 / 0.043533 (-0.001667) | 0.393438 / 0.255139 (0.138299) | 0.402865 / 0.283200 (0.119666) | 0.023381 / 0.141683 (-0.118302) | 1.496324 / 1.452155 (0.044170) | 1.538080 / 1.492716 (0.045364) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212065 / 0.018006 (0.194059) | 0.410511 / 0.000490 (0.410021) | 0.001236 / 0.000200 (0.001036) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026012 / 0.037411 (-0.011399) | 0.076592 / 0.014526 (0.062066) | 0.085963 / 0.176557 (-0.090594) | 0.137803 / 0.737135 (-0.599332) | 0.087594 / 0.296338 (-0.208745) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434283 / 0.215209 (0.219074) | 4.345478 / 2.077655 (2.267824) | 2.400954 / 1.504120 (0.896834) | 2.282024 / 1.541195 (0.740829) | 2.414247 / 1.468490 (0.945757) | 0.501855 / 4.584777 (-4.082922) | 3.059433 / 3.745712 (-0.686279) | 2.811288 / 5.269862 (-2.458574) | 1.856839 / 4.565676 (-2.708838) | 0.058017 / 0.424275 (-0.366258) | 0.006844 / 0.007607 (-0.000763) | 0.515376 / 0.226044 (0.289332) | 5.148775 / 2.268929 (2.879847) | 2.930807 / 55.444624 (-52.513817) | 2.520532 / 6.876477 (-4.355944) | 2.746299 / 2.142072 (0.604227) | 0.590102 / 4.805227 (-4.215125) | 0.125747 / 6.500664 (-6.374917) | 0.061873 / 0.075469 (-0.013597) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306247 / 1.841788 (-0.535541) | 18.366048 / 8.074308 (10.291740) | 13.855617 / 10.191392 (3.664225) | 0.150124 / 0.680424 (-0.530300) | 0.017189 / 0.534201 (-0.517012) | 0.336285 / 0.579283 (-0.242998) | 0.344985 / 0.434364 (-0.089379) | 0.397973 / 0.540337 (-0.142364) | 0.536142 / 1.386936 (-0.850794) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ae24cf12054b4a512f198979b1ca7707bb99d56 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006401 / 0.011353 (-0.004952) | 0.003789 / 0.011008 (-0.007219) | 0.079516 / 0.038508 (0.041008) | 0.068279 / 0.023109 (0.045170) | 0.295691 / 0.275898 (0.019793) | 0.327208 / 0.323480 (0.003728) | 0.005070 / 0.007986 (-0.002915) | 0.003044 / 0.004328 (-0.001285) | 0.061411 / 0.004250 (0.057161) | 0.053227 / 0.037052 (0.016175) | 0.297368 / 0.258489 (0.038879) | 0.334740 / 0.293841 (0.040899) | 0.029459 / 0.128546 (-0.099087) | 0.008080 / 0.075646 (-0.067566) | 0.267344 / 0.419271 (-0.151927) | 0.049877 / 0.043533 (0.006344) | 0.293853 / 0.255139 (0.038714) | 0.319819 / 0.283200 (0.036620) | 0.022593 / 0.141683 (-0.119089) | 1.459054 / 1.452155 (0.006900) | 1.471250 / 1.492716 (-0.021466) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194326 / 0.018006 (0.176320) | 0.443565 / 0.000490 (0.443075) | 0.003745 / 0.000200 (0.003545) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026640 / 0.037411 (-0.010772) | 0.077630 / 0.014526 (0.063104) | 0.089364 / 0.176557 (-0.087192) | 0.147327 / 0.737135 (-0.589809) | 0.089603 / 0.296338 (-0.206735) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.373758 / 0.215209 (0.158549) | 3.746778 / 2.077655 (1.669123) | 1.814991 / 1.504120 (0.310871) | 1.645650 / 1.541195 (0.104455) | 1.690752 / 1.468490 (0.222262) | 0.472117 / 4.584777 (-4.112660) | 3.457346 / 3.745712 (-0.288367) | 3.138869 / 5.269862 (-2.130993) | 1.934924 / 4.565676 (-2.630753) | 0.055709 / 0.424275 (-0.368566) | 0.006680 / 0.007607 (-0.000927) | 0.446874 / 0.226044 (0.220829) | 4.458409 / 2.268929 (2.189480) | 2.253932 / 55.444624 (-53.190693) | 2.007240 / 6.876477 (-4.869237) | 2.081687 / 2.142072 (-0.060386) | 0.563379 / 4.805227 (-4.241848) | 0.128694 / 6.500664 (-6.371970) | 0.057409 / 0.075469 (-0.018060) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212231 / 1.841788 (-0.629556) | 18.519121 / 8.074308 (10.444813) | 13.582243 / 10.191392 (3.390851) | 0.142488 / 0.680424 (-0.537936) | 0.017421 / 0.534201 (-0.516780) | 0.366864 / 0.579283 (-0.212419) | 0.401467 / 0.434364 (-0.032897) | 0.443659 / 0.540337 (-0.096679) | 0.618854 / 1.386936 (-0.768082) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006121 / 0.011353 (-0.005232) | 0.003690 / 0.011008 (-0.007318) | 0.060340 / 0.038508 (0.021832) | 0.067215 / 0.023109 (0.044106) | 0.382846 / 0.275898 (0.106948) | 0.415774 / 0.323480 (0.092294) | 0.004868 / 0.007986 (-0.003118) | 0.003108 / 0.004328 (-0.001221) | 0.060572 / 0.004250 (0.056321) | 0.050453 / 0.037052 (0.013401) | 0.400494 / 0.258489 (0.142005) | 0.424368 / 0.293841 (0.130527) | 0.030279 / 0.128546 (-0.098267) | 0.008151 / 0.075646 (-0.067495) | 0.066707 / 0.419271 (-0.352564) | 0.046118 / 0.043533 (0.002585) | 0.386697 / 0.255139 (0.131558) | 0.410156 / 0.283200 (0.126957) | 0.020688 / 0.141683 (-0.120995) | 1.418162 / 1.452155 (-0.033993) | 1.463057 / 1.492716 (-0.029659) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216081 / 0.018006 (0.198075) | 0.440541 / 0.000490 (0.440051) | 0.000371 / 0.000200 (0.000171) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027763 / 0.037411 (-0.009648) | 0.082316 / 0.014526 (0.067791) | 0.094086 / 0.176557 (-0.082471) | 0.144738 / 0.737135 (-0.592398) | 0.094837 / 0.296338 (-0.201501) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396277 / 0.215209 (0.181068) | 3.958791 / 2.077655 (1.881136) | 2.021367 / 1.504120 (0.517247) | 1.860112 / 1.541195 (0.318917) | 1.886032 / 1.468490 (0.417541) | 0.468536 / 4.584777 (-4.116241) | 3.417950 / 3.745712 (-0.327762) | 4.849991 / 5.269862 (-0.419871) | 2.773935 / 4.565676 (-1.791742) | 0.055813 / 0.424275 (-0.368462) | 0.007053 / 0.007607 (-0.000554) | 0.470167 / 0.226044 (0.244122) | 4.702969 / 2.268929 (2.434041) | 2.474161 / 55.444624 (-52.970464) | 2.171256 / 6.876477 (-4.705220) | 2.315373 / 2.142072 (0.173301) | 0.589195 / 4.805227 (-4.216032) | 0.128237 / 6.500664 (-6.372427) | 0.058641 / 0.075469 (-0.016828) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.292947 / 1.841788 (-0.548841) | 18.851300 / 8.074308 (10.776992) | 14.089764 / 10.191392 (3.898372) | 0.164853 / 0.680424 (-0.515571) | 0.017281 / 0.534201 (-0.516920) | 0.359112 / 0.579283 (-0.220171) | 0.386696 / 0.434364 (-0.047668) | 0.428222 / 0.540337 (-0.112115) | 0.568659 / 1.386936 (-0.818277) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#563864ded894b468e2ba3f677ef79c5ab3fe65df \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006051 / 0.011353 (-0.005301) | 0.003654 / 0.011008 (-0.007355) | 0.080081 / 0.038508 (0.041572) | 0.062925 / 0.023109 (0.039815) | 0.358097 / 0.275898 (0.082199) | 0.405728 / 0.323480 (0.082248) | 0.005359 / 0.007986 (-0.002627) | 0.002820 / 0.004328 (-0.001508) | 0.063108 / 0.004250 (0.058858) | 0.049627 / 0.037052 (0.012575) | 0.397870 / 0.258489 (0.139381) | 0.437157 / 0.293841 (0.143316) | 0.027707 / 0.128546 (-0.100839) | 0.007911 / 0.075646 (-0.067735) | 0.260991 / 0.419271 (-0.158280) | 0.044771 / 0.043533 (0.001238) | 0.340230 / 0.255139 (0.085091) | 0.384925 / 0.283200 (0.101725) | 0.021369 / 0.141683 (-0.120314) | 1.431439 / 1.452155 (-0.020715) | 1.478794 / 1.492716 (-0.013922) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.182626 / 0.018006 (0.164620) | 0.435551 / 0.000490 (0.435061) | 0.003015 / 0.000200 (0.002815) | 0.000064 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024703 / 0.037411 (-0.012708) | 0.073640 / 0.014526 (0.059114) | 0.084598 / 0.176557 (-0.091959) | 0.145810 / 0.737135 (-0.591325) | 0.085125 / 0.296338 (-0.211213) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394539 / 0.215209 (0.179330) | 3.945882 / 2.077655 (1.868227) | 1.947166 / 1.504120 (0.443046) | 1.763305 / 1.541195 (0.222111) | 1.816208 / 1.468490 (0.347718) | 0.498880 / 4.584777 (-4.085897) | 3.098283 / 3.745712 (-0.647429) | 2.823474 / 5.269862 (-2.446388) | 1.873993 / 4.565676 (-2.691684) | 0.058097 / 0.424275 (-0.366179) | 0.006488 / 0.007607 (-0.001119) | 0.466711 / 0.226044 (0.240667) | 4.671520 / 2.268929 (2.402592) | 2.363381 / 55.444624 (-53.081243) | 2.052092 / 6.876477 (-4.824385) | 2.209212 / 2.142072 (0.067140) | 0.594650 / 4.805227 (-4.210577) | 0.125604 / 6.500664 (-6.375060) | 0.061511 / 0.075469 (-0.013958) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226564 / 1.841788 (-0.615224) | 18.583605 / 8.074308 (10.509297) | 13.993091 / 10.191392 (3.801699) | 0.146185 / 0.680424 (-0.534239) | 0.016839 / 0.534201 (-0.517362) | 0.334116 / 0.579283 (-0.245167) | 0.360780 / 0.434364 (-0.073584) | 0.386008 / 0.540337 (-0.154329) | 0.643278 / 1.386936 (-0.743658) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006174 / 0.011353 (-0.005179) | 0.003658 / 0.011008 (-0.007350) | 0.063250 / 0.038508 (0.024742) | 0.063542 / 0.023109 (0.040433) | 0.366845 / 0.275898 (0.090947) | 0.409794 / 0.323480 (0.086314) | 0.005678 / 0.007986 (-0.002308) | 0.003061 / 0.004328 (-0.001268) | 0.063561 / 0.004250 (0.059311) | 0.052648 / 0.037052 (0.015596) | 0.378096 / 0.258489 (0.119607) | 0.410706 / 0.293841 (0.116865) | 0.027668 / 0.128546 (-0.100878) | 0.008045 / 0.075646 (-0.067601) | 0.068290 / 0.419271 (-0.350981) | 0.042602 / 0.043533 (-0.000930) | 0.364976 / 0.255139 (0.109837) | 0.395599 / 0.283200 (0.112400) | 0.022733 / 0.141683 (-0.118950) | 1.522473 / 1.452155 (0.070319) | 1.515891 / 1.492716 (0.023175) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232554 / 0.018006 (0.214547) | 0.420702 / 0.000490 (0.420213) | 0.002161 / 0.000200 (0.001961) | 0.000064 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026276 / 0.037411 (-0.011135) | 0.078504 / 0.014526 (0.063978) | 0.088989 / 0.176557 (-0.087567) | 0.144044 / 0.737135 (-0.593091) | 0.091074 / 0.296338 (-0.205265) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420189 / 0.215209 (0.204980) | 4.189596 / 2.077655 (2.111941) | 2.316425 / 1.504120 (0.812305) | 2.186877 / 1.541195 (0.645682) | 2.259065 / 1.468490 (0.790575) | 0.502827 / 4.584777 (-4.081950) | 3.135266 / 3.745712 (-0.610446) | 2.838808 / 5.269862 (-2.431053) | 1.876519 / 4.565676 (-2.689158) | 0.057802 / 0.424275 (-0.366473) | 0.006824 / 0.007607 (-0.000784) | 0.500213 / 0.226044 (0.274168) | 4.999798 / 2.268929 (2.730869) | 2.627713 / 55.444624 (-52.816911) | 2.344263 / 6.876477 (-4.532214) | 2.415449 / 2.142072 (0.273376) | 0.593082 / 4.805227 (-4.212145) | 0.125787 / 6.500664 (-6.374877) | 0.062699 / 0.075469 (-0.012770) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.308219 / 1.841788 (-0.533569) | 18.703099 / 8.074308 (10.628791) | 13.976234 / 10.191392 (3.784842) | 0.144037 / 0.680424 (-0.536387) | 0.016592 / 0.534201 (-0.517609) | 0.333078 / 0.579283 (-0.246206) | 0.342317 / 0.434364 (-0.092047) | 0.396837 / 0.540337 (-0.143500) | 0.532641 / 1.386936 (-0.854295) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#14f6edd9222e577dccb962ed5338b79b73502fa5 \"CML watermark\")\n"
] | 2023-07-13T15:41:44 | 2023-07-17T17:09:39 | 2023-07-17T17:01:00 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6028",
"html_url": "https://github.com/huggingface/datasets/pull/6028",
"diff_url": "https://github.com/huggingface/datasets/pull/6028.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6028.patch",
"merged_at": "2023-07-17T17:01:00"
} | Thanks to @janineguo 's work in https://github.com/huggingface/datasets/pull/5919 which was needed to support HfFileSystem.
Switching to `HfFileSystem` will help implementing optimization in data files resolution
## Implementation details
I replaced all the from_hf_repo and from_local_or_remote in data_files.py to only use a new `from_patterns` which works for any fsspec path, including hf:// paths, https:// URLs and local paths. This simplifies the codebase since there is no logic duplication anymore when it comes to data files resolution.
I added `_prepare_path_and_storage_options` which returns the right storage_options to use given a path and a `DownloadConfig`. This is the only place where the logic depends on the filesystem type that must be used.
I also removed the `get_metadata_data_files_list ` and `get_patterns_and_data_files` functions added recently, since data files resolution is now handled using a common interface.
## New features
hf:// paths are now supported in data_files
## Breaking changes
DataFilesList and DataFilesDict:
- use `str` paths instead of `Union[Path, Url]`
- require posix paths for windows paths
close https://github.com/huggingface/datasets/issues/6017 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6028/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6028/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5985 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5985/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5985/comments | https://api.github.com/repos/huggingface/datasets/issues/5985/events | https://github.com/huggingface/datasets/issues/5985 | 1,771,588,158 | I_kwDODunzps5pmEo- | 5,985 | Cannot reuse tokenizer object for dataset map | {
"login": "vikigenius",
"id": 12724810,
"node_id": "MDQ6VXNlcjEyNzI0ODEw",
"avatar_url": "https://avatars.githubusercontent.com/u/12724810?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vikigenius",
"html_url": "https://github.com/vikigenius",
"followers_url": "https://api.github.com/users/vikigenius/followers",
"following_url": "https://api.github.com/users/vikigenius/following{/other_user}",
"gists_url": "https://api.github.com/users/vikigenius/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vikigenius/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vikigenius/subscriptions",
"organizations_url": "https://api.github.com/users/vikigenius/orgs",
"repos_url": "https://api.github.com/users/vikigenius/repos",
"events_url": "https://api.github.com/users/vikigenius/events{/privacy}",
"received_events_url": "https://api.github.com/users/vikigenius/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892865,
"node_id": "MDU6TGFiZWwxOTM1ODkyODY1",
"url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate",
"name": "duplicate",
"color": "cfd3d7",
"default": true,
"description": "This issue or pull request already exists"
}
] | closed | false | null | [] | null | [
"This is a known issue: https://github.com/huggingface/datasets/issues/3847.\r\n\r\nFixing this requires significant work - rewriting the `tokenizers` lib to make them immutable.\r\n\r\nThe current solution is to pass `cache_file_name` to `map` to use that file for caching or calling a tokenizer before `map` (with the same set of parameters as the ones in the map transform)",
"Closing since this is a duplicate"
] | 2023-06-23T14:45:31 | 2023-07-21T14:09:14 | 2023-07-21T14:09:14 | NONE | null | null | null | ### Describe the bug
Related to https://github.com/huggingface/transformers/issues/24441. Not sure if this is a tokenizer issue or caching issue, so filing in both.
Passing the tokenizer to the dataset map function causes the tokenizer to be fingerprinted weirdly. After calling the tokenizer with arguments like padding and truncation the tokenizer object changes interanally, even though the hash remains the same.
But dumps is able to detect that internal change which causes the tokenizer object's fingerprint to change.
### Steps to reproduce the bug
```python
from transformers import AutoTokenizer
from datasets.utils.py_utils import dumps # Huggingface datasets
t = AutoTokenizer.from_pretrained('bert-base-uncased')
t.save_pretrained("tok1")
th1 = hash(dumps(t))
text = "This is an example text"
ttext = t(text, max_length=512, padding="max_length", truncation=True)
t.save_pretrained("tok2")
th2 = hash(dumps(t))
assert th1 == th2 # Assertion Error
```
But if you use just the hash of the object without dumps, the hashes don't change
```python
from transformers import AutoTokenizer
from datasets.utils.py_utils import dumps # Huggingface datasets
t = AutoTokenizer.from_pretrained('bert-base-uncased')
th1 = hash(t) # Just hash no dumps
text = "This is an example text"
ttext = t(text, max_length=512, padding="max_length", truncation=True)
th2 = hash(t) # Just hash no dumps
assert th1 == th2 # This is OK
```
This causes situations such as the following
1. Create a text file like this `yes "This is an example text" | head -n 10000 > lines.txt`
```python
from transformers import AutoTokenizer
import datasets
class TokenizeMapper(object):
"""Mapper for tokenizer.
This is needed because the caching mechanism of HuggingFace does not work on
lambdas. Each time a new lambda will be created by a new process which will
lead to a different hash.
This way we can have a universal mapper object in init and reuse it with the same
hash for each process.
"""
def __init__(self, tokenizer):
"""Initialize the tokenizer."""
self.tokenizer = tokenizer
def __call__(self, examples, **kwargs):
"""Run the mapper."""
texts = examples["text"]
tt = self.tokenizer(texts, max_length=256, padding="max_length", truncation=True)
batch_outputs = {
"input_ids": tt.input_ids,
"attention_mask": tt.attention_mask,
}
return batch_outputs
t = AutoTokenizer.from_pretrained('bert-base-uncased')
mapper = TokenizeMapper(t)
ds = datasets.load_dataset("text", data_files="lines.txt")
mds1 = ds.map(
mapper,
batched=False,
remove_columns=["text"],
).with_format("torch")
mds2 = ds.map(
mapper,
batched=False,
remove_columns=["text"],
).with_format("torch")
```
The second call to map should reuse the cached processed dataset from mds1, but it instead it redoes the tokenization because of the behavior of dumps.
### Expected behavior
We should be able to initialize a tokenizer. And reusing it should let us reuse the same map computation for the same dataset.
The second call to map should reuse the cached processed dataset from mds1, but it instead it redoes the tokenization because of the behavior of dumps.
### Environment info
- `datasets` version: 2.13.0
- Platform: Linux-6.1.31_1-x86_64-with-glibc2.36
- Python version: 3.9.16
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5985/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5985/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5922 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5922/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5922/comments | https://api.github.com/repos/huggingface/datasets/issues/5922/events | https://github.com/huggingface/datasets/issues/5922 | 1,736,898,953 | I_kwDODunzps5nhvmJ | 5,922 | Length of table does not accurately reflect the split | {
"login": "amogkam",
"id": 8068268,
"node_id": "MDQ6VXNlcjgwNjgyNjg=",
"avatar_url": "https://avatars.githubusercontent.com/u/8068268?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/amogkam",
"html_url": "https://github.com/amogkam",
"followers_url": "https://api.github.com/users/amogkam/followers",
"following_url": "https://api.github.com/users/amogkam/following{/other_user}",
"gists_url": "https://api.github.com/users/amogkam/gists{/gist_id}",
"starred_url": "https://api.github.com/users/amogkam/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/amogkam/subscriptions",
"organizations_url": "https://api.github.com/users/amogkam/orgs",
"repos_url": "https://api.github.com/users/amogkam/repos",
"events_url": "https://api.github.com/users/amogkam/events{/privacy}",
"received_events_url": "https://api.github.com/users/amogkam/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892913,
"node_id": "MDU6TGFiZWwxOTM1ODkyOTEz",
"url": "https://api.github.com/repos/huggingface/datasets/labels/wontfix",
"name": "wontfix",
"color": "ffffff",
"default": true,
"description": "This will not be worked on"
}
] | closed | false | null | [] | null | [
"As already replied by @lhoestq (private channel):\r\n> `.train_test_split` (as well as `.shard`, `.select`) doesn't create a new arrow table to save time and disk space. Instead, it uses an indices mapping on top of the table that locate which examples are part of train or test.",
"This is an optimization that we don't plan to \"fix\", so I'm closing this issue."
] | 2023-06-01T18:56:26 | 2023-06-02T16:13:31 | 2023-06-02T16:13:31 | NONE | null | null | null | ### Describe the bug
I load a Huggingface Dataset and do `train_test_split`. I'm expecting the underlying table for the dataset to also be split, but it's not.
### Steps to reproduce the bug
![image](https://github.com/huggingface/datasets/assets/8068268/83e5768f-8b4c-422a-945c-832a7585afff)
### Expected behavior
The expected behavior is when `len(hf_dataset["train"].data)` should match the length of the train split, and not be the entire unsplit dataset.
### Environment info
datasets 2.10.1
python 3.10.11 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5922/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5922/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5961 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5961/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5961/comments | https://api.github.com/repos/huggingface/datasets/issues/5961/events | https://github.com/huggingface/datasets/issues/5961 | 1,758,525,111 | I_kwDODunzps5o0Pa3 | 5,961 | IterableDataset: split by node and map may preprocess samples that will be skipped anyway | {
"login": "johnchienbronci",
"id": 27708347,
"node_id": "MDQ6VXNlcjI3NzA4MzQ3",
"avatar_url": "https://avatars.githubusercontent.com/u/27708347?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/johnchienbronci",
"html_url": "https://github.com/johnchienbronci",
"followers_url": "https://api.github.com/users/johnchienbronci/followers",
"following_url": "https://api.github.com/users/johnchienbronci/following{/other_user}",
"gists_url": "https://api.github.com/users/johnchienbronci/gists{/gist_id}",
"starred_url": "https://api.github.com/users/johnchienbronci/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/johnchienbronci/subscriptions",
"organizations_url": "https://api.github.com/users/johnchienbronci/orgs",
"repos_url": "https://api.github.com/users/johnchienbronci/repos",
"events_url": "https://api.github.com/users/johnchienbronci/events{/privacy}",
"received_events_url": "https://api.github.com/users/johnchienbronci/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Does \"number of shards\" refer to the total number of data?\r\n\r\nmy config:\r\nnproc_per_node=2\r\nds=ds['train'] = load_dataset(streaming=True).take(50000)\r\n\r\nI'm test again: in prepare_data(), data have the same for each GPU\r\n",
"The number of shards is `ds.n_shards`. It corresponds generally to the number of files the dataset is made of, to be able to distribute to several nodes.\r\n\r\n**You don't end up with the same data per GPU**. But all the samples are going through your preprocessing function you pass to map. They are just skipped afterwards to only keep 1 sample out of n(GPUs)",
"For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end. \r\nIs my understanding correct?\r\n\r\nWhere can I print the actual training data for each GPU?",
"> For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end.\r\nIs my understanding correct?\r\n\r\nYes exactly :)\r\n\r\n> Where can I print the actual training data for each GPU?\r\n\r\nYou should call print in the data_collator",
"I print out n_shards, and under multiple GPUs, this value is always 1.\r\nIs this value correct?",
"Yes it's correct, and it explains why you always have the same data passed to your map function (the data can't be split).\r\n\r\nBut after being passed to `map`, each GPU keeps one example out of n(GPUs) so that you don't end up with duplicate data across GPUs",
"> > For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end.\r\n> > Is my understanding correct?\r\n> \r\n> Yes exactly :)\r\n> \r\n> > Where can I print the actual training data for each GPU?\r\n> \r\n> You should call print in the data_collator\r\n\r\nOK, when printing the train data in the data collator, each GPU sees different data.\r\n\r\nThanks for your reply"
] | 2023-06-15T10:29:10 | 2023-06-20T01:30:40 | null | NONE | null | null | null | There are two ways an iterable dataset can be split by node:
1. if the number of shards is a factor of number of GPUs: in that case the shards are evenly distributed per GPU
2. otherwise, each GPU iterate on the data and at the end keeps 1 sample out of n(GPUs) - skipping the others.
In case 2. it's therefore possible to have the same examples passed to `prepare_dataset` for each GPU.
This doesn't sound optimized though, because it runs the preprocessing on samples that won't be used in the end.
Could you open a new issue so that we can discuss about this and find a solution ?
_Originally posted by @lhoestq in https://github.com/huggingface/datasets/issues/5360#issuecomment-1592729051_
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5961/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5961/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5901 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5901/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5901/comments | https://api.github.com/repos/huggingface/datasets/issues/5901/events | https://github.com/huggingface/datasets/pull/5901 | 1,727,179,016 | PR_kwDODunzps5Rarux | 5,901 | Make prepare_split more robust if errors in metadata dataset_info splits | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008809 / 0.011353 (-0.002544) | 0.005641 / 0.011008 (-0.005367) | 0.124986 / 0.038508 (0.086477) | 0.037311 / 0.023109 (0.014202) | 0.388915 / 0.275898 (0.113017) | 0.430123 / 0.323480 (0.106643) | 0.007447 / 0.007986 (-0.000538) | 0.009593 / 0.004328 (0.005264) | 0.099148 / 0.004250 (0.094898) | 0.052393 / 0.037052 (0.015341) | 0.399779 / 0.258489 (0.141290) | 0.439109 / 0.293841 (0.145268) | 0.043409 / 0.128546 (-0.085137) | 0.016286 / 0.075646 (-0.059360) | 0.431198 / 0.419271 (0.011927) | 0.064932 / 0.043533 (0.021400) | 0.390650 / 0.255139 (0.135511) | 0.432883 / 0.283200 (0.149684) | 0.110978 / 0.141683 (-0.030705) | 1.796121 / 1.452155 (0.343967) | 1.960097 / 1.492716 (0.467381) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286292 / 0.018006 (0.268286) | 0.659495 / 0.000490 (0.659005) | 0.008294 / 0.000200 (0.008094) | 0.000485 / 0.000054 (0.000431) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029325 / 0.037411 (-0.008086) | 0.125454 / 0.014526 (0.110928) | 0.136459 / 0.176557 (-0.040097) | 0.221075 / 0.737135 (-0.516060) | 0.140281 / 0.296338 (-0.156058) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602401 / 0.215209 (0.387192) | 6.124553 / 2.077655 (4.046898) | 2.453141 / 1.504120 (0.949021) | 2.038611 / 1.541195 (0.497416) | 2.073611 / 1.468490 (0.605121) | 0.938040 / 4.584777 (-3.646737) | 5.755972 / 3.745712 (2.010260) | 4.450935 / 5.269862 (-0.818926) | 2.337219 / 4.565676 (-2.228457) | 0.107118 / 0.424275 (-0.317157) | 0.015201 / 0.007607 (0.007594) | 0.785833 / 0.226044 (0.559788) | 7.732984 / 2.268929 (5.464055) | 3.236892 / 55.444624 (-52.207733) | 2.696402 / 6.876477 (-4.180074) | 2.805036 / 2.142072 (0.662964) | 1.108612 / 4.805227 (-3.696616) | 0.221067 / 6.500664 (-6.279597) | 0.085538 / 0.075469 (0.010068) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.600311 / 1.841788 (-0.241476) | 18.528118 / 8.074308 (10.453810) | 21.107199 / 10.191392 (10.915807) | 0.219489 / 0.680424 (-0.460934) | 0.028927 / 0.534201 (-0.505274) | 0.503446 / 0.579283 (-0.075837) | 0.619833 / 0.434364 (0.185469) | 0.582454 / 0.540337 (0.042117) | 0.709154 / 1.386936 (-0.677782) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008516 / 0.011353 (-0.002837) | 0.006090 / 0.011008 (-0.004918) | 0.104574 / 0.038508 (0.066066) | 0.042676 / 0.023109 (0.019566) | 0.458623 / 0.275898 (0.182725) | 0.568479 / 0.323480 (0.244999) | 0.008374 / 0.007986 (0.000389) | 0.004677 / 0.004328 (0.000349) | 0.105946 / 0.004250 (0.101695) | 0.055256 / 0.037052 (0.018204) | 0.511036 / 0.258489 (0.252547) | 0.598383 / 0.293841 (0.304542) | 0.043612 / 0.128546 (-0.084934) | 0.014707 / 0.075646 (-0.060940) | 0.116350 / 0.419271 (-0.302921) | 0.061413 / 0.043533 (0.017880) | 0.477785 / 0.255139 (0.222646) | 0.542643 / 0.283200 (0.259443) | 0.120431 / 0.141683 (-0.021252) | 1.994083 / 1.452155 (0.541928) | 2.100600 / 1.492716 (0.607883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298480 / 0.018006 (0.280474) | 0.601921 / 0.000490 (0.601432) | 0.000445 / 0.000200 (0.000245) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034784 / 0.037411 (-0.002627) | 0.133555 / 0.014526 (0.119029) | 0.138541 / 0.176557 (-0.038015) | 0.203114 / 0.737135 (-0.534021) | 0.153477 / 0.296338 (-0.142861) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.780484 / 0.215209 (0.565275) | 7.150876 / 2.077655 (5.073222) | 3.168590 / 1.504120 (1.664470) | 2.698746 / 1.541195 (1.157552) | 2.695678 / 1.468490 (1.227188) | 1.037706 / 4.584777 (-3.547071) | 5.672631 / 3.745712 (1.926918) | 2.798137 / 5.269862 (-2.471725) | 1.738588 / 4.565676 (-2.827088) | 0.111160 / 0.424275 (-0.313115) | 0.013878 / 0.007607 (0.006271) | 0.800191 / 0.226044 (0.574146) | 8.546676 / 2.268929 (6.277748) | 4.116852 / 55.444624 (-51.327773) | 3.331271 / 6.876477 (-3.545206) | 3.307410 / 2.142072 (1.165337) | 1.191019 / 4.805227 (-3.614208) | 0.248953 / 6.500664 (-6.251711) | 0.086632 / 0.075469 (0.011162) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.795057 / 1.841788 (-0.046730) | 18.038785 / 8.074308 (9.964476) | 21.865566 / 10.191392 (11.674174) | 0.211058 / 0.680424 (-0.469366) | 0.026956 / 0.534201 (-0.507245) | 0.518855 / 0.579283 (-0.060428) | 0.618105 / 0.434364 (0.183741) | 0.569227 / 0.540337 (0.028889) | 0.705431 / 1.386936 (-0.681505) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#074925b9b7c1dfd33b8675aa99c07cc26375665c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008900 / 0.011353 (-0.002453) | 0.005726 / 0.011008 (-0.005283) | 0.131747 / 0.038508 (0.093239) | 0.040585 / 0.023109 (0.017476) | 0.420531 / 0.275898 (0.144633) | 0.459430 / 0.323480 (0.135950) | 0.007642 / 0.007986 (-0.000344) | 0.006750 / 0.004328 (0.002421) | 0.099147 / 0.004250 (0.094897) | 0.055852 / 0.037052 (0.018799) | 0.423653 / 0.258489 (0.165164) | 0.453304 / 0.293841 (0.159463) | 0.045247 / 0.128546 (-0.083300) | 0.016034 / 0.075646 (-0.059612) | 0.443115 / 0.419271 (0.023843) | 0.078853 / 0.043533 (0.035320) | 0.417508 / 0.255139 (0.162369) | 0.440936 / 0.283200 (0.157736) | 0.115603 / 0.141683 (-0.026080) | 1.844610 / 1.452155 (0.392456) | 1.998497 / 1.492716 (0.505781) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272622 / 0.018006 (0.254616) | 0.598045 / 0.000490 (0.597556) | 0.007088 / 0.000200 (0.006888) | 0.000159 / 0.000054 (0.000105) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032976 / 0.037411 (-0.004436) | 0.143970 / 0.014526 (0.129444) | 0.142172 / 0.176557 (-0.034384) | 0.216747 / 0.737135 (-0.520389) | 0.146004 / 0.296338 (-0.150334) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.687507 / 0.215209 (0.472298) | 6.549524 / 2.077655 (4.471870) | 2.924142 / 1.504120 (1.420022) | 2.504471 / 1.541195 (0.963277) | 2.496280 / 1.468490 (1.027790) | 0.959054 / 4.584777 (-3.625723) | 5.851742 / 3.745712 (2.106030) | 4.983357 / 5.269862 (-0.286504) | 2.627403 / 4.565676 (-1.938274) | 0.112955 / 0.424275 (-0.311320) | 0.016206 / 0.007607 (0.008599) | 0.819158 / 0.226044 (0.593114) | 8.416949 / 2.268929 (6.148020) | 3.776765 / 55.444624 (-51.667859) | 3.002397 / 6.876477 (-3.874080) | 3.158852 / 2.142072 (1.016779) | 1.197099 / 4.805227 (-3.608129) | 0.280654 / 6.500664 (-6.220010) | 0.099471 / 0.075469 (0.024002) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.687007 / 1.841788 (-0.154781) | 19.411976 / 8.074308 (11.337668) | 22.053482 / 10.191392 (11.862090) | 0.228038 / 0.680424 (-0.452386) | 0.028226 / 0.534201 (-0.505975) | 0.527695 / 0.579283 (-0.051588) | 0.635911 / 0.434364 (0.201547) | 0.618205 / 0.540337 (0.077868) | 0.735164 / 1.386936 (-0.651772) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009450 / 0.011353 (-0.001903) | 0.006566 / 0.011008 (-0.004442) | 0.108919 / 0.038508 (0.070411) | 0.050010 / 0.023109 (0.026900) | 0.505168 / 0.275898 (0.229270) | 0.552190 / 0.323480 (0.228710) | 0.007569 / 0.007986 (-0.000417) | 0.006807 / 0.004328 (0.002478) | 0.116621 / 0.004250 (0.112371) | 0.060374 / 0.037052 (0.023321) | 0.515165 / 0.258489 (0.256676) | 0.572125 / 0.293841 (0.278284) | 0.046561 / 0.128546 (-0.081986) | 0.016159 / 0.075646 (-0.059487) | 0.114568 / 0.419271 (-0.304704) | 0.064689 / 0.043533 (0.021157) | 0.497870 / 0.255139 (0.242731) | 0.567332 / 0.283200 (0.284132) | 0.126254 / 0.141683 (-0.015429) | 1.954074 / 1.452155 (0.501919) | 2.057682 / 1.492716 (0.564966) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.013857 / 0.018006 (-0.004149) | 0.601561 / 0.000490 (0.601071) | 0.002897 / 0.000200 (0.002697) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038480 / 0.037411 (0.001069) | 0.142480 / 0.014526 (0.127954) | 0.160479 / 0.176557 (-0.016077) | 0.217942 / 0.737135 (-0.519194) | 0.159908 / 0.296338 (-0.136431) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.697926 / 0.215209 (0.482717) | 6.869754 / 2.077655 (4.792100) | 3.125463 / 1.504120 (1.621343) | 2.729123 / 1.541195 (1.187928) | 2.855747 / 1.468490 (1.387257) | 1.015345 / 4.584777 (-3.569432) | 5.839176 / 3.745712 (2.093463) | 5.019678 / 5.269862 (-0.250184) | 2.080489 / 4.565676 (-2.485187) | 0.118884 / 0.424275 (-0.305391) | 0.021381 / 0.007607 (0.013774) | 0.877847 / 0.226044 (0.651803) | 8.714561 / 2.268929 (6.445633) | 3.933399 / 55.444624 (-51.511226) | 3.281809 / 6.876477 (-3.594668) | 3.330342 / 2.142072 (1.188269) | 1.235005 / 4.805227 (-3.570222) | 0.239686 / 6.500664 (-6.260978) | 0.093546 / 0.075469 (0.018077) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.787916 / 1.841788 (-0.053872) | 20.094828 / 8.074308 (12.020520) | 22.902101 / 10.191392 (12.710709) | 0.249315 / 0.680424 (-0.431109) | 0.028058 / 0.534201 (-0.506143) | 0.524960 / 0.579283 (-0.054323) | 0.643881 / 0.434364 (0.209517) | 0.621203 / 0.540337 (0.080866) | 0.723337 / 1.386936 (-0.663599) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#074925b9b7c1dfd33b8675aa99c07cc26375665c \"CML watermark\")\n"
] | 2023-05-26T08:48:22 | 2023-06-02T06:06:38 | 2023-06-01T13:39:40 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5901",
"html_url": "https://github.com/huggingface/datasets/pull/5901",
"diff_url": "https://github.com/huggingface/datasets/pull/5901.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5901.patch",
"merged_at": "2023-06-01T13:39:39"
} | This PR uses `split_generator.split_info` as default value for `split_info` if any exception is raised while trying to get `split_generator.name` from `self.info.splits` (this may happen if there is any error in the metadata dataset_info splits).
Please note that `split_info` is only used by the logger.
Fix #5895 if passed `verification_mode="no_checks"`:
```python
ds = load_dataset(
"ArmelR/stack-exchange-instruction",
data_dir="data/finetune",
split="train",
verification_mode="no_checks",
revision="c609f1caade5cfbf3b9fe9cfa17d7cb000b457bd",
)
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5901/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5901/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5992 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5992/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5992/comments | https://api.github.com/repos/huggingface/datasets/issues/5992/events | https://github.com/huggingface/datasets/pull/5992 | 1,776,460,964 | PR_kwDODunzps5UAk3C | 5,992 | speedup | {
"login": "qgallouedec",
"id": 45557362,
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qgallouedec",
"html_url": "https://github.com/qgallouedec",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5992). All of your documentation changes will be reflected on that endpoint."
] | 2023-06-27T09:17:58 | 2023-06-27T09:23:07 | 2023-06-27T09:18:04 | CONTRIBUTOR | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5992",
"html_url": "https://github.com/huggingface/datasets/pull/5992",
"diff_url": "https://github.com/huggingface/datasets/pull/5992.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5992.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5992/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5992/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6014 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6014/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6014/comments | https://api.github.com/repos/huggingface/datasets/issues/6014/events | https://github.com/huggingface/datasets/issues/6014 | 1,798,213,816 | I_kwDODunzps5rLpC4 | 6,014 | Request to Share/Update Dataset Viewer Code | {
"login": "lilyorlilypad",
"id": 105081034,
"node_id": "U_kgDOBkNoyg",
"avatar_url": "https://avatars.githubusercontent.com/u/105081034?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lilyorlilypad",
"html_url": "https://github.com/lilyorlilypad",
"followers_url": "https://api.github.com/users/lilyorlilypad/followers",
"following_url": "https://api.github.com/users/lilyorlilypad/following{/other_user}",
"gists_url": "https://api.github.com/users/lilyorlilypad/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lilyorlilypad/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lilyorlilypad/subscriptions",
"organizations_url": "https://api.github.com/users/lilyorlilypad/orgs",
"repos_url": "https://api.github.com/users/lilyorlilypad/repos",
"events_url": "https://api.github.com/users/lilyorlilypad/events{/privacy}",
"received_events_url": "https://api.github.com/users/lilyorlilypad/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi ! The huggingface/dataset-viewer code was not maintained anymore because we switched to a new dataset viewer that is deployed available for each dataset the Hugging Face website.\r\n\r\nWhat are you using this old repository for ?",
"I think these parts are outdated:\r\n\r\n* https://github.com/huggingface/datasets-viewer/blob/8efad8eae313a891f713469983bf4c744786f26e/run.py#L126-L131\r\n* https://github.com/huggingface/datasets-viewer/blob/8efad8eae313a891f713469983bf4c744786f26e/run.py#L145-L150\r\n\r\nTo make the viewer work, the first one should be replaced with the following:\r\n```python\r\ndataset_module = datasets.load.dataset_module_factory(path)\r\nbuilder_cls = datasets.load.import_main_class(dataset_module.module_path)\r\nconfs = builder_cls.BUILDER_CONFIGS\r\n```\r\nAnd the second one:\r\n```python\r\ndataset_module = datasets.load.dataset_module_factory(path)\r\nbuilder_cls = datasets.load.import_main_class(dataset_module.module_path)\r\nif conf:\r\n builder_instance = builder_cls(name=conf, cache_dir=path if path_to_datasets is not None else None)\r\nelse:\r\n builder_instance = builder_cls(cache_dir=path if path_to_datasets is not None else None)\r\n```\r\n\r\nBut as @lhoestq suggested, it's better to use the `datasets-server` API nowadays to [fetch the rows](https://huggingface.co/docs/datasets-server/rows).",
"> The dataset viewer on the Hugging Face website is incredibly useful\r\n\r\n@mariosasko i think @lilyorlilypad wants to run the new dataset-viewer, not the old one",
"> wants to run the new dataset-viewer, not the old one\r\n\r\nThanks for the clarification for me. I do want to run the new dataset-viewer. ",
"It should be possible to run it locally using the HF datasets-server API (docs [here](https://huggingface.co/docs/datasets-server)) but the front end part is not open source (yet ?)\r\n\r\nThe back-end is open source though if you're interested: https://github.com/huggingface/datasets-server\r\nIt automatically converts datasets on HF to Parquet, which is the format we use to power the viewer.",
"the new frontend would probably be hard to open source, as is, as it's quite intertwined with the Hub's code.\r\n\r\nHowever, at some point it would be amazing to have a community-driven open source implementation of a frontend to datasets-server! "
] | 2023-07-11T06:36:09 | 2023-07-12T14:18:49 | null | NONE | null | null | null |
Overview:
The repository (huggingface/datasets-viewer) was recently archived and when I tried to run the code, there was the error message "AttributeError: module 'datasets.load' has no attribute 'prepare_module'". I could not resolve the issue myself due to lack of documentation of that attribute.
Request:
I kindly request the sharing of the code responsible for the dataset preview functionality or help with resolving the error. The dataset viewer on the Hugging Face website is incredibly useful since it is compatible with different types of inputs. It allows users to find datasets that meet their needs more efficiently. If needed, I am willing to contribute to the project by testing, documenting, and providing feedback on the dataset viewer code.
Thank you for considering this request, and I look forward to your response. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6014/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6014/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5891 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5891/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5891/comments | https://api.github.com/repos/huggingface/datasets/issues/5891/events | https://github.com/huggingface/datasets/pull/5891 | 1,722,384,135 | PR_kwDODunzps5RKchn | 5,891 | Make split slicing consisten with list slicing | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5891). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006916 / 0.011353 (-0.004437) | 0.004749 / 0.011008 (-0.006259) | 0.096086 / 0.038508 (0.057578) | 0.035448 / 0.023109 (0.012338) | 0.299645 / 0.275898 (0.023747) | 0.331279 / 0.323480 (0.007799) | 0.006018 / 0.007986 (-0.001968) | 0.004210 / 0.004328 (-0.000118) | 0.072998 / 0.004250 (0.068747) | 0.050082 / 0.037052 (0.013030) | 0.297714 / 0.258489 (0.039225) | 0.365523 / 0.293841 (0.071682) | 0.028081 / 0.128546 (-0.100465) | 0.009072 / 0.075646 (-0.066574) | 0.327628 / 0.419271 (-0.091643) | 0.051165 / 0.043533 (0.007633) | 0.295091 / 0.255139 (0.039952) | 0.320052 / 0.283200 (0.036852) | 0.109841 / 0.141683 (-0.031842) | 1.467867 / 1.452155 (0.015712) | 1.572600 / 1.492716 (0.079884) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281490 / 0.018006 (0.263484) | 0.499259 / 0.000490 (0.498770) | 0.000691 / 0.000200 (0.000491) | 0.000062 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027548 / 0.037411 (-0.009863) | 0.106592 / 0.014526 (0.092066) | 0.118654 / 0.176557 (-0.057902) | 0.174313 / 0.737135 (-0.562822) | 0.124491 / 0.296338 (-0.171848) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399674 / 0.215209 (0.184465) | 3.984092 / 2.077655 (1.906437) | 1.790935 / 1.504120 (0.286815) | 1.593612 / 1.541195 (0.052417) | 1.694595 / 1.468490 (0.226105) | 0.517588 / 4.584777 (-4.067189) | 3.724353 / 3.745712 (-0.021359) | 3.244807 / 5.269862 (-2.025054) | 1.602929 / 4.565676 (-2.962748) | 0.065334 / 0.424275 (-0.358941) | 0.012259 / 0.007607 (0.004652) | 0.501355 / 0.226044 (0.275311) | 4.996546 / 2.268929 (2.727618) | 2.279333 / 55.444624 (-53.165291) | 1.940126 / 6.876477 (-4.936351) | 2.122945 / 2.142072 (-0.019128) | 0.626104 / 4.805227 (-4.179123) | 0.141278 / 6.500664 (-6.359386) | 0.064522 / 0.075469 (-0.010947) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.195351 / 1.841788 (-0.646436) | 15.258932 / 8.074308 (7.184624) | 14.627623 / 10.191392 (4.436231) | 0.266897 / 0.680424 (-0.413527) | 0.017557 / 0.534201 (-0.516644) | 0.392932 / 0.579283 (-0.186351) | 0.416409 / 0.434364 (-0.017955) | 0.469100 / 0.540337 (-0.071237) | 0.556247 / 1.386936 (-0.830689) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006880 / 0.011353 (-0.004473) | 0.004837 / 0.011008 (-0.006171) | 0.074518 / 0.038508 (0.036010) | 0.034204 / 0.023109 (0.011095) | 0.365100 / 0.275898 (0.089202) | 0.394976 / 0.323480 (0.071496) | 0.006364 / 0.007986 (-0.001621) | 0.004269 / 0.004328 (-0.000060) | 0.073531 / 0.004250 (0.069281) | 0.051334 / 0.037052 (0.014281) | 0.373904 / 0.258489 (0.115415) | 0.413662 / 0.293841 (0.119821) | 0.028779 / 0.128546 (-0.099767) | 0.009292 / 0.075646 (-0.066354) | 0.081574 / 0.419271 (-0.337698) | 0.046531 / 0.043533 (0.002998) | 0.368995 / 0.255139 (0.113856) | 0.376938 / 0.283200 (0.093739) | 0.112576 / 0.141683 (-0.029107) | 1.458880 / 1.452155 (0.006725) | 1.550918 / 1.492716 (0.058202) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.319521 / 0.018006 (0.301515) | 0.510146 / 0.000490 (0.509656) | 0.000438 / 0.000200 (0.000238) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033082 / 0.037411 (-0.004329) | 0.118009 / 0.014526 (0.103483) | 0.127108 / 0.176557 (-0.049448) | 0.176600 / 0.737135 (-0.560535) | 0.133790 / 0.296338 (-0.162549) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437360 / 0.215209 (0.222151) | 4.367426 / 2.077655 (2.289771) | 2.193646 / 1.504120 (0.689526) | 2.025002 / 1.541195 (0.483808) | 2.142347 / 1.468490 (0.673856) | 0.525497 / 4.584777 (-4.059280) | 3.751275 / 3.745712 (0.005563) | 1.912271 / 5.269862 (-3.357590) | 1.087286 / 4.565676 (-3.478390) | 0.066328 / 0.424275 (-0.357947) | 0.011904 / 0.007607 (0.004297) | 0.545870 / 0.226044 (0.319825) | 5.434481 / 2.268929 (3.165552) | 2.719745 / 55.444624 (-52.724880) | 2.445001 / 6.876477 (-4.431476) | 2.500205 / 2.142072 (0.358133) | 0.645735 / 4.805227 (-4.159492) | 0.144210 / 6.500664 (-6.356455) | 0.065688 / 0.075469 (-0.009781) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.273522 / 1.841788 (-0.568265) | 15.771778 / 8.074308 (7.697470) | 14.685261 / 10.191392 (4.493869) | 0.176523 / 0.680424 (-0.503900) | 0.017877 / 0.534201 (-0.516324) | 0.392687 / 0.579283 (-0.186596) | 0.449992 / 0.434364 (0.015628) | 0.462851 / 0.540337 (-0.077487) | 0.560178 / 1.386936 (-0.826758) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0fa3ef6eba906ee1214e0596d15a78fc358909f4 \"CML watermark\")\n"
] | 2023-05-23T16:04:33 | 2023-05-23T16:11:12 | null | CONTRIBUTOR | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5891",
"html_url": "https://github.com/huggingface/datasets/pull/5891",
"diff_url": "https://github.com/huggingface/datasets/pull/5891.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5891.patch",
"merged_at": null
} | Fix #1774, fix #5875
TODO: a test | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5891/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5891/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5979 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5979/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5979/comments | https://api.github.com/repos/huggingface/datasets/issues/5979/events | https://github.com/huggingface/datasets/pull/5979 | 1,770,198,250 | PR_kwDODunzps5TrxS_ | 5,979 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5979). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008087 / 0.011353 (-0.003266) | 0.004691 / 0.011008 (-0.006317) | 0.121545 / 0.038508 (0.083037) | 0.057436 / 0.023109 (0.034326) | 0.368864 / 0.275898 (0.092966) | 0.457199 / 0.323480 (0.133719) | 0.006745 / 0.007986 (-0.001241) | 0.003689 / 0.004328 (-0.000640) | 0.090480 / 0.004250 (0.086229) | 0.071368 / 0.037052 (0.034316) | 0.372788 / 0.258489 (0.114299) | 0.429894 / 0.293841 (0.136053) | 0.037544 / 0.128546 (-0.091002) | 0.010142 / 0.075646 (-0.065505) | 0.420467 / 0.419271 (0.001196) | 0.064359 / 0.043533 (0.020826) | 0.370345 / 0.255139 (0.115206) | 0.405220 / 0.283200 (0.122020) | 0.028410 / 0.141683 (-0.113273) | 1.824845 / 1.452155 (0.372690) | 1.888109 / 1.492716 (0.395392) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234585 / 0.018006 (0.216578) | 0.499965 / 0.000490 (0.499476) | 0.000461 / 0.000200 (0.000261) | 0.000064 / 0.000054 (0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032294 / 0.037411 (-0.005117) | 0.131769 / 0.014526 (0.117243) | 0.146472 / 0.176557 (-0.030085) | 0.210035 / 0.737135 (-0.527100) | 0.145600 / 0.296338 (-0.150739) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507455 / 0.215209 (0.292246) | 5.080090 / 2.077655 (3.002435) | 2.506104 / 1.504120 (1.001984) | 2.297655 / 1.541195 (0.756460) | 2.324920 / 1.468490 (0.856430) | 0.645003 / 4.584777 (-3.939774) | 4.677856 / 3.745712 (0.932144) | 2.254179 / 5.269862 (-3.015683) | 1.280663 / 4.565676 (-3.285013) | 0.078809 / 0.424275 (-0.345466) | 0.014059 / 0.007607 (0.006452) | 0.628053 / 0.226044 (0.402009) | 6.327289 / 2.268929 (4.058360) | 2.957918 / 55.444624 (-52.486706) | 2.571568 / 6.876477 (-4.304909) | 2.708766 / 2.142072 (0.566694) | 0.772868 / 4.805227 (-4.032360) | 0.164835 / 6.500664 (-6.335829) | 0.075334 / 0.075469 (-0.000135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.471930 / 1.841788 (-0.369858) | 17.917340 / 8.074308 (9.843032) | 15.719327 / 10.191392 (5.527935) | 0.191999 / 0.680424 (-0.488424) | 0.022464 / 0.534201 (-0.511737) | 0.511038 / 0.579283 (-0.068245) | 0.512050 / 0.434364 (0.077686) | 0.608711 / 0.540337 (0.068373) | 0.749660 / 1.386936 (-0.637276) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008028 / 0.011353 (-0.003325) | 0.004908 / 0.011008 (-0.006100) | 0.092294 / 0.038508 (0.053786) | 0.053051 / 0.023109 (0.029942) | 0.453862 / 0.275898 (0.177964) | 0.512548 / 0.323480 (0.189068) | 0.004817 / 0.007986 (-0.003168) | 0.005330 / 0.004328 (0.001002) | 0.095600 / 0.004250 (0.091350) | 0.068763 / 0.037052 (0.031710) | 0.453654 / 0.258489 (0.195165) | 0.504995 / 0.293841 (0.211154) | 0.038123 / 0.128546 (-0.090423) | 0.010650 / 0.075646 (-0.064996) | 0.102854 / 0.419271 (-0.316417) | 0.062973 / 0.043533 (0.019440) | 0.430420 / 0.255139 (0.175281) | 0.465448 / 0.283200 (0.182248) | 0.029736 / 0.141683 (-0.111947) | 1.844225 / 1.452155 (0.392070) | 1.934685 / 1.492716 (0.441968) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227797 / 0.018006 (0.209791) | 0.467868 / 0.000490 (0.467378) | 0.004531 / 0.000200 (0.004331) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035632 / 0.037411 (-0.001780) | 0.145943 / 0.014526 (0.131417) | 0.151944 / 0.176557 (-0.024613) | 0.220519 / 0.737135 (-0.516616) | 0.159732 / 0.296338 (-0.136606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.520641 / 0.215209 (0.305432) | 5.184740 / 2.077655 (3.107086) | 2.538751 / 1.504120 (1.034631) | 2.316571 / 1.541195 (0.775377) | 2.387898 / 1.468490 (0.919408) | 0.614515 / 4.584777 (-3.970262) | 4.573142 / 3.745712 (0.827430) | 4.657052 / 5.269862 (-0.612809) | 2.159664 / 4.565676 (-2.406013) | 0.079713 / 0.424275 (-0.344562) | 0.014462 / 0.007607 (0.006855) | 0.656611 / 0.226044 (0.430566) | 6.481630 / 2.268929 (4.212702) | 3.135047 / 55.444624 (-52.309577) | 2.757502 / 6.876477 (-4.118975) | 2.851488 / 2.142072 (0.709415) | 0.790795 / 4.805227 (-4.014432) | 0.172358 / 6.500664 (-6.328306) | 0.080255 / 0.075469 (0.004786) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.571391 / 1.841788 (-0.270396) | 19.025224 / 8.074308 (10.950916) | 17.079230 / 10.191392 (6.887838) | 0.172823 / 0.680424 (-0.507601) | 0.021845 / 0.534201 (-0.512356) | 0.522286 / 0.579283 (-0.056998) | 0.510406 / 0.434364 (0.076042) | 0.604830 / 0.540337 (0.064493) | 0.735466 / 1.386936 (-0.651471) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4084609bdc40d173d1daa74ad2fe98f3ead72f8e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010025 / 0.011353 (-0.001328) | 0.005699 / 0.011008 (-0.005310) | 0.134194 / 0.038508 (0.095686) | 0.056154 / 0.023109 (0.033045) | 0.470091 / 0.275898 (0.194193) | 0.539225 / 0.323480 (0.215745) | 0.006659 / 0.007986 (-0.001326) | 0.004468 / 0.004328 (0.000140) | 0.110040 / 0.004250 (0.105790) | 0.074172 / 0.037052 (0.037119) | 0.497450 / 0.258489 (0.238961) | 0.535048 / 0.293841 (0.241207) | 0.051195 / 0.128546 (-0.077352) | 0.014926 / 0.075646 (-0.060721) | 0.461334 / 0.419271 (0.042062) | 0.073773 / 0.043533 (0.030240) | 0.450741 / 0.255139 (0.195602) | 0.474853 / 0.283200 (0.191653) | 0.036372 / 0.141683 (-0.105311) | 1.982873 / 1.452155 (0.530719) | 1.989912 / 1.492716 (0.497196) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287817 / 0.018006 (0.269811) | 0.613415 / 0.000490 (0.612926) | 0.007082 / 0.000200 (0.006882) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031119 / 0.037411 (-0.006292) | 0.129886 / 0.014526 (0.115361) | 0.143492 / 0.176557 (-0.033065) | 0.208536 / 0.737135 (-0.528600) | 0.147081 / 0.296338 (-0.149257) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.668312 / 0.215209 (0.453103) | 6.568609 / 2.077655 (4.490955) | 2.708788 / 1.504120 (1.204668) | 2.366737 / 1.541195 (0.825542) | 2.392598 / 1.468490 (0.924108) | 0.967582 / 4.584777 (-3.617195) | 5.582743 / 3.745712 (1.837031) | 3.021607 / 5.269862 (-2.248255) | 1.866402 / 4.565676 (-2.699275) | 0.115998 / 0.424275 (-0.308277) | 0.015571 / 0.007607 (0.007964) | 0.820069 / 0.226044 (0.594025) | 8.229725 / 2.268929 (5.960797) | 3.437068 / 55.444624 (-52.007557) | 2.902312 / 6.876477 (-3.974164) | 3.025874 / 2.142072 (0.883802) | 1.230359 / 4.805227 (-3.574868) | 0.237341 / 6.500664 (-6.263323) | 0.089923 / 0.075469 (0.014453) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.670970 / 1.841788 (-0.170818) | 19.667167 / 8.074308 (11.592859) | 21.624423 / 10.191392 (11.433031) | 0.231683 / 0.680424 (-0.448741) | 0.029145 / 0.534201 (-0.505056) | 0.543441 / 0.579283 (-0.035842) | 0.617510 / 0.434364 (0.183146) | 0.612662 / 0.540337 (0.072324) | 0.790589 / 1.386936 (-0.596347) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010324 / 0.011353 (-0.001029) | 0.005339 / 0.011008 (-0.005669) | 0.104762 / 0.038508 (0.066254) | 0.052631 / 0.023109 (0.029522) | 0.485864 / 0.275898 (0.209966) | 0.595768 / 0.323480 (0.272288) | 0.007417 / 0.007986 (-0.000569) | 0.005229 / 0.004328 (0.000900) | 0.100775 / 0.004250 (0.096524) | 0.067144 / 0.037052 (0.030092) | 0.522269 / 0.258489 (0.263780) | 0.592597 / 0.293841 (0.298756) | 0.051101 / 0.128546 (-0.077446) | 0.015277 / 0.075646 (-0.060369) | 0.115530 / 0.419271 (-0.303741) | 0.071922 / 0.043533 (0.028390) | 0.490208 / 0.255139 (0.235069) | 0.578936 / 0.283200 (0.295736) | 0.040382 / 0.141683 (-0.101301) | 1.986059 / 1.452155 (0.533904) | 2.040600 / 1.492716 (0.547883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300399 / 0.018006 (0.282393) | 0.624702 / 0.000490 (0.624212) | 0.004908 / 0.000200 (0.004708) | 0.000155 / 0.000054 (0.000100) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038031 / 0.037411 (0.000619) | 0.140353 / 0.014526 (0.125828) | 0.152600 / 0.176557 (-0.023956) | 0.219165 / 0.737135 (-0.517970) | 0.154232 / 0.296338 (-0.142106) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.698855 / 0.215209 (0.483646) | 7.125543 / 2.077655 (5.047889) | 3.251222 / 1.504120 (1.747102) | 2.953404 / 1.541195 (1.412209) | 3.051108 / 1.468490 (1.582618) | 0.962068 / 4.584777 (-3.622709) | 5.789579 / 3.745712 (2.043867) | 5.193271 / 5.269862 (-0.076591) | 2.757886 / 4.565676 (-1.807790) | 0.111865 / 0.424275 (-0.312410) | 0.014684 / 0.007607 (0.007077) | 0.875967 / 0.226044 (0.649923) | 8.818359 / 2.268929 (6.549430) | 4.165216 / 55.444624 (-51.279408) | 3.372059 / 6.876477 (-3.504418) | 3.486886 / 2.142072 (1.344813) | 1.232276 / 4.805227 (-3.572951) | 0.238967 / 6.500664 (-6.261697) | 0.091584 / 0.075469 (0.016115) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.850755 / 1.841788 (0.008968) | 20.058756 / 8.074308 (11.984448) | 23.761271 / 10.191392 (13.569879) | 0.231826 / 0.680424 (-0.448598) | 0.030119 / 0.534201 (-0.504082) | 0.532614 / 0.579283 (-0.046669) | 0.628968 / 0.434364 (0.194604) | 0.628403 / 0.540337 (0.088066) | 0.745648 / 1.386936 (-0.641288) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a8a797cc92e860c8d0df71e0aa826f4d2690713e \"CML watermark\")\n"
] | 2023-06-22T18:32:14 | 2023-06-22T18:42:22 | 2023-06-22T18:32:22 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5979",
"html_url": "https://github.com/huggingface/datasets/pull/5979",
"diff_url": "https://github.com/huggingface/datasets/pull/5979.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5979.patch",
"merged_at": "2023-06-22T18:32:22"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5979/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5979/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6008 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6008/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6008/comments | https://api.github.com/repos/huggingface/datasets/issues/6008/events | https://github.com/huggingface/datasets/issues/6008 | 1,789,869,344 | I_kwDODunzps5qrz0g | 6,008 | Dataset.from_generator consistently freezes at ~1000 rows | {
"login": "andreemic",
"id": 27695722,
"node_id": "MDQ6VXNlcjI3Njk1NzIy",
"avatar_url": "https://avatars.githubusercontent.com/u/27695722?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/andreemic",
"html_url": "https://github.com/andreemic",
"followers_url": "https://api.github.com/users/andreemic/followers",
"following_url": "https://api.github.com/users/andreemic/following{/other_user}",
"gists_url": "https://api.github.com/users/andreemic/gists{/gist_id}",
"starred_url": "https://api.github.com/users/andreemic/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/andreemic/subscriptions",
"organizations_url": "https://api.github.com/users/andreemic/orgs",
"repos_url": "https://api.github.com/users/andreemic/repos",
"events_url": "https://api.github.com/users/andreemic/events{/privacy}",
"received_events_url": "https://api.github.com/users/andreemic/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"By default, we write data to disk (so it can be memory-mapped) every 1000 rows/samples. You can control this with the `writer_batch_size` parameter. Also, when working with fixed-size arrays, the `ArrayXD` feature types yield better performance (e.g., in your case, `features=datasets.Features({\"i\": datasets.Array3D(shape=(512,512,3), dtype=\"float32\")})` should be faster).\r\n\r\nOur support for multi-dim arrays could be better, and we plan to improve it as part of https://github.com/huggingface/datasets/issues/5272.",
"> By default, we write data to disk (so it can be memory-mapped) every 1000 rows/samples. You can control this with the `writer_batch_size` parameter. Also, when working with fixed-size arrays, the `ArrayXD` feature types yield better performance (e.g., in your case, `features=datasets.Features({\"i\": datasets.Array3D(shape=(512,512,3), dtype=\"float32\")})` should be faster).\r\n> \r\n> Our support for multi-dim arrays could be better, and we plan to improve it as part of #5272.\r\n\r\nThanks for the explanation! The Image array was just for demonstration, I use PIL Images in practice. Does that make a difference? What's the best approach for a dataset with PIL Images as rows?",
"It's best to use the `datasets.Image()` feature type for PIL images (to save space) :)"
] | 2023-07-05T16:06:48 | 2023-07-10T13:46:39 | 2023-07-10T13:46:39 | NONE | null | null | null | ### Describe the bug
Whenever I try to create a dataset which contains images using `Dataset.from_generator`, it freezes around 996 rows. I suppose it has something to do with memory consumption, but there's more memory available. I
Somehow it worked a few times but mostly this makes the datasets library much more cumbersome to work with because generators are the easiest way to turn an existing dataset into a Hugging Face dataset.
I've let it run in the frozen state for way longer than it can possibly take to load the actual dataset.
Let me know if you have ideas how to resolve it!
### Steps to reproduce the bug
```python
from datasets import Dataset
import numpy as np
def gen():
for row in range(10000):
yield {"i": np.random.rand(512, 512, 3)}
Dataset.from_generator(gen)
# -> 90% of the time gets stuck around 1000 rows
```
### Expected behavior
Should continue and go through all the examples yielded by the generator, or at least throw an error or somehow communicate what's going on.
### Environment info
- `datasets` version: 2.8.0
- Platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 12.0.1
- Pandas version: 1.5.1
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6008/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6008/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5903 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5903/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5903/comments | https://api.github.com/repos/huggingface/datasets/issues/5903/events | https://github.com/huggingface/datasets/pull/5903 | 1,727,372,549 | PR_kwDODunzps5RbV82 | 5,903 | Relax `ci.yml` trigger for `pull_request` based on modified paths | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Also this could be extended to the rest of the GitHub Action `yml` files, so let me know whether you want me to have a look into it! 🤗",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5903). All of your documentation changes will be reflected on that endpoint."
] | 2023-05-26T10:46:52 | 2023-05-26T10:51:37 | null | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5903",
"html_url": "https://github.com/huggingface/datasets/pull/5903",
"diff_url": "https://github.com/huggingface/datasets/pull/5903.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5903.patch",
"merged_at": null
} | ## What's in this PR?
As of a previous PR at #5902, I've seen that the CI was automatically trigger on any file, in that case when modifying a Jupyter Notebook (.ipynb), which IMO could be skipped, as the modification on the Jupyter Notebook has no effect/impact on the `ci.yml` outcome. So this PR controls the paths that trigger the `ci.yml` to avoid wasting resources when not needed.
## What's pending in this PR?
I would like to confirm whether this should affect both `push` and `pull_request`, since just modifications in those files won't change the `ci.yml` outcome, so maybe it's worth skipping it too in the `push` trigger. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5903/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5903/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6010 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6010/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6010/comments | https://api.github.com/repos/huggingface/datasets/issues/6010/events | https://github.com/huggingface/datasets/issues/6010 | 1,793,838,152 | I_kwDODunzps5q68xI | 6,010 | Improve `Dataset`'s string representation | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"I want to take a shot at this if possible ",
"Yes, feel free to work on this.\r\n\r\nYou can check the PyArrow Table `__repr__` and Polars DataFrame `__repr__`/`_repr_html_` implementations for some pointers/ideas."
] | 2023-07-07T16:38:03 | 2023-07-16T13:00:18 | null | CONTRIBUTOR | null | null | null | Currently, `Dataset.__repr__` outputs a dataset's column names and the number of rows. We could improve it by printing its features and the first few rows.
We should also implement `_repr_html_` to have a rich HTML representation in notebooks/Streamlit. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6010/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6010/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6025 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6025/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6025/comments | https://api.github.com/repos/huggingface/datasets/issues/6025/events | https://github.com/huggingface/datasets/issues/6025 | 1,801,852,601 | I_kwDODunzps5rZha5 | 6,025 | Using a dataset for a use other than it was intended for. | {
"login": "surya-narayanan",
"id": 17240858,
"node_id": "MDQ6VXNlcjE3MjQwODU4",
"avatar_url": "https://avatars.githubusercontent.com/u/17240858?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/surya-narayanan",
"html_url": "https://github.com/surya-narayanan",
"followers_url": "https://api.github.com/users/surya-narayanan/followers",
"following_url": "https://api.github.com/users/surya-narayanan/following{/other_user}",
"gists_url": "https://api.github.com/users/surya-narayanan/gists{/gist_id}",
"starred_url": "https://api.github.com/users/surya-narayanan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/surya-narayanan/subscriptions",
"organizations_url": "https://api.github.com/users/surya-narayanan/orgs",
"repos_url": "https://api.github.com/users/surya-narayanan/repos",
"events_url": "https://api.github.com/users/surya-narayanan/events{/privacy}",
"received_events_url": "https://api.github.com/users/surya-narayanan/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"I've opened a PR with a fix. In the meantime, you can avoid the error by deleting `task_templates` with `dataset.info.task_templates = None` before the `interleave_datasets` call.\r\n` "
] | 2023-07-12T22:33:17 | 2023-07-13T13:57:36 | 2023-07-13T13:57:36 | NONE | null | null | null | ### Describe the bug
Hi, I want to use the rotten tomatoes dataset but for a task other than classification, but when I interleave the dataset, it throws ```'ValueError: Column label is not present in features.'```. It seems that the label_col must be there in the dataset for some reason?
Here is the full stacktrace
```
File "/home/suryahari/Vornoi/tryage-handoff-other-datasets.py", line 276, in create_dataloaders
dataset = interleave_datasets(dsfold, stopping_strategy="all_exhausted")
File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/combine.py", line 134, in interleave_datasets
return _interleave_iterable_datasets(
File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1833, in _interleave_iterable_datasets
info = DatasetInfo.from_merge([d.info for d in datasets])
File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/info.py", line 275, in from_merge
dataset_infos = [dset_info.copy() for dset_info in dataset_infos if dset_info is not None]
File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/info.py", line 275, in <listcomp>
dataset_infos = [dset_info.copy() for dset_info in dataset_infos if dset_info is not None]
File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/info.py", line 378, in copy
return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
File "<string>", line 20, in __init__
File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/info.py", line 208, in __post_init__
self.task_templates = [
File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/info.py", line 209, in <listcomp>
template.align_with_features(self.features) for template in (self.task_templates)
File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/tasks/text_classification.py", line 20, in align_with_features
raise ValueError(f"Column {self.label_column} is not present in features.")
ValueError: Column label is not present in features.
```
### Steps to reproduce the bug
Delete the column `labels` from the `rotten_tomatoes` dataset. Try to interleave it with other datasets.
### Expected behavior
Should let me use the dataset with just the `text` field
### Environment info
latest datasets library? I don't think this was an issue in earlier versions. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6025/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6025/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5933 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5933/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5933/comments | https://api.github.com/repos/huggingface/datasets/issues/5933/events | https://github.com/huggingface/datasets/pull/5933 | 1,747,382,500 | PR_kwDODunzps5Sfi5J | 5,933 | Fix `to_numpy` when None values in the sequence | {
"login": "qgallouedec",
"id": 45557362,
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qgallouedec",
"html_url": "https://github.com/qgallouedec",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"I just added the same test with dynamic shape",
"_The documentation is not available anymore as the PR was closed or merged._",
"Awesome ! I'm merging now if you don't mind :)\r\nWe should probably give you permissions to merge your own PRs when you have an approval",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009980 / 0.011353 (-0.001373) | 0.005709 / 0.011008 (-0.005300) | 0.132185 / 0.038508 (0.093677) | 0.039299 / 0.023109 (0.016190) | 0.400168 / 0.275898 (0.124270) | 0.470582 / 0.323480 (0.147102) | 0.007753 / 0.007986 (-0.000233) | 0.005196 / 0.004328 (0.000868) | 0.093698 / 0.004250 (0.089448) | 0.052631 / 0.037052 (0.015579) | 0.430347 / 0.258489 (0.171858) | 0.460162 / 0.293841 (0.166321) | 0.057511 / 0.128546 (-0.071035) | 0.013944 / 0.075646 (-0.061702) | 0.459008 / 0.419271 (0.039737) | 0.075532 / 0.043533 (0.031999) | 0.405165 / 0.255139 (0.150026) | 0.456142 / 0.283200 (0.172942) | 0.117309 / 0.141683 (-0.024374) | 1.945787 / 1.452155 (0.493633) | 2.067162 / 1.492716 (0.574446) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.285755 / 0.018006 (0.267749) | 0.619965 / 0.000490 (0.619476) | 0.005071 / 0.000200 (0.004871) | 0.000114 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031112 / 0.037411 (-0.006299) | 0.128514 / 0.014526 (0.113988) | 0.137161 / 0.176557 (-0.039396) | 0.211363 / 0.737135 (-0.525772) | 0.151045 / 0.296338 (-0.145293) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.609361 / 0.215209 (0.394152) | 6.124844 / 2.077655 (4.047189) | 2.440757 / 1.504120 (0.936637) | 2.034495 / 1.541195 (0.493300) | 2.047192 / 1.468490 (0.578702) | 0.883171 / 4.584777 (-3.701606) | 5.470552 / 3.745712 (1.724840) | 4.401696 / 5.269862 (-0.868165) | 2.378674 / 4.565676 (-2.187003) | 0.108065 / 0.424275 (-0.316210) | 0.013239 / 0.007607 (0.005632) | 0.830957 / 0.226044 (0.604913) | 8.090659 / 2.268929 (5.821731) | 3.289203 / 55.444624 (-52.155422) | 2.500777 / 6.876477 (-4.375700) | 2.561440 / 2.142072 (0.419367) | 1.064893 / 4.805227 (-3.740334) | 0.220486 / 6.500664 (-6.280178) | 0.079507 / 0.075469 (0.004038) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.544334 / 1.841788 (-0.297454) | 17.878997 / 8.074308 (9.804689) | 18.952191 / 10.191392 (8.760799) | 0.245166 / 0.680424 (-0.435258) | 0.028022 / 0.534201 (-0.506179) | 0.517828 / 0.579283 (-0.061455) | 0.618988 / 0.434364 (0.184624) | 0.589742 / 0.540337 (0.049405) | 0.670902 / 1.386936 (-0.716034) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009616 / 0.011353 (-0.001737) | 0.006098 / 0.011008 (-0.004911) | 0.100301 / 0.038508 (0.061793) | 0.037792 / 0.023109 (0.014683) | 0.484667 / 0.275898 (0.208769) | 0.519286 / 0.323480 (0.195806) | 0.007427 / 0.007986 (-0.000558) | 0.007172 / 0.004328 (0.002844) | 0.104429 / 0.004250 (0.100179) | 0.056567 / 0.037052 (0.019515) | 0.502641 / 0.258489 (0.244152) | 0.549629 / 0.293841 (0.255788) | 0.049574 / 0.128546 (-0.078972) | 0.015223 / 0.075646 (-0.060424) | 0.113947 / 0.419271 (-0.305324) | 0.064585 / 0.043533 (0.021053) | 0.512962 / 0.255139 (0.257823) | 0.507218 / 0.283200 (0.224019) | 0.122194 / 0.141683 (-0.019488) | 1.927821 / 1.452155 (0.475667) | 2.051161 / 1.492716 (0.558445) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.291350 / 0.018006 (0.273344) | 0.588099 / 0.000490 (0.587610) | 0.001368 / 0.000200 (0.001168) | 0.000153 / 0.000054 (0.000099) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030604 / 0.037411 (-0.006807) | 0.126810 / 0.014526 (0.112285) | 0.139309 / 0.176557 (-0.037248) | 0.208030 / 0.737135 (-0.529105) | 0.138985 / 0.296338 (-0.157353) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.681254 / 0.215209 (0.466045) | 6.753856 / 2.077655 (4.676201) | 2.780704 / 1.504120 (1.276585) | 2.475205 / 1.541195 (0.934010) | 2.486784 / 1.468490 (1.018294) | 0.879223 / 4.584777 (-3.705554) | 5.662294 / 3.745712 (1.916582) | 2.698705 / 5.269862 (-2.571156) | 1.660620 / 4.565676 (-2.905057) | 0.112218 / 0.424275 (-0.312057) | 0.014211 / 0.007607 (0.006604) | 0.796957 / 0.226044 (0.570913) | 8.180897 / 2.268929 (5.911969) | 3.540419 / 55.444624 (-51.904205) | 2.899467 / 6.876477 (-3.977010) | 2.870306 / 2.142072 (0.728233) | 1.069537 / 4.805227 (-3.735690) | 0.211281 / 6.500664 (-6.289383) | 0.078898 / 0.075469 (0.003429) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.666790 / 1.841788 (-0.174998) | 18.302127 / 8.074308 (10.227819) | 21.317546 / 10.191392 (11.126153) | 0.242795 / 0.680424 (-0.437629) | 0.026754 / 0.534201 (-0.507447) | 0.493375 / 0.579283 (-0.085908) | 0.605400 / 0.434364 (0.171036) | 0.586888 / 0.540337 (0.046550) | 0.722809 / 1.386936 (-0.664127) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce2328e7b1d62998b22510492530af55d4493b73 \"CML watermark\")\n"
] | 2023-06-08T08:38:56 | 2023-06-09T13:49:41 | 2023-06-09T13:23:48 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5933",
"html_url": "https://github.com/huggingface/datasets/pull/5933",
"diff_url": "https://github.com/huggingface/datasets/pull/5933.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5933.patch",
"merged_at": "2023-06-09T13:23:48"
} | Closes #5927
I've realized that the error was overlooked during testing due to the presence of only one None value in the sequence.
