Datasets:

DOI:
License:
Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 5 new columns ({'seq_type_1', 'seq_type_2', 'seq_id_1', 'seq_id_2', 'source'}) and 4 missing columns ({'text_id', 'seq_id', 'text_type', 'seq_type'}).

This happened while the csv dataset builder was generating data using

hf://datasets/mims-harvard/ProCyon-Instruct/integrated_data/v1/peptide_peptide/peptide_peptide_relations_indexed.unified.csv (at revision a0f4304ac6b54783c68c541c70db8c2526bd76bb)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              seq_id_1: int64
              seq_id_2: int64
              source: string
              relation: int64
              seq_type_1: string
              seq_type_2: string
              split: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1063
              to
              {'text_id': Value(dtype='string', id=None), 'text_type': Value(dtype='string', id=None), 'seq_id': Value(dtype='string', id=None), 'seq_type': Value(dtype='string', id=None), 'relation': Value(dtype='string', id=None), 'split': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1412, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 988, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 5 new columns ({'seq_type_1', 'seq_type_2', 'seq_id_1', 'seq_id_2', 'source'}) and 4 missing columns ({'text_id', 'seq_id', 'text_type', 'seq_type'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/mims-harvard/ProCyon-Instruct/integrated_data/v1/peptide_peptide/peptide_peptide_relations_indexed.unified.csv (at revision a0f4304ac6b54783c68c541c70db8c2526bd76bb)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

