mims-harvard/ProCyon-Full
Updated
•
4
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 5 new columns ({'seq_type_1', 'seq_type_2', 'seq_id_1', 'seq_id_2', 'source'}) and 4 missing columns ({'text_id', 'seq_id', 'text_type', 'seq_type'}). This happened while the csv dataset builder was generating data using hf://datasets/mims-harvard/ProCyon-Instruct/integrated_data/v1/peptide_peptide/peptide_peptide_relations_indexed.unified.csv (at revision a0f4304ac6b54783c68c541c70db8c2526bd76bb) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast seq_id_1: int64 seq_id_2: int64 source: string relation: int64 seq_type_1: string seq_type_2: string split: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1063 to {'text_id': Value(dtype='string', id=None), 'text_type': Value(dtype='string', id=None), 'seq_id': Value(dtype='string', id=None), 'seq_type': Value(dtype='string', id=None), 'relation': Value(dtype='string', id=None), 'split': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 5 new columns ({'seq_type_1', 'seq_type_2', 'seq_id_1', 'seq_id_2', 'source'}) and 4 missing columns ({'text_id', 'seq_id', 'text_type', 'seq_type'}). This happened while the csv dataset builder was generating data using hf://datasets/mims-harvard/ProCyon-Instruct/integrated_data/v1/peptide_peptide/peptide_peptide_relations_indexed.unified.csv (at revision a0f4304ac6b54783c68c541c70db8c2526bd76bb) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
text_id
string | text_type
string | seq_id
string | seq_type
string | relation
string | split
string |
---|---|---|---|---|---|
GO:0019001 | GO | P18085_PF00025_6 | domain | domain_Function | CL_train |
GO:0019001 | GO | P51149_PF00071_10 | domain | domain_Function | CL_train |
GO:0019001 | GO | P51151_PF00071_9 | domain | domain_Function | CL_train |
GO:0019001 | GO | Q9H089_PF01926_389 | domain | domain_Function | CL_train |
GO:0019001 | GO | Q9H0N0_PF00071_15 | domain | domain_Function | CL_train |
GO:0070588 | GO | Q14643_PF01365_475 | domain | domain_Process | CL_train |
GO:0070588 | GO | Q14573_PF01365_1188 | domain | domain_Process | CL_train |
GO:0070588 | GO | O00305_PF12052_50 | domain | domain_Process | CL_train |
GO:0070588 | GO | Q15413_PF01365_440 | domain | domain_Process | CL_train |
GO:0070588 | GO | Q08289_PF12052_72 | domain | domain_Process | CL_train |
GO:0034504 | GO | O15131_PF01749_13 | domain | domain_Process | CL_train |
GO:0034504 | GO | P52294_PF01749_10 | domain | domain_Process | CL_train |
GO:0034504 | GO | O00505_PF01749_11 | domain | domain_Process | CL_train |
GO:0034504 | GO | O60684_PF01749_13 | domain | domain_Process | CL_train |
GO:0034504 | GO | A9QM74_PF01749_10 | domain | domain_Process | CL_train |
GO:0030705 | GO | Q9NQC8_PF12317_63 | domain | domain_Process | CL_train |
GO:0030705 | GO | A6NC98_PF19047_88 | domain | domain_Process | CL_train |
GO:0030705 | GO | Q9UJC3_PF19047_14 | domain | domain_Process | CL_train |
GO:0030705 | GO | Q9P219_PF19047_17 | domain | domain_Process | CL_train |
GO:0030705 | GO | Q96ED9_PF19047_7 | domain | domain_Process | CL_train |
GO:0007034 | GO | P11717_PF00878_127 | domain | domain_Process | CL_train |
GO:0007034 | GO | Q9BT67_PF10176_63 | domain | domain_Process | CL_train |
GO:0007034 | GO | P11717_PF00878_1949 | domain | domain_Process | CL_train |
GO:0007034 | GO | P11717_PF00878_885 | domain | domain_Process | CL_train |
GO:0007034 | GO | P11717_PF00878_1466 | domain | domain_Process | CL_train |
GO:0000139 | GO | P78382_PF04142_11 | domain | domain_Component | CL_train |
GO:0000139 | GO | O60763_PF04869_347 | domain | domain_Component | CL_train |
GO:0000139 | GO | Q9BS91_PF04142_25 | domain | domain_Component | CL_train |
GO:0015914 | GO | P48739_PF02121_2 | domain | domain_Process | CL_train |
GO:0015914 | GO | Q9BZ72_PF02121_1 | domain | domain_Process | CL_train |
GO:0008289 | GO | Q9UMY4_PF00787_59 | domain | domain_Function | CL_train |
GO:0008289 | GO | O95219_PF00787_100 | domain | domain_Function | CL_train |
GO:0008289 | GO | P50995_PF00191_435 | domain | domain_Function | CL_train |
GO:0008289 | GO | Q9BQP9_PF01273_52 | domain | domain_Function | CL_train |
GO:0008289 | GO | Q86VN1_PF11605_6 | domain | domain_Function | CL_train |
GO:0016192 | GO | O94855_PF04810_360 | domain | domain_Process | CL_train |
GO:0016192 | GO | O94855_PF04811_437 | domain | domain_Process | CL_train |
GO:0016192 | GO | O94855_PF04815_782 | domain | domain_Process | CL_train |
GO:0016192 | GO | Q9UPT5_PF03081_314 | domain | domain_Process | CL_train |
GO:0016192 | GO | Q9NQG7_PF19033_599 | domain | domain_Process | CL_train |
