repo_name
stringlengths
7
92
path
stringlengths
5
129
copies
stringclasses
201 values
size
stringlengths
4
6
content
stringlengths
1.03k
375k
license
stringclasses
15 values
Healthcast/RSV
python/all_year_predict/methods.py
2
3879
#!/usr/bin/pyhton import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, neighbors, linear_model from sklearn import svm from sklearn import metrics from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier def apply_algorithm(paras, X, y): if paras['clf'] == 'svm': clf = svm.SVC(kernel=paras['svm'][1], C=paras['svm'][0], probability=True) elif paras['clf'] == 'knn': clf = neighbors.KNeighborsClassifier(paras['knn'][0],\ weights=paras['knn'][1]) elif paras['clf'] == 'rf': clf = RandomForestClassifier(max_depth=paras['rf'][0], \ n_estimators=paras['rf'][1],\ max_features=paras['rf'][2]) else: print str("unknown classifier") sys.exit(2) return clf def apply_evaluation(paras, X, y, clf, data): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, \ random_state=0) clf.fit(X_train, y_train) r = clf.predict(X_test) d = clf.decision_function(X) p = clf.predict_proba(X).T[1]*3 h = data["hospital"].T[data["city"].index(paras["city"])] h1 = h.astype(float) m = max(h1) h1=h1/m*4 plt.figure() # plt.plot(d) plt.plot(y) plt.plot(h1) plt.plot(p) # height = 4 # bottom = -2 # ss = data["season_start"] # date=data["date1"] # c_id = data["city"].index(paras["city"]) # ylabel = data["ylabels"] # for m in ss: # plt.plot([m, m],[bottom, height], 'y--', linewidth=1) # # for m in range(1, len(ss)-1): # a = ss[m] # plt.text(a-5,height, date[a].split('-')[0]) # # #plot the start week # up=1 # for j in range(len(ylabel.T[c_id])-1): # if ylabel.T[c_id,j] == 1 : # plt.plot([j, j],[bottom, height], 'k-', linewidth=2) # if up==1: # plt.text(j-10, height-1, date[j]) # up=0 # else: # plt.text(j-10, height-2, date[j]) # up=1 # plt.show() #plot the results # x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1 # y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1 # # xx, yy = np.meshgrid(np.arange(x_min, x_max, 1), np.arange(y_min, y_max, 1)) # Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Z = Z.reshape(xx.shape) # # plt.figure() # plt.pcolormesh(xx, yy, Z) # plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train) # plt.xlim(xx.min(), xx.max()) # plt.ylim(yy.min(), yy.max()) # plt.title("binary classification classification") # plt.show() # if paras['eva'] == 'accuracy': print "The accuracy:" print metrics.accuracy_score(y_test, r) elif paras['eva'] == 'precision': print "The precision:" print metrics.precision_score(y_test, r) elif paras['eva'] == 'recall': print "The recall:" print metrics.recall_score(y_test, r) elif paras['eva'] == 'confusion': print "The confusion matrix:" print metrics.confusion_matrix(y_test, r) elif paras['eva'] == 'report': print "The report:" print metrics.classification_report(y_test, r) elif paras['eva'] == 'roc' and paras['clf'] == 'svm': scores = clf.decision_function(X_test) print "The auc:" fpr, tpr, thresholds = metrics.roc_curve(y_test, scores) roc_auc = metrics.auc(fpr, tpr) print str(roc_auc) plt.figure() plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], 'k--') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.show()
gpl-2.0
nmayorov/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
rjenc29/numerical
course/matplotlib/examples/fill_example.py
1
2229
""" Illustrate different ways of using the various fill functions. """ import numpy as np import matplotlib.pyplot as plt import example_utils def main(): fig, axes = example_utils.setup_axes() fill_example(axes[0]) fill_between_example(axes[1]) stackplot_example(axes[2]) example_utils.title(fig, 'fill/fill_between/stackplot: Filled polygons', y=0.95) fig.savefig('fill_example.png', facecolor='none') plt.show() def fill_example(ax): # Use fill when you want a simple filled polygon between vertices x, y = fill_data() ax.fill(x, y, color='lightblue') ax.margins(0.1) example_utils.label(ax, 'fill') def fill_between_example(ax): # Fill between fills between two curves or a curve and a constant value # It can be used in several ways. We'll illustrate a few below. x, y1, y2 = sin_data() # The most basic (and common) use of fill_between err = np.random.rand(x.size)**2 + 0.1 y = 0.7 * x + 2 ax.fill_between(x, y + err, y - err, color='orange') # Filling between two curves with different colors when they cross in # different directions ax.fill_between(x, y1, y2, where=y1>y2, color='lightblue') ax.fill_between(x, y1, y2, where=y1<y2, color='forestgreen') # Note that this is fillbetween*x*! ax.fill_betweenx(x, -y1, where=y1>0, color='red', alpha=0.5) ax.fill_betweenx(x, -y1, where=y1<0, color='blue', alpha=0.5) ax.margins(0.15) example_utils.label(ax, 'fill_between/x') def stackplot_example(ax): # Stackplot is equivalent to a series of ax.fill_between calls x, y = stackplot_data() ax.stackplot(x, y.cumsum(axis=0), alpha=0.5) example_utils.label(ax, 'stackplot') #-- Data generation ---------------------- def stackplot_data(): x = np.linspace(0, 10, 100) y = np.random.normal(0, 1, (5, 100)) y = y.cumsum(axis=1) y -= y.min(axis=0, keepdims=True) return x, y def sin_data(): x = np.linspace(0, 10, 100) y = np.sin(x) y2 = np.cos(x) return x, y, y2 def fill_data(): t = np.linspace(0, 2*np.pi, 100) r = np.random.normal(0, 1, 100).cumsum() r -= r.min() return r * np.cos(t), r * np.sin(t) main()
mit
tjhunter/phd-thesis-tjhunter
python/kdd/plot_network.py
1
1065
__author__ = 'tjhunter' import build import json import pylab as pl from matplotlib.collections import LineCollection # Draws the network as a pdf and SVG file. def draw_network(ax, fd, link_style): def decode_line(l): #print l dct = json.loads(l) lats = dct['lats'] lons = dct['lons'] return zip(lons, lats) lines = [decode_line(l) for l in fd] #print lines xmin = min([x for l in lines for x,y in l]) xmax = max([x for l in lines for x,y in l]) ymin = min([y for l in lines for x,y in l]) ymax = max([y for l in lines for x,y in l]) lc = LineCollection(lines, **link_style) ax.add_collection(lc, autolim=True) return ((xmin,xmax),(ymin,ymax)) fname = build.data_name('kdd/net_export_6.json') fig = pl.figure("fig1",figsize=(10,10)) ax = fig.gca() ax.set_axis_off() style = {'colors':'k','linewidths':0.5} with open(fname) as f: (xlims, ylims) = draw_network(ax, f, style) ax.set_xlim(*xlims) ax.set_ylim(*ylims) # Saving in pdf is a bit slow build.save_figure(fig, 'figures-kdd/network_export_6',save_svg=True)
apache-2.0
kcompher/thunder
thunder/extraction/source.py
6
31847
from numpy import asarray, mean, sqrt, ndarray, amin, amax, concatenate, sum, zeros, maximum, \ argmin, newaxis, ones, delete, NaN, inf, isnan, clip, logical_or, unique, where, all from thunder.utils.serializable import Serializable from thunder.utils.common import checkParams, aslist from thunder.rdds.images import Images from thunder.rdds.series import Series class Source(Serializable, object): """ A single source, represented as a list of coordinates and other optional specifications. A source also has a set of lazily computed attributes useful for representing and comparing its geometry, such as center, bounding box, and bounding polygon. These properties will be computed lazily and made available as attributes when requested. Parameters ---------- coordinates : array-like List of 2D or 3D coordinates, can be a list of lists or array of shape (n,2) or (n,3) values : list or array-like Value (or weight) associated with each coordiante id : int or string Arbitrary specification per source, typically an index or string label Attributes ---------- center : list or array-like The coordinates of the center of the source polygon : list or array-like The coordinates of a polygon bounding the region (a convex hull) bbox : list or array-like Boundaries of the source (with the lowest values for all axes followed by the highest values) area : scalar The area of the region """ from zope.cachedescriptors import property def __init__(self, coordinates, values=None, id=None): self.coordinates = asarray(coordinates) if self.coordinates.ndim == 1 and len(self.coordinates) > 0: self.coordinates = asarray([self.coordinates]) if values is not None: self.values = asarray(values) if self.values.ndim == 0: self.values = asarray([self.values]) if not (len(self.coordinates) == len(self.values)): raise ValueError("Lengths of coordinates %g and values %g do not match" % (len(self.coordinates), len(self.values))) if id is not None: self.id = id @property.Lazy def center(self): """ Find the region center using a mean. """ # TODO Add option to use weights return mean(self.coordinates, axis=0) @property.Lazy def polygon(self): """ Find the bounding polygon as a convex hull """ # TODO Add option for simplification from scipy.spatial import ConvexHull if len(self.coordinates) >= 4: inds = ConvexHull(self.coordinates).vertices return self.coordinates[inds] else: return self.coordinates @property.Lazy def bbox(self): """ Find the bounding box. """ mn = amin(self.coordinates, axis=0) mx = amax(self.coordinates, axis=0) return concatenate((mn, mx)) @property.Lazy def area(self): """ Find the region area. """ return len(self.coordinates) def restore(self, skip=None): """ Remove all lazy properties, will force recomputation """ if skip is None: skip = [] elif isinstance(skip, str): skip = [skip] for prop in LAZY_ATTRIBUTES: if prop in self.