text_id
string
text_type
string
seq_id
string
seq_type
string
relation
string
split
string
GO:0019001
GO
P18085_PF00025_6
domain
domain_Function
CL_train
GO:0019001
GO
P51149_PF00071_10
domain
domain_Function
CL_train
GO:0019001
GO
P51151_PF00071_9
domain
domain_Function
CL_train
GO:0019001
GO
Q9H089_PF01926_389
domain
domain_Function
CL_train
GO:0019001
GO
Q9H0N0_PF00071_15
domain
domain_Function
CL_train
GO:0070588
GO
Q14643_PF01365_475
domain
domain_Process
CL_train
GO:0070588
GO
Q14573_PF01365_1188
domain
domain_Process
CL_train
GO:0070588
GO
O00305_PF12052_50
domain
domain_Process
CL_train
GO:0070588
GO
Q15413_PF01365_440
domain
domain_Process
CL_train
GO:0070588
GO
Q08289_PF12052_72
domain
domain_Process
CL_train
GO:0034504
GO
O15131_PF01749_13
domain
domain_Process
CL_train
GO:0034504
GO
P52294_PF01749_10
domain
domain_Process
CL_train
GO:0034504
GO
O00505_PF01749_11
domain
domain_Process
CL_train
GO:0034504
GO
O60684_PF01749_13
domain
domain_Process
CL_train
GO:0034504
GO
A9QM74_PF01749_10
domain
domain_Process
CL_train
GO:0030705
GO
Q9NQC8_PF12317_63
domain
domain_Process
CL_train
GO:0030705
GO
A6NC98_PF19047_88
domain
domain_Process
CL_train
GO:0030705
GO
Q9UJC3_PF19047_14
domain
domain_Process
CL_train
GO:0030705
GO
Q9P219_PF19047_17
domain
domain_Process
CL_train
GO:0030705
GO
Q96ED9_PF19047_7
domain
domain_Process
CL_train
GO:0007034
GO
P11717_PF00878_127
domain
domain_Process
CL_train
GO:0007034
GO
Q9BT67_PF10176_63
domain
domain_Process
CL_train
GO:0007034
GO
P11717_PF00878_1949
domain
domain_Process
CL_train
GO:0007034
GO
P11717_PF00878_885
domain
domain_Process
CL_train
GO:0007034
GO
P11717_PF00878_1466
domain
domain_Process
CL_train
GO:0000139
GO
P78382_PF04142_11
domain
domain_Component
CL_train
GO:0000139
GO
O60763_PF04869_347
domain
domain_Component
CL_train
GO:0000139
GO
Q9BS91_PF04142_25
domain
domain_Component
CL_train
GO:0015914
GO
P48739_PF02121_2
domain
domain_Process
CL_train
GO:0015914
GO
Q9BZ72_PF02121_1
domain
domain_Process
CL_train
GO:0008289
GO
Q9UMY4_PF00787_59
domain
domain_Function
CL_train
GO:0008289
GO
O95219_PF00787_100
domain
domain_Function
CL_train
GO:0008289
GO
P50995_PF00191_435
domain
domain_Function
CL_train
GO:0008289
GO
Q9BQP9_PF01273_52
domain
domain_Function
CL_train
GO:0008289
GO
Q86VN1_PF11605_6
domain
domain_Function
CL_train
GO:0016192
GO
O94855_PF04810_360
domain
domain_Process
CL_train
GO:0016192
GO
O94855_PF04811_437
domain
domain_Process
CL_train
GO:0016192
GO
O94855_PF04815_782
domain
domain_Process
CL_train
GO:0016192
GO
Q9UPT5_PF03081_314
domain
domain_Process
CL_train
GO:0016192
GO
Q9NQG7_PF19033_599
domain
domain_Process
CL_train
GO:0048193
GO
O95487_PF04810_602
domain
domain_Process
CL_train
GO:0048193
GO
O95487_PF04811_675
domain
domain_Process
CL_train
GO:0048193
GO
O95487_PF04815_1014
domain
domain_Process
CL_train
GO:0048193
GO
Q13948_PF08172_423
domain
domain_Process
CL_train
GO:0048193
GO
P0DI81_PF04628_9
domain
domain_Process
CL_train
GO:0030170
GO
Q96QU6_PF00155_98
domain
domain_Function
CL_train
GO:0030170
GO
Q9Y600_PF00282_49
domain
domain_Function
CL_train
GO:0030170
GO
P00505_PF00155_58
domain
domain_Function
CL_train
GO:0030170
GO
Q4AC99_PF00155_194
domain
domain_Function
CL_train
GO:0030170
GO
P17735_PF00155_72
domain
domain_Function
CL_train
GO:0015031
GO
P63010_PF01602_14
domain
domain_Process
CL_train
GO:0015031
GO
Q15437_PF04811_127
domain
domain_Process
CL_train
GO:0015031
GO
O15131_PF01749_13
domain
domain_Process
CL_train
GO:0015031
GO
O00203_PF01602_43
domain
domain_Process
CL_train
GO:0015031
GO
P52294_PF01749_10
domain
domain_Process
CL_train
GO:0051170
GO
P52294_PF01749_10
domain
domain_Process
CL_train
GO:0051170
GO
O00505_PF01749_11
domain
domain_Process
CL_train
GO:0051170
GO
O60684_PF01749_13
domain
domain_Process
CL_train
GO:0051170
GO
O15131_PF01749_13
domain
domain_Process
CL_train
GO:0051170
GO
A9QM74_PF01749_10
domain
domain_Process
CL_train
GO:0006816
GO
Q14571_PF01365_1194
domain
domain_Process
CL_train
GO:0006816
GO
Q14643_PF01365_475
domain
domain_Process
CL_train
GO:0006816
GO
Q14573_PF01365_474
domain
domain_Process
CL_train
GO:0006816
GO
O00305_PF12052_50
domain
domain_Process
CL_train
GO:0006816
GO
Q14573_PF01365_1188
domain
domain_Process
CL_train
GO:0050661
GO
P11413_PF00479_35
domain
domain_Function
CL_train
GO:0050661
GO
P11413_PF02781_212
domain
domain_Function
CL_train
GO:0050661
GO
P31513_PF00743_3
domain
domain_Function
CL_train
GO:0050661
GO
P31937_PF03446_42
domain
domain_Function
CL_train
GO:0050661
GO
P31512_PF00743_2
domain
domain_Function
CL_train
GO:0030120
GO
O95486_PF04810_428
domain
domain_Component
CL_train
GO:0030120
GO
O95487_PF04810_602
domain
domain_Component
CL_train
GO:0030120
GO
O95486_PF04811_501
domain
domain_Component
CL_train
GO:0030120
GO
O95487_PF04811_675
domain
domain_Component
CL_train
GO:0030120
GO
O95486_PF04815_839
domain
domain_Component
CL_train
GO:0030120
GO
O95487_PF04815_1014
domain
domain_Component
CL_train
GO:0033365
GO
A9QM74_PF01749_10
domain
domain_Process
CL_train
GO:0033365
GO
O60684_PF01749_13
domain
domain_Process
CL_train
GO:0033365
GO
O15131_PF01749_13
domain
domain_Process
CL_train
GO:0033365
GO
P52294_PF01749_10
domain
domain_Process
CL_train
GO:0033365
GO
O00505_PF01749_11
domain
domain_Process
CL_train
GO:0003723
GO
Q7Z2T5_PF02005_242
domain
domain_Function
CL_train
GO:0003723
GO
Q8N6W0_PF00076_402
domain
domain_Function
CL_train
GO:0003723
GO
Q9NQ29_PF03194_6
domain
domain_Function
CL_train
GO:0003723
GO
Q9H694_PF00013_134
domain
domain_Function
CL_train
GO:0003723
GO
A6NMX2_PF01652_63
domain
domain_Function
CL_train
GO:0050660
GO
Q6JQN1_PF02771_664
domain
domain_Function
CL_train
GO:0050660
GO
Q709F0_PF02771_382
domain
domain_Function
CL_train
GO:0050660
GO
Q8N465_PF02913_275
domain
domain_Function
CL_train
GO:0050660
GO
Q86WU2_PF02913_243
domain
domain_Function
CL_train
GO:0050660
GO
Q9Y2Z9_PF01494_194
domain
domain_Function
CL_train
GO:0015748
GO
Q9UKF7_PF02121_1
domain
domain_Process
CL_train
GO:0015748
GO
Q9BZ72_PF02121_1
domain
domain_Process
CL_train
GO:0035091
GO
Q86VN1_PF11605_6
domain
domain_Function
CL_train
GO:0035091
GO
O00443_PF00787_1456
domain
domain_Function
CL_train
GO:0035091
GO
Q7Z7A4_PF00787_46
domain
domain_Function
CL_train
GO:0035091
GO
Q5TCZ1_PF00787_31
domain
domain_Function
CL_train
GO:0035091
GO
Q8WV41_PF00787_257
domain
domain_Function
CL_train
GO:0055085
GO
P33897_PF06472_78
domain
domain_Process
CL_train
GO:0055085
GO
Q8WY07_PF13520_32
domain
domain_Process
CL_train
End of preview.