Unfortunately, it was the only case where the function works as expected. When the sequence contained more than one None value, the function failed. Consequently, I've updated the tests to include sequences with multiple None values. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5933/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5933/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6055 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6055/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6055/comments | https://api.github.com/repos/huggingface/datasets/issues/6055/events | https://github.com/huggingface/datasets/issues/6055 | 1,813,524,145 | I_kwDODunzps5sGC6x | 6,055 | Fix host URL in The Pile datasets | {
"login": "nickovchinnikov",
"id": 7540752,
"node_id": "MDQ6VXNlcjc1NDA3NTI=",
"avatar_url": "https://avatars.githubusercontent.com/u/7540752?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/nickovchinnikov",
"html_url": "https://github.com/nickovchinnikov",
"followers_url": "https://api.github.com/users/nickovchinnikov/followers",
"following_url": "https://api.github.com/users/nickovchinnikov/following{/other_user}",
"gists_url": "https://api.github.com/users/nickovchinnikov/gists{/gist_id}",
"starred_url": "https://api.github.com/users/nickovchinnikov/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/nickovchinnikov/subscriptions",
"organizations_url": "https://api.github.com/users/nickovchinnikov/orgs",
"repos_url": "https://api.github.com/users/nickovchinnikov/repos",
"events_url": "https://api.github.com/users/nickovchinnikov/events{/privacy}",
"received_events_url": "https://api.github.com/users/nickovchinnikov/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-07-20T09:08:52 | 2023-07-20T09:09:37 | null | NONE | null | null | null | ### Describe the bug
In #3627 and #5543, you tried to fix the host URL in The Pile datasets. But both URLs are not working now:
`HTTPError: 404 Client Error: Not Found for URL: https://the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst`
And
`ConnectTimeout: HTTPSConnectionPool(host='mystic.the-eye.eu', port=443): Max retries exceeded with url: /public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst (Caused by ConnectTimeoutError(, 'Connection to mystic.the-eye.eu timed out. (connect timeout=10.0)'))`
### Steps to reproduce the bug
```
from datasets import load_dataset
# This takes a few minutes to run, so go grab a tea or coffee while you wait :)
data_files = "https://mystic.the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst"
pubmed_dataset = load_dataset("json", data_files=data_files, split="train")
pubmed_dataset
```
Result:
`ConnectTimeout: HTTPSConnectionPool(host='mystic.the-eye.eu', port=443): Max retries exceeded with url: /public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst (Caused by ConnectTimeoutError(, 'Connection to mystic.the-eye.eu timed out. (connect timeout=10.0)'))`
And
```
from datasets import load_dataset
# This takes a few minutes to run, so go grab a tea or coffee while you wait :)
data_files = "https://the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst"
pubmed_dataset = load_dataset("json", data_files=data_files, split="train")
pubmed_dataset
```
Result:
`HTTPError: 404 Client Error: Not Found for URL: https://the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst`
### Expected behavior
Downloading as normal.
### Environment info
Environment info
`datasets` version: 2.9.0
Platform: Windows
Python version: 3.9.13
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6055/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6055/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6002 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6002/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6002/comments | https://api.github.com/repos/huggingface/datasets/issues/6002/events | https://github.com/huggingface/datasets/pull/6002 | 1,786,053,060 | PR_kwDODunzps5UhP-Z | 6,002 | Add KLUE-MRC metrics | {
"login": "ingyuseong",
"id": 37537248,
"node_id": "MDQ6VXNlcjM3NTM3MjQ4",
"avatar_url": "https://avatars.githubusercontent.com/u/37537248?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ingyuseong",
"html_url": "https://github.com/ingyuseong",
"followers_url": "https://api.github.com/users/ingyuseong/followers",
"following_url": "https://api.github.com/users/ingyuseong/following{/other_user}",
"gists_url": "https://api.github.com/users/ingyuseong/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ingyuseong/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ingyuseong/subscriptions",
"organizations_url": "https://api.github.com/users/ingyuseong/orgs",
"repos_url": "https://api.github.com/users/ingyuseong/repos",
"events_url": "https://api.github.com/users/ingyuseong/events{/privacy}",
"received_events_url": "https://api.github.com/users/ingyuseong/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The metrics API in `datasets` is deprecated as of version 2.0, and `evaulate` is our new library for metrics. You can add a new metric to it by following [these steps](https://huggingface.co/docs/evaluate/creating_and_sharing)."
] | 2023-07-03T12:11:10 | 2023-07-09T11:57:20 | 2023-07-09T11:57:20 | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6002",
"html_url": "https://github.com/huggingface/datasets/pull/6002",
"diff_url": "https://github.com/huggingface/datasets/pull/6002.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6002.patch",
"merged_at": null
} | ## Metrics for KLUE-MRC (Korean Language Understanding Evaluation — Machine Reading Comprehension)
Adding metrics for [KLUE-MRC](https://huggingface.co/datasets/klue).
KLUE-MRC is very similar to SQuAD 2.0 but has a slightly different format which is why I added metrics for KLUE-MRC.
Specifically, in the case of [LM Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness), it leverages the scoring script of SQuAD to evaluate SQuAD 2.0 and KorQuAD. But the script isn't suitable for KLUE-MRC because KLUE-MRC is a bit different from SQuAD 2.0. And this is why I added the scoring script for KLUE-MRC.
- [x] All tests passed
- [x] Added a metric card (referred the metric card of SQuAD 2.0)
- [x] Compatibility test with [LM Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) passed
### References
- [KLUE: Korean Language Understanding Evaluation](https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/98dce83da57b0395e163467c9dae521b-Paper-round2.pdf)
- [KLUE on Hugging Face Datasets](https://huggingface.co/datasets/klue)
- #2416 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6002/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6002/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5951 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5951/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5951/comments | https://api.github.com/repos/huggingface/datasets/issues/5951/events | https://github.com/huggingface/datasets/issues/5951 | 1,756,363,546 | I_kwDODunzps5or_sa | 5,951 | What is the Right way to use discofuse dataset?? | {
"login": "akesh1235",
"id": 125154243,
"node_id": "U_kgDOB3Wzww",
"avatar_url": "https://avatars.githubusercontent.com/u/125154243?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/akesh1235",
"html_url": "https://github.com/akesh1235",
"followers_url": "https://api.github.com/users/akesh1235/followers",
"following_url": "https://api.github.com/users/akesh1235/following{/other_user}",
"gists_url": "https://api.github.com/users/akesh1235/gists{/gist_id}",
"starred_url": "https://api.github.com/users/akesh1235/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/akesh1235/subscriptions",
"organizations_url": "https://api.github.com/users/akesh1235/orgs",
"repos_url": "https://api.github.com/users/akesh1235/repos",
"events_url": "https://api.github.com/users/akesh1235/events{/privacy}",
"received_events_url": "https://api.github.com/users/akesh1235/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Thanks for opening https://huggingface.co/datasets/discofuse/discussions/3, let's continue the discussion over there if you don't mind",
"I have posted there also sir, please check\r\n@lhoestq"
] | 2023-06-14T08:38:39 | 2023-06-14T13:25:06 | 2023-06-14T12:10:16 | NONE | null | null | null | [Click here for Dataset link](https://huggingface.co/datasets/discofuse/viewer/discofuse-wikipedia/train?row=6)
**Below is the following way, as per my understanding , Is it correct :question: :question:**
The **columns/features from `DiscoFuse dataset`** that will be the **input to the `encoder` and `decoder`** are:
[Click here for Dataset link](https://huggingface.co/datasets/discofuse/viewer/discofuse-wikipedia/train?row=6)
1. **coherent_first_sentence**
2. **coherent_second_sentence**
3. **incoherent_first_sentence**
4. **incoherent_second_sentence**
[Click here for Dataset link](https://huggingface.co/datasets/discofuse/viewer/discofuse-wikipedia/train?row=6)
The **`encoder` will take these four columns as input and encode them into a sequence of hidden states. The `decoder` will then take these hidden states as input and decode them into a new sentence that fuses the two original sentences together.**
The **discourse type, connective_string, has_coref_type_pronoun, and has_coref_type_nominal columns will not be used as input to the encoder or decoder.** These columns are used to provide additional information about the dataset, but they are not necessary for the task of sentence fusion.
Please correct me if I am wrong; otherwise, if this understanding is right, how shall I implement this task practically? | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5951/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5951/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5883 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5883/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5883/comments | https://api.github.com/repos/huggingface/datasets/issues/5883/events | https://github.com/huggingface/datasets/pull/5883 | 1,719,527,597 | PR_kwDODunzps5RAkYi | 5,883 | Fix string-encoding, make `batch_size` optional, and minor improvements in `Dataset.to_tf_dataset` | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"To showcase the current issue, here's a Colab Gist, that shows that the `imdb` dataset cannot be read/iterated, since one or more samples contain a non-ascii character that is being converted to `numpy.bytes_`, and so on fails.\r\n\r\nColab Gist at https://gist.github.com/alvarobartt/1746959d1abb9a33e0c593f3bd82a2fb\r\n\r\nAlso, here's a quick sample of what's happening:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\"imdb\", split=\"train\")\r\ntfds = ds.to_tf_dataset(batch_size=16)\r\nfor batch in tfds:\r\n print(batch)\r\n>>> UnicodeEncodeError: 'ascii' codec can't encode character '\\xe9' in position 0: ordinal not in range(128)\r\n```\r\n\r\nA more detailed version of it:\r\n\r\n```python\r\nfrom datasets import Dataset\r\n\r\nds = Dataset.from_dict(\r\n {\r\n \"a\": [1],\r\n \"b\": [\"é\"],\r\n }\r\n)\r\ntfds = ds.to_tf_dataset(batch_size=1)\r\nfor batch in tfds:\r\n print(batch)\r\n>>> UnicodeEncodeError: 'ascii' codec can't encode character '\\xe9' in position 0: ordinal not in range(128)\r\n```\r\n\r\nThe original issue comes from https://github.com/tensorflow/tensorflow/blob/388d952114e59a1aeda440ed4737b29f8b7c6e8a/tensorflow/python/ops/script_ops.py#LL234C4-L234C4, which could easily be solved by replacing that line with `return result.astype(np.unicode_)` but they are mentioning that it may lead to issues.\r\n\r\nEven the following fails in `numpy`:\r\n\r\n```python\r\nimport numpy as np\r\n\r\nx = np.array([\"é\"]).astype(np.bytes_)\r\n```",
"cc. @lhoestq :hugs:",
"cc @Rocketknight1 ",
"> Nice ! Could you add some tests to make sure that batch_size=None works as expected ?\r\n\r\nSure, I'll add the tests for everything, including the string-encoding issue to make sure it's solved!",
"Thanks for the review @lhoestq and @Rocketknight1! I do understand that processing it in batches is always more efficient than processing it one-by-one, it was just to make `batch_size` optional. What we can do is default it to a certain batch size e.g. 16 as before, and that's it, but I think it can still remain optional.",
"@Rocketknight1 then I'll add the integration tests for the optional `batch_size` as well as for the encoding of non-ASCII compatible characters 😄 Do we set the default `batch_size` to 16 instead of `None`?",
"@alvarobartt I think 16 is a reasonable default, yep!",
"I think default should be None, not 16.\r\nUsers won't expect to have it batched by default.",
"Then I'll leave it as is, and add the unit/integration tests, thanks @Rocketknight1 and @lhoestq ",
"Hi @Rocketknight1 @lhoestq! So the string-encoding issue is already solved, but I've got one doubt about the `batch_size` being optional in the multiprocessing approach, since in that case I assume the `batch_size` should be mandatory, for the moment I'm assuming it is/should be mandatory, but let me know if you want me to add a check to disallow `batch_size=None` when `num_workers>1`. Thanks!",
"> To showcase the current issue, here's a Colab Gist, that shows that the `imdb` dataset cannot be read/iterated, since one or more samples contain a non-ascii character that is being converted to `numpy.bytes_`, and so on fails.\r\n> \r\n> Colab Gist at https://gist.github.com/alvarobartt/1746959d1abb9a33e0c593f3bd82a2fb\r\n\r\nI've used the Colab shared above for testing purposes, and it works fine, plus the unit/integration tests are passing. I've also trained a `KerasNLP` model with incoming data from 🤗`datasets` with no issue at all!",
"> in the multiprocessing approach, since in that case I assume the batch_size should be mandatory,\r\n\r\nNo I think they're quite orthogonal, no need to have it mandatory",
"> No I think they're quite orthogonal, no need to have it mandatory\r\n\r\nBut it will break if `batch_size=None` as the multiprocessing approach will aim to prepare batches and distribute those to every worker, and assuming `batch_size=1` when `batch_size=None` I guess is not a good assumption, right?",
"Ah I see. Multiprocessing should support batch_size=None indeed. If you have ideas you can do it in this PR, or raise a NotImplementedError and we can see later",
"Sure @lhoestq, I can add a `NotImplementedError` for the moment, and prepare the next PR straight-away to tackle the multiprocessing approach with `batch_size=None`, but not sure if that may eventually collide with @Rocketknight1 PR at https://github.com/huggingface/datasets/pull/5863",
"Yes, let me merge the PR at #5863 after this one, and then we can open another to improve the behaviour with multiprocessing and `batch_size=None`!",
"Sure @Rocketknight1 makes complete sense to me! Do you want me to add the `raise NotImplementedError` and then we merge this PR? Or you prefer to directly merge the current?",
"`raise NotImplementedError` for now with an error telling the user that multiprocessing needs them to specify a batch size, I think!",
"Since you recently approved @Rocketknight1, are we ready to merge? Thanks 🤗",
"Ah actually it looks like `minimal_tf_collate_fn` doesn't support batch_size=None",
"Hi @lhoestq so I didn't include the call to `collate_fn`, as we won't need to collate the incoming data e.g. \"str\" should remain a \"str\" not a [\"str\"], and the `minimal_collate_fn` was indeed putting everything into a list, so the output was not un-batched, but batched with size 1",
"What if the user passes a collate_fn ? The torch DataLoader still applies it if batch_size=None for example.\r\n\r\nDoes my last change look of to you ? If so I think we can merge",
"> What if the user passes a collate_fn ? The torch DataLoader still applies it if batch_size=None for example.\r\n> \r\n> Does my last change look of to you ? If so I think we can merge\r\n\r\nI think we're good, since it won't batch it under the scenario of `str` being provided instead of `List[str]`, and the unit/integration tests are passing, so I'm OK to merge. Maybe we can double check with Matt? cc @Rocketknight1 ",
"Yes, and sorry for the delay! I'm happy to merge.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006555 / 0.011353 (-0.004798) | 0.004521 / 0.011008 (-0.006487) | 0.096633 / 0.038508 (0.058125) | 0.032859 / 0.023109 (0.009750) | 0.294632 / 0.275898 (0.018734) | 0.325140 / 0.323480 (0.001660) | 0.005676 / 0.007986 (-0.002310) | 0.005252 / 0.004328 (0.000924) | 0.074349 / 0.004250 (0.070099) | 0.045836 / 0.037052 (0.008784) | 0.302919 / 0.258489 (0.044430) | 0.340686 / 0.293841 (0.046845) | 0.028398 / 0.128546 (-0.100148) | 0.008942 / 0.075646 (-0.066704) | 0.326994 / 0.419271 (-0.092278) | 0.049556 / 0.043533 (0.006023) | 0.293883 / 0.255139 (0.038744) | 0.316522 / 0.283200 (0.033322) | 0.097385 / 0.141683 (-0.044298) | 1.405334 / 1.452155 (-0.046821) | 1.521529 / 1.492716 (0.028812) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212269 / 0.018006 (0.194263) | 0.445692 / 0.000490 (0.445203) | 0.004930 / 0.000200 (0.004730) | 0.000093 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026907 / 0.037411 (-0.010504) | 0.108607 / 0.014526 (0.094081) | 0.116806 / 0.176557 (-0.059751) | 0.178428 / 0.737135 (-0.558707) | 0.122326 / 0.296338 (-0.174012) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404211 / 0.215209 (0.189002) | 4.045374 / 2.077655 (1.967719) | 1.877237 / 1.504120 (0.373117) | 1.706276 / 1.541195 (0.165081) | 1.750610 / 1.468490 (0.282120) | 0.522331 / 4.584777 (-4.062446) | 3.742286 / 3.745712 (-0.003426) | 1.791285 / 5.269862 (-3.478577) | 1.043872 / 4.565676 (-3.521805) | 0.065176 / 0.424275 (-0.359099) | 0.011821 / 0.007607 (0.004214) | 0.507374 / 0.226044 (0.281329) | 5.088803 / 2.268929 (2.819875) | 2.282742 / 55.444624 (-53.161882) | 1.950737 / 6.876477 (-4.925740) | 2.042262 / 2.142072 (-0.099810) | 0.636525 / 4.805227 (-4.168702) | 0.140837 / 6.500664 (-6.359827) | 0.063223 / 0.075469 (-0.012246) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.188070 / 1.841788 (-0.653718) | 14.622681 / 8.074308 (6.548372) | 13.247988 / 10.191392 (3.056596) | 0.165858 / 0.680424 (-0.514566) | 0.017476 / 0.534201 (-0.516725) | 0.391973 / 0.579283 (-0.187310) | 0.433326 / 0.434364 (-0.001038) | 0.467163 / 0.540337 (-0.073175) | 0.568359 / 1.386936 (-0.818577) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006076 / 0.011353 (-0.005276) | 0.004439 / 0.011008 (-0.006570) | 0.074496 / 0.038508 (0.035988) | 0.031396 / 0.023109 (0.008287) | 0.372237 / 0.275898 (0.096339) | 0.403412 / 0.323480 (0.079932) | 0.005430 / 0.007986 (-0.002555) | 0.003846 / 0.004328 (-0.000483) | 0.074403 / 0.004250 (0.070153) | 0.045398 / 0.037052 (0.008346) | 0.394133 / 0.258489 (0.135644) | 0.421769 / 0.293841 (0.127928) | 0.027936 / 0.128546 (-0.100610) | 0.008962 / 0.075646 (-0.066685) | 0.083158 / 0.419271 (-0.336113) | 0.044863 / 0.043533 (0.001331) | 0.393834 / 0.255139 (0.138695) | 0.391537 / 0.283200 (0.108337) | 0.097971 / 0.141683 (-0.043712) | 1.496632 / 1.452155 (0.044477) | 1.585511 / 1.492716 (0.092795) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.010094 / 0.018006 (-0.007913) | 0.437811 / 0.000490 (0.437321) | 0.000963 / 0.000200 (0.000763) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028864 / 0.037411 (-0.008547) | 0.112480 / 0.014526 (0.097954) | 0.120938 / 0.176557 (-0.055619) | 0.170888 / 0.737135 (-0.566247) | 0.125903 / 0.296338 (-0.170435) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426716 / 0.215209 (0.211507) | 4.238380 / 2.077655 (2.160725) | 2.052889 / 1.504120 (0.548769) | 1.871043 / 1.541195 (0.329848) | 1.890405 / 1.468490 (0.421915) | 0.522059 / 4.584777 (-4.062718) | 3.813331 / 3.745712 (0.067619) | 2.891651 / 5.269862 (-2.378210) | 1.323836 / 4.565676 (-3.241841) | 0.065124 / 0.424275 (-0.359151) | 0.011498 / 0.007607 (0.003891) | 0.525102 / 0.226044 (0.299057) | 5.245190 / 2.268929 (2.976261) | 2.531149 / 55.444624 (-52.913476) | 2.197323 / 6.876477 (-4.679153) | 2.197314 / 2.142072 (0.055241) | 0.633423 / 4.805227 (-4.171804) | 0.140248 / 6.500664 (-6.360416) | 0.064432 / 0.075469 (-0.011037) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270639 / 1.841788 (-0.571149) | 14.856678 / 8.074308 (6.782369) | 14.337631 / 10.191392 (4.146239) | 0.195319 / 0.680424 (-0.485105) | 0.017628 / 0.534201 (-0.516573) | 0.393984 / 0.579283 (-0.185299) | 0.421987 / 0.434364 (-0.012376) | 0.459245 / 0.540337 (-0.081092) | 0.557786 / 1.386936 (-0.829150) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a129219a48c1b07c06d4bc1db32c317bf513089d \"CML watermark\")\n",
"Will you eventually need help with your PR @Rocketknight1? I'll be happy to help if needed 😄 ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007577 / 0.011353 (-0.003776) | 0.004960 / 0.011008 (-0.006048) | 0.113622 / 0.038508 (0.075114) | 0.037981 / 0.023109 (0.014872) | 0.355312 / 0.275898 (0.079414) | 0.393384 / 0.323480 (0.069904) | 0.006575 / 0.007986 (-0.001411) | 0.005941 / 0.004328 (0.001612) | 0.085976 / 0.004250 (0.081726) | 0.053784 / 0.037052 (0.016732) | 0.369358 / 0.258489 (0.110869) | 0.399402 / 0.293841 (0.105561) | 0.032155 / 0.128546 (-0.096391) | 0.010448 / 0.075646 (-0.065199) | 0.389009 / 0.419271 (-0.030263) | 0.057377 / 0.043533 (0.013844) | 0.354968 / 0.255139 (0.099829) | 0.382404 / 0.283200 (0.099204) | 0.111056 / 0.141683 (-0.030627) | 1.807986 / 1.452155 (0.355832) | 1.866070 / 1.492716 (0.373354) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244439 / 0.018006 (0.226432) | 0.491942 / 0.000490 (0.491452) | 0.001910 / 0.000200 (0.001710) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031024 / 0.037411 (-0.006387) | 0.129674 / 0.014526 (0.115148) | 0.142974 / 0.176557 (-0.033583) | 0.213568 / 0.737135 (-0.523568) | 0.147794 / 0.296338 (-0.148545) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480333 / 0.215209 (0.265124) | 4.792901 / 2.077655 (2.715246) | 2.233145 / 1.504120 (0.729025) | 2.036291 / 1.541195 (0.495096) | 2.109631 / 1.468490 (0.641140) | 0.624546 / 4.584777 (-3.960231) | 4.543511 / 3.745712 (0.797799) | 3.961345 / 5.269862 (-1.308517) | 1.903634 / 4.565676 (-2.662042) | 0.076584 / 0.424275 (-0.347691) | 0.014590 / 0.007607 (0.006983) | 0.593195 / 0.226044 (0.367151) | 5.928740 / 2.268929 (3.659811) | 2.781164 / 55.444624 (-52.663460) | 2.364303 / 6.876477 (-4.512173) | 2.510139 / 2.142072 (0.368067) | 0.770886 / 4.805227 (-4.034341) | 0.167995 / 6.500664 (-6.332669) | 0.076622 / 0.075469 (0.001153) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.402398 / 1.841788 (-0.439390) | 17.921233 / 8.074308 (9.846925) | 17.036738 / 10.191392 (6.845346) | 0.168997 / 0.680424 (-0.511427) | 0.020259 / 0.534201 (-0.513941) | 0.465322 / 0.579283 (-0.113962) | 0.500435 / 0.434364 (0.066071) | 0.546846 / 0.540337 (0.006509) | 0.658130 / 1.386936 (-0.728806) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007624 / 0.011353 (-0.003729) | 0.005265 / 0.011008 (-0.005744) | 0.086886 / 0.038508 (0.048377) | 0.038235 / 0.023109 (0.015126) | 0.463969 / 0.275898 (0.188071) | 0.502451 / 0.323480 (0.178971) | 0.006285 / 0.007986 (-0.001701) | 0.004525 / 0.004328 (0.000197) | 0.086557 / 0.004250 (0.082307) | 0.052414 / 0.037052 (0.015362) | 0.482167 / 0.258489 (0.223678) | 0.513684 / 0.293841 (0.219843) | 0.032929 / 0.128546 (-0.095618) | 0.010249 / 0.075646 (-0.065397) | 0.093377 / 0.419271 (-0.325895) | 0.054114 / 0.043533 (0.010582) | 0.466116 / 0.255139 (0.210977) | 0.488977 / 0.283200 (0.205777) | 0.115446 / 0.141683 (-0.026237) | 1.762912 / 1.452155 (0.310757) | 1.874191 / 1.492716 (0.381475) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012666 / 0.018006 (-0.005341) | 0.485962 / 0.000490 (0.485473) | 0.002621 / 0.000200 (0.002421) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033661 / 0.037411 (-0.003751) | 0.135395 / 0.014526 (0.120869) | 0.147230 / 0.176557 (-0.029326) | 0.205847 / 0.737135 (-0.531288) | 0.151496 / 0.296338 (-0.144842) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.514097 / 0.215209 (0.298887) | 5.134093 / 2.077655 (3.056438) | 2.496775 / 1.504120 (0.992655) | 2.268078 / 1.541195 (0.726883) | 2.342153 / 1.468490 (0.873663) | 0.623130 / 4.584777 (-3.961647) | 4.601787 / 3.745712 (0.856075) | 3.414249 / 5.269862 (-1.855613) | 1.849603 / 4.565676 (-2.716073) | 0.078350 / 0.424275 (-0.345925) | 0.013785 / 0.007607 (0.006178) | 0.638783 / 0.226044 (0.412739) | 6.378356 / 2.268929 (4.109427) | 3.072867 / 55.444624 (-52.371757) | 2.668123 / 6.876477 (-4.208354) | 2.693905 / 2.142072 (0.551833) | 0.764583 / 4.805227 (-4.040644) | 0.166854 / 6.500664 (-6.333810) | 0.076883 / 0.075469 (0.001414) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.502003 / 1.841788 (-0.339784) | 18.674205 / 8.074308 (10.599897) | 16.837759 / 10.191392 (6.646367) | 0.176995 / 0.680424 (-0.503428) | 0.020126 / 0.534201 (-0.514075) | 0.464480 / 0.579283 (-0.114803) | 0.516477 / 0.434364 (0.082113) | 0.549818 / 0.540337 (0.009481) | 0.659927 / 1.386936 (-0.727009) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a129219a48c1b07c06d4bc1db32c317bf513089d \"CML watermark\")\n",
"@alvarobartt Yes, I'll ping you for a review once it's ready!"
] | 2023-05-22T11:51:07 | 2023-06-08T11:09:03 | 2023-06-06T16:49:15 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5883",
"html_url": "https://github.com/huggingface/datasets/pull/5883",
"diff_url": "https://github.com/huggingface/datasets/pull/5883.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5883.patch",
"merged_at": "2023-06-06T16:49:15"
} | ## What's in this PR?
This PR addresses some minor fixes and general improvements in the `to_tf_dataset` method of `datasets.Dataset`, to convert a 🤗HuggingFace Dataset as a TensorFlow Dataset.
The main bug solved in this PR comes with the string-encoding, since for safety purposes the internal conversion of `numpy.arrays` when `dtype` is unicode/string, is to convert it into `numpy.bytes`, more information in the docstring of https://github.com/tensorflow/tensorflow/blob/388d952114e59a1aeda440ed4737b29f8b7c6e8a/tensorflow/python/ops/script_ops.py#L210. That's triggered when using `tensorflow.numpy_function` as it's applying another type cast besides the one that `datasets` does, so the casting is applied at least twice per entry/batch. So this means that the definition of the `numpy.unicode_` dtype when the data in the batch is a string, is ignored, and replaced by `numpy.bytes_`.
Besides that, some other minor things have been fixed:
* Made `batch_size` an optional parameter in `to_tf_dataset`
* Map the `tensorflow` output dtypes just once, and not in every `tf.function` call during `map`
* Keep `numpy` formatting in the `datasets.Dataset` if already formatted like it, no need to format it again as `numpy`
* Docstring indentation in `dataset_to_tf` and `multiprocess_dataset_to_tf`
## What's missing in this PR?
I can include some integration tests if needed, to validate that `batch_size` is optional, and that the tensors in the TF-Dataset can be looped over with no issues as before. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5883/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5883/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6063 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6063/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6063/comments | https://api.github.com/repos/huggingface/datasets/issues/6063/events | https://github.com/huggingface/datasets/pull/6063 | 1,818,679,485 | PR_kwDODunzps5WPtxi | 6,063 | Release: 2.14.0 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007703 / 0.011353 (-0.003650) | 0.004699 / 0.011008 (-0.006309) | 0.090195 / 0.038508 (0.051687) | 0.119165 / 0.023109 (0.096056) | 0.361435 / 0.275898 (0.085537) | 0.404429 / 0.323480 (0.080949) | 0.006172 / 0.007986 (-0.001814) | 0.003932 / 0.004328 (-0.000397) | 0.068384 / 0.004250 (0.064133) | 0.066730 / 0.037052 (0.029678) | 0.360978 / 0.258489 (0.102489) | 0.401301 / 0.293841 (0.107460) | 0.032836 / 0.128546 (-0.095710) | 0.010821 / 0.075646 (-0.064825) | 0.294526 / 0.419271 (-0.124745) | 0.068751 / 0.043533 (0.025218) | 0.368427 / 0.255139 (0.113288) | 0.376969 / 0.283200 (0.093770) | 0.040538 / 0.141683 (-0.101145) | 1.509966 / 1.452155 (0.057811) | 1.564885 / 1.492716 (0.072169) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292243 / 0.018006 (0.274237) | 0.662067 / 0.000490 (0.661577) | 0.004966 / 0.000200 (0.004766) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029050 / 0.037411 (-0.008361) | 0.099880 / 0.014526 (0.085354) | 0.109277 / 0.176557 (-0.067280) | 0.167877 / 0.737135 (-0.569258) | 0.110770 / 0.296338 (-0.185569) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395742 / 0.215209 (0.180533) | 3.944152 / 2.077655 (1.866498) | 1.875295 / 1.504120 (0.371175) | 1.705088 / 1.541195 (0.163893) | 1.884443 / 1.468490 (0.415953) | 0.497243 / 4.584777 (-4.087534) | 3.749287 / 3.745712 (0.003575) | 4.418826 / 5.269862 (-0.851035) | 2.481149 / 4.565676 (-2.084528) | 0.058260 / 0.424275 (-0.366015) | 0.007744 / 0.007607 (0.000137) | 0.472531 / 0.226044 (0.246486) | 4.716022 / 2.268929 (2.447094) | 2.480446 / 55.444624 (-52.964179) | 2.163098 / 6.876477 (-4.713379) | 2.217555 / 2.142072 (0.075482) | 0.601965 / 4.805227 (-4.203262) | 0.139364 / 6.500664 (-6.361301) | 0.067097 / 0.075469 (-0.008372) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.330537 / 1.841788 (-0.511251) | 22.176270 / 8.074308 (14.101962) | 16.224981 / 10.191392 (6.033589) | 0.173708 / 0.680424 (-0.506715) | 0.019402 / 0.534201 (-0.514799) | 0.401994 / 0.579283 (-0.177289) | 0.432597 / 0.434364 (-0.001767) | 0.489933 / 0.540337 (-0.050404) | 0.672334 / 1.386936 (-0.714602) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008622 / 0.011353 (-0.002731) | 0.004609 / 0.011008 (-0.006399) | 0.067791 / 0.038508 (0.029283) | 0.112770 / 0.023109 (0.089661) | 0.380939 / 0.275898 (0.105041) | 0.416940 / 0.323480 (0.093460) | 0.006170 / 0.007986 (-0.001815) | 0.003876 / 0.004328 (-0.000452) | 0.066227 / 0.004250 (0.061976) | 0.073132 / 0.037052 (0.036080) | 0.390120 / 0.258489 (0.131631) | 0.420893 / 0.293841 (0.127052) | 0.033235 / 0.128546 (-0.095311) | 0.009659 / 0.075646 (-0.065987) | 0.072668 / 0.419271 (-0.346604) | 0.051333 / 0.043533 (0.007801) | 0.393828 / 0.255139 (0.138689) | 0.412376 / 0.283200 (0.129176) | 0.027760 / 0.141683 (-0.113923) | 1.494369 / 1.452155 (0.042214) | 1.592862 / 1.492716 (0.100145) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.345376 / 0.018006 (0.327369) | 0.609399 / 0.000490 (0.608909) | 0.000546 / 0.000200 (0.000346) | 0.000061 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035601 / 0.037411 (-0.001810) | 0.106527 / 0.014526 (0.092001) | 0.114388 / 0.176557 (-0.062168) | 0.175607 / 0.737135 (-0.561529) | 0.113009 / 0.296338 (-0.183329) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417237 / 0.215209 (0.202028) | 4.136329 / 2.077655 (2.058675) | 2.147134 / 1.504120 (0.643014) | 2.009501 / 1.541195 (0.468306) | 2.139499 / 1.468490 (0.671009) | 0.491593 / 4.584777 (-4.093184) | 3.766734 / 3.745712 (0.021022) | 5.652446 / 5.269862 (0.382585) | 3.021654 / 4.565676 (-1.544022) | 0.058458 / 0.424275 (-0.365817) | 0.008271 / 0.007607 (0.000664) | 0.488229 / 0.226044 (0.262184) | 4.861343 / 2.268929 (2.592415) | 2.694142 / 55.444624 (-52.750482) | 2.489130 / 6.876477 (-4.387346) | 2.679376 / 2.142072 (0.537304) | 0.589959 / 4.805227 (-4.215268) | 0.137939 / 6.500664 (-6.362725) | 0.066833 / 0.075469 (-0.008636) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.444871 / 1.841788 (-0.396916) | 22.874961 / 8.074308 (14.800653) | 15.842130 / 10.191392 (5.650738) | 0.175529 / 0.680424 (-0.504895) | 0.019024 / 0.534201 (-0.515177) | 0.406551 / 0.579283 (-0.172732) | 0.430335 / 0.434364 (-0.004029) | 0.475750 / 0.540337 (-0.064587) | 0.624836 / 1.386936 (-0.762100) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dabbb7467f49fd22ae1a43cc577eb43008d63ee8 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006068 / 0.011353 (-0.005285) | 0.003694 / 0.011008 (-0.007315) | 0.080321 / 0.038508 (0.041813) | 0.061738 / 0.023109 (0.038629) | 0.329675 / 0.275898 (0.053777) | 0.364008 / 0.323480 (0.040528) | 0.004722 / 0.007986 (-0.003263) | 0.002857 / 0.004328 (-0.001471) | 0.062447 / 0.004250 (0.058197) | 0.047006 / 0.037052 (0.009953) | 0.335730 / 0.258489 (0.077241) | 0.373047 / 0.293841 (0.079206) | 0.027273 / 0.128546 (-0.101274) | 0.007979 / 0.075646 (-0.067667) | 0.262693 / 0.419271 (-0.156579) | 0.045416 / 0.043533 (0.001883) | 0.340774 / 0.255139 (0.085635) | 0.359667 / 0.283200 (0.076468) | 0.020848 / 0.141683 (-0.120835) | 1.450110 / 1.452155 (-0.002045) | 1.489511 / 1.492716 (-0.003206) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185090 / 0.018006 (0.167084) | 0.429823 / 0.000490 (0.429334) | 0.000703 / 0.000200 (0.000503) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024398 / 0.037411 (-0.013013) | 0.072983 / 0.014526 (0.058457) | 0.084012 / 0.176557 (-0.092544) | 0.146160 / 0.737135 (-0.590975) | 0.084068 / 0.296338 (-0.212270) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432204 / 0.215209 (0.216995) | 4.320593 / 2.077655 (2.242939) | 2.261260 / 1.504120 (0.757140) | 2.087148 / 1.541195 (0.545954) | 2.144520 / 1.468490 (0.676029) | 0.501477 / 4.584777 (-4.083300) | 3.119557 / 3.745712 (-0.626156) | 3.572527 / 5.269862 (-1.697335) | 2.208836 / 4.565676 (-2.356840) | 0.057232 / 0.424275 (-0.367043) | 0.006494 / 0.007607 (-0.001113) | 0.508135 / 0.226044 (0.282091) | 5.090416 / 2.268929 (2.821488) | 2.739800 / 55.444624 (-52.704824) | 2.416105 / 6.876477 (-4.460372) | 2.616037 / 2.142072 (0.473965) | 0.583730 / 4.805227 (-4.221497) | 0.124312 / 6.500664 (-6.376352) | 0.060760 / 0.075469 (-0.014709) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256097 / 1.841788 (-0.585691) | 18.326073 / 8.074308 (10.251765) | 13.859173 / 10.191392 (3.667781) | 0.143639 / 0.680424 (-0.536785) | 0.016649 / 0.534201 (-0.517552) | 0.331671 / 0.579283 (-0.247612) | 0.365370 / 0.434364 (-0.068994) | 0.392753 / 0.540337 (-0.147584) | 0.549302 / 1.386936 (-0.837634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006054 / 0.011353 (-0.005299) | 0.003641 / 0.011008 (-0.007367) | 0.063109 / 0.038508 (0.024601) | 0.060482 / 0.023109 (0.037372) | 0.404047 / 0.275898 (0.128149) | 0.425436 / 0.323480 (0.101956) | 0.004603 / 0.007986 (-0.003382) | 0.002905 / 0.004328 (-0.001423) | 0.063207 / 0.004250 (0.058956) | 0.048248 / 0.037052 (0.011196) | 0.404325 / 0.258489 (0.145836) | 0.432652 / 0.293841 (0.138811) | 0.027630 / 0.128546 (-0.100916) | 0.008062 / 0.075646 (-0.067584) | 0.068367 / 0.419271 (-0.350905) | 0.042169 / 0.043533 (-0.001364) | 0.384903 / 0.255139 (0.129764) | 0.418617 / 0.283200 (0.135417) | 0.020767 / 0.141683 (-0.120915) | 1.463606 / 1.452155 (0.011451) | 1.512081 / 1.492716 (0.019365) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229601 / 0.018006 (0.211594) | 0.417878 / 0.000490 (0.417388) | 0.000373 / 0.000200 (0.000173) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026354 / 0.037411 (-0.011057) | 0.078100 / 0.014526 (0.063574) | 0.087122 / 0.176557 (-0.089434) | 0.140017 / 0.737135 (-0.597118) | 0.089923 / 0.296338 (-0.206415) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422405 / 0.215209 (0.207196) | 4.237383 / 2.077655 (2.159728) | 2.161104 / 1.504120 (0.656984) | 1.982337 / 1.541195 (0.441142) | 2.050216 / 1.468490 (0.581726) | 0.499281 / 4.584777 (-4.085496) | 2.996953 / 3.745712 (-0.748759) | 5.027069 / 5.269862 (-0.242792) | 2.804703 / 4.565676 (-1.760974) | 0.057707 / 0.424275 (-0.366568) | 0.006809 / 0.007607 (-0.000798) | 0.495196 / 0.226044 (0.269152) | 4.946593 / 2.268929 (2.677665) | 2.598965 / 55.444624 (-52.845660) | 2.349871 / 6.876477 (-4.526606) | 2.451665 / 2.142072 (0.309593) | 0.592314 / 4.805227 (-4.212913) | 0.125685 / 6.500664 (-6.374979) | 0.063252 / 0.075469 (-0.012217) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.325422 / 1.841788 (-0.516366) | 18.521059 / 8.074308 (10.446751) | 14.046757 / 10.191392 (3.855365) | 0.133009 / 0.680424 (-0.547415) | 0.017097 / 0.534201 (-0.517104) | 0.339804 / 0.579283 (-0.239479) | 0.345464 / 0.434364 (-0.088900) | 0.387623 / 0.540337 (-0.152714) | 0.519880 / 1.386936 (-0.867056) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#88896a7b28610ace95e444b94f9a4bc332cc1ee3 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008671 / 0.011353 (-0.002682) | 0.004681 / 0.011008 (-0.006327) | 0.107517 / 0.038508 (0.069008) | 0.078846 / 0.023109 (0.055737) | 0.449745 / 0.275898 (0.173847) | 0.504075 / 0.323480 (0.180596) | 0.005837 / 0.007986 (-0.002148) | 0.004031 / 0.004328 (-0.000297) | 0.092021 / 0.004250 (0.087771) | 0.065954 / 0.037052 (0.028902) | 0.442082 / 0.258489 (0.183593) | 0.529349 / 0.293841 (0.235508) | 0.052527 / 0.128546 (-0.076019) | 0.013854 / 0.075646 (-0.061792) | 0.367315 / 0.419271 (-0.051956) | 0.068731 / 0.043533 (0.025199) | 0.494733 / 0.255139 (0.239594) | 0.472801 / 0.283200 (0.189601) | 0.036791 / 0.141683 (-0.104892) | 1.877648 / 1.452155 (0.425493) | 1.928399 / 1.492716 (0.435683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231910 / 0.018006 (0.213904) | 0.553464 / 0.000490 (0.552974) | 0.011915 / 0.000200 (0.011715) | 0.000378 / 0.000054 (0.000324) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028232 / 0.037411 (-0.009179) | 0.091441 / 0.014526 (0.076916) | 0.110394 / 0.176557 (-0.066162) | 0.187638 / 0.737135 (-0.549497) | 0.111810 / 0.296338 (-0.184529) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.599987 / 0.215209 (0.384778) | 6.008709 / 2.077655 (3.931054) | 2.518769 / 1.504120 (1.014650) | 2.197029 / 1.541195 (0.655834) | 2.217165 / 1.468490 (0.748675) | 0.894939 / 4.584777 (-3.689837) | 5.001217 / 3.745712 (1.255505) | 4.636482 / 5.269862 (-0.633379) | 3.237613 / 4.565676 (-1.328063) | 0.104227 / 0.424275 (-0.320048) | 0.008504 / 0.007607 (0.000897) | 0.750190 / 0.226044 (0.524145) | 7.514571 / 2.268929 (5.245642) | 3.358003 / 55.444624 (-52.086621) | 2.585649 / 6.876477 (-4.290827) | 2.731129 / 2.142072 (0.589056) | 1.088828 / 4.805227 (-3.716400) | 0.217308 / 6.500664 (-6.283356) | 0.076410 / 0.075469 (0.000941) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.620087 / 1.841788 (-0.221701) | 23.145743 / 8.074308 (15.071435) | 20.583403 / 10.191392 (10.392011) | 0.225467 / 0.680424 (-0.454956) | 0.029063 / 0.534201 (-0.505138) | 0.480563 / 0.579283 (-0.098720) | 0.539083 / 0.434364 (0.104719) | 0.563787 / 0.540337 (0.023449) | 0.782902 / 1.386936 (-0.604034) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010113 / 0.011353 (-0.001239) | 0.004997 / 0.011008 (-0.006011) | 0.082974 / 0.038508 (0.044466) | 0.090375 / 0.023109 (0.067266) | 0.440273 / 0.275898 (0.164375) | 0.476939 / 0.323480 (0.153459) | 0.005955 / 0.007986 (-0.002031) | 0.004375 / 0.004328 (0.000046) | 0.080459 / 0.004250 (0.076209) | 0.061787 / 0.037052 (0.024734) | 0.477211 / 0.258489 (0.218722) | 0.487164 / 0.293841 (0.193323) | 0.054198 / 0.128546 (-0.074348) | 0.013945 / 0.075646 (-0.061701) | 0.093006 / 0.419271 (-0.326266) | 0.062685 / 0.043533 (0.019152) | 0.461373 / 0.255139 (0.206234) | 0.475766 / 0.283200 (0.192567) | 0.032059 / 0.141683 (-0.109623) | 1.857989 / 1.452155 (0.405834) | 1.837993 / 1.492716 (0.345277) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243048 / 0.018006 (0.225042) | 0.535850 / 0.000490 (0.535360) | 0.007204 / 0.000200 (0.007004) | 0.000104 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032584 / 0.037411 (-0.004827) | 0.098151 / 0.014526 (0.083625) | 0.109691 / 0.176557 (-0.066866) | 0.172803 / 0.737135 (-0.564333) | 0.110469 / 0.296338 (-0.185869) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.635086 / 0.215209 (0.419877) | 6.500864 / 2.077655 (4.423210) | 2.996727 / 1.504120 (1.492607) | 2.537218 / 1.541195 (0.996023) | 2.572310 / 1.468490 (1.103820) | 0.870868 / 4.584777 (-3.713909) | 4.989744 / 3.745712 (1.244032) | 4.422174 / 5.269862 (-0.847687) | 2.935874 / 4.565676 (-1.629803) | 0.097118 / 0.424275 (-0.327157) | 0.009360 / 0.007607 (0.001753) | 0.790447 / 0.226044 (0.564403) | 7.859519 / 2.268929 (5.590591) | 3.975616 / 55.444624 (-51.469009) | 3.018271 / 6.876477 (-3.858206) | 3.111173 / 2.142072 (0.969101) | 1.085577 / 4.805227 (-3.719651) | 0.225719 / 6.500664 (-6.274945) | 0.080576 / 0.075469 (0.005107) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.802284 / 1.841788 (-0.039504) | 23.487921 / 8.074308 (15.413613) | 20.595171 / 10.191392 (10.403779) | 0.196610 / 0.680424 (-0.483814) | 0.027483 / 0.534201 (-0.506718) | 0.485840 / 0.579283 (-0.093443) | 0.542661 / 0.434364 (0.108297) | 0.580602 / 0.540337 (0.040265) | 0.768195 / 1.386936 (-0.618741) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#88896a7b28610ace95e444b94f9a4bc332cc1ee3 \"CML watermark\")\n"
] | 2023-07-24T15:41:19 | 2023-07-24T16:05:16 | 2023-07-24T15:47:51 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6063",
"html_url": "https://github.com/huggingface/datasets/pull/6063",
"diff_url": "https://github.com/huggingface/datasets/pull/6063.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6063.patch",
"merged_at": "2023-07-24T15:47:51"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6063/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6063/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6005 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6005/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6005/comments | https://api.github.com/repos/huggingface/datasets/issues/6005/events | https://github.com/huggingface/datasets/pull/6005 | 1,788,103,576 | PR_kwDODunzps5UoJ91 | 6,005 | Drop Python 3.7 support | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006152 / 0.011353 (-0.005200) | 0.003916 / 0.011008 (-0.007092) | 0.097355 / 0.038508 (0.058847) | 0.037228 / 0.023109 (0.014119) | 0.315753 / 0.275898 (0.039855) | 0.387949 / 0.323480 (0.064470) | 0.004804 / 0.007986 (-0.003181) | 0.002975 / 0.004328 (-0.001353) | 0.076932 / 0.004250 (0.072682) | 0.053497 / 0.037052 (0.016445) | 0.331143 / 0.258489 (0.072654) | 0.388347 / 0.293841 (0.094506) | 0.027535 / 0.128546 (-0.101011) | 0.008509 / 0.075646 (-0.067137) | 0.312639 / 0.419271 (-0.106632) | 0.047212 / 0.043533 (0.003679) | 0.316875 / 0.255139 (0.061736) | 0.352191 / 0.283200 (0.068992) | 0.021380 / 0.141683 (-0.120303) | 1.541401 / 1.452155 (0.089247) | 1.519420 / 1.492716 (0.026704) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206332 / 0.018006 (0.188326) | 0.412252 / 0.000490 (0.411762) | 0.005119 / 0.000200 (0.004919) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023856 / 0.037411 (-0.013556) | 0.098216 / 0.014526 (0.083691) | 0.106553 / 0.176557 (-0.070003) | 0.168767 / 0.737135 (-0.568369) | 0.109244 / 0.296338 (-0.187094) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457580 / 0.215209 (0.242371) | 4.583246 / 2.077655 (2.505591) | 2.296356 / 1.504120 (0.792236) | 2.096216 / 1.541195 (0.555021) | 2.159086 / 1.468490 (0.690596) | 0.557905 / 4.584777 (-4.026872) | 3.345910 / 3.745712 (-0.399802) | 1.767436 / 5.269862 (-3.502426) | 1.021583 / 4.565676 (-3.544094) | 0.067265 / 0.424275 (-0.357011) | 0.011411 / 0.007607 (0.003804) | 0.559841 / 0.226044 (0.333797) | 5.586892 / 2.268929 (3.317963) | 2.735520 / 55.444624 (-52.709104) | 2.429393 / 6.876477 (-4.447084) | 2.544901 / 2.142072 (0.402829) | 0.667603 / 4.805227 (-4.137625) | 0.136244 / 6.500664 (-6.364421) | 0.066961 / 0.075469 (-0.008508) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206529 / 1.841788 (-0.635259) | 13.988306 / 8.074308 (5.913998) | 13.481813 / 10.191392 (3.290421) | 0.161901 / 0.680424 (-0.518523) | 0.016850 / 0.534201 (-0.517351) | 0.367657 / 0.579283 (-0.211626) | 0.393343 / 0.434364 (-0.041021) | 0.465288 / 0.540337 (-0.075050) | 0.559888 / 1.386936 (-0.827048) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005956 / 0.011353 (-0.005397) | 0.003734 / 0.011008 (-0.007274) | 0.077841 / 0.038508 (0.039333) | 0.036532 / 0.023109 (0.013422) | 0.438923 / 0.275898 (0.163025) | 0.490133 / 0.323480 (0.166653) | 0.004651 / 0.007986 (-0.003335) | 0.002881 / 0.004328 (-0.001448) | 0.077868 / 0.004250 (0.073618) | 0.051700 / 0.037052 (0.014647) | 0.448018 / 0.258489 (0.189529) | 0.500304 / 0.293841 (0.206464) | 0.029051 / 0.128546 (-0.099496) | 0.008498 / 0.075646 (-0.067148) | 0.082932 / 0.419271 (-0.336339) | 0.043665 / 0.043533 (0.000132) | 0.431613 / 0.255139 (0.176474) | 0.458749 / 0.283200 (0.175549) | 0.021951 / 0.141683 (-0.119731) | 1.556043 / 1.452155 (0.103888) | 1.588391 / 1.492716 (0.095675) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220674 / 0.018006 (0.202667) | 0.415408 / 0.000490 (0.414918) | 0.002613 / 0.000200 (0.002413) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025548 / 0.037411 (-0.011863) | 0.103633 / 0.014526 (0.089107) | 0.115193 / 0.176557 (-0.061364) | 0.163971 / 0.737135 (-0.573164) | 0.114754 / 0.296338 (-0.181585) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456823 / 0.215209 (0.241614) | 4.569950 / 2.077655 (2.492296) | 2.196339 / 1.504120 (0.692219) | 1.985822 / 1.541195 (0.444628) | 2.044083 / 1.468490 (0.575593) | 0.567919 / 4.584777 (-4.016858) | 3.397515 / 3.745712 (-0.348197) | 1.741087 / 5.269862 (-3.528775) | 1.041237 / 4.565676 (-3.524440) | 0.068963 / 0.424275 (-0.355313) | 0.011677 / 0.007607 (0.004070) | 0.565010 / 0.226044 (0.338966) | 5.625886 / 2.268929 (3.356957) | 2.670658 / 55.444624 (-52.773967) | 2.300279 / 6.876477 (-4.576198) | 2.392178 / 2.142072 (0.250106) | 0.680226 / 4.805227 (-4.125001) | 0.139119 / 6.500664 (-6.361545) | 0.067953 / 0.075469 (-0.007516) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.303280 / 1.841788 (-0.538507) | 14.458686 / 8.074308 (6.384378) | 14.409369 / 10.191392 (4.217977) | 0.144581 / 0.680424 (-0.535843) | 0.016634 / 0.534201 (-0.517567) | 0.364607 / 0.579283 (-0.214676) | 0.394521 / 0.434364 (-0.039843) | 0.433417 / 0.540337 (-0.106921) | 0.527127 / 1.386936 (-0.859809) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#04a36f9546484dceadb84a133c1a460281d018f8 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006245 / 0.011353 (-0.005108) | 0.003871 / 0.011008 (-0.007138) | 0.098823 / 0.038508 (0.060315) | 0.039853 / 0.023109 (0.016744) | 0.314989 / 0.275898 (0.039091) | 0.376733 / 0.323480 (0.053254) | 0.004754 / 0.007986 (-0.003232) | 0.002971 / 0.004328 (-0.001357) | 0.078451 / 0.004250 (0.074201) | 0.053160 / 0.037052 (0.016107) | 0.324443 / 0.258489 (0.065954) | 0.361488 / 0.293841 (0.067647) | 0.027942 / 0.128546 (-0.100604) | 0.008535 / 0.075646 (-0.067111) | 0.315526 / 0.419271 (-0.103745) | 0.045706 / 0.043533 (0.002174) | 0.329614 / 0.255139 (0.074475) | 0.336339 / 0.283200 (0.053139) | 0.021278 / 0.141683 (-0.120405) | 1.529710 / 1.452155 (0.077555) | 1.566833 / 1.492716 (0.074116) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.215263 / 0.018006 (0.197257) | 0.440320 / 0.000490 (0.439830) | 0.002627 / 0.000200 (0.002427) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023971 / 0.037411 (-0.013441) | 0.100549 / 0.014526 (0.086023) | 0.106995 / 0.176557 (-0.069561) | 0.169630 / 0.737135 (-0.567505) | 0.111614 / 0.296338 (-0.184724) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424911 / 0.215209 (0.209702) | 4.246920 / 2.077655 (2.169266) | 1.923321 / 1.504120 (0.419202) | 1.714795 / 1.541195 (0.173600) | 1.772906 / 1.468490 (0.304416) | 0.554676 / 4.584777 (-4.030101) | 3.478896 / 3.745712 (-0.266816) | 2.800494 / 5.269862 (-2.469368) | 1.382630 / 4.565676 (-3.183047) | 0.067271 / 0.424275 (-0.357004) | 0.010967 / 0.007607 (0.003360) | 0.526769 / 0.226044 (0.300725) | 5.288564 / 2.268929 (3.019636) | 2.337459 / 55.444624 (-53.107165) | 1.999975 / 6.876477 (-4.876502) | 2.102680 / 2.142072 (-0.039392) | 0.672181 / 4.805227 (-4.133046) | 0.135097 / 6.500664 (-6.365567) | 0.066950 / 0.075469 (-0.008519) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.264365 / 1.841788 (-0.577423) | 14.282440 / 8.074308 (6.208132) | 14.220200 / 10.191392 (4.028808) | 0.139055 / 0.680424 (-0.541369) | 0.016681 / 0.534201 (-0.517520) | 0.367936 / 0.579283 (-0.211348) | 0.393959 / 0.434364 (-0.040404) | 0.424438 / 0.540337 (-0.115900) | 0.508065 / 1.386936 (-0.878872) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006514 / 0.011353 (-0.004839) | 0.003890 / 0.011008 (-0.007118) | 0.078871 / 0.038508 (0.040363) | 0.038080 / 0.023109 (0.014971) | 0.358282 / 0.275898 (0.082384) | 0.430654 / 0.323480 (0.107174) | 0.005712 / 0.007986 (-0.002273) | 0.003030 / 0.004328 (-0.001299) | 0.078636 / 0.004250 (0.074386) | 0.057771 / 0.037052 (0.020719) | 0.368814 / 0.258489 (0.110325) | 0.437047 / 0.293841 (0.143206) | 0.029470 / 0.128546 (-0.099076) | 0.008523 / 0.075646 (-0.067124) | 0.083334 / 0.419271 (-0.335938) | 0.044505 / 0.043533 (0.000972) | 0.357484 / 0.255139 (0.102345) | 0.393839 / 0.283200 (0.110639) | 0.023340 / 0.141683 (-0.118343) | 1.561033 / 1.452155 (0.108878) | 1.595560 / 1.492716 (0.102844) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204149 / 0.018006 (0.186143) | 0.442747 / 0.000490 (0.442257) | 0.003105 / 0.000200 (0.002905) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027002 / 0.037411 (-0.010409) | 0.105595 / 0.014526 (0.091070) | 0.108695 / 0.176557 (-0.067861) | 0.163182 / 0.737135 (-0.573953) | 0.114999 / 0.296338 (-0.181339) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.483713 / 0.215209 (0.268504) | 4.836063 / 2.077655 (2.758409) | 2.488072 / 1.504120 (0.983952) | 2.289556 / 1.541195 (0.748361) | 2.342912 / 1.468490 (0.874422) | 0.565937 / 4.584777 (-4.018840) | 3.479085 / 3.745712 (-0.266627) | 1.770922 / 5.269862 (-3.498940) | 1.046084 / 4.565676 (-3.519592) | 0.067857 / 0.424275 (-0.356418) | 0.011283 / 0.007607 (0.003676) | 0.592966 / 0.226044 (0.366921) | 5.932842 / 2.268929 (3.663914) | 2.956252 / 55.444624 (-52.488372) | 2.602704 / 6.876477 (-4.273772) | 2.715625 / 2.142072 (0.573552) | 0.674299 / 4.805227 (-4.130929) | 0.136039 / 6.500664 (-6.364625) | 0.067629 / 0.075469 (-0.007840) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.333734 / 1.841788 (-0.508054) | 14.561943 / 8.074308 (6.487634) | 14.455385 / 10.191392 (4.263993) | 0.132020 / 0.680424 (-0.548404) | 0.016893 / 0.534201 (-0.517308) | 0.367146 / 0.579283 (-0.212137) | 0.399623 / 0.434364 (-0.034741) | 0.432658 / 0.540337 (-0.107680) | 0.530475 / 1.386936 (-0.856461) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#18da5adb22b2b403b8d8ae673192746d2ed7e9f9 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006045 / 0.011353 (-0.005308) | 0.003906 / 0.011008 (-0.007103) | 0.097558 / 0.038508 (0.059050) | 0.038827 / 0.023109 (0.015718) | 0.393564 / 0.275898 (0.117666) | 0.442459 / 0.323480 (0.118980) | 0.004792 / 0.007986 (-0.003194) | 0.002984 / 0.004328 (-0.001345) | 0.076419 / 0.004250 (0.072169) | 0.053606 / 0.037052 (0.016554) | 0.409743 / 0.258489 (0.151254) | 0.445753 / 0.293841 (0.151912) | 0.027753 / 0.128546 (-0.100793) | 0.008428 / 0.075646 (-0.067219) | 0.310267 / 0.419271 (-0.109004) | 0.057582 / 0.043533 (0.014049) | 0.396624 / 0.255139 (0.141485) | 0.416288 / 0.283200 (0.133089) | 0.029048 / 0.141683 (-0.112635) | 1.495362 / 1.452155 (0.043207) | 1.546331 / 1.492716 (0.053615) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203832 / 0.018006 (0.185826) | 0.423649 / 0.000490 (0.423160) | 0.004533 / 0.000200 (0.004333) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023084 / 0.037411 (-0.014328) | 0.100503 / 0.014526 (0.085977) | 0.105058 / 0.176557 (-0.071499) | 0.168506 / 0.737135 (-0.568629) | 0.112019 / 0.296338 (-0.184320) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425877 / 0.215209 (0.210668) | 4.251278 / 2.077655 (2.173624) | 1.931339 / 1.504120 (0.427219) | 1.730578 / 1.541195 (0.189383) | 1.750637 / 1.468490 (0.282147) | 0.559307 / 4.584777 (-4.025470) | 3.461665 / 3.745712 (-0.284047) | 2.826959 / 5.269862 (-2.442903) | 1.418448 / 4.565676 (-3.147229) | 0.067881 / 0.424275 (-0.356394) | 0.011394 / 0.007607 (0.003787) | 0.533226 / 0.226044 (0.307181) | 5.341849 / 2.268929 (3.072921) | 2.367832 / 55.444624 (-53.076792) | 2.027240 / 6.876477 (-4.849236) | 2.095852 / 2.142072 (-0.046220) | 0.673790 / 4.805227 (-4.131437) | 0.136044 / 6.500664 (-6.364620) | 0.066350 / 0.075469 (-0.009119) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.203740 / 1.841788 (-0.638048) | 13.720879 / 8.074308 (5.646571) | 13.405939 / 10.191392 (3.214547) | 0.146792 / 0.680424 (-0.533632) | 0.016844 / 0.534201 (-0.517357) | 0.373455 / 0.579283 (-0.205828) | 0.394596 / 0.434364 (-0.039768) | 0.464715 / 0.540337 (-0.075623) | 0.558931 / 1.386936 (-0.828005) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006118 / 0.011353 (-0.005235) | 0.003817 / 0.011008 (-0.007191) | 0.077494 / 0.038508 (0.038985) | 0.037507 / 0.023109 (0.014398) | 0.387030 / 0.275898 (0.111132) | 0.437352 / 0.323480 (0.113872) | 0.004810 / 0.007986 (-0.003176) | 0.002935 / 0.004328 (-0.001394) | 0.077143 / 0.004250 (0.072892) | 0.053986 / 0.037052 (0.016933) | 0.393164 / 0.258489 (0.134675) | 0.449603 / 0.293841 (0.155762) | 0.029303 / 0.128546 (-0.099244) | 0.008481 / 0.075646 (-0.067165) | 0.083363 / 0.419271 (-0.335908) | 0.043877 / 0.043533 (0.000344) | 0.378175 / 0.255139 (0.123036) | 0.403996 / 0.283200 (0.120797) | 0.021688 / 0.141683 (-0.119995) | 1.541606 / 1.452155 (0.089452) | 1.552996 / 1.492716 (0.060280) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236759 / 0.018006 (0.218752) | 0.416221 / 0.000490 (0.415732) | 0.000862 / 0.000200 (0.000662) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025543 / 0.037411 (-0.011868) | 0.101731 / 0.014526 (0.087206) | 0.108482 / 0.176557 (-0.068075) | 0.160290 / 0.737135 (-0.576845) | 0.111392 / 0.296338 (-0.184946) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457767 / 0.215209 (0.242558) | 4.565976 / 2.077655 (2.488321) | 2.245413 / 1.504120 (0.741294) | 2.031458 / 1.541195 (0.490264) | 2.073193 / 1.468490 (0.604702) | 0.560461 / 4.584777 (-4.024316) | 3.422536 / 3.745712 (-0.323176) | 2.977017 / 5.269862 (-2.292845) | 1.377021 / 4.565676 (-3.188655) | 0.068444 / 0.424275 (-0.355831) | 0.011036 / 0.007607 (0.003429) | 0.571501 / 0.226044 (0.345456) | 5.702652 / 2.268929 (3.433723) | 2.727132 / 55.444624 (-52.717492) | 2.399269 / 6.876477 (-4.477208) | 2.574281 / 2.142072 (0.432208) | 0.682600 / 4.805227 (-4.122627) | 0.136943 / 6.500664 (-6.363722) | 0.067126 / 0.075469 (-0.008343) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.322196 / 1.841788 (-0.519592) | 14.239509 / 8.074308 (6.165201) | 14.235779 / 10.191392 (4.044387) | 0.148262 / 0.680424 (-0.532162) | 0.016566 / 0.534201 (-0.517635) | 0.364034 / 0.579283 (-0.215249) | 0.399157 / 0.434364 (-0.035207) | 0.426348 / 0.540337 (-0.113990) | 0.520804 / 1.386936 (-0.866132) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8f57aae06bd325d76cb70cb774450f3a66f169cf \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007808 / 0.011353 (-0.003545) | 0.004706 / 0.011008 (-0.006303) | 0.100530 / 0.038508 (0.062022) | 0.052052 / 0.023109 (0.028943) | 0.419300 / 0.275898 (0.143402) | 0.488451 / 0.323480 (0.164971) | 0.006350 / 0.007986 (-0.001636) | 0.003875 / 0.004328 (-0.000453) | 0.076489 / 0.004250 (0.072238) | 0.077554 / 0.037052 (0.040502) | 0.435863 / 0.258489 (0.177373) | 0.483241 / 0.293841 (0.189400) | 0.037518 / 0.128546 (-0.091028) | 0.009857 / 0.075646 (-0.065789) | 0.340933 / 0.419271 (-0.078339) | 0.087046 / 0.043533 (0.043514) | 0.410721 / 0.255139 (0.155582) | 0.428995 / 0.283200 (0.145795) | 0.041701 / 0.141683 (-0.099982) | 1.821017 / 1.452155 (0.368862) | 1.837021 / 1.492716 (0.344305) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228444 / 0.018006 (0.210438) | 0.480446 / 0.000490 (0.479956) | 0.004963 / 0.000200 (0.004763) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032485 / 0.037411 (-0.004926) | 0.096500 / 0.014526 (0.081974) | 0.111547 / 0.176557 (-0.065010) | 0.178842 / 0.737135 (-0.558294) | 0.111099 / 0.296338 (-0.185240) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.467159 / 0.215209 (0.251950) | 4.701676 / 2.077655 (2.624021) | 2.390560 / 1.504120 (0.886440) | 2.197722 / 1.541195 (0.656528) | 2.264705 / 1.468490 (0.796215) | 0.568667 / 4.584777 (-4.016110) | 4.200724 / 3.745712 (0.455012) | 3.777625 / 5.269862 (-1.492236) | 2.372451 / 4.565676 (-2.193225) | 0.067562 / 0.424275 (-0.356714) | 0.008947 / 0.007607 (0.001340) | 0.556910 / 0.226044 (0.330865) | 5.528927 / 2.268929 (3.259998) | 2.902780 / 55.444624 (-52.541844) | 2.507933 / 6.876477 (-4.368544) | 2.734627 / 2.142072 (0.592554) | 0.683305 / 4.805227 (-4.121922) | 0.158288 / 6.500664 (-6.342376) | 0.071252 / 0.075469 (-0.004217) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.487502 / 1.841788 (-0.354286) | 22.193341 / 8.074308 (14.119033) | 15.922607 / 10.191392 (5.731215) | 0.172189 / 0.680424 (-0.508235) | 0.021502 / 0.534201 (-0.512699) | 0.471198 / 0.579283 (-0.108085) | 0.475979 / 0.434364 (0.041615) | 0.544675 / 0.540337 (0.004338) | 0.756102 / 1.386936 (-0.630834) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007635 / 0.011353 (-0.003717) | 0.004614 / 0.011008 (-0.006394) | 0.075852 / 0.038508 (0.037344) | 0.049700 / 0.023109 (0.026591) | 0.425957 / 0.275898 (0.150059) | 0.512590 / 0.323480 (0.189110) | 0.006921 / 0.007986 (-0.001065) | 0.003714 / 0.004328 (-0.000615) | 0.075536 / 0.004250 (0.071286) | 0.070206 / 0.037052 (0.033153) | 0.455706 / 0.258489 (0.197217) | 0.512231 / 0.293841 (0.218390) | 0.036685 / 0.128546 (-0.091861) | 0.009793 / 0.075646 (-0.065853) | 0.084208 / 0.419271 (-0.335064) | 0.065262 / 0.043533 (0.021729) | 0.423761 / 0.255139 (0.168622) | 0.456791 / 0.283200 (0.173591) | 0.044539 / 0.141683 (-0.097144) | 1.797029 / 1.452155 (0.344874) | 1.864124 / 1.492716 (0.371408) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.366840 / 0.018006 (0.348834) | 0.479254 / 0.000490 (0.478765) | 0.070383 / 0.000200 (0.070183) | 0.000762 / 0.000054 (0.000707) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034233 / 0.037411 (-0.003178) | 0.103140 / 0.014526 (0.088614) | 0.117099 / 0.176557 (-0.059457) | 0.178532 / 0.737135 (-0.558603) | 0.120092 / 0.296338 (-0.176247) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.492993 / 0.215209 (0.277784) | 4.878776 / 2.077655 (2.801121) | 2.566666 / 1.504120 (1.062547) | 2.356383 / 1.541195 (0.815188) | 2.454723 / 1.468490 (0.986233) | 0.571432 / 4.584777 (-4.013345) | 4.240554 / 3.745712 (0.494842) | 7.509259 / 5.269862 (2.239398) | 4.040294 / 4.565676 (-0.525382) | 0.067409 / 0.424275 (-0.356866) | 0.008657 / 0.007607 (0.001050) | 0.585751 / 0.226044 (0.359707) | 5.967668 / 2.268929 (3.698739) | 3.195573 / 55.444624 (-52.249052) | 2.839772 / 6.876477 (-4.036704) | 2.806319 / 2.142072 (0.664246) | 0.681502 / 4.805227 (-4.123725) | 0.158673 / 6.500664 (-6.341991) | 0.073224 / 0.075469 (-0.002245) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.623335 / 1.841788 (-0.218453) | 22.490806 / 8.074308 (14.416498) | 16.762435 / 10.191392 (6.571043) | 0.180961 / 0.680424 (-0.499463) | 0.022716 / 0.534201 (-0.511485) | 0.472910 / 0.579283 (-0.106373) | 0.471616 / 0.434364 (0.037252) | 0.548192 / 0.540337 (0.007854) | 0.734357 / 1.386936 (-0.652579) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c0498b47a00153d4730352b6595fc51ab054fb95 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005858 / 0.011353 (-0.005495) | 0.003512 / 0.011008 (-0.007497) | 0.079739 / 0.038508 (0.041231) | 0.057736 / 0.023109 (0.034627) | 0.317640 / 0.275898 (0.041742) | 0.354157 / 0.323480 (0.030677) | 0.004772 / 0.007986 (-0.003214) | 0.002824 / 0.004328 (-0.001504) | 0.063288 / 0.004250 (0.059037) | 0.049542 / 0.037052 (0.012489) | 0.323974 / 0.258489 (0.065485) | 0.372149 / 0.293841 (0.078308) | 0.026841 / 0.128546 (-0.101705) | 0.007846 / 0.075646 (-0.067800) | 0.262546 / 0.419271 (-0.156725) | 0.051952 / 0.043533 (0.008420) | 0.319439 / 0.255139 (0.064300) | 0.343862 / 0.283200 (0.060663) | 0.027021 / 0.141683 (-0.114662) | 1.445211 / 1.452155 (-0.006944) | 1.485006 / 1.492716 (-0.007711) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183174 / 0.018006 (0.165167) | 0.422794 / 0.000490 (0.422304) | 0.004148 / 0.000200 (0.003948) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023037 / 0.037411 (-0.014374) | 0.071300 / 0.014526 (0.056775) | 0.083022 / 0.176557 (-0.093535) | 0.146215 / 0.737135 (-0.590920) | 0.082549 / 0.296338 (-0.213789) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422846 / 0.215209 (0.207637) | 4.215280 / 2.077655 (2.137626) | 2.256802 / 1.504120 (0.752682) | 2.056867 / 1.541195 (0.515673) | 2.102478 / 1.468490 (0.633988) | 0.497552 / 4.584777 (-4.087225) | 3.049716 / 3.745712 (-0.695996) | 4.209227 / 5.269862 (-1.060635) | 2.599947 / 4.565676 (-1.965730) | 0.059131 / 0.424275 (-0.365144) | 0.006459 / 0.007607 (-0.001148) | 0.495047 / 0.226044 (0.269003) | 4.952332 / 2.268929 (2.683404) | 2.675260 / 55.444624 (-52.769365) | 2.333223 / 6.876477 (-4.543254) | 2.449573 / 2.142072 (0.307500) | 0.583420 / 4.805227 (-4.221807) | 0.125140 / 6.500664 (-6.375524) | 0.060209 / 0.075469 (-0.015260) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215033 / 1.841788 (-0.626755) | 18.101107 / 8.074308 (10.026799) | 13.489222 / 10.191392 (3.297830) | 0.147122 / 0.680424 (-0.533302) | 0.016567 / 0.534201 (-0.517634) | 0.329909 / 0.579283 (-0.249374) | 0.340952 / 0.434364 (-0.093412) | 0.379166 / 0.540337 (-0.161172) | 0.510767 / 1.386936 (-0.876169) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005942 / 0.011353 (-0.005411) | 0.003628 / 0.011008 (-0.007380) | 0.061975 / 0.038508 (0.023467) | 0.058331 / 0.023109 (0.035221) | 0.393277 / 0.275898 (0.117379) | 0.410740 / 0.323480 (0.087261) | 0.004546 / 0.007986 (-0.003440) | 0.002826 / 0.004328 (-0.001503) | 0.062216 / 0.004250 (0.057966) | 0.049801 / 0.037052 (0.012748) | 0.394070 / 0.258489 (0.135581) | 0.414407 / 0.293841 (0.120566) | 0.027161 / 0.128546 (-0.101385) | 0.007901 / 0.075646 (-0.067746) | 0.066778 / 0.419271 (-0.352493) | 0.041354 / 0.043533 (-0.002179) | 0.379432 / 0.255139 (0.124293) | 0.402966 / 0.283200 (0.119766) | 0.020279 / 0.141683 (-0.121404) | 1.416986 / 1.452155 (-0.035169) | 1.474335 / 1.492716 (-0.018382) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226147 / 0.018006 (0.208140) | 0.404361 / 0.000490 (0.403871) | 0.000358 / 0.000200 (0.000158) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025105 / 0.037411 (-0.012306) | 0.075849 / 0.014526 (0.061323) | 0.084781 / 0.176557 (-0.091775) | 0.137415 / 0.737135 (-0.599720) | 0.086288 / 0.296338 (-0.210051) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445925 / 0.215209 (0.230716) | 4.453478 / 2.077655 (2.375823) | 2.419048 / 1.504120 (0.914928) | 2.246363 / 1.541195 (0.705168) | 2.304022 / 1.468490 (0.835532) | 0.499132 / 4.584777 (-4.085645) | 3.001336 / 3.745712 (-0.744376) | 2.902593 / 5.269862 (-2.367269) | 1.819843 / 4.565676 (-2.745834) | 0.057210 / 0.424275 (-0.367065) | 0.006338 / 0.007607 (-0.001269) | 0.523280 / 0.226044 (0.297236) | 5.235969 / 2.268929 (2.967040) | 2.897585 / 55.444624 (-52.547039) | 2.541586 / 6.876477 (-4.334891) | 2.564233 / 2.142072 (0.422160) | 0.584714 / 4.805227 (-4.220513) | 0.124611 / 6.500664 (-6.376053) | 0.061774 / 0.075469 (-0.013695) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.349799 / 1.841788 (-0.491988) | 18.225076 / 8.074308 (10.150768) | 13.781518 / 10.191392 (3.590126) | 0.130562 / 0.680424 (-0.549862) | 0.016434 / 0.534201 (-0.517767) | 0.331607 / 0.579283 (-0.247676) | 0.343456 / 0.434364 (-0.090908) | 0.380437 / 0.540337 (-0.159900) | 0.522793 / 1.386936 (-0.864143) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f0a3dbbd2e7ace162346d95ec27db674e80c1e23 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.013721 / 0.011353 (0.002368) | 0.005715 / 0.011008 (-0.005293) | 0.090116 / 0.038508 (0.051608) | 0.087185 / 0.023109 (0.064075) | 0.427813 / 0.275898 (0.151915) | 0.390614 / 0.323480 (0.067135) | 0.006976 / 0.007986 (-0.001009) | 0.004231 / 0.004328 (-0.000098) | 0.078320 / 0.004250 (0.074070) | 0.066235 / 0.037052 (0.029183) | 0.439904 / 0.258489 (0.181415) | 0.424119 / 0.293841 (0.130278) | 0.050362 / 0.128546 (-0.078184) | 0.014992 / 0.075646 (-0.060654) | 0.293519 / 0.419271 (-0.125753) | 0.066906 / 0.043533 (0.023373) | 0.449657 / 0.255139 (0.194518) | 0.393800 / 0.283200 (0.110600) | 0.032258 / 0.141683 (-0.109425) | 1.539534 / 1.452155 (0.087379) | 1.675292 / 1.492716 (0.182576) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210515 / 0.018006 (0.192508) | 0.506817 / 0.000490 (0.506327) | 0.001938 / 0.000200 (0.001738) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026019 / 0.037411 (-0.011393) | 0.080635 / 0.014526 (0.066109) | 0.103050 / 0.176557 (-0.073507) | 0.160597 / 0.737135 (-0.576538) | 0.095844 / 0.296338 (-0.200495) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.506359 / 0.215209 (0.291150) | 5.041586 / 2.077655 (2.963931) | 2.198288 / 1.504120 (0.694168) | 1.987544 / 1.541195 (0.446349) | 1.866790 / 1.468490 (0.398300) | 0.681642 / 4.584777 (-3.903135) | 4.719306 / 3.745712 (0.973593) | 7.669869 / 5.269862 (2.400008) | 4.466082 / 4.565676 (-0.099595) | 0.092974 / 0.424275 (-0.331301) | 0.008196 / 0.007607 (0.000589) | 0.707656 / 0.226044 (0.481612) | 6.974507 / 2.268929 (4.705579) | 3.254206 / 55.444624 (-52.190418) | 2.499019 / 6.876477 (-4.377457) | 2.509089 / 2.142072 (0.367017) | 0.915952 / 4.805227 (-3.889276) | 0.192119 / 6.500664 (-6.308545) | 0.065473 / 0.075469 (-0.009996) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.309078 / 1.841788 (-0.532710) | 19.660348 / 8.074308 (11.586040) | 16.659582 / 10.191392 (6.468190) | 0.194315 / 0.680424 (-0.486109) | 0.027773 / 0.534201 (-0.506428) | 0.401241 / 0.579283 (-0.178042) | 0.515799 / 0.434364 (0.081435) | 0.488772 / 0.540337 (-0.051566) | 0.604790 / 1.386936 (-0.782146) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006823 / 0.011353 (-0.004530) | 0.003940 / 0.011008 (-0.007068) | 0.061533 / 0.038508 (0.023025) | 0.065241 / 0.023109 (0.042132) | 0.411790 / 0.275898 (0.135892) | 0.475720 / 0.323480 (0.152241) | 0.005376 / 0.007986 (-0.002609) | 0.003433 / 0.004328 (-0.000895) | 0.065703 / 0.004250 (0.061452) | 0.050736 / 0.037052 (0.013683) | 0.435890 / 0.258489 (0.177401) | 0.436698 / 0.293841 (0.142857) | 0.040357 / 0.128546 (-0.088189) | 0.011578 / 0.075646 (-0.064069) | 0.072831 / 0.419271 (-0.346440) | 0.055698 / 0.043533 (0.012165) | 0.408225 / 0.255139 (0.153086) | 0.439551 / 0.283200 (0.156352) | 0.030469 / 0.141683 (-0.111214) | 1.443866 / 1.452155 (-0.008289) | 1.502022 / 1.492716 (0.009306) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290338 / 0.018006 (0.272332) | 0.540726 / 0.000490 (0.540236) | 0.003244 / 0.000200 (0.003044) | 0.000170 / 0.000054 (0.000116) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030865 / 0.037411 (-0.006547) | 0.090866 / 0.014526 (0.076340) | 0.106224 / 0.176557 (-0.070332) | 0.166583 / 0.737135 (-0.570553) | 0.104448 / 0.296338 (-0.191891) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.518025 / 0.215209 (0.302816) | 6.027065 / 2.077655 (3.949410) | 2.671840 / 1.504120 (1.167720) | 2.273949 / 1.541195 (0.732754) | 2.414892 / 1.468490 (0.946402) | 0.774318 / 4.584777 (-3.810459) | 5.020364 / 3.745712 (1.274652) | 4.146927 / 5.269862 (-1.122934) | 2.584598 / 4.565676 (-1.981078) | 0.089519 / 0.424275 (-0.334756) | 0.009181 / 0.007607 (0.001574) | 0.654467 / 0.226044 (0.428423) | 6.421595 / 2.268929 (4.152666) | 3.091589 / 55.444624 (-52.353036) | 2.554798 / 6.876477 (-4.321679) | 2.441354 / 2.142072 (0.299282) | 0.943386 / 4.805227 (-3.861841) | 0.173641 / 6.500664 (-6.327023) | 0.072209 / 0.075469 (-0.003260) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.557147 / 1.841788 (-0.284641) | 19.980747 / 8.074308 (11.906439) | 17.816813 / 10.191392 (7.625421) | 0.212078 / 0.680424 (-0.468346) | 0.025435 / 0.534201 (-0.508766) | 0.396200 / 0.579283 (-0.183084) | 0.546249 / 0.434364 (0.111885) | 0.459632 / 0.540337 (-0.080705) | 0.616548 / 1.386936 (-0.770388) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#535e972a70a3d4f8490a7e1a77ac43d5a4ab2655 \"CML watermark\")\n"
] | 2023-07-04T15:02:37 | 2023-07-06T15:32:41 | 2023-07-06T15:22:43 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6005",
"html_url": "https://github.com/huggingface/datasets/pull/6005",
"diff_url": "https://github.com/huggingface/datasets/pull/6005.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6005.patch",
"merged_at": "2023-07-06T15:22:43"
} | `hfh` and `transformers` have dropped Python 3.7 support, so we should do the same :).