__dict__.keys() and prop not in skip: del self.__dict__[prop] return self def distance(self, other, method='euclidean'): """ Distance between the center of this source and another. Parameters ---------- other : Source, or array-like Either another source, or the center coordinates of another source method : str Specify a distance measure to used for spatial distance between source centers. Current options include Euclidean distance ('euclidean') and L1-norm ('l1'). """ from numpy.linalg import norm checkParams(method, ['euclidean', 'l1']) if method == 'l1': order = 1 else: order = 2 if isinstance(other, Source): return norm(self.center - other.center, ord=order) elif isinstance(other, list) or isinstance(other, ndarray): return norm(self.center - asarray(other), ord=order) def overlap(self, other, method='fraction'): """ Compute the overlap between this source and other. Options are a symmetric measure of overlap based on the fraction of intersecting pixels relative to the union ('fraction'), an assymmetric measure of overlap that expresses detected intersecting pixels (relative to this source) using precision and recall rates ('rates'), or a correlation coefficient of the weights within the intersection (not defined for binary weights) ('correlation') Parameters ---------- other : Source The source to compute overlap with. method : str Which estimate of overlap to compute, options are 'fraction' (symmetric) 'rates' (asymmetric) or 'correlation' """ checkParams(method, ['fraction', 'rates', 'correlation']) coordsSelf = aslist(self.coordinates) coordsOther = aslist(other.coordinates) intersection = [a for a in coordsSelf if a in coordsOther] nhit = float(len(intersection)) ntotal = float(len(set([tuple(x) for x in coordsSelf] + [tuple(x) for x in coordsOther]))) if method == 'rates': recall = nhit / len(coordsSelf) precision = nhit / len(coordsOther) return recall, precision if method == 'fraction': return nhit / float(ntotal) if method == 'correlation': from scipy.stats import spearmanr if not (hasattr(self, 'values') and hasattr(other, 'values')): raise ValueError('Sources must have values to compute correlation') else: valuesSelf = aslist(self.values) valuesOther = aslist(other.values) if len(intersection) > 0: left = [v for v, c in zip(valuesSelf, coordsSelf) if c in coordsOther] right = [v for v, c in zip(valuesOther, coordsOther) if c in coordsSelf] rho, _ = spearmanr(left, right) else: rho = 0.0 return rho def merge(self, other): """ Combine this source with other """ self.coordinates = concatenate((self.coordinates, other.coordinates)) if hasattr(self, 'values'): self.values = concatenate((self.values, other.values)) return self def tolist(self): """ Convert array-like attributes to list """ import copy new = copy.copy(self) for prop in ["coordinates", "values", "center", "bbox", "polygon"]: if prop in self.__dict__.keys(): val = new.__getattribute__(prop) if val is not None and not isinstance(val, list): setattr(new, prop, val.tolist()) return new def toarray(self): """ Convert array-like attributes to ndarray """ import copy new = copy.copy(self) for prop in ["coordinates", "values", "center", "bbox", "polygon"]: if prop in self.__dict__.keys(): val = new.__getattribute__(prop) if val is not None and not isinstance(val, ndarray): setattr(new, prop, asarray(val)) return new def crop(self, minBound, maxBound): """ Crop a source by removing coordinates outside bounds. Follows normal slice indexing conventions. Parameters ---------- minBound : tuple Minimum or starting bounds for each axis maxBound : tuple Maximum or ending bounds for each axis """ coords = self.coordinates newid = self.id if hasattr(self, 'id') else None if hasattr(self, 'values') and self.values is not None: values = self.values inside = [(c, v) for c, v in zip(coords, values) if c not in coords] newcoords, newvalues = zip(*inside) return Source(coordinates=newcoords, values=newvalues, id=newid) else: newcoords = [c for c in coords if all(c >= minBound) and all(c < maxBound)] return Source(coordinates=newcoords, id=newid) def dilate(self, size): """ Dilate a source using morphological operators. Parameters ---------- size : int Size of dilation in pixels """ if size == 0: newcoords = self.coordinates else: size = (size * 2) + 1 if hasattr(self, 'values') and self.values is not None: raise AttributeError('Cannot dilate sources with values') from skimage.morphology import binary_dilation coords = self.coordinates extent = self.bbox[len(self.center):] - self.bbox[0:len(self.center)] + 1 + size * 2 m = zeros(extent) coords = (coords - self.bbox[0:len(self.center)] + size) m[coords.T.tolist()] = 1 m = binary_dilation(m, ones((size, size))) newcoords = asarray(where(m)).T + self.bbox[0:len(self.center)] - size newcoords = [c for c in newcoords if all(c >= 0)] newid = self.id if hasattr(self, 'id') else None return Source(coordinates=newcoords, id=newid) def exclude(self, other): """ Remove coordinates derived from another Source or an array. If other is an array, will remove coordinates of all non-zero elements from this source. If other is a source, will remove any matching coordinates. Parameters ---------- other : ndarray or Source Source to remove """ if isinstance(other, ndarray): coordsOther = asarray(where(other)).T else: coordsOther = aslist(other.coordinates) coordsSelf = aslist(self.coordinates) newid = self.id if hasattr(self, 'id') else None if hasattr(self, 'values') and self.values is not None: valuesSelf = self.values complement = [(c, v) for c, v in zip(coordsSelf, valuesSelf) if c not in coordsOther] newcoords, newvalues = zip(*complement) return Source(coordinates=newcoords, values=newvalues, id=newid) else: complement = [a for a in coordsSelf if a not in coordsOther] return Source(coordinates=complement, id=newid) def outline(self, inner, outer): """ Compute source outline by differencing two dilations Parameters ---------- inner : int Size of inner outline boundary (in pixels) outer : int Size of outer outline boundary (in pixels) """ return self.dilate(outer).exclude(self.dilate(inner)) def transform(self, data, collect=True): """ Extract series from data using a list of sources. Currently only supports averaging over coordinates. Params ------ data : Images or Series object The data from which to extract collect : boolean, optional, default = True Whether to collect to local array or keep as a Series """ if not (isinstance(data, Images) or isinstance(data, Series)): raise Exception("Input must either be Images or Series (or a subclass)") # TODO add support for weighting if isinstance(data, Images): output = data.meanByRegions([self.coordinates]).toSeries() else: output = data.meanOfRegion(self.coordinates) if collect: return output.collectValuesAsArray() else: return output def mask(self, dims=None, binary=True, outline=False, color=None): """ Construct a mask from a source, either locally or within a larger image. Parameters ---------- dims : list or tuple, optional, default = None Dimensions of large image in which to draw mask. If none, will restrict to the bounding box of the region. binary : boolean, optional, deafult = True Whether to incoporate values or only show a binary mask outline : boolean, optional, deafult = False Whether to only show outlines (derived using binary dilation) color : str or array-like RGB triplet (from 0 to 1) or named color (e.g. 'red', 'blue') """ from thunder import Colorize coords = self.coordinates if dims is None: extent = self.bbox[len(self.center):] - self.bbox[0:len(self.center)] + 1 m = zeros(extent) coords = (coords - self.bbox[0:len(self.center)]) else: m = zeros(dims) if hasattr(self, 'values') and self.values is not None and binary is False: m[coords.T.tolist()] = self.values else: m[coords.T.tolist()] = 1 if outline: from skimage.morphology import binary_dilation m = binary_dilation(m, ones((3, 3))) - m if color is not None: m = Colorize(cmap='indexed', colors=[color]).transform([m]) return m def inbounds(self, minBound, maxBound): """ Check what fraction of coordinates are inside given bounds Parameters ---------- minBound : list or tuple Minimum bounds maxBounds : list or tuple Maximum bounds """ minCheck = sum(self.coordinates < minBound, axis=1) > 0 maxCheck = sum(self.coordinates > maxBound, axis=1) > 0 fraction = 1 - sum(logical_or(minCheck, maxCheck)) / float(len(self.coordinates)) return fraction @staticmethod def fromMask(mask, id=None): """ Genearte a source from a mask. Assumes that the mask is an image where all non-zero elements are part of the source. If all non-zero elements are 1, then values will be ignored as the source is assumed to be binary. Parameters ---------- mask : array-like An array (typically 2D or 3D) containing the image mask id : int or string Arbitrary identifier for the source, typically an int or string """ mask = asarray(mask) u = unique(mask) if len(u) == 2 and u[0] == 0 and u[1] == 1: inds = where(mask) return Source(coordinates=asarray(zip(*inds)), id=id) else: inds = where(mask) values = mask[inds] coords = asarray(zip(*inds)) return Source(coordinates=coords, values=values, id=id) @staticmethod def fromCoordinates(coordinates, values=None, id=None): """ Generate a source from a list of coordinates and values. Parameters ---------- coordinates : array-like List coordinates as a list of lists or array of shape (n,2) or (n,3) values : list or array-like Value (or weight) associated with each coordiante id : int or string Arbitrary specification per source, typically an index or string label """ return Source(coordinates, values, id) def __repr__(self): s = self.