This repository contains the ProCyon-Instruct used to train the ProCyon family of models. Please see installation instructions on our GitHub repo for details on how to configure the dataset for use with pre-trained ProCyon models. For additional technical details, please refer to our overview page or the paper.

The repository contains three top-level directories:

  • integrated_data/v1 - The primary component of the dataset: the amino acid sequences and associated phenotypes used for constructing instruction tuning examples.
  • generated_data - Contains additonal artifacts beyond amino acids and phenotypes. Generated by the ProCyon team and used for model training and evaluation.
  • model_weights - Contains pre-trained model weights used for initializing ProCyon models. Note that the model weights themselves are not contained in this repository but rather are expected to be downloaded here from their respective repositories.

Within integrated_data, there are four main types of directories:

  • {amino_acid_seq_type} - directories containing information for amino acid sequences themselves, where amino_acid_seq_type is one of ["domain", "peptide", "protein"]. Each directory contains the following files:
    • {amino_acid_seq_type}_sequences.fa - FASTA file containing the raw amino acid sequence for each entity
    • {amino_acid_seq_type}_info_filtered.pkl - Pickled Pandas DataFrame containing the mapping from the amino acid sequence's database ID (e.g. UniProt ID for proteins) to a numeric index used within ProCyon-Instruct. Two columns:
      • index - numeric ID within ProCyon-Instruct
      • {amino_acid_seq_type}_id - ID within original database
  • {phenotype_type} - directories containing information for each phenotype entity. Each directory contains the following files:
    • {phenotype_type}_info_filtered.pkl - Pickled Pandas DataFrame containing mapping from phenotype's database ID to numeric ID within ProCyon-Instruct, and various textual descriptions within each database. Has the following columns:
      • index - numeric ID within ProCyon-Instruct
      • {phenotype_type}_id - ID within original database
      • additional columns coming from the original databases giving various textual descriptions of the phenotype. Used to create the instruction tuning examples
    • {phenotype_type}_info_filtered_composed.pkl - Pickled Pandas DataFrame containing the same data as {phenotype_type}_info_filtered.pkl but with additional columns giving compositions of individual text columns from the original DataFrame.
  • {amino_acid_seq_type}_{phenotype_type} - directories containing information on the associations between amino acid sequences and phenotypes. Each directory contains a subdirectory named based on the method used for generating dataset splits within that database. Please see the methods section of our manuscript for more details. Within these subdirectories there are two files:
    • {amino_acid_seq_type}_{phenotype_type}_relations.unified.csv - CSV file containing relations expressed in original database IDs. Contains six columns:
      • text_id - ID from original phenotype database
      • seq_id - ID from original sequence database
      • text_type - largely redundant with phenotype_type, may be helpful when concatenating many assocations files
      • seq_type - largely redundant with amino_acid_seq_type, may be helpful when concatenating many assocations files
      • relation - largely redundant with f{amino_acid_seq_type}_{phenotype_type}, may be helpful when concatenating many assocations files. For some datasets such as DrugBank and GO, this column takes on different values within the same file and expresses distinct relations, e.g. GO molecular function vs GO biological process.
      • split - Assigned data split for this association. CL_train are training associations, CL_val_* are validation associations, and eval_* are test associations. Both CL_val and eval have sufficies indicating whether these relations are zero-shot with respect to the phenotype, where _zero_shot indicates a zero-shot relation, _[num]_shot indicates a few-shot relation, and _pt_ft indicates relations where the phenotype is seen frequently in training.
    • {amino_acid_seq_type}_{phenotype_type}_relations_indexed.unified.csv - Identical to the above CSV file, but with relations expressed using ProCyon internal numeric IDs.
  • {amino_acid_seq_type}_{amino_acid_seq_type} - directories containing information on the associations between two amino acid sequences, e.g. protein-protein interactions. Format is largely the same as above except with seq_id_1 and seq_id_2 columns instead of seq_id and text_id
Downloads last month
53

Models trained or fine-tuned on mims-harvard/ProCyon-Instruct

Collection including mims-harvard/ProCyon-Instruct