(Based on the stats, it seems less than 10% of the users use `datasets` with Python 3.7) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6005/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6005/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5926 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5926/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5926/comments | https://api.github.com/repos/huggingface/datasets/issues/5926/events | https://github.com/huggingface/datasets/issues/5926 | 1,743,922,028 | I_kwDODunzps5n8iNs | 5,926 | Uncaught exception when generating the splits from a dataset that miss data | {
"login": "severo",
"id": 1676121,
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/severo",
"html_url": "https://github.com/severo",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"organizations_url": "https://api.github.com/users/severo/orgs",
"repos_url": "https://api.github.com/users/severo/repos",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"received_events_url": "https://api.github.com/users/severo/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting, @severo.\r\n\r\nThis is a known issue with `fsspec`:\r\n- #5862\r\n- https://github.com/fsspec/filesystem_spec/issues/1265"
] | 2023-06-06T13:51:01 | 2023-06-07T07:53:16 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
Dataset https://huggingface.co/datasets/blog_authorship_corpus has an issue with its hosting platform, since https://drive.google.com/u/0/uc?id=1cGy4RNDV87ZHEXbiozABr9gsSrZpPaPz&export=download returns 404 error.
But when trying to generate the split names, we get an exception which is now correctly caught.
Seen originally in https://github.com/huggingface/datasets-server/blob/adbdcd6710ffed4e2eb2e4cd905b5e0dff530a15/services/worker/src/worker/job_runners/config/parquet_and_info.py#L435
### Steps to reproduce the bug
```python
>>> from datasets import StreamingDownloadManager, load_dataset_builder
>>> builder = load_dataset_builder(path="blog_authorship_corpus")
Downloading builder script: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5.60k/5.60k [00:00<00:00, 23.1MB/s]
Downloading metadata: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.81k/2.81k [00:00<00:00, 14.7MB/s]
Downloading readme: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7.30k/7.30k [00:00<00:00, 30.8MB/s]
>>> dl_manager = StreamingDownloadManager(base_path=builder.base_path)
>>> builder._split_generators(dl_manager)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/slesage/.cache/huggingface/modules/datasets_modules/datasets/blog_authorship_corpus/6f5d78241afd8313111956f877a57db7a0e9fc6718255dc85df0928197feb683/blog_authorship_corpus.py", line 79, in _split_generators
data = dl_manager.download_and_extract(_DATA_URL)
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 1087, in download_and_extract
return self.extract(self.download(url_or_urls))
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 1039, in extract
urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True)
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 435, in map_nested
return function(data_struct)
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 1044, in _extract
protocol = _get_extraction_protocol(urlpath, use_auth_token=self.download_config.use_auth_token)
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 433, in _get_extraction_protocol
with fsspec.open(urlpath, **kwargs) as f:
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 439, in open
return open_files(
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 194, in __getitem__
out = super().__getitem__(item)
IndexError: list index out of range
```
### Expected behavior
We should have an Exception raised by the datasets library.
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-5.19.0-1026-aws-x86_64-with-glibc2.35
- Python version: 3.9.15
- Huggingface_hub version: 0.15.1
- PyArrow version: 11.0.0
- Pandas version: 2.0.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5926/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5926/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6070 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6070/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6070/comments | https://api.github.com/repos/huggingface/datasets/issues/6070/events | https://github.com/huggingface/datasets/pull/6070 | 1,820,836,330 | PR_kwDODunzps5WXDLc | 6,070 | Fix Quickstart notebook link | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008473 / 0.011353 (-0.002880) | 0.004734 / 0.011008 (-0.006274) | 0.103895 / 0.038508 (0.065387) | 0.071838 / 0.023109 (0.048729) | 0.379949 / 0.275898 (0.104051) | 0.397375 / 0.323480 (0.073895) | 0.006695 / 0.007986 (-0.001290) | 0.004536 / 0.004328 (0.000207) | 0.076151 / 0.004250 (0.071901) | 0.058690 / 0.037052 (0.021638) | 0.379937 / 0.258489 (0.121448) | 0.411833 / 0.293841 (0.117992) | 0.046805 / 0.128546 (-0.081741) | 0.013689 / 0.075646 (-0.061958) | 0.327896 / 0.419271 (-0.091375) | 0.063873 / 0.043533 (0.020340) | 0.378451 / 0.255139 (0.123312) | 0.398725 / 0.283200 (0.115525) | 0.034961 / 0.141683 (-0.106722) | 1.604999 / 1.452155 (0.152845) | 1.748370 / 1.492716 (0.255654) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224634 / 0.018006 (0.206628) | 0.548468 / 0.000490 (0.547979) | 0.005049 / 0.000200 (0.004849) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028144 / 0.037411 (-0.009267) | 0.092184 / 0.014526 (0.077659) | 0.102987 / 0.176557 (-0.073570) | 0.176987 / 0.737135 (-0.560149) | 0.103093 / 0.296338 (-0.193246) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578410 / 0.215209 (0.363201) | 5.664781 / 2.077655 (3.587126) | 2.487763 / 1.504120 (0.983643) | 2.254213 / 1.541195 (0.713018) | 2.239693 / 1.468490 (0.771202) | 0.810380 / 4.584777 (-3.774397) | 5.036540 / 3.745712 (1.290828) | 7.064695 / 5.269862 (1.794834) | 4.215101 / 4.565676 (-0.350575) | 0.089792 / 0.424275 (-0.334483) | 0.008487 / 0.007607 (0.000879) | 0.692292 / 0.226044 (0.466248) | 6.780226 / 2.268929 (4.511297) | 3.245510 / 55.444624 (-52.199114) | 2.575984 / 6.876477 (-4.300493) | 2.747546 / 2.142072 (0.605473) | 0.956604 / 4.805227 (-3.848623) | 0.198937 / 6.500664 (-6.301727) | 0.070849 / 0.075469 (-0.004620) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.536469 / 1.841788 (-0.305319) | 21.750583 / 8.074308 (13.676275) | 20.559532 / 10.191392 (10.368140) | 0.241244 / 0.680424 (-0.439180) | 0.030078 / 0.534201 (-0.504123) | 0.462204 / 0.579283 (-0.117079) | 0.600103 / 0.434364 (0.165739) | 0.535074 / 0.540337 (-0.005264) | 0.764427 / 1.386936 (-0.622509) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009712 / 0.011353 (-0.001641) | 0.005036 / 0.011008 (-0.005972) | 0.073683 / 0.038508 (0.035175) | 0.078684 / 0.023109 (0.055574) | 0.445096 / 0.275898 (0.169198) | 0.496233 / 0.323480 (0.172754) | 0.006231 / 0.007986 (-0.001755) | 0.004720 / 0.004328 (0.000392) | 0.076444 / 0.004250 (0.072194) | 0.060932 / 0.037052 (0.023880) | 0.505727 / 0.258489 (0.247238) | 0.498702 / 0.293841 (0.204861) | 0.047115 / 0.128546 (-0.081431) | 0.014028 / 0.075646 (-0.061618) | 0.099292 / 0.419271 (-0.319980) | 0.061571 / 0.043533 (0.018038) | 0.468435 / 0.255139 (0.213296) | 0.481747 / 0.283200 (0.198547) | 0.033962 / 0.141683 (-0.107721) | 1.665397 / 1.452155 (0.213242) | 1.830488 / 1.492716 (0.337772) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268217 / 0.018006 (0.250211) | 0.555123 / 0.000490 (0.554633) | 0.000451 / 0.000200 (0.000251) | 0.000156 / 0.000054 (0.000101) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034262 / 0.037411 (-0.003150) | 0.107807 / 0.014526 (0.093281) | 0.115631 / 0.176557 (-0.060926) | 0.175914 / 0.737135 (-0.561221) | 0.118775 / 0.296338 (-0.177564) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.583260 / 0.215209 (0.368051) | 5.934976 / 2.077655 (3.857321) | 2.752304 / 1.504120 (1.248184) | 2.382746 / 1.541195 (0.841551) | 2.389402 / 1.468490 (0.920912) | 0.794213 / 4.584777 (-3.790564) | 5.215269 / 3.745712 (1.469557) | 7.083595 / 5.269862 (1.813733) | 3.776136 / 4.565676 (-0.789540) | 0.091141 / 0.424275 (-0.333135) | 0.008803 / 0.007607 (0.001196) | 0.726510 / 0.226044 (0.500465) | 6.926860 / 2.268929 (4.657931) | 3.475612 / 55.444624 (-51.969012) | 2.730237 / 6.876477 (-4.146240) | 2.879145 / 2.142072 (0.737073) | 0.959956 / 4.805227 (-3.845271) | 0.189812 / 6.500664 (-6.310852) | 0.071624 / 0.075469 (-0.003845) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748184 / 1.841788 (-0.093603) | 23.764520 / 8.074308 (15.690212) | 19.502461 / 10.191392 (9.311069) | 0.233987 / 0.680424 (-0.446437) | 0.028116 / 0.534201 (-0.506085) | 0.478838 / 0.579283 (-0.100445) | 0.560952 / 0.434364 (0.126588) | 0.529902 / 0.540337 (-0.010435) | 0.735095 / 1.386936 (-0.651841) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dda3e389212f44117a40b44bb0cdf358cfd9f71e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006735 / 0.011353 (-0.004618) | 0.004131 / 0.011008 (-0.006878) | 0.085619 / 0.038508 (0.047111) | 0.076973 / 0.023109 (0.053864) | 0.315175 / 0.275898 (0.039277) | 0.354703 / 0.323480 (0.031223) | 0.005409 / 0.007986 (-0.002577) | 0.003438 / 0.004328 (-0.000891) | 0.064773 / 0.004250 (0.060523) | 0.056117 / 0.037052 (0.019064) | 0.313825 / 0.258489 (0.055336) | 0.354654 / 0.293841 (0.060813) | 0.031384 / 0.128546 (-0.097163) | 0.008537 / 0.075646 (-0.067109) | 0.288528 / 0.419271 (-0.130744) | 0.053036 / 0.043533 (0.009504) | 0.312213 / 0.255139 (0.057074) | 0.335952 / 0.283200 (0.052752) | 0.023165 / 0.141683 (-0.118518) | 1.497559 / 1.452155 (0.045404) | 1.561949 / 1.492716 (0.069233) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212558 / 0.018006 (0.194552) | 0.456555 / 0.000490 (0.456065) | 0.000334 / 0.000200 (0.000134) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028571 / 0.037411 (-0.008840) | 0.085154 / 0.014526 (0.070628) | 0.095961 / 0.176557 (-0.080596) | 0.153041 / 0.737135 (-0.584094) | 0.099234 / 0.296338 (-0.197105) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.381796 / 0.215209 (0.166587) | 3.806948 / 2.077655 (1.729294) | 1.829597 / 1.504120 (0.325477) | 1.659065 / 1.541195 (0.117870) | 1.738524 / 1.468490 (0.270034) | 0.483379 / 4.584777 (-4.101398) | 3.540648 / 3.745712 (-0.205064) | 3.269188 / 5.269862 (-2.000673) | 2.042113 / 4.565676 (-2.523564) | 0.056905 / 0.424275 (-0.367370) | 0.007235 / 0.007607 (-0.000373) | 0.460581 / 0.226044 (0.234537) | 4.597451 / 2.268929 (2.328522) | 2.334284 / 55.444624 (-53.110340) | 1.960026 / 6.876477 (-4.916450) | 2.172118 / 2.142072 (0.030045) | 0.576758 / 4.805227 (-4.228470) | 0.131196 / 6.500664 (-6.369468) | 0.060053 / 0.075469 (-0.015417) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289466 / 1.841788 (-0.552322) | 19.713059 / 8.074308 (11.638750) | 14.292390 / 10.191392 (4.100998) | 0.146199 / 0.680424 (-0.534225) | 0.018123 / 0.534201 (-0.516078) | 0.392492 / 0.579283 (-0.186791) | 0.416544 / 0.434364 (-0.017820) | 0.457166 / 0.540337 (-0.083171) | 0.645490 / 1.386936 (-0.741446) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006508 / 0.011353 (-0.004845) | 0.004010 / 0.011008 (-0.006998) | 0.065201 / 0.038508 (0.026693) | 0.076322 / 0.023109 (0.053213) | 0.364198 / 0.275898 (0.088300) | 0.398251 / 0.323480 (0.074771) | 0.005328 / 0.007986 (-0.002658) | 0.003298 / 0.004328 (-0.001031) | 0.064378 / 0.004250 (0.060128) | 0.056053 / 0.037052 (0.019000) | 0.365431 / 0.258489 (0.106942) | 0.402777 / 0.293841 (0.108936) | 0.031014 / 0.128546 (-0.097532) | 0.008507 / 0.075646 (-0.067140) | 0.071471 / 0.419271 (-0.347801) | 0.048300 / 0.043533 (0.004768) | 0.359700 / 0.255139 (0.104561) | 0.382244 / 0.283200 (0.099044) | 0.023783 / 0.141683 (-0.117900) | 1.517518 / 1.452155 (0.065363) | 1.569732 / 1.492716 (0.077015) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257447 / 0.018006 (0.239440) | 0.452598 / 0.000490 (0.452109) | 0.015187 / 0.000200 (0.014987) | 0.000164 / 0.000054 (0.000109) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030958 / 0.037411 (-0.006454) | 0.090066 / 0.014526 (0.075540) | 0.101120 / 0.176557 (-0.075437) | 0.154295 / 0.737135 (-0.582840) | 0.103582 / 0.296338 (-0.192756) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415945 / 0.215209 (0.200736) | 4.146464 / 2.077655 (2.068809) | 2.121414 / 1.504120 (0.617294) | 1.956885 / 1.541195 (0.415690) | 2.047955 / 1.468490 (0.579465) | 0.486334 / 4.584777 (-4.098443) | 3.506263 / 3.745712 (-0.239449) | 4.942274 / 5.269862 (-0.327587) | 2.907836 / 4.565676 (-1.657841) | 0.057344 / 0.424275 (-0.366931) | 0.007813 / 0.007607 (0.000206) | 0.497888 / 0.226044 (0.271844) | 4.978017 / 2.268929 (2.709089) | 2.600447 / 55.444624 (-52.844177) | 2.335050 / 6.876477 (-4.541427) | 2.480373 / 2.142072 (0.338301) | 0.597954 / 4.805227 (-4.207274) | 0.134794 / 6.500664 (-6.365870) | 0.062605 / 0.075469 (-0.012864) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.344390 / 1.841788 (-0.497398) | 20.020067 / 8.074308 (11.945759) | 14.344626 / 10.191392 (4.153234) | 0.172101 / 0.680424 (-0.508322) | 0.018549 / 0.534201 (-0.515652) | 0.393589 / 0.579283 (-0.185694) | 0.438401 / 0.434364 (0.004037) | 0.463800 / 0.540337 (-0.076537) | 0.618269 / 1.386936 (-0.768667) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b0177910b32712f28d147879395e511207e39958 \"CML watermark\")\n"
] | 2023-07-25T17:48:37 | 2023-07-25T18:19:01 | 2023-07-25T18:10:16 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6070",
"html_url": "https://github.com/huggingface/datasets/pull/6070",
"diff_url": "https://github.com/huggingface/datasets/pull/6070.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6070.patch",
"merged_at": "2023-07-25T18:10:16"
} | Reported in https://github.com/huggingface/datasets/pull/5902#issuecomment-1649885621 (cc @alvarobartt) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6070/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6070/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6064 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6064/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6064/comments | https://api.github.com/repos/huggingface/datasets/issues/6064/events | https://github.com/huggingface/datasets/pull/6064 | 1,818,703,725 | PR_kwDODunzps5WPzAv | 6,064 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6064). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006704 / 0.011353 (-0.004649) | 0.004208 / 0.011008 (-0.006800) | 0.085895 / 0.038508 (0.047387) | 0.079303 / 0.023109 (0.056193) | 0.353430 / 0.275898 (0.077532) | 0.390814 / 0.323480 (0.067334) | 0.006565 / 0.007986 (-0.001420) | 0.003588 / 0.004328 (-0.000740) | 0.065249 / 0.004250 (0.060999) | 0.059772 / 0.037052 (0.022720) | 0.356315 / 0.258489 (0.097826) | 0.404812 / 0.293841 (0.110971) | 0.031127 / 0.128546 (-0.097419) | 0.008656 / 0.075646 (-0.066991) | 0.288734 / 0.419271 (-0.130537) | 0.053157 / 0.043533 (0.009625) | 0.354651 / 0.255139 (0.099512) | 0.370590 / 0.283200 (0.087391) | 0.024944 / 0.141683 (-0.116738) | 1.472393 / 1.452155 (0.020238) | 1.548946 / 1.492716 (0.056229) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223430 / 0.018006 (0.205424) | 0.567359 / 0.000490 (0.566870) | 0.006744 / 0.000200 (0.006544) | 0.000094 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030174 / 0.037411 (-0.007237) | 0.084865 / 0.014526 (0.070339) | 0.098986 / 0.176557 (-0.077571) | 0.161458 / 0.737135 (-0.575678) | 0.099198 / 0.296338 (-0.197141) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404324 / 0.215209 (0.189115) | 4.043744 / 2.077655 (1.966090) | 1.972834 / 1.504120 (0.468714) | 1.801634 / 1.541195 (0.260439) | 1.891198 / 1.468490 (0.422708) | 0.488511 / 4.584777 (-4.096266) | 3.566890 / 3.745712 (-0.178823) | 3.369415 / 5.269862 (-1.900447) | 2.054995 / 4.565676 (-2.510682) | 0.057225 / 0.424275 (-0.367050) | 0.007360 / 0.007607 (-0.000247) | 0.471813 / 0.226044 (0.245769) | 4.734397 / 2.268929 (2.465468) | 2.526585 / 55.444624 (-52.918039) | 2.230535 / 6.876477 (-4.645942) | 2.434403 / 2.142072 (0.292330) | 0.630090 / 4.805227 (-4.175137) | 0.138544 / 6.500664 (-6.362120) | 0.060099 / 0.075469 (-0.015370) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260951 / 1.841788 (-0.580837) | 20.051513 / 8.074308 (11.977204) | 14.675938 / 10.191392 (4.484546) | 0.169535 / 0.680424 (-0.510889) | 0.018574 / 0.534201 (-0.515627) | 0.394255 / 0.579283 (-0.185028) | 0.412713 / 0.434364 (-0.021651) | 0.475891 / 0.540337 (-0.064446) | 0.658223 / 1.386936 (-0.728713) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006969 / 0.011353 (-0.004384) | 0.004417 / 0.011008 (-0.006591) | 0.064399 / 0.038508 (0.025891) | 0.082928 / 0.023109 (0.059819) | 0.402285 / 0.275898 (0.126387) | 0.440032 / 0.323480 (0.116552) | 0.005896 / 0.007986 (-0.002090) | 0.003580 / 0.004328 (-0.000749) | 0.065340 / 0.004250 (0.061090) | 0.060363 / 0.037052 (0.023311) | 0.417413 / 0.258489 (0.158924) | 0.448527 / 0.293841 (0.154686) | 0.032238 / 0.128546 (-0.096308) | 0.008820 / 0.075646 (-0.066826) | 0.071516 / 0.419271 (-0.347755) | 0.050614 / 0.043533 (0.007081) | 0.406565 / 0.255139 (0.151426) | 0.422527 / 0.283200 (0.139328) | 0.025866 / 0.141683 (-0.115817) | 1.512256 / 1.452155 (0.060101) | 1.568433 / 1.492716 (0.075717) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266521 / 0.018006 (0.248515) | 0.564524 / 0.000490 (0.564034) | 0.005236 / 0.000200 (0.005036) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031998 / 0.037411 (-0.005413) | 0.090754 / 0.014526 (0.076229) | 0.105954 / 0.176557 (-0.070602) | 0.164506 / 0.737135 (-0.572629) | 0.108792 / 0.296338 (-0.187546) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422044 / 0.215209 (0.206835) | 4.204449 / 2.077655 (2.126795) | 2.232060 / 1.504120 (0.727940) | 2.060389 / 1.541195 (0.519194) | 2.152723 / 1.468490 (0.684233) | 0.488456 / 4.584777 (-4.096321) | 3.591102 / 3.745712 (-0.154611) | 5.250401 / 5.269862 (-0.019461) | 3.060259 / 4.565676 (-1.505417) | 0.057558 / 0.424275 (-0.366717) | 0.007881 / 0.007607 (0.000274) | 0.508631 / 0.226044 (0.282587) | 5.064857 / 2.268929 (2.795928) | 2.719068 / 55.444624 (-52.725556) | 2.389992 / 6.876477 (-4.486485) | 2.595073 / 2.142072 (0.453000) | 0.590179 / 4.805227 (-4.215048) | 0.136149 / 6.500664 (-6.364515) | 0.062546 / 0.075469 (-0.012923) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.369252 / 1.841788 (-0.472535) | 20.637580 / 8.074308 (12.563272) | 14.217129 / 10.191392 (4.025737) | 0.195464 / 0.680424 (-0.484960) | 0.018452 / 0.534201 (-0.515749) | 0.397044 / 0.579283 (-0.182239) | 0.401127 / 0.434364 (-0.033237) | 0.465033 / 0.540337 (-0.075305) | 0.613484 / 1.386936 (-0.773452) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d9f1651128e50e7887f5e8eaaf6b55fe4cd84fdc \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006793 / 0.011353 (-0.004559) | 0.004374 / 0.011008 (-0.006635) | 0.084958 / 0.038508 (0.046450) | 0.080440 / 0.023109 (0.057331) | 0.317951 / 0.275898 (0.042053) | 0.376133 / 0.323480 (0.052653) | 0.005775 / 0.007986 (-0.002211) | 0.003644 / 0.004328 (-0.000684) | 0.064823 / 0.004250 (0.060573) | 0.059442 / 0.037052 (0.022390) | 0.319636 / 0.258489 (0.061147) | 0.389668 / 0.293841 (0.095827) | 0.031181 / 0.128546 (-0.097365) | 0.008725 / 0.075646 (-0.066921) | 0.288514 / 0.419271 (-0.130757) | 0.053466 / 0.043533 (0.009933) | 0.323131 / 0.255139 (0.067992) | 0.345276 / 0.283200 (0.062076) | 0.025046 / 0.141683 (-0.116637) | 1.491659 / 1.452155 (0.039504) | 1.562105 / 1.492716 (0.069389) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286325 / 0.018006 (0.268319) | 0.578021 / 0.000490 (0.577531) | 0.007240 / 0.000200 (0.007040) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030163 / 0.037411 (-0.007248) | 0.082100 / 0.014526 (0.067574) | 0.098331 / 0.176557 (-0.078225) | 0.160517 / 0.737135 (-0.576618) | 0.098479 / 0.296338 (-0.197859) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401782 / 0.215209 (0.186573) | 4.006330 / 2.077655 (1.928675) | 2.033841 / 1.504120 (0.529721) | 1.853248 / 1.541195 (0.312053) | 1.980046 / 1.468490 (0.511556) | 0.480636 / 4.584777 (-4.104141) | 3.684482 / 3.745712 (-0.061231) | 5.601940 / 5.269862 (0.332079) | 3.369683 / 4.565676 (-1.195993) | 0.057105 / 0.424275 (-0.367170) | 0.007462 / 0.007607 (-0.000145) | 0.474860 / 0.226044 (0.248815) | 4.749624 / 2.268929 (2.480695) | 2.492084 / 55.444624 (-52.952540) | 2.157985 / 6.876477 (-4.718491) | 2.420997 / 2.142072 (0.278925) | 0.574718 / 4.805227 (-4.230509) | 0.134672 / 6.500664 (-6.365992) | 0.061677 / 0.075469 (-0.013792) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.284151 / 1.841788 (-0.557637) | 20.186823 / 8.074308 (12.112515) | 14.247024 / 10.191392 (4.055632) | 0.171606 / 0.680424 (-0.508818) | 0.018619 / 0.534201 (-0.515582) | 0.394156 / 0.579283 (-0.185127) | 0.424684 / 0.434364 (-0.009679) | 0.476056 / 0.540337 (-0.064281) | 0.668751 / 1.386936 (-0.718185) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006807 / 0.011353 (-0.004546) | 0.004142 / 0.011008 (-0.006867) | 0.065503 / 0.038508 (0.026995) | 0.083232 / 0.023109 (0.060122) | 0.378278 / 0.275898 (0.102380) | 0.410191 / 0.323480 (0.086711) | 0.005660 / 0.007986 (-0.002326) | 0.003486 / 0.004328 (-0.000842) | 0.066109 / 0.004250 (0.061859) | 0.059654 / 0.037052 (0.022601) | 0.375965 / 0.258489 (0.117476) | 0.420046 / 0.293841 (0.126205) | 0.031587 / 0.128546 (-0.096959) | 0.008693 / 0.075646 (-0.066953) | 0.071121 / 0.419271 (-0.348151) | 0.049468 / 0.043533 (0.005935) | 0.373785 / 0.255139 (0.118646) | 0.395577 / 0.283200 (0.112377) | 0.024138 / 0.141683 (-0.117545) | 1.465451 / 1.452155 (0.013297) | 1.547565 / 1.492716 (0.054849) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.325241 / 0.018006 (0.307234) | 0.532415 / 0.000490 (0.531925) | 0.004755 / 0.000200 (0.004555) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033472 / 0.037411 (-0.003939) | 0.090574 / 0.014526 (0.076048) | 0.106712 / 0.176557 (-0.069845) | 0.164353 / 0.737135 (-0.572783) | 0.109344 / 0.296338 (-0.186994) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420161 / 0.215209 (0.204952) | 4.192334 / 2.077655 (2.114679) | 2.178181 / 1.504120 (0.674061) | 2.017405 / 1.541195 (0.476211) | 2.182783 / 1.468490 (0.714293) | 0.484037 / 4.584777 (-4.100740) | 3.641911 / 3.745712 (-0.103801) | 5.543874 / 5.269862 (0.274013) | 3.440084 / 4.565676 (-1.125593) | 0.056662 / 0.424275 (-0.367614) | 0.007773 / 0.007607 (0.000166) | 0.498357 / 0.226044 (0.272313) | 4.951315 / 2.268929 (2.682386) | 2.656732 / 55.444624 (-52.787892) | 2.370566 / 6.876477 (-4.505910) | 2.682289 / 2.142072 (0.540217) | 0.598479 / 4.805227 (-4.206749) | 0.151546 / 6.500664 (-6.349118) | 0.063278 / 0.075469 (-0.012191) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.385897 / 1.841788 (-0.455891) | 20.961851 / 8.074308 (12.887543) | 14.465688 / 10.191392 (4.274296) | 0.166156 / 0.680424 (-0.514268) | 0.018848 / 0.534201 (-0.515353) | 0.401712 / 0.579283 (-0.177571) | 0.416674 / 0.434364 (-0.017690) | 0.471834 / 0.540337 (-0.068503) | 0.622463 / 1.386936 (-0.764473) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7e3ab9bc6ae8cc42f7e7d01afbd2637d51c3faf6 \"CML watermark\")\n"
] | 2023-07-24T15:56:00 | 2023-07-24T16:05:19 | 2023-07-24T15:56:10 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6064",
"html_url": "https://github.com/huggingface/datasets/pull/6064",
"diff_url": "https://github.com/huggingface/datasets/pull/6064.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6064.patch",
"merged_at": "2023-07-24T15:56:10"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6064/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6064/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6026 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6026/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6026/comments | https://api.github.com/repos/huggingface/datasets/issues/6026/events | https://github.com/huggingface/datasets/pull/6026 | 1,802,929,222 | PR_kwDODunzps5VanI8 | 6,026 | Fix style with ruff 0.0.278 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6026). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006444 / 0.011353 (-0.004909) | 0.003768 / 0.011008 (-0.007240) | 0.079625 / 0.038508 (0.041117) | 0.064490 / 0.023109 (0.041381) | 0.313858 / 0.275898 (0.037960) | 0.350810 / 0.323480 (0.027330) | 0.004804 / 0.007986 (-0.003182) | 0.002904 / 0.004328 (-0.001425) | 0.061728 / 0.004250 (0.057477) | 0.052265 / 0.037052 (0.015213) | 0.321246 / 0.258489 (0.062757) | 0.353873 / 0.293841 (0.060032) | 0.027510 / 0.128546 (-0.101036) | 0.007942 / 0.075646 (-0.067704) | 0.260518 / 0.419271 (-0.158754) | 0.045686 / 0.043533 (0.002153) | 0.316821 / 0.255139 (0.061682) | 0.337086 / 0.283200 (0.053886) | 0.022188 / 0.141683 (-0.119495) | 1.427345 / 1.452155 (-0.024810) | 1.476059 / 1.492716 (-0.016657) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.189640 / 0.018006 (0.171634) | 0.429724 / 0.000490 (0.429235) | 0.005314 / 0.000200 (0.005114) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024412 / 0.037411 (-0.013000) | 0.073488 / 0.014526 (0.058962) | 0.083843 / 0.176557 (-0.092714) | 0.147849 / 0.737135 (-0.589286) | 0.085465 / 0.296338 (-0.210873) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405314 / 0.215209 (0.190105) | 4.071471 / 2.077655 (1.993816) | 1.916252 / 1.504120 (0.412132) | 1.721616 / 1.541195 (0.180422) | 1.807187 / 1.468490 (0.338697) | 0.498045 / 4.584777 (-4.086732) | 3.057526 / 3.745712 (-0.688187) | 4.451424 / 5.269862 (-0.818437) | 2.764020 / 4.565676 (-1.801656) | 0.057665 / 0.424275 (-0.366610) | 0.006679 / 0.007607 (-0.000928) | 0.485733 / 0.226044 (0.259688) | 4.844367 / 2.268929 (2.575438) | 2.435359 / 55.444624 (-53.009265) | 2.111478 / 6.876477 (-4.764999) | 2.377448 / 2.142072 (0.235375) | 0.587997 / 4.805227 (-4.217230) | 0.125545 / 6.500664 (-6.375120) | 0.061509 / 0.075469 (-0.013960) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.229210 / 1.841788 (-0.612577) | 18.553994 / 8.074308 (10.479686) | 14.037877 / 10.191392 (3.846485) | 0.144230 / 0.680424 (-0.536194) | 0.016891 / 0.534201 (-0.517310) | 0.329039 / 0.579283 (-0.250244) | 0.357269 / 0.434364 (-0.077095) | 0.384222 / 0.540337 (-0.156115) | 0.521292 / 1.386936 (-0.865644) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006359 / 0.011353 (-0.004994) | 0.003721 / 0.011008 (-0.007287) | 0.062047 / 0.038508 (0.023539) | 0.065267 / 0.023109 (0.042158) | 0.360164 / 0.275898 (0.084266) | 0.402292 / 0.323480 (0.078812) | 0.005603 / 0.007986 (-0.002382) | 0.002966 / 0.004328 (-0.001363) | 0.062580 / 0.004250 (0.058330) | 0.053634 / 0.037052 (0.016582) | 0.362210 / 0.258489 (0.103721) | 0.404285 / 0.293841 (0.110444) | 0.027567 / 0.128546 (-0.100979) | 0.008119 / 0.075646 (-0.067528) | 0.067577 / 0.419271 (-0.351694) | 0.042867 / 0.043533 (-0.000666) | 0.361576 / 0.255139 (0.106437) | 0.389061 / 0.283200 (0.105862) | 0.021923 / 0.141683 (-0.119760) | 1.446259 / 1.452155 (-0.005895) | 1.490724 / 1.492716 (-0.001992) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206433 / 0.018006 (0.188427) | 0.424178 / 0.000490 (0.423688) | 0.002340 / 0.000200 (0.002140) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024955 / 0.037411 (-0.012456) | 0.077446 / 0.014526 (0.062920) | 0.088540 / 0.176557 (-0.088017) | 0.141225 / 0.737135 (-0.595910) | 0.089747 / 0.296338 (-0.206592) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443738 / 0.215209 (0.228529) | 4.208887 / 2.077655 (2.131233) | 2.155127 / 1.504120 (0.651007) | 2.028178 / 1.541195 (0.486983) | 2.084903 / 1.468490 (0.616413) | 0.497530 / 4.584777 (-4.087247) | 3.069012 / 3.745712 (-0.676700) | 3.025184 / 5.269862 (-2.244678) | 1.904687 / 4.565676 (-2.660990) | 0.057526 / 0.424275 (-0.366749) | 0.006482 / 0.007607 (-0.001125) | 0.494692 / 0.226044 (0.268647) | 4.944437 / 2.268929 (2.675508) | 2.655989 / 55.444624 (-52.788635) | 2.331677 / 6.876477 (-4.544800) | 2.382396 / 2.142072 (0.240324) | 0.582019 / 4.805227 (-4.223209) | 0.125866 / 6.500664 (-6.374799) | 0.062908 / 0.075469 (-0.012561) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294612 / 1.841788 (-0.547176) | 19.016152 / 8.074308 (10.941844) | 14.088828 / 10.191392 (3.897436) | 0.160842 / 0.680424 (-0.519582) | 0.017054 / 0.534201 (-0.517146) | 0.333647 / 0.579283 (-0.245636) | 0.348094 / 0.434364 (-0.086270) | 0.394970 / 0.540337 (-0.145367) | 0.551141 / 1.386936 (-0.835795) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9e9cfe886792b30b5000808072a0f91ec8536749 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007442 / 0.011353 (-0.003911) | 0.004302 / 0.011008 (-0.006707) | 0.087159 / 0.038508 (0.048651) | 0.095094 / 0.023109 (0.071985) | 0.315422 / 0.275898 (0.039524) | 0.346672 / 0.323480 (0.023192) | 0.005811 / 0.007986 (-0.002174) | 0.003597 / 0.004328 (-0.000731) | 0.066400 / 0.004250 (0.062150) | 0.065947 / 0.037052 (0.028894) | 0.323269 / 0.258489 (0.064780) | 0.353309 / 0.293841 (0.059468) | 0.032268 / 0.128546 (-0.096278) | 0.008696 / 0.075646 (-0.066950) | 0.291486 / 0.419271 (-0.127786) | 0.054609 / 0.043533 (0.011076) | 0.321061 / 0.255139 (0.065922) | 0.336907 / 0.283200 (0.053707) | 0.027338 / 0.141683 (-0.114345) | 1.496442 / 1.452155 (0.044287) | 1.576946 / 1.492716 (0.084229) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229140 / 0.018006 (0.211134) | 0.487500 / 0.000490 (0.487010) | 0.002425 / 0.000200 (0.002225) | 0.000089 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029351 / 0.037411 (-0.008060) | 0.089610 / 0.014526 (0.075084) | 0.097880 / 0.176557 (-0.078676) | 0.155947 / 0.737135 (-0.581189) | 0.098593 / 0.296338 (-0.197745) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382911 / 0.215209 (0.167702) | 3.820363 / 2.077655 (1.742708) | 1.866385 / 1.504120 (0.362265) | 1.712910 / 1.541195 (0.171716) | 1.813863 / 1.468490 (0.345373) | 0.484884 / 4.584777 (-4.099893) | 3.678911 / 3.745712 (-0.066801) | 5.249908 / 5.269862 (-0.019953) | 3.099614 / 4.565676 (-1.466063) | 0.057449 / 0.424275 (-0.366826) | 0.007728 / 0.007607 (0.000120) | 0.462123 / 0.226044 (0.236078) | 4.603942 / 2.268929 (2.335014) | 2.380957 / 55.444624 (-53.063668) | 2.059621 / 6.876477 (-4.816856) | 2.293764 / 2.142072 (0.151691) | 0.636471 / 4.805227 (-4.168756) | 0.150112 / 6.500664 (-6.350552) | 0.063705 / 0.075469 (-0.011764) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.358099 / 1.841788 (-0.483689) | 20.193750 / 8.074308 (12.119442) | 14.297350 / 10.191392 (4.105958) | 0.164477 / 0.680424 (-0.515947) | 0.018259 / 0.534201 (-0.515942) | 0.399010 / 0.579283 (-0.180273) | 0.417306 / 0.434364 (-0.017058) | 0.456961 / 0.540337 (-0.083377) | 0.631068 / 1.386936 (-0.755868) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007324 / 0.011353 (-0.004028) | 0.004463 / 0.011008 (-0.006545) | 0.066148 / 0.038508 (0.027640) | 0.093909 / 0.023109 (0.070799) | 0.399122 / 0.275898 (0.123224) | 0.430226 / 0.323480 (0.106746) | 0.005505 / 0.007986 (-0.002481) | 0.003579 / 0.004328 (-0.000749) | 0.066529 / 0.004250 (0.062278) | 0.063471 / 0.037052 (0.026418) | 0.406351 / 0.258489 (0.147862) | 0.439987 / 0.293841 (0.146146) | 0.032640 / 0.128546 (-0.095906) | 0.008770 / 0.075646 (-0.066877) | 0.072592 / 0.419271 (-0.346680) | 0.050429 / 0.043533 (0.006896) | 0.390873 / 0.255139 (0.135734) | 0.412438 / 0.283200 (0.129239) | 0.027113 / 0.141683 (-0.114570) | 1.458281 / 1.452155 (0.006126) | 1.536819 / 1.492716 (0.044103) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228309 / 0.018006 (0.210303) | 0.454042 / 0.000490 (0.453552) | 0.000387 / 0.000200 (0.000187) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029573 / 0.037411 (-0.007838) | 0.086433 / 0.014526 (0.071907) | 0.097992 / 0.176557 (-0.078565) | 0.152464 / 0.737135 (-0.584671) | 0.099901 / 0.296338 (-0.196437) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413807 / 0.215209 (0.198598) | 4.126395 / 2.077655 (2.048740) | 2.113544 / 1.504120 (0.609424) | 1.967829 / 1.541195 (0.426635) | 2.037123 / 1.468490 (0.568633) | 0.489403 / 4.584777 (-4.095374) | 3.689508 / 3.745712 (-0.056204) | 3.503909 / 5.269862 (-1.765952) | 2.113812 / 4.565676 (-2.451864) | 0.057988 / 0.424275 (-0.366287) | 0.007336 / 0.007607 (-0.000271) | 0.490840 / 0.226044 (0.264795) | 4.885040 / 2.268929 (2.616112) | 2.627864 / 55.444624 (-52.816760) | 2.231467 / 6.876477 (-4.645010) | 2.251307 / 2.142072 (0.109235) | 0.577370 / 4.805227 (-4.227857) | 0.131770 / 6.500664 (-6.368895) | 0.061313 / 0.075469 (-0.014156) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.362052 / 1.841788 (-0.479735) | 21.332694 / 8.074308 (13.258386) | 15.562019 / 10.191392 (5.370627) | 0.170874 / 0.680424 (-0.509550) | 0.019226 / 0.534201 (-0.514975) | 0.400311 / 0.579283 (-0.178972) | 0.423060 / 0.434364 (-0.011304) | 0.469946 / 0.540337 (-0.070391) | 0.647745 / 1.386936 (-0.739191) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aec567c2f224f192e6e1f9799e3afc755eb517b2 \"CML watermark\")\n"
] | 2023-07-13T12:34:24 | 2023-07-13T12:46:26 | 2023-07-13T12:37:01 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6026",
"html_url": "https://github.com/huggingface/datasets/pull/6026",
"diff_url": "https://github.com/huggingface/datasets/pull/6026.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6026.patch",
"merged_at": "2023-07-13T12:37:01"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6026/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6026/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6022 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6022/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6022/comments | https://api.github.com/repos/huggingface/datasets/issues/6022/events | https://github.com/huggingface/datasets/issues/6022 | 1,800,092,589 | I_kwDODunzps5rSzut | 6,022 | Batch map raises TypeError: '>=' not supported between instances of 'NoneType' and 'int' | {
"login": "codingl2k1",
"id": 138426806,
"node_id": "U_kgDOCEA5tg",
"avatar_url": "https://avatars.githubusercontent.com/u/138426806?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/codingl2k1",
"html_url": "https://github.com/codingl2k1",
"followers_url": "https://api.github.com/users/codingl2k1/followers",
"following_url": "https://api.github.com/users/codingl2k1/following{/other_user}",
"gists_url": "https://api.github.com/users/codingl2k1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/codingl2k1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/codingl2k1/subscriptions",
"organizations_url": "https://api.github.com/users/codingl2k1/orgs",
"repos_url": "https://api.github.com/users/codingl2k1/repos",
"events_url": "https://api.github.com/users/codingl2k1/events{/privacy}",
"received_events_url": "https://api.github.com/users/codingl2k1/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Thanks for reporting! I've opened a PR with a fix."
] | 2023-07-12T03:20:17 | 2023-07-12T16:18:06 | 2023-07-12T16:18:05 | NONE | null | null | null | ### Describe the bug
When mapping some datasets with `batched=True`, datasets may raise an exeception:
```python
Traceback (most recent call last):
File "/Users/codingl2k1/Work/datasets/venv/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/utils/py_utils.py", line 1328, in _write_generator_to_queue
for i, result in enumerate(func(**kwargs)):
File "/Users/codingl2k1/Work/datasets/src/datasets/arrow_dataset.py", line 3483, in _map_single
writer.write_batch(batch)
File "/Users/codingl2k1/Work/datasets/src/datasets/arrow_writer.py", line 549, in write_batch
array = cast_array_to_feature(col_values, col_type) if col_type is not None else col_values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/table.py", line 1831, in wrapper
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/table.py", line 1831, in <listcomp>
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/table.py", line 2063, in cast_array_to_feature
return feature.cast_storage(array)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/features/features.py", line 1098, in cast_storage
if min_max["max"] >= self.num_classes:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: '>=' not supported between instances of 'NoneType' and 'int'
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/Users/codingl2k1/Work/datasets/t1.py", line 33, in <module>
ds = ds.map(transforms, num_proc=14, batched=True, batch_size=5)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/dataset_dict.py", line 850, in map
{
File "/Users/codingl2k1/Work/datasets/src/datasets/dataset_dict.py", line 851, in <dictcomp>
k: dataset.map(
^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/arrow_dataset.py", line 577, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/arrow_dataset.py", line 542, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/arrow_dataset.py", line 3179, in map
for rank, done, content in iflatmap_unordered(
File "/Users/codingl2k1/Work/datasets/src/datasets/utils/py_utils.py", line 1368, in iflatmap_unordered
[async_result.get(timeout=0.05) for async_result in async_results]
File "/Users/codingl2k1/Work/datasets/src/datasets/utils/py_utils.py", line 1368, in <listcomp>
[async_result.get(timeout=0.05) for async_result in async_results]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/venv/lib/python3.11/site-packages/multiprocess/pool.py", line 774, in get
raise self._value
TypeError: '>=' not supported between instances of 'NoneType' and 'int'
```
### Steps to reproduce the bug
1. Checkout the latest main of datasets.
2. Run the code:
```python
from datasets import load_dataset
def transforms(examples):
# examples["pixel_values"] = [image.convert("RGB").resize((100, 100)) for image in examples["image"]]
return examples
ds = load_dataset("scene_parse_150")
ds = ds.map(transforms, num_proc=14, batched=True, batch_size=5)
print(ds)
```
### Expected behavior
map without exception.
### Environment info
Datasets: https://github.com/huggingface/datasets/commit/b8067c0262073891180869f700ebef5ac3dc5cce
Python: 3.11.4
System: Macos | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6022/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6022/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6016 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6016/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6016/comments | https://api.github.com/repos/huggingface/datasets/issues/6016/events | https://github.com/huggingface/datasets/pull/6016 | 1,798,968,033 | PR_kwDODunzps5VNEvn | 6,016 | Dataset string representation enhancement | {
"login": "Ganryuu",
"id": 63643948,
"node_id": "MDQ6VXNlcjYzNjQzOTQ4",
"avatar_url": "https://avatars.githubusercontent.com/u/63643948?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Ganryuu",
"html_url": "https://github.com/Ganryuu",
"followers_url": "https://api.github.com/users/Ganryuu/followers",
"following_url": "https://api.github.com/users/Ganryuu/following{/other_user}",
"gists_url": "https://api.github.com/users/Ganryuu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Ganryuu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Ganryuu/subscriptions",
"organizations_url": "https://api.github.com/users/Ganryuu/orgs",
"repos_url": "https://api.github.com/users/Ganryuu/repos",
"events_url": "https://api.github.com/users/Ganryuu/events{/privacy}",
"received_events_url": "https://api.github.com/users/Ganryuu/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6016). All of your documentation changes will be reflected on that endpoint.",
"It we could have something similar to Polars, that would be great.\r\n\r\nThis is what Polars outputs: \r\n* `__repr__`/`__str__` :\r\n```\r\nshape: (67_349, 3)\r\n┌───────┬───────────────────────────────────┬───────┐\r\n│ idx ┆ sentence ┆ label │\r\n│ --- ┆ --- ┆ --- │\r\n│ i32 ┆ str ┆ i64 │\r\n╞═══════╪═══════════════════════════════════╪═══════╡\r\n│ 0 ┆ hide new secretions from the par… ┆ 0 │\r\n│ 1 ┆ contains no wit , only labored g… ┆ 0 │\r\n│ 2 ┆ that loves its characters and co… ┆ 1 │\r\n│ 3 ┆ remains utterly satisfied to rem… ┆ 0 │\r\n│ … ┆ … ┆ … │\r\n│ 67345 ┆ anguish , anger and frustration ┆ 0 │\r\n│ 67346 ┆ at achieving the modest , crowd-… ┆ 1 │\r\n│ 67347 ┆ a patient viewer ┆ 1 │\r\n│ 67348 ┆ this new jangle of noise , mayhe… ┆ 0 │\r\n└───────┴───────────────────────────────────┴───────┘\r\n```\r\n\r\n* `_repr_html_`:\r\n<img width=\"251\" alt=\"Screenshot 2023-07-12 at 18 25 58\" src=\"https://github.com/huggingface/datasets/assets/47462742/5d04519d-f302-4411-9fbc-7445bdf53b23\">\r\n\r\n"
] | 2023-07-11T13:38:25 | 2023-07-16T10:26:18 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6016",
"html_url": "https://github.com/huggingface/datasets/pull/6016",
"diff_url": "https://github.com/huggingface/datasets/pull/6016.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6016.patch",
"merged_at": null
} | my attempt at #6010
not sure if this is the right way to go about it, I will wait for your feedback | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6016/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6016/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5952 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5952/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5952/comments | https://api.github.com/repos/huggingface/datasets/issues/5952/events | https://github.com/huggingface/datasets/pull/5952 | 1,756,481,591 | PR_kwDODunzps5S-OIh | 5,952 | Add Arrow builder docs | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006522 / 0.011353 (-0.004831) | 0.004319 / 0.011008 (-0.006690) | 0.099280 / 0.038508 (0.060772) | 0.033117 / 0.023109 (0.010007) | 0.339392 / 0.275898 (0.063494) | 0.366219 / 0.323480 (0.042739) | 0.003896 / 0.007986 (-0.004090) | 0.003412 / 0.004328 (-0.000916) | 0.076655 / 0.004250 (0.072404) | 0.045203 / 0.037052 (0.008150) | 0.355800 / 0.258489 (0.097311) | 0.372533 / 0.293841 (0.078692) | 0.032318 / 0.128546 (-0.096229) | 0.009030 / 0.075646 (-0.066616) | 0.328701 / 0.419271 (-0.090571) | 0.052891 / 0.043533 (0.009358) | 0.341131 / 0.255139 (0.085992) | 0.351593 / 0.283200 (0.068393) | 0.105136 / 0.141683 (-0.036546) | 1.475953 / 1.452155 (0.023798) | 1.566074 / 1.492716 (0.073357) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216671 / 0.018006 (0.198664) | 0.446952 / 0.000490 (0.446462) | 0.006340 / 0.000200 (0.006140) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028293 / 0.037411 (-0.009118) | 0.112298 / 0.014526 (0.097773) | 0.118634 / 0.176557 (-0.057923) | 0.175542 / 0.737135 (-0.561593) | 0.124773 / 0.296338 (-0.171565) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435209 / 0.215209 (0.220000) | 4.344361 / 2.077655 (2.266706) | 2.128943 / 1.504120 (0.624823) | 1.945465 / 1.541195 (0.404271) | 2.049932 / 1.468490 (0.581442) | 0.547126 / 4.584777 (-4.037651) | 3.768698 / 3.745712 (0.022986) | 1.924441 / 5.269862 (-3.345420) | 1.146364 / 4.565676 (-3.419312) | 0.067466 / 0.424275 (-0.356809) | 0.011175 / 0.007607 (0.003568) | 0.540978 / 0.226044 (0.314933) | 5.393120 / 2.268929 (3.124191) | 2.639027 / 55.444624 (-52.805597) | 2.327216 / 6.876477 (-4.549261) | 2.500532 / 2.142072 (0.358460) | 0.679120 / 4.805227 (-4.126107) | 0.148824 / 6.500664 (-6.351840) | 0.064195 / 0.075469 (-0.011274) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.158387 / 1.841788 (-0.683401) | 14.880751 / 8.074308 (6.806443) | 14.725249 / 10.191392 (4.533857) | 0.149785 / 0.680424 (-0.530639) | 0.017338 / 0.534201 (-0.516863) | 0.390980 / 0.579283 (-0.188303) | 0.425611 / 0.434364 (-0.008753) | 0.458851 / 0.540337 (-0.081487) | 0.559209 / 1.386936 (-0.827727) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006835 / 0.011353 (-0.004518) | 0.004318 / 0.011008 (-0.006690) | 0.076715 / 0.038508 (0.038207) | 0.033528 / 0.023109 (0.010419) | 0.411986 / 0.275898 (0.136087) | 0.438752 / 0.323480 (0.115272) | 0.004039 / 0.007986 (-0.003947) | 0.003509 / 0.004328 (-0.000819) | 0.077924 / 0.004250 (0.073673) | 0.049519 / 0.037052 (0.012467) | 0.420595 / 0.258489 (0.162106) | 0.450536 / 0.293841 (0.156695) | 0.032817 / 0.128546 (-0.095729) | 0.008963 / 0.075646 (-0.066684) | 0.083818 / 0.419271 (-0.335454) | 0.057591 / 0.043533 (0.014058) | 0.404605 / 0.255139 (0.149466) | 0.423661 / 0.283200 (0.140462) | 0.110698 / 0.141683 (-0.030984) | 1.512515 / 1.452155 (0.060361) | 1.569207 / 1.492716 (0.076490) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200795 / 0.018006 (0.182789) | 0.448853 / 0.000490 (0.448363) | 0.003657 / 0.000200 (0.003457) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031612 / 0.037411 (-0.005799) | 0.116712 / 0.014526 (0.102186) | 0.126162 / 0.176557 (-0.050395) | 0.180522 / 0.737135 (-0.556614) | 0.129768 / 0.296338 (-0.166570) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433797 / 0.215209 (0.218588) | 4.353099 / 2.077655 (2.275444) | 2.117582 / 1.504120 (0.613462) | 1.934487 / 1.541195 (0.393292) | 2.016988 / 1.468490 (0.548498) | 0.531387 / 4.584777 (-4.053390) | 3.843520 / 3.745712 (0.097807) | 1.879560 / 5.269862 (-3.390301) | 1.129445 / 4.565676 (-3.436231) | 0.065952 / 0.424275 (-0.358323) | 0.011566 / 0.007607 (0.003959) | 0.533949 / 0.226044 (0.307904) | 5.327447 / 2.268929 (3.058518) | 2.572202 / 55.444624 (-52.872422) | 2.240723 / 6.876477 (-4.635753) | 2.329290 / 2.142072 (0.187217) | 0.662162 / 4.805227 (-4.143066) | 0.143191 / 6.500664 (-6.357473) | 0.065273 / 0.075469 (-0.010196) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274945 / 1.841788 (-0.566843) | 15.444511 / 8.074308 (7.370203) | 14.793524 / 10.191392 (4.602132) | 0.175607 / 0.680424 (-0.504817) | 0.017324 / 0.534201 (-0.516877) | 0.396172 / 0.579283 (-0.183111) | 0.437334 / 0.434364 (0.002970) | 0.472621 / 0.540337 (-0.067716) | 0.574888 / 1.386936 (-0.812048) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b4ab1b3ed7257b0e0ad075d7271a51835f320a5e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006976 / 0.011353 (-0.004377) | 0.004541 / 0.011008 (-0.006467) | 0.106085 / 0.038508 (0.067577) | 0.029148 / 0.023109 (0.006039) | 0.306386 / 0.275898 (0.030488) | 0.351474 / 0.323480 (0.027994) | 0.003924 / 0.007986 (-0.004062) | 0.004588 / 0.004328 (0.000260) | 0.090479 / 0.004250 (0.086229) | 0.041195 / 0.037052 (0.004142) | 0.346020 / 0.258489 (0.087531) | 0.362526 / 0.293841 (0.068685) | 0.041020 / 0.128546 (-0.087526) | 0.012536 / 0.075646 (-0.063110) | 0.333247 / 0.419271 (-0.086024) | 0.059786 / 0.043533 (0.016253) | 0.318094 / 0.255139 (0.062955) | 0.343879 / 0.283200 (0.060679) | 0.110083 / 0.141683 (-0.031600) | 1.514027 / 1.452155 (0.061872) | 1.551435 / 1.492716 (0.058719) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235401 / 0.018006 (0.217395) | 0.544292 / 0.000490 (0.543803) | 0.005284 / 0.000200 (0.005084) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025008 / 0.037411 (-0.012403) | 0.102235 / 0.014526 (0.087709) | 0.105523 / 0.176557 (-0.071034) | 0.180846 / 0.737135 (-0.556289) | 0.107078 / 0.296338 (-0.189261) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.502374 / 0.215209 (0.287165) | 5.224254 / 2.077655 (3.146600) | 1.987193 / 1.504120 (0.483073) | 1.694680 / 1.541195 (0.153485) | 1.663907 / 1.468490 (0.195417) | 0.786470 / 4.584777 (-3.798307) | 4.977895 / 3.745712 (1.232183) | 4.713451 / 5.269862 (-0.556410) | 2.298763 / 4.565676 (-2.266913) | 0.090225 / 0.424275 (-0.334051) | 0.011427 / 0.007607 (0.003820) | 0.640686 / 0.226044 (0.414641) | 6.351727 / 2.268929 (4.082798) | 2.636912 / 55.444624 (-52.807712) | 2.075566 / 6.876477 (-4.800911) | 2.080260 / 2.142072 (-0.061812) | 0.952727 / 4.805227 (-3.852500) | 0.188651 / 6.500664 (-6.312013) | 0.068997 / 0.075469 (-0.006472) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258878 / 1.841788 (-0.582910) | 15.444724 / 8.074308 (7.370416) | 17.521918 / 10.191392 (7.330526) | 0.189732 / 0.680424 (-0.490692) | 0.031084 / 0.534201 (-0.503117) | 0.445150 / 0.579283 (-0.134133) | 0.575844 / 0.434364 (0.141480) | 0.498162 / 0.540337 (-0.042176) | 0.635885 / 1.386936 (-0.751051) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007402 / 0.011353 (-0.003951) | 0.005058 / 0.011008 (-0.005950) | 0.077659 / 0.038508 (0.039151) | 0.034934 / 0.023109 (0.011825) | 0.373139 / 0.275898 (0.097241) | 0.411857 / 0.323480 (0.088377) | 0.003751 / 0.007986 (-0.004235) | 0.003634 / 0.004328 (-0.000695) | 0.075914 / 0.004250 (0.071663) | 0.037555 / 0.037052 (0.000503) | 0.387482 / 0.258489 (0.128993) | 0.434407 / 0.293841 (0.140566) | 0.040540 / 0.128546 (-0.088006) | 0.013458 / 0.075646 (-0.062189) | 0.096129 / 0.419271 (-0.323143) | 0.055369 / 0.043533 (0.011836) | 0.386564 / 0.255139 (0.131425) | 0.410417 / 0.283200 (0.127218) | 0.093265 / 0.141683 (-0.048418) | 1.432841 / 1.452155 (-0.019314) | 1.533180 / 1.492716 (0.040463) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281051 / 0.018006 (0.263045) | 0.547635 / 0.000490 (0.547146) | 0.004434 / 0.000200 (0.004234) | 0.000105 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026409 / 0.037411 (-0.011002) | 0.098586 / 0.014526 (0.084060) | 0.109223 / 0.176557 (-0.067334) | 0.165958 / 0.737135 (-0.571177) | 0.111751 / 0.296338 (-0.184587) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.542717 / 0.215209 (0.327508) | 5.530075 / 2.077655 (3.452420) | 2.351141 / 1.504120 (0.847022) | 2.021659 / 1.541195 (0.480464) | 1.964900 / 1.468490 (0.496410) | 0.819698 / 4.584777 (-3.765079) | 4.917412 / 3.745712 (1.171700) | 2.425149 / 5.269862 (-2.844712) | 1.561953 / 4.565676 (-3.003724) | 0.098417 / 0.424275 (-0.325858) | 0.012594 / 0.007607 (0.004986) | 0.717212 / 0.226044 (0.491168) | 6.994833 / 2.268929 (4.725904) | 2.997347 / 55.444624 (-52.447277) | 2.388366 / 6.876477 (-4.488111) | 2.502913 / 2.142072 (0.360841) | 1.030545 / 4.805227 (-3.774682) | 0.184844 / 6.500664 (-6.315820) | 0.076889 / 0.075469 (0.001420) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.371647 / 1.841788 (-0.470141) | 15.522995 / 8.074308 (7.448687) | 17.349823 / 10.191392 (7.158431) | 0.229709 / 0.680424 (-0.450714) | 0.023303 / 0.534201 (-0.510898) | 0.413874 / 0.579283 (-0.165409) | 0.567552 / 0.434364 (0.133188) | 0.491722 / 0.540337 (-0.048615) | 0.590640 / 1.386936 (-0.796296) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f1911ffa5d1f58f509d04fe1ddeb9d00a63f94d5 \"CML watermark\")\n"
] | 2023-06-14T09:42:46 | 2023-06-14T14:42:31 | 2023-06-14T14:34:39 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5952",
"html_url": "https://github.com/huggingface/datasets/pull/5952",
"diff_url": "https://github.com/huggingface/datasets/pull/5952.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5952.patch",
"merged_at": "2023-06-14T14:34:39"
} | following https://github.com/huggingface/datasets/pull/5944 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5952/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5952/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5996 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5996/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5996/comments | https://api.github.com/repos/huggingface/datasets/issues/5996/events | https://github.com/huggingface/datasets/pull/5996 | 1,779,294,374 | PR_kwDODunzps5UKP0i | 5,996 | Deprecate `use_auth_token` in favor of `token` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006134 / 0.011353 (-0.005219) | 0.003816 / 0.011008 (-0.007193) | 0.098226 / 0.038508 (0.059718) | 0.036830 / 0.023109 (0.013721) | 0.314551 / 0.275898 (0.038653) | 0.372251 / 0.323480 (0.048771) | 0.004762 / 0.007986 (-0.003224) | 0.003041 / 0.004328 (-0.001287) | 0.077651 / 0.004250 (0.073401) | 0.052445 / 0.037052 (0.015393) | 0.324632 / 0.258489 (0.066143) | 0.365724 / 0.293841 (0.071883) | 0.028069 / 0.128546 (-0.100477) | 0.008444 / 0.075646 (-0.067203) | 0.312767 / 0.419271 (-0.106505) | 0.047773 / 0.043533 (0.004240) | 0.305317 / 0.255139 (0.050178) | 0.332007 / 0.283200 (0.048807) | 0.018985 / 0.141683 (-0.122698) | 1.538022 / 1.452155 (0.085868) | 1.575898 / 1.492716 (0.083182) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204780 / 0.018006 (0.186774) | 0.428125 / 0.000490 (0.427635) | 0.003454 / 0.000200 (0.003254) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025064 / 0.037411 (-0.012348) | 0.099419 / 0.014526 (0.084893) | 0.111068 / 0.176557 (-0.065489) | 0.169775 / 0.737135 (-0.567361) | 0.112067 / 0.296338 (-0.184271) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429642 / 0.215209 (0.214433) | 4.275556 / 2.077655 (2.197901) | 1.914658 / 1.504120 (0.410539) | 1.706556 / 1.541195 (0.165361) | 1.754228 / 1.468490 (0.285738) | 0.563669 / 4.584777 (-4.021108) | 3.391501 / 3.745712 (-0.354211) | 1.791517 / 5.269862 (-3.478345) | 1.030704 / 4.565676 (-3.534973) | 0.070882 / 0.424275 (-0.353393) | 0.011351 / 0.007607 (0.003744) | 0.529438 / 0.226044 (0.303394) | 5.294316 / 2.268929 (3.025387) | 2.344653 / 55.444624 (-53.099972) | 1.997468 / 6.876477 (-4.879009) | 2.108932 / 2.142072 (-0.033140) | 0.676794 / 4.805227 (-4.128433) | 0.135058 / 6.500664 (-6.365607) | 0.065857 / 0.075469 (-0.009612) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231864 / 1.841788 (-0.609924) | 13.986694 / 8.074308 (5.912386) | 13.306600 / 10.191392 (3.115208) | 0.145520 / 0.680424 (-0.534904) | 0.016717 / 0.534201 (-0.517484) | 0.366303 / 0.579283 (-0.212980) | 0.391637 / 0.434364 (-0.042727) | 0.425445 / 0.540337 (-0.114892) | 0.507719 / 1.386936 (-0.879217) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006236 / 0.011353 (-0.005116) | 0.003766 / 0.011008 (-0.007242) | 0.076794 / 0.038508 (0.038286) | 0.037210 / 0.023109 (0.014101) | 0.378387 / 0.275898 (0.102489) | 0.425456 / 0.323480 (0.101977) | 0.004694 / 0.007986 (-0.003291) | 0.002921 / 0.004328 (-0.001407) | 0.076985 / 0.004250 (0.072735) | 0.052188 / 0.037052 (0.015136) | 0.394385 / 0.258489 (0.135896) | 0.432527 / 0.293841 (0.138686) | 0.029091 / 0.128546 (-0.099455) | 0.008364 / 0.075646 (-0.067282) | 0.082583 / 0.419271 (-0.336689) | 0.042928 / 0.043533 (-0.000605) | 0.375321 / 0.255139 (0.120182) | 0.391719 / 0.283200 (0.108519) | 0.019388 / 0.141683 (-0.122295) | 1.550644 / 1.452155 (0.098489) | 1.604882 / 1.492716 (0.112166) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236859 / 0.018006 (0.218853) | 0.418528 / 0.000490 (0.418039) | 0.000388 / 0.000200 (0.000188) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025548 / 0.037411 (-0.011863) | 0.100644 / 0.014526 (0.086118) | 0.109102 / 0.176557 (-0.067455) | 0.161694 / 0.737135 (-0.575441) | 0.112088 / 0.296338 (-0.184250) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.484128 / 0.215209 (0.268919) | 4.849952 / 2.077655 (2.772297) | 2.512769 / 1.504120 (1.008649) | 2.303295 / 1.541195 (0.762100) | 2.356699 / 1.468490 (0.888209) | 0.564181 / 4.584777 (-4.020596) | 3.421393 / 3.745712 (-0.324319) | 2.570875 / 5.269862 (-2.698987) | 1.474307 / 4.565676 (-3.091370) | 0.068035 / 0.424275 (-0.356240) | 0.011300 / 0.007607 (0.003693) | 0.587867 / 0.226044 (0.361823) | 5.862447 / 2.268929 (3.593519) | 3.004017 / 55.444624 (-52.440607) | 2.664989 / 6.876477 (-4.211488) | 2.740020 / 2.142072 (0.597948) | 0.680840 / 4.805227 (-4.124387) | 0.137001 / 6.500664 (-6.363663) | 0.068098 / 0.075469 (-0.007371) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.297362 / 1.841788 (-0.544426) | 14.207891 / 8.074308 (6.133583) | 14.087562 / 10.191392 (3.896170) | 0.149514 / 0.680424 (-0.530910) | 0.016566 / 0.534201 (-0.517635) | 0.367602 / 0.579283 (-0.211681) | 0.400692 / 0.434364 (-0.033671) | 0.432907 / 0.540337 (-0.107431) | 0.525924 / 1.386936 (-0.861012) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ec069feaaf6c28d4e4df76d344693b591a74c3f \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006223 / 0.011353 (-0.005130) | 0.003672 / 0.011008 (-0.007336) | 0.097451 / 0.038508 (0.058943) | 0.036243 / 0.023109 (0.013133) | 0.375650 / 0.275898 (0.099752) | 0.431652 / 0.323480 (0.108172) | 0.004758 / 0.007986 (-0.003227) | 0.002941 / 0.004328 (-0.001387) | 0.077383 / 0.004250 (0.073132) | 0.055342 / 0.037052 (0.018289) | 0.390335 / 0.258489 (0.131846) | 0.427867 / 0.293841 (0.134026) | 0.027619 / 0.128546 (-0.100927) | 0.008244 / 0.075646 (-0.067402) | 0.313499 / 0.419271 (-0.105773) | 0.054987 / 0.043533 (0.011454) | 0.394044 / 0.255139 (0.138905) | 0.398784 / 0.283200 (0.115584) | 0.026499 / 0.141683 (-0.115184) | 1.496907 / 1.452155 (0.044753) | 1.554465 / 1.492716 (0.061749) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.241197 / 0.018006 (0.223190) | 0.427856 / 0.000490 (0.427366) | 0.006264 / 0.000200 (0.006065) | 0.000218 / 0.000054 (0.000164) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025550 / 0.037411 (-0.011862) | 0.104426 / 0.014526 (0.089901) | 0.110310 / 0.176557 (-0.066246) | 0.173813 / 0.737135 (-0.563322) | 0.112129 / 0.296338 (-0.184209) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458806 / 0.215209 (0.243597) | 4.576351 / 2.077655 (2.498697) | 2.265670 / 1.504120 (0.761550) | 2.073230 / 1.541195 (0.532035) | 2.135283 / 1.468490 (0.666793) | 0.562506 / 4.584777 (-4.022271) | 3.375101 / 3.745712 (-0.370611) | 1.734393 / 5.269862 (-3.535469) | 1.026622 / 4.565676 (-3.539054) | 0.068144 / 0.424275 (-0.356131) | 0.011092 / 0.007607 (0.003485) | 0.562779 / 0.226044 (0.336734) | 5.608256 / 2.268929 (3.339328) | 2.706468 / 55.444624 (-52.738157) | 2.381607 / 6.876477 (-4.494869) | 2.451027 / 2.142072 (0.308954) | 0.671590 / 4.805227 (-4.133637) | 0.135749 / 6.500664 (-6.364915) | 0.065389 / 0.075469 (-0.010080) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244806 / 1.841788 (-0.596981) | 14.042150 / 8.074308 (5.967841) | 14.246612 / 10.191392 (4.055220) | 0.134309 / 0.680424 (-0.546114) | 0.017082 / 0.534201 (-0.517119) | 0.366043 / 0.579283 (-0.213240) | 0.400748 / 0.434364 (-0.033616) | 0.425695 / 0.540337 (-0.114643) | 0.509355 / 1.386936 (-0.877581) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006134 / 0.011353 (-0.005219) | 0.003980 / 0.011008 (-0.007028) | 0.078353 / 0.038508 (0.039845) | 0.038011 / 0.023109 (0.014902) | 0.375784 / 0.275898 (0.099886) | 0.433619 / 0.323480 (0.110139) | 0.004897 / 0.007986 (-0.003088) | 0.002981 / 0.004328 (-0.001347) | 0.077362 / 0.004250 (0.073112) | 0.056108 / 0.037052 (0.019056) | 0.395984 / 0.258489 (0.137495) | 0.427397 / 0.293841 (0.133556) | 0.029325 / 0.128546 (-0.099221) | 0.008498 / 0.075646 (-0.067148) | 0.082478 / 0.419271 (-0.336794) | 0.044085 / 0.043533 (0.000552) | 0.389923 / 0.255139 (0.134784) | 0.391180 / 0.283200 (0.107980) | 0.022452 / 0.141683 (-0.119231) | 1.507758 / 1.452155 (0.055603) | 1.530459 / 1.492716 (0.037743) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230928 / 0.018006 (0.212922) | 0.408484 / 0.000490 (0.407995) | 0.000806 / 0.000200 (0.000606) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025183 / 0.037411 (-0.012228) | 0.102292 / 0.014526 (0.087766) | 0.108142 / 0.176557 (-0.068415) | 0.161172 / 0.737135 (-0.575963) | 0.114476 / 0.296338 (-0.181862) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.482978 / 0.215209 (0.267769) | 4.816103 / 2.077655 (2.738448) | 2.505567 / 1.504120 (1.001447) | 2.302598 / 1.541195 (0.761404) | 2.371238 / 1.468490 (0.902748) | 0.567467 / 4.584777 (-4.017310) | 3.363407 / 3.745712 (-0.382306) | 1.746213 / 5.269862 (-3.523649) | 1.035468 / 4.565676 (-3.530208) | 0.068431 / 0.424275 (-0.355844) | 0.011069 / 0.007607 (0.003462) | 0.598241 / 0.226044 (0.372196) | 5.953927 / 2.268929 (3.684999) | 3.007493 / 55.444624 (-52.437132) | 2.629399 / 6.876477 (-4.247078) | 2.737201 / 2.142072 (0.595129) | 0.682456 / 4.805227 (-4.122771) | 0.137613 / 6.500664 (-6.363051) | 0.067941 / 0.075469 (-0.007528) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306015 / 1.841788 (-0.535772) | 14.359240 / 8.074308 (6.284932) | 14.187601 / 10.191392 (3.996209) | 0.138612 / 0.680424 (-0.541812) | 0.016708 / 0.534201 (-0.517493) | 0.366365 / 0.579283 (-0.212918) | 0.396982 / 0.434364 (-0.037382) | 0.426939 / 0.540337 (-0.113398) | 0.520064 / 1.386936 (-0.866872) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#21d0fd041a5eca02d3ee787396216ac613c662ac \"CML watermark\")\n",
"They use `token` and emit a deprecation warning if `use_auth_token` is passed instead (see https://github.com/huggingface/transformers/blob/78a2b19fc84ed55c65f4bf20a901edb7ceb73c5f/src/transformers/modeling_utils.py#L1933). \r\n\r\nI think we can update the `examples` scripts after merging this PR.",
"> I think we can update the examples scripts after merging this PR.\r\n\r\nWe should do a release before updated in the examples scripts no ? That's why it's an option to not have a deprecation warning until transformers and co are updated with the `token` arg",
"> We should do a release before updated in the examples scripts no ? That's why it's an option to not have a deprecation warning until transformers and co are updated with the token arg\r\n\r\nThis would avoid the warning only for the latest `datasets` release. TBH, I don't think this is worth the hassle, considering how simple it is to remove it.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007644 / 0.011353 (-0.003709) | 0.004667 / 0.011008 (-0.006341) | 0.117347 / 0.038508 (0.078839) | 0.050620 / 0.023109 (0.027510) | 0.415402 / 0.275898 (0.139504) | 0.485898 / 0.323480 (0.162418) | 0.005848 / 0.007986 (-0.002138) | 0.003736 / 0.004328 (-0.000592) | 0.089798 / 0.004250 (0.085547) | 0.069344 / 0.037052 (0.032292) | 0.441684 / 0.258489 (0.183195) | 0.468972 / 0.293841 (0.175131) | 0.036637 / 0.128546 (-0.091909) | 0.010219 / 0.075646 (-0.065427) | 0.394293 / 0.419271 (-0.024978) | 0.061462 / 0.043533 (0.017929) | 0.409448 / 0.255139 (0.154309) | 0.431557 / 0.283200 (0.148358) | 0.027795 / 0.141683 (-0.113888) | 1.837844 / 1.452155 (0.385690) | 1.862683 / 1.492716 (0.369967) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230500 / 0.018006 (0.212494) | 0.483139 / 0.000490 (0.482649) | 0.006517 / 0.000200 (0.006317) | 0.000143 / 0.000054 (0.000088) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033152 / 0.037411 (-0.004259) | 0.133673 / 0.014526 (0.119147) | 0.143853 / 0.176557 (-0.032704) | 0.215254 / 0.737135 (-0.521882) | 0.150676 / 0.296338 (-0.145662) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.503796 / 0.215209 (0.288587) | 5.049981 / 2.077655 (2.972326) | 2.399427 / 1.504120 (0.895307) | 2.167635 / 1.541195 (0.626441) | 2.257448 / 1.468490 (0.788958) | 0.641298 / 4.584777 (-3.943479) | 4.828676 / 3.745712 (1.082964) | 4.346069 / 5.269862 (-0.923793) | 2.103890 / 4.565676 (-2.461786) | 0.079115 / 0.424275 (-0.345160) | 0.013377 / 0.007607 (0.005770) | 0.621207 / 0.226044 (0.395162) | 6.190939 / 2.268929 (3.922011) | 2.920129 / 55.444624 (-52.524495) | 2.549225 / 6.876477 (-4.327252) | 2.719221 / 2.142072 (0.577149) | 0.790949 / 4.805227 (-4.014278) | 0.172032 / 6.500664 (-6.328632) | 0.077779 / 0.075469 (0.002310) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.432572 / 1.841788 (-0.409216) | 21.000031 / 8.074308 (12.925723) | 17.555093 / 10.191392 (7.363701) | 0.166646 / 0.680424 (-0.513778) | 0.020451 / 0.534201 (-0.513750) | 0.488767 / 0.579283 (-0.090516) | 0.737036 / 0.434364 (0.302672) | 0.621694 / 0.540337 (0.081356) | 0.732074 / 1.386936 (-0.654862) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008198 / 0.011353 (-0.003155) | 0.004987 / 0.011008 (-0.006021) | 0.090714 / 0.038508 (0.052206) | 0.053379 / 0.023109 (0.030270) | 0.425199 / 0.275898 (0.149301) | 0.514036 / 0.323480 (0.190556) | 0.006043 / 0.007986 (-0.001943) | 0.003888 / 0.004328 (-0.000441) | 0.088294 / 0.004250 (0.084043) | 0.073024 / 0.037052 (0.035971) | 0.435983 / 0.258489 (0.177494) | 0.514293 / 0.293841 (0.220452) | 0.039451 / 0.128546 (-0.089095) | 0.010439 / 0.075646 (-0.065207) | 0.096885 / 0.419271 (-0.322387) | 0.060165 / 0.043533 (0.016632) | 0.421053 / 0.255139 (0.165914) | 0.455545 / 0.283200 (0.172345) | 0.027234 / 0.141683 (-0.114449) | 1.768975 / 1.452155 (0.316820) | 1.842853 / 1.492716 (0.350137) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278940 / 0.018006 (0.260933) | 0.480709 / 0.000490 (0.480219) | 0.000436 / 0.000200 (0.000236) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034900 / 0.037411 (-0.002511) | 0.144893 / 0.014526 (0.130368) | 0.149567 / 0.176557 (-0.026989) | 0.213200 / 0.737135 (-0.523935) | 0.156735 / 0.296338 (-0.139604) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.535897 / 0.215209 (0.320687) | 5.336998 / 2.077655 (3.259343) | 2.685854 / 1.504120 (1.181734) | 2.470177 / 1.541195 (0.928983) | 2.547495 / 1.468490 (1.079004) | 0.642830 / 4.584777 (-3.941947) | 4.595866 / 3.745712 (0.850154) | 2.186696 / 5.269862 (-3.083165) | 1.317969 / 4.565676 (-3.247708) | 0.079268 / 0.424275 (-0.345007) | 0.013792 / 0.007607 (0.006185) | 0.662236 / 0.226044 (0.436192) | 6.604775 / 2.268929 (4.335847) | 3.355888 / 55.444624 (-52.088736) | 2.968911 / 6.876477 (-3.907565) | 3.121862 / 2.142072 (0.979790) | 0.794752 / 4.805227 (-4.010475) | 0.170800 / 6.500664 (-6.329864) | 0.078393 / 0.075469 (0.002924) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.601605 / 1.841788 (-0.240183) | 20.743553 / 8.074308 (12.669245) | 17.543968 / 10.191392 (7.352576) | 0.221884 / 0.680424 (-0.458540) | 0.020779 / 0.534201 (-0.513422) | 0.479677 / 0.579283 (-0.099606) | 0.516207 / 0.434364 (0.081843) | 0.564046 / 0.540337 (0.023709) | 0.711336 / 1.386936 (-0.675600) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#819bb4346434912eb405ce3f3e9f21dc25a2fe85 \"CML watermark\")\n",
"Yes, sounds great! Thanks",
"yup"
] | 2023-06-28T16:26:38 | 2023-07-05T15:22:20 | 2023-07-03T16:03:33 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5996",
"html_url": "https://github.com/huggingface/datasets/pull/5996",
"diff_url": "https://github.com/huggingface/datasets/pull/5996.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5996.patch",
"merged_at": "2023-07-03T16:03:33"
} | ... to be consistent with `transformers` and `huggingface_hub`. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5996/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5996/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5930 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5930/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5930/comments | https://api.github.com/repos/huggingface/datasets/issues/5930/events | https://github.com/huggingface/datasets/issues/5930 | 1,745,184,395 | I_kwDODunzps5oBWaL | 5,930 | loading private custom dataset script - authentication error | {
"login": "flckv",
"id": 103381497,
"node_id": "U_kgDOBil5-Q",
"avatar_url": "https://avatars.githubusercontent.com/u/103381497?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/flckv",
"html_url": "https://github.com/flckv",
"followers_url": "https://api.github.com/users/flckv/followers",
"following_url": "https://api.github.com/users/flckv/following{/other_user}",
"gists_url": "https://api.github.com/users/flckv/gists{/gist_id}",
"starred_url": "https://api.github.com/users/flckv/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/flckv/subscriptions",
"organizations_url": "https://api.github.com/users/flckv/orgs",
"repos_url": "https://api.github.com/users/flckv/repos",
"events_url": "https://api.github.com/users/flckv/events{/privacy}",
"received_events_url": "https://api.github.com/users/flckv/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"This issue seems to have been resolved, so I'm closing it."