GO:0048193 | GO | O95487_PF04810_602 | domain | domain_Process | CL_train |
GO:0048193 | GO | O95487_PF04811_675 | domain | domain_Process | CL_train |
GO:0048193 | GO | O95487_PF04815_1014 | domain | domain_Process | CL_train |
GO:0048193 | GO | Q13948_PF08172_423 | domain | domain_Process | CL_train |
GO:0048193 | GO | P0DI81_PF04628_9 | domain | domain_Process | CL_train |
GO:0030170 | GO | Q96QU6_PF00155_98 | domain | domain_Function | CL_train |
GO:0030170 | GO | Q9Y600_PF00282_49 | domain | domain_Function | CL_train |
GO:0030170 | GO | P00505_PF00155_58 | domain | domain_Function | CL_train |
GO:0030170 | GO | Q4AC99_PF00155_194 | domain | domain_Function | CL_train |
GO:0030170 | GO | P17735_PF00155_72 | domain | domain_Function | CL_train |
GO:0015031 | GO | P63010_PF01602_14 | domain | domain_Process | CL_train |
GO:0015031 | GO | Q15437_PF04811_127 | domain | domain_Process | CL_train |
GO:0015031 | GO | O15131_PF01749_13 | domain | domain_Process | CL_train |
GO:0015031 | GO | O00203_PF01602_43 | domain | domain_Process | CL_train |
GO:0015031 | GO | P52294_PF01749_10 | domain | domain_Process | CL_train |
GO:0051170 | GO | P52294_PF01749_10 | domain | domain_Process | CL_train |
GO:0051170 | GO | O00505_PF01749_11 | domain | domain_Process | CL_train |
GO:0051170 | GO | O60684_PF01749_13 | domain | domain_Process | CL_train |
GO:0051170 | GO | O15131_PF01749_13 | domain | domain_Process | CL_train |
GO:0051170 | GO | A9QM74_PF01749_10 | domain | domain_Process | CL_train |
GO:0006816 | GO | Q14571_PF01365_1194 | domain | domain_Process | CL_train |
GO:0006816 | GO | Q14643_PF01365_475 | domain | domain_Process | CL_train |
GO:0006816 | GO | Q14573_PF01365_474 | domain | domain_Process | CL_train |
GO:0006816 | GO | O00305_PF12052_50 | domain | domain_Process | CL_train |
GO:0006816 | GO | Q14573_PF01365_1188 | domain | domain_Process | CL_train |
GO:0050661 | GO | P11413_PF00479_35 | domain | domain_Function | CL_train |
GO:0050661 | GO | P11413_PF02781_212 | domain | domain_Function | CL_train |
GO:0050661 | GO | P31513_PF00743_3 | domain | domain_Function | CL_train |
GO:0050661 | GO | P31937_PF03446_42 | domain | domain_Function | CL_train |
GO:0050661 | GO | P31512_PF00743_2 | domain | domain_Function | CL_train |
GO:0030120 | GO | O95486_PF04810_428 | domain | domain_Component | CL_train |
GO:0030120 | GO | O95487_PF04810_602 | domain | domain_Component | CL_train |
GO:0030120 | GO | O95486_PF04811_501 | domain | domain_Component | CL_train |
GO:0030120 | GO | O95487_PF04811_675 | domain | domain_Component | CL_train |
GO:0030120 | GO | O95486_PF04815_839 | domain | domain_Component | CL_train |
GO:0030120 | GO | O95487_PF04815_1014 | domain | domain_Component | CL_train |
GO:0033365 | GO | A9QM74_PF01749_10 | domain | domain_Process | CL_train |
GO:0033365 | GO | O60684_PF01749_13 | domain | domain_Process | CL_train |
GO:0033365 | GO | O15131_PF01749_13 | domain | domain_Process | CL_train |
GO:0033365 | GO | P52294_PF01749_10 | domain | domain_Process | CL_train |
GO:0033365 | GO | O00505_PF01749_11 | domain | domain_Process | CL_train |
GO:0003723 | GO | Q7Z2T5_PF02005_242 | domain | domain_Function | CL_train |
GO:0003723 | GO | Q8N6W0_PF00076_402 | domain | domain_Function | CL_train |
GO:0003723 | GO | Q9NQ29_PF03194_6 | domain | domain_Function | CL_train |
GO:0003723 | GO | Q9H694_PF00013_134 | domain | domain_Function | CL_train |
GO:0003723 | GO | A6NMX2_PF01652_63 | domain | domain_Function | CL_train |
GO:0050660 | GO | Q6JQN1_PF02771_664 | domain | domain_Function | CL_train |
GO:0050660 | GO | Q709F0_PF02771_382 | domain | domain_Function | CL_train |
GO:0050660 | GO | Q8N465_PF02913_275 | domain | domain_Function | CL_train |
GO:0050660 | GO | Q86WU2_PF02913_243 | domain | domain_Function | CL_train |
GO:0050660 | GO | Q9Y2Z9_PF01494_194 | domain | domain_Function | CL_train |
GO:0015748 | GO | Q9UKF7_PF02121_1 | domain | domain_Process | CL_train |
GO:0015748 | GO | Q9BZ72_PF02121_1 | domain | domain_Process | CL_train |
GO:0035091 | GO | Q86VN1_PF11605_6 | domain | domain_Function | CL_train |
GO:0035091 | GO | O00443_PF00787_1456 | domain | domain_Function | CL_train |
GO:0035091 | GO | Q7Z7A4_PF00787_46 | domain | domain_Function | CL_train |
GO:0035091 | GO | Q5TCZ1_PF00787_31 | domain | domain_Function | CL_train |
GO:0035091 | GO | Q8WV41_PF00787_257 | domain | domain_Function | CL_train |
GO:0055085 | GO | P33897_PF06472_78 | domain | domain_Process | CL_train |
GO:0055085 | GO | Q8WY07_PF13520_32 | domain | domain_Process | CL_train |
This repository contains the ProCyon-Instruct
used to train the ProCyon
family of models.