__class__.__name__ for opt in ["id", "center", "bbox"]: if hasattr(self, opt): o = self.__getattribute__(opt) os = o.tolist() if isinstance(o, ndarray) else o s += '\n%s: %s' % (opt, repr(os)) return s class SourceModel(Serializable, object): """ A source model as a collection of extracted sources. Parameters ---------- sources : list or Sources or a single Source The identified sources See also -------- Source """ def __init__(self, sources): if isinstance(sources, Source): self.sources = [sources] elif isinstance(sources, list) and isinstance(sources[0], Source): self.sources = sources elif isinstance(sources, list): self.sources = [] for ss in sources: self.sources.append(Source(ss)) else: raise Exception("Input type not recognized, must be Source, list of Sources, " "or list of coordinates, got %s" % type(sources)) def __getitem__(self, entry): if not isinstance(entry, int): raise IndexError("Selection not recognized, must be Int, got %s" % type(entry)) return self.sources[entry] def combiner(self, prop, tolist=True): combined = [] for s in self.sources: p = getattr(s, prop) if tolist: p = p.tolist() combined.append(p) return combined @property def coordinates(self): """ List of coordinates combined across sources """ return self.combiner('coordinates') @property def values(self): """ List of coordinates combined across sources """ return self.combiner('values') @property def centers(self): """ Array of centers combined across sources """ return asarray(self.combiner('center')) @property def polygons(self): """ List of polygons combined across sources """ return self.combiner('polygon') @property def areas(self): """ List of areas combined across sources """ return self.combiner('area', tolist=False) @property def count(self): """ Number of sources """ return len(self.sources) def masks(self, dims=None, binary=True, outline=False, base=None, color=None, inds=None): """ Composite masks combined across sources as an image. Parameters ---------- dims : list or tuple, optional, default = None Dimensions of image in which to create masks, must either provide these or provide a base image binary : boolean, optional, deafult = True Whether to incoporate values or only show a binary mask outline : boolean, optional, deafult = False Whether to only show outlines (derived using binary dilation) base : SourceModel or array-like, optional, deafult = None Base background image on which to put masks, or another set of sources (usually for comparisons). color : str, optional, deafult = None Color to assign regions, will assign randomly if 'random' inds : array-like, optional, deafult = None List of indices if only showing a subset """ from thunder import Colorize from matplotlib.cm import get_cmap if inds is None: inds = range(0, self.count) if dims is None and base is None: raise Exception("Must provide image dimensions for composite masks " "or provide a base image.") if base is not None and isinstance(base, SourceModel): outline = True if dims is None and base is not None: dims = asarray(base).shape if isinstance(base, SourceModel): base = base.masks(dims, color='silver') elif isinstance(base, ndarray): base = Colorize(cmap='indexed', colors=['white']).transform([base]) if base is not None and color is None: color = 'deeppink' if color == 'random': combined = zeros(list(dims) + [3]) ncolors = min(self.count, 20) colors = get_cmap('rainbow', ncolors)(range(0, ncolors, 1))[:, 0:3] for i in inds: combined = maximum(self.sources[i].mask(dims, binary, outline, colors[i % len(colors)]), combined) else: combined = zeros(dims) for i in inds: combined = maximum(self.sources[i].mask(dims, binary, outline), combined) if color is not None and color != 'random': combined = Colorize(cmap='indexed', colors=[color]).transform([combined]) if base is not None: combined = maximum(base, combined) return combined def match(self, other, unique=False, minDistance=inf): """ For each source in self, find the index of the closest source in other. Uses euclidean distances between centers to determine distances. Can select nearest matches with or without enforcing uniqueness; if unique is False, will return the closest source in other for each source in self, possibly repeating sources multiple times if unique is True, will only allow each source in other to be matched with a single source in self, as determined by a greedy selection procedure. The minDistance parameter can be used to prevent far-away sources from being chosen during greedy selection. Params ------ other : SourceModel The source model to match sources to unique : boolean, optional, deafult = True Whether to only return unique matches minDistance : scalar, optiona, default = inf Minimum distance to use when selecting matches """ from scipy.spatial.distance import cdist targets = other.centers targetInds = range(0, len(targets)) matches = [] for s in self.sources: update = 1 # skip if no targets left, otherwise update if len(targets) == 0: update = 0 else: dists = cdist(targets, s.center[newaxis]) if dists.min() < minDistance: ind = argmin(dists) else: update = 0 # apply updates, otherwise add a nan if update == 1: matches.append(targetInds[ind]) if unique is True: targets = delete(targets, ind, axis=0) targetInds = delete(targetInds, ind) else: matches.append(NaN) return matches def distance(self, other, minDistance=inf): """ Compute the distance between each source in self and other. First estimates a matching source from other for each source in self, then computes the distance between the two sources. The matches are unique, using a greedy procedure, and minDistance can be used to prevent outliers during matching. Parameters ---------- other : SourceModel The sources to compute distances to minDistance : scalar, optiona, default = inf Minimum distance to use when matching indices """ inds = self.match(other, unique=True, minDistance=minDistance) d = [] for jj, ii in enumerate(inds): if ii is not NaN: d.append(self[jj].distance(other[ii])) else: d.append(NaN) return asarray(d) def overlap(self, other, method='fraction', minDistance=inf): """ Estimate overlap between sources in self and other. Will compute the similarity of sources in self that are found in other, based on either source pixel overlap or correlation. Parameters ---------- other : SourceModel The sources to compare to method : str, optional, default = 'fraction" Method to use when computing overlap between sources ('fraction', 'rates', or 'correlation') minDistance : scalar, optional, default = inf Minimum distance to use when matching indices """ inds = self.match(other, unique=True, minDistance=minDistance) d = [] for jj, ii in enumerate(inds): if ii is not NaN: d.append(self[jj].overlap(other[ii], method=method)) else: if method == 'rates': d.append((NaN, NaN)) else: d.append(NaN) return asarray(d) def similarity(self, other, metric='distance', thresh=5, minDistance=inf): """ Estimate similarity to another set of sources using recall and precision. Will compute the number of sources in self that are also in other, based on a given distance metric and a threshold. The recall rate is the number of matches divided by the number in self, and the precision rate is the number of matches divided by the number in other. Typically self is ground truth and other is an estimate. The F score is defined as 2 * (recall * precision) / (recall + precision) Before computing metrics, all sources in self are matched to other, and a minimum distance can be set to control matching. Parameters ---------- other : SourceModel The sources to compare to. metric : str, optional, default = 'distance' Metric to use when computing distances, options include 'distance' and 'overlap' thresh : scalar, optional, default = 5 The distance below which a source is considered found. minDistance : scalar, optional, default = inf Minimum distance to use when matching indices. """ checkParams(metric, ['distance', 'overlap']) if metric == 'distance': # when evaluating distances, # minimum distance should be the threshold if minDistance == inf: minDistance = thresh vals = self.distance(other, minDistance=minDistance) vals[isnan(vals)] = inf compare = lambda x: x < thresh elif metric == 'overlap': vals = self.overlap(other, method='fraction', minDistance=minDistance) vals[isnan(vals)] = 0 compare = lambda x: x > thresh else: raise Exception("Metric not recognized") recall = sum(map(compare, vals)) / float(self.count) precision = sum(map(compare, vals)) / float(other.count) score = 2 * (recall * precision) / (recall + precision) return recall, precision, score def transform(self, data, collect=True): """ Extract series from data using a list of sources. Currently only supports simple averaging over coordinates. Params ------ data : Images or Series object The data from which to extract signals collect : boolean, optional, default = True Whether to collect to local array or keep as a Series """ if not (isinstance(data, Images) or isinstance(data, Series)): raise Exception("Input must either be Images or Series (or a subclass)") # TODO add support for weighting if isinstance(data, Images): output = data.meanByRegions(self.coordinates).toSeries() else: output = data.meanByRegions(self.coordinates) if collect: return output.collectValuesAsArray() else: return output def clean(self, cleaners=None): """ Apply one or more cleaners to sources, returning filtered sources Parameters ---------- cleaners : Cleaner or list of Cleaners, optional, default = None Which cleaners to apply, if None, will apply BasicCleaner with defaults """ from thunder.extraction.cleaners import Cleaner, BasicCleaner from copy import copy if isinstance(cleaners, list): for c in cleaners: if not isinstance(c, Cleaner): raise Exception("List must only contain Cleaners") elif isinstance(cleaners, Cleaner): cleaners = [cleaners] elif cleaners is None: cleaners = [BasicCleaner()] else: raise Exception("Must provide Cleaner or list of Cleaners, got %s" % type(cleaners)) newmodel = copy(self) for c in cleaners: newmodel = c.clean(newmodel) return newmodel def dilate(self, size): """ Dilate all sources using morphological operators Parameters ---------- size : int Size of dilation in pixels """ return SourceModel([s.dilate(size) for s in self.sources]) def outline(self, inner, outer): """ Outline all sources inner : int Size of inner outline boundary (in pixels) outer : int Size of outer outline boundary (in pixels) """ return SourceModel([s.outline(inner, outer) for s in self.sources]) def crop(self, minBound, maxBound): """ Crop all sources by removing coordinates outside of bounds Parameters ---------- minBound : tuple Minimum or starting bounds for each axis maxBound : tuple Maximum or ending bounds for each axis """ return SourceModel([s.crop(minBound, maxBound) for s in self.sources]) def save(self, f, include=None, overwrite=False, **kwargs): """ Custom save to file with simplified, human-readable output, and selection of lazy attributes. """ import copy output = copy.deepcopy(self) if isinstance(include, str): include = [include] if include is not None: for prop in include: map(lambda s: getattr(s, prop), output.sources) output.sources = map(lambda s: s.restore(include).tolist(), output.sources) simplify = lambda d: d['sources']['py/homogeneousList']['data'] super(SourceModel, output).save(f, simplify=simplify, overwrite=overwrite, **kwargs) @classmethod def load(cls, f, **kwargs): """ Custom load from file to handle simplified, human-readable output """ unsimplify = lambda d: {'sources': { 'py/homogeneousList': {'data': d, 'module': 'thunder.extraction.source', 'type': 'Source'}}} output = super(SourceModel, cls).load(f, unsimplify=unsimplify) output.sources = map(lambda s: s.toarray(), output.sources) return output @classmethod def deserialize(cls, d, **kwargs): """ Custom load from JSON to handle simplified, human-readable output """ unsimplify = lambda d: {'sources': { 'py/homogeneousList': {'data': d, 'module': 'thunder.extraction.source', 'type': 'Source'}}} output = super(SourceModel, cls).deserialize(d, unsimplify=unsimplify) output.sources = map(lambda s: s.toarray(), output.sources) return output def __repr__(self): s = self.__class__.__name__ s += '\n%g sources' % (len(self.sources)) return s LAZY_ATTRIBUTES = ["center", "polygon", "bbox", "area"]
apache-2.0
amanzi/ats-dev
tools/utils/transect_data.py
2
7741
"""Loads and/or plots 2D, topologlically structured data on quadrilaterals using matplotlib. """ import sys,os import numpy as np import h5py import mesh import colors def fullname(varname): fullname = varname if not '.cell.' in fullname: fullname = fullname+'.cell.0' return fullname def transect_data(varnames, keys='all', directory=".", filename="visdump_data.h5", mesh_filename="visdump_mesh.h5", coord_order=None, deformable=False, return_map=False): """Pulls simulation output into structured 2D arrays for transect-based, (i,j) indexing. Input: varnames | A list of variable names to pull, e.g. | ['saturation_liquid', 'saturation_ice'], or a single variable | name, e.g. 'saturation_liquid' keys | Indices of timesteps to pull. Either an int (i.e. 0, -1, etc) | for the kth timestep, or a list of ints, or 'all'. directory | Directory of the run. Defaults to '.' filename | Filename of the run. Defaults to 'visdump_data.h5' mesh_filename | Filename of the mesh. Defaults to 'visdump_mesh.h5' coord_order | Order of the transect coordinates. Defaults to ['x','z']. The | mesh is sorted in this order. deformable | Is the mesh deforming? return_map | See return value below. Output: Output is an array of shape: ( len(varnames+2), len(keys), n_cells_coord_order[0], n_cells_coord_order[1] ) data[0,0,:,:] is the coord_order[0] centroid data[1,0,:,:] is the coord_order[1] centroid data[i+2,k,:,:] is the ith varname data at the kth requested timestep, sorted in the same way as the centroids. Note that the data is re-ordered in INCREASING coordinate, i.e. bottom to top in z. If return_map is True, then returns a tuple, (data, map) where map is a (NX,NZ) array of integers specifying which global id corresponds to the (i,j) cell. This is useful for mapping input data back INTO the unstructured mesh. Example usage: Calculate and plot the thaw depth at step 5. // Pull saturation ice -- TD is where sat ice = 0." data = transect_data(['saturation_ice', 5) // x coordinate for plotting x = data[0,0,:,0] // for each column, find highest z where sat_ice > 0. td_i = np.array([np.where(data[2,0,i,:] > 0.)[0][-1] for i in range(data.shape[2])]) // now that we have an index into the highest cell with ice, determine td as the // mean of the highest cell with ice and the one above that. Note this assumes // all columns have some thawing. td_z = np.array( [ (dat[1,0,i,td_i[i]] + dat[1,0,i,td_i[i+1]]) / 2. for i in range(len(td_i)) ] ) plt.plot(x, td_z) """ if coord_order is None: coord_order = ['x','z'] if type(varnames) is str: varnames = [varnames,] # get centroids xyz = mesh.meshElemCentroids(mesh_filename, directory) # round to avoid issues xyz = np.round(xyz, decimals=5) # get ordering of centroids dtype = [(coord_order[0], float), (coord_order[1], float)] num_order = [] for i in coord_order: if i == 'x': num_order.append(0) elif i == 'y': num_order.append(1) elif i == 'z': num_order.append(2) xyz_sort_order = np.array([tuple([xyz[i,x] for x in num_order]) for i in range(len(xyz))], dtype=dtype) xyz_sorting = xyz_sort_order.argsort(order=coord_order) with h5py.File(os.path.join(directory,filename),'r') as dat: keys_avail = dat[fullname(varnames[0])].keys() keys_avail.sort(lambda a,b: int.__cmp__(int(a),int(b))) if keys == 'all': keys = keys_avail elif type(keys) is str: keys = [keys,] elif type(keys) is int: keys = [keys_avail[keys],] elif type(keys) is slice: keys = keys_avail[keys] elif type(keys) is list: if all(type(k) is int for k in keys): keys = [keys_avail[k] for k in keys] elif all(type(k) is str for k in keys): pass else: raise RuntimeError("Keys requested cannot be processed -- should be 'all', int, or str key, or list of ints or strs.") # get data vals = np.zeros((len(varnames)+2, len(keys), len(xyz)), 'd') for i,key in enumerate(keys): if deformable: xyz = mesh.meshElemCentroids(mesh_filename, directory) vals[0,i,:] = xyz[xyz_sorting,num_order[0]] vals[1,i,:] = xyz[xyz_sorting,num_order[1]] for j,varname in enumerate(varnames): vals[j+2,i,:] = dat[fullname(varname)][key][:,0][xyz_sorting] # reshape the data # determine nx nx = len(set(vals[0,0,:])) nz = vals.shape[2] / nx if (nx * nz != vals.shape[2]): raise RuntimeError("Assumption about first coordinate being cleanly binnable is falling apart -- ask Ethan to rethink this algorithm!") shp = vals.shape if not return_map: return vals.reshape(shp[0], shp[1], nx, nz) else: return vals.reshape(shp[0], shp[1], nx, nz), xyz_sorting.reshape(nx, nz) def plot(dataset, ax, cax=None, vmin=None, vmax=None, cmap="jet", label=None, mesh_filename="visdump_mesh.h5", directory=".", y_coord=0.0, linewidths=1): """Draws a dataset on an ax.""" import matplotlib.collections from matplotlib import pyplot as plt if vmin is None: vmin = dataset.min() if vmax is None: vmax = dataset.max() # get the mesh and collapse to 2D etype, coords, conn = mesh.meshElemXYZ(filename=mesh_filename, directory=directory) if