] | 2023-06-07T06:58:23 | 2023-06-15T14:49:21 | 2023-06-15T14:49:20 | NONE | null | null | null | ### Describe the bug
Train model with my custom dataset stored in HuggingFace and loaded with the loading script requires authentication but I am not sure how ?
I am logged in in the terminal, in the browser. I receive this error:
/python3.8/site-packages/datasets/utils/file_utils.py", line 566, in get_from_cache
raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})")
ConnectionError: Couldn't reach https://huggingface.co/datasets/fkov/s/blob/main/data/s/train/labels `(ConnectionError('Unauthorized for URL `https://huggingface.co/datasets/fkov/s/blob/main/data/s/train/labels. Please use the parameter `**`use_auth_token=True`**` after logging in with `**`huggingface-cli login`**`'))
when I added: `use_auth_token=True` and logged in via terminal then I received error:
or the same error in different format:
raise ConnectionError(f"`Couldn't reach {url} (error {response.status_code}`)")
ConnectionError: Couldn't reach https://huggingface.co/datasets/fkov/s/blob/main/data/s/train/labels (`error 401`)
### Steps to reproduce the bug
1. cloned transformers library locally:
https://huggingface.co/docs/transformers/v4.15.0/examples :
> git clone https://github.com/huggingface/transformers
> cd transformers
> pip install .
> cd /transformers/examples/pytorch/audio-classification
> pip install -r requirements.txt
2. created **loading script**
> https://huggingface.co/docs/datasets/dataset_script added next to dataset:
3. uploaded **private custom dataset** with loading script to HuggingFace
> https://huggingface.co/docs/datasets/dataset_script
4. added dataset loading script to **local directory** in the above cloned transformers library:
> cd /transformers/examples/pytorch/audio-classification
5. logged in to HuggingFace on local terminal with :
> **huggingface-cli login**
6. run the model with the custom dataset stored on HuggingFace with code: https://github.com/huggingface/transformers/blob/main/examples/pytorch/audio-classification/README.md
cd /transformers/examples/pytorch/audio-classification
> python run_audio_classification.py \
> --model_name_or_path facebook/wav2vec2-base \
> --output_dir l/users/flck/outputs/wav2vec2-base-s \
> --overwrite_output_dir \
> --dataset_name s \
> --dataset_config_name s \
> --remove_unused_columns False \
> --do_train \
> --do_eval \
> --fp16 \
> --learning_rate 3e-5 \
> --max_length_seconds 1 \
> --attention_mask False \
> --warmup_ratio 0.1 \
> --num_train_epochs 5 \
> --per_device_train_batch_size 32 \
> --gradient_accumulation_steps 4 \
> --per_device_eval_batch_size 32 \
> --dataloader_num_workers 4 \
> --logging_strategy steps \
> --logging_steps 10 \
> --evaluation_strategy epoch \
> --save_strategy epoch \
> --load_best_model_at_end True \
> --metric_for_best_model accuracy \
> --save_total_limit 3 \
> --seed 0 \
> --push_to_hub \
> **--use_auth_token=True**
### Expected behavior
Be able to train a model the https://github.com/huggingface/transformers/blob/main/examples/pytorch/audio-classification/ run_audio_classification.py with private custom dataset stored on HuggingFace.
### Environment info
- datasets version: 2.12.0
- `transformers` version: 4.30.0.dev0
- Platform: Linux-5.4.204-ql-generic-12.0-19-x86_64-with-glibc2.17
- Python version: 3.8.12
- Huggingface_hub version: 0.15.1
- Safetensors version: 0.3.1
- PyTorch version (GPU?): 2.0.1+cu117 (True)
Versions of relevant libraries:
[pip3] numpy==1.24.3
[pip3] torch==2.0.1
[pip3] torchaudio==2.0.2
[conda] numpy 1.24.3 pypi_0 pypi
[conda] torch 2.0.1 pypi_0 pypi
[conda] torchaudio 2.0.2 pypi_0 pypi
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5930/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5930/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6079 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6079/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6079/comments | https://api.github.com/repos/huggingface/datasets/issues/6079/events | https://github.com/huggingface/datasets/issues/6079 | 1,822,597,471 | I_kwDODunzps5soqFf | 6,079 | Iterating over DataLoader based on HF datasets is stuck forever | {
"login": "arindamsarkar93",
"id": 5454868,
"node_id": "MDQ6VXNlcjU0NTQ4Njg=",
"avatar_url": "https://avatars.githubusercontent.com/u/5454868?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/arindamsarkar93",
"html_url": "https://github.com/arindamsarkar93",
"followers_url": "https://api.github.com/users/arindamsarkar93/followers",
"following_url": "https://api.github.com/users/arindamsarkar93/following{/other_user}",
"gists_url": "https://api.github.com/users/arindamsarkar93/gists{/gist_id}",
"starred_url": "https://api.github.com/users/arindamsarkar93/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/arindamsarkar93/subscriptions",
"organizations_url": "https://api.github.com/users/arindamsarkar93/orgs",
"repos_url": "https://api.github.com/users/arindamsarkar93/repos",
"events_url": "https://api.github.com/users/arindamsarkar93/events{/privacy}",
"received_events_url": "https://api.github.com/users/arindamsarkar93/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"When the process starts to hang, can you interrupt it with CTRL + C and paste the error stack trace here? ",
"Thanks @mariosasko for your prompt response, here's the stack trace:\r\n\r\n```\r\nKeyboardInterrupt Traceback (most recent call last)\r\nCell In[12], line 4\r\n 2 t = time.time()\r\n 3 iter_ = 0\r\n----> 4 for batch in train_dataloader:\r\n 5 #batch_proc = streaming_obj.collect_streaming_data_batch(batch)\r\n 6 iter_ += 1\r\n 8 if iter_ == 1:\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torch/utils/data/dataloader.py:634, in _BaseDataLoaderIter.__next__(self)\r\n 631 if self._sampler_iter is None:\r\n 632 # TODO(https://github.com/pytorch/pytorch/issues/76750)\r\n 633 self._reset() # type: ignore[call-arg]\r\n--> 634 data = self._next_data()\r\n 635 self._num_yielded += 1\r\n 636 if self._dataset_kind == _DatasetKind.Iterable and \\\r\n 637 self._IterableDataset_len_called is not None and \\\r\n 638 self._num_yielded > self._IterableDataset_len_called:\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torch/utils/data/dataloader.py:678, in _SingleProcessDataLoaderIter._next_data(self)\r\n 676 def _next_data(self):\r\n 677 index = self._next_index() # may raise StopIteration\r\n--> 678 data = self._dataset_fetcher.fetch(index) # may raise StopIteration\r\n 679 if self._pin_memory:\r\n 680 data = _utils.pin_memory.pin_memory(data, self._pin_memory_device)\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py:32, in _IterableDatasetFetcher.fetch(self, possibly_batched_index)\r\n 30 for _ in possibly_batched_index:\r\n 31 try:\r\n---> 32 data.append(next(self.dataset_iter))\r\n 33 except StopIteration:\r\n 34 self.ended = True\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/iterable_dataset.py:1353, in IterableDataset.__iter__(self)\r\n 1350 yield formatter.format_row(pa_table)\r\n 1351 return\r\n-> 1353 for key, example in ex_iterable:\r\n 1354 if self.features:\r\n 1355 # `IterableDataset` automatically fills missing columns with None.\r\n 1356 # This is done with `_apply_feature_types_on_example`.\r\n 1357 example = _apply_feature_types_on_example(\r\n 1358 example, self.features, token_per_repo_id=self._token_per_repo_id\r\n 1359 )\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/iterable_dataset.py:956, in BufferShuffledExamplesIterable.__iter__(self)\r\n 954 # this is the shuffle buffer that we keep in memory\r\n 955 mem_buffer = []\r\n--> 956 for x in self.ex_iterable:\r\n 957 if len(mem_buffer) == buffer_size: # if the buffer is full, pick and example from it\r\n 958 i = next(indices_iterator)\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/iterable_dataset.py:296, in ShuffledDataSourcesArrowExamplesIterable.__iter__(self)\r\n 294 for key, pa_table in self.generate_tables_fn(**kwargs_with_shuffled_shards):\r\n 295 for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER):\r\n--> 296 formatted_batch = formatter.format_batch(pa_subtable)\r\n 297 for example in _batch_to_examples(formatted_batch):\r\n 298 yield key, example\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/formatting/formatting.py:448, in PythonFormatter.format_batch(self, pa_table)\r\n 446 if self.lazy:\r\n 447 return LazyBatch(pa_table, self)\r\n--> 448 batch = self.python_arrow_extractor().extract_batch(pa_table)\r\n 449 batch = self.python_features_decoder.decode_batch(batch)\r\n 450 return batch\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/formatting/formatting.py:150, in PythonArrowExtractor.extract_batch(self, pa_table)\r\n 149 def extract_batch(self, pa_table: pa.Table) -> dict:\r\n--> 150 return pa_table.to_pydict()\r\n\r\nKeyboardInterrupt: \r\n```\r\n",
"Update: If i let it run, it eventually fails with:\r\n\r\n```\r\nRuntimeError Traceback (most recent call last)\r\nCell In[16], line 4\r\n 2 t = time.time()\r\n 3 iter_ = 0\r\n----> 4 for batch in train_dataloader:\r\n 5 #batch_proc = streaming_obj.collect_streaming_data_batch(batch)\r\n 6 iter_ += 1\r\n 8 if iter_ == 1:\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torch/utils/data/dataloader.py:634, in _BaseDataLoaderIter.__next__(self)\r\n 631 if self._sampler_iter is None:\r\n 632 # TODO(https://github.com/pytorch/pytorch/issues/76750)\r\n 633 self._reset() # type: ignore[call-arg]\r\n--> 634 data = self._next_data()\r\n 635 self._num_yielded += 1\r\n 636 if self._dataset_kind == _DatasetKind.Iterable and \\\r\n 637 self._IterableDataset_len_called is not None and \\\r\n 638 self._num_yielded > self._IterableDataset_len_called:\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torch/utils/data/dataloader.py:678, in _SingleProcessDataLoaderIter._next_data(self)\r\n 676 def _next_data(self):\r\n 677 index = self._next_index() # may raise StopIteration\r\n--> 678 data = self._dataset_fetcher.fetch(index) # may raise StopIteration\r\n 679 if self._pin_memory:\r\n 680 data = _utils.pin_memory.pin_memory(data, self._pin_memory_device)\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py:32, in _IterableDatasetFetcher.fetch(self, possibly_batched_index)\r\n 30 for _ in possibly_batched_index:\r\n 31 try:\r\n---> 32 data.append(next(self.dataset_iter))\r\n 33 except StopIteration:\r\n 34 self.ended = True\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/iterable_dataset.py:1360, in IterableDataset.__iter__(self)\r\n 1354 if self.features:\r\n 1355 # `IterableDataset` automatically fills missing columns with None.\r\n 1356 # This is done with `_apply_feature_types_on_example`.\r\n 1357 example = _apply_feature_types_on_example(\r\n 1358 example, self.features, token_per_repo_id=self._token_per_repo_id\r\n 1359 )\r\n-> 1360 yield format_dict(example) if format_dict else example\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/formatting/torch_formatter.py:85, in TorchFormatter.recursive_tensorize(self, data_struct)\r\n 84 def recursive_tensorize(self, data_struct: dict):\r\n---> 85 return map_nested(self._recursive_tensorize, data_struct, map_list=False)\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/utils/py_utils.py:463, in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, types, disable_tqdm, desc)\r\n 461 num_proc = 1\r\n 462 if num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length:\r\n--> 463 mapped = [\r\n 464 _single_map_nested((function, obj, types, None, True, None))\r\n 465 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)\r\n 466 ]\r\n 467 else:\r\n 468 mapped = parallel_map(function, iterable, num_proc, types, disable_tqdm, desc, _single_map_nested)\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/utils/py_utils.py:464, in <listcomp>(.0)\r\n 461 num_proc = 1\r\n 462 if num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length:\r\n 463 mapped = [\r\n--> 464 _single_map_nested((function, obj, types, None, True, None))\r\n 465 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)\r\n 466 ]\r\n 467 else:\r\n 468 mapped = parallel_map(function, iterable, num_proc, types, disable_tqdm, desc, _single_map_nested)\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/utils/py_utils.py:366, in _single_map_nested(args)\r\n 364 # Singleton first to spare some computation\r\n 365 if not isinstance(data_struct, dict) and not isinstance(data_struct, types):\r\n--> 366 return function(data_struct)\r\n 368 # Reduce logging to keep things readable in multiprocessing with tqdm\r\n 369 if rank is not None and logging.get_verbosity() < logging.WARNING:\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/formatting/torch_formatter.py:82, in TorchFormatter._recursive_tensorize(self, data_struct)\r\n 80 elif isinstance(data_struct, (list, tuple)):\r\n 81 return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])\r\n---> 82 return self._tensorize(data_struct)\r\n\r\nFile ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/datasets/formatting/torch_formatter.py:68, in TorchFormatter._tensorize(self, value)\r\n 66 if isinstance(value, PIL.Image.Image):\r\n 67 value = np.asarray(value)\r\n---> 68 return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs})\r\n\r\nRuntimeError: Could not infer dtype of decimal.Decimal\r\n```"
] | 2023-07-26T14:52:37 | 2023-07-26T15:25:07 | null | NONE | null | null | null | ### Describe the bug
I am using Amazon Sagemaker notebook (Amazon Linux 2) with python 3.10 based Conda environment.
I have a dataset in parquet format locally. When I try to iterate over it, the loader is stuck forever. Note that the same code is working for python 3.6 based conda environment seamlessly. What should be my next steps here?
### Steps to reproduce the bug
```
train_dataset = load_dataset(
"parquet", data_files = {'train': tr_data_path + '*.parquet'},
split = 'train',
streaming = True
).with_format('torch')
train_dataloader = DataLoader(train_dataset, batch_size = 512, num_workers = 32)
t = time.time()
iter_ = 0
for batch in train_dataloader:
iter_ += 1
if iter_ == 1000:
break
print (time.time() - t)
```
### Expected behavior
The snippet should work normally and load the next batch of data.
### Environment info
datasets: '2.14.0'
pyarrow: '12.0.0'
torch: '2.0.0'
Python: 3.10.10 | packaged by conda-forge | (main, Mar 24 2023, 20:08:06) [GCC 11.3.0]
!uname -r
5.10.178-162.673.amzn2.x86_64 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6079/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6079/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6037 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6037/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6037/comments | https://api.github.com/repos/huggingface/datasets/issues/6037/events | https://github.com/huggingface/datasets/issues/6037 | 1,805,887,184 | I_kwDODunzps5ro6bQ | 6,037 | Documentation links to examples are broken | {
"login": "david-waterworth",
"id": 5028974,
"node_id": "MDQ6VXNlcjUwMjg5NzQ=",
"avatar_url": "https://avatars.githubusercontent.com/u/5028974?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/david-waterworth",
"html_url": "https://github.com/david-waterworth",
"followers_url": "https://api.github.com/users/david-waterworth/followers",
"following_url": "https://api.github.com/users/david-waterworth/following{/other_user}",
"gists_url": "https://api.github.com/users/david-waterworth/gists{/gist_id}",
"starred_url": "https://api.github.com/users/david-waterworth/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/david-waterworth/subscriptions",
"organizations_url": "https://api.github.com/users/david-waterworth/orgs",
"repos_url": "https://api.github.com/users/david-waterworth/repos",
"events_url": "https://api.github.com/users/david-waterworth/events{/privacy}",
"received_events_url": "https://api.github.com/users/david-waterworth/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"These docs are outdated (version 1.2.1 is over two years old). Please refer to [this](https://huggingface.co/docs/datasets/dataset_script) version instead.\r\n\r\nInitially, we hosted datasets in this repo, but now you can find them [on the HF Hub](https://huggingface.co/datasets) (e.g. the [`ag_news`](https://huggingface.co/datasets/ag_news/blob/main/ag_news.py) script)",
"Sorry I thought I'd selected the latest version."
] | 2023-07-15T04:54:50 | 2023-07-17T22:35:14 | 2023-07-17T15:10:32 | NONE | null | null | null | ### Describe the bug
The links at the bottom of [add_dataset](https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html) to examples of specific datasets are all broken, for example
- text classification: [ag_news](https://github.com/huggingface/datasets/blob/master/datasets/ag_news/ag_news.py) (original data are in csv files)
### Steps to reproduce the bug
Click on links to examples from latest documentation
### Expected behavior
Links should be up to date - it might be more stable to link to https://huggingface.co/datasets/ag_news/blob/main/ag_news.py
### Environment info
dataset v1.2.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6037/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6037/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6058 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6058/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6058/comments | https://api.github.com/repos/huggingface/datasets/issues/6058/events | https://github.com/huggingface/datasets/issues/6058 | 1,815,131,397 | I_kwDODunzps5sMLUF | 6,058 | laion-coco download error | {
"login": "yangyijune",
"id": 54424110,
"node_id": "MDQ6VXNlcjU0NDI0MTEw",
"avatar_url": "https://avatars.githubusercontent.com/u/54424110?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yangyijune",
"html_url": "https://github.com/yangyijune",
"followers_url": "https://api.github.com/users/yangyijune/followers",
"following_url": "https://api.github.com/users/yangyijune/following{/other_user}",
"gists_url": "https://api.github.com/users/yangyijune/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yangyijune/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yangyijune/subscriptions",
"organizations_url": "https://api.github.com/users/yangyijune/orgs",
"repos_url": "https://api.github.com/users/yangyijune/repos",
"events_url": "https://api.github.com/users/yangyijune/events{/privacy}",
"received_events_url": "https://api.github.com/users/yangyijune/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"This can also mean one of the files was not downloaded correctly.\r\n\r\nWe log an erroneous file's name before raising the reader's error, so this is how you can find the problematic file. Then, you should delete it and call `load_dataset` again.\r\n\r\n(I checked all the uploaded files, and they seem to be valid Parquet files, so I don't think this is a bug on their side)\r\n"
] | 2023-07-21T04:24:15 | 2023-07-22T01:42:06 | 2023-07-22T01:42:06 | NONE | null | null | null | ### Describe the bug
The full trace:
```
/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/load.py:1744: FutureWarning: 'ignore_verifications' was de
precated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.
You can remove this warning by passing 'verification_mode=no_checks' instead.
warnings.warn(
Downloading and preparing dataset parquet/laion--laion-coco to /home/bian/.cache/huggingface/datasets/laion___parquet/laion--
laion-coco-cb4205d7f1863066/0.0.0/bcacc8bdaa0614a5d73d0344c813275e590940c6ea8bc569da462847103a1afd...
Downloading data: 100%|█| 1.89G/1.89G [04:57<00:00,
Downloading data files: 100%|█| 1/1 [04:59<00:00, 2
Extracting data files: 100%|█| 1/1 [00:00<00:00, 13
Generating train split: 0 examples [00:00, ? examples/s]<_io.BufferedReader
name='/home/bian/.cache/huggingface/datasets/downlo
ads/26d7a016d25bbd9443115cfa3092136e8eb2f1f5bcd4154
0cb9234572927f04c'>
Traceback (most recent call last):
File "/home/bian/data/ZOC/download_laion_coco.py", line 4, in <module>
dataset = load_dataset("laion/laion-coco", ignore_verifications=True)
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset
builder_instance.download_and_prepare(
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare
self._download_and_prepare(
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/builder.py", line 986, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/builder.py", line 1748, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/builder.py", line 1842, in _prepare_split_single
generator = self._generate_tables(**gen_kwargs)
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py", line 67, in
_generate_tables
parquet_file = pq.ParquetFile(f)
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/pyarrow/parquet/core.py", line 323, in __init__
self.reader.open(
File "pyarrow/_parquet.pyx", line 1227, in pyarrow._parquet.ParquetReader.open
File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file
.
```
I have carefully followed the instructions in #5264 but still get the same error.
Other helpful information:
```
ds = load_dataset("parquet", data_files=
...: "https://huggingface.co/datasets/laion/l
...: aion-coco/resolve/d22869de3ccd39dfec1507
...: f7ded32e4a518dad24/part-00000-2256f782-1
...: 26f-4dc6-b9c6-e6757637749d-c000.snappy.p
...: arquet")
Found cached dataset parquet (/home/bian/.cache/huggingface/datasets/parquet/default-a02eea00aeb08b0e/0.0.0/bb8ccf89d9ee38581ff5e51506d721a9b37f14df8090dc9b2d8fb4a40957833f)
100%|██████████████| 1/1 [00:00<00:00, 4.55it/s]
```
### Steps to reproduce the bug
```
from datasets import load_dataset
dataset = load_dataset("laion/laion-coco", ignore_verifications=True/False)
```
### Expected behavior
Properly load Laion-coco dataset
### Environment info
datasets==2.11.0 torch==1.12.1 python 3.10 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6058/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6058/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6063 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6063/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6063/comments | https://api.github.com/repos/huggingface/datasets/issues/6063/events | https://github.com/huggingface/datasets/pull/6063 | 1,818,679,485 | PR_kwDODunzps5WPtxi | 6,063 | Release: 2.14.0 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007703 / 0.011353 (-0.003650) | 0.004699 / 0.011008 (-0.006309) | 0.090195 / 0.038508 (0.051687) | 0.119165 / 0.023109 (0.096056) | 0.361435 / 0.275898 (0.085537) | 0.404429 / 0.323480 (0.080949) | 0.006172 / 0.007986 (-0.001814) | 0.003932 / 0.004328 (-0.000397) | 0.068384 / 0.004250 (0.064133) | 0.066730 / 0.037052 (0.029678) | 0.360978 / 0.258489 (0.102489) | 0.401301 / 0.293841 (0.107460) | 0.032836 / 0.128546 (-0.095710) | 0.010821 / 0.075646 (-0.064825) | 0.294526 / 0.419271 (-0.124745) | 0.068751 / 0.043533 (0.025218) | 0.368427 / 0.255139 (0.113288) | 0.376969 / 0.283200 (0.093770) | 0.040538 / 0.141683 (-0.101145) | 1.509966 / 1.452155 (0.057811) | 1.564885 / 1.492716 (0.072169) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292243 / 0.018006 (0.274237) | 0.662067 / 0.000490 (0.661577) | 0.004966 / 0.000200 (0.004766) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029050 / 0.037411 (-0.008361) | 0.099880 / 0.014526 (0.085354) | 0.109277 / 0.176557 (-0.067280) | 0.167877 / 0.737135 (-0.569258) | 0.110770 / 0.296338 (-0.185569) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395742 / 0.215209 (0.180533) | 3.944152 / 2.077655 (1.866498) | 1.875295 / 1.504120 (0.371175) | 1.705088 / 1.541195 (0.163893) | 1.884443 / 1.468490 (0.415953) | 0.497243 / 4.584777 (-4.087534) | 3.749287 / 3.745712 (0.003575) | 4.418826 / 5.269862 (-0.851035) | 2.481149 / 4.565676 (-2.084528) | 0.058260 / 0.424275 (-0.366015) | 0.007744 / 0.007607 (0.000137) | 0.472531 / 0.226044 (0.246486) | 4.716022 / 2.268929 (2.447094) | 2.480446 / 55.444624 (-52.964179) | 2.163098 / 6.876477 (-4.713379) | 2.217555 / 2.142072 (0.075482) | 0.601965 / 4.805227 (-4.203262) | 0.139364 / 6.500664 (-6.361301) | 0.067097 / 0.075469 (-0.008372) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.330537 / 1.841788 (-0.511251) | 22.176270 / 8.074308 (14.101962) | 16.224981 / 10.191392 (6.033589) | 0.173708 / 0.680424 (-0.506715) | 0.019402 / 0.534201 (-0.514799) | 0.401994 / 0.579283 (-0.177289) | 0.432597 / 0.434364 (-0.001767) | 0.489933 / 0.540337 (-0.050404) | 0.672334 / 1.386936 (-0.714602) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008622 / 0.011353 (-0.002731) | 0.004609 / 0.011008 (-0.006399) | 0.067791 / 0.038508 (0.029283) | 0.112770 / 0.023109 (0.089661) | 0.380939 / 0.275898 (0.105041) | 0.416940 / 0.323480 (0.093460) | 0.006170 / 0.007986 (-0.001815) | 0.003876 / 0.004328 (-0.000452) | 0.066227 / 0.004250 (0.061976) | 0.073132 / 0.037052 (0.036080) | 0.390120 / 0.258489 (0.131631) | 0.420893 / 0.293841 (0.127052) | 0.033235 / 0.128546 (-0.095311) | 0.009659 / 0.075646 (-0.065987) | 0.072668 / 0.419271 (-0.346604) | 0.051333 / 0.043533 (0.007801) | 0.393828 / 0.255139 (0.138689) | 0.412376 / 0.283200 (0.129176) | 0.027760 / 0.141683 (-0.113923) | 1.494369 / 1.452155 (0.042214) | 1.592862 / 1.492716 (0.100145) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.345376 / 0.018006 (0.327369) | 0.609399 / 0.000490 (0.608909) | 0.000546 / 0.000200 (0.000346) | 0.000061 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035601 / 0.037411 (-0.001810) | 0.106527 / 0.014526 (0.092001) | 0.114388 / 0.176557 (-0.062168) | 0.175607 / 0.737135 (-0.561529) | 0.113009 / 0.296338 (-0.183329) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417237 / 0.215209 (0.202028) | 4.136329 / 2.077655 (2.058675) | 2.147134 / 1.504120 (0.643014) | 2.009501 / 1.541195 (0.468306) | 2.139499 / 1.468490 (0.671009) | 0.491593 / 4.584777 (-4.093184) | 3.766734 / 3.745712 (0.021022) | 5.652446 / 5.269862 (0.382585) | 3.021654 / 4.565676 (-1.544022) | 0.058458 / 0.424275 (-0.365817) | 0.008271 / 0.007607 (0.000664) | 0.488229 / 0.226044 (0.262184) | 4.861343 / 2.268929 (2.592415) | 2.694142 / 55.444624 (-52.750482) | 2.489130 / 6.876477 (-4.387346) | 2.679376 / 2.142072 (0.537304) | 0.589959 / 4.805227 (-4.215268) | 0.137939 / 6.500664 (-6.362725) | 0.066833 / 0.075469 (-0.008636) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.444871 / 1.841788 (-0.396916) | 22.874961 / 8.074308 (14.800653) | 15.842130 / 10.191392 (5.650738) | 0.175529 / 0.680424 (-0.504895) | 0.019024 / 0.534201 (-0.515177) | 0.406551 / 0.579283 (-0.172732) | 0.430335 / 0.434364 (-0.004029) | 0.475750 / 0.540337 (-0.064587) | 0.624836 / 1.386936 (-0.762100) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dabbb7467f49fd22ae1a43cc577eb43008d63ee8 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006068 / 0.011353 (-0.005285) | 0.003694 / 0.011008 (-0.007315) | 0.080321 / 0.038508 (0.041813) | 0.061738 / 0.023109 (0.038629) | 0.329675 / 0.275898 (0.053777) | 0.364008 / 0.323480 (0.040528) | 0.004722 / 0.007986 (-0.003263) | 0.002857 / 0.004328 (-0.001471) | 0.062447 / 0.004250 (0.058197) | 0.047006 / 0.037052 (0.009953) | 0.335730 / 0.258489 (0.077241) | 0.373047 / 0.293841 (0.079206) | 0.027273 / 0.128546 (-0.101274) | 0.007979 / 0.075646 (-0.067667) | 0.262693 / 0.419271 (-0.156579) | 0.045416 / 0.043533 (0.001883) | 0.340774 / 0.255139 (0.085635) | 0.359667 / 0.283200 (0.076468) | 0.020848 / 0.141683 (-0.120835) | 1.450110 / 1.452155 (-0.002045) | 1.489511 / 1.492716 (-0.003206) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185090 / 0.018006 (0.167084) | 0.429823 / 0.000490 (0.429334) | 0.000703 / 0.000200 (0.000503) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024398 / 0.037411 (-0.013013) | 0.072983 / 0.014526 (0.058457) | 0.084012 / 0.176557 (-0.092544) | 0.146160 / 0.737135 (-0.590975) | 0.084068 / 0.296338 (-0.212270) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432204 / 0.215209 (0.216995) | 4.320593 / 2.077655 (2.242939) | 2.261260 / 1.504120 (0.757140) | 2.087148 / 1.541195 (0.545954) | 2.144520 / 1.468490 (0.676029) | 0.501477 / 4.584777 (-4.083300) | 3.119557 / 3.745712 (-0.626156) | 3.572527 / 5.269862 (-1.697335) | 2.208836 / 4.565676 (-2.356840) | 0.057232 / 0.424275 (-0.367043) | 0.006494 / 0.007607 (-0.001113) | 0.508135 / 0.226044 (0.282091) | 5.090416 / 2.268929 (2.821488) | 2.739800 / 55.444624 (-52.704824) | 2.416105 / 6.876477 (-4.460372) | 2.616037 / 2.142072 (0.473965) | 0.583730 / 4.805227 (-4.221497) | 0.124312 / 6.500664 (-6.376352) | 0.060760 / 0.075469 (-0.014709) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256097 / 1.841788 (-0.585691) | 18.326073 / 8.074308 (10.251765) | 13.859173 / 10.191392 (3.667781) | 0.143639 / 0.680424 (-0.536785) | 0.016649 / 0.534201 (-0.517552) | 0.331671 / 0.579283 (-0.247612) | 0.365370 / 0.434364 (-0.068994) | 0.392753 / 0.540337 (-0.147584) | 0.549302 / 1.386936 (-0.837634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006054 / 0.011353 (-0.005299) | 0.003641 / 0.011008 (-0.007367) | 0.063109 / 0.038508 (0.024601) | 0.060482 / 0.023109 (0.037372) | 0.404047 / 0.275898 (0.128149) | 0.425436 / 0.323480 (0.101956) | 0.004603 / 0.007986 (-0.003382) | 0.002905 / 0.004328 (-0.001423) | 0.063207 / 0.004250 (0.058956) | 0.048248 / 0.037052 (0.011196) | 0.404325 / 0.258489 (0.145836) | 0.432652 / 0.293841 (0.138811) | 0.027630 / 0.128546 (-0.100916) | 0.008062 / 0.075646 (-0.067584) | 0.068367 / 0.419271 (-0.350905) | 0.042169 / 0.043533 (-0.001364) | 0.384903 / 0.255139 (0.129764) | 0.418617 / 0.283200 (0.135417) | 0.020767 / 0.141683 (-0.120915) | 1.463606 / 1.452155 (0.011451) | 1.512081 / 1.492716 (0.019365) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229601 / 0.018006 (0.211594) | 0.417878 / 0.000490 (0.417388) | 0.000373 / 0.000200 (0.000173) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026354 / 0.037411 (-0.011057) | 0.078100 / 0.014526 (0.063574) | 0.087122 / 0.176557 (-0.089434) | 0.140017 / 0.737135 (-0.597118) | 0.089923 / 0.296338 (-0.206415) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422405 / 0.215209 (0.207196) | 4.237383 / 2.077655 (2.159728) | 2.161104 / 1.504120 (0.656984) | 1.982337 / 1.541195 (0.441142) | 2.050216 / 1.468490 (0.581726) | 0.499281 / 4.584777 (-4.085496) | 2.996953 / 3.745712 (-0.748759) | 5.027069 / 5.269862 (-0.242792) | 2.804703 / 4.565676 (-1.760974) | 0.057707 / 0.424275 (-0.366568) | 0.006809 / 0.007607 (-0.000798) | 0.495196 / 0.226044 (0.269152) | 4.946593 / 2.268929 (2.677665) | 2.598965 / 55.444624 (-52.845660) | 2.349871 / 6.876477 (-4.526606) | 2.451665 / 2.142072 (0.309593) | 0.592314 / 4.805227 (-4.212913) | 0.125685 / 6.500664 (-6.374979) | 0.063252 / 0.075469 (-0.012217) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.325422 / 1.841788 (-0.516366) | 18.521059 / 8.074308 (10.446751) | 14.046757 / 10.191392 (3.855365) | 0.133009 / 0.680424 (-0.547415) | 0.017097 / 0.534201 (-0.517104) | 0.339804 / 0.579283 (-0.239479) | 0.345464 / 0.434364 (-0.088900) | 0.387623 / 0.540337 (-0.152714) | 0.519880 / 1.386936 (-0.867056) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#88896a7b28610ace95e444b94f9a4bc332cc1ee3 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008671 / 0.011353 (-0.002682) | 0.004681 / 0.011008 (-0.006327) | 0.107517 / 0.038508 (0.069008) | 0.078846 / 0.023109 (0.055737) | 0.449745 / 0.275898 (0.173847) | 0.504075 / 0.323480 (0.180596) | 0.005837 / 0.007986 (-0.002148) | 0.004031 / 0.004328 (-0.000297) | 0.092021 / 0.004250 (0.087771) | 0.065954 / 0.037052 (0.028902) | 0.442082 / 0.258489 (0.183593) | 0.529349 / 0.293841 (0.235508) | 0.052527 / 0.128546 (-0.076019) | 0.013854 / 0.075646 (-0.061792) | 0.367315 / 0.419271 (-0.051956) | 0.068731 / 0.043533 (0.025199) | 0.494733 / 0.255139 (0.239594) | 0.472801 / 0.283200 (0.189601) | 0.036791 / 0.141683 (-0.104892) | 1.877648 / 1.452155 (0.425493) | 1.928399 / 1.492716 (0.435683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231910 / 0.018006 (0.213904) | 0.553464 / 0.000490 (0.552974) | 0.011915 / 0.000200 (0.011715) | 0.000378 / 0.000054 (0.000324) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028232 / 0.037411 (-0.009179) | 0.091441 / 0.014526 (0.076916) | 0.110394 / 0.176557 (-0.066162) | 0.187638 / 0.737135 (-0.549497) | 0.111810 / 0.296338 (-0.184529) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.599987 / 0.215209 (0.384778) | 6.008709 / 2.077655 (3.931054) | 2.518769 / 1.504120 (1.014650) | 2.197029 / 1.541195 (0.655834) | 2.217165 / 1.468490 (0.748675) | 0.894939 / 4.584777 (-3.689837) | 5.001217 / 3.745712 (1.255505) | 4.636482 / 5.269862 (-0.633379) | 3.237613 / 4.565676 (-1.328063) | 0.104227 / 0.424275 (-0.320048) | 0.008504 / 0.007607 (0.000897) | 0.750190 / 0.226044 (0.524145) | 7.514571 / 2.268929 (5.245642) | 3.358003 / 55.444624 (-52.086621) | 2.585649 / 6.876477 (-4.290827) | 2.731129 / 2.142072 (0.589056) | 1.088828 / 4.805227 (-3.716400) | 0.217308 / 6.500664 (-6.283356) | 0.076410 / 0.075469 (0.000941) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.620087 / 1.841788 (-0.221701) | 23.145743 / 8.074308 (15.071435) | 20.583403 / 10.191392 (10.392011) | 0.225467 / 0.680424 (-0.454956) | 0.029063 / 0.534201 (-0.505138) | 0.480563 / 0.579283 (-0.098720) | 0.539083 / 0.434364 (0.104719) | 0.563787 / 0.540337 (0.023449) | 0.782902 / 1.386936 (-0.604034) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010113 / 0.011353 (-0.001239) | 0.004997 / 0.011008 (-0.006011) | 0.082974 / 0.038508 (0.044466) | 0.090375 / 0.023109 (0.067266) | 0.440273 / 0.275898 (0.164375) | 0.476939 / 0.323480 (0.153459) | 0.005955 / 0.007986 (-0.002031) | 0.004375 / 0.004328 (0.000046) | 0.080459 / 0.004250 (0.076209) | 0.061787 / 0.037052 (0.024734) | 0.477211 / 0.258489 (0.218722) | 0.487164 / 0.293841 (0.193323) | 0.054198 / 0.128546 (-0.074348) | 0.013945 / 0.075646 (-0.061701) | 0.093006 / 0.419271 (-0.326266) | 0.062685 / 0.043533 (0.019152) | 0.461373 / 0.255139 (0.206234) | 0.475766 / 0.283200 (0.192567) | 0.032059 / 0.141683 (-0.109623) | 1.857989 / 1.452155 (0.405834) | 1.837993 / 1.492716 (0.345277) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243048 / 0.018006 (0.225042) | 0.535850 / 0.000490 (0.535360) | 0.007204 / 0.000200 (0.007004) | 0.000104 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032584 / 0.037411 (-0.004827) | 0.098151 / 0.014526 (0.083625) | 0.109691 / 0.176557 (-0.066866) | 0.172803 / 0.737135 (-0.564333) | 0.110469 / 0.296338 (-0.185869) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.635086 / 0.215209 (0.419877) | 6.500864 / 2.077655 (4.423210) | 2.996727 / 1.504120 (1.492607) | 2.537218 / 1.541195 (0.996023) | 2.572310 / 1.468490 (1.103820) | 0.870868 / 4.584777 (-3.713909) | 4.989744 / 3.745712 (1.244032) | 4.422174 / 5.269862 (-0.847687) | 2.935874 / 4.565676 (-1.629803) | 0.097118 / 0.424275 (-0.327157) | 0.009360 / 0.007607 (0.001753) | 0.790447 / 0.226044 (0.564403) | 7.859519 / 2.268929 (5.590591) | 3.975616 / 55.444624 (-51.469009) | 3.018271 / 6.876477 (-3.858206) | 3.111173 / 2.142072 (0.969101) | 1.085577 / 4.805227 (-3.719651) | 0.225719 / 6.500664 (-6.274945) | 0.080576 / 0.075469 (0.005107) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.802284 / 1.841788 (-0.039504) | 23.487921 / 8.074308 (15.413613) | 20.595171 / 10.191392 (10.403779) | 0.196610 / 0.680424 (-0.483814) | 0.027483 / 0.534201 (-0.506718) | 0.485840 / 0.579283 (-0.093443) | 0.542661 / 0.434364 (0.108297) | 0.580602 / 0.540337 (0.040265) | 0.768195 / 1.386936 (-0.618741) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#88896a7b28610ace95e444b94f9a4bc332cc1ee3 \"CML watermark\")\n"
] | 2023-07-24T15:41:19 | 2023-07-24T16:05:16 | 2023-07-24T15:47:51 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6063",
"html_url": "https://github.com/huggingface/datasets/pull/6063",
"diff_url": "https://github.com/huggingface/datasets/pull/6063.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6063.patch",
"merged_at": "2023-07-24T15:47:51"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6063/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6063/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6012 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6012/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6012/comments | https://api.github.com/repos/huggingface/datasets/issues/6012/events | https://github.com/huggingface/datasets/issues/6012 | 1,795,575,432 | I_kwDODunzps5rBk6I | 6,012 | [FR] Transform Chaining, Lazy Mapping | {
"login": "NightMachinery",
"id": 36224762,
"node_id": "MDQ6VXNlcjM2MjI0NzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/36224762?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/NightMachinery",
"html_url": "https://github.com/NightMachinery",
"followers_url": "https://api.github.com/users/NightMachinery/followers",
"following_url": "https://api.github.com/users/NightMachinery/following{/other_user}",
"gists_url": "https://api.github.com/users/NightMachinery/gists{/gist_id}",
"starred_url": "https://api.github.com/users/NightMachinery/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NightMachinery/subscriptions",
"organizations_url": "https://api.github.com/users/NightMachinery/orgs",
"repos_url": "https://api.github.com/users/NightMachinery/repos",
"events_url": "https://api.github.com/users/NightMachinery/events{/privacy}",
"received_events_url": "https://api.github.com/users/NightMachinery/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"You can use `with_transform` to get a new dataset object.\r\n\r\nSupport for lazy `map` has already been discussed [here](https://github.com/huggingface/datasets/issues/3385) a little bit. Personally, I'm not a fan, as this would make `map` even more complex. ",
"> You can use `with_transform` to get a new dataset object.\r\n> \r\n> Support for lazy `map` has already been discussed [here](https://github.com/huggingface/datasets/issues/3385) a little bit. Personally, I'm not a fan, as this would make `map` even more complex.\r\n\r\nI read about IterableDataset, and it seems to have lazy mapping. But I can't figure out how to convert an IterableDataset into a normal one when needed.\r\n\r\n`with_transform` still does not chain AFAIU.",
"> I read about IterableDataset, and it seems to have lazy mapping. But I can't figure out how to convert an IterableDataset into a normal one when needed.\r\n\r\nYou must cache an `IterableDataset` to disk to load it as a `Dataset`. One way to do this is with `Dataset.from_generator`:\r\n```python\r\nfrom functools import partial\r\nfrom datasets import Dataset\r\n\r\ndef gen_from_iterable_dataset(iterable_ds)\r\n yield from iterable_ds\r\n\r\nds = Dataset.from_generator(partial(gen_from_iterable_dataset, iterable_ds), features=iterable_ds.features})\r\n```\r\n\r\n> with_transform still does not chain AFAIU.\r\n\r\nYes, not supported yet - the solution is to combine the transforms into a single one.",
"I wonder if it would be beneficial to have a dedicated method to do that ? Maybe a `.save_to_disk()` so that the user can reload the resulting dataset later ?",
"> ```python\r\n> from functools import partial\r\n> from datasets import Dataset\r\n> \r\n> def gen_from_iterable_dataset(iterable_ds)\r\n> yield from iterable_ds\r\n> \r\n> ds = Dataset.from_generator(partial(gen_from_iterable_dataset, iterable_ds), features=iterable_ds.features})\r\n> ```\r\n\r\n@mariosasko With these complex mapping functions, what hash will be used to cache this dataset?\r\n",
"The params passed to `Dataset.from_generator` will be used to compute the hash (`partial` encapsulates the `iterable_ds` value, so changing it will also change the hash)"
] | 2023-07-09T21:40:21 | 2023-07-14T13:12:40 | null | CONTRIBUTOR | null | null | null | ### Feature request
Currently using a `map` call processes and duplicates the whole dataset, which takes both time and disk space.
The solution is to allow lazy mapping, which is essentially a saved chain of transforms that are applied on the fly whenever a slice of the dataset is requested.
The API should look like `map`, as `set_transform` changes the current dataset while `map` returns another dataset.
### Motivation
Lazy processing allows lower disk usage and faster experimentation.
### Your contribution
_ | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6012/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6012/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6003 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6003/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6003/comments | https://api.github.com/repos/huggingface/datasets/issues/6003/events | https://github.com/huggingface/datasets/issues/6003 | 1,786,554,110 | I_kwDODunzps5qfKb- | 6,003 | interleave_datasets & DataCollatorForLanguageModeling having a conflict ? | {
"login": "PonteIneptique",
"id": 1929830,
"node_id": "MDQ6VXNlcjE5Mjk4MzA=",
"avatar_url": "https://avatars.githubusercontent.com/u/1929830?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/PonteIneptique",
"html_url": "https://github.com/PonteIneptique",
"followers_url": "https://api.github.com/users/PonteIneptique/followers",
"following_url": "https://api.github.com/users/PonteIneptique/following{/other_user}",
"gists_url": "https://api.github.com/users/PonteIneptique/gists{/gist_id}",
"starred_url": "https://api.github.com/users/PonteIneptique/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/PonteIneptique/subscriptions",
"organizations_url": "https://api.github.com/users/PonteIneptique/orgs",
"repos_url": "https://api.github.com/users/PonteIneptique/repos",
"events_url": "https://api.github.com/users/PonteIneptique/events{/privacy}",
"received_events_url": "https://api.github.com/users/PonteIneptique/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-07-03T17:15:31 | 2023-07-03T17:15:31 | null | NONE | null | null | null | ### Describe the bug
Hi everyone :)
I have two local & custom datasets (1 "sentence" per line) which I split along the 95/5 lines for pre-training a Bert model. I use a modified version of `run_mlm.py` in order to be able to make use of `interleave_dataset`:
- `tokenize()` runs fine
- `group_text()` runs fine
Everytime, on step 19, I get
```pytb
File "env/lib/python3.9/site-packages/transformers/data/data_collator.py", line 779, in torch_mask_tokens
inputs[indices_random] = random_words[indices_random]
RuntimeError: Index put requires the source and destination dtypes match, got Float for the destination and Long for the source.
```
I tried:
- training without interleave on dataset 1, it runs
- training without interleave on dataset 2, it runs
- training without `.to_iterable_dataset()`, it hangs then crash
- training without group_text() and padding to max_length seemed to fix the issue, but who knows if this was just because it was an issue that would come much later in terms of steps.
I might have coded something wrong, but I don't get what
### Steps to reproduce the bug
I have this function:
```py
def build_dataset(path: str, percent: str):
dataset = load_dataset(
"text",
data_files={"train": [path]},
split=f"train[{percent}]"
)
dataset = dataset.map(
lambda examples: tokenize(examples["text"]),
batched=True,
num_proc=num_proc,
)
dataset = dataset.map(
group_texts,
batched=True,
num_proc=num_proc,
desc=f"Grouping texts in chunks of {tokenizer.max_seq_length}",
remove_columns=["text"]
)
print(len(dataset))
return dataset.to_iterable_dataset()
```
I hardcoded group_text:
```py
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, and if the total_length < max_seq_length we exclude this batch and return an empty dict.
# We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
total_length = (total_length // 512) * 512
# Split by chunks of max_len.
result = {
k: [t[i: i + 512] for i in range(0, total_length, 512)]
for k, t in concatenated_examples.items()
}
# result = {k: [el for el in elements if el] for k, elements in result.items()}
return result
```
And then I build datasets using the following code:
```py
train1 = build_dataset("d1.txt", ":95%")
train2 = build_dataset("d2.txt", ":95%")
dev1 = build_dataset("d1.txt", "95%:")
dev2 = build_dataset("d2.txt", "95%:")
```
and finally I run
```py
train_dataset = interleave_datasets(
[train1, train2],
probabilities=[0.8, 0.2],
seed=42
)
eval_dataset = interleave_datasets(
[dev1, dev2],
probabilities=[0.8, 0.2],
seed=42
)
```
Then I run the training part which remains mostly untouched:
> CUDA_VISIBLE_DEVICES=1 python custom_dataset.py --model_type bert --per_device_train_batch_size 32 --do_train --output_dir /var/mlm/training-bert/model --max_seq_length 512 --save_steps 10000 --save_total_limit 3 --auto_find_batch_size --logging_dir ./logs-bert --learning_rate 0.0001 --do_train --num_train_epochs 25 --warmup_steps 10000 --max_step 45000 --fp16
### Expected behavior
The model should then train normally, but fails every time at the same step (19).
printing the variables at `inputs[indices_random] = random_words[indices_random]` shows a magnificient empty tensor (, 32) [if I remember well]
### Environment info
transformers[torch] 4.30.2
Ubuntu
A100 0 CUDA 12
Driver Version: 525.116.04 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6003/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6003/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5968 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5968/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5968/comments | https://api.github.com/repos/huggingface/datasets/issues/5968/events | https://github.com/huggingface/datasets/issues/5968 | 1,765,252,561 | I_kwDODunzps5pN53R | 5,968 | Common Voice datasets still need `use_auth_token=True` | {
"login": "patrickvonplaten",
"id": 23423619,
"node_id": "MDQ6VXNlcjIzNDIzNjE5",
"avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/patrickvonplaten",
"html_url": "https://github.com/patrickvonplaten",
"followers_url": "https://api.github.com/users/patrickvonplaten/followers",
"following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}",
"gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}",
"starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions",
"organizations_url": "https://api.github.com/users/patrickvonplaten/orgs",
"repos_url": "https://api.github.com/users/patrickvonplaten/repos",
"events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}",
"received_events_url": "https://api.github.com/users/patrickvonplaten/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"cc @pcuenca as well. \r\n\r\nNot super urgent btw",
"The issue commes from the dataset itself and is not related to the `datasets` lib\r\n\r\nsee https://huggingface.co/datasets/mozilla-foundation/common_voice_6_1/blob/2c475b3b88e0f2e5828f830a4b91618a25ff20b7/common_voice_6_1.py#L148-L152",
"Let's remove these lines in the dataset no? cc @anton-l @Vaibhavs10 "
] | 2023-06-20T11:58:37 | 2023-06-21T10:08:37 | null | MEMBER | null | null | null | ### Describe the bug
We don't need to pass `use_auth_token=True` anymore to download gated datasets or models, so the following should work if correctly logged in.
```py
from datasets import load_dataset
load_dataset("mozilla-foundation/common_voice_6_1", "tr", split="train+validation")
```
However it throws an error - probably because something weird is hardcoded into the dataset loading script.
### Steps to reproduce the bug
1.)
```
huggingface-cli login
```
2.) Make sure that you have accepted the license here:
https://huggingface.co/datasets/mozilla-foundation/common_voice_6_1
3.) Run:
```py
from datasets import load_dataset
load_dataset("mozilla-foundation/common_voice_6_1", "tr", split="train+validation")
```
4.) You'll get:
```
File ~/hf/lib/python3.10/site-packages/datasets/builder.py:963, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
961 split_dict = SplitDict(dataset_name=self.name)
962 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs)
--> 963 split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
965 # Checksums verification
966 if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums:
File ~/.cache/huggingface/modules/datasets_modules/datasets/mozilla-foundation--common_voice_6_1/f4d7854c466f5bd4908988dbd39044ec4fc634d89e0515ab0c51715c0127ffe3/common_voice_6_1.py:150, in CommonVoice._split_generators(self, dl_manager)
148 hf_auth_token = dl_manager.download_config.use_auth_token
149 if hf_auth_token is None:
--> 150 raise ConnectionError(
151 "Please set use_auth_token=True or use_auth_token='<TOKEN>' to download this dataset"
152 )
154 bundle_url_template = STATS["bundleURLTemplate"]
155 bundle_version = bundle_url_template.split("/")[0]
ConnectionError: Please set use_auth_token=True or use_auth_token='<TOKEN>' to download this dataset
```
### Expected behavior
One should not have to pass `use_auth_token=True`. Also see discussion here: https://github.com/huggingface/blog/pull/1243#discussion_r1235131150
### Environment info
```
- `datasets` version: 2.13.0
- Platform: Linux-6.2.0-76060200-generic-x86_64-with-glibc2.35
- Python version: 3.10.6
- Huggingface_hub version: 0.16.0.dev0
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5968/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5968/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6048 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6048/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6048/comments | https://api.github.com/repos/huggingface/datasets/issues/6048/events | https://github.com/huggingface/datasets/issues/6048 | 1,809,629,346 | I_kwDODunzps5r3MCi | 6,048 | when i use datasets.load_dataset, i encounter the http connect error! | {
"login": "yangy1992",
"id": 137855591,
"node_id": "U_kgDOCDeCZw",
"avatar_url": "https://avatars.githubusercontent.com/u/137855591?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yangy1992",
"html_url": "https://github.com/yangy1992",
"followers_url": "https://api.github.com/users/yangy1992/followers",
"following_url": "https://api.github.com/users/yangy1992/following{/other_user}",
"gists_url": "https://api.github.com/users/yangy1992/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yangy1992/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yangy1992/subscriptions",
"organizations_url": "https://api.github.com/users/yangy1992/orgs",
"repos_url": "https://api.github.com/users/yangy1992/repos",
"events_url": "https://api.github.com/users/yangy1992/events{/privacy}",
"received_events_url": "https://api.github.com/users/yangy1992/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The `audiofolder` loader is not available in version `2.3.2`, hence the error. Please run the `pip install -U datasets` command to update the `datasets` installation to make `load_dataset(\"audiofolder\", ...)` work."
] | 2023-07-18T10:16:34 | 2023-07-18T16:18:39 | 2023-07-18T16:18:39 | NONE | null | null | null | ### Describe the bug
`common_voice_test = load_dataset("audiofolder", data_dir="./dataset/",cache_dir="./cache",split=datasets.Split.TEST)`
when i run the code above, i got the error as below:
--------------------------------------------
ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/2.3.2/datasets/audiofolder/audiofolder.py (ConnectionError(MaxRetryError("HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /huggingface/datasets/2.3.2/datasets/audiofolder/audiofolder.py (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7f299ed082e0>: Failed to establish a new connection: [Errno 101] Network is unreachable'))")))
--------------------------------------------------
My all data is on local machine, why does it need to connect the internet? how can i fix it, because my machine cannot connect the internet.
### Steps to reproduce the bug
1
### Expected behavior
no error when i use the load_dataset func
### Environment info
python=3.8.15 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6048/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6048/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6051 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6051/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6051/comments | https://api.github.com/repos/huggingface/datasets/issues/6051/events | https://github.com/huggingface/datasets/issues/6051 | 1,811,549,650 | I_kwDODunzps5r-g3S | 6,051 | Skipping shard in the remote repo and resume upload | {
"login": "rs9000",
"id": 9029817,
"node_id": "MDQ6VXNlcjkwMjk4MTc=",
"avatar_url": "https://avatars.githubusercontent.com/u/9029817?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/rs9000",
"html_url": "https://github.com/rs9000",
"followers_url": "https://api.github.com/users/rs9000/followers",
"following_url": "https://api.github.com/users/rs9000/following{/other_user}",
"gists_url": "https://api.github.com/users/rs9000/gists{/gist_id}",
"starred_url": "https://api.github.com/users/rs9000/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/rs9000/subscriptions",
"organizations_url": "https://api.github.com/users/rs9000/orgs",
"repos_url": "https://api.github.com/users/rs9000/repos",
"events_url": "https://api.github.com/users/rs9000/events{/privacy}",
"received_events_url": "https://api.github.com/users/rs9000/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! `_select_contiguous` fetches a (zero-copy) slice of the dataset's Arrow table to build a shard, so I don't think this part is the problem. To me, the issue seems to be the step where we embed external image files' bytes (a lot of file reads). You can use `.map` with multiprocessing to perform this step before `push_to_hub` in a faster manner and cache it to disk:\r\n```python\r\nfrom datasets.table import embed_table_storage\r\n# load_dataset(...)\r\nformat = dataset.format\r\ndataset = dataset.with_format(\"arrow\")\r\ndataset = dataset.map(embed_table_storage, batched=True)\r\ndataset = dataset.with_format(**format)\r\n# push_to_hub(...)\r\n```\r\n\r\n(In Datasets 3.0, these external bytes will be written to an Arrow file when generating a dataset to avoid this \"embed\" step)",
"Hi, thanks, this solution saves some time.\r\nBut can't we avoid embedding all external image files bytes with each push, skipping the images that have already been pushed into the repo?\r\n\r\nEdit: Ok I missed the part of cache it manually on the disk the first time, this solves the problem. Thank you"
] | 2023-07-19T09:25:26 | 2023-07-20T18:16:01 | 2023-07-20T18:16:00 | NONE | null | null | null | ### Describe the bug
For some reason when I try to resume the upload of my dataset, it is very slow to reach the index of the shard from which to resume the uploading.
From my understanding, the problem is in this part of the code:
arrow_dataset.py
```python
for index, shard in logging.tqdm(
enumerate(itertools.chain([first_shard], shards_iter)),
desc="Pushing dataset shards to the dataset hub",
total=num_shards,
disable=not logging.is_progress_bar_enabled(),
):
shard_path_in_repo = path_in_repo(index, shard)
# Upload a shard only if it doesn't already exist in the repository
if shard_path_in_repo not in data_files:
```
In particular, iterating the generator is slow during the call:
```python
self._select_contiguous(start, length, new_fingerprint=new_fingerprint)
```
I wonder if it is possible to avoid calling this function for shards that are already uploaded and just start from the correct shard index.
### Steps to reproduce the bug
1. Start the upload
```python
dataset = load_dataset("imagefolder", data_dir=DATA_DIR, split="train", drop_labels=True)
dataset.push_to_hub("repo/name")
```
2. Stop and restart the upload after hundreds of shards
### Expected behavior
Skip the uploaded shards faster.
### Environment info
- `datasets` version: 2.5.1
- Platform: Linux-4.18.0-193.el8.x86_64-x86_64-with-glibc2.17
- Python version: 3.8.16
- PyArrow version: 12.0.1
- Pandas version: 2.0.2
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6051/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6051/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6075 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6075/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6075/comments | https://api.github.com/repos/huggingface/datasets/issues/6075/events | https://github.com/huggingface/datasets/issues/6075 | 1,822,341,398 | I_kwDODunzps5snrkW | 6,075 | Error loading music files using `load_dataset` | {
"login": "susnato",
"id": 56069179,
"node_id": "MDQ6VXNlcjU2MDY5MTc5",
"avatar_url": "https://avatars.githubusercontent.com/u/56069179?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/susnato",
"html_url": "https://github.com/susnato",
"followers_url": "https://api.github.com/users/susnato/followers",
"following_url": "https://api.github.com/users/susnato/following{/other_user}",
"gists_url": "https://api.github.com/users/susnato/gists{/gist_id}",
"starred_url": "https://api.github.com/users/susnato/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/susnato/subscriptions",
"organizations_url": "https://api.github.com/users/susnato/orgs",
"repos_url": "https://api.github.com/users/susnato/repos",
"events_url": "https://api.github.com/users/susnato/events{/privacy}",
"received_events_url": "https://api.github.com/users/susnato/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"This code behaves as expected on my local machine or in Colab. Which version of `soundfile` do you have installed? MP3 requires `soundfile>=0.12.1`.",
"I upgraded the `soundfile` and it's working now! \r\nThanks @mariosasko for the help!"
] | 2023-07-26T12:44:05 | 2023-07-26T13:08:08 | 2023-07-26T13:08:08 | NONE | null | null | null | ### Describe the bug
I tried to load a music file using `datasets.load_dataset()` from the repository - https://huggingface.co/datasets/susnato/pop2piano_real_music_test
I got the following error -
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 2803, in __getitem__
return self._getitem(key)
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 2788, in _getitem
formatted_output = format_table(
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/datasets/formatting/formatting.py", line 629, in format_table
return formatter(pa_table, query_type=query_type)
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/datasets/formatting/formatting.py", line 398, in __call__
return self.format_column(pa_table)
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/datasets/formatting/formatting.py", line 442, in format_column
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/datasets/formatting/formatting.py", line 218, in decode_column
return self.features.decode_column(column, column_name) if self.features else column
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/datasets/features/features.py", line 1924, in decode_column
[decode_nested_example(self[column_name], value) if value is not None else None for value in column]
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/datasets/features/features.py", line 1924, in <listcomp>
[decode_nested_example(self[column_name], value) if value is not None else None for value in column]
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/datasets/features/features.py", line 1325, in decode_nested_example
return schema.decode_example(obj, token_per_repo_id=token_per_repo_id)
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/datasets/features/audio.py", line 184, in decode_example
array, sampling_rate = sf.read(f)
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/soundfile.py", line 372, in read
with SoundFile(file, 'r', samplerate, channels,
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/soundfile.py", line 740, in __init__
self._file = self._open(file, mode_int, closefd)
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/soundfile.py", line 1264, in _open
_error_check(_snd.sf_error(file_ptr),
File "/home/susnato/anaconda3/envs/p2p/lib/python3.9/site-packages/soundfile.py", line 1455, in _error_check
raise RuntimeError(prefix + _ffi.string(err_str).decode('utf-8', 'replace'))
RuntimeError: Error opening <_io.BufferedReader name='/home/susnato/.cache/huggingface/datasets/downloads/d2b09cb974b967b13f91553297c40c0f02f3c0d4c8356350743598ff48d6f29e'>: Format not recognised.
```
### Steps to reproduce the bug
Code to reproduce the error -
```python
from datasets import load_dataset
ds = load_dataset("susnato/pop2piano_real_music_test", split="test")
print(ds[0])
```
### Expected behavior
I should be able to read the music file without any error.
### Environment info
- `datasets` version: 2.14.0
- Platform: Linux-5.19.0-50-generic-x86_64-with-glibc2.35
- Python version: 3.9.16
- Huggingface_hub version: 0.15.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6075/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6075/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5964 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5964/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5964/comments | https://api.github.com/repos/huggingface/datasets/issues/5964/events | https://github.com/huggingface/datasets/pull/5964 | 1,763,513,574 | PR_kwDODunzps5TVweZ | 5,964 | Always return list in `list_datasets` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006795 / 0.011353 (-0.004558) | 0.004170 / 0.011008 (-0.006838) | 0.098698 / 0.038508 (0.060190) | 0.045393 / 0.023109 (0.022284) | 0.309205 / 0.275898 (0.033307) | 0.361333 / 0.323480 (0.037853) | 0.006009 / 0.007986 (-0.001977) | 0.003334 / 0.004328 (-0.000995) | 0.075071 / 0.004250 (0.070821) | 0.062587 / 0.037052 (0.025535) | 0.322395 / 0.258489 (0.063906) | 0.360499 / 0.293841 (0.066659) | 0.032243 / 0.128546 (-0.096303) | 0.008768 / 0.075646 (-0.066878) | 0.329799 / 0.419271 (-0.089472) | 0.062261 / 0.043533 (0.018728) | 0.298112 / 0.255139 (0.042973) | 0.322815 / 0.283200 (0.039615) | 0.032348 / 0.141683 (-0.109335) | 1.445807 / 1.452155 (-0.006347) | 1.528768 / 1.492716 (0.036051) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195701 / 0.018006 (0.177695) | 0.437042 / 0.000490 (0.436552) | 0.003867 / 0.000200 (0.003667) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026713 / 0.037411 (-0.010698) | 0.109548 / 0.014526 (0.095022) | 0.119216 / 0.176557 (-0.057341) | 0.178947 / 0.737135 (-0.558188) | 0.125224 / 0.296338 (-0.171114) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400885 / 0.215209 (0.185676) | 3.991223 / 2.077655 (1.913568) | 1.818449 / 1.504120 (0.314329) | 1.609285 / 1.541195 (0.068090) | 1.666675 / 1.468490 (0.198184) | 0.531486 / 4.584777 (-4.053291) | 3.770142 / 3.745712 (0.024430) | 3.057189 / 5.269862 (-2.212673) | 1.517491 / 4.565676 (-3.048186) | 0.065782 / 0.424275 (-0.358493) | 0.011251 / 0.007607 (0.003644) | 0.504277 / 0.226044 (0.278233) | 5.038979 / 2.268929 (2.770050) | 2.254717 / 55.444624 (-53.189908) | 1.929743 / 6.876477 (-4.946734) | 2.080051 / 2.142072 (-0.062022) | 0.656831 / 4.805227 (-4.148396) | 0.142860 / 6.500664 (-6.357804) | 0.063057 / 0.075469 (-0.012412) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.208819 / 1.841788 (-0.632969) | 14.456966 / 8.074308 (6.382658) | 12.839799 / 10.191392 (2.648407) | 0.164361 / 0.680424 (-0.516063) | 0.017330 / 0.534201 (-0.516871) | 0.397384 / 0.579283 (-0.181899) | 0.422704 / 0.434364 (-0.011660) | 0.472065 / 0.540337 (-0.068273) | 0.576960 / 1.386936 (-0.809976) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006950 / 0.011353 (-0.004403) | 0.004012 / 0.011008 (-0.006997) | 0.076050 / 0.038508 (0.037542) | 0.046646 / 0.023109 (0.023537) | 0.353813 / 0.275898 (0.077915) | 0.417111 / 0.323480 (0.093631) | 0.005422 / 0.007986 (-0.002564) | 0.003356 / 0.004328 (-0.000972) | 0.076662 / 0.004250 (0.072411) | 0.055018 / 0.037052 (0.017966) | 0.371561 / 0.258489 (0.113072) | 0.410471 / 0.293841 (0.116630) | 0.031860 / 0.128546 (-0.096686) | 0.008754 / 0.075646 (-0.066893) | 0.083192 / 0.419271 (-0.336079) | 0.050479 / 0.043533 (0.006946) | 0.351725 / 0.255139 (0.096586) | 0.371596 / 0.283200 (0.088396) | 0.023042 / 0.141683 (-0.118641) | 1.480533 / 1.452155 (0.028379) | 1.545970 / 1.492716 (0.053254) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220095 / 0.018006 (0.202089) | 0.441550 / 0.000490 (0.441061) | 0.000375 / 0.000200 (0.000175) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029527 / 0.037411 (-0.007884) | 0.111645 / 0.014526 (0.097119) | 0.125732 / 0.176557 (-0.050825) | 0.177322 / 0.737135 (-0.559813) | 0.128620 / 0.296338 (-0.167718) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432415 / 0.215209 (0.217206) | 4.314381 / 2.077655 (2.236726) | 2.079450 / 1.504120 (0.575331) | 1.893139 / 1.541195 (0.351944) | 1.951363 / 1.468490 (0.482873) | 0.531466 / 4.584777 (-4.053311) | 3.716860 / 3.745712 (-0.028852) | 1.850111 / 5.269862 (-3.419750) | 1.100676 / 4.565676 (-3.465000) | 0.066247 / 0.424275 (-0.358028) | 0.011503 / 0.007607 (0.003896) | 0.537208 / 0.226044 (0.311164) | 5.367560 / 2.268929 (3.098631) | 2.543697 / 55.444624 (-52.900927) | 2.221670 / 6.876477 (-4.654806) | 2.252009 / 2.142072 (0.109937) | 0.658509 / 4.805227 (-4.146718) | 0.142345 / 6.500664 (-6.358319) | 0.064701 / 0.075469 (-0.010768) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266442 / 1.841788 (-0.575346) | 15.105953 / 8.074308 (7.031645) | 14.288229 / 10.191392 (4.096837) | 0.161182 / 0.680424 (-0.519242) | 0.017074 / 0.534201 (-0.517127) | 0.399464 / 0.579283 (-0.179819) | 0.419459 / 0.434364 (-0.014905) | 0.467553 / 0.540337 (-0.072784) | 0.566337 / 1.386936 (-0.820599) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53ac2d9662f9e5923ae7c52199eaa620d82f0043 \"CML watermark\")\n"
] | 2023-06-19T13:07:08 | 2023-06-19T17:29:37 | 2023-06-19T17:22:41 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5964",
"html_url": "https://github.com/huggingface/datasets/pull/5964",
"diff_url": "https://github.com/huggingface/datasets/pull/5964.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5964.patch",
"merged_at": "2023-06-19T17:22:41"
} | Fix #5925
Plus, deprecate `list_datasets`/`inspect_dataset` in favor of `huggingface_hub.list_datasets`/"git clone workflow" (downloads data files) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5964/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5964/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6036 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6036/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6036/comments | https://api.github.com/repos/huggingface/datasets/issues/6036/events | https://github.com/huggingface/datasets/pull/6036 | 1,805,138,898 | PR_kwDODunzps5ViKc4 | 6,036 | Deprecate search API | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005746 / 0.011353 (-0.005607) | 0.003461 / 0.011008 (-0.007548) | 0.078672 / 0.038508 (0.040164) | 0.056800 / 0.023109 (0.033691) | 0.312853 / 0.275898 (0.036955) | 0.346715 / 0.323480 (0.023235) | 0.004516 / 0.007986 (-0.003469) | 0.002872 / 0.004328 (-0.001457) | 0.061264 / 0.004250 (0.057013) | 0.046606 / 0.037052 (0.009553) | 0.320080 / 0.258489 (0.061591) | 0.350390 / 0.293841 (0.056550) | 0.026445 / 0.128546 (-0.102101) | 0.007710 / 0.075646 (-0.067936) | 0.259519 / 0.419271 (-0.159752) | 0.043935 / 0.043533 (0.000402) | 0.320015 / 0.255139 (0.064876) | 0.339799 / 0.283200 (0.056599) | 0.018638 / 0.141683 (-0.123044) | 1.463393 / 1.452155 (0.011239) | 1.496977 / 1.492716 (0.004261) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185175 / 0.018006 (0.167168) | 0.420734 / 0.000490 (0.420245) | 0.002569 / 0.000200 (0.002369) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022335 / 0.037411 (-0.015077) | 0.071686 / 0.014526 (0.057161) | 0.079906 / 0.176557 (-0.096650) | 0.140386 / 0.737135 (-0.596749) | 0.079712 / 0.296338 (-0.216627) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.392643 / 0.215209 (0.177434) | 3.917934 / 2.077655 (1.840279) | 1.906808 / 1.504120 (0.402688) | 1.729564 / 1.541195 (0.188369) | 1.751533 / 1.468490 (0.283043) | 0.496810 / 4.584777 (-4.087967) | 3.047405 / 3.745712 (-0.698307) | 4.361766 / 5.269862 (-0.908095) | 2.660845 / 4.565676 (-1.904832) | 0.056951 / 0.424275 (-0.367324) | 0.006277 / 0.007607 (-0.001330) | 0.466357 / 0.226044 (0.240312) | 4.660457 / 2.268929 (2.391529) | 2.328590 / 55.444624 (-53.116034) | 1.986140 / 6.876477 (-4.890337) | 2.096182 / 2.142072 (-0.045891) | 0.581685 / 4.805227 (-4.223542) | 0.123643 / 6.500664 (-6.377021) | 0.060286 / 0.075469 (-0.015183) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.237024 / 1.841788 (-0.604763) | 17.778533 / 8.074308 (9.704225) | 13.202205 / 10.191392 (3.010813) | 0.141301 / 0.680424 (-0.539123) | 0.016453 / 0.534201 (-0.517748) | 0.329173 / 0.579283 (-0.250110) | 0.349945 / 0.434364 (-0.084419) | 0.375319 / 0.540337 (-0.165018) | 0.530394 / 1.386936 (-0.856542) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005863 / 0.011353 (-0.005489) | 0.003578 / 0.011008 (-0.007430) | 0.062719 / 0.038508 (0.024211) | 0.056192 / 0.023109 (0.033082) | 0.422812 / 0.275898 (0.146914) | 0.454316 / 0.323480 (0.130836) | 0.004446 / 0.007986 (-0.003540) | 0.002808 / 0.004328 (-0.001521) | 0.062819 / 0.004250 (0.058569) | 0.046243 / 0.037052 (0.009190) | 0.445858 / 0.258489 (0.187369) | 0.463750 / 0.293841 (0.169909) | 0.027504 / 0.128546 (-0.101042) | 0.007897 / 0.075646 (-0.067749) | 0.068248 / 0.419271 (-0.351024) | 0.041921 / 0.043533 (-0.001612) | 0.413314 / 0.255139 (0.158175) | 0.441619 / 0.283200 (0.158419) | 0.019246 / 0.141683 (-0.122437) | 1.457069 / 1.452155 (0.004914) | 1.524168 / 1.492716 (0.031452) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237785 / 0.018006 (0.219779) | 0.418455 / 0.000490 (0.417965) | 0.002301 / 0.000200 (0.002101) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025630 / 0.037411 (-0.011781) | 0.076673 / 0.014526 (0.062147) | 0.084877 / 0.176557 (-0.091680) | 0.137528 / 0.737135 (-0.599607) | 0.085261 / 0.296338 (-0.211077) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419040 / 0.215209 (0.203831) | 4.183022 / 2.077655 (2.105368) | 2.157852 / 1.504120 (0.653732) | 1.966177 / 1.541195 (0.424982) | 2.019612 / 1.468490 (0.551122) | 0.497415 / 4.584777 (-4.087362) | 3.102873 / 3.745712 (-0.642839) | 4.526336 / 5.269862 (-0.743525) | 2.991503 / 4.565676 (-1.574174) | 0.057235 / 0.424275 (-0.367040) | 0.006735 / 0.007607 (-0.000872) | 0.498255 / 0.226044 (0.272211) | 4.957364 / 2.268929 (2.688435) | 2.632643 / 55.444624 (-52.811981) | 2.249788 / 6.876477 (-4.626688) | 2.289134 / 2.142072 (0.147062) | 0.583581 / 4.805227 (-4.221646) | 0.126046 / 6.500664 (-6.374618) | 0.062966 / 0.075469 (-0.012504) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.295215 / 1.841788 (-0.546573) | 18.554020 / 8.074308 (10.479711) | 13.683273 / 10.191392 (3.491881) | 0.132266 / 0.680424 (-0.548158) | 0.016376 / 0.534201 (-0.517825) | 0.334495 / 0.579283 (-0.244788) | 0.347106 / 0.434364 (-0.087258) | 0.387531 / 0.540337 (-0.152806) | 0.525745 / 1.386936 (-0.861191) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f22aa0bf179602e4bf3f44a9de5d180579bb377e \"CML watermark\")\n",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6036). All of your documentation changes will be reflected on that endpoint.",
"I don't think `transformers` should have any dataset indexing code. So before deprecating I'd be in favor of finding a suitable replacement. Not sure about the stats of the RAG model that uses `datasets` indexing though",
"The RAG downloads stats are decent (over 20k downloads last month).\r\n\r\nI think it's suboptimal to maintain an API that only a single model uses. One option is to put this code into a separate lib. However, `langchain` and `docarray` already provide a unified interface to vector stores, so I don't see this as an impactful project. Considering how specific this model is, I think we should go with the simplest solution and combine an index with a dataset in Transformers (this wouldn't require too much code).",
"What about migrating to the [datasets-server](https://github.com/huggingface/datasets-server) search feature instead? Would make more sense from a product perspective ",
"I don't think it's a good idea:\r\n- using datasets-server would require to upload the data and to not control the indexing, whereas the current feature is about using a local index that you control\r\n- faiss indexes are vector indexes that are not supported by datasets-server, and they are also very customised. For instance RAG uses DPR embeddings and cosine similarity\r\n- FTS is only done for the first 5GB of data for now in datasets-server\r\n\r\nI think a better option would be to integrate with open source search tools such as docarray.\r\nAnd if we want to make the datasets-server search available in python we can build an integration in docarray and/or in huggingface_hub.",
"`llama_index` is another popular tool in this space.\r\n\r\n@lhoestq \r\n> I think a better option would be to integrate with open source search tools such as docarray.\r\nAnd if we want to make the datasets-server search available in python we can build an integration in docarray and/or in huggingface_hub.\r\n\r\nI don't think these integrations would be popular unless we integrate them with the Hub \"UI-wise\" (e.g., through a widget), so they can wait IMO. Also, FAISS supports `fsspec` already with the callback reader/writer, so this doesn't require a specific integration. ",
"After discussing it a bit with @lhoestq, do we need to deprecate the search API? While I understand it's imperfect, it looks like this will result in significant work to update it everywhere, so I'd favor keeping it until there's an obviously better alternative; this way we can focus on different things in the meantime."
] | 2023-07-14T16:22:09 | 2023-07-21T19:53:51 | null | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6036",
"html_url": "https://github.com/huggingface/datasets/pull/6036",
"diff_url": "https://github.com/huggingface/datasets/pull/6036.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6036.patch",
"merged_at": null
} | The Search API only supports Faiss and ElasticSearch as vector stores, is somewhat difficult to maintain (e.g., it still doesn't support ElasticSeach 8.0, difficult testing, ...), does not have the best design (adds a bunch of methods to the `Dataset` class that are only useful after creating an index), the usage doesn't seem to be significant and is not integrated with the Hub. Since we have no plans/bandwidth to improve it and better alternatives such as `langchain` and `docarray` exist, I think it should be deprecated (and eventually removed).