Please see installation instructions on our GitHub repo for details on how to configure the dataset
for use with pre-trained ProCyon models. For additional technical details, please refer to our overview page or the paper.
The repository contains three top-level directories:
integrated_data/v1
- The primary component of the dataset: the amino acid sequences and associated phenotypes used for constructing instruction tuning examples.generated_data
- Contains additonal artifacts beyond amino acids and phenotypes. Generated by the ProCyon team and used for model training and evaluation.model_weights
- Contains pre-trained model weights used for initializing ProCyon models. Note that the model weights themselves are not contained in this repository but rather are expected to be downloaded here from their respective repositories.Within integrated_data
, there are four main types of directories:
{amino_acid_seq_type}
- directories containing information for amino acid sequences themselves, where amino_acid_seq_type
is one of ["domain", "peptide", "protein"]
. Each directory contains the following files:{amino_acid_seq_type}_sequences.fa
- FASTA file containing the raw amino acid sequence for each entity{amino_acid_seq_type}_info_filtered.pkl
- Pickled Pandas DataFrame containing the mapping from the amino acid sequence's database ID (e.g. UniProt ID for proteins) to a numeric index used within ProCyon-Instruct. Two columns:index
- numeric ID within ProCyon-Instruct{amino_acid_seq_type}_id
- ID within original database{phenotype_type}
- directories containing information for each phenotype entity. Each directory contains the following files:{phenotype_type}_info_filtered.pkl
- Pickled Pandas DataFrame containing mapping from phenotype's database ID to numeric ID within ProCyon-Instruct, and various textual descriptions within each database. Has the following columns:index
- numeric ID within ProCyon-Instruct{phenotype_type}_id
- ID within original database{phenotype_type}_info_filtered_composed.pkl
- Pickled Pandas DataFrame containing the same data as {phenotype_type}_info_filtered.pkl
but with additional columns giving compositions of individual text columns from the original DataFrame.{amino_acid_seq_type}_{phenotype_type}
- directories containing information on the associations between amino acid sequences and phenotypes. Each directory contains a subdirectory named based on the method used for generating dataset splits within that database. Please see the methods section of our manuscript for more details. Within these subdirectories there are two files:{amino_acid_seq_type}_{phenotype_type}_relations.unified.csv
- CSV file containing relations expressed in original database IDs. Contains six columns:text_id
- ID from original phenotype databaseseq_id
- ID from original sequence databasetext_type
- largely redundant with phenotype_type
, may be helpful when concatenating many assocations filesseq_type
- largely redundant with amino_acid_seq_type
, may be helpful when concatenating many assocations filesrelation
- largely redundant with f{amino_acid_seq_type}_{phenotype_type}
, may be helpful when concatenating many assocations files. For some datasets such as DrugBank and GO, this column takes on different values within the same file and expresses distinct relations, e.g. GO molecular function vs GO biological process.split
- Assigned data split for this association. CL_train
are training associations, CL_val_*
are validation associations, and eval_*
are test associations. Both CL_val
and eval
have sufficies indicating whether these relations are zero-shot with respect to the phenotype, where _zero_shot
indicates a zero-shot relation, _[num]_shot
indicates a few-shot relation, and _pt_ft
indicates relations where the phenotype is seen frequently in training.{amino_acid_seq_type}_{phenotype_type}_relations_indexed.unified.csv
- Identical to the above CSV file, but with relations expressed using ProCyon internal numeric IDs.{amino_acid_seq_type}_{amino_acid_seq_type}
- directories containing information on the associations between two amino acid sequences, e.g. protein-protein interactions. Format is largely the same as above except with seq_id_1
and seq_id_2
columns instead of seq_id
and text_id