etype is not 'HEX': raise RuntimeError("Only works for Hexs") coords2 = np.array([[coords[i][0::2] for i in c[1:] if abs(coords[i][1] - y_coord) < 1.e-8] for c in conn]) try: assert coords2.shape[2] == 2 assert coords2.shape[1] == 4 except AssertionError: print(coords2.shape) for c in conn: if len(c) != 9: print c raise RuntimeError("what is a conn?") coords3 = np.array([coords[i][:] for i in c[1:] if abs(coords[i][1] - y_coord) < 1.e-8]) if coords3.shape[0] != 4: print coords raise RuntimeError("Unable to squash to 2D") # reorder anti-clockwise for i,c in enumerate(coords2): centroid = c.mean(axis=0) def angle(p1,p2): a1 = np.arctan2((p1[1]-centroid[1]),(p1[0]-centroid[0])) a2 = np.arctan2((p2[1]-centroid[1]),(p2[0]-centroid[0])) if a1 < a2: return -1 elif a2 < a1: return 1 else: return 0 c2 = np.array(sorted(c,angle)) coords2[i] = c2 polygons = matplotlib.collections.PolyCollection(coords2, edgecolor='k', cmap=cmap, linewidths=linewidths) polygons.set_array(dataset) polygons.set_clim(vmin,vmax) ax.add_collection(polygons) xmin = min(c[0] for c in coords.itervalues()) xmax = max(c[0] for c in coords.itervalues()) zmin = min(c[2] for c in coords.itervalues()) zmax = max(c[2] for c in coords.itervalues()) ax.set_xlim(xmin,xmax) ax.set_ylim(zmin,zmax) if cax is not None: cb = plt.colorbar(polygons, cax=cax) if label is not None: cb.set_label(label) return ((xmin,xmax),(zmin,zmax))
bsd-3-clause
lbishal/scikit-learn
examples/gaussian_process/plot_gpc_isoprobability.py
45
3025
#!/usr/bin/python # -*- coding: utf-8 -*- """ ================================================================= Iso-probability lines for Gaussian Processes classification (GPC) ================================================================= A two-dimensional classification example showing iso-probability lines for the predicted probabilities. """ print(__doc__) # Author: Vincent Dubourg <vincent.dubourg@gmail.com> # Adapted to GaussianProcessClassifier: # Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # Licence: BSD 3 clause import numpy as np from matplotlib import pyplot as pl from matplotlib import cm from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import DotProduct, ConstantKernel as C # A few constants lim = 8 def g(x): """The function to predict (classification will then consist in predicting whether g(x) <= 0 or not)""" return 5. - x[:, 1] - .5 * x[:, 0] ** 2. # Design of experiments X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) # Observations y = np.array(g(X) > 0, dtype=int) # Instanciate and fit Gaussian Process Model kernel = C(0.1, (1e-5, np.inf)) * DotProduct(sigma_0=0.1) ** 2 gp = GaussianProcessClassifier(kernel=kernel) gp.fit(X, y) print("Learned kernel: %s " % gp.kernel_) # Evaluate real function and the predicted probability res = 50 x1, x2 = np.meshgrid(np.linspace(- lim, lim, res), np.linspace(- lim, lim, res)) xx = np.vstack([x1.reshape(x1.size), x2.reshape(x2.size)]).T y_true = g(xx) y_prob = gp.predict_proba(xx)[:, 1] y_true = y_true.reshape((res, res)) y_prob = y_prob.reshape((res, res)) # Plot the probabilistic classification iso-values fig = pl.figure(1) ax = fig.gca() ax.axes.set_aspect('equal') pl.xticks([]) pl.yticks([]) ax.set_xticklabels([]) ax.set_yticklabels([]) pl.xlabel('$x_1$') pl.ylabel('$x_2$') cax = pl.imshow(y_prob, cmap=cm.gray_r, alpha=0.8, extent=(-lim, lim, -lim, lim)) norm = pl.matplotlib.colors.Normalize(vmin=0., vmax=0.9) cb = pl.colorbar(cax, ticks=[0., 0.2, 0.4, 0.6, 0.8, 1.], norm=norm) cb.set_label('${\\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\\right]$') pl.clim(0, 1) pl.plot(X[y <= 0, 0], X[y <= 0, 1], 'r.', markersize=12) pl.plot(X[y > 0, 0], X[y > 0, 1], 'b.', markersize=12) cs = pl.contour(x1, x2, y_true, [0.], colors='k', linestyles='dashdot') cs = pl.contour(x1, x2, y_prob, [0.666], colors='b', linestyles='solid') pl.clabel(cs, fontsize=11) cs = pl.contour(x1, x2, y_prob, [0.5], colors='k', linestyles='dashed') pl.clabel(cs, fontsize=11) cs = pl.contour(x1, x2, y_prob, [0.334], colors='r', linestyles='solid') pl.clabel(cs, fontsize=11) pl.show()
bsd-3-clause
bikong2/scikit-learn
benchmarks/bench_plot_approximate_neighbors.py
244
6011
""" Benchmark for approximate nearest neighbor search using locality sensitive hashing forest. There are two types of benchmarks. First, accuracy of LSHForest queries are measured for various hyper-parameters and index sizes. Second, speed up of LSHForest queries compared to brute force method in exact nearest neighbors is measures for the aforementioned settings. In general, speed up is increasing as the index size grows. """ from __future__ import division import numpy as np from tempfile import gettempdir from time import time from sklearn.neighbors import NearestNeighbors from sklearn.neighbors.approximate import LSHForest from sklearn.datasets import make_blobs from sklearn.externals.joblib import Memory m = Memory(cachedir=gettempdir()) @m.cache() def make_data(n_samples, n_features, n_queries, random_state=0): """Create index and query data.""" print('Generating random blob-ish data') X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=100, shuffle=True, random_state=random_state) # Keep the last samples as held out query vectors: note since we used # shuffle=True we have ensured that index and query vectors are # samples from the same distribution (a mixture of 100 gaussians in this # case) return X[:n_samples], X[n_samples:] def calc_exact_neighbors(X, queries, n_queries, n_neighbors): """Measures average times for exact neighbor queries.""" print ('Building NearestNeighbors for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) average_time = 0 t0 = time() neighbors = nbrs.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time = (time() - t0) / n_queries return neighbors, average_time def calc_accuracy(X, queries, n_queries, n_neighbors, exact_neighbors, average_time_exact, **lshf_params): """Calculates accuracy and the speed up of LSHForest.""" print('Building LSHForest for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) lshf = LSHForest(**lshf_params) t0 = time() lshf.fit(X) lshf_build_time = time() - t0 print('Done in %0.3fs' % lshf_build_time) accuracy = 0 t0 = time() approx_neighbors = lshf.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time_approx = (time() - t0) / n_queries for i in range(len(queries)): accuracy += np.in1d(approx_neighbors[i], exact_neighbors[i]).mean() accuracy /= n_queries speed_up = average_time_exact / average_time_approx print('Average time for lshf neighbor queries: %0.3fs' % average_time_approx) print ('Average time for exact neighbor queries: %0.3fs' % average_time_exact) print ('Average Accuracy : %0.2f' % accuracy) print ('Speed up: %0.1fx' % speed_up) return speed_up, accuracy if __name__ == '__main__': import matplotlib.pyplot as plt # Initialize index sizes n_samples = [int(1e3), int(1e4), int(1e5), int(1e6)] n_features = int(1e2) n_queries = 100 n_neighbors = 10 X_index, X_query = make_data(np.max(n_samples), n_features, n_queries, random_state=0) params_list = [{'n_estimators': 3, 'n_candidates': 50}, {'n_estimators': 5, 'n_candidates': 70}, {'n_estimators': 10, 'n_candidates': 100}] accuracies = np.zeros((len(n_samples), len(params_list)), dtype=float) speed_ups = np.zeros((len(n_samples), len(params_list)), dtype=float) for i, sample_size in enumerate(n_samples): print ('==========================================================') print ('Sample size: %i' % sample_size) print ('------------------------') exact_neighbors, average_time_exact = calc_exact_neighbors( X_index[:sample_size], X_query, n_queries, n_neighbors) for j, params in enumerate(params_list): print ('LSHF parameters: n_estimators = %i, n_candidates = %i' % (params['n_estimators'], params['n_candidates'])) speed_ups[i, j], accuracies[i, j] = calc_accuracy( X_index[:sample_size], X_query, n_queries, n_neighbors, exact_neighbors, average_time_exact, random_state=0, **params) print ('') print ('==========================================================') # Set labels for LSHForest parameters colors = ['c', 'm', 'y'] legend_rects = [plt.Rectangle((0, 0), 0.1, 0.1, fc=color) for color in colors] legend_labels = ['n_estimators={n_estimators}, ' 'n_candidates={n_candidates}'.format(**p) for p in params_list] # Plot precision plt.figure() plt.legend(legend_rects, legend_labels, loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, accuracies[:, i], c=colors[i]) plt.plot(n_samples, accuracies[:, i], c=colors[i]) plt.ylim([0, 1.3]) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Precision@10") plt.xlabel("Index size") plt.grid(which='both') plt.title("Precision of first 10 neighbors with index size") # Plot speed up plt.figure() plt.legend(legend_rects, legend_labels, loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, speed_ups[:, i], c=colors[i]) plt.plot(n_samples, speed_ups[:, i], c=colors[i]) plt.ylim(0, np.max(speed_ups)) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Speed up") plt.xlabel("Index size") plt.grid(which='both') plt.title("Relationship between Speed up and index size") plt.show()