If we decide to deprecate/remove it, the following usage instances need to be addressed:
* [Course](https://github.com/huggingface/course/blob/0018bb434204d9750a03592cb0d4e846093218d8/chapters/en/chapter5/6.mdx#L342 ) and [Blog](https://github.com/huggingface/blog/blob/4897c6f73d4492a0955ade503281711d01840e09/image-search-datasets.md?plain=1#L252) - calling the FAISS API directly should be OK in these instances as it's pretty simple to use for basic scenarios. Alternatively, we can use `langchain`, but this adds an extra dependency
* [Transformers](https://github.com/huggingface/transformers/blob/50726f9ea7afc6113da617f8f4ca1ab264a5e28a/src/transformers/models/rag/retrieval_rag.py#L183) - we can use the FAISS API directly and store the index as a separate attribute (and instead of building the `wiki_dpr` index each time the dataset is generated, we can generate it once and push it to the Hub repo, and then read it from there
cc @huggingface/datasets @LysandreJik for the opinion | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6036/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6036/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5894 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5894/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5894/comments | https://api.github.com/repos/huggingface/datasets/issues/5894/events | https://github.com/huggingface/datasets/pull/5894 | 1,724,774,910 | PR_kwDODunzps5RSjot | 5,894 | Force overwrite existing filesystem protocol | {
"login": "baskrahmer",
"id": 24520725,
"node_id": "MDQ6VXNlcjI0NTIwNzI1",
"avatar_url": "https://avatars.githubusercontent.com/u/24520725?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/baskrahmer",
"html_url": "https://github.com/baskrahmer",
"followers_url": "https://api.github.com/users/baskrahmer/followers",
"following_url": "https://api.github.com/users/baskrahmer/following{/other_user}",
"gists_url": "https://api.github.com/users/baskrahmer/gists{/gist_id}",
"starred_url": "https://api.github.com/users/baskrahmer/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/baskrahmer/subscriptions",
"organizations_url": "https://api.github.com/users/baskrahmer/orgs",
"repos_url": "https://api.github.com/users/baskrahmer/repos",
"events_url": "https://api.github.com/users/baskrahmer/events{/privacy}",
"received_events_url": "https://api.github.com/users/baskrahmer/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009139 / 0.011353 (-0.002214) | 0.005634 / 0.011008 (-0.005374) | 0.129587 / 0.038508 (0.091079) | 0.038298 / 0.023109 (0.015189) | 0.428149 / 0.275898 (0.152251) | 0.443744 / 0.323480 (0.120264) | 0.007501 / 0.007986 (-0.000485) | 0.005999 / 0.004328 (0.001671) | 0.100796 / 0.004250 (0.096546) | 0.053236 / 0.037052 (0.016184) | 0.423868 / 0.258489 (0.165379) | 0.460110 / 0.293841 (0.166269) | 0.041255 / 0.128546 (-0.087291) | 0.013790 / 0.075646 (-0.061856) | 0.438398 / 0.419271 (0.019127) | 0.063086 / 0.043533 (0.019553) | 0.414826 / 0.255139 (0.159687) | 0.460652 / 0.283200 (0.177453) | 0.121223 / 0.141683 (-0.020460) | 1.754430 / 1.452155 (0.302275) | 1.900037 / 1.492716 (0.407320) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.027222 / 0.018006 (0.009216) | 0.617666 / 0.000490 (0.617176) | 0.022443 / 0.000200 (0.022243) | 0.000820 / 0.000054 (0.000766) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030397 / 0.037411 (-0.007014) | 0.125732 / 0.014526 (0.111206) | 0.149805 / 0.176557 (-0.026752) | 0.234048 / 0.737135 (-0.503087) | 0.143108 / 0.296338 (-0.153231) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.631189 / 0.215209 (0.415980) | 6.182871 / 2.077655 (4.105216) | 2.635730 / 1.504120 (1.131610) | 2.231429 / 1.541195 (0.690235) | 2.438360 / 1.468490 (0.969870) | 0.861170 / 4.584777 (-3.723607) | 5.785984 / 3.745712 (2.040272) | 2.758358 / 5.269862 (-2.511504) | 1.678095 / 4.565676 (-2.887582) | 0.105961 / 0.424275 (-0.318314) | 0.013659 / 0.007607 (0.006052) | 0.762943 / 0.226044 (0.536898) | 7.774399 / 2.268929 (5.505471) | 3.319027 / 55.444624 (-52.125598) | 2.700248 / 6.876477 (-4.176229) | 3.008581 / 2.142072 (0.866509) | 1.122522 / 4.805227 (-3.682705) | 0.214832 / 6.500664 (-6.285832) | 0.085281 / 0.075469 (0.009811) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.647610 / 1.841788 (-0.194177) | 18.178316 / 8.074308 (10.104008) | 21.199177 / 10.191392 (11.007785) | 0.247063 / 0.680424 (-0.433361) | 0.030443 / 0.534201 (-0.503758) | 0.512527 / 0.579283 (-0.066757) | 0.640758 / 0.434364 (0.206394) | 0.639986 / 0.540337 (0.099649) | 0.760113 / 1.386936 (-0.626823) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008293 / 0.011353 (-0.003060) | 0.005360 / 0.011008 (-0.005648) | 0.102932 / 0.038508 (0.064424) | 0.037457 / 0.023109 (0.014347) | 0.444114 / 0.275898 (0.168216) | 0.512855 / 0.323480 (0.189375) | 0.007030 / 0.007986 (-0.000956) | 0.004954 / 0.004328 (0.000625) | 0.095757 / 0.004250 (0.091507) | 0.051239 / 0.037052 (0.014187) | 0.471118 / 0.258489 (0.212629) | 0.517764 / 0.293841 (0.223923) | 0.041953 / 0.128546 (-0.086593) | 0.013748 / 0.075646 (-0.061898) | 0.118089 / 0.419271 (-0.301182) | 0.060159 / 0.043533 (0.016626) | 0.466011 / 0.255139 (0.210872) | 0.489180 / 0.283200 (0.205980) | 0.123250 / 0.141683 (-0.018433) | 1.714738 / 1.452155 (0.262584) | 1.838571 / 1.492716 (0.345855) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267792 / 0.018006 (0.249785) | 0.624313 / 0.000490 (0.623824) | 0.007315 / 0.000200 (0.007115) | 0.000136 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033751 / 0.037411 (-0.003661) | 0.122819 / 0.014526 (0.108293) | 0.148270 / 0.176557 (-0.028286) | 0.198581 / 0.737135 (-0.538554) | 0.144845 / 0.296338 (-0.151494) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.620631 / 0.215209 (0.405422) | 6.224665 / 2.077655 (4.147010) | 2.856592 / 1.504120 (1.352473) | 2.525089 / 1.541195 (0.983894) | 2.600198 / 1.468490 (1.131708) | 0.872038 / 4.584777 (-3.712739) | 5.571650 / 3.745712 (1.825937) | 5.907643 / 5.269862 (0.637782) | 2.348770 / 4.565676 (-2.216906) | 0.111665 / 0.424275 (-0.312610) | 0.013886 / 0.007607 (0.006278) | 0.762154 / 0.226044 (0.536109) | 7.792686 / 2.268929 (5.523758) | 3.601122 / 55.444624 (-51.843503) | 2.939412 / 6.876477 (-3.937064) | 2.973430 / 2.142072 (0.831358) | 1.065016 / 4.805227 (-3.740211) | 0.221701 / 6.500664 (-6.278963) | 0.088157 / 0.075469 (0.012688) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.771061 / 1.841788 (-0.070727) | 18.826926 / 8.074308 (10.752618) | 21.283830 / 10.191392 (11.092438) | 0.239233 / 0.680424 (-0.441191) | 0.026159 / 0.534201 (-0.508042) | 0.487074 / 0.579283 (-0.092209) | 0.623241 / 0.434364 (0.188877) | 0.600506 / 0.540337 (0.060169) | 0.691271 / 1.386936 (-0.695665) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1bbe2c3496498a6415765b517ac4bc600a02ad06 \"CML watermark\")\n"
] | 2023-05-24T21:41:53 | 2023-05-25T06:52:08 | 2023-05-25T06:42:33 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5894",
"html_url": "https://github.com/huggingface/datasets/pull/5894",
"diff_url": "https://github.com/huggingface/datasets/pull/5894.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5894.patch",
"merged_at": "2023-05-25T06:42:33"
} | Fix #5876 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5894/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5894/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6019 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6019/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6019/comments | https://api.github.com/repos/huggingface/datasets/issues/6019/events | https://github.com/huggingface/datasets/pull/6019 | 1,799,532,822 | PR_kwDODunzps5VPAlD | 6,019 | Improve logging | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007782 / 0.011353 (-0.003571) | 0.004451 / 0.011008 (-0.006557) | 0.099928 / 0.038508 (0.061420) | 0.081534 / 0.023109 (0.058425) | 0.379382 / 0.275898 (0.103484) | 0.410652 / 0.323480 (0.087172) | 0.005967 / 0.007986 (-0.002019) | 0.003702 / 0.004328 (-0.000627) | 0.076359 / 0.004250 (0.072109) | 0.066721 / 0.037052 (0.029669) | 0.383595 / 0.258489 (0.125106) | 0.423854 / 0.293841 (0.130013) | 0.032796 / 0.128546 (-0.095750) | 0.009728 / 0.075646 (-0.065918) | 0.344347 / 0.419271 (-0.074925) | 0.056320 / 0.043533 (0.012788) | 0.379974 / 0.255139 (0.124835) | 0.401294 / 0.283200 (0.118094) | 0.024110 / 0.141683 (-0.117572) | 1.804194 / 1.452155 (0.352039) | 1.860240 / 1.492716 (0.367523) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233803 / 0.018006 (0.215797) | 0.506893 / 0.000490 (0.506404) | 0.003894 / 0.000200 (0.003694) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033328 / 0.037411 (-0.004083) | 0.098661 / 0.014526 (0.084136) | 0.114971 / 0.176557 (-0.061586) | 0.186815 / 0.737135 (-0.550321) | 0.115490 / 0.296338 (-0.180848) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422590 / 0.215209 (0.207381) | 4.277189 / 2.077655 (2.199535) | 2.095565 / 1.504120 (0.591445) | 2.040825 / 1.541195 (0.499630) | 2.162562 / 1.468490 (0.694072) | 0.578602 / 4.584777 (-4.006175) | 4.203474 / 3.745712 (0.457762) | 6.674595 / 5.269862 (1.404734) | 3.913251 / 4.565676 (-0.652426) | 0.067777 / 0.424275 (-0.356498) | 0.008716 / 0.007607 (0.001109) | 0.548704 / 0.226044 (0.322660) | 5.162120 / 2.268929 (2.893192) | 2.600250 / 55.444624 (-52.844374) | 2.232730 / 6.876477 (-4.643747) | 2.485617 / 2.142072 (0.343544) | 0.650872 / 4.805227 (-4.154355) | 0.148022 / 6.500664 (-6.352642) | 0.064795 / 0.075469 (-0.010674) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.399439 / 1.841788 (-0.442349) | 22.438959 / 8.074308 (14.364651) | 16.447831 / 10.191392 (6.256439) | 0.202003 / 0.680424 (-0.478421) | 0.026200 / 0.534201 (-0.508001) | 0.472966 / 0.579283 (-0.106317) | 0.491621 / 0.434364 (0.057257) | 0.551580 / 0.540337 (0.011242) | 0.751420 / 1.386936 (-0.635516) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007241 / 0.011353 (-0.004112) | 0.004434 / 0.011008 (-0.006574) | 0.075872 / 0.038508 (0.037364) | 0.080094 / 0.023109 (0.056985) | 0.459244 / 0.275898 (0.183346) | 0.492482 / 0.323480 (0.169002) | 0.005791 / 0.007986 (-0.002194) | 0.003657 / 0.004328 (-0.000671) | 0.075214 / 0.004250 (0.070964) | 0.064208 / 0.037052 (0.027156) | 0.464195 / 0.258489 (0.205706) | 0.497809 / 0.293841 (0.203968) | 0.036301 / 0.128546 (-0.092245) | 0.009855 / 0.075646 (-0.065791) | 0.080826 / 0.419271 (-0.338445) | 0.056700 / 0.043533 (0.013167) | 0.452850 / 0.255139 (0.197711) | 0.490738 / 0.283200 (0.207538) | 0.024145 / 0.141683 (-0.117538) | 1.689911 / 1.452155 (0.237757) | 1.789803 / 1.492716 (0.297087) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247741 / 0.018006 (0.229735) | 0.486769 / 0.000490 (0.486279) | 0.000418 / 0.000200 (0.000218) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036317 / 0.037411 (-0.001094) | 0.104943 / 0.014526 (0.090417) | 0.120972 / 0.176557 (-0.055585) | 0.188461 / 0.737135 (-0.548674) | 0.120926 / 0.296338 (-0.175412) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465788 / 0.215209 (0.250579) | 4.662369 / 2.077655 (2.584714) | 2.442241 / 1.504120 (0.938121) | 2.266328 / 1.541195 (0.725133) | 2.438998 / 1.468490 (0.970508) | 0.531384 / 4.584777 (-4.053393) | 4.125286 / 3.745712 (0.379574) | 3.920912 / 5.269862 (-1.348950) | 2.292149 / 4.565676 (-2.273528) | 0.070146 / 0.424275 (-0.354129) | 0.008887 / 0.007607 (0.001280) | 0.598181 / 0.226044 (0.372137) | 5.726454 / 2.268929 (3.457526) | 3.081836 / 55.444624 (-52.362788) | 2.683508 / 6.876477 (-4.192969) | 2.587350 / 2.142072 (0.445278) | 0.604736 / 4.805227 (-4.200491) | 0.141303 / 6.500664 (-6.359362) | 0.065020 / 0.075469 (-0.010449) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.481850 / 1.841788 (-0.359938) | 22.259592 / 8.074308 (14.185284) | 16.304290 / 10.191392 (6.112898) | 0.173514 / 0.680424 (-0.506909) | 0.021590 / 0.534201 (-0.512611) | 0.471753 / 0.579283 (-0.107531) | 0.472132 / 0.434364 (0.037768) | 0.563344 / 0.540337 (0.023007) | 0.738509 / 1.386936 (-0.648427) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1cb7ae56dbd814945a4982c63bf0e50859a7b93a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005910 / 0.011353 (-0.005443) | 0.004372 / 0.011008 (-0.006636) | 0.081583 / 0.038508 (0.043075) | 0.069598 / 0.023109 (0.046488) | 0.346360 / 0.275898 (0.070462) | 0.360733 / 0.323480 (0.037254) | 0.004725 / 0.007986 (-0.003261) | 0.003106 / 0.004328 (-0.001222) | 0.059916 / 0.004250 (0.055666) | 0.053242 / 0.037052 (0.016189) | 0.353551 / 0.258489 (0.095062) | 0.373052 / 0.293841 (0.079211) | 0.029036 / 0.128546 (-0.099510) | 0.007894 / 0.075646 (-0.067753) | 0.284131 / 0.419271 (-0.135140) | 0.049348 / 0.043533 (0.005815) | 0.347409 / 0.255139 (0.092270) | 0.355029 / 0.283200 (0.071830) | 0.022511 / 0.141683 (-0.119171) | 1.454495 / 1.452155 (0.002340) | 1.439551 / 1.492716 (-0.053166) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218889 / 0.018006 (0.200883) | 0.478734 / 0.000490 (0.478244) | 0.003758 / 0.000200 (0.003558) | 0.000083 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025759 / 0.037411 (-0.011653) | 0.082511 / 0.014526 (0.067985) | 0.087578 / 0.176557 (-0.088979) | 0.137760 / 0.737135 (-0.599375) | 0.093312 / 0.296338 (-0.203027) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.378963 / 0.215209 (0.163754) | 3.645846 / 2.077655 (1.568191) | 1.741135 / 1.504120 (0.237015) | 1.599166 / 1.541195 (0.057972) | 1.610817 / 1.468490 (0.142327) | 0.459209 / 4.584777 (-4.125568) | 3.484857 / 3.745712 (-0.260855) | 3.928109 / 5.269862 (-1.341752) | 2.419784 / 4.565676 (-2.145892) | 0.051987 / 0.424275 (-0.372288) | 0.006495 / 0.007607 (-0.001112) | 0.427311 / 0.226044 (0.201267) | 4.226378 / 2.268929 (1.957450) | 2.212331 / 55.444624 (-53.232293) | 1.916213 / 6.876477 (-4.960264) | 1.978809 / 2.142072 (-0.163263) | 0.547351 / 4.805227 (-4.257876) | 0.121110 / 6.500664 (-6.379554) | 0.054163 / 0.075469 (-0.021306) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.228594 / 1.841788 (-0.613193) | 19.410901 / 8.074308 (11.336593) | 13.014722 / 10.191392 (2.823330) | 0.156449 / 0.680424 (-0.523975) | 0.021032 / 0.534201 (-0.513169) | 0.403976 / 0.579283 (-0.175307) | 0.413885 / 0.434364 (-0.020479) | 0.470465 / 0.540337 (-0.069873) | 0.641322 / 1.386936 (-0.745614) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007210 / 0.011353 (-0.004143) | 0.003824 / 0.011008 (-0.007185) | 0.058227 / 0.038508 (0.019719) | 0.076211 / 0.023109 (0.053102) | 0.336626 / 0.275898 (0.060728) | 0.420542 / 0.323480 (0.097062) | 0.006178 / 0.007986 (-0.001808) | 0.003332 / 0.004328 (-0.000997) | 0.058073 / 0.004250 (0.053823) | 0.062485 / 0.037052 (0.025432) | 0.386175 / 0.258489 (0.127686) | 0.415659 / 0.293841 (0.121818) | 0.031264 / 0.128546 (-0.097282) | 0.007502 / 0.075646 (-0.068144) | 0.072079 / 0.419271 (-0.347192) | 0.055860 / 0.043533 (0.012327) | 0.343508 / 0.255139 (0.088369) | 0.437844 / 0.283200 (0.154645) | 0.032852 / 0.141683 (-0.108831) | 1.409241 / 1.452155 (-0.042913) | 1.623949 / 1.492716 (0.131233) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207511 / 0.018006 (0.189504) | 0.464149 / 0.000490 (0.463660) | 0.003248 / 0.000200 (0.003048) | 0.000226 / 0.000054 (0.000172) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030767 / 0.037411 (-0.006645) | 0.079169 / 0.014526 (0.064643) | 0.093111 / 0.176557 (-0.083445) | 0.153369 / 0.737135 (-0.583767) | 0.092939 / 0.296338 (-0.203400) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.375602 / 0.215209 (0.160392) | 3.968612 / 2.077655 (1.890957) | 2.081749 / 1.504120 (0.577629) | 1.899772 / 1.541195 (0.358577) | 1.847923 / 1.468490 (0.379433) | 0.442867 / 4.584777 (-4.141910) | 3.646664 / 3.745712 (-0.099048) | 5.870600 / 5.269862 (0.600739) | 3.356698 / 4.565676 (-1.208979) | 0.051422 / 0.424275 (-0.372853) | 0.006006 / 0.007607 (-0.001601) | 0.442439 / 0.226044 (0.216395) | 4.466256 / 2.268929 (2.197328) | 2.483832 / 55.444624 (-52.960792) | 2.105612 / 6.876477 (-4.770865) | 2.060650 / 2.142072 (-0.081422) | 0.531119 / 4.805227 (-4.274108) | 0.123436 / 6.500664 (-6.377228) | 0.059838 / 0.075469 (-0.015632) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283042 / 1.841788 (-0.558746) | 19.688251 / 8.074308 (11.613943) | 13.346386 / 10.191392 (3.154994) | 0.197463 / 0.680424 (-0.482961) | 0.018484 / 0.534201 (-0.515717) | 0.391727 / 0.579283 (-0.187556) | 0.425061 / 0.434364 (-0.009303) | 0.448177 / 0.540337 (-0.092160) | 0.653694 / 1.386936 (-0.733242) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#01604752fe89d290479fa406b1a24ac1f346826e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008966 / 0.011353 (-0.002387) | 0.005195 / 0.011008 (-0.005813) | 0.102879 / 0.038508 (0.064371) | 0.090902 / 0.023109 (0.067792) | 0.434397 / 0.275898 (0.158498) | 0.454013 / 0.323480 (0.130534) | 0.008507 / 0.007986 (0.000521) | 0.005000 / 0.004328 (0.000671) | 0.075789 / 0.004250 (0.071538) | 0.067608 / 0.037052 (0.030555) | 0.435091 / 0.258489 (0.176602) | 0.469411 / 0.293841 (0.175570) | 0.050859 / 0.128546 (-0.077687) | 0.013560 / 0.075646 (-0.062086) | 0.345473 / 0.419271 (-0.073799) | 0.094974 / 0.043533 (0.051441) | 0.429626 / 0.255139 (0.174487) | 0.434290 / 0.283200 (0.151090) | 0.052269 / 0.141683 (-0.089413) | 1.700549 / 1.452155 (0.248395) | 1.890693 / 1.492716 (0.397976) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.296618 / 0.018006 (0.278612) | 0.613908 / 0.000490 (0.613419) | 0.000484 / 0.000200 (0.000284) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034346 / 0.037411 (-0.003065) | 0.096836 / 0.014526 (0.082310) | 0.113332 / 0.176557 (-0.063224) | 0.194464 / 0.737135 (-0.542671) | 0.111732 / 0.296338 (-0.184606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.624954 / 0.215209 (0.409745) | 6.442193 / 2.077655 (4.364538) | 2.818331 / 1.504120 (1.314211) | 2.529607 / 1.541195 (0.988413) | 2.549026 / 1.468490 (1.080536) | 0.967367 / 4.584777 (-3.617410) | 5.446885 / 3.745712 (1.701173) | 6.259099 / 5.269862 (0.989237) | 3.652936 / 4.565676 (-0.912740) | 0.106420 / 0.424275 (-0.317855) | 0.011293 / 0.007607 (0.003686) | 0.772026 / 0.226044 (0.545982) | 7.823986 / 2.268929 (5.555057) | 3.725328 / 55.444624 (-51.719297) | 2.851489 / 6.876477 (-4.024988) | 3.013722 / 2.142072 (0.871649) | 1.045090 / 4.805227 (-3.760137) | 0.213174 / 6.500664 (-6.287490) | 0.077104 / 0.075469 (0.001635) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.657135 / 1.841788 (-0.184652) | 24.547604 / 8.074308 (16.473296) | 19.989533 / 10.191392 (9.798141) | 0.257139 / 0.680424 (-0.423285) | 0.028448 / 0.534201 (-0.505753) | 0.490801 / 0.579283 (-0.088482) | 0.628072 / 0.434364 (0.193708) | 0.584873 / 0.540337 (0.044536) | 0.825258 / 1.386936 (-0.561678) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009258 / 0.011353 (-0.002095) | 0.005660 / 0.011008 (-0.005348) | 0.080577 / 0.038508 (0.042069) | 0.095786 / 0.023109 (0.072676) | 0.473334 / 0.275898 (0.197436) | 0.527962 / 0.323480 (0.204482) | 0.006537 / 0.007986 (-0.001449) | 0.004411 / 0.004328 (0.000083) | 0.080702 / 0.004250 (0.076452) | 0.077020 / 0.037052 (0.039968) | 0.483205 / 0.258489 (0.224716) | 0.556916 / 0.293841 (0.263076) | 0.047670 / 0.128546 (-0.080877) | 0.016647 / 0.075646 (-0.058999) | 0.090653 / 0.419271 (-0.328619) | 0.062122 / 0.043533 (0.018589) | 0.498326 / 0.255139 (0.243187) | 0.546572 / 0.283200 (0.263372) | 0.037525 / 0.141683 (-0.104157) | 1.869520 / 1.452155 (0.417365) | 1.915335 / 1.492716 (0.422619) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248287 / 0.018006 (0.230281) | 0.611440 / 0.000490 (0.610950) | 0.004102 / 0.000200 (0.003902) | 0.000132 / 0.000054 (0.000078) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038228 / 0.037411 (0.000817) | 0.103510 / 0.014526 (0.088984) | 0.114337 / 0.176557 (-0.062219) | 0.189662 / 0.737135 (-0.547473) | 0.119078 / 0.296338 (-0.177260) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.606622 / 0.215209 (0.391413) | 6.053900 / 2.077655 (3.976246) | 2.857972 / 1.504120 (1.353852) | 2.549756 / 1.541195 (1.008561) | 2.584557 / 1.468490 (1.116067) | 0.930431 / 4.584777 (-3.654346) | 5.524077 / 3.745712 (1.778365) | 7.858406 / 5.269862 (2.588545) | 4.890697 / 4.565676 (0.325020) | 0.095356 / 0.424275 (-0.328919) | 0.008614 / 0.007607 (0.001007) | 0.774227 / 0.226044 (0.548182) | 7.470215 / 2.268929 (5.201287) | 3.784820 / 55.444624 (-51.659805) | 3.199364 / 6.876477 (-3.677113) | 3.212002 / 2.142072 (1.069929) | 1.054104 / 4.805227 (-3.751123) | 0.226044 / 6.500664 (-6.274620) | 0.092237 / 0.075469 (0.016768) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.801054 / 1.841788 (-0.040734) | 24.220404 / 8.074308 (16.146096) | 21.652936 / 10.191392 (11.461544) | 0.247004 / 0.680424 (-0.433420) | 0.029651 / 0.534201 (-0.504550) | 0.475702 / 0.579283 (-0.103581) | 0.621121 / 0.434364 (0.186757) | 0.570489 / 0.540337 (0.030151) | 0.768840 / 1.386936 (-0.618096) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b2fc21eda345643fb57d1d1167ebed9043310911 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009223 / 0.011353 (-0.002130) | 0.005750 / 0.011008 (-0.005258) | 0.105264 / 0.038508 (0.066756) | 0.088478 / 0.023109 (0.065369) | 0.461119 / 0.275898 (0.185221) | 0.481115 / 0.323480 (0.157636) | 0.006366 / 0.007986 (-0.001619) | 0.004515 / 0.004328 (0.000186) | 0.079296 / 0.004250 (0.075045) | 0.063483 / 0.037052 (0.026430) | 0.444490 / 0.258489 (0.186001) | 0.496474 / 0.293841 (0.202634) | 0.048568 / 0.128546 (-0.079978) | 0.013574 / 0.075646 (-0.062073) | 0.379213 / 0.419271 (-0.040059) | 0.086464 / 0.043533 (0.042932) | 0.437526 / 0.255139 (0.182387) | 0.447117 / 0.283200 (0.163917) | 0.049502 / 0.141683 (-0.092180) | 1.749146 / 1.452155 (0.296992) | 1.831082 / 1.492716 (0.338365) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268205 / 0.018006 (0.250199) | 0.627406 / 0.000490 (0.626917) | 0.005439 / 0.000200 (0.005239) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030564 / 0.037411 (-0.006848) | 0.096365 / 0.014526 (0.081840) | 0.117484 / 0.176557 (-0.059072) | 0.189104 / 0.737135 (-0.548032) | 0.118073 / 0.296338 (-0.178266) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.618229 / 0.215209 (0.403019) | 6.437853 / 2.077655 (4.360199) | 2.789946 / 1.504120 (1.285826) | 2.339245 / 1.541195 (0.798050) | 2.588779 / 1.468490 (1.120289) | 0.921008 / 4.584777 (-3.663769) | 5.402940 / 3.745712 (1.657227) | 4.818783 / 5.269862 (-0.451078) | 3.162259 / 4.565676 (-1.403417) | 0.108501 / 0.424275 (-0.315774) | 0.009384 / 0.007607 (0.001777) | 0.766811 / 0.226044 (0.540766) | 7.624629 / 2.268929 (5.355701) | 3.442420 / 55.444624 (-52.002204) | 2.759967 / 6.876477 (-4.116510) | 3.049644 / 2.142072 (0.907572) | 1.113308 / 4.805227 (-3.691919) | 0.223923 / 6.500664 (-6.276741) | 0.079156 / 0.075469 (0.003687) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.683318 / 1.841788 (-0.158470) | 25.062141 / 8.074308 (16.987833) | 21.777131 / 10.191392 (11.585739) | 0.266939 / 0.680424 (-0.413485) | 0.029670 / 0.534201 (-0.504531) | 0.476761 / 0.579283 (-0.102522) | 0.622080 / 0.434364 (0.187716) | 0.601781 / 0.540337 (0.061443) | 0.785126 / 1.386936 (-0.601811) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010198 / 0.011353 (-0.001155) | 0.005777 / 0.011008 (-0.005231) | 0.083003 / 0.038508 (0.044495) | 0.093411 / 0.023109 (0.070302) | 0.496178 / 0.275898 (0.220280) | 0.554670 / 0.323480 (0.231190) | 0.008351 / 0.007986 (0.000365) | 0.004678 / 0.004328 (0.000350) | 0.083631 / 0.004250 (0.079381) | 0.075538 / 0.037052 (0.038485) | 0.492410 / 0.258489 (0.233921) | 0.545209 / 0.293841 (0.251368) | 0.048365 / 0.128546 (-0.080181) | 0.014219 / 0.075646 (-0.061427) | 0.100749 / 0.419271 (-0.318523) | 0.063431 / 0.043533 (0.019898) | 0.511115 / 0.255139 (0.255976) | 0.532965 / 0.283200 (0.249765) | 0.037968 / 0.141683 (-0.103715) | 1.940268 / 1.452155 (0.488113) | 2.032934 / 1.492716 (0.540217) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238179 / 0.018006 (0.220172) | 0.605767 / 0.000490 (0.605277) | 0.004033 / 0.000200 (0.003833) | 0.000125 / 0.000054 (0.000071) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036436 / 0.037411 (-0.000975) | 0.108034 / 0.014526 (0.093509) | 0.118624 / 0.176557 (-0.057933) | 0.183079 / 0.737135 (-0.554056) | 0.121739 / 0.296338 (-0.174600) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.630538 / 0.215209 (0.415329) | 6.552184 / 2.077655 (4.474529) | 3.003412 / 1.504120 (1.499292) | 2.669026 / 1.541195 (1.127832) | 2.791109 / 1.468490 (1.322619) | 0.884003 / 4.584777 (-3.700774) | 5.538660 / 3.745712 (1.792947) | 5.126708 / 5.269862 (-0.143154) | 3.120825 / 4.565676 (-1.444852) | 0.101178 / 0.424275 (-0.323097) | 0.009027 / 0.007607 (0.001420) | 0.785914 / 0.226044 (0.559869) | 7.994720 / 2.268929 (5.725792) | 4.061996 / 55.444624 (-51.382629) | 3.263230 / 6.876477 (-3.613247) | 3.288622 / 2.142072 (1.146550) | 1.141867 / 4.805227 (-3.663360) | 0.255287 / 6.500664 (-6.245378) | 0.100637 / 0.075469 (0.025168) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.769821 / 1.841788 (-0.071967) | 24.994008 / 8.074308 (16.919700) | 21.765971 / 10.191392 (11.574579) | 0.268493 / 0.680424 (-0.411931) | 0.028047 / 0.534201 (-0.506154) | 0.489472 / 0.579283 (-0.089811) | 0.594809 / 0.434364 (0.160445) | 0.613578 / 0.540337 (0.073241) | 0.879360 / 1.386936 (-0.507576) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b85b1154aef2a9ab4d558f60d91623f2cc1583c4 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006003 / 0.011353 (-0.005350) | 0.003590 / 0.011008 (-0.007418) | 0.084657 / 0.038508 (0.046149) | 0.057884 / 0.023109 (0.034775) | 0.318347 / 0.275898 (0.042449) | 0.345976 / 0.323480 (0.022496) | 0.004706 / 0.007986 (-0.003279) | 0.002921 / 0.004328 (-0.001407) | 0.061850 / 0.004250 (0.057600) | 0.050558 / 0.037052 (0.013505) | 0.320877 / 0.258489 (0.062388) | 0.356062 / 0.293841 (0.062222) | 0.027511 / 0.128546 (-0.101035) | 0.007954 / 0.075646 (-0.067693) | 0.260290 / 0.419271 (-0.158981) | 0.051207 / 0.043533 (0.007674) | 0.334423 / 0.255139 (0.079284) | 0.338575 / 0.283200 (0.055375) | 0.022330 / 0.141683 (-0.119353) | 1.445446 / 1.452155 (-0.006709) | 1.500626 / 1.492716 (0.007910) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192440 / 0.018006 (0.174433) | 0.428455 / 0.000490 (0.427965) | 0.000318 / 0.000200 (0.000118) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022933 / 0.037411 (-0.014478) | 0.072795 / 0.014526 (0.058269) | 0.081149 / 0.176557 (-0.095407) | 0.142941 / 0.737135 (-0.594195) | 0.082410 / 0.296338 (-0.213928) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405220 / 0.215209 (0.190011) | 4.048585 / 2.077655 (1.970931) | 2.027908 / 1.504120 (0.523788) | 1.887828 / 1.541195 (0.346633) | 2.131780 / 1.468490 (0.663290) | 0.502847 / 4.584777 (-4.081930) | 3.069498 / 3.745712 (-0.676215) | 4.094774 / 5.269862 (-1.175088) | 2.544004 / 4.565676 (-2.021673) | 0.059540 / 0.424275 (-0.364735) | 0.006501 / 0.007607 (-0.001106) | 0.477218 / 0.226044 (0.251173) | 4.764961 / 2.268929 (2.496032) | 2.434594 / 55.444624 (-53.010030) | 2.104833 / 6.876477 (-4.771644) | 2.263059 / 2.142072 (0.120987) | 0.591755 / 4.805227 (-4.213472) | 0.131167 / 6.500664 (-6.369497) | 0.061808 / 0.075469 (-0.013661) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.345364 / 1.841788 (-0.496424) | 18.122584 / 8.074308 (10.048276) | 13.318689 / 10.191392 (3.127297) | 0.144526 / 0.680424 (-0.535898) | 0.016997 / 0.534201 (-0.517204) | 0.336036 / 0.579283 (-0.243247) | 0.359532 / 0.434364 (-0.074832) | 0.386945 / 0.540337 (-0.153392) | 0.538659 / 1.386936 (-0.848277) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006088 / 0.011353 (-0.005265) | 0.003684 / 0.011008 (-0.007324) | 0.062340 / 0.038508 (0.023832) | 0.058461 / 0.023109 (0.035352) | 0.360134 / 0.275898 (0.084236) | 0.393298 / 0.323480 (0.069818) | 0.004664 / 0.007986 (-0.003322) | 0.002909 / 0.004328 (-0.001420) | 0.062668 / 0.004250 (0.058418) | 0.050145 / 0.037052 (0.013092) | 0.361897 / 0.258489 (0.103408) | 0.402008 / 0.293841 (0.108167) | 0.027491 / 0.128546 (-0.101055) | 0.008113 / 0.075646 (-0.067534) | 0.068114 / 0.419271 (-0.351157) | 0.043303 / 0.043533 (-0.000230) | 0.360569 / 0.255139 (0.105430) | 0.387144 / 0.283200 (0.103944) | 0.020194 / 0.141683 (-0.121489) | 1.418066 / 1.452155 (-0.034089) | 1.475640 / 1.492716 (-0.017076) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200291 / 0.018006 (0.182285) | 0.432298 / 0.000490 (0.431809) | 0.003303 / 0.000200 (0.003103) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027749 / 0.037411 (-0.009662) | 0.081890 / 0.014526 (0.067364) | 0.094319 / 0.176557 (-0.082238) | 0.148646 / 0.737135 (-0.588490) | 0.091830 / 0.296338 (-0.204509) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433546 / 0.215209 (0.218337) | 4.326855 / 2.077655 (2.249200) | 2.230186 / 1.504120 (0.726066) | 2.052524 / 1.541195 (0.511329) | 2.117270 / 1.468490 (0.648779) | 0.500331 / 4.584777 (-4.084446) | 3.113662 / 3.745712 (-0.632050) | 2.931540 / 5.269862 (-2.338322) | 1.853615 / 4.565676 (-2.712062) | 0.058250 / 0.424275 (-0.366025) | 0.006546 / 0.007607 (-0.001061) | 0.508850 / 0.226044 (0.282806) | 5.081809 / 2.268929 (2.812880) | 2.687037 / 55.444624 (-52.757588) | 2.369317 / 6.876477 (-4.507160) | 2.383549 / 2.142072 (0.241477) | 0.587039 / 4.805227 (-4.218188) | 0.125858 / 6.500664 (-6.374806) | 0.062522 / 0.075469 (-0.012947) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294929 / 1.841788 (-0.546858) | 18.056312 / 8.074308 (9.982004) | 13.755117 / 10.191392 (3.563725) | 0.132037 / 0.680424 (-0.548387) | 0.016866 / 0.534201 (-0.517335) | 0.339040 / 0.579283 (-0.240243) | 0.364371 / 0.434364 (-0.069993) | 0.399533 / 0.540337 (-0.140804) | 0.564524 / 1.386936 (-0.822412) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#64b811c13a7982015d7e078e3d693ce5359a05a2 \"CML watermark\")\n",
"@lhoestq This bar comes from: https://github.com/huggingface/datasets/blob/b8067c0262073891180869f700ebef5ac3dc5cce/src/datasets/builder.py#L1156-L1166\r\n\r\nDo you prefer not showing it or, e.g., having `desc=\"Generating splits\"`?",
"No strong opinion. Since there is a \"Generating\" progress bar already, maybe it can be \"Preparing splits\" (ref to download_and_prepare)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006348 / 0.011353 (-0.005005) | 0.003721 / 0.011008 (-0.007287) | 0.084039 / 0.038508 (0.045531) | 0.067627 / 0.023109 (0.044517) | 0.308372 / 0.275898 (0.032474) | 0.335131 / 0.323480 (0.011652) | 0.005157 / 0.007986 (-0.002829) | 0.003266 / 0.004328 (-0.001062) | 0.065374 / 0.004250 (0.061124) | 0.055550 / 0.037052 (0.018498) | 0.314001 / 0.258489 (0.055512) | 0.350510 / 0.293841 (0.056669) | 0.030859 / 0.128546 (-0.097688) | 0.008286 / 0.075646 (-0.067361) | 0.287122 / 0.419271 (-0.132149) | 0.051494 / 0.043533 (0.007961) | 0.309868 / 0.255139 (0.054729) | 0.325845 / 0.283200 (0.042645) | 0.022622 / 0.141683 (-0.119061) | 1.468730 / 1.452155 (0.016575) | 1.547871 / 1.492716 (0.055155) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202763 / 0.018006 (0.184757) | 0.456403 / 0.000490 (0.455914) | 0.003116 / 0.000200 (0.002916) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027297 / 0.037411 (-0.010114) | 0.081204 / 0.014526 (0.066678) | 0.094274 / 0.176557 (-0.082282) | 0.154391 / 0.737135 (-0.582744) | 0.094312 / 0.296338 (-0.202026) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.387382 / 0.215209 (0.172173) | 3.865597 / 2.077655 (1.787943) | 1.855959 / 1.504120 (0.351839) | 1.685411 / 1.541195 (0.144216) | 1.732127 / 1.468490 (0.263637) | 0.482230 / 4.584777 (-4.102547) | 3.664947 / 3.745712 (-0.080765) | 5.114379 / 5.269862 (-0.155482) | 3.102803 / 4.565676 (-1.462873) | 0.056509 / 0.424275 (-0.367766) | 0.007230 / 0.007607 (-0.000377) | 0.456788 / 0.226044 (0.230744) | 4.575831 / 2.268929 (2.306902) | 2.335249 / 55.444624 (-53.109375) | 2.003805 / 6.876477 (-4.872672) | 2.141788 / 2.142072 (-0.000285) | 0.577501 / 4.805227 (-4.227726) | 0.130264 / 6.500664 (-6.370400) | 0.058889 / 0.075469 (-0.016580) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.252673 / 1.841788 (-0.589115) | 18.676897 / 8.074308 (10.602589) | 13.988101 / 10.191392 (3.796709) | 0.151376 / 0.680424 (-0.529048) | 0.018104 / 0.534201 (-0.516097) | 0.388413 / 0.579283 (-0.190870) | 0.414841 / 0.434364 (-0.019523) | 0.456078 / 0.540337 (-0.084259) | 0.641715 / 1.386936 (-0.745221) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006315 / 0.011353 (-0.005038) | 0.003847 / 0.011008 (-0.007162) | 0.063989 / 0.038508 (0.025481) | 0.068244 / 0.023109 (0.045135) | 0.416201 / 0.275898 (0.140303) | 0.438446 / 0.323480 (0.114966) | 0.005820 / 0.007986 (-0.002166) | 0.003165 / 0.004328 (-0.001163) | 0.064143 / 0.004250 (0.059892) | 0.056529 / 0.037052 (0.019477) | 0.414916 / 0.258489 (0.156427) | 0.450771 / 0.293841 (0.156930) | 0.030611 / 0.128546 (-0.097935) | 0.008289 / 0.075646 (-0.067357) | 0.070725 / 0.419271 (-0.348546) | 0.047998 / 0.043533 (0.004465) | 0.405609 / 0.255139 (0.150470) | 0.421895 / 0.283200 (0.138696) | 0.022135 / 0.141683 (-0.119548) | 1.444238 / 1.452155 (-0.007916) | 1.515823 / 1.492716 (0.023107) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227043 / 0.018006 (0.209037) | 0.439732 / 0.000490 (0.439242) | 0.001267 / 0.000200 (0.001067) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029082 / 0.037411 (-0.008329) | 0.086201 / 0.014526 (0.071675) | 0.098653 / 0.176557 (-0.077903) | 0.152574 / 0.737135 (-0.584561) | 0.100696 / 0.296338 (-0.195642) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411243 / 0.215209 (0.196034) | 4.100170 / 2.077655 (2.022515) | 2.118310 / 1.504120 (0.614190) | 1.935646 / 1.541195 (0.394451) | 1.970798 / 1.468490 (0.502307) | 0.478635 / 4.584777 (-4.106142) | 3.589396 / 3.745712 (-0.156316) | 3.312462 / 5.269862 (-1.957399) | 1.963081 / 4.565676 (-2.602595) | 0.056392 / 0.424275 (-0.367883) | 0.007134 / 0.007607 (-0.000473) | 0.485131 / 0.226044 (0.259086) | 4.838946 / 2.268929 (2.570017) | 2.624550 / 55.444624 (-52.820075) | 2.223046 / 6.876477 (-4.653431) | 2.230642 / 2.142072 (0.088570) | 0.594892 / 4.805227 (-4.210335) | 0.130523 / 6.500664 (-6.370141) | 0.059585 / 0.075469 (-0.015884) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.329941 / 1.841788 (-0.511847) | 19.199057 / 8.074308 (11.124748) | 14.166009 / 10.191392 (3.974617) | 0.190595 / 0.680424 (-0.489829) | 0.018419 / 0.534201 (-0.515782) | 0.392031 / 0.579283 (-0.187252) | 0.409395 / 0.434364 (-0.024969) | 0.475930 / 0.540337 (-0.064408) | 0.654412 / 1.386936 (-0.732524) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#42fdfbd567674d075c3a9148ec3c95221eb62cfe \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007500 / 0.011353 (-0.003853) | 0.004328 / 0.011008 (-0.006681) | 0.086718 / 0.038508 (0.048209) | 0.098638 / 0.023109 (0.075529) | 0.335308 / 0.275898 (0.059409) | 0.369163 / 0.323480 (0.045683) | 0.005733 / 0.007986 (-0.002253) | 0.003738 / 0.004328 (-0.000590) | 0.066452 / 0.004250 (0.062202) | 0.066245 / 0.037052 (0.029192) | 0.337609 / 0.258489 (0.079120) | 0.388584 / 0.293841 (0.094744) | 0.031742 / 0.128546 (-0.096804) | 0.008721 / 0.075646 (-0.066925) | 0.290820 / 0.419271 (-0.128452) | 0.053323 / 0.043533 (0.009790) | 0.329192 / 0.255139 (0.074053) | 0.350560 / 0.283200 (0.067360) | 0.025402 / 0.141683 (-0.116281) | 1.476174 / 1.452155 (0.024020) | 1.578194 / 1.492716 (0.085478) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256160 / 0.018006 (0.238154) | 0.560315 / 0.000490 (0.559825) | 0.005287 / 0.000200 (0.005088) | 0.000094 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029164 / 0.037411 (-0.008247) | 0.084881 / 0.014526 (0.070356) | 0.100979 / 0.176557 (-0.075577) | 0.156539 / 0.737135 (-0.580597) | 0.101510 / 0.296338 (-0.194828) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.381138 / 0.215209 (0.165929) | 3.791573 / 2.077655 (1.713918) | 1.841954 / 1.504120 (0.337834) | 1.672463 / 1.541195 (0.131268) | 1.785769 / 1.468490 (0.317279) | 0.483263 / 4.584777 (-4.101514) | 3.617391 / 3.745712 (-0.128322) | 5.607794 / 5.269862 (0.337933) | 3.359530 / 4.565676 (-1.206147) | 0.056826 / 0.424275 (-0.367449) | 0.007375 / 0.007607 (-0.000232) | 0.455853 / 0.226044 (0.229809) | 4.548965 / 2.268929 (2.280037) | 2.412716 / 55.444624 (-53.031908) | 1.991456 / 6.876477 (-4.885021) | 2.242851 / 2.142072 (0.100778) | 0.573070 / 4.805227 (-4.232157) | 0.134658 / 6.500664 (-6.366006) | 0.061539 / 0.075469 (-0.013930) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278306 / 1.841788 (-0.563481) | 20.634317 / 8.074308 (12.560009) | 15.164246 / 10.191392 (4.972854) | 0.167487 / 0.680424 (-0.512937) | 0.019006 / 0.534201 (-0.515195) | 0.394617 / 0.579283 (-0.184666) | 0.423385 / 0.434364 (-0.010979) | 0.469968 / 0.540337 (-0.070370) | 0.630058 / 1.386936 (-0.756878) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006793 / 0.011353 (-0.004559) | 0.004260 / 0.011008 (-0.006748) | 0.065398 / 0.038508 (0.026890) | 0.077850 / 0.023109 (0.054741) | 0.371754 / 0.275898 (0.095855) | 0.400652 / 0.323480 (0.077172) | 0.005729 / 0.007986 (-0.002256) | 0.003660 / 0.004328 (-0.000669) | 0.065119 / 0.004250 (0.060869) | 0.060714 / 0.037052 (0.023661) | 0.384592 / 0.258489 (0.126103) | 0.412806 / 0.293841 (0.118965) | 0.031865 / 0.128546 (-0.096681) | 0.008807 / 0.075646 (-0.066839) | 0.071156 / 0.419271 (-0.348115) | 0.049571 / 0.043533 (0.006038) | 0.367381 / 0.255139 (0.112242) | 0.386713 / 0.283200 (0.103513) | 0.024838 / 0.141683 (-0.116845) | 1.492986 / 1.452155 (0.040831) | 1.559243 / 1.492716 (0.066526) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269737 / 0.018006 (0.251730) | 0.565177 / 0.000490 (0.564687) | 0.000404 / 0.000200 (0.000204) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031631 / 0.037411 (-0.005780) | 0.087289 / 0.014526 (0.072764) | 0.102798 / 0.176557 (-0.073759) | 0.158977 / 0.737135 (-0.578158) | 0.105495 / 0.296338 (-0.190843) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425067 / 0.215209 (0.209858) | 4.243121 / 2.077655 (2.165466) | 2.234567 / 1.504120 (0.730447) | 2.070810 / 1.541195 (0.529615) | 2.176802 / 1.468490 (0.708312) | 0.484987 / 4.584777 (-4.099790) | 3.647000 / 3.745712 (-0.098712) | 3.574843 / 5.269862 (-1.695019) | 2.092581 / 4.565676 (-2.473095) | 0.057299 / 0.424275 (-0.366976) | 0.007480 / 0.007607 (-0.000128) | 0.507838 / 0.226044 (0.281794) | 5.076594 / 2.268929 (2.807666) | 2.718858 / 55.444624 (-52.725766) | 2.362793 / 6.876477 (-4.513684) | 2.451962 / 2.142072 (0.309890) | 0.581355 / 4.805227 (-4.223872) | 0.133723 / 6.500664 (-6.366941) | 0.061896 / 0.075469 (-0.013573) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.325814 / 1.841788 (-0.515974) | 20.614502 / 8.074308 (12.540194) | 14.769422 / 10.191392 (4.578029) | 0.193797 / 0.680424 (-0.486627) | 0.018379 / 0.534201 (-0.515822) | 0.394153 / 0.579283 (-0.185130) | 0.409585 / 0.434364 (-0.024779) | 0.479107 / 0.540337 (-0.061231) | 0.668397 / 1.386936 (-0.718539) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b2d892237169bad5512c91cae453d257ebefc201 \"CML watermark\")\n",
"In the end, I decided to remove the progress bar to avoid having it displayed when loading a cached dataset.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006673 / 0.011353 (-0.004680) | 0.004162 / 0.011008 (-0.006846) | 0.084017 / 0.038508 (0.045509) | 0.079536 / 0.023109 (0.056426) | 0.313594 / 0.275898 (0.037695) | 0.349200 / 0.323480 (0.025720) | 0.005544 / 0.007986 (-0.002441) | 0.003472 / 0.004328 (-0.000857) | 0.064742 / 0.004250 (0.060491) | 0.056857 / 0.037052 (0.019805) | 0.318635 / 0.258489 (0.060146) | 0.354378 / 0.293841 (0.060537) | 0.030856 / 0.128546 (-0.097690) | 0.008759 / 0.075646 (-0.066887) | 0.287760 / 0.419271 (-0.131511) | 0.052307 / 0.043533 (0.008775) | 0.316396 / 0.255139 (0.061257) | 0.351408 / 0.283200 (0.068208) | 0.024914 / 0.141683 (-0.116769) | 1.484592 / 1.452155 (0.032437) | 1.560662 / 1.492716 (0.067945) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280938 / 0.018006 (0.262932) | 0.580236 / 0.000490 (0.579747) | 0.003369 / 0.000200 (0.003169) | 0.000090 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028736 / 0.037411 (-0.008675) | 0.082916 / 0.014526 (0.068390) | 0.097761 / 0.176557 (-0.078796) | 0.153515 / 0.737135 (-0.583620) | 0.099282 / 0.296338 (-0.197057) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401244 / 0.215209 (0.186035) | 4.019866 / 2.077655 (1.942211) | 2.029642 / 1.504120 (0.525522) | 1.849591 / 1.541195 (0.308396) | 1.946829 / 1.468490 (0.478339) | 0.479750 / 4.584777 (-4.105027) | 3.482822 / 3.745712 (-0.262890) | 3.955859 / 5.269862 (-1.314003) | 2.370747 / 4.565676 (-2.194930) | 0.056905 / 0.424275 (-0.367370) | 0.007319 / 0.007607 (-0.000288) | 0.485310 / 0.226044 (0.259266) | 4.858228 / 2.268929 (2.589299) | 2.500476 / 55.444624 (-52.944148) | 2.171156 / 6.876477 (-4.705320) | 2.427266 / 2.142072 (0.285194) | 0.570199 / 4.805227 (-4.235029) | 0.130855 / 6.500664 (-6.369809) | 0.060269 / 0.075469 (-0.015200) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258044 / 1.841788 (-0.583743) | 20.218657 / 8.074308 (12.144349) | 13.597970 / 10.191392 (3.406578) | 0.167656 / 0.680424 (-0.512768) | 0.018137 / 0.534201 (-0.516064) | 0.395309 / 0.579283 (-0.183975) | 0.406325 / 0.434364 (-0.028039) | 0.467457 / 0.540337 (-0.072880) | 0.613636 / 1.386936 (-0.773300) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006846 / 0.011353 (-0.004507) | 0.004207 / 0.011008 (-0.006802) | 0.064525 / 0.038508 (0.026017) | 0.081329 / 0.023109 (0.058220) | 0.399838 / 0.275898 (0.123940) | 0.431305 / 0.323480 (0.107825) | 0.005859 / 0.007986 (-0.002127) | 0.003568 / 0.004328 (-0.000760) | 0.065262 / 0.004250 (0.061011) | 0.064796 / 0.037052 (0.027744) | 0.406858 / 0.258489 (0.148369) | 0.440971 / 0.293841 (0.147130) | 0.031421 / 0.128546 (-0.097125) | 0.008777 / 0.075646 (-0.066870) | 0.071418 / 0.419271 (-0.347853) | 0.049263 / 0.043533 (0.005730) | 0.384279 / 0.255139 (0.129140) | 0.410745 / 0.283200 (0.127546) | 0.024467 / 0.141683 (-0.117216) | 1.522379 / 1.452155 (0.070224) | 1.581636 / 1.492716 (0.088920) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.276161 / 0.018006 (0.258155) | 0.548842 / 0.000490 (0.548352) | 0.004523 / 0.000200 (0.004324) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030747 / 0.037411 (-0.006664) | 0.087493 / 0.014526 (0.072967) | 0.106563 / 0.176557 (-0.069993) | 0.162949 / 0.737135 (-0.574186) | 0.105303 / 0.296338 (-0.191036) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425854 / 0.215209 (0.210645) | 4.244797 / 2.077655 (2.167142) | 2.269006 / 1.504120 (0.764886) | 2.097428 / 1.541195 (0.556234) | 2.181038 / 1.468490 (0.712548) | 0.477286 / 4.584777 (-4.107491) | 3.591452 / 3.745712 (-0.154260) | 3.481281 / 5.269862 (-1.788580) | 2.066895 / 4.565676 (-2.498782) | 0.056576 / 0.424275 (-0.367699) | 0.007409 / 0.007607 (-0.000199) | 0.498411 / 0.226044 (0.272367) | 4.994873 / 2.268929 (2.725945) | 2.749148 / 55.444624 (-52.695476) | 2.378544 / 6.876477 (-4.497932) | 2.452859 / 2.142072 (0.310786) | 0.571340 / 4.805227 (-4.233887) | 0.132174 / 6.500664 (-6.368490) | 0.061507 / 0.075469 (-0.013962) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.370773 / 1.841788 (-0.471015) | 20.493342 / 8.074308 (12.419034) | 14.809886 / 10.191392 (4.618494) | 0.175730 / 0.680424 (-0.504693) | 0.018617 / 0.534201 (-0.515583) | 0.393808 / 0.579283 (-0.185476) | 0.416419 / 0.434364 (-0.017945) | 0.477183 / 0.540337 (-0.063155) | 0.668060 / 1.386936 (-0.718876) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2de7a2a4af5d94b0f98a7a6db94e78984af40602 \"CML watermark\")\n",
"Nice one :)"
] | 2023-07-11T18:30:23 | 2023-07-12T19:34:14 | 2023-07-12T17:19:28 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6019",
"html_url": "https://github.com/huggingface/datasets/pull/6019",
"diff_url": "https://github.com/huggingface/datasets/pull/6019.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6019.patch",
"merged_at": "2023-07-12T17:19:28"
} | Adds the StreamHandler (as `hfh` and `transformers` do) to the library's logger to log INFO messages and logs the messages about "loading a cached result" (and some other warnings) as INFO
(Also removes the `leave=False` arg in the progress bars to be consistent with `hfh` and `transformers` - progress bars serve as an indicator that a result is not cached, so it makes more sense not to delete them)
Fix #2832, fix https://github.com/huggingface/datasets/issues/1948, fix https://github.com/huggingface/datasets/issues/5444 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6019/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6019/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6022 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6022/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6022/comments | https://api.github.com/repos/huggingface/datasets/issues/6022/events | https://github.com/huggingface/datasets/issues/6022 | 1,800,092,589 | I_kwDODunzps5rSzut | 6,022 | Batch map raises TypeError: '>=' not supported between instances of 'NoneType' and 'int' | {
"login": "codingl2k1",
"id": 138426806,
"node_id": "U_kgDOCEA5tg",
"avatar_url": "https://avatars.githubusercontent.com/u/138426806?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/codingl2k1",
"html_url": "https://github.com/codingl2k1",
"followers_url": "https://api.github.com/users/codingl2k1/followers",
"following_url": "https://api.github.com/users/codingl2k1/following{/other_user}",
"gists_url": "https://api.github.com/users/codingl2k1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/codingl2k1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/codingl2k1/subscriptions",
"organizations_url": "https://api.github.com/users/codingl2k1/orgs",
"repos_url": "https://api.github.com/users/codingl2k1/repos",
"events_url": "https://api.github.com/users/codingl2k1/events{/privacy}",
"received_events_url": "https://api.github.com/users/codingl2k1/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Thanks for reporting! I've opened a PR with a fix."
] | 2023-07-12T03:20:17 | 2023-07-12T16:18:06 | 2023-07-12T16:18:05 | NONE | null | null | null | ### Describe the bug
When mapping some datasets with `batched=True`, datasets may raise an exeception:
```python
Traceback (most recent call last):
File "/Users/codingl2k1/Work/datasets/venv/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/utils/py_utils.py", line 1328, in _write_generator_to_queue
for i, result in enumerate(func(**kwargs)):
File "/Users/codingl2k1/Work/datasets/src/datasets/arrow_dataset.py", line 3483, in _map_single
writer.write_batch(batch)
File "/Users/codingl2k1/Work/datasets/src/datasets/arrow_writer.py", line 549, in write_batch
array = cast_array_to_feature(col_values, col_type) if col_type is not None else col_values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/table.py", line 1831, in wrapper
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/table.py", line 1831, in <listcomp>
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/table.py", line 2063, in cast_array_to_feature
return feature.cast_storage(array)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/features/features.py", line 1098, in cast_storage
if min_max["max"] >= self.num_classes:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TypeError: '>=' not supported between instances of 'NoneType' and 'int'
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/Users/codingl2k1/Work/datasets/t1.py", line 33, in <module>
ds = ds.map(transforms, num_proc=14, batched=True, batch_size=5)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/dataset_dict.py", line 850, in map
{
File "/Users/codingl2k1/Work/datasets/src/datasets/dataset_dict.py", line 851, in <dictcomp>
k: dataset.map(
^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/arrow_dataset.py", line 577, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/arrow_dataset.py", line 542, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/src/datasets/arrow_dataset.py", line 3179, in map
for rank, done, content in iflatmap_unordered(
File "/Users/codingl2k1/Work/datasets/src/datasets/utils/py_utils.py", line 1368, in iflatmap_unordered
[async_result.get(timeout=0.05) for async_result in async_results]
File "/Users/codingl2k1/Work/datasets/src/datasets/utils/py_utils.py", line 1368, in <listcomp>
[async_result.get(timeout=0.05) for async_result in async_results]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/Work/datasets/venv/lib/python3.11/site-packages/multiprocess/pool.py", line 774, in get
raise self._value
TypeError: '>=' not supported between instances of 'NoneType' and 'int'
```
### Steps to reproduce the bug
1. Checkout the latest main of datasets.
2. Run the code:
```python
from datasets import load_dataset
def transforms(examples):
# examples["pixel_values"] = [image.convert("RGB").resize((100, 100)) for image in examples["image"]]
return examples
ds = load_dataset("scene_parse_150")
ds = ds.map(transforms, num_proc=14, batched=True, batch_size=5)
print(ds)
```
### Expected behavior
map without exception.
### Environment info
Datasets: https://github.com/huggingface/datasets/commit/b8067c0262073891180869f700ebef5ac3dc5cce
Python: 3.11.4
System: Macos | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6022/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6022/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6057 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6057/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6057/comments | https://api.github.com/repos/huggingface/datasets/issues/6057/events | https://github.com/huggingface/datasets/issues/6057 | 1,815,100,151 | I_kwDODunzps5sMDr3 | 6,057 | Why is the speed difference of gen example so big? | {
"login": "pixeli99",
"id": 46072190,
"node_id": "MDQ6VXNlcjQ2MDcyMTkw",
"avatar_url": "https://avatars.githubusercontent.com/u/46072190?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/pixeli99",
"html_url": "https://github.com/pixeli99",
"followers_url": "https://api.github.com/users/pixeli99/followers",
"following_url": "https://api.github.com/users/pixeli99/following{/other_user}",
"gists_url": "https://api.github.com/users/pixeli99/gists{/gist_id}",
"starred_url": "https://api.github.com/users/pixeli99/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pixeli99/subscriptions",
"organizations_url": "https://api.github.com/users/pixeli99/orgs",
"repos_url": "https://api.github.com/users/pixeli99/repos",
"events_url": "https://api.github.com/users/pixeli99/events{/privacy}",
"received_events_url": "https://api.github.com/users/pixeli99/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi!\r\n\r\nIt's hard to explain this behavior without more information. Can you profile the slower version with the following code\r\n```python\r\nimport cProfile, pstats\r\nfrom datasets import load_dataset\r\n\r\nwith cProfile.Profile() as profiler:\r\n ds = load_dataset(...)\r\n\r\nstats = pstats.Stats(profiler).sort_stats(\"cumtime\")\r\nstats.print_stats()\r\n```\r\nand share the output?"
] | 2023-07-21T03:34:49 | 2023-07-21T16:41:09 | null | NONE | null | null | null | ```python
def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
with open(metadata_path, 'r') as file:
metadata = json.load(file)
for idx, item in enumerate(metadata):
image_path = item.get('image_path')
text_content = item.get('text_content')
image_data = open(image_path, "rb").read()
yield idx, {
"text": text_content,
"image": {
"path": image_path,
"bytes": image_data,
},
"conditioning_image": {
"path": image_path,
"bytes": image_data,
},
}
```
Hello,
I use the above function to deal with my local data set, but I am very surprised that the speed at which I generate example is very different. When I start a training task, **sometimes 1000examples/s, sometimes only 10examples/s.**
![image](https://github.com/huggingface/datasets/assets/46072190/cdc17661-8267-4fd8-b30c-b74d505efd9b)
I'm not saying that speed is changing all the time. I mean, the reading speed is different in different training, which will cause me to start training over and over again until the speed of this generation of examples is normal.
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6057/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6057/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6065 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6065/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6065/comments | https://api.github.com/repos/huggingface/datasets/issues/6065/events | https://github.com/huggingface/datasets/pull/6065 | 1,819,334,932 | PR_kwDODunzps5WR8jI | 6,065 | Add column type guessing from map return function | {
"login": "piercefreeman",
"id": 1712066,
"node_id": "MDQ6VXNlcjE3MTIwNjY=",
"avatar_url": "https://avatars.githubusercontent.com/u/1712066?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/piercefreeman",
"html_url": "https://github.com/piercefreeman",
"followers_url": "https://api.github.com/users/piercefreeman/followers",
"following_url": "https://api.github.com/users/piercefreeman/following{/other_user}",
"gists_url": "https://api.github.com/users/piercefreeman/gists{/gist_id}",
"starred_url": "https://api.github.com/users/piercefreeman/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/piercefreeman/subscriptions",
"organizations_url": "https://api.github.com/users/piercefreeman/orgs",
"repos_url": "https://api.github.com/users/piercefreeman/repos",
"events_url": "https://api.github.com/users/piercefreeman/events{/privacy}",
"received_events_url": "https://api.github.com/users/piercefreeman/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Thanks for working on this. However, having thought about this issue a bit more, supporting this doesn't seem like a good idea - it's better to be explicit than implicit, according to the Zen of Python 🙂. Also, I don't think many users would use this, so this raises the question of whether this is something we want to maintain.\r\n\r\ncc @lhoestq for the 2nd opinion",
"@mariosasko I was going to quote the Zen of Python in the other direction :) To me, this actually is much more explicit than the current behavior of guessing pyarrow types based on the raw dictionary return values. Explicit typehinting is increasingly the de facto way to deal with this dynamic type serialization - plus it feels like a clearer fit to me than separating out the mapper function from the feature column definition in the call to the actual `.map()`. Another benefit is providing typehinting support for clients that use mypy or other static typecheckers to detect return mismatches.\r\n\r\nBut will leave it to you and @lhoestq to see if it's something you'd like in core versus a support package.",
"I meant that explicitly specifying the target features (the `features` param) is cleaner (easier to track) than relying on type hints.",
"Passing features= to `map()` is richer and more explicit. Also I don't think users would guess that such API exist.\r\n\r\nOther libraries like dask also infer the type from the output or requires the typing to be specified using the `meta` argument",
"Point about discoverability is a fair one, would certainly need some docs around it. All good! Will close this out and keep in our extension utilities."
] | 2023-07-25T00:34:17 | 2023-07-26T15:13:45 | 2023-07-26T15:13:44 | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6065",
"html_url": "https://github.com/huggingface/datasets/pull/6065",
"diff_url": "https://github.com/huggingface/datasets/pull/6065.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6065.patch",
"merged_at": null
} | As discussed [here](https://github.com/huggingface/datasets/issues/5965), there are some cases where datasets is unable to automatically promote columns during mapping. The fix is to explicitly provide a `features` definition so pyarrow can configure itself with the right column types from the outset.
This PR provides an alternative approach, which is functionally equivalent to specifying features but a bit cleaner within a larger mapping pipeline. It allows clients to typehint the return variable coming from the mapper function - if we find one of these type annotations specified, and no explicit features have been passed in, we'll try to convert it into a Features map. If the map function runs and casting is unable to succeed, it will raise a DatasetTransformationNotAllowedError that indicates the typehint may be to blame. It works for batched and non-batched mapping functions.
Currently supported column types:
- builtins primitives: string, int, float, bool
- dictionaries, lists (nested and one-deep)
- Optional types and None-Unions (synonymous with optional types)
It's used like:
```python
class DatasetTyped(TypedDict):
texts: list[str]
def dataset_typed_map(batch) -> DatasetTyped:
return {"texts": [text.split() for text in batch["raw_text"]]}
dataset = {"raw_text": ["", "This is a test", "This is another test"]}
with Dataset.from_dict(dataset) as dset:
new_dataset = dset.map(
dataset_typed_map,
batched=True,
batch_size=1,
num_proc=1,
)
```
Open questions:
- Should logging indicate we have automatically guessed these types? Or proceed quietly until we hit an error (as is the current implementation). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6065/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6065/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6071 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6071/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6071/comments | https://api.github.com/repos/huggingface/datasets/issues/6071/events | https://github.com/huggingface/datasets/issues/6071 | 1,821,990,749 | I_kwDODunzps5smV9d | 6,071 | storage_options provided to load_dataset not fully piping through since datasets 2.14.0 | {
"login": "exs-avianello",
"id": 128361578,
"node_id": "U_kgDOB6akag",
"avatar_url": "https://avatars.githubusercontent.com/u/128361578?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/exs-avianello",
"html_url": "https://github.com/exs-avianello",
"followers_url": "https://api.github.com/users/exs-avianello/followers",
"following_url": "https://api.github.com/users/exs-avianello/following{/other_user}",
"gists_url": "https://api.github.com/users/exs-avianello/gists{/gist_id}",
"starred_url": "https://api.github.com/users/exs-avianello/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/exs-avianello/subscriptions",
"organizations_url": "https://api.github.com/users/exs-avianello/orgs",
"repos_url": "https://api.github.com/users/exs-avianello/repos",
"events_url": "https://api.github.com/users/exs-avianello/events{/privacy}",
"received_events_url": "https://api.github.com/users/exs-avianello/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi ! Thanks for reporting, I opened a PR to fix this\r\n\r\nWhat filesystem are you using ?",
"Hi @lhoestq ! Thank you so much 🙌 \r\n\r\nIt's a bit of a custom setup, but in practice I am using a [pyarrow.fs.S3FileSystem](https://arrow.apache.org/docs/python/generated/pyarrow.fs.S3FileSystem.html) (wrapped in a `fsspec.implementations.arrow.ArrowFSWrapper` [to make it](https://arrow.apache.org/docs/python/filesystems.html#using-arrow-filesystems-with-fsspec) `fsspec` compatible). I also register it as an entrypoint with `fsspec` so that it's the one that gets automatically resolved when looking for filesystems for the `s3` protocol\r\n\r\nIn my case the `storage_option` that seemed not getting piped through was the filesystem's `endpoint_override` that I use in some tests to point at a mock S3 bucket"
] | 2023-07-26T09:37:20 | 2023-07-26T11:04:35 | null | NONE | null | null | null | ### Describe the bug
Since the latest release of `datasets` (`2.14.0`), custom filesystem `storage_options` passed to `load_dataset()` do not seem to propagate through all the way - leading to problems if loading data files that need those options to be set.
I think this is because of the new `_prepare_path_and_storage_options()` (https://github.com/huggingface/datasets/pull/6028), which returns the right `storage_options` to use given a path and a `DownloadConfig` - but which might not be taking into account the extra `storage_options` explicitly provided e.g. through `load_dataset()`
### Steps to reproduce the bug
```python
import fsspec
import pandas as pd
import datasets
# Generate mock parquet file
data_files = "demo.parquet"
pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}).to_parquet(data_files)
_storage_options = {"x": 1, "y": 2}
fs = fsspec.filesystem("file", **_storage_options)
dataset = datasets.load_dataset(
"parquet",
data_files=data_files,
storage_options=fs.storage_options
)
```
Looking at the `storage_options` resolved here:
https://github.com/huggingface/datasets/blob/b0177910b32712f28d147879395e511207e39958/src/datasets/data_files.py#L331
they end up being `{}`, instead of propagating through the `storage_options` that were provided to `load_dataset` (`fs.storage_options`). As these then get used for the filesystem operation a few lines below
https://github.com/huggingface/datasets/blob/b0177910b32712f28d147879395e511207e39958/src/datasets/data_files.py#L339
the call will fail if the user-provided `storage_options` were needed.
---
A temporary workaround that seemed to work locally to bypass the problem was to bundle a duplicate of the `storage_options` into the `download_config`, so that they make their way all the way to `_prepare_path_and_storage_options()` and get extracted correctly:
```python
dataset = datasets.load_dataset(
"parquet",
data_files=data_files,
storage_options=fs.storage_options,
download_config=datasets.DownloadConfig(storage_options={fs.protocol: fs.storage_options}),
)
```
### Expected behavior
`storage_options` provided to `load_dataset` take effect in all backend filesystem operations.
### Environment info
datasets==2.14.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6071/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6071/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6042 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6042/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6042/comments | https://api.github.com/repos/huggingface/datasets/issues/6042/events | https://github.com/huggingface/datasets/pull/6042 | 1,807,516,762 | PR_kwDODunzps5VqEyb | 6,042 | Fix unused DatasetInfosDict code in push_to_hub | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008634 / 0.011353 (-0.002719) | 0.005147 / 0.011008 (-0.005861) | 0.102865 / 0.038508 (0.064357) | 0.080245 / 0.023109 (0.057136) | 0.401288 / 0.275898 (0.125390) | 0.419708 / 0.323480 (0.096228) | 0.006342 / 0.007986 (-0.001644) | 0.003998 / 0.004328 (-0.000330) | 0.078880 / 0.004250 (0.074630) | 0.068199 / 0.037052 (0.031147) | 0.389573 / 0.258489 (0.131084) | 0.417292 / 0.293841 (0.123451) | 0.048856 / 0.128546 (-0.079691) | 0.014165 / 0.075646 (-0.061481) | 0.348063 / 0.419271 (-0.071209) | 0.067547 / 0.043533 (0.024014) | 0.402251 / 0.255139 (0.147112) | 0.419478 / 0.283200 (0.136278) | 0.034846 / 0.141683 (-0.106837) | 1.773493 / 1.452155 (0.321338) | 1.930546 / 1.492716 (0.437830) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211835 / 0.018006 (0.193829) | 0.545311 / 0.000490 (0.544821) | 0.006766 / 0.000200 (0.006566) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035406 / 0.037411 (-0.002006) | 0.100769 / 0.014526 (0.086243) | 0.108667 / 0.176557 (-0.067890) | 0.193099 / 0.737135 (-0.544036) | 0.113539 / 0.296338 (-0.182799) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.586935 / 0.215209 (0.371726) | 5.895245 / 2.077655 (3.817591) | 2.528375 / 1.504120 (1.024255) | 2.228617 / 1.541195 (0.687423) | 2.295799 / 1.468490 (0.827309) | 0.859272 / 4.584777 (-3.725505) | 5.033434 / 3.745712 (1.287722) | 7.546587 / 5.269862 (2.276726) | 4.457137 / 4.565676 (-0.108539) | 0.099626 / 0.424275 (-0.324649) | 0.009296 / 0.007607 (0.001689) | 0.713498 / 0.226044 (0.487454) | 7.409385 / 2.268929 (5.140456) | 3.361418 / 55.444624 (-52.083206) | 2.681111 / 6.876477 (-4.195366) | 2.849598 / 2.142072 (0.707526) | 1.114863 / 4.805227 (-3.690364) | 0.215494 / 6.500664 (-6.285170) | 0.075807 / 0.075469 (0.000338) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.606458 / 1.841788 (-0.235330) | 23.751096 / 8.074308 (15.676788) | 21.279110 / 10.191392 (11.087718) | 0.220785 / 0.680424 (-0.459639) | 0.032688 / 0.534201 (-0.501513) | 0.530948 / 0.579283 (-0.048335) | 0.630056 / 0.434364 (0.195693) | 0.572743 / 0.540337 (0.032405) | 0.771853 / 1.386936 (-0.615083) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008693 / 0.011353 (-0.002660) | 0.004750 / 0.011008 (-0.006259) | 0.079764 / 0.038508 (0.041256) | 0.082096 / 0.023109 (0.058987) | 0.467198 / 0.275898 (0.191300) | 0.532361 / 0.323480 (0.208881) | 0.005836 / 0.007986 (-0.002149) | 0.004333 / 0.004328 (0.000005) | 0.080444 / 0.004250 (0.076194) | 0.065883 / 0.037052 (0.028831) | 0.464871 / 0.258489 (0.206382) | 0.575026 / 0.293841 (0.281185) | 0.057807 / 0.128546 (-0.070739) | 0.017462 / 0.075646 (-0.058185) | 0.093667 / 0.419271 (-0.325605) | 0.071466 / 0.043533 (0.027933) | 0.495846 / 0.255139 (0.240707) | 0.526100 / 0.283200 (0.242900) | 0.034852 / 0.141683 (-0.106831) | 1.884152 / 1.452155 (0.431998) | 1.922681 / 1.492716 (0.429965) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250969 / 0.018006 (0.232963) | 0.504979 / 0.000490 (0.504489) | 0.000466 / 0.000200 (0.000266) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032411 / 0.037411 (-0.005000) | 0.093184 / 0.014526 (0.078658) | 0.110798 / 0.176557 (-0.065759) | 0.165741 / 0.737135 (-0.571394) | 0.111022 / 0.296338 (-0.185317) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.661284 / 0.215209 (0.446075) | 6.622388 / 2.077655 (4.544733) | 3.095705 / 1.504120 (1.591585) | 2.745698 / 1.541195 (1.204503) | 2.694103 / 1.468490 (1.225612) | 0.862154 / 4.584777 (-3.722623) | 5.109985 / 3.745712 (1.364273) | 5.040362 / 5.269862 (-0.229499) | 3.072837 / 4.565676 (-1.492840) | 0.110421 / 0.424275 (-0.313854) | 0.008476 / 0.007607 (0.000869) | 0.910020 / 0.226044 (0.683975) | 8.123626 / 2.268929 (5.854698) | 3.813811 / 55.444624 (-51.630813) | 3.017244 / 6.876477 (-3.859232) | 3.061222 / 2.142072 (0.919150) | 1.073548 / 4.805227 (-3.731680) | 0.216327 / 6.500664 (-6.284338) | 0.072977 / 0.075469 (-0.002492) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.722482 / 1.841788 (-0.119305) | 23.706716 / 8.074308 (15.632407) | 23.192134 / 10.191392 (13.000742) | 0.276733 / 0.680424 (-0.403691) | 0.033538 / 0.534201 (-0.500663) | 0.602083 / 0.579283 (0.022799) | 0.578718 / 0.434364 (0.144354) | 0.558311 / 0.540337 (0.017974) | 0.740341 / 1.386936 (-0.646595) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7ac575b8ed57dac60d7ba33a616894f38601f84a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006862 / 0.011353 (-0.004491) | 0.004223 / 0.011008 (-0.006786) | 0.085931 / 0.038508 (0.047423) | 0.081437 / 0.023109 (0.058328) | 0.349542 / 0.275898 (0.073644) | 0.379881 / 0.323480 (0.056401) | 0.005651 / 0.007986 (-0.002334) | 0.003662 / 0.004328 (-0.000666) | 0.065251 / 0.004250 (0.061001) | 0.061599 / 0.037052 (0.024547) | 0.359681 / 0.258489 (0.101192) | 0.392502 / 0.293841 (0.098661) | 0.031300 / 0.128546 (-0.097246) | 0.008591 / 0.075646 (-0.067055) | 0.288577 / 0.419271 (-0.130694) | 0.062920 / 0.043533 (0.019388) | 0.348989 / 0.255139 (0.093850) | 0.362769 / 0.283200 (0.079569) | 0.030087 / 0.141683 (-0.111596) | 1.480748 / 1.452155 (0.028594) | 1.580413 / 1.492716 (0.087697) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205804 / 0.018006 (0.187798) | 0.455386 / 0.000490 (0.454897) | 0.003134 / 0.000200 (0.002934) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030252 / 0.037411 (-0.007159) | 0.087566 / 0.014526 (0.073041) | 0.098209 / 0.176557 (-0.078347) | 0.155816 / 0.737135 (-0.581319) | 0.098938 / 0.296338 (-0.197401) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386688 / 0.215209 (0.171479) | 3.852777 / 2.077655 (1.775123) | 1.938688 / 1.504120 (0.434568) | 1.779234 / 1.541195 (0.238039) | 1.864262 / 1.468490 (0.395772) | 0.482472 / 4.584777 (-4.102305) | 3.658060 / 3.745712 (-0.087652) | 5.206489 / 5.269862 (-0.063373) | 3.262498 / 4.565676 (-1.303179) | 0.057523 / 0.424275 (-0.366752) | 0.007365 / 0.007607 (-0.000242) | 0.466886 / 0.226044 (0.240841) | 4.671026 / 2.268929 (2.402097) | 2.380357 / 55.444624 (-53.064268) | 2.096590 / 6.876477 (-4.779887) | 2.274415 / 2.142072 (0.132342) | 0.579705 / 4.805227 (-4.225522) | 0.134522 / 6.500664 (-6.366142) | 0.062232 / 0.075469 (-0.013237) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.245965 / 1.841788 (-0.595823) | 20.115180 / 8.074308 (12.040872) | 14.602983 / 10.191392 (4.411591) | 0.146890 / 0.680424 (-0.533533) | 0.018424 / 0.534201 (-0.515777) | 0.393941 / 0.579283 (-0.185342) | 0.413785 / 0.434364 (-0.020579) | 0.453344 / 0.540337 (-0.086993) | 0.655446 / 1.386936 (-0.731490) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006807 / 0.011353 (-0.004546) | 0.004083 / 0.011008 (-0.006925) | 0.065389 / 0.038508 (0.026881) | 0.081056 / 0.023109 (0.057947) | 0.362823 / 0.275898 (0.086925) | 0.401928 / 0.323480 (0.078448) | 0.005452 / 0.007986 (-0.002533) | 0.003413 / 0.004328 (-0.000915) | 0.065238 / 0.004250 (0.060987) | 0.057264 / 0.037052 (0.020211) | 0.375713 / 0.258489 (0.117224) | 0.407858 / 0.293841 (0.114017) | 0.031580 / 0.128546 (-0.096966) | 0.008643 / 0.075646 (-0.067003) | 0.071693 / 0.419271 (-0.347578) | 0.049392 / 0.043533 (0.005859) | 0.370194 / 0.255139 (0.115055) | 0.384647 / 0.283200 (0.101447) | 0.024805 / 0.141683 (-0.116877) | 1.509511 / 1.452155 (0.057356) | 1.560193 / 1.492716 (0.067477) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234442 / 0.018006 (0.216436) | 0.458818 / 0.000490 (0.458329) | 0.000407 / 0.000200 (0.000207) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031661 / 0.037411 (-0.005750) | 0.093143 / 0.014526 (0.078618) | 0.102205 / 0.176557 (-0.074352) | 0.155850 / 0.737135 (-0.581286) | 0.104345 / 0.296338 (-0.191994) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419641 / 0.215209 (0.204432) | 4.200808 / 2.077655 (2.123153) | 2.218227 / 1.504120 (0.714107) | 2.052604 / 1.541195 (0.511409) | 2.150611 / 1.468490 (0.682121) | 0.482665 / 4.584777 (-4.102112) | 3.606541 / 3.745712 (-0.139172) | 3.310637 / 5.269862 (-1.959224) | 2.070200 / 4.565676 (-2.495476) | 0.056586 / 0.424275 (-0.367689) | 0.007826 / 0.007607 (0.000218) | 0.491037 / 0.226044 (0.264992) | 4.901538 / 2.268929 (2.632610) | 2.676402 / 55.444624 (-52.768223) | 2.363935 / 6.876477 (-4.512542) | 2.587813 / 2.142072 (0.445741) | 0.579302 / 4.805227 (-4.225926) | 0.132792 / 6.500664 (-6.367873) | 0.061865 / 0.075469 (-0.013604) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354315 / 1.841788 (-0.487473) | 20.874516 / 8.074308 (12.800208) | 14.863559 / 10.191392 (4.672167) | 0.183635 / 0.680424 (-0.496789) | 0.018636 / 0.534201 (-0.515565) | 0.395317 / 0.579283 (-0.183966) | 0.410598 / 0.434364 (-0.023766) | 0.476485 / 0.540337 (-0.063853) | 0.643246 / 1.386936 (-0.743690) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4472a8795c603a95eef7c8f15cb04f1290cc8d11 \"CML watermark\")\n"
] | 2023-07-17T11:03:09 | 2023-07-18T16:17:52 | 2023-07-18T16:08:42 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6042",
"html_url": "https://github.com/huggingface/datasets/pull/6042",
"diff_url": "https://github.com/huggingface/datasets/pull/6042.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6042.patch",
"merged_at": "2023-07-18T16:08:42"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6042/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6042/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5988 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5988/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5988/comments | https://api.github.com/repos/huggingface/datasets/issues/5988/events | https://github.com/huggingface/datasets/issues/5988 | 1,773,257,828 | I_kwDODunzps5pscRk | 5,988 | ConnectionError: Couldn't reach dataset_infos.json | {
"login": "yulingao",
"id": 20674868,
"node_id": "MDQ6VXNlcjIwNjc0ODY4",
"avatar_url": "https://avatars.githubusercontent.com/u/20674868?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yulingao",
"html_url": "https://github.com/yulingao",
"followers_url": "https://api.github.com/users/yulingao/followers",
"following_url": "https://api.github.com/users/yulingao/following{/other_user}",
"gists_url": "https://api.github.com/users/yulingao/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yulingao/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yulingao/subscriptions",
"organizations_url": "https://api.github.com/users/yulingao/orgs",
"repos_url": "https://api.github.com/users/yulingao/repos",
"events_url": "https://api.github.com/users/yulingao/events{/privacy}",
"received_events_url": "https://api.github.com/users/yulingao/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Unfortunately, I can't reproduce the error. What does the following code return for you?\r\n```python\r\nimport requests\r\nfrom huggingface_hub import hf_hub_url\r\nr = requests.get(hf_hub_url(\"codeparrot/codeparrot-clean-train\", \"dataset_infos.json\", repo_type=\"dataset\"))\r\n```\r\n\r\nAlso, can you provide more info about your network (region, proxies, etc.)?"
] | 2023-06-25T12:39:31 | 2023-07-07T13:20:57 | 2023-07-07T13:20:57 | NONE | null | null | null | ### Describe the bug
I'm trying to load codeparrot/codeparrot-clean-train, but get the following error:
ConnectionError: Couldn't reach https://huggingface.co/datasets/codeparrot/codeparrot-clean-train/resolve/main/dataset_infos.json (ConnectionError(ProtocolError('Connection aborted.', ConnectionResetError(104, 'Connection reset by peer'))))
### Steps to reproduce the bug
train_data = load_dataset('codeparrot/codeparrot-clean-train', split='train')
### Expected behavior
download the dataset
### Environment info
centos7 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5988/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5988/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6064 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6064/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6064/comments | https://api.github.com/repos/huggingface/datasets/issues/6064/events | https://github.com/huggingface/datasets/pull/6064 | 1,818,703,725 | PR_kwDODunzps5WPzAv | 6,064 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6064). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006704 / 0.011353 (-0.004649) | 0.004208 / 0.011008 (-0.006800) | 0.085895 / 0.038508 (0.047387) | 0.079303 / 0.023109 (0.056193) | 0.353430 / 0.275898 (0.077532) | 0.390814 / 0.323480 (0.067334) | 0.006565 / 0.007986 (-0.001420) | 0.003588 / 0.004328 (-0.000740) | 0.065249 / 0.004250 (0.060999) | 0.059772 / 0.037052 (0.022720) | 0.356315 / 0.258489 (0.097826) | 0.404812 / 0.293841 (0.110971) | 0.031127 / 0.128546 (-0.097419) | 0.008656 / 0.075646 (-0.066991) | 0.288734 / 0.419271 (-0.130537) | 0.053157 / 0.043533 (0.009625) | 0.354651 / 0.255139 (0.099512) | 0.370590 / 0.283200 (0.087391) | 0.024944 / 0.141683 (-0.116738) | 1.472393 / 1.452155 (0.020238) | 1.548946 / 1.492716 (0.056229) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223430 / 0.018006 (0.205424) | 0.567359 / 0.000490 (0.566870) | 0.006744 / 0.000200 (0.006544) | 0.000094 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030174 / 0.037411 (-0.007237) | 0.084865 / 0.014526 (0.070339) | 0.098986 / 0.176557 (-0.077571) | 0.161458 / 0.737135 (-0.575678) | 0.099198 / 0.296338 (-0.197141) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404324 / 0.215209 (0.189115) | 4.043744 / 2.077655 (1.966090) | 1.972834 / 1.504120 (0.468714) | 1.801634 / 1.541195 (0.260439) | 1.891198 / 1.468490 (0.422708) | 0.488511 / 4.584777 (-4.096266) | 3.566890 / 3.745712 (-0.178823) | 3.369415 / 5.269862 (-1.900447) | 2.054995 / 4.565676 (-2.510682) | 0.057225 / 0.424275 (-0.367050) | 0.007360 / 0.007607 (-0.000247) | 0.471813 / 0.226044 (0.245769) | 4.734397 / 2.268929 (2.465468) | 2.526585 / 55.444624 (-52.918039) | 2.230535 / 6.876477 (-4.645942) | 2.434403 / 2.142072 (0.292330) | 0.630090 / 4.805227 (-4.175137) | 0.138544 / 6.500664 (-6.362120) | 0.060099 / 0.075469 (-0.015370) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260951 / 1.841788 (-0.580837) | 20.051513 / 8.074308 (11.977204) | 14.675938 / 10.191392 (4.484546) | 0.169535 / 0.680424 (-0.510889) | 0.018574 / 0.534201 (-0.515627) | 0.394255 / 0.579283 (-0.185028) | 0.412713 / 0.434364 (-0.021651) | 0.475891 / 0.540337 (-0.064446) | 0.658223 / 1.386936 (-0.728713) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006969 / 0.011353 (-0.004384) | 0.004417 / 0.011008 (-0.006591) | 0.064399 / 0.038508 (0.025891) | 0.082928 / 0.023109 (0.059819) | 0.402285 / 0.275898 (0.126387) | 0.440032 / 0.323480 (0.116552) | 0.005896 / 0.007986 (-0.002090) | 0.003580 / 0.004328 (-0.000749) | 0.065340 / 0.004250 (0.061090) | 0.060363 / 0.037052 (0.023311) | 0.417413 / 0.258489 (0.158924) | 0.448527 / 0.293841 (0.154686) | 0.032238 / 0.128546 (-0.096308) | 0.008820 / 0.075646 (-0.066826) | 0.071516 / 0.419271 (-0.347755) | 0.050614 / 0.043533 (0.007081) | 0.406565 / 0.255139 (0.151426) | 0.422527 / 0.283200 (0.139328) | 0.025866 / 0.141683 (-0.115817) | 1.512256 / 1.452155 (0.060101) | 1.568433 / 1.492716 (0.075717) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266521 / 0.018006 (0.248515) | 0.564524 / 0.000490 (0.564034) | 0.005236 / 0.000200 (0.005036) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031998 / 0.037411 (-0.005413) | 0.090754 / 0.014526 (0.076229) | 0.105954 / 0.176557 (-0.070602) | 0.164506 / 0.737135 (-0.572629) | 0.108792 / 0.296338 (-0.187546) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422044 / 0.215209 (0.206835) | 4.204449 / 2.077655 (2.126795) | 2.232060 / 1.504120 (0.727940) | 2.060389 / 1.541195 (0.519194) | 2.152723 / 1.468490 (0.684233) | 0.488456 / 4.584777 (-4.096321) | 3.591102 / 3.745712 (-0.154611) | 5.250401 / 5.269862 (-0.019461) | 3.060259 / 4.565676 (-1.505417) | 0.057558 / 0.424275 (-0.366717) | 0.007881 / 0.007607 (0.000274) | 0.508631 / 0.226044 (0.282587) | 5.064857 / 2.268929 (2.795928) | 2.719068 / 55.444624 (-52.725556) | 2.389992 / 6.876477 (-4.486485) | 2.595073 / 2.142072 (0.453000) | 0.590179 / 4.805227 (-4.215048) | 0.136149 / 6.500664 (-6.364515) | 0.062546 / 0.075469 (-0.012923) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.369252 / 1.841788 (-0.472535) | 20.637580 / 8.074308 (12.563272) | 14.217129 / 10.191392 (4.025737) | 0.195464 / 0.680424 (-0.484960) | 0.018452 / 0.534201 (-0.515749) | 0.397044 / 0.579283 (-0.182239) | 0.401127 / 0.434364 (-0.033237) | 0.465033 / 0.540337 (-0.075305) | 0.613484 / 1.386936 (-0.773452) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d9f1651128e50e7887f5e8eaaf6b55fe4cd84fdc \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006793 / 0.011353 (-0.004559) | 0.004374 / 0.011008 (-0.006635) | 0.084958 / 0.038508 (0.046450) | 0.080440 / 0.023109 (0.057331) | 0.317951 / 0.275898 (0.042053) | 0.376133 / 0.323480 (0.052653) | 0.005775 / 0.007986 (-0.002211) | 0.003644 / 0.004328 (-0.000684) | 0.064823 / 0.004250 (0.060573) | 0.059442 / 0.037052 (0.022390) | 0.319636 / 0.258489 (0.061147) | 0.389668 / 0.293841 (0.095827) | 0.031181 / 0.128546 (-0.097365) | 0.008725 / 0.075646 (-0.066921) | 0.288514 / 0.419271 (-0.130757) | 0.053466 / 0.043533 (0.009933) | 0.323131 / 0.255139 (0.067992) | 0.345276 / 0.283200 (0.062076) | 0.025046 / 0.141683 (-0.116637) | 1.491659 / 1.452155 (0.039504) | 1.562105 / 1.492716 (0.069389) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286325 / 0.018006 (0.268319) | 0.578021 / 0.000490 (0.577531) | 0.007240 / 0.000200 (0.007040) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030163 / 0.037411 (-0.007248) | 0.082100 / 0.014526 (0.067574) | 0.098331 / 0.176557 (-0.078225) | 0.160517 / 0.737135 (-0.576618) | 0.098479 / 0.296338 (-0.197859) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401782 / 0.215209 (0.186573) | 4.006330 / 2.077655 (1.928675) | 2.033841 / 1.504120 (0.529721) | 1.853248 / 1.541195 (0.312053) | 1.980046 / 1.468490 (0.511556) | 0.480636 / 4.584777 (-4.104141) | 3.684482 / 3.745712 (-0.061231) | 5.601940 / 5.269862 (0.332079) | 3.369683 / 4.565676 (-1.195993) | 0.057105 / 0.424275 (-0.367170) | 0.007462 / 0.007607 (-0.000145) | 0.474860 / 0.226044 (0.248815) | 4.749624 / 2.268929 (2.480695) | 2.492084 / 55.444624 (-52.952540) | 2.157985 / 6.876477 (-4.718491) | 2.420997 / 2.142072 (0.278925) | 0.574718 / 4.805227 (-4.230509) | 0.134672 / 6.500664 (-6.365992) | 0.061677 / 0.075469 (-0.013792) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.284151 / 1.841788 (-0.557637) | 20.186823 / 8.074308 (12.112515) | 14.247024 / 10.191392 (4.055632) | 0.171606 / 0.680424 (-0.508818) | 0.018619 / 0.534201 (-0.515582) | 0.394156 / 0.579283 (-0.185127) | 0.424684 / 0.434364 (-0.009679) | 0.476056 / 0.540337 (-0.064281) | 0.668751 / 1.386936 (-0.718185) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006807 / 0.011353 (-0.004546) | 0.004142 / 0.011008 (-0.006867) | 0.065503 / 0.038508 (0.026995) | 0.083232 / 0.023109 (0.060122) | 0.378278 / 0.275898 (0.102380) | 0.410191 / 0.323480 (0.086711) | 0.005660 / 0.007986 (-0.002326) | 0.003486 / 0.004328 (-0.000842) | 0.066109 / 0.004250 (0.061859) | 0.059654 / 0.037052 (0.022601) | 0.375965 / 0.258489 (0.117476) | 0.420046 / 0.293841 (0.126205) | 0.031587 / 0.128546 (-0.096959) | 0.008693 / 0.075646 (-0.066953) | 0.071121 / 0.419271 (-0.348151) | 0.049468 / 0.043533 (0.005935) | 0.373785 / 0.255139 (0.118646) | 0.395577 / 0.283200 (0.112377) | 0.024138 / 0.141683 (-0.117545) | 1.465451 / 1.452155 (0.013297) | 1.547565 / 1.492716 (0.054849) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.325241 / 0.018006 (0.307234) | 0.532415 / 0.000490 (0.531925) | 0.004755 / 0.000200 (0.004555) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033472 / 0.037411 (-0.003939) | 0.090574 / 0.014526 (0.076048) | 0.106712 / 0.176557 (-0.069845) | 0.164353 / 0.737135 (-0.572783) | 0.109344 / 0.296338 (-0.186994) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420161 / 0.215209 (0.204952) | 4.192334 / 2.077655 (2.114679) | 2.178181 / 1.504120 (0.674061) | 2.017405 / 1.541195 (0.476211) | 2.182783 / 1.468490 (0.714293) | 0.484037 / 4.584777 (-4.100740) | 3.641911 / 3.745712 (-0.103801) | 5.543874 / 5.269862 (0.274013) | 3.440084 / 4.565676 (-1.125593) | 0.056662 / 0.424275 (-0.367614) | 0.007773 / 0.007607 (0.000166) | 0.498357 / 0.226044 (0.272313) | 4.951315 / 2.268929 (2.682386) | 2.656732 / 55.444624 (-52.787892) | 2.370566 / 6.876477 (-4.505910) | 2.682289 / 2.142072 (0.540217) | 0.598479 / 4.805227 (-4.206749) | 0.151546 / 6.500664 (-6.349118) | 0.063278 / 0.075469 (-0.012191) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.385897 / 1.841788 (-0.455891) | 20.961851 / 8.074308 (12.887543) | 14.465688 / 10.191392 (4.274296) | 0.166156 / 0.680424 (-0.514268) | 0.018848 / 0.534201 (-0.515353) | 0.401712 / 0.579283 (-0.177571) | 0.416674 / 0.434364 (-0.017690) | 0.471834 / 0.540337 (-0.068503) | 0.622463 / 1.386936 (-0.764473) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7e3ab9bc6ae8cc42f7e7d01afbd2637d51c3faf6 \"CML watermark\")\n"
] | 2023-07-24T15:56:00 | 2023-07-24T16:05:19 | 2023-07-24T15:56:10 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6064",
"html_url": "https://github.com/huggingface/datasets/pull/6064",
"diff_url": "https://github.com/huggingface/datasets/pull/6064.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6064.patch",
"merged_at": "2023-07-24T15:56:10"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6064/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6064/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5934 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5934/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5934/comments | https://api.github.com/repos/huggingface/datasets/issues/5934/events | https://github.com/huggingface/datasets/pull/5934 | 1,747,904,840 | PR_kwDODunzps5ShUxQ | 5,934 | Modify levels of some logging messages | {
"login": "Laurent2916",
"id": 21087104,
"node_id": "MDQ6VXNlcjIxMDg3MTA0",
"avatar_url": "https://avatars.githubusercontent.com/u/21087104?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Laurent2916",
"html_url": "https://github.com/Laurent2916",
"followers_url": "https://api.github.com/users/Laurent2916/followers",
"following_url": "https://api.github.com/users/Laurent2916/following{/other_user}",
"gists_url": "https://api.github.com/users/Laurent2916/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Laurent2916/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Laurent2916/subscriptions",
"organizations_url": "https://api.github.com/users/Laurent2916/orgs",
"repos_url": "https://api.github.com/users/Laurent2916/repos",
"events_url": "https://api.github.com/users/Laurent2916/events{/privacy}",
"received_events_url": "https://api.github.com/users/Laurent2916/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"I've addressed this as part of #6019, so feel free to close this PR. ",
"Thanks !"
] | 2023-06-08T13:31:44 | 2023-07-12T18:21:03 | 2023-07-12T18:21:02 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5934",
"html_url": "https://github.com/huggingface/datasets/pull/5934",
"diff_url": "https://github.com/huggingface/datasets/pull/5934.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5934.patch",
"merged_at": null
} | Some warning messages didn't quite sound like warnings so I modified their logging levels to info. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5934/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5934/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6070 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6070/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6070/comments | https://api.github.com/repos/huggingface/datasets/issues/6070/events | https://github.com/huggingface/datasets/pull/6070 | 1,820,836,330 | PR_kwDODunzps5WXDLc | 6,070 | Fix Quickstart notebook link | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008473 / 0.011353 (-0.002880) | 0.004734 / 0.011008 (-0.006274) | 0.103895 / 0.038508 (0.065387) | 0.071838 / 0.023109 (0.048729) | 0.379949 / 0.275898 (0.104051) | 0.397375 / 0.323480 (0.073895) | 0.006695 / 0.007986 (-0.001290) | 0.004536 / 0.004328 (0.000207) | 0.076151 / 0.004250 (0.071901) | 0.058690 / 0.037052 (0.021638) | 0.379937 / 0.258489 (0.121448) | 0.411833 / 0.293841 (0.117992) | 0.046805 / 0.128546 (-0.081741) | 0.013689 / 0.075646 (-0.061958) | 0.327896 / 0.419271 (-0.091375) | 0.063873 / 0.043533 (0.020340) | 0.378451 / 0.255139 (0.123312) | 0.398725 / 0.283200 (0.115525) | 0.034961 / 0.141683 (-0.106722) | 1.604999 / 1.452155 (0.152845) | 1.748370 / 1.492716 (0.255654) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224634 / 0.018006 (0.206628) | 0.548468 / 0.000490 (0.547979) | 0.005049 / 0.000200 (0.004849) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028144 / 0.037411 (-0.009267) | 0.092184 / 0.014526 (0.077659) | 0.102987 / 0.176557 (-0.073570) | 0.176987 / 0.737135 (-0.560149) | 0.103093 / 0.296338 (-0.193246) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578410 / 0.215209 (0.363201) | 5.664781 / 2.077655 (3.587126) | 2.487763 / 1.504120 (0.983643) | 2.254213 / 1.541195 (0.713018) | 2.239693 / 1.468490 (0.771202) | 0.810380 / 4.584777 (-3.774397) | 5.036540 / 3.745712 (1.290828) | 7.064695 / 5.269862 (1.794834) | 4.215101 / 4.565676 (-0.350575) | 0.089792 / 0.424275 (-0.334483) | 0.008487 / 0.007607 (0.000879) | 0.692292 / 0.226044 (0.466248) | 6.780226 / 2.268929 (4.511297) | 3.245510 / 55.444624 (-52.199114) | 2.575984 / 6.876477 (-4.300493) | 2.747546 / 2.142072 (0.605473) | 0.956604 / 4.805227 (-3.848623) | 0.198937 / 6.500664 (-6.301727) | 0.070849 / 0.075469 (-0.004620) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.536469 / 1.841788 (-0.305319) | 21.750583 / 8.074308 (13.676275) | 20.559532 / 10.191392 (10.368140) | 0.241244 / 0.680424 (-0.439180) | 0.030078 / 0.534201 (-0.504123) | 0.462204 / 0.579283 (-0.117079) | 0.600103 / 0.434364 (0.165739) | 0.535074 / 0.540337 (-0.005264) | 0.764427 / 1.386936 (-0.622509) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009712 / 0.011353 (-0.001641) | 0.005036 / 0.011008 (-0.005972) | 0.073683 / 0.038508 (0.035175) | 0.078684 / 0.023109 (0.055574) | 0.445096 / 0.275898 (0.169198) | 0.496233 / 0.323480 (0.172754) | 0.006231 / 0.007986 (-0.001755) | 0.004720 / 0.004328 (0.000392) | 0.076444 / 0.004250 (0.072194) | 0.060932 / 0.037052 (0.023880) | 0.505727 / 0.258489 (0.247238) | 0.498702 / 0.293841 (0.204861) | 0.047115 / 0.128546 (-0.081431) | 0.014028 / 0.075646 (-0.061618) | 0.099292 / 0.419271 (-0.319980) | 0.061571 / 0.043533 (0.018038) | 0.468435 / 0.255139 (0.213296) | 0.481747 / 0.283200 (0.198547) | 0.033962 / 0.141683 (-0.107721) | 1.665397 / 1.452155 (0.213242) | 1.830488 / 1.492716 (0.337772) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268217 / 0.018006 (0.250211) | 0.555123 / 0.000490 (0.554633) | 0.000451 / 0.000200 (0.000251) | 0.000156 / 0.000054 (0.000101) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034262 / 0.037411 (-0.003150) | 0.107807 / 0.014526 (0.093281) | 0.115631 / 0.176557 (-0.060926) | 0.175914 / 0.737135 (-0.561221) | 0.118775 / 0.296338 (-0.177564) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.583260 / 0.215209 (0.368051) | 5.934976 / 2.077655 (3.857321) | 2.752304 / 1.504120 (1.248184) | 2.382746 / 1.541195 (0.841551) | 2.389402 / 1.468490 (0.920912) | 0.794213 / 4.584777 (-3.790564) | 5.215269 / 3.745712 (1.469557) | 7.083595 / 5.269862 (1.813733) | 3.776136 / 4.565676 (-0.789540) | 0.091141 / 0.424275 (-0.333135) | 0.008803 / 0.007607 (0.001196) | 0.726510 / 0.226044 (0.500465) | 6.926860 / 2.268929 (4.657931) | 3.475612 / 55.444624 (-51.969012) | 2.730237 / 6.876477 (-4.146240) | 2.879145 / 2.142072 (0.737073) | 0.959956 / 4.805227 (-3.845271) | 0.189812 / 6.500664 (-6.310852) | 0.071624 / 0.075469 (-0.003845) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748184 / 1.841788 (-0.093603) | 23.764520 / 8.074308 (15.690212) | 19.502461 / 10.191392 (9.311069) | 0.233987 / 0.680424 (-0.446437) | 0.028116 / 0.534201 (-0.506085) | 0.478838 / 0.579283 (-0.100445) | 0.560952 / 0.434364 (0.126588) | 0.529902 / 0.540337 (-0.010435) | 0.735095 / 1.386936 (-0.651841) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dda3e389212f44117a40b44bb0cdf358cfd9f71e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006735 / 0.011353 (-0.004618) | 0.004131 / 0.011008 (-0.006878) | 0.085619 / 0.038508 (0.047111) | 0.076973 / 0.023109 (0.053864) | 0.315175 / 0.275898 (0.039277) | 0.354703 / 0.323480 (0.031223) | 0.005409 / 0.007986 (-0.002577) | 0.003438 / 0.004328 (-0.000891) | 0.064773 / 0.004250 (0.060523) | 0.056117 / 0.037052 (0.019064) | 0.313825 / 0.258489 (0.055336) | 0.354654 / 0.293841 (0.060813) | 0.031384 / 0.128546 (-0.097163) | 0.008537 / 0.075646 (-0.067109) | 0.288528 / 0.419271 (-0.130744) | 0.053036 / 0.043533 (0.009504) | 0.312213 / 0.255139 (0.057074) | 0.335952 / 0.283200 (0.052752) | 0.023165 / 0.141683 (-0.118518) | 1.497559 / 1.452155 (0.045404) | 1.561949 / 1.492716 (0.069233) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212558 / 0.018006 (0.194552) | 0.456555 / 0.000490 (0.456065) | 0.000334 / 0.000200 (0.000134) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028571 / 0.037411 (-0.008840) | 0.085154 / 0.014526 (0.070628) | 0.095961 / 0.176557 (-0.080596) | 0.153041 / 0.737135 (-0.584094) | 0.099234 / 0.296338 (-0.197105) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.381796 / 0.215209 (0.166587) | 3.806948 / 2.077655 (1.729294) | 1.829597 / 1.504120 (0.325477) | 1.659065 / 1.541195 (0.117870) | 1.738524 / 1.468490 (0.270034) | 0.483379 / 4.584777 (-4.101398) | 3.540648 / 3.745712 (-0.205064) | 3.269188 / 5.269862 (-2.000673) | 2.042113 / 4.565676 (-2.523564) | 0.056905 / 0.424275 (-0.367370) | 0.007235 / 0.007607 (-0.000373) | 0.460581 / 0.226044 (0.234537) | 4.597451 / 2.268929 (2.328522) | 2.334284 / 55.444624 (-53.110340) | 1.960026 / 6.876477 (-4.916450) | 2.172118 / 2.142072 (0.030045) | 0.576758 / 4.805227 (-4.228470) | 0.131196 / 6.500664 (-6.369468) | 0.060053 / 0.075469 (-0.015417) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289466 / 1.841788 (-0.552322) | 19.713059 / 8.074308 (11.638750) | 14.292390 / 10.191392 (4.100998) | 0.146199 / 0.680424 (-0.534225) | 0.018123 / 0.534201 (-0.516078) | 0.392492 / 0.579283 (-0.186791) | 0.416544 / 0.434364 (-0.017820) | 0.457166 / 0.540337 (-0.083171) | 0.645490 / 1.386936 (-0.741446) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006508 / 0.011353 (-0.004845) | 0.004010 / 0.011008 (-0.006998) | 0.065201 / 0.038508 (0.026693) | 0.076322 / 0.023109 (0.053213) | 0.364198 / 0.275898 (0.088300) | 0.398251 / 0.323480 (0.074771) | 0.005328 / 0.007986 (-0.002658) | 0.003298 / 0.004328 (-0.001031) | 0.064378 / 0.004250 (0.060128) | 0.056053 / 0.037052 (0.019000) | 0.365431 / 0.258489 (0.106942) | 0.402777 / 0.293841 (0.108936) | 0.031014 / 0.128546 (-0.097532) | 0.008507 / 0.075646 (-0.067140) | 0.071471 / 0.419271 (-0.347801) | 0.048300 / 0.043533 (0.004768) | 0.359700 / 0.255139 (0.104561) | 0.382244 / 0.283200 (0.099044) | 0.023783 / 0.141683 (-0.117900) | 1.517518 / 1.452155 (0.065363) | 1.569732 / 1.492716 (0.077015) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257447 / 0.018006 (0.239440) | 0.452598 / 0.000490 (0.452109) | 0.015187 / 0.000200 (0.014987) | 0.000164 / 0.000054 (0.000109) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030958 / 0.037411 (-0.006454) | 0.090066 / 0.014526 (0.075540) | 0.101120 / 0.176557 (-0.075437) | 0.154295 / 0.737135 (-0.582840) | 0.103582 / 0.296338 (-0.192756) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415945 / 0.215209 (0.200736) | 4.146464 / 2.077655 (2.068809) | 2.121414 / 1.504120 (0.617294) | 1.956885 / 1.541195 (0.415690) | 2.047955 / 1.468490 (0.579465) | 0.486334 / 4.584777 (-4.098443) | 3.506263 / 3.745712 (-0.239449) | 4.942274 / 5.269862 (-0.327587) | 2.907836 / 4.565676 (-1.657841) | 0.057344 / 0.424275 (-0.366931) | 0.007813 / 0.007607 (0.000206) | 0.497888 / 0.226044 (0.271844) | 4.978017 / 2.268929 (2.709089) | 2.600447 / 55.444624 (-52.844177) | 2.335050 / 6.876477 (-4.541427) | 2.480373 / 2.142072 (0.338301) | 0.597954 / 4.805227 (-4.207274) | 0.134794 / 6.500664 (-6.365870) | 0.062605 / 0.075469 (-0.012864) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.344390 / 1.841788 (-0.497398) | 20.020067 / 8.074308 (11.945759) | 14.344626 / 10.191392 (4.153234) | 0.172101 / 0.680424 (-0.508322) | 0.018549 / 0.534201 (-0.515652) | 0.393589 / 0.579283 (-0.185694) | 0.438401 / 0.434364 (0.004037) | 0.463800 / 0.540337 (-0.076537) | 0.618269 / 1.386936 (-0.768667) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b0177910b32712f28d147879395e511207e39958 \"CML watermark\")\n"
] | 2023-07-25T17:48:37 | 2023-07-25T18:19:01 | 2023-07-25T18:10:16 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6070",
"html_url": "https://github.com/huggingface/datasets/pull/6070",
"diff_url": "https://github.com/huggingface/datasets/pull/6070.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6070.patch",
"merged_at": "2023-07-25T18:10:16"
} | Reported in https://github.com/huggingface/datasets/pull/5902#issuecomment-1649885621 (cc @alvarobartt) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6070/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6070/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5983 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5983/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5983/comments | https://api.github.com/repos/huggingface/datasets/issues/5983/events | https://github.com/huggingface/datasets/pull/5983 | 1,770,578,804 | PR_kwDODunzps5TtDdy | 5,983 | replaced PathLike as a variable for save_to_disk for dataset_path wit… | {
"login": "benjaminbrown038",
"id": 35114142,
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/benjaminbrown038",
"html_url": "https://github.com/benjaminbrown038",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-06-23T00:57:05 | 2023-06-23T00:57:05 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5983",
"html_url": "https://github.com/huggingface/datasets/pull/5983",
"diff_url": "https://github.com/huggingface/datasets/pull/5983.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5983.patch",
"merged_at": null
} | …h str like that of load_from_disk | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5983/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5983/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6045 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6045/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6045/comments | https://api.github.com/repos/huggingface/datasets/issues/6045/events | https://github.com/huggingface/datasets/pull/6045 | 1,808,072,270 | PR_kwDODunzps5Vr-r1 | 6,045 | Check if column names match in Parquet loader only when config `features` are specified | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006557 / 0.011353 (-0.004796) | 0.004096 / 0.011008 (-0.006913) | 0.083577 / 0.038508 (0.045069) | 0.072092 / 0.023109 (0.048983) | 0.319192 / 0.275898 (0.043294) | 0.351845 / 0.323480 (0.028365) | 0.005475 / 0.007986 (-0.002511) | 0.003419 / 0.004328 (-0.000910) | 0.064562 / 0.004250 (0.060311) | 0.057930 / 0.037052 (0.020878) | 0.326085 / 0.258489 (0.067596) | 0.368316 / 0.293841 (0.074475) | 0.030502 / 0.128546 (-0.098044) | 0.008504 / 0.075646 (-0.067142) | 0.287217 / 0.419271 (-0.132054) | 0.052337 / 0.043533 (0.008804) | 0.319011 / 0.255139 (0.063872) | 0.352711 / 0.283200 (0.069511) | 0.023278 / 0.141683 (-0.118405) | 1.482578 / 1.452155 (0.030423) | 1.553391 / 1.492716 (0.060675) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199628 / 0.018006 (0.181622) | 0.464571 / 0.000490 (0.464081) | 0.003512 / 0.000200 (0.003312) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029109 / 0.037411 (-0.008302) | 0.082203 / 0.014526 (0.067677) | 0.096223 / 0.176557 (-0.080333) | 0.155598 / 0.737135 (-0.581537) | 0.097738 / 0.296338 (-0.198600) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386135 / 0.215209 (0.170926) | 3.837157 / 2.077655 (1.759502) | 1.836869 / 1.504120 (0.332750) | 1.680592 / 1.541195 (0.139398) | 1.769456 / 1.468490 (0.300966) | 0.493150 / 4.584777 (-4.091627) | 3.589797 / 3.745712 (-0.155915) | 3.330000 / 5.269862 (-1.939861) | 2.059856 / 4.565676 (-2.505821) | 0.057951 / 0.424275 (-0.366324) | 0.007340 / 0.007607 (-0.000267) | 0.463203 / 0.226044 (0.237159) | 4.631514 / 2.268929 (2.362585) | 2.329887 / 55.444624 (-53.114738) | 2.008815 / 6.876477 (-4.867662) | 2.199067 / 2.142072 (0.056995) | 0.591417 / 4.805227 (-4.213810) | 0.137154 / 6.500664 (-6.363510) | 0.061326 / 0.075469 (-0.014143) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269676 / 1.841788 (-0.572111) | 19.375167 / 8.074308 (11.300858) | 13.945419 / 10.191392 (3.754027) | 0.146482 / 0.680424 (-0.533942) | 0.018257 / 0.534201 (-0.515944) | 0.391684 / 0.579283 (-0.187599) | 0.411454 / 0.434364 (-0.022910) | 0.466260 / 0.540337 (-0.074077) | 0.655571 / 1.386936 (-0.731365) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006619 / 0.011353 (-0.004734) | 0.004102 / 0.011008 (-0.006907) | 0.064848 / 0.038508 (0.026340) | 0.074822 / 0.023109 (0.051713) | 0.366535 / 0.275898 (0.090637) | 0.395873 / 0.323480 (0.072394) | 0.005315 / 0.007986 (-0.002670) | 0.003270 / 0.004328 (-0.001059) | 0.064829 / 0.004250 (0.060578) | 0.056094 / 0.037052 (0.019042) | 0.370355 / 0.258489 (0.111866) | 0.406837 / 0.293841 (0.112996) | 0.031634 / 0.128546 (-0.096912) | 0.008569 / 0.075646 (-0.067077) | 0.071126 / 0.419271 (-0.348145) | 0.048629 / 0.043533 (0.005096) | 0.365175 / 0.255139 (0.110036) | 0.385234 / 0.283200 (0.102034) | 0.023295 / 0.141683 (-0.118388) | 1.466907 / 1.452155 (0.014752) | 1.523118 / 1.492716 (0.030401) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227872 / 0.018006 (0.209866) | 0.451573 / 0.000490 (0.451083) | 0.000379 / 0.000200 (0.000179) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029496 / 0.037411 (-0.007915) | 0.086614 / 0.014526 (0.072088) | 0.098165 / 0.176557 (-0.078392) | 0.152218 / 0.737135 (-0.584917) | 0.101215 / 0.296338 (-0.195123) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407519 / 0.215209 (0.192310) | 4.074704 / 2.077655 (1.997049) | 2.113185 / 1.504120 (0.609065) | 1.947461 / 1.541195 (0.406266) | 1.998521 / 1.468490 (0.530031) | 0.487463 / 4.584777 (-4.097313) | 3.465423 / 3.745712 (-0.280289) | 3.376498 / 5.269862 (-1.893363) | 2.001533 / 4.565676 (-2.564144) | 0.057052 / 0.424275 (-0.367223) | 0.007325 / 0.007607 (-0.000283) | 0.485648 / 0.226044 (0.259604) | 4.860191 / 2.268929 (2.591262) | 2.550340 / 55.444624 (-52.894284) | 2.231136 / 6.876477 (-4.645341) | 2.262539 / 2.142072 (0.120467) | 0.591422 / 4.805227 (-4.213805) | 0.132875 / 6.500664 (-6.367789) | 0.062154 / 0.075469 (-0.013315) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.321834 / 1.841788 (-0.519954) | 19.734750 / 8.074308 (11.660442) | 14.681049 / 10.191392 (4.489657) | 0.148894 / 0.680424 (-0.531530) | 0.018414 / 0.534201 (-0.515787) | 0.393377 / 0.579283 (-0.185906) | 0.402795 / 0.434364 (-0.031569) | 0.478624 / 0.540337 (-0.061714) | 0.656767 / 1.386936 (-0.730169) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a5a84a1fa226a4cafb3bb4387dc4b212a46caf31 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007012 / 0.011353 (-0.004341) | 0.004120 / 0.011008 (-0.006888) | 0.083720 / 0.038508 (0.045212) | 0.083105 / 0.023109 (0.059996) | 0.323803 / 0.275898 (0.047905) | 0.340345 / 0.323480 (0.016865) | 0.005872 / 0.007986 (-0.002113) | 0.003528 / 0.004328 (-0.000801) | 0.065185 / 0.004250 (0.060935) | 0.063092 / 0.037052 (0.026040) | 0.314900 / 0.258489 (0.056411) | 0.349251 / 0.293841 (0.055410) | 0.031612 / 0.128546 (-0.096934) | 0.008541 / 0.075646 (-0.067105) | 0.289865 / 0.419271 (-0.129407) | 0.055264 / 0.043533 (0.011731) | 0.309152 / 0.255139 (0.054013) | 0.332625 / 0.283200 (0.049425) | 0.024306 / 0.141683 (-0.117377) | 1.489191 / 1.452155 (0.037037) | 1.562447 / 1.492716 (0.069731) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236681 / 0.018006 (0.218675) | 0.567767 / 0.000490 (0.567277) | 0.003022 / 0.000200 (0.002822) | 0.000218 / 0.000054 (0.000164) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028698 / 0.037411 (-0.008714) | 0.081681 / 0.014526 (0.067155) | 0.099109 / 0.176557 (-0.077447) | 0.154381 / 0.737135 (-0.582754) | 0.098691 / 0.296338 (-0.197648) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397985 / 0.215209 (0.182776) | 3.962499 / 2.077655 (1.884844) | 1.936158 / 1.504120 (0.432038) | 1.762339 / 1.541195 (0.221144) | 1.837451 / 1.468490 (0.368961) | 0.485655 / 4.584777 (-4.099122) | 3.538341 / 3.745712 (-0.207371) | 5.110095 / 5.269862 (-0.159767) | 3.066152 / 4.565676 (-1.499524) | 0.057505 / 0.424275 (-0.366770) | 0.007334 / 0.007607 (-0.000273) | 0.475622 / 0.226044 (0.249578) | 4.754091 / 2.268929 (2.485162) | 2.431379 / 55.444624 (-53.013246) | 2.106178 / 6.876477 (-4.770298) | 2.364305 / 2.142072 (0.222232) | 0.614038 / 4.805227 (-4.191190) | 0.148530 / 6.500664 (-6.352134) | 0.061033 / 0.075469 (-0.014436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.242345 / 1.841788 (-0.599443) | 19.017266 / 8.074308 (10.942958) | 13.477782 / 10.191392 (3.286390) | 0.158513 / 0.680424 (-0.521911) | 0.018757 / 0.534201 (-0.515444) | 0.393773 / 0.579283 (-0.185510) | 0.416933 / 0.434364 (-0.017431) | 0.460012 / 0.540337 (-0.080326) | 0.637010 / 1.386936 (-0.749926) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006689 / 0.011353 (-0.004664) | 0.004168 / 0.011008 (-0.006840) | 0.065009 / 0.038508 (0.026501) | 0.073766 / 0.023109 (0.050657) | 0.369585 / 0.275898 (0.093687) | 0.407945 / 0.323480 (0.084465) | 0.005583 / 0.007986 (-0.002403) | 0.003494 / 0.004328 (-0.000835) | 0.065032 / 0.004250 (0.060782) | 0.057166 / 0.037052 (0.020114) | 0.370656 / 0.258489 (0.112166) | 0.428381 / 0.293841 (0.134540) | 0.031653 / 0.128546 (-0.096893) | 0.008731 / 0.075646 (-0.066915) | 0.071624 / 0.419271 (-0.347648) | 0.049364 / 0.043533 (0.005832) | 0.361824 / 0.255139 (0.106685) | 0.387615 / 0.283200 (0.104415) | 0.023228 / 0.141683 (-0.118455) | 1.476204 / 1.452155 (0.024049) | 1.553522 / 1.492716 (0.060806) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266955 / 0.018006 (0.248948) | 0.556566 / 0.000490 (0.556076) | 0.000399 / 0.000200 (0.000199) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033104 / 0.037411 (-0.004307) | 0.088067 / 0.014526 (0.073541) | 0.103333 / 0.176557 (-0.073224) | 0.157061 / 0.737135 (-0.580074) | 0.105007 / 0.296338 (-0.191331) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420826 / 0.215209 (0.205617) | 4.201656 / 2.077655 (2.124001) | 2.208336 / 1.504120 (0.704216) | 2.043780 / 1.541195 (0.502585) | 2.156215 / 1.468490 (0.687725) | 0.490485 / 4.584777 (-4.094292) | 3.611446 / 3.745712 (-0.134267) | 5.293140 / 5.269862 (0.023279) | 2.739778 / 4.565676 (-1.825899) | 0.058175 / 0.424275 (-0.366100) | 0.007633 / 0.007607 (0.000026) | 0.500773 / 0.226044 (0.274729) | 5.000900 / 2.268929 (2.731971) | 2.721200 / 55.444624 (-52.723424) | 2.349381 / 6.876477 (-4.527095) | 2.386261 / 2.142072 (0.244188) | 0.583174 / 4.805227 (-4.222053) | 0.134558 / 6.500664 (-6.366106) | 0.062157 / 0.075469 (-0.013312) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.351087 / 1.841788 (-0.490701) | 20.305703 / 8.074308 (12.231395) | 14.548518 / 10.191392 (4.357126) | 0.173720 / 0.680424 (-0.506704) | 0.018100 / 0.534201 (-0.516101) | 0.395187 / 0.579283 (-0.184097) | 0.414619 / 0.434364 (-0.019745) | 0.462515 / 0.540337 (-0.077823) | 0.617822 / 1.386936 (-0.769114) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#033d0a9de5c825fc9a6a9ce3c3d80eaab3493720 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006909 / 0.011353 (-0.004444) | 0.003954 / 0.011008 (-0.007054) | 0.084329 / 0.038508 (0.045821) | 0.074919 / 0.023109 (0.051809) | 0.319350 / 0.275898 (0.043451) | 0.347264 / 0.323480 (0.023785) | 0.005326 / 0.007986 (-0.002660) | 0.003323 / 0.004328 (-0.001006) | 0.064286 / 0.004250 (0.060036) | 0.054748 / 0.037052 (0.017696) | 0.324784 / 0.258489 (0.066295) | 0.361445 / 0.293841 (0.067605) | 0.031239 / 0.128546 (-0.097308) | 0.008361 / 0.075646 (-0.067286) | 0.287482 / 0.419271 (-0.131789) | 0.052093 / 0.043533 (0.008560) | 0.321454 / 0.255139 (0.066315) | 0.337999 / 0.283200 (0.054800) | 0.025807 / 0.141683 (-0.115876) | 1.501838 / 1.452155 (0.049683) | 1.574484 / 1.492716 (0.081767) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.193220 / 0.018006 (0.175214) | 0.448105 / 0.000490 (0.447615) | 0.002949 / 0.000200 (0.002749) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028517 / 0.037411 (-0.008894) | 0.087281 / 0.014526 (0.072755) | 0.098295 / 0.176557 (-0.078262) | 0.156972 / 0.737135 (-0.580163) | 0.101250 / 0.296338 (-0.195088) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383734 / 0.215209 (0.168525) | 3.821293 / 2.077655 (1.743638) | 1.866487 / 1.504120 (0.362367) | 1.722195 / 1.541195 (0.181000) | 1.843762 / 1.468490 (0.375272) | 0.484813 / 4.584777 (-4.099964) | 3.535381 / 3.745712 (-0.210331) | 5.502338 / 5.269862 (0.232477) | 3.256078 / 4.565676 (-1.309599) | 0.057312 / 0.424275 (-0.366963) | 0.007305 / 0.007607 (-0.000302) | 0.461523 / 0.226044 (0.235479) | 4.611828 / 2.268929 (2.342899) | 2.337180 / 55.444624 (-53.107445) | 2.040956 / 6.876477 (-4.835521) | 2.241233 / 2.142072 (0.099160) | 0.583727 / 4.805227 (-4.221500) | 0.132427 / 6.500664 (-6.368237) | 0.060306 / 0.075469 (-0.015163) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.282223 / 1.841788 (-0.559565) | 19.439745 / 8.074308 (11.365437) | 13.627657 / 10.191392 (3.436265) | 0.158975 / 0.680424 (-0.521449) | 0.018599 / 0.534201 (-0.515601) | 0.391136 / 0.579283 (-0.188147) | 0.410947 / 0.434364 (-0.023417) | 0.453889 / 0.540337 (-0.086448) | 0.620928 / 1.386936 (-0.766008) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006428 / 0.011353 (-0.004925) | 0.003980 / 0.011008 (-0.007028) | 0.065006 / 0.038508 (0.026498) | 0.076541 / 0.023109 (0.053432) | 0.358518 / 0.275898 (0.082620) | 0.394397 / 0.323480 (0.070917) | 0.005845 / 0.007986 (-0.002140) | 0.003258 / 0.004328 (-0.001071) | 0.064436 / 0.004250 (0.060186) | 0.056691 / 0.037052 (0.019639) | 0.367369 / 0.258489 (0.108880) | 0.420345 / 0.293841 (0.126504) | 0.031047 / 0.128546 (-0.097499) | 0.008430 / 0.075646 (-0.067216) | 0.071280 / 0.419271 (-0.347991) | 0.048872 / 0.043533 (0.005339) | 0.360073 / 0.255139 (0.104934) | 0.384150 / 0.283200 (0.100951) | 0.023189 / 0.141683 (-0.118494) | 1.500251 / 1.452155 (0.048096) | 1.545910 / 1.492716 (0.053194) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224861 / 0.018006 (0.206855) | 0.439901 / 0.000490 (0.439411) | 0.000372 / 0.000200 (0.000172) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029914 / 0.037411 (-0.007497) | 0.086916 / 0.014526 (0.072390) | 0.099527 / 0.176557 (-0.077029) | 0.153031 / 0.737135 (-0.584104) | 0.100008 / 0.296338 (-0.196330) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420305 / 0.215209 (0.205096) | 4.198224 / 2.077655 (2.120569) | 2.223807 / 1.504120 (0.719687) | 2.058475 / 1.541195 (0.517280) | 2.140405 / 1.468490 (0.671915) | 0.481224 / 4.584777 (-4.103553) | 3.593767 / 3.745712 (-0.151945) | 5.536710 / 5.269862 (0.266849) | 3.162048 / 4.565676 (-1.403629) | 0.056662 / 0.424275 (-0.367614) | 0.007301 / 0.007607 (-0.000306) | 0.507494 / 0.226044 (0.281450) | 5.047824 / 2.268929 (2.778896) | 2.715167 / 55.444624 (-52.729458) | 2.334916 / 6.876477 (-4.541560) | 2.406615 / 2.142072 (0.264543) | 0.572761 / 4.805227 (-4.232466) | 0.131248 / 6.500664 (-6.369416) | 0.062401 / 0.075469 (-0.013068) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.375896 / 1.841788 (-0.465892) | 19.836638 / 8.074308 (11.762329) | 14.246645 / 10.191392 (4.055253) | 0.164975 / 0.680424 (-0.515449) | 0.018293 / 0.534201 (-0.515908) | 0.394196 / 0.579283 (-0.185087) | 0.405895 / 0.434364 (-0.028469) | 0.459221 / 0.540337 (-0.081116) | 0.609898 / 1.386936 (-0.777038) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f89210ad839c2225b64822dfa248f68ab29ad46f \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008463 / 0.011353 (-0.002890) | 0.004754 / 0.011008 (-0.006254) | 0.103574 / 0.038508 (0.065066) | 0.083541 / 0.023109 (0.060432) | 0.402498 / 0.275898 (0.126600) | 0.434944 / 0.323480 (0.111465) | 0.005766 / 0.007986 (-0.002219) | 0.003823 / 0.004328 (-0.000505) | 0.078433 / 0.004250 (0.074183) | 0.056948 / 0.037052 (0.019895) | 0.392539 / 0.258489 (0.134050) | 0.447226 / 0.293841 (0.153385) | 0.045845 / 0.128546 (-0.082701) | 0.014043 / 0.075646 (-0.061603) | 0.355768 / 0.419271 (-0.063503) | 0.065492 / 0.043533 (0.021960) | 0.408047 / 0.255139 (0.152908) | 0.468313 / 0.283200 (0.185113) | 0.033779 / 0.141683 (-0.107904) | 1.772198 / 1.452155 (0.320043) | 1.889127 / 1.492716 (0.396411) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207107 / 0.018006 (0.189101) | 0.533261 / 0.000490 (0.532771) | 0.000864 / 0.000200 (0.000664) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032139 / 0.037411 (-0.005272) | 0.102002 / 0.014526 (0.087476) | 0.108780 / 0.176557 (-0.067777) | 0.202857 / 0.737135 (-0.534278) | 0.110378 / 0.296338 (-0.185960) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.582814 / 0.215209 (0.367605) | 5.870683 / 2.077655 (3.793028) | 2.510290 / 1.504120 (1.006171) | 2.146337 / 1.541195 (0.605142) | 2.239278 / 1.468490 (0.770788) | 0.861205 / 4.584777 (-3.723572) | 5.177394 / 3.745712 (1.431682) | 8.550713 / 5.269862 (3.280852) | 4.867715 / 4.565676 (0.302038) | 0.096665 / 0.424275 (-0.327610) | 0.008702 / 0.007607 (0.001095) | 0.748908 / 0.226044 (0.522863) | 7.302815 / 2.268929 (5.033887) | 3.205045 / 55.444624 (-52.239580) | 2.743914 / 6.876477 (-4.132562) | 2.831240 / 2.142072 (0.689167) | 1.103912 / 4.805227 (-3.701315) | 0.246075 / 6.500664 (-6.254589) | 0.092092 / 0.075469 (0.016623) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.591331 / 1.841788 (-0.250457) | 23.085848 / 8.074308 (15.011540) | 22.887963 / 10.191392 (12.696571) | 0.212735 / 0.680424 (-0.467689) | 0.027400 / 0.534201 (-0.506801) | 0.493822 / 0.579283 (-0.085461) | 0.574485 / 0.434364 (0.140121) | 0.574873 / 0.540337 (0.034536) | 0.826178 / 1.386936 (-0.560758) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009155 / 0.011353 (-0.002198) | 0.004976 / 0.011008 (-0.006032) | 0.079308 / 0.038508 (0.040799) | 0.093959 / 0.023109 (0.070850) | 0.449110 / 0.275898 (0.173212) | 0.493356 / 0.323480 (0.169876) | 0.006317 / 0.007986 (-0.001669) | 0.004179 / 0.004328 (-0.000150) | 0.076991 / 0.004250 (0.072740) | 0.061977 / 0.037052 (0.024924) | 0.493823 / 0.258489 (0.235333) | 0.491609 / 0.293841 (0.197768) | 0.049552 / 0.128546 (-0.078994) | 0.015174 / 0.075646 (-0.060472) | 0.090431 / 0.419271 (-0.328841) | 0.061597 / 0.043533 (0.018064) | 0.467672 / 0.255139 (0.212533) | 0.490542 / 0.283200 (0.207342) | 0.035048 / 0.141683 (-0.106635) | 1.807939 / 1.452155 (0.355784) | 1.854859 / 1.492716 (0.362142) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236672 / 0.018006 (0.218666) | 0.542236 / 0.000490 (0.541746) | 0.016334 / 0.000200 (0.016134) | 0.000220 / 0.000054 (0.000165) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032051 / 0.037411 (-0.005360) | 0.115352 / 0.014526 (0.100826) | 0.125115 / 0.176557 (-0.051441) | 0.173670 / 0.737135 (-0.563466) | 0.117832 / 0.296338 (-0.178507) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.631513 / 0.215209 (0.416304) | 6.371688 / 2.077655 (4.294033) | 2.867240 / 1.504120 (1.363120) | 2.454907 / 1.541195 (0.913713) | 2.518860 / 1.468490 (1.050370) | 0.879973 / 4.584777 (-3.704804) | 5.170263 / 3.745712 (1.424551) | 7.986429 / 5.269862 (2.716567) | 4.828095 / 4.565676 (0.262418) | 0.097808 / 0.424275 (-0.326468) | 0.010541 / 0.007607 (0.002934) | 0.745601 / 0.226044 (0.519557) | 7.631683 / 2.268929 (5.362755) | 3.524255 / 55.444624 (-51.920369) | 2.866199 / 6.876477 (-4.010278) | 2.982483 / 2.142072 (0.840410) | 1.148957 / 4.805227 (-3.656270) | 0.217067 / 6.500664 (-6.283598) | 0.074357 / 0.075469 (-0.001112) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.714917 / 1.841788 (-0.126871) | 24.151348 / 8.074308 (16.077040) | 21.993604 / 10.191392 (11.802212) | 0.234883 / 0.680424 (-0.445541) | 0.028182 / 0.534201 (-0.506019) | 0.474050 / 0.579283 (-0.105233) | 0.557012 / 0.434364 (0.122648) | 0.537823 / 0.540337 (-0.002514) | 0.741488 / 1.386936 (-0.645448) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c2e5a7a01a952a17d0424e93c3be2b4a5ffca7da \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007640 / 0.011353 (-0.003713) | 0.004776 / 0.011008 (-0.006232) | 0.101582 / 0.038508 (0.063074) | 0.085113 / 0.023109 (0.062003) | 0.376000 / 0.275898 (0.100102) | 0.421117 / 0.323480 (0.097637) | 0.006095 / 0.007986 (-0.001891) | 0.003884 / 0.004328 (-0.000445) | 0.077263 / 0.004250 (0.073013) | 0.065262 / 0.037052 (0.028210) | 0.384041 / 0.258489 (0.125552) | 0.442229 / 0.293841 (0.148388) | 0.035706 / 0.128546 (-0.092840) | 0.009996 / 0.075646 (-0.065651) | 0.344925 / 0.419271 (-0.074346) | 0.062358 / 0.043533 (0.018825) | 0.371738 / 0.255139 (0.116599) | 0.407093 / 0.283200 (0.123894) | 0.026996 / 0.141683 (-0.114687) | 1.762705 / 1.452155 (0.310550) | 1.846777 / 1.492716 (0.354061) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219660 / 0.018006 (0.201653) | 0.521795 / 0.000490 (0.521305) | 0.005344 / 0.000200 (0.005145) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036027 / 0.037411 (-0.001385) | 0.100309 / 0.014526 (0.085784) | 0.113041 / 0.176557 (-0.063515) | 0.190037 / 0.737135 (-0.547099) | 0.114552 / 0.296338 (-0.181786) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.466364 / 0.215209 (0.251154) | 4.638745 / 2.077655 (2.561090) | 2.317875 / 1.504120 (0.813755) | 2.099241 / 1.541195 (0.558046) | 2.149827 / 1.468490 (0.681337) | 0.578913 / 4.584777 (-4.005864) | 4.281866 / 3.745712 (0.536154) | 3.778453 / 5.269862 (-1.491408) | 2.411704 / 4.565676 (-2.153972) | 0.068556 / 0.424275 (-0.355719) | 0.008779 / 0.007607 (0.001172) | 0.553165 / 0.226044 (0.327121) | 5.524520 / 2.268929 (3.255591) | 2.848444 / 55.444624 (-52.596181) | 2.468591 / 6.876477 (-4.407885) | 2.652117 / 2.142072 (0.510045) | 0.694124 / 4.805227 (-4.111103) | 0.157087 / 6.500664 (-6.343577) | 0.070706 / 0.075469 (-0.004763) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.492031 / 1.841788 (-0.349757) | 23.086596 / 8.074308 (15.012288) | 16.791351 / 10.191392 (6.599959) | 0.203932 / 0.680424 (-0.476492) | 0.021736 / 0.534201 (-0.512464) | 0.468344 / 0.579283 (-0.110939) | 0.493790 / 0.434364 (0.059426) | 0.563226 / 0.540337 (0.022889) | 0.780384 / 1.386936 (-0.606553) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007980 / 0.011353 (-0.003373) | 0.004696 / 0.011008 (-0.006312) | 0.076712 / 0.038508 (0.038204) | 0.095915 / 0.023109 (0.072805) | 0.433615 / 0.275898 (0.157717) | 0.482477 / 0.323480 (0.158997) | 0.007029 / 0.007986 (-0.000957) | 0.003842 / 0.004328 (-0.000487) | 0.076331 / 0.004250 (0.072081) | 0.069755 / 0.037052 (0.032703) | 0.458914 / 0.258489 (0.200425) | 0.486155 / 0.293841 (0.192314) | 0.036966 / 0.128546 (-0.091580) | 0.010082 / 0.075646 (-0.065564) | 0.083886 / 0.419271 (-0.335385) | 0.059329 / 0.043533 (0.015796) | 0.453782 / 0.255139 (0.198643) | 0.459508 / 0.283200 (0.176308) | 0.028400 / 0.141683 (-0.113283) | 1.796406 / 1.452155 (0.344251) | 1.881161 / 1.492716 (0.388445) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235053 / 0.018006 (0.217047) | 0.501907 / 0.000490 (0.501417) | 0.005211 / 0.000200 (0.005011) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037752 / 0.037411 (0.000341) | 0.107299 / 0.014526 (0.092773) | 0.120307 / 0.176557 (-0.056250) | 0.187542 / 0.737135 (-0.549593) | 0.121805 / 0.296338 (-0.174533) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.490039 / 0.215209 (0.274830) | 4.919169 / 2.077655 (2.841515) | 2.520610 / 1.504120 (1.016490) | 2.324473 / 1.541195 (0.783279) | 2.421195 / 1.468490 (0.952705) | 0.576314 / 4.584777 (-4.008463) | 4.304752 / 3.745712 (0.559040) | 3.881151 / 5.269862 (-1.388710) | 2.409777 / 4.565676 (-2.155900) | 0.067400 / 0.424275 (-0.356875) | 0.009235 / 0.007607 (0.001627) | 0.586601 / 0.226044 (0.360556) | 5.850080 / 2.268929 (3.581152) | 3.064859 / 55.444624 (-52.379766) | 2.701734 / 6.876477 (-4.174743) | 2.926190 / 2.142072 (0.784117) | 0.698511 / 4.805227 (-4.106716) | 0.158273 / 6.500664 (-6.342392) | 0.074530 / 0.075469 (-0.000939) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.607113 / 1.841788 (-0.234674) | 23.499279 / 8.074308 (15.424971) | 17.049509 / 10.191392 (6.858117) | 0.175689 / 0.680424 (-0.504735) | 0.021762 / 0.534201 (-0.512439) | 0.491450 / 0.579283 (-0.087833) | 0.487557 / 0.434364 (0.053193) | 0.570104 / 0.540337 (0.029766) | 0.761527 / 1.386936 (-0.625409) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7096c59e6a8f4d5b16f3b906075f9e2ed83bbb25 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008725 / 0.011353 (-0.002628) | 0.005156 / 0.011008 (-0.005852) | 0.095147 / 0.038508 (0.056639) | 0.084916 / 0.023109 (0.061807) | 0.390769 / 0.275898 (0.114871) | 0.434716 / 0.323480 (0.111237) | 0.005982 / 0.007986 (-0.002004) | 0.004323 / 0.004328 (-0.000006) | 0.074712 / 0.004250 (0.070461) | 0.058889 / 0.037052 (0.021837) | 0.403997 / 0.258489 (0.145508) | 0.443361 / 0.293841 (0.149520) | 0.045908 / 0.128546 (-0.082639) | 0.013562 / 0.075646 (-0.062085) | 0.330683 / 0.419271 (-0.088588) | 0.064821 / 0.043533 (0.021288) | 0.407202 / 0.255139 (0.152063) | 0.409930 / 0.283200 (0.126730) | 0.032693 / 0.141683 (-0.108990) | 1.630181 / 1.452155 (0.178026) | 1.729680 / 1.492716 (0.236963) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261240 / 0.018006 (0.243234) | 0.581850 / 0.000490 (0.581360) | 0.002997 / 0.000200 (0.002797) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029279 / 0.037411 (-0.008133) | 0.085004 / 0.014526 (0.070478) | 0.127782 / 0.176557 (-0.048774) | 0.168852 / 0.737135 (-0.568283) | 0.098697 / 0.296338 (-0.197641) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.546417 / 0.215209 (0.331208) | 5.602186 / 2.077655 (3.524531) | 2.597049 / 1.504120 (1.092930) | 2.384880 / 1.541195 (0.843685) | 2.444516 / 1.468490 (0.976026) | 0.796562 / 4.584777 (-3.788214) | 5.239440 / 3.745712 (1.493727) | 7.087768 / 5.269862 (1.817906) | 4.308476 / 4.565676 (-0.257200) | 0.091215 / 0.424275 (-0.333060) | 0.007942 / 0.007607 (0.000335) | 0.690059 / 0.226044 (0.464015) | 6.727809 / 2.268929 (4.458880) | 3.294522 / 55.444624 (-52.150103) | 2.604088 / 6.876477 (-4.272389) | 2.786970 / 2.142072 (0.644898) | 0.918817 / 4.805227 (-3.886410) | 0.191451 / 6.500664 (-6.309213) | 0.069557 / 0.075469 (-0.005912) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.486377 / 1.841788 (-0.355411) | 22.363470 / 8.074308 (14.289162) | 19.963684 / 10.191392 (9.772292) | 0.204161 / 0.680424 (-0.476263) | 0.034570 / 0.534201 (-0.499631) | 0.467937 / 0.579283 (-0.111346) | 0.564870 / 0.434364 (0.130506) | 0.511133 / 0.540337 (-0.029204) | 0.777084 / 1.386936 (-0.609852) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008612 / 0.011353 (-0.002741) | 0.004993 / 0.011008 (-0.006015) | 0.080769 / 0.038508 (0.042261) | 0.075923 / 0.023109 (0.052814) | 0.442271 / 0.275898 (0.166373) | 0.495625 / 0.323480 (0.172146) | 0.006467 / 0.007986 (-0.001518) | 0.004001 / 0.004328 (-0.000328) | 0.077309 / 0.004250 (0.073059) | 0.063466 / 0.037052 (0.026414) | 0.452460 / 0.258489 (0.193971) | 0.494063 / 0.293841 (0.200223) | 0.045751 / 0.128546 (-0.082796) | 0.013402 / 0.075646 (-0.062245) | 0.085760 / 0.419271 (-0.333511) | 0.056532 / 0.043533 (0.012999) | 0.440596 / 0.255139 (0.185457) | 0.459540 / 0.283200 (0.176340) | 0.035897 / 0.141683 (-0.105786) | 1.728264 / 1.452155 (0.276109) | 1.808142 / 1.492716 (0.315426) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.285094 / 0.018006 (0.267088) | 0.598440 / 0.000490 (0.597950) | 0.003476 / 0.000200 (0.003276) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035106 / 0.037411 (-0.002305) | 0.091724 / 0.014526 (0.077198) | 0.122803 / 0.176557 (-0.053754) | 0.182114 / 0.737135 (-0.555022) | 0.116196 / 0.296338 (-0.180143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.585420 / 0.215209 (0.370211) | 5.790370 / 2.077655 (3.712715) | 2.833247 / 1.504120 (1.329127) | 2.627949 / 1.541195 (1.086755) | 2.643050 / 1.468490 (1.174560) | 0.792036 / 4.584777 (-3.792741) | 5.145084 / 3.745712 (1.399372) | 4.423679 / 5.269862 (-0.846182) | 2.802778 / 4.565676 (-1.762898) | 0.093983 / 0.424275 (-0.330292) | 0.009260 / 0.007607 (0.001652) | 0.720302 / 0.226044 (0.494258) | 7.116959 / 2.268929 (4.848031) | 3.574782 / 55.444624 (-51.869843) | 3.009330 / 6.876477 (-3.867147) | 3.126488 / 2.142072 (0.984415) | 0.949144 / 4.805227 (-3.856083) | 0.195143 / 6.500664 (-6.305521) | 0.072490 / 0.075469 (-0.002979) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.626368 / 1.841788 (-0.215419) | 23.683021 / 8.074308 (15.608713) | 20.085297 / 10.191392 (9.893905) | 0.267057 / 0.680424 (-0.413367) | 0.028306 / 0.534201 (-0.505894) | 0.478448 / 0.579283 (-0.100835) | 0.597619 / 0.434364 (0.163256) | 0.544737 / 0.540337 (0.004399) | 0.761805 / 1.386936 (-0.625131) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7ac53b590916c8d859fabcc2ef23c12add7f22f7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009359 / 0.011353 (-0.001994) | 0.004848 / 0.011008 (-0.006160) | 0.099471 / 0.038508 (0.060963) | 0.079483 / 0.023109 (0.056373) | 0.375281 / 0.275898 (0.099383) | 0.415566 / 0.323480 (0.092086) | 0.006317 / 0.007986 (-0.001669) | 0.005145 / 0.004328 (0.000817) | 0.080345 / 0.004250 (0.076094) | 0.064540 / 0.037052 (0.027487) | 0.385897 / 0.258489 (0.127408) | 0.432576 / 0.293841 (0.138735) | 0.055109 / 0.128546 (-0.073437) | 0.014166 / 0.075646 (-0.061480) | 0.350870 / 0.419271 (-0.068402) | 0.087483 / 0.043533 (0.043950) | 0.402288 / 0.255139 (0.147149) | 0.391997 / 0.283200 (0.108798) | 0.045233 / 0.141683 (-0.096450) | 1.795002 / 1.452155 (0.342847) | 1.839063 / 1.492716 (0.346347) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220851 / 0.018006 (0.202845) | 0.513391 / 0.000490 (0.512901) | 0.003740 / 0.000200 (0.003540) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035287 / 0.037411 (-0.002124) | 0.090670 / 0.014526 (0.076144) | 0.115651 / 0.176557 (-0.060905) | 0.180469 / 0.737135 (-0.556667) | 0.106955 / 0.296338 (-0.189384) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.632381 / 0.215209 (0.417172) | 6.185151 / 2.077655 (4.107497) | 2.548263 / 1.504120 (1.044143) | 2.194931 / 1.541195 (0.653737) | 2.368685 / 1.468490 (0.900194) | 0.956467 / 4.584777 (-3.628310) | 5.280904 / 3.745712 (1.535192) | 4.783057 / 5.269862 (-0.486805) | 3.218493 / 4.565676 (-1.347184) | 0.103545 / 0.424275 (-0.320730) | 0.008424 / 0.007607 (0.000817) | 0.736303 / 0.226044 (0.510259) | 7.354305 / 2.268929 (5.085376) | 3.280670 / 55.444624 (-52.163954) | 2.478628 / 6.876477 (-4.397848) | 2.623290 / 2.142072 (0.481217) | 1.033064 / 4.805227 (-3.772163) | 0.206496 / 6.500664 (-6.294168) | 0.066449 / 0.075469 (-0.009020) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.508756 / 1.841788 (-0.333031) | 21.866012 / 8.074308 (13.791704) | 21.887761 / 10.191392 (11.696369) | 0.231415 / 0.680424 (-0.449008) | 0.028917 / 0.534201 (-0.505284) | 0.468761 / 0.579283 (-0.110522) | 0.568236 / 0.434364 (0.133872) | 0.550156 / 0.540337 (0.009818) | 0.783197 / 1.386936 (-0.603739) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009413 / 0.011353 (-0.001939) | 0.004951 / 0.011008 (-0.006058) | 0.071402 / 0.038508 (0.032893) | 0.068455 / 0.023109 (0.045346) | 0.425216 / 0.275898 (0.149318) | 0.431928 / 0.323480 (0.108448) | 0.006477 / 0.007986 (-0.001509) | 0.003891 / 0.004328 (-0.000437) | 0.076898 / 0.004250 (0.072647) | 0.057522 / 0.037052 (0.020470) | 0.449585 / 0.258489 (0.191096) | 0.431356 / 0.293841 (0.137515) | 0.049728 / 0.128546 (-0.078818) | 0.014456 / 0.075646 (-0.061190) | 0.084618 / 0.419271 (-0.334653) | 0.064482 / 0.043533 (0.020949) | 0.456377 / 0.255139 (0.201238) | 0.433949 / 0.283200 (0.150749) | 0.036577 / 0.141683 (-0.105106) | 1.819742 / 1.452155 (0.367588) | 1.694691 / 1.492716 (0.201975) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224610 / 0.018006 (0.206604) | 0.494586 / 0.000490 (0.494096) | 0.004506 / 0.000200 (0.004307) | 0.000119 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033172 / 0.037411 (-0.004239) | 0.100562 / 0.014526 (0.086036) | 0.116499 / 0.176557 (-0.060058) | 0.153717 / 0.737135 (-0.583418) | 0.140047 / 0.296338 (-0.156291) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.635922 / 0.215209 (0.420713) | 6.359792 / 2.077655 (4.282137) | 2.689083 / 1.504120 (1.184963) | 2.330574 / 1.541195 (0.789380) | 2.583535 / 1.468490 (1.115044) | 0.902737 / 4.584777 (-3.682040) | 5.136586 / 3.745712 (1.390874) | 4.570824 / 5.269862 (-0.699037) | 3.029953 / 4.565676 (-1.535724) | 0.103961 / 0.424275 (-0.320314) | 0.007908 / 0.007607 (0.000301) | 0.723290 / 0.226044 (0.497246) | 7.678599 / 2.268929 (5.409671) | 3.342522 / 55.444624 (-52.102102) | 2.774659 / 6.876477 (-4.101817) | 2.966496 / 2.142072 (0.824423) | 1.025395 / 4.805227 (-3.779832) | 0.222246 / 6.500664 (-6.278418) | 0.072455 / 0.075469 (-0.003014) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.603637 / 1.841788 (-0.238151) | 21.387722 / 8.074308 (13.313414) | 22.855221 / 10.191392 (12.663829) | 0.222147 / 0.680424 (-0.458277) | 0.030763 / 0.534201 (-0.503438) | 0.472586 / 0.579283 (-0.106697) | 0.560161 / 0.434364 (0.125797) | 0.551941 / 0.540337 (0.011604) | 0.711254 / 1.386936 (-0.675682) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#85cf123e553ff282b43ad1d1877ba2c40d206d52 \"CML watermark\")\n"
] | 2023-07-17T15:50:15 | 2023-07-24T14:45:56 | 2023-07-24T14:35:03 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6045",
"html_url": "https://github.com/huggingface/datasets/pull/6045",
"diff_url": "https://github.com/huggingface/datasets/pull/6045.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6045.patch",
"merged_at": "2023-07-24T14:35:03"
} | Fix #6039 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6045/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6045/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6044 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6044/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6044/comments | https://api.github.com/repos/huggingface/datasets/issues/6044/events | https://github.com/huggingface/datasets/pull/6044 | 1,808,057,906 | PR_kwDODunzps5Vr7jr | 6,044 | Rename "pattern" to "path" in YAML data_files configs | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006543 / 0.011353 (-0.004809) | 0.004085 / 0.011008 (-0.006924) | 0.083989 / 0.038508 (0.045481) | 0.074733 / 0.023109 (0.051623) | 0.310839 / 0.275898 (0.034941) | 0.333540 / 0.323480 (0.010060) | 0.005566 / 0.007986 (-0.002419) | 0.003461 / 0.004328 (-0.000868) | 0.065194 / 0.004250 (0.060943) | 0.057007 / 0.037052 (0.019954) | 0.325633 / 0.258489 (0.067144) | 0.351665 / 0.293841 (0.057824) | 0.030561 / 0.128546 (-0.097985) | 0.008579 / 0.075646 (-0.067068) | 0.287457 / 0.419271 (-0.131815) | 0.063554 / 0.043533 (0.020021) | 0.309182 / 0.255139 (0.054043) | 0.327809 / 0.283200 (0.044609) | 0.034470 / 0.141683 (-0.107213) | 1.452098 / 1.452155 (-0.000057) | 1.527130 / 1.492716 (0.034414) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.241736 / 0.018006 (0.223729) | 0.552432 / 0.000490 (0.551943) | 0.004085 / 0.000200 (0.003885) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027290 / 0.037411 (-0.010121) | 0.081250 / 0.014526 (0.066724) | 0.094739 / 0.176557 (-0.081818) | 0.150424 / 0.737135 (-0.586711) | 0.095488 / 0.296338 (-0.200851) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.377245 / 0.215209 (0.162036) | 3.781021 / 2.077655 (1.703366) | 1.820092 / 1.504120 (0.315972) | 1.654420 / 1.541195 (0.113225) | 1.751256 / 1.468490 (0.282766) | 0.475161 / 4.584777 (-4.109616) | 3.603462 / 3.745712 (-0.142251) | 5.437837 / 5.269862 (0.167975) | 3.305598 / 4.565676 (-1.260079) | 0.055856 / 0.424275 (-0.368419) | 0.007259 / 0.007607 (-0.000348) | 0.454205 / 0.226044 (0.228161) | 4.544157 / 2.268929 (2.275229) | 2.296776 / 55.444624 (-53.147848) | 1.951017 / 6.876477 (-4.925459) | 2.128759 / 2.142072 (-0.013313) | 0.590354 / 4.805227 (-4.214873) | 0.129974 / 6.500664 (-6.370690) | 0.059506 / 0.075469 (-0.015963) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285866 / 1.841788 (-0.555921) | 19.419446 / 8.074308 (11.345138) | 13.985108 / 10.191392 (3.793716) | 0.146803 / 0.680424 (-0.533620) | 0.018176 / 0.534201 (-0.516025) | 0.392345 / 0.579283 (-0.186938) | 0.405394 / 0.434364 (-0.028970) | 0.454649 / 0.540337 (-0.085688) | 0.633075 / 1.386936 (-0.753861) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006497 / 0.011353 (-0.004855) | 0.004092 / 0.011008 (-0.006916) | 0.064908 / 0.038508 (0.026400) | 0.073494 / 0.023109 (0.050385) | 0.382227 / 0.275898 (0.106329) | 0.407320 / 0.323480 (0.083840) | 0.005653 / 0.007986 (-0.002332) | 0.003500 / 0.004328 (-0.000829) | 0.064570 / 0.004250 (0.060320) | 0.058733 / 0.037052 (0.021681) | 0.385702 / 0.258489 (0.127213) | 0.426463 / 0.293841 (0.132622) | 0.031073 / 0.128546 (-0.097473) | 0.008710 / 0.075646 (-0.066936) | 0.071378 / 0.419271 (-0.347893) | 0.050141 / 0.043533 (0.006608) | 0.377769 / 0.255139 (0.122630) | 0.395016 / 0.283200 (0.111816) | 0.025158 / 0.141683 (-0.116525) | 1.470503 / 1.452155 (0.018348) | 1.532742 / 1.492716 (0.040026) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214249 / 0.018006 (0.196243) | 0.583580 / 0.000490 (0.583090) | 0.004027 / 0.000200 (0.003828) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030186 / 0.037411 (-0.007226) | 0.086927 / 0.014526 (0.072401) | 0.102060 / 0.176557 (-0.074497) | 0.156281 / 0.737135 (-0.580855) | 0.100825 / 0.296338 (-0.195514) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419942 / 0.215209 (0.204733) | 4.183797 / 2.077655 (2.106142) | 2.205079 / 1.504120 (0.700959) | 2.071219 / 1.541195 (0.530024) | 2.194047 / 1.468490 (0.725557) | 0.478768 / 4.584777 (-4.106009) | 3.584864 / 3.745712 (-0.160848) | 3.371635 / 5.269862 (-1.898227) | 2.022134 / 4.565676 (-2.543542) | 0.056553 / 0.424275 (-0.367722) | 0.007231 / 0.007607 (-0.000376) | 0.493158 / 0.226044 (0.267113) | 4.934370 / 2.268929 (2.665441) | 2.699593 / 55.444624 (-52.745031) | 2.396371 / 6.876477 (-4.480105) | 2.438052 / 2.142072 (0.295979) | 0.589578 / 4.805227 (-4.215649) | 0.147234 / 6.500664 (-6.353430) | 0.062049 / 0.075469 (-0.013420) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.318246 / 1.841788 (-0.523542) | 19.829025 / 8.074308 (11.754717) | 14.314825 / 10.191392 (4.123433) | 0.168309 / 0.680424 (-0.512115) | 0.018596 / 0.534201 (-0.515605) | 0.397540 / 0.579283 (-0.181743) | 0.421280 / 0.434364 (-0.013084) | 0.479917 / 0.540337 (-0.060421) | 0.643494 / 1.386936 (-0.743442) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5be59becaa65f1fa08129091b8c778823e4a50ac \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008349 / 0.011353 (-0.003004) | 0.005362 / 0.011008 (-0.005646) | 0.100777 / 0.038508 (0.062269) | 0.078719 / 0.023109 (0.055609) | 0.398105 / 0.275898 (0.122207) | 0.444189 / 0.323480 (0.120709) | 0.006834 / 0.007986 (-0.001152) | 0.004642 / 0.004328 (0.000314) | 0.076284 / 0.004250 (0.072034) | 0.062738 / 0.037052 (0.025685) | 0.409532 / 0.258489 (0.151043) | 0.447218 / 0.293841 (0.153377) | 0.052996 / 0.128546 (-0.075550) | 0.012977 / 0.075646 (-0.062669) | 0.347687 / 0.419271 (-0.071585) | 0.068076 / 0.043533 (0.024543) | 0.394526 / 0.255139 (0.139387) | 0.434110 / 0.283200 (0.150910) | 0.041719 / 0.141683 (-0.099963) | 1.759109 / 1.452155 (0.306955) | 1.866049 / 1.492716 (0.373333) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287633 / 0.018006 (0.269627) | 0.611540 / 0.000490 (0.611051) | 0.005388 / 0.000200 (0.005188) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027394 / 0.037411 (-0.010017) | 0.089796 / 0.014526 (0.075270) | 0.106931 / 0.176557 (-0.069625) | 0.173560 / 0.737135 (-0.563575) | 0.106948 / 0.296338 (-0.189391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.575156 / 0.215209 (0.359947) | 5.674170 / 2.077655 (3.596516) | 2.463090 / 1.504120 (0.958971) | 2.128245 / 1.541195 (0.587050) | 2.118982 / 1.468490 (0.650492) | 0.876976 / 4.584777 (-3.707801) | 5.238229 / 3.745712 (1.492517) | 4.548788 / 5.269862 (-0.721074) | 2.905243 / 4.565676 (-1.660433) | 0.090750 / 0.424275 (-0.333525) | 0.008266 / 0.007607 (0.000659) | 0.693305 / 0.226044 (0.467260) | 7.126970 / 2.268929 (4.858041) | 3.152131 / 55.444624 (-52.292494) | 2.532118 / 6.876477 (-4.344359) | 2.678442 / 2.142072 (0.536369) | 0.932745 / 4.805227 (-3.872483) | 0.196290 / 6.500664 (-6.304374) | 0.074082 / 0.075469 (-0.001387) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.599636 / 1.841788 (-0.242152) | 23.271435 / 8.074308 (15.197127) | 19.696709 / 10.191392 (9.505317) | 0.222668 / 0.680424 (-0.457756) | 0.029088 / 0.534201 (-0.505113) | 0.492477 / 0.579283 (-0.086806) | 0.580578 / 0.434364 (0.146214) | 0.558852 / 0.540337 (0.018514) | 0.762083 / 1.386936 (-0.624853) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009021 / 0.011353 (-0.002332) | 0.005011 / 0.011008 (-0.005997) | 0.076504 / 0.038508 (0.037996) | 0.077303 / 0.023109 (0.054193) | 0.480660 / 0.275898 (0.204762) | 0.493944 / 0.323480 (0.170464) | 0.006339 / 0.007986 (-0.001646) | 0.004302 / 0.004328 (-0.000026) | 0.076228 / 0.004250 (0.071978) | 0.060805 / 0.037052 (0.023753) | 0.477539 / 0.258489 (0.219050) | 0.496799 / 0.293841 (0.202958) | 0.049495 / 0.128546 (-0.079052) | 0.013333 / 0.075646 (-0.062313) | 0.087217 / 0.419271 (-0.332055) | 0.061451 / 0.043533 (0.017918) | 0.485169 / 0.255139 (0.230030) | 0.487348 / 0.283200 (0.204149) | 0.035874 / 0.141683 (-0.105809) | 1.829137 / 1.452155 (0.376982) | 1.906151 / 1.492716 (0.413435) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304526 / 0.018006 (0.286520) | 0.627499 / 0.000490 (0.627009) | 0.003786 / 0.000200 (0.003586) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035512 / 0.037411 (-0.001899) | 0.096684 / 0.014526 (0.082158) | 0.111879 / 0.176557 (-0.064678) | 0.171489 / 0.737135 (-0.565647) | 0.112175 / 0.296338 (-0.184164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.604791 / 0.215209 (0.389582) | 6.089137 / 2.077655 (4.011482) | 2.883237 / 1.504120 (1.379117) | 2.561109 / 1.541195 (1.019914) | 2.542400 / 1.468490 (1.073910) | 0.852828 / 4.584777 (-3.731949) | 5.236812 / 3.745712 (1.491100) | 4.756429 / 5.269862 (-0.513432) | 2.885660 / 4.565676 (-1.680016) | 0.095643 / 0.424275 (-0.328632) | 0.008403 / 0.007607 (0.000796) | 0.727707 / 0.226044 (0.501663) | 7.428002 / 2.268929 (5.159074) | 3.816051 / 55.444624 (-51.628573) | 2.971057 / 6.876477 (-3.905420) | 2.915965 / 2.142072 (0.773893) | 1.006553 / 4.805227 (-3.798674) | 0.201840 / 6.500664 (-6.298824) | 0.080795 / 0.075469 (0.005326) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.794951 / 1.841788 (-0.046837) | 23.624556 / 8.074308 (15.550248) | 21.856195 / 10.191392 (11.664802) | 0.253043 / 0.680424 (-0.427381) | 0.031201 / 0.534201 (-0.503000) | 0.461641 / 0.579283 (-0.117642) | 0.577789 / 0.434364 (0.143425) | 0.569197 / 0.540337 (0.028860) | 0.780111 / 1.386936 (-0.606825) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4904f14459c862f0ab525ec034a636177be5dee4 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007646 / 0.011353 (-0.003707) | 0.004750 / 0.011008 (-0.006258) | 0.097981 / 0.038508 (0.059473) | 0.088989 / 0.023109 (0.065880) | 0.377732 / 0.275898 (0.101834) | 0.406805 / 0.323480 (0.083325) | 0.006389 / 0.007986 (-0.001597) | 0.003854 / 0.004328 (-0.000474) | 0.073977 / 0.004250 (0.069727) | 0.066497 / 0.037052 (0.029444) | 0.371498 / 0.258489 (0.113009) | 0.417352 / 0.293841 (0.123511) | 0.036326 / 0.128546 (-0.092220) | 0.009876 / 0.075646 (-0.065770) | 0.330142 / 0.419271 (-0.089130) | 0.062423 / 0.043533 (0.018890) | 0.369375 / 0.255139 (0.114236) | 0.406048 / 0.283200 (0.122848) | 0.026564 / 0.141683 (-0.115119) | 1.713295 / 1.452155 (0.261140) | 1.797493 / 1.492716 (0.304777) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231889 / 0.018006 (0.213882) | 0.512497 / 0.000490 (0.512007) | 0.000390 / 0.000200 (0.000190) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033978 / 0.037411 (-0.003433) | 0.100117 / 0.014526 (0.085592) | 0.112460 / 0.176557 (-0.064097) | 0.179936 / 0.737135 (-0.557200) | 0.114277 / 0.296338 (-0.182061) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461320 / 0.215209 (0.246111) | 4.563180 / 2.077655 (2.485526) | 2.249474 / 1.504120 (0.745354) | 2.100450 / 1.541195 (0.559255) | 2.231080 / 1.468490 (0.762590) | 0.567907 / 4.584777 (-4.016870) | 4.117233 / 3.745712 (0.371521) | 4.943159 / 5.269862 (-0.326703) | 3.112299 / 4.565676 (-1.453377) | 0.065500 / 0.424275 (-0.358775) | 0.008407 / 0.007607 (0.000800) | 0.545928 / 0.226044 (0.319883) | 5.508058 / 2.268929 (3.239129) | 2.834645 / 55.444624 (-52.609980) | 2.440328 / 6.876477 (-4.436148) | 2.680483 / 2.142072 (0.538410) | 0.697191 / 4.805227 (-4.108036) | 0.176646 / 6.500664 (-6.324018) | 0.073608 / 0.075469 (-0.001861) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.451865 / 1.841788 (-0.389922) | 22.752595 / 8.074308 (14.678287) | 15.543338 / 10.191392 (5.351946) | 0.214644 / 0.680424 (-0.465780) | 0.022050 / 0.534201 (-0.512151) | 0.463898 / 0.579283 (-0.115385) | 0.481691 / 0.434364 (0.047327) | 0.549715 / 0.540337 (0.009378) | 0.773595 / 1.386936 (-0.613341) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007541 / 0.011353 (-0.003812) | 0.004715 / 0.011008 (-0.006293) | 0.076782 / 0.038508 (0.038274) | 0.086242 / 0.023109 (0.063133) | 0.458053 / 0.275898 (0.182155) | 0.503097 / 0.323480 (0.179617) | 0.006262 / 0.007986 (-0.001724) | 0.003882 / 0.004328 (-0.000447) | 0.075669 / 0.004250 (0.071419) | 0.066004 / 0.037052 (0.028952) | 0.469439 / 0.258489 (0.210950) | 0.529744 / 0.293841 (0.235903) | 0.037228 / 0.128546 (-0.091319) | 0.009794 / 0.075646 (-0.065852) | 0.082464 / 0.419271 (-0.336808) | 0.058797 / 0.043533 (0.015264) | 0.452069 / 0.255139 (0.196930) | 0.488246 / 0.283200 (0.205046) | 0.029324 / 0.141683 (-0.112359) | 1.742237 / 1.452155 (0.290082) | 1.839676 / 1.492716 (0.346959) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228106 / 0.018006 (0.210100) | 0.491632 / 0.000490 (0.491142) | 0.004993 / 0.000200 (0.004793) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035413 / 0.037411 (-0.001999) | 0.104617 / 0.014526 (0.090091) | 0.121948 / 0.176557 (-0.054609) | 0.186233 / 0.737135 (-0.550902) | 0.121574 / 0.296338 (-0.174764) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473849 / 0.215209 (0.258640) | 4.788312 / 2.077655 (2.710657) | 2.470535 / 1.504120 (0.966415) | 2.270393 / 1.541195 (0.729198) | 2.361096 / 1.468490 (0.892606) | 0.556184 / 4.584777 (-4.028593) | 4.216852 / 3.745712 (0.471140) | 3.901718 / 5.269862 (-1.368143) | 2.355209 / 4.565676 (-2.210467) | 0.066708 / 0.424275 (-0.357567) | 0.008709 / 0.007607 (0.001102) | 0.571714 / 0.226044 (0.345669) | 5.663150 / 2.268929 (3.394221) | 3.025769 / 55.444624 (-52.418855) | 2.652554 / 6.876477 (-4.223923) | 2.750555 / 2.142072 (0.608483) | 0.681536 / 4.805227 (-4.123691) | 0.157187 / 6.500664 (-6.343477) | 0.073533 / 0.075469 (-0.001936) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.604630 / 1.841788 (-0.237158) | 22.735629 / 8.074308 (14.661321) | 16.762347 / 10.191392 (6.570955) | 0.175514 / 0.680424 (-0.504910) | 0.021497 / 0.534201 (-0.512704) | 0.461438 / 0.579283 (-0.117845) | 0.476184 / 0.434364 (0.041820) | 0.571048 / 0.540337 (0.030710) | 0.747086 / 1.386936 (-0.639850) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6ea38fc40ee2b10d3b5c6df09b09ad05e02a2cff \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006889 / 0.011353 (-0.004464) | 0.004241 / 0.011008 (-0.006767) | 0.084542 / 0.038508 (0.046034) | 0.080484 / 0.023109 (0.057374) | 0.309356 / 0.275898 (0.033458) | 0.338548 / 0.323480 (0.015068) | 0.004904 / 0.007986 (-0.003082) | 0.005220 / 0.004328 (0.000892) | 0.065501 / 0.004250 (0.061251) | 0.062095 / 0.037052 (0.025043) | 0.317332 / 0.258489 (0.058843) | 0.364797 / 0.293841 (0.070956) | 0.030492 / 0.128546 (-0.098054) | 0.008991 / 0.075646 (-0.066656) | 0.288274 / 0.419271 (-0.130998) | 0.052582 / 0.043533 (0.009049) | 0.310838 / 0.255139 (0.055699) | 0.346304 / 0.283200 (0.063104) | 0.027968 / 0.141683 (-0.113715) | 1.509727 / 1.452155 (0.057573) | 1.577410 / 1.492716 (0.084694) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269725 / 0.018006 (0.251719) | 0.627685 / 0.000490 (0.627195) | 0.000419 / 0.000200 (0.000219) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031022 / 0.037411 (-0.006389) | 0.081858 / 0.014526 (0.067332) | 0.099477 / 0.176557 (-0.077080) | 0.162981 / 0.737135 (-0.574154) | 0.101987 / 0.296338 (-0.194351) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386297 / 0.215209 (0.171088) | 3.845321 / 2.077655 (1.767666) | 1.834446 / 1.504120 (0.330326) | 1.699730 / 1.541195 (0.158536) | 1.764342 / 1.468490 (0.295852) | 0.486423 / 4.584777 (-4.098354) | 3.527595 / 3.745712 (-0.218117) | 4.137034 / 5.269862 (-1.132827) | 2.590457 / 4.565676 (-1.975219) | 0.057598 / 0.424275 (-0.366677) | 0.007318 / 0.007607 (-0.000289) | 0.460775 / 0.226044 (0.234730) | 4.627576 / 2.268929 (2.358647) | 2.402566 / 55.444624 (-53.042059) | 2.011392 / 6.876477 (-4.865085) | 2.223915 / 2.142072 (0.081842) | 0.623217 / 4.805227 (-4.182011) | 0.148875 / 6.500664 (-6.351789) | 0.059799 / 0.075469 (-0.015671) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.290768 / 1.841788 (-0.551020) | 20.455083 / 8.074308 (12.380775) | 13.469846 / 10.191392 (3.278454) | 0.170329 / 0.680424 (-0.510095) | 0.018409 / 0.534201 (-0.515792) | 0.394356 / 0.579283 (-0.184927) | 0.422685 / 0.434364 (-0.011679) | 0.476241 / 0.540337 (-0.064096) | 0.662682 / 1.386936 (-0.724254) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006724 / 0.011353 (-0.004629) | 0.004508 / 0.011008 (-0.006500) | 0.065304 / 0.038508 (0.026796) | 0.080243 / 0.023109 (0.057133) | 0.384545 / 0.275898 (0.108647) | 0.415234 / 0.323480 (0.091754) | 0.006361 / 0.007986 (-0.001624) | 0.004193 / 0.004328 (-0.000135) | 0.065940 / 0.004250 (0.061689) | 0.063633 / 0.037052 (0.026581) | 0.392799 / 0.258489 (0.134310) | 0.443618 / 0.293841 (0.149777) | 0.031134 / 0.128546 (-0.097412) | 0.009058 / 0.075646 (-0.066588) | 0.071051 / 0.419271 (-0.348221) | 0.049096 / 0.043533 (0.005563) | 0.379526 / 0.255139 (0.124387) | 0.403370 / 0.283200 (0.120171) | 0.026378 / 0.141683 (-0.115305) | 1.457879 / 1.452155 (0.005724) | 1.562890 / 1.492716 (0.070174) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304416 / 0.018006 (0.286410) | 0.626046 / 0.000490 (0.625557) | 0.000469 / 0.000200 (0.000269) | 0.000057 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032979 / 0.037411 (-0.004433) | 0.086769 / 0.014526 (0.072243) | 0.108188 / 0.176557 (-0.068369) | 0.163077 / 0.737135 (-0.574058) | 0.106276 / 0.296338 (-0.190062) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406922 / 0.215209 (0.191713) | 4.052828 / 2.077655 (1.975174) | 2.084802 / 1.504120 (0.580682) | 1.927263 / 1.541195 (0.386069) | 1.956078 / 1.468490 (0.487587) | 0.480110 / 4.584777 (-4.104667) | 3.553022 / 3.745712 (-0.192691) | 3.554450 / 5.269862 (-1.715411) | 2.082681 / 4.565676 (-2.482995) | 0.056711 / 0.424275 (-0.367564) | 0.007374 / 0.007607 (-0.000234) | 0.480555 / 0.226044 (0.254510) | 4.795851 / 2.268929 (2.526923) | 2.606675 / 55.444624 (-52.837949) | 2.249964 / 6.876477 (-4.626512) | 2.274234 / 2.142072 (0.132162) | 0.571767 / 4.805227 (-4.233461) | 0.133312 / 6.500664 (-6.367352) | 0.061703 / 0.075469 (-0.013766) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354308 / 1.841788 (-0.487479) | 20.959352 / 8.074308 (12.885044) | 14.158420 / 10.191392 (3.967028) | 0.197959 / 0.680424 (-0.482465) | 0.018412 / 0.534201 (-0.515789) | 0.394307 / 0.579283 (-0.184976) | 0.402455 / 0.434364 (-0.031909) | 0.463314 / 0.540337 (-0.077024) | 0.621050 / 1.386936 (-0.765886) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d7298d4d1b169442a8d0bc8c1667298bb89ca501 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007179 / 0.011353 (-0.004174) | 0.004318 / 0.011008 (-0.006690) | 0.085209 / 0.038508 (0.046701) | 0.089989 / 0.023109 (0.066880) | 0.328188 / 0.275898 (0.052290) | 0.346027 / 0.323480 (0.022547) | 0.005711 / 0.007986 (-0.002275) | 0.003703 / 0.004328 (-0.000625) | 0.065419 / 0.004250 (0.061169) | 0.065354 / 0.037052 (0.028301) | 0.314531 / 0.258489 (0.056042) | 0.354357 / 0.293841 (0.060516) | 0.030918 / 0.128546 (-0.097628) | 0.008632 / 0.075646 (-0.067015) | 0.286817 / 0.419271 (-0.132455) | 0.065267 / 0.043533 (0.021735) | 0.310918 / 0.255139 (0.055779) | 0.330497 / 0.283200 (0.047298) | 0.035695 / 0.141683 (-0.105988) | 1.471101 / 1.452155 (0.018947) | 1.538658 / 1.492716 (0.045942) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254314 / 0.018006 (0.236308) | 0.591413 / 0.000490 (0.590923) | 0.006082 / 0.000200 (0.005882) | 0.000091 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031843 / 0.037411 (-0.005568) | 0.089968 / 0.014526 (0.075442) | 0.101838 / 0.176557 (-0.074718) | 0.164401 / 0.737135 (-0.572734) | 0.103785 / 0.296338 (-0.192554) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.380486 / 0.215209 (0.165277) | 3.798868 / 2.077655 (1.721213) | 1.824645 / 1.504120 (0.320525) | 1.660804 / 1.541195 (0.119610) | 1.784793 / 1.468490 (0.316303) | 0.487222 / 4.584777 (-4.097555) | 3.560580 / 3.745712 (-0.185132) | 5.392662 / 5.269862 (0.122800) | 3.295327 / 4.565676 (-1.270350) | 0.057699 / 0.424275 (-0.366576) | 0.007559 / 0.007607 (-0.000048) | 0.459655 / 0.226044 (0.233611) | 4.587583 / 2.268929 (2.318654) | 2.304845 / 55.444624 (-53.139779) | 1.966433 / 6.876477 (-4.910044) | 2.254591 / 2.142072 (0.112519) | 0.582978 / 4.805227 (-4.222250) | 0.133455 / 6.500664 (-6.367210) | 0.061924 / 0.075469 (-0.013546) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.275685 / 1.841788 (-0.566103) | 20.814545 / 8.074308 (12.740237) | 13.753567 / 10.191392 (3.562175) | 0.164076 / 0.680424 (-0.516348) | 0.018768 / 0.534201 (-0.515433) | 0.390991 / 0.579283 (-0.188293) | 0.404417 / 0.434364 (-0.029947) | 0.457522 / 0.540337 (-0.082815) | 0.624654 / 1.386936 (-0.762282) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007435 / 0.011353 (-0.003918) | 0.004255 / 0.011008 (-0.006754) | 0.066134 / 0.038508 (0.027626) | 0.086035 / 0.023109 (0.062925) | 0.364688 / 0.275898 (0.088790) | 0.403895 / 0.323480 (0.080415) | 0.005868 / 0.007986 (-0.002117) | 0.003634 / 0.004328 (-0.000694) | 0.065803 / 0.004250 (0.061553) | 0.065113 / 0.037052 (0.028061) | 0.370057 / 0.258489 (0.111568) | 0.412634 / 0.293841 (0.118793) | 0.031660 / 0.128546 (-0.096886) | 0.008699 / 0.075646 (-0.066947) | 0.070618 / 0.419271 (-0.348654) | 0.050814 / 0.043533 (0.007281) | 0.362320 / 0.255139 (0.107181) | 0.383863 / 0.283200 (0.100663) | 0.027980 / 0.141683 (-0.113703) | 1.486389 / 1.452155 (0.034234) | 1.595534 / 1.492716 (0.102817) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300991 / 0.018006 (0.282985) | 0.565265 / 0.000490 (0.564775) | 0.000400 / 0.000200 (0.000200) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034942 / 0.037411 (-0.002470) | 0.092498 / 0.014526 (0.077972) | 0.106737 / 0.176557 (-0.069819) | 0.165400 / 0.737135 (-0.571735) | 0.107809 / 0.296338 (-0.188529) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412156 / 0.215209 (0.196947) | 4.116747 / 2.077655 (2.039092) | 2.199612 / 1.504120 (0.695492) | 2.049310 / 1.541195 (0.508115) | 2.174342 / 1.468490 (0.705852) | 0.482794 / 4.584777 (-4.101983) | 3.561344 / 3.745712 (-0.184368) | 3.465935 / 5.269862 (-1.803926) | 2.076595 / 4.565676 (-2.489081) | 0.056242 / 0.424275 (-0.368033) | 0.007371 / 0.007607 (-0.000236) | 0.489135 / 0.226044 (0.263091) | 4.895691 / 2.268929 (2.626763) | 2.626936 / 55.444624 (-52.817688) | 2.306658 / 6.876477 (-4.569818) | 2.421705 / 2.142072 (0.279633) | 0.599547 / 4.805227 (-4.205680) | 0.133627 / 6.500664 (-6.367037) | 0.063830 / 0.075469 (-0.011639) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.383039 / 1.841788 (-0.458748) | 21.005346 / 8.074308 (12.931038) | 14.911083 / 10.191392 (4.719691) | 0.190995 / 0.680424 (-0.489429) | 0.018510 / 0.534201 (-0.515691) | 0.396346 / 0.579283 (-0.182937) | 0.411496 / 0.434364 (-0.022868) | 0.470972 / 0.540337 (-0.069366) | 0.615670 / 1.386936 (-0.771266) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d6d2ba47759d8acbf3d750b1cc4d89b195b1f9c9 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007249 / 0.011353 (-0.004104) | 0.004261 / 0.011008 (-0.006747) | 0.100645 / 0.038508 (0.062137) | 0.078522 / 0.023109 (0.055413) | 0.423526 / 0.275898 (0.147628) | 0.439541 / 0.323480 (0.116061) | 0.005812 / 0.007986 (-0.002173) | 0.003615 / 0.004328 (-0.000713) | 0.075908 / 0.004250 (0.071658) | 0.062490 / 0.037052 (0.025437) | 0.414941 / 0.258489 (0.156452) | 0.447267 / 0.293841 (0.153426) | 0.035127 / 0.128546 (-0.093419) | 0.009642 / 0.075646 (-0.066004) | 0.354093 / 0.419271 (-0.065179) | 0.060970 / 0.043533 (0.017437) | 0.418579 / 0.255139 (0.163440) | 0.427972 / 0.283200 (0.144772) | 0.025838 / 0.141683 (-0.115845) | 1.778349 / 1.452155 (0.326194) | 1.845965 / 1.492716 (0.353249) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227304 / 0.018006 (0.209298) | 0.571833 / 0.000490 (0.571343) | 0.001328 / 0.000200 (0.001128) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031343 / 0.037411 (-0.006068) | 0.096400 / 0.014526 (0.081875) | 0.106881 / 0.176557 (-0.069676) | 0.175449 / 0.737135 (-0.561686) | 0.108751 / 0.296338 (-0.187588) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480204 / 0.215209 (0.264995) | 4.622063 / 2.077655 (2.544408) | 2.211505 / 1.504120 (0.707385) | 2.065154 / 1.541195 (0.523959) | 2.159446 / 1.468490 (0.690956) | 0.584571 / 4.584777 (-4.000206) | 4.392449 / 3.745712 (0.646737) | 4.790166 / 5.269862 (-0.479695) | 2.840615 / 4.565676 (-1.725062) | 0.070845 / 0.424275 (-0.353430) | 0.009112 / 0.007607 (0.001505) | 0.580251 / 0.226044 (0.354207) | 5.660311 / 2.268929 (3.391382) | 2.836136 / 55.444624 (-52.608489) | 2.412859 / 6.876477 (-4.463618) | 2.556710 / 2.142072 (0.414637) | 0.691946 / 4.805227 (-4.113282) | 0.160123 / 6.500664 (-6.340541) | 0.072593 / 0.075469 (-0.002876) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.547339 / 1.841788 (-0.294448) | 21.724793 / 8.074308 (13.650485) | 16.315304 / 10.191392 (6.123912) | 0.188733 / 0.680424 (-0.491690) | 0.022109 / 0.534201 (-0.512092) | 0.481623 / 0.579283 (-0.097660) | 0.464316 / 0.434364 (0.029952) | 0.557953 / 0.540337 (0.017615) | 0.756023 / 1.386936 (-0.630913) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008637 / 0.011353 (-0.002716) | 0.005286 / 0.011008 (-0.005723) | 0.091387 / 0.038508 (0.052879) | 0.114092 / 0.023109 (0.090983) | 0.457547 / 0.275898 (0.181649) | 0.506878 / 0.323480 (0.183398) | 0.006849 / 0.007986 (-0.001137) | 0.004255 / 0.004328 (-0.000073) | 0.079556 / 0.004250 (0.075306) | 0.077729 / 0.037052 (0.040677) | 0.454094 / 0.258489 (0.195605) | 0.515812 / 0.293841 (0.221971) | 0.038271 / 0.128546 (-0.090275) | 0.010110 / 0.075646 (-0.065536) | 0.094254 / 0.419271 (-0.325017) | 0.065392 / 0.043533 (0.021860) | 0.459749 / 0.255139 (0.204610) | 0.489829 / 0.283200 (0.206629) | 0.040393 / 0.141683 (-0.101290) | 1.810414 / 1.452155 (0.358259) | 1.913212 / 1.492716 (0.420496) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236898 / 0.018006 (0.218891) | 0.513118 / 0.000490 (0.512628) | 0.004432 / 0.000200 (0.004232) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035074 / 0.037411 (-0.002337) | 0.102384 / 0.014526 (0.087858) | 0.117326 / 0.176557 (-0.059231) | 0.182596 / 0.737135 (-0.554539) | 0.116384 / 0.296338 (-0.179955) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.514544 / 0.215209 (0.299335) | 5.152930 / 2.077655 (3.075275) | 2.624477 / 1.504120 (1.120357) | 2.363209 / 1.541195 (0.822014) | 2.436060 / 1.468490 (0.967570) | 0.592523 / 4.584777 (-3.992254) | 4.209668 / 3.745712 (0.463956) | 6.284372 / 5.269862 (1.014511) | 3.667303 / 4.565676 (-0.898374) | 0.067017 / 0.424275 (-0.357259) | 0.008607 / 0.007607 (0.001000) | 0.600840 / 0.226044 (0.374796) | 5.992630 / 2.268929 (3.723701) | 3.114532 / 55.444624 (-52.330093) | 2.693242 / 6.876477 (-4.183235) | 2.767187 / 2.142072 (0.625115) | 0.687591 / 4.805227 (-4.117636) | 0.158477 / 6.500664 (-6.342187) | 0.075504 / 0.075469 (0.000034) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.605039 / 1.841788 (-0.236749) | 21.524730 / 8.074308 (13.450422) | 17.014643 / 10.191392 (6.823251) | 0.201580 / 0.680424 (-0.478843) | 0.023028 / 0.534201 (-0.511173) | 0.483801 / 0.579283 (-0.095482) | 0.490221 / 0.434364 (0.055857) | 0.589292 / 0.540337 (0.048955) | 0.758532 / 1.386936 (-0.628404) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8c9c24d1d90f0c2db043ae2bc39f7c292454a58c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008080 / 0.011353 (-0.003273) | 0.004859 / 0.011008 (-0.006149) | 0.101895 / 0.038508 (0.063387) | 0.091168 / 0.023109 (0.068059) | 0.378914 / 0.275898 (0.103016) | 0.417172 / 0.323480 (0.093692) | 0.006314 / 0.007986 (-0.001672) | 0.004069 / 0.004328 (-0.000259) | 0.076566 / 0.004250 (0.072315) | 0.070986 / 0.037052 (0.033934) | 0.380935 / 0.258489 (0.122446) | 0.417131 / 0.293841 (0.123290) | 0.036343 / 0.128546 (-0.092203) | 0.009996 / 0.075646 (-0.065650) | 0.346386 / 0.419271 (-0.072886) | 0.063162 / 0.043533 (0.019630) | 0.372620 / 0.255139 (0.117481) | 0.404902 / 0.283200 (0.121702) | 0.028217 / 0.141683 (-0.113466) | 1.793875 / 1.452155 (0.341721) | 1.836284 / 1.492716 (0.343568) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223830 / 0.018006 (0.205823) | 0.503643 / 0.000490 (0.503153) | 0.004957 / 0.000200 (0.004757) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035455 / 0.037411 (-0.001957) | 0.108015 / 0.014526 (0.093489) | 0.116887 / 0.176557 (-0.059669) | 0.188174 / 0.737135 (-0.548961) | 0.117217 / 0.296338 (-0.179121) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471681 / 0.215209 (0.256472) | 4.694509 / 2.077655 (2.616855) | 2.369539 / 1.504120 (0.865419) | 2.176839 / 1.541195 (0.635644) | 2.300536 / 1.468490 (0.832045) | 0.575689 / 4.584777 (-4.009088) | 4.232765 / 3.745712 (0.487053) | 4.766775 / 5.269862 (-0.503087) | 2.864667 / 4.565676 (-1.701010) | 0.069390 / 0.424275 (-0.354885) | 0.008822 / 0.007607 (0.001214) | 0.559620 / 0.226044 (0.333576) | 5.580401 / 2.268929 (3.311472) | 2.920293 / 55.444624 (-52.524331) | 2.552166 / 6.876477 (-4.324311) | 2.795890 / 2.142072 (0.653818) | 0.687863 / 4.805227 (-4.117364) | 0.159129 / 6.500664 (-6.341535) | 0.073475 / 0.075469 (-0.001994) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.505892 / 1.841788 (-0.335896) | 24.127650 / 8.074308 (16.053342) | 16.758238 / 10.191392 (6.566846) | 0.200555 / 0.680424 (-0.479869) | 0.021596 / 0.534201 (-0.512605) | 0.480668 / 0.579283 (-0.098615) | 0.483528 / 0.434364 (0.049164) | 0.571241 / 0.540337 (0.030903) | 0.790547 / 1.386936 (-0.596390) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007997 / 0.011353 (-0.003356) | 0.004842 / 0.011008 (-0.006166) | 0.077190 / 0.038508 (0.038681) | 0.092765 / 0.023109 (0.069656) | 0.457475 / 0.275898 (0.181577) | 0.523914 / 0.323480 (0.200434) | 0.006349 / 0.007986 (-0.001637) | 0.003902 / 0.004328 (-0.000427) | 0.075860 / 0.004250 (0.071609) | 0.069708 / 0.037052 (0.032656) | 0.459612 / 0.258489 (0.201123) | 0.555028 / 0.293841 (0.261187) | 0.036854 / 0.128546 (-0.091692) | 0.010078 / 0.075646 (-0.065568) | 0.083871 / 0.419271 (-0.335400) | 0.061221 / 0.043533 (0.017689) | 0.435737 / 0.255139 (0.180598) | 0.509700 / 0.283200 (0.226500) | 0.038091 / 0.141683 (-0.103592) | 1.777161 / 1.452155 (0.325006) | 1.859603 / 1.492716 (0.366886) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250020 / 0.018006 (0.232014) | 0.486198 / 0.000490 (0.485708) | 0.007080 / 0.000200 (0.006880) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038163 / 0.037411 (0.000751) | 0.110812 / 0.014526 (0.096286) | 0.122489 / 0.176557 (-0.054068) | 0.188215 / 0.737135 (-0.548920) | 0.122375 / 0.296338 (-0.173963) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.484534 / 0.215209 (0.269325) | 4.828654 / 2.077655 (2.751000) | 2.545102 / 1.504120 (1.040982) | 2.368867 / 1.541195 (0.827672) | 2.458042 / 1.468490 (0.989552) | 0.576372 / 4.584777 (-4.008404) | 4.814033 / 3.745712 (1.068321) | 6.175972 / 5.269862 (0.906110) | 4.033422 / 4.565676 (-0.532254) | 0.068544 / 0.424275 (-0.355731) | 0.008906 / 0.007607 (0.001299) | 0.581767 / 0.226044 (0.355723) | 5.808623 / 2.268929 (3.539695) | 3.120312 / 55.444624 (-52.324313) | 2.774834 / 6.876477 (-4.101642) | 2.770413 / 2.142072 (0.628340) | 0.692715 / 4.805227 (-4.112512) | 0.158883 / 6.500664 (-6.341782) | 0.075894 / 0.075469 (0.000425) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.631250 / 1.841788 (-0.210538) | 24.693250 / 8.074308 (16.618942) | 17.434790 / 10.191392 (7.243398) | 0.196456 / 0.680424 (-0.483968) | 0.022505 / 0.534201 (-0.511696) | 0.474788 / 0.579283 (-0.104495) | 0.500947 / 0.434364 (0.066583) | 0.553596 / 0.540337 (0.013259) | 0.737767 / 1.386936 (-0.649169) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f87d6e6394bf4b390ccc82235eb7667f874e5d43 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006629 / 0.011353 (-0.004724) | 0.004115 / 0.011008 (-0.006894) | 0.083934 / 0.038508 (0.045426) | 0.074952 / 0.023109 (0.051843) | 0.313069 / 0.275898 (0.037171) | 0.345878 / 0.323480 (0.022398) | 0.006034 / 0.007986 (-0.001952) | 0.003413 / 0.004328 (-0.000916) | 0.065130 / 0.004250 (0.060880) | 0.057363 / 0.037052 (0.020310) | 0.314483 / 0.258489 (0.055994) | 0.352626 / 0.293841 (0.058785) | 0.031325 / 0.128546 (-0.097221) | 0.008577 / 0.075646 (-0.067069) | 0.288137 / 0.419271 (-0.131135) | 0.053651 / 0.043533 (0.010118) | 0.313006 / 0.255139 (0.057867) | 0.338668 / 0.283200 (0.055468) | 0.023709 / 0.141683 (-0.117974) | 1.481209 / 1.452155 (0.029054) | 1.559801 / 1.492716 (0.067085) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211543 / 0.018006 (0.193537) | 0.452185 / 0.000490 (0.451696) | 0.003177 / 0.000200 (0.002977) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028821 / 0.037411 (-0.008591) | 0.083290 / 0.014526 (0.068765) | 0.097478 / 0.176557 (-0.079079) | 0.153506 / 0.737135 (-0.583629) | 0.097054 / 0.296338 (-0.199284) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.385847 / 0.215209 (0.170638) | 3.835629 / 2.077655 (1.757974) | 1.880938 / 1.504120 (0.376819) | 1.711848 / 1.541195 (0.170653) | 1.785099 / 1.468490 (0.316609) | 0.486256 / 4.584777 (-4.098521) | 3.629026 / 3.745712 (-0.116686) | 3.321578 / 5.269862 (-1.948283) | 2.024314 / 4.565676 (-2.541363) | 0.058097 / 0.424275 (-0.366179) | 0.007724 / 0.007607 (0.000117) | 0.458293 / 0.226044 (0.232249) | 4.581314 / 2.268929 (2.312386) | 2.314379 / 55.444624 (-53.130246) | 1.966089 / 6.876477 (-4.910387) | 2.203824 / 2.142072 (0.061752) | 0.611581 / 4.805227 (-4.193647) | 0.149166 / 6.500664 (-6.351498) | 0.059825 / 0.075469 (-0.015644) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235546 / 1.841788 (-0.606242) | 19.747439 / 8.074308 (11.673131) | 14.628383 / 10.191392 (4.436991) | 0.193074 / 0.680424 (-0.487350) | 0.020327 / 0.534201 (-0.513874) | 0.397051 / 0.579283 (-0.182232) | 0.418491 / 0.434364 (-0.015873) | 0.462055 / 0.540337 (-0.078282) | 0.637524 / 1.386936 (-0.749412) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007069 / 0.011353 (-0.004284) | 0.004106 / 0.011008 (-0.006902) | 0.065818 / 0.038508 (0.027310) | 0.077101 / 0.023109 (0.053991) | 0.363323 / 0.275898 (0.087425) | 0.399463 / 0.323480 (0.075983) | 0.005540 / 0.007986 (-0.002446) | 0.003480 / 0.004328 (-0.000849) | 0.065176 / 0.004250 (0.060926) | 0.060867 / 0.037052 (0.023815) | 0.365763 / 0.258489 (0.107273) | 0.407789 / 0.293841 (0.113949) | 0.032018 / 0.128546 (-0.096528) | 0.008550 / 0.075646 (-0.067096) | 0.071750 / 0.419271 (-0.347521) | 0.050625 / 0.043533 (0.007092) | 0.361434 / 0.255139 (0.106295) | 0.384799 / 0.283200 (0.101599) | 0.026104 / 0.141683 (-0.115579) | 1.496093 / 1.452155 (0.043938) | 1.592909 / 1.492716 (0.100193) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185794 / 0.018006 (0.167787) | 0.453379 / 0.000490 (0.452890) | 0.004365 / 0.000200 (0.004165) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031666 / 0.037411 (-0.005746) | 0.088323 / 0.014526 (0.073798) | 0.104602 / 0.176557 (-0.071954) | 0.159827 / 0.737135 (-0.577308) | 0.103725 / 0.296338 (-0.192614) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413509 / 0.215209 (0.198300) | 4.126071 / 2.077655 (2.048416) | 2.137088 / 1.504120 (0.632968) | 1.981034 / 1.541195 (0.439839) | 2.063660 / 1.468490 (0.595170) | 0.478798 / 4.584777 (-4.105979) | 3.642801 / 3.745712 (-0.102911) | 3.428994 / 5.269862 (-1.840867) | 2.031902 / 4.565676 (-2.533774) | 0.056244 / 0.424275 (-0.368032) | 0.007365 / 0.007607 (-0.000242) | 0.484371 / 0.226044 (0.258327) | 4.838537 / 2.268929 (2.569608) | 2.559497 / 55.444624 (-52.885127) | 2.251863 / 6.876477 (-4.624614) | 2.339227 / 2.142072 (0.197155) | 0.607228 / 4.805227 (-4.198000) | 0.133877 / 6.500664 (-6.366787) | 0.062049 / 0.075469 (-0.013420) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350389 / 1.841788 (-0.491399) | 20.060359 / 8.074308 (11.986051) | 14.305675 / 10.191392 (4.114283) | 0.165642 / 0.680424 (-0.514782) | 0.018206 / 0.534201 (-0.515994) | 0.396907 / 0.579283 (-0.182376) | 0.431896 / 0.434364 (-0.002468) | 0.475778 / 0.540337 (-0.064559) | 0.644688 / 1.386936 (-0.742248) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8f6fa96ae5de873a49ef28739e8f64edf8b18cae \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009048 / 0.011353 (-0.002305) | 0.005787 / 0.011008 (-0.005221) | 0.111617 / 0.038508 (0.073109) | 0.087603 / 0.023109 (0.064494) | 0.446481 / 0.275898 (0.170583) | 0.491726 / 0.323480 (0.168247) | 0.007052 / 0.007986 (-0.000934) | 0.004481 / 0.004328 (0.000152) | 0.084331 / 0.004250 (0.080081) | 0.072006 / 0.037052 (0.034953) | 0.454238 / 0.258489 (0.195749) | 0.496749 / 0.293841 (0.202908) | 0.049027 / 0.128546 (-0.079520) | 0.014005 / 0.075646 (-0.061641) | 0.372550 / 0.419271 (-0.046722) | 0.071414 / 0.043533 (0.027881) | 0.459432 / 0.255139 (0.204293) | 0.467332 / 0.283200 (0.184133) | 0.037539 / 0.141683 (-0.104144) | 1.869179 / 1.452155 (0.417024) | 1.983641 / 1.492716 (0.490925) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.265426 / 0.018006 (0.247419) | 0.672527 / 0.000490 (0.672037) | 0.001152 / 0.000200 (0.000953) | 0.000181 / 0.000054 (0.000127) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032967 / 0.037411 (-0.004445) | 0.103023 / 0.014526 (0.088497) | 0.115978 / 0.176557 (-0.060578) | 0.191698 / 0.737135 (-0.545438) | 0.117867 / 0.296338 (-0.178471) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602208 / 0.215209 (0.386999) | 6.147784 / 2.077655 (4.070129) | 2.768933 / 1.504120 (1.264813) | 2.415619 / 1.541195 (0.874424) | 2.456159 / 1.468490 (0.987669) | 0.836270 / 4.584777 (-3.748507) | 5.447754 / 3.745712 (1.702042) | 7.751825 / 5.269862 (2.481963) | 4.591892 / 4.565676 (0.026215) | 0.108269 / 0.424275 (-0.316006) | 0.009626 / 0.007607 (0.002019) | 0.719260 / 0.226044 (0.493216) | 7.313442 / 2.268929 (5.044514) | 3.490739 / 55.444624 (-51.953885) | 2.743543 / 6.876477 (-4.132934) | 3.035071 / 2.142072 (0.892999) | 1.042791 / 4.805227 (-3.762436) | 0.217080 / 6.500664 (-6.283584) | 0.084286 / 0.075469 (0.008817) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.655427 / 1.841788 (-0.186361) | 25.386536 / 8.074308 (17.312228) | 21.740666 / 10.191392 (11.549274) | 0.246388 / 0.680424 (-0.434036) | 0.029723 / 0.534201 (-0.504478) | 0.491537 / 0.579283 (-0.087746) | 0.603495 / 0.434364 (0.169131) | 0.573938 / 0.540337 (0.033600) | 0.981875 / 1.386936 (-0.405061) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009664 / 0.011353 (-0.001689) | 0.006446 / 0.011008 (-0.004562) | 0.085113 / 0.038508 (0.046605) | 0.094533 / 0.023109 (0.071424) | 0.498388 / 0.275898 (0.222490) | 0.540127 / 0.323480 (0.216647) | 0.007316 / 0.007986 (-0.000670) | 0.004252 / 0.004328 (-0.000077) | 0.086292 / 0.004250 (0.082041) | 0.067956 / 0.037052 (0.030903) | 0.507664 / 0.258489 (0.249175) | 0.554324 / 0.293841 (0.260483) | 0.050107 / 0.128546 (-0.078439) | 0.014277 / 0.075646 (-0.061370) | 0.098838 / 0.419271 (-0.320433) | 0.066053 / 0.043533 (0.022521) | 0.491090 / 0.255139 (0.235951) | 0.537432 / 0.283200 (0.254232) | 0.035937 / 0.141683 (-0.105746) | 1.820715 / 1.452155 (0.368561) | 1.996268 / 1.492716 (0.503552) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300859 / 0.018006 (0.282852) | 0.610958 / 0.000490 (0.610468) | 0.000474 / 0.000200 (0.000274) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036372 / 0.037411 (-0.001039) | 0.109115 / 0.014526 (0.094589) | 0.122802 / 0.176557 (-0.053755) | 0.187092 / 0.737135 (-0.550044) | 0.123432 / 0.296338 (-0.172906) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.646979 / 0.215209 (0.431770) | 6.577713 / 2.077655 (4.500058) | 3.004606 / 1.504120 (1.500486) | 2.661183 / 1.541195 (1.119989) | 2.726717 / 1.468490 (1.258227) | 0.889497 / 4.584777 (-3.695280) | 5.485055 / 3.745712 (1.739343) | 4.852043 / 5.269862 (-0.417819) | 3.177392 / 4.565676 (-1.388285) | 0.099796 / 0.424275 (-0.324479) | 0.009868 / 0.007607 (0.002261) | 0.819919 / 0.226044 (0.593874) | 7.911255 / 2.268929 (5.642326) | 3.839877 / 55.444624 (-51.604747) | 3.088663 / 6.876477 (-3.787813) | 3.371184 / 2.142072 (1.229112) | 1.072762 / 4.805227 (-3.732466) | 0.224536 / 6.500664 (-6.276128) | 0.083415 / 0.075469 (0.007946) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.754426 / 1.841788 (-0.087361) | 25.546690 / 8.074308 (17.472382) | 22.998252 / 10.191392 (12.806860) | 0.258019 / 0.680424 (-0.422405) | 0.030104 / 0.534201 (-0.504097) | 0.518406 / 0.579283 (-0.060877) | 0.605753 / 0.434364 (0.171389) | 0.599630 / 0.540337 (0.059292) | 0.819042 / 1.386936 (-0.567894) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#350f4fd6caabbdfacb5fbf9193ab255c3d0daa4c \"CML watermark\")\n"
] | 2023-07-17T15:41:16 | 2023-07-19T16:59:55 | 2023-07-19T16:48:06 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6044",
"html_url": "https://github.com/huggingface/datasets/pull/6044",
"diff_url": "https://github.com/huggingface/datasets/pull/6044.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6044.patch",
"merged_at": "2023-07-19T16:48:06"
} | To make it easier to understand for users.
They can use "path" to specify a single path, <s>or "paths" to use a list of paths.</s>
Glob patterns are still supported though
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6044/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6044/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5997 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5997/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5997/comments | https://api.github.com/repos/huggingface/datasets/issues/5997/events | https://github.com/huggingface/datasets/issues/5997 | 1,781,582,818 | I_kwDODunzps5qMMvi | 5,997 | extend the map function so it can wrap around long text that does not fit in the context window | {
"login": "siddhsql",
"id": 127623723,
"node_id": "U_kgDOB5tiKw",
"avatar_url": "https://avatars.githubusercontent.com/u/127623723?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/siddhsql",
"html_url": "https://github.com/siddhsql",
"followers_url": "https://api.github.com/users/siddhsql/followers",
"following_url": "https://api.github.com/users/siddhsql/following{/other_user}",
"gists_url": "https://api.github.com/users/siddhsql/gists{/gist_id}",
"starred_url": "https://api.github.com/users/siddhsql/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/siddhsql/subscriptions",
"organizations_url": "https://api.github.com/users/siddhsql/orgs",
"repos_url": "https://api.github.com/users/siddhsql/repos",
"events_url": "https://api.github.com/users/siddhsql/events{/privacy}",
"received_events_url": "https://api.github.com/users/siddhsql/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"I just noticed the [docs](https://github.com/huggingface/datasets/blob/main/src/datasets/arrow_dataset.py#L2881C11-L2881C200) say:\r\n\r\n>If batched is `True` and `batch_size` is `n > 1`, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.\r\n\r\nso maybe this is a bug then.",
"All the values in a batch must be of the same length. So one solution is dropping all the input columns:\r\n```python\r\ndata = data.map(lambda samples: tokenizer(samples[\"text\"], max_length=tokenizer.model_max_length, truncation=True, stride=4, return_overflowing_tokens=True), batched=True, remove_columns=data.column_names)\r\n```\r\n\r\nAnother is padding/transforming the input columns to the tokenizer output's length (447). "
] | 2023-06-29T22:15:21 | 2023-07-03T17:58:52 | null | NONE | null | null | null | ### Feature request
I understand `dataset` provides a [`map`](https://github.com/huggingface/datasets/blob/main/src/datasets/arrow_dataset.py#L2849) function. This function in turn takes in a callable that is used to tokenize the text on which a model is trained. Frequently this text will not fit within a models's context window. In this case it would be useful to wrap around the text into multiple rows with each row fitting the model's context window. I tried to do it using this code as example which in turn I have borrowed from [here](https://stackoverflow.com/a/76343993/147530):
```
data = data.map(lambda samples: tokenizer(samples["text"], max_length=tokenizer.model_max_length, truncation=True, stride=4, return_overflowing_tokens=True), batched=True)
```
but running the code gives me this error:
```
File "/llm/fine-tune.py", line 117, in <module>
data = data.map(lambda samples: tokenizer(samples["text"], max_length=tokenizer.model_max_length, truncation=True, stride=4, return_overflowing_tokens=True), batched=True)
File "/llm/.env/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 580, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/llm/.env/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 545, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/llm/.env/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3087, in map
for rank, done, content in Dataset._map_single(**dataset_kwargs):
File "/llm/.env/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3480, in _map_single
writer.write_batch(batch)
File "/llm/.env/lib/python3.9/site-packages/datasets/arrow_writer.py", line 556, in write_batch
pa_table = pa.Table.from_arrays(arrays, schema=schema)
File "pyarrow/table.pxi", line 3798, in pyarrow.lib.Table.from_arrays
File "pyarrow/table.pxi", line 2962, in pyarrow.lib.Table.validate
File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Column 1 named input_ids expected length 394 but got length 447
```
The lambda function I have provided is correctly chopping up long text so it wraps around (and because of this 394 samples become 447 after wrap around) but the dataset `map` function does not like it.
### Motivation
please see above
### Your contribution
I'm afraid I don't have much knowledge to help | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5997/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5997/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6030 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6030/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6030/comments | https://api.github.com/repos/huggingface/datasets/issues/6030/events | https://github.com/huggingface/datasets/pull/6030 | 1,803,864,744 | PR_kwDODunzps5Vd0ZG | 6,030 | fixed typo in comment | {
"login": "NightMachinery",
"id": 36224762,
"node_id": "MDQ6VXNlcjM2MjI0NzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/36224762?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/NightMachinery",
"html_url": "https://github.com/NightMachinery",
"followers_url": "https://api.github.com/users/NightMachinery/followers",
"following_url": "https://api.github.com/users/NightMachinery/following{/other_user}",
"gists_url": "https://api.github.com/users/NightMachinery/gists{/gist_id}",
"starred_url": "https://api.github.com/users/NightMachinery/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NightMachinery/subscriptions",
"organizations_url": "https://api.github.com/users/NightMachinery/orgs",
"repos_url": "https://api.github.com/users/NightMachinery/repos",
"events_url": "https://api.github.com/users/NightMachinery/events{/privacy}",
"received_events_url": "https://api.github.com/users/NightMachinery/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005855 / 0.011353 (-0.005498) | 0.003556 / 0.011008 (-0.007452) | 0.079430 / 0.038508 (0.040922) | 0.056754 / 0.023109 (0.033645) | 0.311718 / 0.275898 (0.035820) | 0.346731 / 0.323480 (0.023251) | 0.004414 / 0.007986 (-0.003571) | 0.002835 / 0.004328 (-0.001493) | 0.062138 / 0.004250 (0.057888) | 0.044259 / 0.037052 (0.007206) | 0.314681 / 0.258489 (0.056192) | 0.359802 / 0.293841 (0.065961) | 0.026684 / 0.128546 (-0.101862) | 0.008023 / 0.075646 (-0.067623) | 0.260148 / 0.419271 (-0.159123) | 0.043734 / 0.043533 (0.000202) | 0.312081 / 0.255139 (0.056942) | 0.340004 / 0.283200 (0.056805) | 0.019559 / 0.141683 (-0.122124) | 1.488758 / 1.452155 (0.036604) | 1.510828 / 1.492716 (0.018111) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.181376 / 0.018006 (0.163370) | 0.441726 / 0.000490 (0.441236) | 0.001722 / 0.000200 (0.001522) | 0.000066 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023760 / 0.037411 (-0.013651) | 0.071847 / 0.014526 (0.057321) | 0.082642 / 0.176557 (-0.093915) | 0.145555 / 0.737135 (-0.591580) | 0.084554 / 0.296338 (-0.211784) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401688 / 0.215209 (0.186479) | 4.000994 / 2.077655 (1.923339) | 2.047109 / 1.504120 (0.542989) | 1.891874 / 1.541195 (0.350679) | 1.970599 / 1.468490 (0.502109) | 0.500646 / 4.584777 (-4.084131) | 3.006623 / 3.745712 (-0.739089) | 4.248359 / 5.269862 (-1.021503) | 2.613946 / 4.565676 (-1.951730) | 0.057921 / 0.424275 (-0.366354) | 0.006407 / 0.007607 (-0.001200) | 0.470676 / 0.226044 (0.244631) | 4.722280 / 2.268929 (2.453352) | 2.448530 / 55.444624 (-52.996095) | 2.175841 / 6.876477 (-4.700635) | 2.352287 / 2.142072 (0.210214) | 0.589049 / 4.805227 (-4.216179) | 0.125145 / 6.500664 (-6.375519) | 0.060829 / 0.075469 (-0.014640) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.189225 / 1.841788 (-0.652563) | 16.753085 / 8.074308 (8.678777) | 13.086512 / 10.191392 (2.895120) | 0.132371 / 0.680424 (-0.548052) | 0.016933 / 0.534201 (-0.517268) | 0.328258 / 0.579283 (-0.251025) | 0.344074 / 0.434364 (-0.090290) | 0.374042 / 0.540337 (-0.166296) | 0.515307 / 1.386936 (-0.871629) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005963 / 0.011353 (-0.005390) | 0.003484 / 0.011008 (-0.007525) | 0.062618 / 0.038508 (0.024110) | 0.057217 / 0.023109 (0.034108) | 0.426760 / 0.275898 (0.150862) | 0.464422 / 0.323480 (0.140942) | 0.005276 / 0.007986 (-0.002709) | 0.002872 / 0.004328 (-0.001456) | 0.062636 / 0.004250 (0.058385) | 0.045953 / 0.037052 (0.008900) | 0.433221 / 0.258489 (0.174732) | 0.475087 / 0.293841 (0.181246) | 0.027217 / 0.128546 (-0.101329) | 0.007965 / 0.075646 (-0.067681) | 0.067749 / 0.419271 (-0.351522) | 0.041235 / 0.043533 (-0.002298) | 0.425424 / 0.255139 (0.170285) | 0.453390 / 0.283200 (0.170190) | 0.020217 / 0.141683 (-0.121466) | 1.436354 / 1.452155 (-0.015801) | 1.492372 / 1.492716 (-0.000345) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226896 / 0.018006 (0.208889) | 0.411935 / 0.000490 (0.411445) | 0.000356 / 0.000200 (0.000156) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024705 / 0.037411 (-0.012706) | 0.076232 / 0.014526 (0.061706) | 0.086949 / 0.176557 (-0.089608) | 0.141867 / 0.737135 (-0.595269) | 0.088199 / 0.296338 (-0.208140) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419748 / 0.215209 (0.204539) | 4.198597 / 2.077655 (2.120942) | 2.338477 / 1.504120 (0.834357) | 2.195741 / 1.541195 (0.654547) | 2.278145 / 1.468490 (0.809655) | 0.502365 / 4.584777 (-4.082412) | 2.987773 / 3.745712 (-0.757939) | 2.896526 / 5.269862 (-2.373336) | 1.841610 / 4.565676 (-2.724067) | 0.058032 / 0.424275 (-0.366243) | 0.006470 / 0.007607 (-0.001137) | 0.496969 / 0.226044 (0.270925) | 4.960984 / 2.268929 (2.692056) | 2.648615 / 55.444624 (-52.796009) | 2.286846 / 6.876477 (-4.589631) | 2.320176 / 2.142072 (0.178104) | 0.600550 / 4.805227 (-4.204678) | 0.125652 / 6.500664 (-6.375012) | 0.062177 / 0.075469 (-0.013292) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293063 / 1.841788 (-0.548725) | 18.294204 / 8.074308 (10.219896) | 13.720502 / 10.191392 (3.529110) | 0.146480 / 0.680424 (-0.533944) | 0.016965 / 0.534201 (-0.517236) | 0.330137 / 0.579283 (-0.249146) | 0.352051 / 0.434364 (-0.082313) | 0.381754 / 0.540337 (-0.158584) | 0.517935 / 1.386936 (-0.869001) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#269fcd31a2e759c65ffd5952ecef13e6a0d92574 \"CML watermark\")\n"
] | 2023-07-13T22:49:57 | 2023-07-14T14:21:58 | 2023-07-14T14:13:38 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6030",
"html_url": "https://github.com/huggingface/datasets/pull/6030",
"diff_url": "https://github.com/huggingface/datasets/pull/6030.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6030.patch",
"merged_at": "2023-07-14T14:13:38"
} | This mistake was a bit confusing, so I thought it was worth sending a PR over. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6030/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6030/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6074 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6074/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6074/comments | https://api.github.com/repos/huggingface/datasets/issues/6074/events | https://github.com/huggingface/datasets/pull/6074 | 1,822,299,128 | PR_kwDODunzps5Wb8O_ | 6,074 | Misc doc improvements | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006616 / 0.011353 (-0.004737) | 0.003915 / 0.011008 (-0.007093) | 0.083271 / 0.038508 (0.044763) | 0.072595 / 0.023109 (0.049485) | 0.307224 / 0.275898 (0.031326) | 0.337244 / 0.323480 (0.013764) | 0.005296 / 0.007986 (-0.002690) | 0.003325 / 0.004328 (-0.001003) | 0.064589 / 0.004250 (0.060339) | 0.056369 / 0.037052 (0.019316) | 0.310829 / 0.258489 (0.052340) | 0.345563 / 0.293841 (0.051722) | 0.030551 / 0.128546 (-0.097995) | 0.008519 / 0.075646 (-0.067127) | 0.286368 / 0.419271 (-0.132903) | 0.052498 / 0.043533 (0.008966) | 0.308735 / 0.255139 (0.053596) | 0.329234 / 0.283200 (0.046034) | 0.022588 / 0.141683 (-0.119095) | 1.453135 / 1.452155 (0.000981) | 1.525956 / 1.492716 (0.033239) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199417 / 0.018006 (0.181410) | 0.454621 / 0.000490 (0.454131) | 0.004928 / 0.000200 (0.004728) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028436 / 0.037411 (-0.008975) | 0.083722 / 0.014526 (0.069196) | 0.095162 / 0.176557 (-0.081395) | 0.153434 / 0.737135 (-0.583702) | 0.099480 / 0.296338 (-0.196859) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384647 / 0.215209 (0.169438) | 3.838406 / 2.077655 (1.760751) | 1.891267 / 1.504120 (0.387148) | 1.751432 / 1.541195 (0.210238) | 1.737443 / 1.468490 (0.268953) | 0.487758 / 4.584777 (-4.097019) | 3.635925 / 3.745712 (-0.109787) | 5.208718 / 5.269862 (-0.061144) | 3.029374 / 4.565676 (-1.536302) | 0.057613 / 0.424275 (-0.366662) | 0.007177 / 0.007607 (-0.000430) | 0.455596 / 0.226044 (0.229552) | 4.559969 / 2.268929 (2.291040) | 2.325321 / 55.444624 (-53.119303) | 2.034924 / 6.876477 (-4.841552) | 2.163869 / 2.142072 (0.021796) | 0.583477 / 4.805227 (-4.221750) | 0.132870 / 6.500664 (-6.367795) | 0.059618 / 0.075469 (-0.015851) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.263751 / 1.841788 (-0.578037) | 19.740004 / 8.074308 (11.665696) | 14.410980 / 10.191392 (4.219588) | 0.170367 / 0.680424 (-0.510057) | 0.018225 / 0.534201 (-0.515976) | 0.390101 / 0.579283 (-0.189182) | 0.404298 / 0.434364 (-0.030066) | 0.455295 / 0.540337 (-0.085043) | 0.621179 / 1.386936 (-0.765757) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006580 / 0.011353 (-0.004773) | 0.004078 / 0.011008 (-0.006930) | 0.065842 / 0.038508 (0.027334) | 0.074494 / 0.023109 (0.051385) | 0.403644 / 0.275898 (0.127746) | 0.430204 / 0.323480 (0.106724) | 0.005343 / 0.007986 (-0.002643) | 0.003366 / 0.004328 (-0.000963) | 0.064858 / 0.004250 (0.060607) | 0.056252 / 0.037052 (0.019200) | 0.412556 / 0.258489 (0.154067) | 0.434099 / 0.293841 (0.140258) | 0.031518 / 0.128546 (-0.097028) | 0.008543 / 0.075646 (-0.067104) | 0.071658 / 0.419271 (-0.347613) | 0.049962 / 0.043533 (0.006430) | 0.398511 / 0.255139 (0.143372) | 0.415908 / 0.283200 (0.132708) | 0.025011 / 0.141683 (-0.116672) | 1.492350 / 1.452155 (0.040195) | 1.552996 / 1.492716 (0.060280) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204971 / 0.018006 (0.186964) | 0.439965 / 0.000490 (0.439475) | 0.002071 / 0.000200 (0.001872) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031673 / 0.037411 (-0.005738) | 0.087529 / 0.014526 (0.073004) | 0.099882 / 0.176557 (-0.076675) | 0.156994 / 0.737135 (-0.580141) | 0.101421 / 0.296338 (-0.194918) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407480 / 0.215209 (0.192271) | 4.069123 / 2.077655 (1.991468) | 2.081288 / 1.504120 (0.577169) | 1.920367 / 1.541195 (0.379172) | 1.981053 / 1.468490 (0.512563) | 0.481995 / 4.584777 (-4.102782) | 3.546486 / 3.745712 (-0.199226) | 5.133150 / 5.269862 (-0.136712) | 3.056444 / 4.565676 (-1.509232) | 0.056650 / 0.424275 (-0.367625) | 0.007746 / 0.007607 (0.000139) | 0.490891 / 0.226044 (0.264847) | 4.902160 / 2.268929 (2.633232) | 2.564726 / 55.444624 (-52.879899) | 2.234988 / 6.876477 (-4.641489) | 2.387656 / 2.142072 (0.245583) | 0.576315 / 4.805227 (-4.228912) | 0.132065 / 6.500664 (-6.368599) | 0.060728 / 0.075469 (-0.014741) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.370568 / 1.841788 (-0.471220) | 19.883159 / 8.074308 (11.808851) | 14.442066 / 10.191392 (4.250674) | 0.150119 / 0.680424 (-0.530305) | 0.018359 / 0.534201 (-0.515842) | 0.394128 / 0.579283 (-0.185155) | 0.411697 / 0.434364 (-0.022667) | 0.460580 / 0.540337 (-0.079757) | 0.608490 / 1.386936 (-0.778446) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#035d0cf842b82b14059999baa78e8d158dfbed12 \"CML watermark\")\n",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6074). All of your documentation changes will be reflected on that endpoint."
] | 2023-07-26T12:20:54 | 2023-07-26T14:42:56 | null | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6074",
"html_url": "https://github.com/huggingface/datasets/pull/6074",
"diff_url": "https://github.com/huggingface/datasets/pull/6074.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6074.patch",
"merged_at": null
} | Removes the warning about requiring to write a dataset loading script to define multiple configurations, as the README YAML can be used instead (for simple cases). Also, deletes the section about using the `BatchSampler` in `torch<=1.12.1` to speed up loading, as `torch 1.12.1` is over a year old (and `torch 2.0` has been out for a while). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6074/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6074/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6078 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6078/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6078/comments | https://api.github.com/repos/huggingface/datasets/issues/6078/events | https://github.com/huggingface/datasets/issues/6078 | 1,822,501,472 | I_kwDODunzps5soSpg | 6,078 | resume_download with streaming=True | {
"login": "NicolasMICAUX",
"id": 72763959,
"node_id": "MDQ6VXNlcjcyNzYzOTU5",
"avatar_url": "https://avatars.githubusercontent.com/u/72763959?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/NicolasMICAUX",
"html_url": "https://github.com/NicolasMICAUX",
"followers_url": "https://api.github.com/users/NicolasMICAUX/followers",
"following_url": "https://api.github.com/users/NicolasMICAUX/following{/other_user}",
"gists_url": "https://api.github.com/users/NicolasMICAUX/gists{/gist_id}",
"starred_url": "https://api.github.com/users/NicolasMICAUX/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NicolasMICAUX/subscriptions",
"organizations_url": "https://api.github.com/users/NicolasMICAUX/orgs",
"repos_url": "https://api.github.com/users/NicolasMICAUX/repos",
"events_url": "https://api.github.com/users/NicolasMICAUX/events{/privacy}",
"received_events_url": "https://api.github.com/users/NicolasMICAUX/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-07-26T14:08:22 | 2023-07-26T14:08:22 | null | NONE | null | null | null | ### Describe the bug
I used:
```
dataset = load_dataset(
"oscar-corpus/OSCAR-2201",
token=True,
language="fr",
streaming=True,
split="train"
)
```
Unfortunately, the server had a problem during the training process. I saved the step my training stopped at.
But how can I resume download from step 1_000_´000 without re-streaming all the first 1 million docs of the dataset?
`download_config=DownloadConfig(resume_download=True)` seems to not work with streaming=True.
### Steps to reproduce the bug
```
from datasets import load_dataset, DownloadConfig
dataset = load_dataset(
"oscar-corpus/OSCAR-2201",
token=True,
language="fr",
streaming=True, # optional
split="train",
download_config=DownloadConfig(resume_download=True)
)
# interupt the run and try to relaunch it => this restart from scratch
```
### Expected behavior
I would expect a parameter to start streaming from a given index in the dataset.
### Environment info
- `datasets` version: 2.14.0
- Platform: Linux-5.19.0-45-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6078/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6078/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6004 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6004/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6004/comments | https://api.github.com/repos/huggingface/datasets/issues/6004/events | https://github.com/huggingface/datasets/pull/6004 | 1,786,636,368 | PR_kwDODunzps5UjN2h | 6,004 | Misc improvements | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006897 / 0.011353 (-0.004456) | 0.004207 / 0.011008 (-0.006802) | 0.104828 / 0.038508 (0.066320) | 0.048054 / 0.023109 (0.024945) | 0.373991 / 0.275898 (0.098093) | 0.426740 / 0.323480 (0.103260) | 0.005540 / 0.007986 (-0.002446) | 0.003531 / 0.004328 (-0.000797) | 0.079304 / 0.004250 (0.075053) | 0.066996 / 0.037052 (0.029944) | 0.370675 / 0.258489 (0.112186) | 0.414154 / 0.293841 (0.120313) | 0.031567 / 0.128546 (-0.096979) | 0.008843 / 0.075646 (-0.066803) | 0.357426 / 0.419271 (-0.061845) | 0.067040 / 0.043533 (0.023508) | 0.362384 / 0.255139 (0.107245) | 0.376056 / 0.283200 (0.092856) | 0.032985 / 0.141683 (-0.108697) | 1.560603 / 1.452155 (0.108448) | 1.619024 / 1.492716 (0.126308) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229059 / 0.018006 (0.211053) | 0.440513 / 0.000490 (0.440023) | 0.004647 / 0.000200 (0.004447) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029517 / 0.037411 (-0.007894) | 0.120974 / 0.014526 (0.106448) | 0.125070 / 0.176557 (-0.051486) | 0.184695 / 0.737135 (-0.552441) | 0.130244 / 0.296338 (-0.166095) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436930 / 0.215209 (0.221721) | 4.356118 / 2.077655 (2.278463) | 2.049169 / 1.504120 (0.545049) | 1.842898 / 1.541195 (0.301703) | 1.918948 / 1.468490 (0.450458) | 0.553573 / 4.584777 (-4.031204) | 3.883195 / 3.745712 (0.137483) | 3.209780 / 5.269862 (-2.060081) | 1.551707 / 4.565676 (-3.013970) | 0.068181 / 0.424275 (-0.356094) | 0.012370 / 0.007607 (0.004762) | 0.539899 / 0.226044 (0.313854) | 5.380008 / 2.268929 (3.111079) | 2.518178 / 55.444624 (-52.926446) | 2.174190 / 6.876477 (-4.702286) | 2.317812 / 2.142072 (0.175740) | 0.674154 / 4.805227 (-4.131073) | 0.149313 / 6.500664 (-6.351351) | 0.068297 / 0.075469 (-0.007172) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.261426 / 1.841788 (-0.580362) | 15.316378 / 8.074308 (7.242070) | 13.573512 / 10.191392 (3.382120) | 0.190022 / 0.680424 (-0.490401) | 0.018697 / 0.534201 (-0.515504) | 0.448122 / 0.579283 (-0.131161) | 0.435044 / 0.434364 (0.000681) | 0.550065 / 0.540337 (0.009728) | 0.653547 / 1.386936 (-0.733389) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007116 / 0.011353 (-0.004237) | 0.004375 / 0.011008 (-0.006633) | 0.081793 / 0.038508 (0.043285) | 0.047980 / 0.023109 (0.024871) | 0.392185 / 0.275898 (0.116287) | 0.462263 / 0.323480 (0.138783) | 0.005574 / 0.007986 (-0.002412) | 0.003552 / 0.004328 (-0.000776) | 0.080413 / 0.004250 (0.076162) | 0.065539 / 0.037052 (0.028487) | 0.413137 / 0.258489 (0.154648) | 0.467377 / 0.293841 (0.173536) | 0.034386 / 0.128546 (-0.094160) | 0.009183 / 0.075646 (-0.066464) | 0.087542 / 0.419271 (-0.331730) | 0.053954 / 0.043533 (0.010421) | 0.385096 / 0.255139 (0.129957) | 0.404900 / 0.283200 (0.121701) | 0.025908 / 0.141683 (-0.115775) | 1.550159 / 1.452155 (0.098005) | 1.598794 / 1.492716 (0.106078) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246222 / 0.018006 (0.228216) | 0.441095 / 0.000490 (0.440605) | 0.006863 / 0.000200 (0.006663) | 0.000109 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032179 / 0.037411 (-0.005233) | 0.120112 / 0.014526 (0.105586) | 0.129326 / 0.176557 (-0.047230) | 0.184542 / 0.737135 (-0.552593) | 0.135038 / 0.296338 (-0.161300) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.459002 / 0.215209 (0.243793) | 4.580258 / 2.077655 (2.502604) | 2.296689 / 1.504120 (0.792569) | 2.104338 / 1.541195 (0.563143) | 2.182896 / 1.468490 (0.714406) | 0.546447 / 4.584777 (-4.038330) | 3.854047 / 3.745712 (0.108335) | 1.873829 / 5.269862 (-3.396032) | 1.116484 / 4.565676 (-3.449193) | 0.067158 / 0.424275 (-0.357117) | 0.012035 / 0.007607 (0.004428) | 0.556642 / 0.226044 (0.330597) | 5.574436 / 2.268929 (3.305508) | 2.828223 / 55.444624 (-52.616402) | 2.519851 / 6.876477 (-4.356626) | 2.668594 / 2.142072 (0.526521) | 0.675989 / 4.805227 (-4.129238) | 0.146075 / 6.500664 (-6.354589) | 0.067788 / 0.075469 (-0.007681) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.345958 / 1.841788 (-0.495830) | 15.672748 / 8.074308 (7.598440) | 14.937583 / 10.191392 (4.746191) | 0.163479 / 0.680424 (-0.516945) | 0.018364 / 0.534201 (-0.515837) | 0.433296 / 0.579283 (-0.145987) | 0.432463 / 0.434364 (-0.001901) | 0.512000 / 0.540337 (-0.028338) | 0.619397 / 1.386936 (-0.767539) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0832d48a07ed00b406271f4b4439e6d54ae38ebf \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010097 / 0.011353 (-0.001256) | 0.005070 / 0.011008 (-0.005939) | 0.118638 / 0.038508 (0.080130) | 0.043651 / 0.023109 (0.020542) | 0.356074 / 0.275898 (0.080176) | 0.414578 / 0.323480 (0.091098) | 0.005939 / 0.007986 (-0.002046) | 0.004927 / 0.004328 (0.000598) | 0.089545 / 0.004250 (0.085294) | 0.067533 / 0.037052 (0.030481) | 0.371550 / 0.258489 (0.113061) | 0.417808 / 0.293841 (0.123967) | 0.045186 / 0.128546 (-0.083361) | 0.015763 / 0.075646 (-0.059883) | 0.393304 / 0.419271 (-0.025967) | 0.065123 / 0.043533 (0.021591) | 0.345057 / 0.255139 (0.089918) | 0.378809 / 0.283200 (0.095610) | 0.033243 / 0.141683 (-0.108440) | 1.679956 / 1.452155 (0.227802) | 1.775456 / 1.492716 (0.282739) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229723 / 0.018006 (0.211717) | 0.554630 / 0.000490 (0.554140) | 0.008729 / 0.000200 (0.008529) | 0.000183 / 0.000054 (0.000129) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027284 / 0.037411 (-0.010128) | 0.114741 / 0.014526 (0.100215) | 0.129188 / 0.176557 (-0.047369) | 0.189270 / 0.737135 (-0.547866) | 0.126000 / 0.296338 (-0.170339) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.580417 / 0.215209 (0.365208) | 5.829337 / 2.077655 (3.751683) | 2.421191 / 1.504120 (0.917071) | 2.063673 / 1.541195 (0.522479) | 2.133427 / 1.468490 (0.664937) | 0.830964 / 4.584777 (-3.753813) | 5.107139 / 3.745712 (1.361427) | 4.599451 / 5.269862 (-0.670410) | 2.406502 / 4.565676 (-2.159175) | 0.100422 / 0.424275 (-0.323853) | 0.011850 / 0.007607 (0.004243) | 0.741881 / 0.226044 (0.515836) | 7.425689 / 2.268929 (5.156760) | 3.068948 / 55.444624 (-52.375676) | 2.496292 / 6.876477 (-4.380184) | 2.566420 / 2.142072 (0.424348) | 1.093084 / 4.805227 (-3.712144) | 0.224106 / 6.500664 (-6.276558) | 0.084549 / 0.075469 (0.009080) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.416315 / 1.841788 (-0.425473) | 16.306901 / 8.074308 (8.232593) | 19.792419 / 10.191392 (9.601027) | 0.224223 / 0.680424 (-0.456201) | 0.026385 / 0.534201 (-0.507816) | 0.463460 / 0.579283 (-0.115823) | 0.598385 / 0.434364 (0.164021) | 0.543981 / 0.540337 (0.003644) | 0.647454 / 1.386936 (-0.739482) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009470 / 0.011353 (-0.001883) | 0.004800 / 0.011008 (-0.006208) | 0.094276 / 0.038508 (0.055768) | 0.045157 / 0.023109 (0.022048) | 0.397302 / 0.275898 (0.121404) | 0.474213 / 0.323480 (0.150733) | 0.005826 / 0.007986 (-0.002160) | 0.003724 / 0.004328 (-0.000605) | 0.090060 / 0.004250 (0.085809) | 0.066671 / 0.037052 (0.029618) | 0.439560 / 0.258489 (0.181071) | 0.468598 / 0.293841 (0.174757) | 0.044549 / 0.128546 (-0.083997) | 0.014000 / 0.075646 (-0.061646) | 0.110457 / 0.419271 (-0.308815) | 0.065898 / 0.043533 (0.022365) | 0.408101 / 0.255139 (0.152962) | 0.433473 / 0.283200 (0.150273) | 0.038438 / 0.141683 (-0.103245) | 1.767781 / 1.452155 (0.315626) | 1.791575 / 1.492716 (0.298859) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230257 / 0.018006 (0.212251) | 0.492280 / 0.000490 (0.491790) | 0.005110 / 0.000200 (0.004910) | 0.000119 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028854 / 0.037411 (-0.008557) | 0.111702 / 0.014526 (0.097176) | 0.122040 / 0.176557 (-0.054517) | 0.179103 / 0.737135 (-0.558032) | 0.128869 / 0.296338 (-0.167470) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.634795 / 0.215209 (0.419586) | 6.204760 / 2.077655 (4.127105) | 2.692479 / 1.504120 (1.188359) | 2.324260 / 1.541195 (0.783066) | 2.380640 / 1.468490 (0.912149) | 0.887827 / 4.584777 (-3.696950) | 5.251648 / 3.745712 (1.505935) | 2.632767 / 5.269862 (-2.637095) | 1.745721 / 4.565676 (-2.819955) | 0.108364 / 0.424275 (-0.315911) | 0.013409 / 0.007607 (0.005802) | 0.783427 / 0.226044 (0.557383) | 7.765144 / 2.268929 (5.496216) | 3.340686 / 55.444624 (-52.103938) | 2.715340 / 6.876477 (-4.161137) | 2.768604 / 2.142072 (0.626531) | 1.119746 / 4.805227 (-3.685481) | 0.210804 / 6.500664 (-6.289860) | 0.072600 / 0.075469 (-0.002869) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.517334 / 1.841788 (-0.324454) | 17.046837 / 8.074308 (8.972529) | 19.371090 / 10.191392 (9.179698) | 0.194275 / 0.680424 (-0.486148) | 0.026712 / 0.534201 (-0.507488) | 0.462731 / 0.579283 (-0.116552) | 0.568958 / 0.434364 (0.134595) | 0.555707 / 0.540337 (0.015370) | 0.663654 / 1.386936 (-0.723283) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5d20476b1d4c8e11e0ffafc1570cbf4bd19011cf \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006423 / 0.011353 (-0.004930) | 0.003882 / 0.011008 (-0.007126) | 0.082976 / 0.038508 (0.044468) | 0.071281 / 0.023109 (0.048171) | 0.311367 / 0.275898 (0.035469) | 0.348228 / 0.323480 (0.024748) | 0.005315 / 0.007986 (-0.002671) | 0.003326 / 0.004328 (-0.001003) | 0.064641 / 0.004250 (0.060391) | 0.056134 / 0.037052 (0.019081) | 0.314071 / 0.258489 (0.055582) | 0.360534 / 0.293841 (0.066693) | 0.030642 / 0.128546 (-0.097904) | 0.008301 / 0.075646 (-0.067345) | 0.285820 / 0.419271 (-0.133451) | 0.069241 / 0.043533 (0.025708) | 0.313995 / 0.255139 (0.058856) | 0.336656 / 0.283200 (0.053457) | 0.031686 / 0.141683 (-0.109997) | 1.467627 / 1.452155 (0.015472) | 1.536493 / 1.492716 (0.043777) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196518 / 0.018006 (0.178512) | 0.458235 / 0.000490 (0.457745) | 0.005599 / 0.000200 (0.005399) | 0.000088 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027371 / 0.037411 (-0.010040) | 0.080986 / 0.014526 (0.066460) | 0.093296 / 0.176557 (-0.083260) | 0.150592 / 0.737135 (-0.586543) | 0.094150 / 0.296338 (-0.202188) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.379412 / 0.215209 (0.164202) | 3.797927 / 2.077655 (1.720272) | 1.830654 / 1.504120 (0.326534) | 1.669569 / 1.541195 (0.128374) | 1.746738 / 1.468490 (0.278248) | 0.479536 / 4.584777 (-4.105241) | 3.592867 / 3.745712 (-0.152845) | 5.468098 / 5.269862 (0.198237) | 3.268013 / 4.565676 (-1.297663) | 0.056635 / 0.424275 (-0.367640) | 0.007224 / 0.007607 (-0.000383) | 0.456681 / 0.226044 (0.230636) | 4.566736 / 2.268929 (2.297807) | 2.362831 / 55.444624 (-53.081793) | 1.965141 / 6.876477 (-4.911336) | 2.156905 / 2.142072 (0.014833) | 0.572543 / 4.805227 (-4.232684) | 0.132203 / 6.500664 (-6.368461) | 0.059254 / 0.075469 (-0.016215) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256134 / 1.841788 (-0.585654) | 19.905438 / 8.074308 (11.831130) | 14.179556 / 10.191392 (3.988164) | 0.168043 / 0.680424 (-0.512381) | 0.018215 / 0.534201 (-0.515986) | 0.392740 / 0.579283 (-0.186543) | 0.398397 / 0.434364 (-0.035967) | 0.463806 / 0.540337 (-0.076531) | 0.616248 / 1.386936 (-0.770688) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006564 / 0.011353 (-0.004789) | 0.003923 / 0.011008 (-0.007085) | 0.063929 / 0.038508 (0.025421) | 0.073780 / 0.023109 (0.050671) | 0.360242 / 0.275898 (0.084344) | 0.395078 / 0.323480 (0.071598) | 0.005265 / 0.007986 (-0.002720) | 0.003229 / 0.004328 (-0.001100) | 0.064094 / 0.004250 (0.059843) | 0.057468 / 0.037052 (0.020416) | 0.369530 / 0.258489 (0.111041) | 0.411159 / 0.293841 (0.117318) | 0.031278 / 0.128546 (-0.097268) | 0.008424 / 0.075646 (-0.067222) | 0.070411 / 0.419271 (-0.348860) | 0.048714 / 0.043533 (0.005181) | 0.361280 / 0.255139 (0.106141) | 0.382468 / 0.283200 (0.099269) | 0.023059 / 0.141683 (-0.118624) | 1.452369 / 1.452155 (0.000215) | 1.519192 / 1.492716 (0.026475) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223745 / 0.018006 (0.205739) | 0.442086 / 0.000490 (0.441596) | 0.000379 / 0.000200 (0.000179) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030919 / 0.037411 (-0.006493) | 0.088483 / 0.014526 (0.073958) | 0.101165 / 0.176557 (-0.075391) | 0.154332 / 0.737135 (-0.582804) | 0.103030 / 0.296338 (-0.193309) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414520 / 0.215209 (0.199311) | 4.126754 / 2.077655 (2.049099) | 2.142677 / 1.504120 (0.638557) | 1.995300 / 1.541195 (0.454106) | 2.101678 / 1.468490 (0.633188) | 0.481099 / 4.584777 (-4.103678) | 3.562813 / 3.745712 (-0.182900) | 3.392463 / 5.269862 (-1.877399) | 1.983943 / 4.565676 (-2.581734) | 0.056594 / 0.424275 (-0.367681) | 0.007216 / 0.007607 (-0.000391) | 0.495085 / 0.226044 (0.269041) | 4.955640 / 2.268929 (2.686712) | 2.629434 / 55.444624 (-52.815191) | 2.269577 / 6.876477 (-4.606900) | 2.357708 / 2.142072 (0.215635) | 0.612370 / 4.805227 (-4.192857) | 0.131169 / 6.500664 (-6.369495) | 0.061029 / 0.075469 (-0.014440) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.339438 / 1.841788 (-0.502350) | 19.757611 / 8.074308 (11.683303) | 14.246254 / 10.191392 (4.054862) | 0.170750 / 0.680424 (-0.509674) | 0.018192 / 0.534201 (-0.516009) | 0.395693 / 0.579283 (-0.183590) | 0.411003 / 0.434364 (-0.023361) | 0.478531 / 0.540337 (-0.061806) | 0.650291 / 1.386936 (-0.736645) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3e34d06d746688dd5d26e4c85517b7e1a2f361ca \"CML watermark\")\n"
] | 2023-07-03T18:29:14 | 2023-07-06T17:04:11 | 2023-07-06T16:55:25 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6004",
"html_url": "https://github.com/huggingface/datasets/pull/6004",
"diff_url": "https://github.com/huggingface/datasets/pull/6004.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6004.patch",
"merged_at": "2023-07-06T16:55:25"
} | Contains the following improvements:
* fixes a "share dataset" link in README and modifies the "hosting" part in the disclaimer section
* updates `Makefile` to also run the style checks on `utils` and `setup.py`
* deletes a test for GH-hosted datasets (no longer supported)
* deletes `convert_dataset.sh` (outdated)
* aligns `utils/release.py` with `transformers` (the current version is outdated) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6004/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6004/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6040 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6040/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6040/comments | https://api.github.com/repos/huggingface/datasets/issues/6040/events | https://github.com/huggingface/datasets/pull/6040 | 1,807,410,238 | PR_kwDODunzps5VptVf | 6,040 | Fix legacy_dataset_infos | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006087 / 0.011353 (-0.005265) | 0.003567 / 0.011008 (-0.007442) | 0.079668 / 0.038508 (0.041160) | 0.063647 / 0.023109 (0.040538) | 0.323082 / 0.275898 (0.047184) | 0.348679 / 0.323480 (0.025199) | 0.004726 / 0.007986 (-0.003259) | 0.002955 / 0.004328 (-0.001373) | 0.062724 / 0.004250 (0.058473) | 0.050194 / 0.037052 (0.013142) | 0.321407 / 0.258489 (0.062918) | 0.355053 / 0.293841 (0.061212) | 0.026992 / 0.128546 (-0.101554) | 0.007994 / 0.075646 (-0.067653) | 0.260562 / 0.419271 (-0.158710) | 0.050933 / 0.043533 (0.007400) | 0.316644 / 0.255139 (0.061505) | 0.336759 / 0.283200 (0.053560) | 0.022581 / 0.141683 (-0.119101) | 1.481259 / 1.452155 (0.029104) | 1.535191 / 1.492716 (0.042475) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194111 / 0.018006 (0.176104) | 0.448146 / 0.000490 (0.447656) | 0.000321 / 0.000200 (0.000121) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023908 / 0.037411 (-0.013503) | 0.073316 / 0.014526 (0.058790) | 0.085588 / 0.176557 (-0.090968) | 0.145377 / 0.737135 (-0.591759) | 0.084788 / 0.296338 (-0.211550) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439327 / 0.215209 (0.224118) | 4.384833 / 2.077655 (2.307179) | 2.322943 / 1.504120 (0.818823) | 2.147737 / 1.541195 (0.606542) | 2.226725 / 1.468490 (0.758235) | 0.502957 / 4.584777 (-4.081820) | 3.098106 / 3.745712 (-0.647606) | 4.194642 / 5.269862 (-1.075220) | 2.598820 / 4.565676 (-1.966856) | 0.057942 / 0.424275 (-0.366333) | 0.006857 / 0.007607 (-0.000750) | 0.511517 / 0.226044 (0.285472) | 5.121797 / 2.268929 (2.852868) | 2.756506 / 55.444624 (-52.688118) | 2.424602 / 6.876477 (-4.451875) | 2.608342 / 2.142072 (0.466270) | 0.589498 / 4.805227 (-4.215729) | 0.126065 / 6.500664 (-6.374600) | 0.061456 / 0.075469 (-0.014013) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239928 / 1.841788 (-0.601860) | 18.423532 / 8.074308 (10.349224) | 13.935148 / 10.191392 (3.743756) | 0.129913 / 0.680424 (-0.550511) | 0.016744 / 0.534201 (-0.517457) | 0.333468 / 0.579283 (-0.245815) | 0.359615 / 0.434364 (-0.074749) | 0.383678 / 0.540337 (-0.156659) | 0.533007 / 1.386936 (-0.853929) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005980 / 0.011353 (-0.005373) | 0.003640 / 0.011008 (-0.007368) | 0.062500 / 0.038508 (0.023992) | 0.059843 / 0.023109 (0.036733) | 0.360993 / 0.275898 (0.085095) | 0.401981 / 0.323480 (0.078501) | 0.005495 / 0.007986 (-0.002490) | 0.002862 / 0.004328 (-0.001467) | 0.062491 / 0.004250 (0.058240) | 0.050778 / 0.037052 (0.013726) | 0.371007 / 0.258489 (0.112518) | 0.405154 / 0.293841 (0.111313) | 0.027390 / 0.128546 (-0.101156) | 0.008042 / 0.075646 (-0.067604) | 0.067590 / 0.419271 (-0.351681) | 0.042485 / 0.043533 (-0.001048) | 0.361305 / 0.255139 (0.106166) | 0.388669 / 0.283200 (0.105469) | 0.024143 / 0.141683 (-0.117540) | 1.451508 / 1.452155 (-0.000647) | 1.490431 / 1.492716 (-0.002285) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.175976 / 0.018006 (0.157970) | 0.428923 / 0.000490 (0.428434) | 0.002099 / 0.000200 (0.001899) | 0.000068 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026346 / 0.037411 (-0.011065) | 0.078084 / 0.014526 (0.063558) | 0.087287 / 0.176557 (-0.089269) | 0.144179 / 0.737135 (-0.592957) | 0.088286 / 0.296338 (-0.208053) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450436 / 0.215209 (0.235227) | 4.488801 / 2.077655 (2.411146) | 2.479303 / 1.504120 (0.975184) | 2.305396 / 1.541195 (0.764201) | 2.370370 / 1.468490 (0.901879) | 0.502355 / 4.584777 (-4.082422) | 3.094733 / 3.745712 (-0.650979) | 4.062367 / 5.269862 (-1.207495) | 2.587506 / 4.565676 (-1.978170) | 0.058245 / 0.424275 (-0.366030) | 0.006487 / 0.007607 (-0.001120) | 0.524147 / 0.226044 (0.298102) | 5.236876 / 2.268929 (2.967947) | 2.897134 / 55.444624 (-52.547490) | 2.574631 / 6.876477 (-4.301846) | 2.620307 / 2.142072 (0.478235) | 0.586963 / 4.805227 (-4.218265) | 0.125761 / 6.500664 (-6.374903) | 0.062264 / 0.075469 (-0.013205) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.299668 / 1.841788 (-0.542120) | 19.004441 / 8.074308 (10.930133) | 13.841867 / 10.191392 (3.650475) | 0.159674 / 0.680424 (-0.520750) | 0.016699 / 0.534201 (-0.517502) | 0.331868 / 0.579283 (-0.247415) | 0.344604 / 0.434364 (-0.089760) | 0.379391 / 0.540337 (-0.160947) | 0.514790 / 1.386936 (-0.872146) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#47a006a90e9711b33db70b0ef2d2cefaadfa2179 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005792 / 0.011353 (-0.005561) | 0.003519 / 0.011008 (-0.007489) | 0.079133 / 0.038508 (0.040625) | 0.057858 / 0.023109 (0.034749) | 0.314206 / 0.275898 (0.038308) | 0.346939 / 0.323480 (0.023459) | 0.004583 / 0.007986 (-0.003403) | 0.002824 / 0.004328 (-0.001504) | 0.061652 / 0.004250 (0.057402) | 0.048520 / 0.037052 (0.011467) | 0.318018 / 0.258489 (0.059529) | 0.350350 / 0.293841 (0.056509) | 0.026284 / 0.128546 (-0.102262) | 0.007827 / 0.075646 (-0.067819) | 0.259624 / 0.419271 (-0.159647) | 0.052318 / 0.043533 (0.008786) | 0.317400 / 0.255139 (0.062261) | 0.340530 / 0.283200 (0.057331) | 0.025181 / 0.141683 (-0.116501) | 1.459208 / 1.452155 (0.007053) | 1.529158 / 1.492716 (0.036442) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.169692 / 0.018006 (0.151686) | 0.432638 / 0.000490 (0.432148) | 0.003675 / 0.000200 (0.003475) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022956 / 0.037411 (-0.014456) | 0.071860 / 0.014526 (0.057334) | 0.082159 / 0.176557 (-0.094398) | 0.142560 / 0.737135 (-0.594576) | 0.082333 / 0.296338 (-0.214006) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397923 / 0.215209 (0.182714) | 3.958757 / 2.077655 (1.881102) | 1.925837 / 1.504120 (0.421717) | 1.758114 / 1.541195 (0.216919) | 1.808845 / 1.468490 (0.340354) | 0.501116 / 4.584777 (-4.083661) | 3.007739 / 3.745712 (-0.737973) | 3.295755 / 5.269862 (-1.974106) | 2.123843 / 4.565676 (-2.441833) | 0.057174 / 0.424275 (-0.367101) | 0.006426 / 0.007607 (-0.001182) | 0.468196 / 0.226044 (0.242152) | 4.677392 / 2.268929 (2.408464) | 2.334179 / 55.444624 (-53.110446) | 1.989283 / 6.876477 (-4.887194) | 2.140091 / 2.142072 (-0.001981) | 0.590700 / 4.805227 (-4.214527) | 0.124066 / 6.500664 (-6.376598) | 0.059931 / 0.075469 (-0.015538) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224547 / 1.841788 (-0.617240) | 17.866979 / 8.074308 (9.792671) | 13.142009 / 10.191392 (2.950617) | 0.147081 / 0.680424 (-0.533343) | 0.016777 / 0.534201 (-0.517424) | 0.327766 / 0.579283 (-0.251517) | 0.343988 / 0.434364 (-0.090376) | 0.383268 / 0.540337 (-0.157070) | 0.528109 / 1.386936 (-0.858827) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006145 / 0.011353 (-0.005208) | 0.003634 / 0.011008 (-0.007374) | 0.062887 / 0.038508 (0.024379) | 0.062659 / 0.023109 (0.039550) | 0.362962 / 0.275898 (0.087064) | 0.405149 / 0.323480 (0.081669) | 0.004821 / 0.007986 (-0.003164) | 0.002888 / 0.004328 (-0.001441) | 0.062982 / 0.004250 (0.058732) | 0.051929 / 0.037052 (0.014877) | 0.366825 / 0.258489 (0.108336) | 0.409830 / 0.293841 (0.115989) | 0.027263 / 0.128546 (-0.101283) | 0.007972 / 0.075646 (-0.067674) | 0.067413 / 0.419271 (-0.351858) | 0.044233 / 0.043533 (0.000700) | 0.365087 / 0.255139 (0.109948) | 0.393845 / 0.283200 (0.110646) | 0.027740 / 0.141683 (-0.113943) | 1.497896 / 1.452155 (0.045741) | 1.549419 / 1.492716 (0.056703) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225510 / 0.018006 (0.207503) | 0.417054 / 0.000490 (0.416564) | 0.002184 / 0.000200 (0.001984) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025503 / 0.037411 (-0.011908) | 0.076164 / 0.014526 (0.061638) | 0.086110 / 0.176557 (-0.090446) | 0.140387 / 0.737135 (-0.596748) | 0.086956 / 0.296338 (-0.209382) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.469667 / 0.215209 (0.254458) | 4.689915 / 2.077655 (2.612261) | 2.685000 / 1.504120 (1.180880) | 2.516160 / 1.541195 (0.974965) | 2.531733 / 1.468490 (1.063243) | 0.501675 / 4.584777 (-4.083102) | 3.000579 / 3.745712 (-0.745133) | 2.853376 / 5.269862 (-2.416486) | 1.810677 / 4.565676 (-2.754999) | 0.057632 / 0.424275 (-0.366643) | 0.006390 / 0.007607 (-0.001217) | 0.543986 / 0.226044 (0.317941) | 5.432837 / 2.268929 (3.163908) | 3.138797 / 55.444624 (-52.305827) | 2.813141 / 6.876477 (-4.063336) | 2.803681 / 2.142072 (0.661609) | 0.588736 / 4.805227 (-4.216491) | 0.125696 / 6.500664 (-6.374968) | 0.062492 / 0.075469 (-0.012977) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.337163 / 1.841788 (-0.504624) | 18.611715 / 8.074308 (10.537407) | 13.953016 / 10.191392 (3.761624) | 0.154670 / 0.680424 (-0.525754) | 0.016523 / 0.534201 (-0.517678) | 0.333898 / 0.579283 (-0.245385) | 0.336520 / 0.434364 (-0.097844) | 0.389032 / 0.540337 (-0.151305) | 0.529202 / 1.386936 (-0.857734) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#01d4b3330f2cc243a3f3b0cd61ec5558466c40fd \"CML watermark\")\n"
] | 2023-07-17T09:56:21 | 2023-07-17T10:24:34 | 2023-07-17T10:16:03 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6040",
"html_url": "https://github.com/huggingface/datasets/pull/6040",
"diff_url": "https://github.com/huggingface/datasets/pull/6040.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6040.patch",
"merged_at": "2023-07-17T10:16:03"
} | was causing transformers CI to fail
https://circleci.com/gh/huggingface/transformers/855105 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6040/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6040/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5884 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5884/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5884/comments | https://api.github.com/repos/huggingface/datasets/issues/5884/events | https://github.com/huggingface/datasets/issues/5884 | 1,719,548,172 | I_kwDODunzps5mfjkM | 5,884 | `Dataset.to_tf_dataset` fails when strings cannot be encoded as `np.bytes_` | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"May eventually be solved in #5883 ",
"#self-assign"
] | 2023-05-22T12:03:06 | 2023-06-09T16:04:56 | 2023-06-09T16:04:55 | CONTRIBUTOR | null | null | null | ### Describe the bug
When loading any dataset that contains a column with strings that are not ASCII-compatible, looping over those records raises the following exception e.g. for `é` character `UnicodeEncodeError: 'ascii' codec can't encode character '\xe9' in position 0: ordinal not in range(128)`.
### Steps to reproduce the bug
Running the following script will eventually fail, when reaching to the batch that contains non-ASCII compatible strings.
```python
from datasets import load_dataset
ds = load_dataset("imdb", split="train")
tfds = ds.to_tf_dataset(batch_size=16)
for batch in tfds:
print(batch)
>>> UnicodeEncodeError: 'ascii' codec can't encode character '\xe9' in position 0: ordinal not in range(128)
```
### Expected behavior
The following script to run properly, making sure that the strings are either `numpy.unicode_` or `numpy.string` instead of `numpy.bytes_` since some characters are not ASCII compatible and that would lead to an issue when applying the `map`.
```python
from datasets import load_dataset
ds = load_dataset("imdb", split="train")
tfds = ds.to_tf_dataset(batch_size=16)
for batch in tfds:
print(batch)
```
### Environment info
- `datasets` version: 2.12.1.dev0
- Platform: macOS-13.3.1-arm64-arm-64bit
- Python version: 3.10.11
- Huggingface_hub version: 0.14.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5884/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5884/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6038 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6038/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6038/comments | https://api.github.com/repos/huggingface/datasets/issues/6038/events | https://github.com/huggingface/datasets/issues/6038 | 1,805,960,244 | I_kwDODunzps5rpMQ0 | 6,038 | File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 992, in _download_and_prepare if str(split_generator.split_info.name).lower() == "all": AttributeError: 'str' object has no attribute 'split_info'. Did you mean: 'splitlines'? | {
"login": "BaiMeiyingxue",
"id": 53547009,
"node_id": "MDQ6VXNlcjUzNTQ3MDA5",
"avatar_url": "https://avatars.githubusercontent.com/u/53547009?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/BaiMeiyingxue",
"html_url": "https://github.com/BaiMeiyingxue",
"followers_url": "https://api.github.com/users/BaiMeiyingxue/followers",
"following_url": "https://api.github.com/users/BaiMeiyingxue/following{/other_user}",
"gists_url": "https://api.github.com/users/BaiMeiyingxue/gists{/gist_id}",
"starred_url": "https://api.github.com/users/BaiMeiyingxue/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/BaiMeiyingxue/subscriptions",
"organizations_url": "https://api.github.com/users/BaiMeiyingxue/orgs",
"repos_url": "https://api.github.com/users/BaiMeiyingxue/repos",
"events_url": "https://api.github.com/users/BaiMeiyingxue/events{/privacy}",
"received_events_url": "https://api.github.com/users/BaiMeiyingxue/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Instead of writing the loading script, you can use the built-in loader to [load JSON files](https://huggingface.co/docs/datasets/loading#json):\r\n```python\r\nfrom datasets import load_dataset\r\nds = load_dataset(\"json\", data_files={\"train\": os.path.join(data_dir[\"train\"]), \"dev\": os.path.join(data_dir[\"dev\"])})\r\n```"
] | 2023-07-15T07:58:08 | 2023-07-24T11:54:15 | 2023-07-24T11:54:15 | NONE | null | null | null | Hi, I use the code below to load local file
```
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
# urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(_URLs)
print(data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir["train"]),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir["dev"]),
"split": "dev",
},
),
]
```
and error occured
```
Traceback (most recent call last):
File "/home/zhizhou/data1/zhanghao/huggingface/FineTuning_Transformer/load_local_dataset.py", line 2, in <module>
dataset = load_dataset("./QA_script.py",data_files='/home/zhizhou/.cache/huggingface/datasets/conversatiom_corps/part_file.json')
File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/load.py", line 1809, in load_dataset
builder_instance.download_and_prepare(
File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 909, in download_and_prepare
self._download_and_prepare(
File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 1670, in _download_and_prepare
super()._download_and_prepare(
File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 992, in _download_and_prepare
if str(split_generator.split_info.name).lower() == "all":
AttributeError: 'str' object has no attribute 'split_info'. Did you mean: 'splitlines'?
```
Could you help me? | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6038/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6038/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6058 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6058/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6058/comments | https://api.github.com/repos/huggingface/datasets/issues/6058/events | https://github.com/huggingface/datasets/issues/6058 | 1,815,131,397 | I_kwDODunzps5sMLUF | 6,058 | laion-coco download error | {
"login": "yangyijune",
"id": 54424110,
"node_id": "MDQ6VXNlcjU0NDI0MTEw",
"avatar_url": "https://avatars.githubusercontent.com/u/54424110?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yangyijune",
"html_url": "https://github.com/yangyijune",
"followers_url": "https://api.github.com/users/yangyijune/followers",
"following_url": "https://api.github.com/users/yangyijune/following{/other_user}",
"gists_url": "https://api.github.com/users/yangyijune/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yangyijune/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yangyijune/subscriptions",
"organizations_url": "https://api.github.com/users/yangyijune/orgs",
"repos_url": "https://api.github.com/users/yangyijune/repos",
"events_url": "https://api.github.com/users/yangyijune/events{/privacy}",
"received_events_url": "https://api.github.com/users/yangyijune/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"This can also mean one of the files was not downloaded correctly.\r\n\r\nWe log an erroneous file's name before raising the reader's error, so this is how you can find the problematic file. Then, you should delete it and call `load_dataset` again.\r\n\r\n(I checked all the uploaded files, and they seem to be valid Parquet files, so I don't think this is a bug on their side)\r\n"
] | 2023-07-21T04:24:15 | 2023-07-22T01:42:06 | 2023-07-22T01:42:06 | NONE | null | null | null | ### Describe the bug
The full trace:
```
/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/load.py:1744: FutureWarning: 'ignore_verifications' was de
precated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.
You can remove this warning by passing 'verification_mode=no_checks' instead.
warnings.warn(
Downloading and preparing dataset parquet/laion--laion-coco to /home/bian/.cache/huggingface/datasets/laion___parquet/laion--
laion-coco-cb4205d7f1863066/0.0.0/bcacc8bdaa0614a5d73d0344c813275e590940c6ea8bc569da462847103a1afd...
Downloading data: 100%|█| 1.89G/1.89G [04:57<00:00,
Downloading data files: 100%|█| 1/1 [04:59<00:00, 2
Extracting data files: 100%|█| 1/1 [00:00<00:00, 13
Generating train split: 0 examples [00:00, ? examples/s]<_io.BufferedReader
name='/home/bian/.cache/huggingface/datasets/downlo
ads/26d7a016d25bbd9443115cfa3092136e8eb2f1f5bcd4154
0cb9234572927f04c'>
Traceback (most recent call last):
File "/home/bian/data/ZOC/download_laion_coco.py", line 4, in <module>
dataset = load_dataset("laion/laion-coco", ignore_verifications=True)
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset
builder_instance.download_and_prepare(
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare
self._download_and_prepare(
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/builder.py", line 986, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/builder.py", line 1748, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/builder.py", line 1842, in _prepare_split_single
generator = self._generate_tables(**gen_kwargs)
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py", line 67, in
_generate_tables
parquet_file = pq.ParquetFile(f)
File "/home/bian/anaconda3/envs/sd/lib/python3.10/site-packages/pyarrow/parquet/core.py", line 323, in __init__
self.reader.open(
File "pyarrow/_parquet.pyx", line 1227, in pyarrow._parquet.ParquetReader.open
File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file
.
```
I have carefully followed the instructions in #5264 but still get the same error.
Other helpful information:
```
ds = load_dataset("parquet", data_files=
...: "https://huggingface.co/datasets/laion/l
...: aion-coco/resolve/d22869de3ccd39dfec1507
...: f7ded32e4a518dad24/part-00000-2256f782-1
...: 26f-4dc6-b9c6-e6757637749d-c000.snappy.p
...: arquet")
Found cached dataset parquet (/home/bian/.cache/huggingface/datasets/parquet/default-a02eea00aeb08b0e/0.0.0/bb8ccf89d9ee38581ff5e51506d721a9b37f14df8090dc9b2d8fb4a40957833f)
100%|██████████████| 1/1 [00:00<00:00, 4.55it/s]
```
### Steps to reproduce the bug
```
from datasets import load_dataset
dataset = load_dataset("laion/laion-coco", ignore_verifications=True/False)
```
### Expected behavior
Properly load Laion-coco dataset
### Environment info
datasets==2.11.0 torch==1.12.1 python 3.10 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6058/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6058/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5898 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5898/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5898/comments | https://api.github.com/repos/huggingface/datasets/issues/5898/events | https://github.com/huggingface/datasets/issues/5898 | 1,726,190,481 | I_kwDODunzps5m45OR | 5,898 | Loading The flores data set for specific language | {
"login": "106AbdulBasit",
"id": 36159918,
"node_id": "MDQ6VXNlcjM2MTU5OTE4",
"avatar_url": "https://avatars.githubusercontent.com/u/36159918?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/106AbdulBasit",
"html_url": "https://github.com/106AbdulBasit",
"followers_url": "https://api.github.com/users/106AbdulBasit/followers",
"following_url": "https://api.github.com/users/106AbdulBasit/following{/other_user}",
"gists_url": "https://api.github.com/users/106AbdulBasit/gists{/gist_id}",
"starred_url": "https://api.github.com/users/106AbdulBasit/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/106AbdulBasit/subscriptions",
"organizations_url": "https://api.github.com/users/106AbdulBasit/orgs",
"repos_url": "https://api.github.com/users/106AbdulBasit/repos",
"events_url": "https://api.github.com/users/106AbdulBasit/events{/privacy}",
"received_events_url": "https://api.github.com/users/106AbdulBasit/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"got that the syntax is like this\r\n\r\ndataset = load_dataset(\"facebook/flores\", \"ace_Arab\")"
] | 2023-05-25T17:08:55 | 2023-05-25T17:21:38 | 2023-05-25T17:21:37 | NONE | null | null | null | ### Describe the bug
I am trying to load the Flores data set
the code which is given is
```
from datasets import load_dataset
dataset = load_dataset("facebook/flores")
```
This gives the error of config name
""ValueError: Config name is missing"
Now if I add some config it gives me the some error
"HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: 'facebook/flores, 'ace_Arab''.
"
How I can load the data of the specific language ?
Couldn't find any tutorial
any one can help me out?
### Steps to reproduce the bug
step one load the data set
`from datasets import load_dataset
dataset = load_dataset("facebook/flores")`
it gives the error of config
once config is given
it gives the error of
"HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: 'facebook/flores, 'ace_Arab''.
"
### Expected behavior
Data set should be loaded but I am receiving error
### Environment info
Datasets , python , | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5898/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5898/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6016 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6016/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6016/comments | https://api.github.com/repos/huggingface/datasets/issues/6016/events | https://github.com/huggingface/datasets/pull/6016 | 1,798,968,033 | PR_kwDODunzps5VNEvn | 6,016 | Dataset string representation enhancement | {
"login": "Ganryuu",
"id": 63643948,
"node_id": "MDQ6VXNlcjYzNjQzOTQ4",
"avatar_url": "https://avatars.githubusercontent.com/u/63643948?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Ganryuu",
"html_url": "https://github.com/Ganryuu",
"followers_url": "https://api.github.com/users/Ganryuu/followers",
"following_url": "https://api.github.com/users/Ganryuu/following{/other_user}",
"gists_url": "https://api.github.com/users/Ganryuu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Ganryuu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Ganryuu/subscriptions",
"organizations_url": "https://api.github.com/users/Ganryuu/orgs",
"repos_url": "https://api.github.com/users/Ganryuu/repos",
"events_url": "https://api.github.com/users/Ganryuu/events{/privacy}",
"received_events_url": "https://api.github.com/users/Ganryuu/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6016). All of your documentation changes will be reflected on that endpoint.",
"It we could have something similar to Polars, that would be great.\r\n\r\nThis is what Polars outputs: \r\n* `__repr__`/`__str__` :\r\n```\r\nshape: (67_349, 3)\r\n┌───────┬───────────────────────────────────┬───────┐\r\n│ idx ┆ sentence ┆ label │\r\n│ --- ┆ --- ┆ --- │\r\n│ i32 ┆ str ┆ i64 │\r\n╞═══════╪═══════════════════════════════════╪═══════╡\r\n│ 0 ┆ hide new secretions from the par… ┆ 0 │\r\n│ 1 ┆ contains no wit , only labored g… ┆ 0 │\r\n│ 2 ┆ that loves its characters and co… ┆ 1 │\r\n│ 3 ┆ remains utterly satisfied to rem… ┆ 0 │\r\n│ … ┆ … ┆ … │\r\n│ 67345 ┆ anguish , anger and frustration ┆ 0 │\r\n│ 67346 ┆ at achieving the modest , crowd-… ┆ 1 │\r\n│ 67347 ┆ a patient viewer ┆ 1 │\r\n│ 67348 ┆ this new jangle of noise , mayhe… ┆ 0 │\r\n└───────┴───────────────────────────────────┴───────┘\r\n```\r\n\r\n* `_repr_html_`:\r\n<img width=\"251\" alt=\"Screenshot 2023-07-12 at 18 25 58\" src=\"https://github.com/huggingface/datasets/assets/47462742/5d04519d-f302-4411-9fbc-7445bdf53b23\">\r\n\r\n"
] | 2023-07-11T13:38:25 | 2023-07-16T10:26:18 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6016",
"html_url": "https://github.com/huggingface/datasets/pull/6016",
"diff_url": "https://github.com/huggingface/datasets/pull/6016.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6016.patch",
"merged_at": null
} | my attempt at #6010
not sure if this is the right way to go about it, I will wait for your feedback | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6016/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6016/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6067 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6067/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6067/comments | https://api.github.com/repos/huggingface/datasets/issues/6067/events | https://github.com/huggingface/datasets/pull/6067 | 1,819,919,025 | PR_kwDODunzps5WT7EQ | 6,067 | fix tqdm lock | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006578 / 0.011353 (-0.004775) | 0.003953 / 0.011008 (-0.007055) | 0.084417 / 0.038508 (0.045908) | 0.076729 / 0.023109 (0.053620) | 0.315369 / 0.275898 (0.039471) | 0.347012 / 0.323480 (0.023533) | 0.005299 / 0.007986 (-0.002686) | 0.003321 / 0.004328 (-0.001007) | 0.063954 / 0.004250 (0.059704) | 0.055810 / 0.037052 (0.018758) | 0.317651 / 0.258489 (0.059162) | 0.352603 / 0.293841 (0.058762) | 0.031355 / 0.128546 (-0.097192) | 0.008493 / 0.075646 (-0.067153) | 0.287295 / 0.419271 (-0.131977) | 0.052716 / 0.043533 (0.009183) | 0.316410 / 0.255139 (0.061271) | 0.328893 / 0.283200 (0.045693) | 0.024005 / 0.141683 (-0.117678) | 1.520333 / 1.452155 (0.068178) | 1.601268 / 1.492716 (0.108552) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205144 / 0.018006 (0.187138) | 0.459160 / 0.000490 (0.458670) | 0.000321 / 0.000200 (0.000121) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027503 / 0.037411 (-0.009908) | 0.081476 / 0.014526 (0.066950) | 0.096759 / 0.176557 (-0.079798) | 0.157888 / 0.737135 (-0.579247) | 0.094592 / 0.296338 (-0.201746) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384762 / 0.215209 (0.169553) | 3.843503 / 2.077655 (1.765849) | 1.921685 / 1.504120 (0.417565) | 1.752441 / 1.541195 (0.211246) | 1.822105 / 1.468490 (0.353615) | 0.480243 / 4.584777 (-4.104534) | 3.577220 / 3.745712 (-0.168492) | 5.047560 / 5.269862 (-0.222302) | 2.988008 / 4.565676 (-1.577669) | 0.056430 / 0.424275 (-0.367845) | 0.007180 / 0.007607 (-0.000427) | 0.458113 / 0.226044 (0.232069) | 4.584096 / 2.268929 (2.315168) | 2.395307 / 55.444624 (-53.049317) | 2.080530 / 6.876477 (-4.795947) | 2.239000 / 2.142072 (0.096927) | 0.575822 / 4.805227 (-4.229405) | 0.133303 / 6.500664 (-6.367361) | 0.059449 / 0.075469 (-0.016020) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256496 / 1.841788 (-0.585291) | 19.651614 / 8.074308 (11.577306) | 14.232480 / 10.191392 (4.041088) | 0.146461 / 0.680424 (-0.533963) | 0.018632 / 0.534201 (-0.515569) | 0.399844 / 0.579283 (-0.179439) | 0.411225 / 0.434364 (-0.023139) | 0.458203 / 0.540337 (-0.082135) | 0.669916 / 1.386936 (-0.717020) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006463 / 0.011353 (-0.004890) | 0.003898 / 0.011008 (-0.007110) | 0.064037 / 0.038508 (0.025529) | 0.071982 / 0.023109 (0.048873) | 0.361936 / 0.275898 (0.086038) | 0.393165 / 0.323480 (0.069685) | 0.005207 / 0.007986 (-0.002779) | 0.003231 / 0.004328 (-0.001098) | 0.064318 / 0.004250 (0.060068) | 0.055776 / 0.037052 (0.018724) | 0.383087 / 0.258489 (0.124598) | 0.402428 / 0.293841 (0.108587) | 0.031587 / 0.128546 (-0.096959) | 0.008527 / 0.075646 (-0.067119) | 0.070495 / 0.419271 (-0.348777) | 0.048806 / 0.043533 (0.005273) | 0.369932 / 0.255139 (0.114793) | 0.385268 / 0.283200 (0.102068) | 0.023183 / 0.141683 (-0.118500) | 1.491175 / 1.452155 (0.039020) | 1.534191 / 1.492716 (0.041475) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224526 / 0.018006 (0.206520) | 0.445460 / 0.000490 (0.444970) | 0.003612 / 0.000200 (0.003412) | 0.000089 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029829 / 0.037411 (-0.007583) | 0.087951 / 0.014526 (0.073425) | 0.100069 / 0.176557 (-0.076487) | 0.154944 / 0.737135 (-0.582192) | 0.101271 / 0.296338 (-0.195067) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412385 / 0.215209 (0.197175) | 4.108038 / 2.077655 (2.030384) | 2.163578 / 1.504120 (0.659459) | 2.031934 / 1.541195 (0.490740) | 2.155857 / 1.468490 (0.687367) | 0.481132 / 4.584777 (-4.103645) | 3.620868 / 3.745712 (-0.124844) | 5.222175 / 5.269862 (-0.047687) | 3.115637 / 4.565676 (-1.450039) | 0.056480 / 0.424275 (-0.367795) | 0.007761 / 0.007607 (0.000154) | 0.483553 / 0.226044 (0.257509) | 4.830087 / 2.268929 (2.561159) | 2.629919 / 55.444624 (-52.814705) | 2.327551 / 6.876477 (-4.548926) | 2.539934 / 2.142072 (0.397861) | 0.587963 / 4.805227 (-4.217265) | 0.131085 / 6.500664 (-6.369579) | 0.060807 / 0.075469 (-0.014662) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350003 / 1.841788 (-0.491785) | 19.491713 / 8.074308 (11.417405) | 14.030429 / 10.191392 (3.839037) | 0.174762 / 0.680424 (-0.505662) | 0.018523 / 0.534201 (-0.515678) | 0.394946 / 0.579283 (-0.184337) | 0.407652 / 0.434364 (-0.026712) | 0.465806 / 0.540337 (-0.074531) | 0.605417 / 1.386936 (-0.781519) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cc85979df3a39657079fdf0844c7e64547507f1a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006235 / 0.011353 (-0.005118) | 0.003675 / 0.011008 (-0.007333) | 0.080680 / 0.038508 (0.042171) | 0.064378 / 0.023109 (0.041268) | 0.394312 / 0.275898 (0.118414) | 0.428143 / 0.323480 (0.104663) | 0.004794 / 0.007986 (-0.003191) | 0.002899 / 0.004328 (-0.001429) | 0.062592 / 0.004250 (0.058342) | 0.050957 / 0.037052 (0.013904) | 0.396831 / 0.258489 (0.138342) | 0.438280 / 0.293841 (0.144439) | 0.027743 / 0.128546 (-0.100804) | 0.008068 / 0.075646 (-0.067578) | 0.262541 / 0.419271 (-0.156730) | 0.060837 / 0.043533 (0.017304) | 0.397941 / 0.255139 (0.142802) | 0.417012 / 0.283200 (0.133813) | 0.030153 / 0.141683 (-0.111530) | 1.477115 / 1.452155 (0.024960) | 1.516642 / 1.492716 (0.023926) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178032 / 0.018006 (0.160026) | 0.445775 / 0.000490 (0.445286) | 0.004275 / 0.000200 (0.004075) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025025 / 0.037411 (-0.012386) | 0.074113 / 0.014526 (0.059587) | 0.083814 / 0.176557 (-0.092743) | 0.148860 / 0.737135 (-0.588275) | 0.085408 / 0.296338 (-0.210931) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393714 / 0.215209 (0.178505) | 3.936589 / 2.077655 (1.858934) | 1.910501 / 1.504120 (0.406381) | 1.729670 / 1.541195 (0.188475) | 1.777647 / 1.468490 (0.309156) | 0.499532 / 4.584777 (-4.085245) | 3.002385 / 3.745712 (-0.743327) | 2.906916 / 5.269862 (-2.362945) | 1.883321 / 4.565676 (-2.682356) | 0.057546 / 0.424275 (-0.366730) | 0.006492 / 0.007607 (-0.001115) | 0.463605 / 0.226044 (0.237560) | 4.620215 / 2.268929 (2.351287) | 2.399021 / 55.444624 (-53.045603) | 2.182962 / 6.876477 (-4.693514) | 2.357344 / 2.142072 (0.215272) | 0.583946 / 4.805227 (-4.221282) | 0.124644 / 6.500664 (-6.376021) | 0.060831 / 0.075469 (-0.014638) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.276412 / 1.841788 (-0.565375) | 18.462522 / 8.074308 (10.388214) | 13.877375 / 10.191392 (3.685983) | 0.150584 / 0.680424 (-0.529840) | 0.016675 / 0.534201 (-0.517526) | 0.331711 / 0.579283 (-0.247573) | 0.366659 / 0.434364 (-0.067705) | 0.396400 / 0.540337 (-0.143938) | 0.555418 / 1.386936 (-0.831518) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005995 / 0.011353 (-0.005358) | 0.003610 / 0.011008 (-0.007399) | 0.061802 / 0.038508 (0.023294) | 0.059265 / 0.023109 (0.036156) | 0.392628 / 0.275898 (0.116730) | 0.413143 / 0.323480 (0.089663) | 0.004687 / 0.007986 (-0.003299) | 0.002843 / 0.004328 (-0.001486) | 0.061932 / 0.004250 (0.057682) | 0.049466 / 0.037052 (0.012413) | 0.402718 / 0.258489 (0.144229) | 0.415039 / 0.293841 (0.121198) | 0.027352 / 0.128546 (-0.101194) | 0.007965 / 0.075646 (-0.067682) | 0.067456 / 0.419271 (-0.351815) | 0.042336 / 0.043533 (-0.001196) | 0.405543 / 0.255139 (0.150404) | 0.403209 / 0.283200 (0.120010) | 0.021459 / 0.141683 (-0.120224) | 1.442861 / 1.452155 (-0.009293) | 1.491213 / 1.492716 (-0.001503) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248225 / 0.018006 (0.230219) | 0.434174 / 0.000490 (0.433684) | 0.001973 / 0.000200 (0.001773) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025475 / 0.037411 (-0.011936) | 0.077865 / 0.014526 (0.063339) | 0.086980 / 0.176557 (-0.089577) | 0.143682 / 0.737135 (-0.593453) | 0.088634 / 0.296338 (-0.207705) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417591 / 0.215209 (0.202382) | 4.168700 / 2.077655 (2.091045) | 2.335743 / 1.504120 (0.831623) | 2.208174 / 1.541195 (0.666980) | 2.256658 / 1.468490 (0.788168) | 0.503164 / 4.584777 (-4.081613) | 3.026667 / 3.745712 (-0.719045) | 4.496675 / 5.269862 (-0.773187) | 2.741049 / 4.565676 (-1.824628) | 0.057781 / 0.424275 (-0.366494) | 0.006810 / 0.007607 (-0.000797) | 0.490803 / 0.226044 (0.264759) | 4.914369 / 2.268929 (2.645441) | 2.594250 / 55.444624 (-52.850375) | 2.274552 / 6.876477 (-4.601925) | 2.397529 / 2.142072 (0.255456) | 0.593008 / 4.805227 (-4.212220) | 0.126194 / 6.500664 (-6.374470) | 0.062261 / 0.075469 (-0.013208) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.357561 / 1.841788 (-0.484227) | 18.622995 / 8.074308 (10.548687) | 14.142569 / 10.191392 (3.951177) | 0.146527 / 0.680424 (-0.533897) | 0.016863 / 0.534201 (-0.517338) | 0.336219 / 0.579283 (-0.243064) | 0.348650 / 0.434364 (-0.085714) | 0.385958 / 0.540337 (-0.154380) | 0.517958 / 1.386936 (-0.868978) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f3da7a5a7d0d0415476ecebb0458e7c60df24445 \"CML watermark\")\n"
] | 2023-07-25T09:32:16 | 2023-07-25T10:02:43 | 2023-07-25T09:54:12 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6067",
"html_url": "https://github.com/huggingface/datasets/pull/6067",
"diff_url": "https://github.com/huggingface/datasets/pull/6067.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6067.patch",
"merged_at": "2023-07-25T09:54:12"
} | close https://github.com/huggingface/datasets/issues/6066 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6067/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6067/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/5937 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5937/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5937/comments | https://api.github.com/repos/huggingface/datasets/issues/5937/events | https://github.com/huggingface/datasets/pull/5937 | 1,749,388,597 | PR_kwDODunzps5SmLIs | 5,937 | Avoid parallel redownload in cache | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006157 / 0.011353 (-0.005196) | 0.003790 / 0.011008 (-0.007219) | 0.097889 / 0.038508 (0.059381) | 0.029038 / 0.023109 (0.005929) | 0.306918 / 0.275898 (0.031020) | 0.339637 / 0.323480 (0.016157) | 0.003526 / 0.007986 (-0.004460) | 0.003102 / 0.004328 (-0.001227) | 0.076908 / 0.004250 (0.072658) | 0.039254 / 0.037052 (0.002201) | 0.309197 / 0.258489 (0.050708) | 0.345635 / 0.293841 (0.051794) | 0.027954 / 0.128546 (-0.100593) | 0.008510 / 0.075646 (-0.067136) | 0.314674 / 0.419271 (-0.104598) | 0.057102 / 0.043533 (0.013569) | 0.307495 / 0.255139 (0.052356) | 0.329501 / 0.283200 (0.046302) | 0.098450 / 0.141683 (-0.043233) | 1.480102 / 1.452155 (0.027948) | 1.550554 / 1.492716 (0.057838) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207440 / 0.018006 (0.189434) | 0.426560 / 0.000490 (0.426071) | 0.003250 / 0.000200 (0.003050) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023777 / 0.037411 (-0.013634) | 0.103905 / 0.014526 (0.089379) | 0.108324 / 0.176557 (-0.068233) | 0.167223 / 0.737135 (-0.569913) | 0.113529 / 0.296338 (-0.182810) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426770 / 0.215209 (0.211561) | 4.251806 / 2.077655 (2.174151) | 2.010426 / 1.504120 (0.506306) | 1.858630 / 1.541195 (0.317435) | 1.941318 / 1.468490 (0.472828) | 0.558056 / 4.584777 (-4.026721) | 3.399107 / 3.745712 (-0.346606) | 1.758386 / 5.269862 (-3.511476) | 1.036305 / 4.565676 (-3.529372) | 0.067094 / 0.424275 (-0.357182) | 0.011167 / 0.007607 (0.003560) | 0.526705 / 0.226044 (0.300661) | 5.250319 / 2.268929 (2.981390) | 2.496723 / 55.444624 (-52.947902) | 2.154013 / 6.876477 (-4.722464) | 2.394724 / 2.142072 (0.252652) | 0.669723 / 4.805227 (-4.135504) | 0.136367 / 6.500664 (-6.364297) | 0.067080 / 0.075469 (-0.008389) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269700 / 1.841788 (-0.572088) | 14.099775 / 8.074308 (6.025467) | 14.422936 / 10.191392 (4.231544) | 0.132344 / 0.680424 (-0.548080) | 0.016744 / 0.534201 (-0.517457) | 0.378286 / 0.579283 (-0.200997) | 0.392282 / 0.434364 (-0.042082) | 0.437648 / 0.540337 (-0.102689) | 0.528554 / 1.386936 (-0.858382) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006086 / 0.011353 (-0.005267) | 0.003769 / 0.011008 (-0.007239) | 0.077414 / 0.038508 (0.038906) | 0.027806 / 0.023109 (0.004697) | 0.360333 / 0.275898 (0.084434) | 0.404725 / 0.323480 (0.081245) | 0.003443 / 0.007986 (-0.004543) | 0.004434 / 0.004328 (0.000106) | 0.077309 / 0.004250 (0.073059) | 0.040441 / 0.037052 (0.003388) | 0.358627 / 0.258489 (0.100138) | 0.415246 / 0.293841 (0.121405) | 0.027718 / 0.128546 (-0.100829) | 0.008495 / 0.075646 (-0.067151) | 0.082874 / 0.419271 (-0.336397) | 0.042323 / 0.043533 (-0.001210) | 0.354895 / 0.255139 (0.099756) | 0.390032 / 0.283200 (0.106832) | 0.092377 / 0.141683 (-0.049306) | 1.492817 / 1.452155 (0.040662) | 1.551859 / 1.492716 (0.059143) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198921 / 0.018006 (0.180915) | 0.417699 / 0.000490 (0.417209) | 0.001349 / 0.000200 (0.001149) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026349 / 0.037411 (-0.011062) | 0.105712 / 0.014526 (0.091186) | 0.111792 / 0.176557 (-0.064765) | 0.163677 / 0.737135 (-0.573459) | 0.116864 / 0.296338 (-0.179474) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447532 / 0.215209 (0.232323) | 4.468770 / 2.077655 (2.391116) | 2.403820 / 1.504120 (0.899700) | 2.273640 / 1.541195 (0.732445) | 2.337505 / 1.468490 (0.869015) | 0.560729 / 4.584777 (-4.024048) | 3.389165 / 3.745712 (-0.356547) | 2.697614 / 5.269862 (-2.572247) | 1.351909 / 4.565676 (-3.213768) | 0.068089 / 0.424275 (-0.356186) | 0.011639 / 0.007607 (0.004032) | 0.555277 / 0.226044 (0.329233) | 5.559291 / 2.268929 (3.290363) | 2.657609 / 55.444624 (-52.787015) | 2.346667 / 6.876477 (-4.529809) | 2.615823 / 2.142072 (0.473751) | 0.668662 / 4.805227 (-4.136566) | 0.136593 / 6.500664 (-6.364071) | 0.068384 / 0.075469 (-0.007085) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.312089 / 1.841788 (-0.529699) | 14.477510 / 8.074308 (6.403202) | 14.231432 / 10.191392 (4.040040) | 0.132015 / 0.680424 (-0.548409) | 0.016908 / 0.534201 (-0.517293) | 0.368315 / 0.579283 (-0.210968) | 0.397964 / 0.434364 (-0.036400) | 0.432446 / 0.540337 (-0.107891) | 0.526349 / 1.386936 (-0.860587) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#78b4d55c3cfc60e309eb033d3ed0aba5e796b6ce \"CML watermark\")\n"
] | 2023-06-09T08:18:36 | 2023-06-14T12:30:59 | 2023-06-14T12:23:57 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5937",
"html_url": "https://github.com/huggingface/datasets/pull/5937",
"diff_url": "https://github.com/huggingface/datasets/pull/5937.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5937.patch",
"merged_at": "2023-06-14T12:23:57"
} | Avoid parallel redownload in cache by retrying inside the lock if path exists. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5937/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5937/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6066 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6066/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6066/comments | https://api.github.com/repos/huggingface/datasets/issues/6066/events | https://github.com/huggingface/datasets/issues/6066 | 1,819,717,542 | I_kwDODunzps5sdq-m | 6,066 | AttributeError: '_tqdm_cls' object has no attribute '_lock' | {
"login": "codingl2k1",
"id": 138426806,
"node_id": "U_kgDOCEA5tg",
"avatar_url": "https://avatars.githubusercontent.com/u/138426806?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/codingl2k1",
"html_url": "https://github.com/codingl2k1",
"followers_url": "https://api.github.com/users/codingl2k1/followers",
"following_url": "https://api.github.com/users/codingl2k1/following{/other_user}",
"gists_url": "https://api.github.com/users/codingl2k1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/codingl2k1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/codingl2k1/subscriptions",
"organizations_url": "https://api.github.com/users/codingl2k1/orgs",
"repos_url": "https://api.github.com/users/codingl2k1/repos",
"events_url": "https://api.github.com/users/codingl2k1/events{/privacy}",
"received_events_url": "https://api.github.com/users/codingl2k1/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi ! I opened https://github.com/huggingface/datasets/pull/6067 to add the missing `_lock`\r\n\r\nWe'll do a patch release soon, but feel free to install `datasets` from source in the meantime",
"I have tested the latest main, it does not work.\r\n\r\nI add more logs to reproduce this issue, it looks like a multi threading bug:\r\n\r\n```python\r\n@contextmanager\r\ndef ensure_lock(tqdm_class, lock_name=\"\"):\r\n \"\"\"get (create if necessary) and then restore `tqdm_class`'s lock\"\"\"\r\n import os\r\n import threading\r\n print(os.getpid(), threading.get_ident(), \"ensure_lock\", tqdm_class, lock_name)\r\n old_lock = getattr(tqdm_class, '_lock', None) # don't create a new lock\r\n lock = old_lock or tqdm_class.get_lock() # maybe create a new lock\r\n lock = getattr(lock, lock_name, lock) # maybe subtype\r\n tqdm_class.set_lock(lock)\r\n print(os.getpid(), threading.get_ident(), \"set_lock\")\r\n yield lock\r\n if old_lock is None:\r\n print(os.getpid(), threading.get_ident(), \"del tqdm_class\")\r\n del tqdm_class._lock\r\n else:\r\n tqdm_class.set_lock(old_lock)\r\n```\r\noutput\r\n```\r\n64943 8424758784 ensure_lock <datasets.utils.logging._tqdm_cls object at 0x2aa7fb250> \r\n64943 8424758784 set_lock\r\n64943 8424758784 del tqdm_class\r\n64943 8424758784 ensure_lock <datasets.utils.logging._tqdm_cls object at 0x2aa7fb250> \r\n64943 8424758784 set_lock\r\n64943 8424758784 del tqdm_class\r\n64943 11638370304 ensure_lock <datasets.utils.logging._tqdm_cls object at 0x2aa7fb250> \r\n64943 11638370304 set_lock\r\n64943 11568967680 ensure_lock <datasets.utils.logging._tqdm_cls object at 0x2aa7fb250> \r\n64943 11568967680 set_lock\r\n64943 11638370304 del tqdm_class\r\n64943 11638370304 ensure_lock <datasets.utils.logging._tqdm_cls object at 0x2aa7fb250> \r\n64943 11638370304 set_lock\r\n64943 11638370304 del tqdm_class\r\n64943 11568967680 del tqdm_class\r\n```\r\n\r\nThread `11638370304` del the _lock from tqdm_class first, then thread `11568967680` del _lock failed.",
"Maybe it is a bug of tqdm? I think simply use `try ... except AttributeError ...` wraps `del tqdm_class._lock` should work.",
"Yes it looks like a bug on their end indeed, do you want to open a PR on tqdm ?\r\n\r\nLet me see if I can find a workaround in the meantime",
"I opened https://github.com/huggingface/datasets/pull/6068 if you want to try it out",
"> I opened #6068 if you want to try it out\r\n\r\nThis fix works! Thanks.",
"Awesome ! closing this then :)\r\nWe'll do a patch release today or tomorrow"
] | 2023-07-25T07:24:36 | 2023-07-26T10:56:25 | 2023-07-26T10:56:24 | NONE | null | null | null | ### Describe the bug
```python
File "/Users/codingl2k1/.pyenv/versions/3.11.4/lib/python3.11/site-packages/datasets/load.py", line 1034, in get_module
data_files = DataFilesDict.from_patterns(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/.pyenv/versions/3.11.4/lib/python3.11/site-packages/datasets/data_files.py", line 671, in from_patterns
DataFilesList.from_patterns(
File "/Users/codingl2k1/.pyenv/versions/3.11.4/lib/python3.11/site-packages/datasets/data_files.py", line 586, in from_patterns
origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/.pyenv/versions/3.11.4/lib/python3.11/site-packages/datasets/data_files.py", line 502, in _get_origin_metadata
return thread_map(
^^^^^^^^^^^
File "/Users/codingl2k1/.pyenv/versions/3.11.4/lib/python3.11/site-packages/tqdm/contrib/concurrent.py", line 70, in thread_map
return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/codingl2k1/.pyenv/versions/3.11.4/lib/python3.11/site-packages/tqdm/contrib/concurrent.py", line 48, in _executor_map
with ensure_lock(tqdm_class, lock_name=lock_name) as lk:
File "/Users/codingl2k1/.pyenv/versions/3.11.4/lib/python3.11/contextlib.py", line 144, in __exit__
next(self.gen)
File "/Users/codingl2k1/.pyenv/versions/3.11.4/lib/python3.11/site-packages/tqdm/contrib/concurrent.py", line 25, in ensure_lock
del tqdm_class._lock
^^^^^^^^^^^^^^^^
AttributeError: '_tqdm_cls' object has no attribute '_lock'
```
### Steps to reproduce the bug
Happens ocasionally.
### Expected behavior
I added a print in tqdm `ensure_lock()`, got a `ensure_lock <datasets.utils.logging._tqdm_cls object at 0x16dddead0> ` print.
According to the code in https://github.com/tqdm/tqdm/blob/master/tqdm/contrib/concurrent.py#L24
```python
@contextmanager
def ensure_lock(tqdm_class, lock_name=""):
"""get (create if necessary) and then restore `tqdm_class`'s lock"""
print("ensure_lock", tqdm_class, lock_name)
old_lock = getattr(tqdm_class, '_lock', None) # don't create a new lock
lock = old_lock or tqdm_class.get_lock() # maybe create a new lock
lock = getattr(lock, lock_name, lock) # maybe subtype
tqdm_class.set_lock(lock)
yield lock
if old_lock is None:
del tqdm_class._lock # <-- It tries to del the `_lock` attribute from tqdm_class.
else:
tqdm_class.set_lock(old_lock)
```
But, huggingface datasets `datasets.utils.logging._tqdm_cls` does not have the field `_lock`: https://github.com/huggingface/datasets/blob/main/src/datasets/utils/logging.py#L205
```python
class _tqdm_cls:
def __call__(self, *args, disable=False, **kwargs):
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*args, **kwargs)
else:
return EmptyTqdm(*args, **kwargs)
def set_lock(self, *args, **kwargs):
self._lock = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*args, **kwargs)
def get_lock(self):
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
```
### Environment info
Python 3.11.4
tqdm '4.65.0'
datasets master | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6066/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6066/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6038 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6038/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6038/comments | https://api.github.com/repos/huggingface/datasets/issues/6038/events | https://github.com/huggingface/datasets/issues/6038 | 1,805,960,244 | I_kwDODunzps5rpMQ0 | 6,038 | File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 992, in _download_and_prepare if str(split_generator.split_info.name).lower() == "all": AttributeError: 'str' object has no attribute 'split_info'. Did you mean: 'splitlines'? | {
"login": "BaiMeiyingxue",
"id": 53547009,
"node_id": "MDQ6VXNlcjUzNTQ3MDA5",
"avatar_url": "https://avatars.githubusercontent.com/u/53547009?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/BaiMeiyingxue",
"html_url": "https://github.com/BaiMeiyingxue",
"followers_url": "https://api.github.com/users/BaiMeiyingxue/followers",
"following_url": "https://api.github.com/users/BaiMeiyingxue/following{/other_user}",
"gists_url": "https://api.github.com/users/BaiMeiyingxue/gists{/gist_id}",
"starred_url": "https://api.github.com/users/BaiMeiyingxue/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/BaiMeiyingxue/subscriptions",
"organizations_url": "https://api.github.com/users/BaiMeiyingxue/orgs",
"repos_url": "https://api.github.com/users/BaiMeiyingxue/repos",
"events_url": "https://api.github.com/users/BaiMeiyingxue/events{/privacy}",
"received_events_url": "https://api.github.com/users/BaiMeiyingxue/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Instead of writing the loading script, you can use the built-in loader to [load JSON files](https://huggingface.co/docs/datasets/loading#json):\r\n```python\r\nfrom datasets import load_dataset\r\nds = load_dataset(\"json\", data_files={\"train\": os.path.join(data_dir[\"train\"]), \"dev\": os.path.join(data_dir[\"dev\"])})\r\n```"
] | 2023-07-15T07:58:08 | 2023-07-24T11:54:15 | 2023-07-24T11:54:15 | NONE | null | null | null | Hi, I use the code below to load local file
```
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
# urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(_URLs)
print(data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir["train"]),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir["dev"]),
"split": "dev",
},
),
]
```
and error occured
```
Traceback (most recent call last):
File "/home/zhizhou/data1/zhanghao/huggingface/FineTuning_Transformer/load_local_dataset.py", line 2, in <module>
dataset = load_dataset("./QA_script.py",data_files='/home/zhizhou/.cache/huggingface/datasets/conversatiom_corps/part_file.json')
File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/load.py", line 1809, in load_dataset
builder_instance.download_and_prepare(
File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 909, in download_and_prepare
self._download_and_prepare(
File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 1670, in _download_and_prepare
super()._download_and_prepare(
File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 992, in _download_and_prepare
if str(split_generator.split_info.name).lower() == "all":
AttributeError: 'str' object has no attribute 'split_info'. Did you mean: 'splitlines'?
```
Could you help me? | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6038/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6038/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/5984 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5984/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5984/comments | https://api.github.com/repos/huggingface/datasets/issues/5984/events | https://github.com/huggingface/datasets/issues/5984 | 1,771,571,458 | I_kwDODunzps5pmAkC | 5,984 | AutoSharding IterableDataset's when num_workers > 1 | {
"login": "mathephysicist",
"id": 25594384,
"node_id": "MDQ6VXNlcjI1NTk0Mzg0",
"avatar_url": "https://avatars.githubusercontent.com/u/25594384?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mathephysicist",
"html_url": "https://github.com/mathephysicist",
"followers_url": "https://api.github.com/users/mathephysicist/followers",
"following_url": "https://api.github.com/users/mathephysicist/following{/other_user}",
"gists_url": "https://api.github.com/users/mathephysicist/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mathephysicist/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mathephysicist/subscriptions",
"organizations_url": "https://api.github.com/users/mathephysicist/orgs",
"repos_url": "https://api.github.com/users/mathephysicist/repos",
"events_url": "https://api.github.com/users/mathephysicist/events{/privacy}",
"received_events_url": "https://api.github.com/users/mathephysicist/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"For this to be possible, we would have to switch from the \"Streaming\" Arrow format to the \"Random Access\" (IPC/Feather) format, which allows reading arbitrary record batches (explained [here](https://arrow.apache.org/docs/python/ipc.html)). We could then use these batches to construct shards.\r\n\r\n@lhoestq @albertvillanova Do you think this use case is worth the switch? Also, we currently shard files, not inner row groups/chunks. Should we also support sharding row groups (e.g. if the number of input files is 1)?\r\n\r\nPS: I don't expect significant speed-up for local, uncompressed Arrow files.",
"Alternatively we could support multiprocessing map for iterable datasets and let the user do the CPU intensive task there ?\r\n\r\nThis way it would work on arrow data but also on any iterable dataset",
"> For this to be possible, we would have to switch from the \"Streaming\" Arrow format to the \"Random Access\" (IPC/Feather) format, which allows reading arbitrary record batches (explained [here](https://arrow.apache.org/docs/python/ipc.html)). We could then use these batches to construct shards.\r\n> \r\n> @lhoestq @albertvillanova Do you think this use case is worth the switch? Also, we currently shard files, not inner row groups/chunks. Should we also support sharding row groups (e.g. if the number of input files is 1)?\r\n> \r\n> PS: I don't expect significant speed-up for local, uncompressed Arrow files.\r\n\r\nCould you explain why you'd need to change the arrow format?\r\n\r\nWhen we use streaming datasets we simply determine the number of worker shards and then add some modulo logic at the appropriate place. Worst case scenario, you'd skip streaming entries according to the number of shards.\r\n\r\nFor PyTorch, I'd be happy to provide an implementation or a sketch thereof, if you point me toward what the testing requirements would be for such a PR.",
"> Could you explain why you'd need to change the arrow format?\r\n\r\nThis way workers have random access to the location of the file where its dataset subset starts. Currently we're using the Arrow streaming format which doesn't include the metadata of the record batches offsets. This is needed here to efficiently split a dataset made of one single file.",
"> > Could you explain why you'd need to change the arrow format?\r\n> \r\n> This way workers have random access to the location of the file where its dataset subset starts. Currently we're using the Arrow streaming format which doesn't include the metadata of the record batches offsets. This is needed here to efficiently split a dataset made of one single file.\r\n\r\nI guess I don't understand why you'd need to subset the dataset in the first place. \r\nIt seems sufficient to figure out how to offset or skip rows.\r\n\r\nFor instance, using pyArrow, you could use RecordBatchStreamReader to zero-copy iterate over records with read_next_batch and then only initiate the next step for records modulo worker shard.\r\nThat's one way to do it, where of course you'd need to account for gpu sharding as well.\r\n\r\n\r\nOtherwise, how did you implement worker/node/GPU sharding for iterable/streaming data where you do not have index information or prior splits (e.g. files)?",
"> For instance, using pyArrow, you could use RecordBatchStreamReader to zero-copy iterate over records with read_next_batch and then only initiate the next step for records modulo worker shard.\r\n\r\nThat works indeed ! And what we meant is that you can make it even faster to instantiate. Indeed using RecordBatchStreamReader you need to get the list of all the record batches in each worker, whereas you could just get the list of record batches per worker if you use the record batches locations in the Arrow IPC file footer. This would be especially appreciated to have a fast instantiation in case you have tens of thousands of Arrow files for example."
] | 2023-06-23T14:34:20 | 2023-07-04T17:03:56 | null | NONE | null | null | null | ### Feature request
Minimal Example
```
import torch
from datasets import IterableDataset
d = IterableDataset.from_file(<file_name>)
dl = torch.utils.data.dataloader.DataLoader(d,num_workers=3)
for sample in dl:
print(sample)
```
Warning:
Too many dataloader workers: 2 (max is dataset.n_shards=1). Stopping 1 dataloader workers.
To parallelize data loading, we give each process some shards (or data sources) to process. Therefore it's unnecessary to have a number of workers greater than dataset.n_shards=1. To enable more parallelism, please split the dataset in more files than 1.
Expected Behavior:
Dataset is sharded each cpu uses subset (contiguously - so you can do checkpoint loading/saving)
### Motivation
I have a lot of unused cpu's and would like to be able to shard iterable datasets with pytorch's dataloader when num_workers > 1. This is for a very large single file. I am aware that we can use the `split_dataset_by_node` to ensure that each node (for distributed) gets different shards, but we should extend it so that this also continues for multiple workers.
### Your contribution
If someone points me to what needs to change, I can create a PR. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5984/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5984/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6043 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6043/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6043/comments | https://api.github.com/repos/huggingface/datasets/issues/6043/events | https://github.com/huggingface/datasets/issues/6043 | 1,807,771,750 | I_kwDODunzps5rwGhm | 6,043 | Compression kwargs have no effect when saving datasets as csv | {
"login": "exs-avianello",
"id": 128361578,
"node_id": "U_kgDOB6akag",
"avatar_url": "https://avatars.githubusercontent.com/u/128361578?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/exs-avianello",
"html_url": "https://github.com/exs-avianello",
"followers_url": "https://api.github.com/users/exs-avianello/followers",
"following_url": "https://api.github.com/users/exs-avianello/following{/other_user}",
"gists_url": "https://api.github.com/users/exs-avianello/gists{/gist_id}",
"starred_url": "https://api.github.com/users/exs-avianello/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/exs-avianello/subscriptions",
"organizations_url": "https://api.github.com/users/exs-avianello/orgs",
"repos_url": "https://api.github.com/users/exs-avianello/repos",
"events_url": "https://api.github.com/users/exs-avianello/events{/privacy}",
"received_events_url": "https://api.github.com/users/exs-avianello/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hello @exs-avianello, I have reproduced the bug successfully and have understood the problem. But I am confused regarding this part of the statement, \"`pandas.DataFrame.to_csv` is always called with a buf-like `path_or_buf`\".\r\n\r\nCan you please elaborate on it?\r\n\r\nThanks!",
"Hi @aryanxk02 ! Sure, what I actually meant is that when passing a path-like `path_or_buf` here\r\n\r\nhttps://github.com/huggingface/datasets/blob/14f6edd9222e577dccb962ed5338b79b73502fa5/src/datasets/arrow_dataset.py#L4708-L4714 \r\n\r\nit gets converted to a file object behind the scenes here\r\n\r\nhttps://github.com/huggingface/datasets/blob/14f6edd9222e577dccb962ed5338b79b73502fa5/src/datasets/io/csv.py#L92-L94\r\n\r\nand the eventual pandas `.to_csv()` calls that write to it always get `path_or_buf=None`, making pandas ignore the `compression` kwarg in the `to_csv_kwargs`\r\n\r\nhttps://github.com/huggingface/datasets/blob/14f6edd9222e577dccb962ed5338b79b73502fa5/src/datasets/io/csv.py#L107-L109",
"@exs-avianello When `path_or_buf` is set to None, the `to_csv()` method will return the CSV data as a string instead of saving it to a file. Hence the compression doesn't take place. I think setting `path_or_buf=self.path_or_buf` should work. What you say?"
] | 2023-07-17T13:19:21 | 2023-07-22T17:34:18 | null | NONE | null | null | null | ### Describe the bug
Attempting to save a dataset as a compressed csv file, the compression kwargs provided to `.to_csv()` that get piped to panda's `pandas.DataFrame.to_csv` do not have any effect - resulting in the dataset not getting compressed.
A warning is raised if explicitly providing a `compression` kwarg, but no warnings are raised if relying on the defaults. This can lead to datasets secretly not getting compressed for users expecting the behaviour to match panda's `.to_csv()`, where the compression format is automatically inferred from the destination path suffix.
### Steps to reproduce the bug
```python
# dataset is not compressed (but at least a warning is emitted)
import datasets
dataset = datasets.load_dataset("rotten_tomatoes", split="train")
dataset.to_csv("uncompressed.csv")
print(os.path.getsize("uncompressed.csv")) # 1008607
dataset.to_csv("compressed.csv.gz", compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1})
print(os.path.getsize("compressed.csv.gz")) # 1008607
```
```shell
>>>
RuntimeWarning: compression has no effect when passing a non-binary object as input.
csv_str = batch.to_pandas().to_csv(
```
```python
# dataset is not compressed and no warnings are emitted
dataset.to_csv("compressed.csv.gz")
print(os.path.getsize("compressed.csv.gz")) # 1008607
# compare with
dataset.to_pandas().to_csv("pandas.csv.gz")
print(os.path.getsize("pandas.csv.gz")) # 418561
```
---
I think that this is because behind the scenes `pandas.DataFrame.to_csv` is always called with a buf-like `path_or_buf`, but users that are providing a path-like to `datasets.Dataset.to_csv` are likely not to expect / know that - leading to a mismatch in their understanding of the expected behaviour of the `compression` kwarg.
### Expected behavior
The dataset to be saved as a compressed csv file when providing a `compression` kwarg, or when relying on the default `compression='infer'`
### Environment info
`datasets == 2.13.1`
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6043/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6043/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5981 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5981/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5981/comments | https://api.github.com/repos/huggingface/datasets/issues/5981/events | https://github.com/huggingface/datasets/issues/5981 | 1,770,310,087 | I_kwDODunzps5phMnH | 5,981 | Only two cores are getting used in sagemaker with pytorch 3.10 kernel | {
"login": "mmr-crexi",
"id": 107141022,
"node_id": "U_kgDOBmLXng",
"avatar_url": "https://avatars.githubusercontent.com/u/107141022?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mmr-crexi",
"html_url": "https://github.com/mmr-crexi",
"followers_url": "https://api.github.com/users/mmr-crexi/followers",
"following_url": "https://api.github.com/users/mmr-crexi/following{/other_user}",
"gists_url": "https://api.github.com/users/mmr-crexi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mmr-crexi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mmr-crexi/subscriptions",
"organizations_url": "https://api.github.com/users/mmr-crexi/orgs",
"repos_url": "https://api.github.com/users/mmr-crexi/repos",
"events_url": "https://api.github.com/users/mmr-crexi/events{/privacy}",
"received_events_url": "https://api.github.com/users/mmr-crexi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"I think it's more likely that this issue is related to PyTorch than Datasets, as PyTorch (on import) registers functions to execute when forking a process. Maybe this is the culprit: https://github.com/pytorch/pytorch/issues/99625",
"From reading that ticket, it may be down in mkl? Is it worth hotfixing in the meantime, with the express intention of turning it off? I know that's a horribly crufty solution, but it's also deeply frustrating to be limited to 2 cores for operations as simple as filtration.",
"This is too specific and unrelated to `datasets`, so this shouldn't be fixed here."
] | 2023-06-22T19:57:31 | 2023-07-24T11:54:52 | 2023-07-24T11:54:52 | NONE | null | null | null | ### Describe the bug
When using the newer pytorch 3.10 kernel, only 2 cores are being used by huggingface filter and map functions. The Pytorch 3.9 kernel would use as many cores as specified in the num_proc field.
We have solved this in our own code by placing the following snippet in the code that is called inside subprocesses:
```os.sched_setaffinity(0, {i for i in range(1000)})```
The problem, as near as we can tell, us that once upon a time, cpu affinity was set using a bitmask ("0xfffff" and the like), and affinity recently changed to a list of processors rather than to using the mask. As such, only processors 1 and 17 are shown to be working in htop.
![Selection_072](https://github.com/huggingface/datasets/assets/107141022/04c5a824-5321-4531-afca-7bc84dff36b4)
When running functions via `map`, the above resetting of affinity works to spread across the cores. When using `filter`, however, only two cores are active.
### Steps to reproduce the bug
Repro steps:
1. Create an aws sagemaker instance
2. use the pytorch 3_10 kernel
3. Load a dataset
4. run a filter operation
5. watch as only 2 cores are used when num_proc > 2
6. run a map operation
7. watch as only 2 cores are used when num_proc > 2
8. run a map operation with processor affinity reset inside the function called via map
9. Watch as all cores run
### Expected behavior
All specified cores are used via the num_proc argument.
### Environment info
AWS sagemaker with the following init script run in the terminal after instance creation:
conda init bash
bash
conda activate pytorch_p310
pip install Wand PyPDF pytesseract datasets seqeval pdfplumber transformers pymupdf sentencepiece timm donut-python accelerate optimum xgboost
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
sudo yum -y install htop
sudo yum -y update
sudo yum -y install wget libstdc++ autoconf automake libtool autoconf-archive pkg-config gcc gcc-c++ make libjpeg-devel libpng-devel libtiff-devel zlib-devel | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5981/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5981/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6043 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6043/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6043/comments | https://api.github.com/repos/huggingface/datasets/issues/6043/events | https://github.com/huggingface/datasets/issues/6043 | 1,807,771,750 | I_kwDODunzps5rwGhm | 6,043 | Compression kwargs have no effect when saving datasets as csv | {
"login": "exs-avianello",
"id": 128361578,
"node_id": "U_kgDOB6akag",
"avatar_url": "https://avatars.githubusercontent.com/u/128361578?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/exs-avianello",
"html_url": "https://github.com/exs-avianello",
"followers_url": "https://api.github.com/users/exs-avianello/followers",
"following_url": "https://api.github.com/users/exs-avianello/following{/other_user}",
"gists_url": "https://api.github.com/users/exs-avianello/gists{/gist_id}",
"starred_url": "https://api.github.com/users/exs-avianello/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/exs-avianello/subscriptions",
"organizations_url": "https://api.github.com/users/exs-avianello/orgs",
"repos_url": "https://api.github.com/users/exs-avianello/repos",
"events_url": "https://api.github.com/users/exs-avianello/events{/privacy}",
"received_events_url": "https://api.github.com/users/exs-avianello/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hello @exs-avianello, I have reproduced the bug successfully and have understood the problem. But I am confused regarding this part of the statement, \"`pandas.DataFrame.to_csv` is always called with a buf-like `path_or_buf`\".\r\n\r\nCan you please elaborate on it?\r\n\r\nThanks!",
"Hi @aryanxk02 ! Sure, what I actually meant is that when passing a path-like `path_or_buf` here\r\n\r\nhttps://github.com/huggingface/datasets/blob/14f6edd9222e577dccb962ed5338b79b73502fa5/src/datasets/arrow_dataset.py#L4708-L4714 \r\n\r\nit gets converted to a file object behind the scenes here\r\n\r\nhttps://github.com/huggingface/datasets/blob/14f6edd9222e577dccb962ed5338b79b73502fa5/src/datasets/io/csv.py#L92-L94\r\n\r\nand the eventual pandas `.to_csv()` calls that write to it always get `path_or_buf=None`, making pandas ignore the `compression` kwarg in the `to_csv_kwargs`\r\n\r\nhttps://github.com/huggingface/datasets/blob/14f6edd9222e577dccb962ed5338b79b73502fa5/src/datasets/io/csv.py#L107-L109",
"@exs-avianello When `path_or_buf` is set to None, the `to_csv()` method will return the CSV data as a string instead of saving it to a file. Hence the compression doesn't take place. I think setting `path_or_buf=self.path_or_buf` should work. What you say?"
] | 2023-07-17T13:19:21 | 2023-07-22T17:34:18 | null | NONE | null | null | null | ### Describe the bug
Attempting to save a dataset as a compressed csv file, the compression kwargs provided to `.to_csv()` that get piped to panda's `pandas.DataFrame.to_csv` do not have any effect - resulting in the dataset not getting compressed.
A warning is raised if explicitly providing a `compression` kwarg, but no warnings are raised if relying on the defaults. This can lead to datasets secretly not getting compressed for users expecting the behaviour to match panda's `.to_csv()`, where the compression format is automatically inferred from the destination path suffix.
### Steps to reproduce the bug
```python
# dataset is not compressed (but at least a warning is emitted)
import datasets
dataset = datasets.load_dataset("rotten_tomatoes", split="train")
dataset.to_csv("uncompressed.csv")
print(os.path.getsize("uncompressed.csv")) # 1008607
dataset.to_csv("compressed.csv.gz", compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1})
print(os.path.getsize("compressed.csv.gz")) # 1008607
```
```shell
>>>
RuntimeWarning: compression has no effect when passing a non-binary object as input.
csv_str = batch.to_pandas().to_csv(
```
```python
# dataset is not compressed and no warnings are emitted
dataset.to_csv("compressed.csv.gz")
print(os.path.getsize("compressed.csv.gz")) # 1008607
# compare with
dataset.to_pandas().to_csv("pandas.csv.gz")
print(os.path.getsize("pandas.csv.gz")) # 418561
```
---
I think that this is because behind the scenes `pandas.DataFrame.to_csv` is always called with a buf-like `path_or_buf`, but users that are providing a path-like to `datasets.Dataset.to_csv` are likely not to expect / know that - leading to a mismatch in their understanding of the expected behaviour of the `compression` kwarg.
### Expected behavior
The dataset to be saved as a compressed csv file when providing a `compression` kwarg, or when relying on the default `compression='infer'`
### Environment info
`datasets == 2.13.1`
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6043/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6043/timeline | null | null | false |