bsd-3-clause
mtconley/turntable
test/lib/python2.7/site-packages/scipy/stats/tests/test_morestats.py
7
38719
# Author: Travis Oliphant, 2002 # # Further enhancements and tests added by numerous SciPy developers. # from __future__ import division, print_function, absolute_import import warnings import numpy as np from numpy.random import RandomState from numpy.testing import (TestCase, run_module_suite, assert_array_equal, assert_almost_equal, assert_array_less, assert_array_almost_equal, assert_raises, assert_, assert_allclose, assert_equal, dec, assert_warns) from scipy import stats # Matplotlib is not a scipy dependency but is optionally used in probplot, so # check if it's available try: import matplotlib.pyplot as plt have_matplotlib = True except: have_matplotlib = False g1 = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000] g2 = [0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988] g3 = [0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996] g4 = [1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996] g5 = [0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996] g6 = [1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996] g7 = [0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002] g8 = [0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006] g9 = [1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991] g10 = [0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997] class TestShapiro(TestCase): def test_basic(self): x1 = [0.11,7.87,4.61,10.14,7.95,3.14,0.46, 4.43,0.21,4.75,0.71,1.52,3.24, 0.93,0.42,4.97,9.53,4.55,0.47,6.66] w,pw = stats.shapiro(x1) assert_almost_equal(w,0.90047299861907959,6) assert_almost_equal(pw,0.042089745402336121,6) x2 = [1.36,1.14,2.92,2.55,1.46,1.06,5.27,-1.11, 3.48,1.10,0.88,-0.51,1.46,0.52,6.20,1.69, 0.08,3.67,2.81,3.49] w,pw = stats.shapiro(x2) assert_almost_equal(w,0.9590270,6) assert_almost_equal(pw,0.52460,3) def test_bad_arg(self): # Length of x is less than 3. x = [1] assert_raises(ValueError, stats.shapiro, x) class TestAnderson(TestCase): def test_normal(self): rs = RandomState(1234567890) x1 = rs.standard_exponential(size=50) x2 = rs.standard_normal(size=50) A,crit,sig = stats.anderson(x1) assert_array_less(crit[:-1], A) A,crit,sig = stats.anderson(x2) assert_array_less(A, crit[-2:]) def test_expon(self): rs = RandomState(1234567890) x1 = rs.standard_exponential(size=50) x2 = rs.standard_normal(size=50) A,crit,sig = stats.anderson(x1,'expon') assert_array_less(A, crit[-2:]) olderr = np.seterr(all='ignore') try: A,crit,sig = stats.anderson(x2,'expon') finally: np.seterr(**olderr) assert_(A > crit[-1]) def test_bad_arg(self): assert_raises(ValueError, stats.anderson, [1], dist='plate_of_shrimp') class TestAndersonKSamp(TestCase): def test_example1a(self): # Example data from Scholz & Stephens (1987), originally # published in Lehmann (1995, Nonparametrics, Statistical # Methods Based on Ranks, p. 309) # Pass a mixture of lists and arrays t1 = [38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0] t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8]) t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0]) t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8]) assert_warns(UserWarning, stats.anderson_ksamp, (t1, t2, t3, t4), midrank=False) with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='approximate p-value') Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=False) assert_almost_equal(Tk, 4.449, 3) assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459], tm, 4) assert_almost_equal(p, 0.0021, 4) def test_example1b(self): # Example data from Scholz & Stephens (1987), originally # published in Lehmann (1995, Nonparametrics, Statistical # Methods Based on Ranks, p. 309) # Pass arrays t1 = np.array([38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0]) t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8]) t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0]) t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8]) with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='approximate p-value') Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=True) assert_almost_equal(Tk, 4.480, 3) assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459], tm, 4) assert_almost_equal(p, 0.0020, 4) def test_example2a(self): # Example data taken from an earlier technical report of # Scholz and Stephens # Pass lists instead of arrays t1 = [194, 15, 41, 29, 33, 181] t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118] t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34] t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 118, 25, 156, 310, 76, 26, 44, 23, 62] t5 = [130, 208, 70, 101, 208] t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27] t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33] t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95] t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24] t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36, 22, 139, 210, 97, 30, 23, 13, 14] t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438] t12 = [50, 254, 5, 283, 35, 12] t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130] t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66, 61, 34] with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='approximate p-value') Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14), midrank=False) assert_almost_equal(Tk, 3.288, 3) assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009], tm, 4) assert_almost_equal(p, 0.0041, 4) def test_example2b(self): # Example data taken from an earlier technical report of # Scholz and Stephens t1 = [194, 15, 41, 29, 33, 181] t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118] t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34] t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 118, 25, 156, 310, 76, 26, 44, 23, 62] t5 = [130, 208, 70, 101, 208] t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27] t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33] t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95] t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24] t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36, 22, 139, 210, 97, 30, 23, 13, 14] t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438] t12 = [50, 254, 5, 283, 35, 12] t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130] t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66, 61, 34] with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='approximate p-value') Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14), midrank=True) assert_almost_equal(Tk, 3.294, 3) assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009], tm, 4) assert_almost_equal(p, 0.0041, 4) def test_not_enough_samples(self): assert_raises(ValueError, stats.anderson_ksamp, np.ones(5)) def test_no_distinct_observations(self): assert_raises(ValueError, stats.anderson_ksamp, (np.ones(5), np.ones(5))) def test_empty_sample(self): assert_raises(ValueError, stats.anderson_ksamp, (np.ones(5), [])) class TestAnsari(TestCase): def test_small(self): x = [1,2,3,3,4] y = [3,2,6,1,6,1,4,1] W, pval = stats.ansari(x,y) assert_almost_equal(W,23.5,11) assert_almost_equal(pval,0.13499256881897437,11) def test_approx(self): ramsay = np.array((111, 107, 100, 99, 102, 106, 109, 108, 104, 99, 101, 96, 97, 102, 107, 113, 116, 113, 110, 98)) parekh = np.array((107, 108, 106, 98, 105, 103, 110, 105, 104, 100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)) with warnings.catch_warnings(): warnings.filterwarnings('ignore', message="Ties preclude use of exact statistic.") W, pval = stats.ansari(ramsay, parekh) assert_almost_equal(W,185.5,11) assert_almost_equal(pval,0.18145819972867083,11) def test_exact(self): W,pval = stats.ansari([1,2,3,4],[15,5,20,8,10,12]) assert_almost_equal(W,10.0,11) assert_almost_equal(pval,0.533333333333333333,7) def test_bad_arg(self): assert_raises(ValueError, stats.ansari, [], [1]) assert_raises(ValueError, stats.ansari, [1], []) class TestBartlett(TestCase): def test_data(self): args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10] T, pval = stats.bartlett(*args) assert_almost_equal(T,20.78587342806484,7) assert_almost_equal(pval,0.0136358632781,7) def test_bad_arg(self): # Too few args raises ValueError. assert_raises(ValueError, stats.bartlett, [1]) class TestLevene(TestCase): def test_data(self): args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10] W, pval = stats.levene(*args) assert_almost_equal(W,1.7059176930008939,7) assert_almost_equal(pval,0.0990829755522,7) def test_trimmed1(self): # Test that center='trimmed' gives the same result as center='mean' # when proportiontocut=0. W1, pval1 = stats.levene(g1, g2, g3, center='mean') W2, pval2 = stats.levene(g1, g2, g3, center='trimmed', proportiontocut=0.0) assert_almost_equal(W1, W2) assert_almost_equal(pval1, pval2) def test_trimmed2(self): x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0] y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0] np.random.seed(1234) x2 = np.random.permutation(x) # Use center='trimmed' W0, pval0 = stats.levene(x, y, center='trimmed', proportiontocut=0.125) W1, pval1 = stats.levene(x2, y, center='trimmed', proportiontocut=0.125) # Trim the data here, and use center='mean' W2, pval2 = stats.levene(x[1:-1], y[1:-1], center='mean') # Result should be the same. assert_almost_equal(W0, W2) assert_almost_equal(W1, W2) assert_almost_equal(pval1, pval2) def test_equal_mean_median(self): x = np.linspace(-1,1,21) np.random.seed(1234) x2 = np.random.permutation(x) y = x**3 W1, pval1 = stats.levene(x, y, center='mean') W2, pval2 = stats.levene(x2, y, center='median') assert_almost_equal(W1, W2) assert_almost_equal(pval1, pval2) def test_bad_keyword(self): x = np.linspace(-1,1,21) assert_raises(TypeError, stats.levene, x, x, portiontocut=0.1) def test_bad_center_value(self): x = np.linspace(-1,1,21) assert_raises(ValueError, stats.levene, x, x, center='trim') def test_too_few_args(self): assert_raises(ValueError, stats.levene, [1]) class TestBinomP(TestCase): def test_data(self): pval = stats.binom_test(100,250) assert_almost_equal(pval,0.0018833009350757682,11) pval = stats.binom_test(201,405) assert_almost_equal(pval,0.92085205962670713,11) pval = stats.binom_test([682,243],p=3.0/4) assert_almost_equal(pval,0.38249155957481695,11) def test_bad_len_x(self): # Length of x must be 1 or 2. assert_raises(ValueError, stats.binom_test, [1,2,3]) def test_bad_n(self): # len(x) is 1, but n is invalid. # Missing n assert_raises(ValueError, stats.binom_test, [100]) # n less than x[0] assert_raises(ValueError, stats.binom_test, [100], n=50) def test_bad_p(self): assert_raises(ValueError, stats.binom_test, [50, 50], p=2.0) class TestFindRepeats(TestCase): def test_basic(self): a = [1,2,3,4,1,2,3,4,1,2,5] res,nums = stats.find_repeats(a) assert_array_equal(res,[1,2,3,4]) assert_array_equal(nums,[3,3,2,2]) def test_empty_result(self): # Check that empty arrays are returned when there are no repeats. a = [10, 20, 50, 30, 40] repeated, counts = stats.find_repeats(a) assert_array_equal(repeated, []) assert_array_equal(counts, []) class TestFligner(TestCase): def test_data(self): # numbers from R: fligner.test in package stats x1 = np.arange(5) assert_array_almost_equal(stats.fligner(x1,x1**2), (3.2282229927203536, 0.072379187848207877), 11) def test_trimmed1(self): # Test that center='trimmed' gives the same result as center='mean' # when proportiontocut=0. Xsq1, pval1 = stats.fligner(g1, g2, g3, center='mean') Xsq2, pval2 = stats.fligner(g1, g2, g3, center='trimmed', proportiontocut=0.0) assert_almost_equal(Xsq1, Xsq2) assert_almost_equal(pval1, pval2) def test_trimmed2(self): x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0] y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0] # Use center='trimmed' Xsq1, pval1 = stats.fligner(x, y, center='trimmed', proportiontocut=0.125) # Trim the data here, and use center='mean' Xsq2, pval2 = stats.fligner(x[1:-1], y[1:-1], center='mean') # Result should be the same. assert_almost_equal(Xsq1, Xsq2) assert_almost_equal(pval1, pval2) # The following test looks reasonable at first, but fligner() uses the # function stats.rankdata(), and in one of the cases in this test, # there are ties, while in the other (because of normal rounding # errors) there are not. This difference leads to differences in the # third significant digit of W. # #def test_equal_mean_median(self): # x = np.linspace(-1,1,21) # y = x**3 # W1, pval1 = stats.fligner(x, y, center='mean') # W2, pval2 = stats.fligner(x, y, center='median') # assert_almost_equal(W1, W2) # assert_almost_equal(pval1, pval2) def test_bad_keyword(self): x = np.linspace(-1,1,21) assert_raises(TypeError, stats.fligner, x, x, portiontocut=0.1) def test_bad_center_value(self): x = np.linspace(-1,1,21) assert_raises(ValueError, stats.fligner, x, x, center='trim') def test_bad_num_args(self): # Too few args raises ValueError. assert_raises(ValueError, stats.fligner, [1]) class TestMood(TestCase): def test_mood(self): # numbers from R: mood.test in package stats x1 = np.arange(5) assert_array_almost_equal(stats.mood(x1, x1**2), (-1.3830857299399906, 0.16663858066771478), 11) def test_mood_order_of_args(self): # z should change sign when the order of arguments changes, pvalue # should not change np.random.seed(1234) x1 = np.random.randn(10, 1) x2 = np.random.randn(15, 1) z1, p1 = stats.mood(x1, x2) z2, p2 = stats.mood(x2, x1) assert_array_almost_equal([z1, p1], [-z2, p2]) def test_mood_with_axis_none(self): #Test with axis = None, compare with results from R x1 = [-0.626453810742332, 0.183643324222082, -0.835628612410047, 1.59528080213779, 0.329507771815361, -0.820468384118015, 0.487429052428485, 0.738324705129217, 0.575781351653492, -0.305388387156356, 1.51178116845085, 0.389843236411431, -0.621240580541804, -2.2146998871775, 1.12493091814311, -0.0449336090152309, -0.0161902630989461, 0.943836210685299, 0.821221195098089, 0.593901321217509] x2 = [-0.896914546624981, 0.184849184646742, 1.58784533120882, -1.13037567424629, -0.0802517565509893, 0.132420284381094, 0.707954729271733, -0.23969802417184, 1.98447393665293, -0.138787012119665, 0.417650750792556, 0.981752777463662, -0.392695355503813, -1.03966897694891, 1.78222896030858, -2.31106908460517, 0.878604580921265, 0.035806718015226, 1.01282869212708, 0.432265154539617, 2.09081920524915, -1.19992581964387, 1.58963820029007, 1.95465164222325, 0.00493777682814261, -2.45170638784613, 0.477237302613617, -0.596558168631403, 0.792203270299649, 0.289636710177348] x1 = np.array(x1) x2 = np.array(x2) x1.shape = (10, 2) x2.shape = (15, 2) assert_array_almost_equal(stats.mood(x1, x2, axis=None), [-1.31716607555, 0.18778296257]) def test_mood_2d(self): # Test if the results of mood test in 2-D case are consistent with the # R result for the same inputs. Numbers from R mood.test(). ny = 5 np.random.seed(1234) x1 = np.random.randn(10, ny) x2 = np.random.randn(15, ny) z_vectest, pval_vectest = stats.mood(x1, x2) for j in range(ny): assert_array_almost_equal([z_vectest[j], pval_vectest[j]], stats.mood(x1[:, j], x2[:, j])) # inverse order of dimensions x1 = x1.transpose() x2 = x2.transpose() z_vectest, pval_vectest = stats.mood(x1, x2, axis=1) for i in range(ny): # check axis handling is self consistent assert_array_almost_equal([z_vectest[i], pval_vectest[i]], stats.mood(x1[i, :], x2[i, :])) def test_mood_3d(self): shape = (10, 5, 6) np.random.seed(1234) x1 = np.random.randn(*shape) x2 = np.random.randn(*shape) for axis in range(3): z_vectest, pval_vectest = stats.mood(x1, x2, axis=axis) # Tests that result for 3-D arrays is equal to that for the # same calculation on a set of 1-D arrays taken from the # 3-D array axes_idx = ([1, 2], [0, 2], [0, 1]) # the two axes != axis for i in range(shape[axes_idx[axis][0]]): for j in range(shape[axes_idx[axis][1]]): if axis == 0: slice1 = x1[:, i, j] slice2 = x2[:, i, j] elif axis == 1: slice1 = x1[i, :, j] slice2 = x2[i, :, j] else: slice1 = x1[i, j, :] slice2 = x2[i, j, :] assert_array_almost_equal([z_vectest[i, j], pval_vectest[i, j]], stats.mood(slice1, slice2)) def test_mood_bad_arg(self): # Raise ValueError when the sum of the lengths of the args is less than 3 assert_raises(ValueError, stats.mood, [1], []) class TestProbplot(TestCase): def test_basic(self): np.random.seed(12345) x = stats.norm.rvs(size=20) osm, osr = stats.probplot(x, fit=False) osm_expected = [-1.8241636, -1.38768012, -1.11829229, -0.91222575, -0.73908135, -0.5857176, -0.44506467, -0.31273668, -0.18568928, -0.06158146, 0.06158146, 0.18568928, 0.31273668, 0.44506467, 0.5857176, 0.73908135, 0.91222575, 1.11829229, 1.38768012, 1.8241636] assert_allclose(osr, np.sort(x)) assert_allclose(osm, osm_expected) res, res_fit = stats.probplot(x, fit=True) res_fit_expected = [1.05361841, 0.31297795, 0.98741609] assert_allclose(res_fit, res_fit_expected) def test_sparams_keyword(self): np.random.seed(123456) x = stats.norm.rvs(size=100) # Check that None, () and 0 (loc=0, for normal distribution) all work # and give the same results osm1, osr1 = stats.probplot(x, sparams=None, fit=False) osm2, osr2 = stats.probplot(x, sparams=0, fit=False) osm3, osr3 = stats.probplot(x, sparams=(), fit=False) assert_allclose(osm1, osm2) assert_allclose(osm1, osm3) assert_allclose(osr1, osr2) assert_allclose(osr1, osr3) # Check giving (loc, scale) params for normal distribution osm, osr = stats.probplot(x, sparams=(), fit=False) def test_dist_keyword(self): np.random.seed(12345) x = stats.norm.rvs(size=20) osm1, osr1 = stats.probplot(x, fit=False, dist='t', sparams=(3,)) osm2, osr2 = stats.probplot(x, fit=False, dist=stats.t, sparams=(3,)) assert_allclose(osm1, osm2) assert_allclose(osr1, osr2) assert_raises(ValueError, stats.probplot, x, dist='wrong-dist-name') assert_raises(AttributeError, stats.probplot, x, dist=[]) class custom_dist(object): """Some class that looks just enough like a distribution.""" def ppf(self, q): return stats.norm.ppf(q, loc=2) osm1, osr1 = stats.probplot(x, sparams=(2,), fit=False) osm2, osr2 = stats.probplot(x, dist=custom_dist(), fit=False) assert_allclose(osm1, osm2) assert_allclose(osr1, osr2) @dec.skipif(not have_matplotlib) def test_plot_kwarg(self): np.random.seed(7654321) fig = plt.figure() fig.add_subplot(111) x = stats.t.rvs(3, size=100) res1, fitres1 = stats.probplot(x, plot=plt) plt.close() res2, fitres2 = stats.probplot(x, plot=None) res3 = stats.probplot(x, fit=False, plot=plt) plt.close() res4 = stats.probplot(x, fit=False, plot=None) # Check that results are consistent between combinations of `fit` and # `plot` keywords. assert_(len(res1) == len(res2) == len(res3) == len(res4) == 2) assert_allclose(res1, res2) assert_allclose(res1, res3) assert_allclose(res1, res4) assert_allclose(fitres1, fitres2) # Check that a Matplotlib Axes object is accepted fig = plt.figure() ax = fig.add_subplot(111) stats.probplot(x, fit=False, plot=ax) plt.close() def test_probplot_bad_args(self): # Raise ValueError when given an invalid distribution. assert_raises(ValueError, stats.probplot, [1], dist="plate_of_shrimp") def test_wilcoxon_bad_arg(): # Raise ValueError when two args of different lengths are given or # zero_method is unknown. assert_raises(ValueError, stats.wilcoxon, [1], [1,2]) assert_raises(ValueError, stats.wilcoxon, [1,2], [1,2], "dummy") def test_mvsdist_bad_arg(): # Raise ValueError if fewer than two data points are given. data = [1] assert_raises(ValueError, stats.mvsdist, data) def test_kstat_bad_arg(): # Raise ValueError if n > 4 or n > 1. data = [1] n = 10 assert_raises(ValueError, stats.kstat, data, n=n) def test_kstatvar_bad_arg(): # Raise ValueError is n is not 1 or 2. data = [1] n = 10 assert_raises(ValueError, stats.kstatvar, data, n=n) def test_ppcc_max_bad_arg(): # Raise ValueError when given an invalid distribution. data = [1] assert_raises(ValueError, stats.ppcc_max, data, dist="plate_of_shrimp") class TestBoxcox_llf(TestCase): def test_basic(self): np.random.seed(54321) x = stats.norm.rvs(size=10000, loc=10) lmbda = 1 llf = stats.boxcox_llf(lmbda, x) llf_expected = -x.size / 2. * np.log(np.sum(x.std()**2)) assert_allclose(llf, llf_expected) def test_array_like(self): np.random.seed(54321) x = stats.norm.rvs(size=100, loc=10) lmbda = 1 llf = stats.boxcox_llf(lmbda, x) llf2 = stats.boxcox_llf(lmbda, list(x)) assert_allclose(llf, llf2, rtol=1e-12) def test_2d_input(self): # Note: boxcox_llf() was already working with 2-D input (sort of), so # keep it like that. boxcox() doesn't work with 2-D input though, due # to brent() returning a scalar. np.random.seed(54321) x = stats.norm.rvs(size=100, loc=10) lmbda = 1 llf = stats.boxcox_llf(lmbda, x) llf2 = stats.boxcox_llf(lmbda, np.vstack([x, x]).T) assert_allclose([llf, llf], llf2, rtol=1e-12) def test_empty(self): assert_(np.isnan(stats.boxcox_llf(1, []))) class TestBoxcox(TestCase): def test_fixed_lmbda(self): np.random.seed(12345) x = stats.loggamma.rvs(5, size=50) + 5 xt = stats.boxcox(x, lmbda=1) assert_allclose(xt, x - 1) xt = stats.boxcox(x, lmbda=-1) assert_allclose(xt, 1 - 1/x) xt = stats.boxcox(x, lmbda=0) assert_allclose(xt, np.log(x)) # Also test that array_like input works xt = stats.boxcox(list(x), lmbda=0) assert_allclose(xt, np.log(x)) def test_lmbda_None(self): np.random.seed(1234567) # Start from normal rv's, do inverse transform to check that # optimization function gets close to the right answer. np.random.seed(1245) lmbda = 2.5 x = stats.norm.rvs(loc=10, size=50000) x_inv = (x * lmbda + 1)**(-lmbda) xt, maxlog = stats.boxcox(x_inv) assert_almost_equal(maxlog, -1 / lmbda, decimal=2) def test_alpha(self): np.random.seed(1234) x = stats.loggamma.rvs(5, size=50) + 5 # Some regular values for alpha, on a small sample size _, _, interval = stats.boxcox(x, alpha=0.75) assert_allclose(interval, [4.004485780226041, 5.138756355035744]) _, _, interval = stats.boxcox(x, alpha=0.05) assert_allclose(interval, [1.2138178554857557, 8.209033272375663]) # Try some extreme values, see we don't hit the N=500 limit x = stats.loggamma.rvs(7, size=500) + 15 _, _, interval = stats.boxcox(x, alpha=0.001) assert_allclose(interval, [0.3988867, 11.40553131]) _, _, interval = stats.boxcox(x, alpha=0.999) assert_allclose(interval, [5.83316246, 5.83735292]) def test_boxcox_bad_arg(self): # Raise ValueError if any data value is negative. x = np.array([-1]) assert_raises(ValueError, stats.boxcox, x) def test_empty(self): assert_(stats.boxcox([]).shape == (0,)) class TestBoxcoxNormmax(TestCase): def setUp(self): np.random.seed(12345) self.x = stats.loggamma.rvs(5, size=50) + 5 def test_pearsonr(self): maxlog = stats.boxcox_normmax(self.x) assert_allclose(maxlog, 1.804465, rtol=1e-6) def test_mle(self): maxlog = stats.boxcox_normmax(self.x, method='mle') assert_allclose(maxlog, 1.758101, rtol=1e-6) # Check that boxcox() uses 'mle' _, maxlog_boxcox = stats.boxcox(self.x) assert_allclose(maxlog_boxcox, maxlog) def test_all(self): maxlog_all = stats.boxcox_normmax(self.x, method='all') assert_allclose(maxlog_all, [1.804465, 1.758101], rtol=1e-6) class TestBoxcoxNormplot(TestCase): def setUp(self): np.random.seed(7654321) self.x = stats.loggamma.rvs(5, size=500) + 5 def test_basic(self): N = 5 lmbdas, ppcc = stats.boxcox_normplot(self.x, -10, 10, N=N) ppcc_expected = [0.57783375, 0.83610988, 0.97524311, 0.99756057, 0.95843297] assert_allclose(lmbdas, np.linspace(-10, 10, num=N)) assert_allclose(ppcc, ppcc_expected) @dec.skipif(not have_matplotlib) def test_plot_kwarg(self): # Check with the matplotlib.pyplot module fig = plt.figure() fig.add_subplot(111) stats.boxcox_normplot(self.x, -20, 20, plot=plt) plt.close() # Check that a Matplotlib Axes object is accepted fig.add_subplot(111) ax = fig.add_subplot(111) stats.boxcox_normplot(self.x, -20, 20, plot=ax) plt.close() def test_invalid_inputs(self): # `lb` has to be larger than `la` assert_raises(ValueError, stats.boxcox_normplot, self.x, 1, 0) # `x` can not contain negative values assert_raises(ValueError, stats.boxcox_normplot, [-1, 1], 0, 1) def test_empty(self): assert_(stats.boxcox_normplot([], 0, 1).size == 0) class TestCircFuncs(TestCase): def test_circfuncs(self): x = np.array([355,5,2,359,10,350]) M = stats.circmean(x, high=360) Mval = 0.167690146 assert_allclose(M, Mval, rtol=1e-7) V = stats.circvar(x, high=360) Vval = 42.51955609 assert_allclose(V, Vval, rtol=1e-7) S = stats.circstd(x, high=360) Sval = 6.520702116 assert_allclose(S, Sval, rtol=1e-7) def test_circfuncs_small(self): x = np.array([20,21,22,18,19,20.5,19.2]) M1 = x.mean() M2 = stats.circmean(x, high=360) assert_allclose(M2, M1, rtol=1e-5) V1 = x.var() V2 = stats.circvar(x, high=360) assert_allclose(V2, V1, rtol=1e-4) S1 = x.std() S2 = stats.circstd(x, high=360) assert_allclose(S2, S1, rtol=1e-4) def test_circmean_axis(self): x = np.array([[355,5,2,359,10,350], [351,7,4,352,9,349], [357,9,8,358,4,356]]) M1 = stats.circmean(x, high=360) M2 = stats.circmean(x.ravel(), high=360) assert_allclose(M1, M2, rtol=1e-14) M1 = stats.circmean(x, high=360, axis=1) M2 = [stats.circmean(x[i], high=360) for i in range(x.shape[0])] assert_allclose(M1, M2, rtol=1e-14) M1 = stats.circmean(x, high=360, axis=0) M2 = [stats.circmean(x[:,i], high=360) for i in range(x.shape[1])] assert_allclose(M1, M2, rtol=1e-14) def test_circvar_axis(self): x = np.array([[355,5,2,359,10,350], [351,7,4,352,9,349], [357,9,8,358,4,356]]) V1 = stats.circvar(x, high=360) V2 = stats.circvar(x.ravel(), high=360) assert_allclose(V1, V2, rtol=1e-11) V1 = stats.circvar(x, high=360, axis=1) V2 = [stats.circvar(x[i], high=360) for i in range(x.shape[0])] assert_allclose(V1, V2, rtol=1e-11) V1 = stats.circvar(x, high=360, axis=0) V2 = [stats.circvar(x[:,i], high=360) for i in range(x.shape[1])] assert_allclose(V1, V2, rtol=1e-11) def test_circstd_axis(self): x = np.array([[355,5,2,359,10,350], [351,7,4,352,9,349], [357,9,8,358,4,356]]) S1 = stats.circstd(x, high=360) S2 = stats.circstd(x.ravel(), high=360) assert_allclose(S1, S2, rtol=1e-11) S1 = stats.circstd(x, high=360, axis=1) S2 = [stats.circstd(x[i], high=360) for i in range(x.shape[0])] assert_allclose(S1, S2, rtol=1e-11) S1 = stats.circstd(x, high=360, axis=0) S2 = [stats.circstd(x[:,i], high=360) for i in range(x.shape[1])] assert_allclose(S1, S2, rtol=1e-11) def test_circfuncs_array_like(self): x = [355,5,2,359,10,350] assert_allclose(stats.circmean(x, high=360), 0.167690146, rtol=1e-7) assert_allclose(stats.circvar(x, high=360), 42.51955609, rtol=1e-7) assert_allclose(stats.circstd(x, high=360), 6.520702116, rtol=1e-7) def test_empty(self): assert_(np.isnan(stats.circmean([]))) assert_(np.isnan(stats.circstd([]))) assert_(np.isnan(stats.circvar([]))) def test_accuracy_wilcoxon(): freq = [1, 4, 16, 15, 8, 4, 5, 1, 2] nums = range(-4, 5) x = np.concatenate([[u] * v for u, v in zip(nums, freq)]) y = np.zeros(x.size) T, p = stats.wilcoxon(x, y, "pratt") assert_allclose(T, 423) assert_allclose(p, 0.00197547303533107) T, p = stats.wilcoxon(x, y, "zsplit") assert_allclose(T, 441) assert_allclose(p, 0.0032145343172473055) T, p = stats.wilcoxon(x, y, "wilcox") assert_allclose(T, 327) assert_allclose(p, 0.00641346115861) # Test the 'correction' option, using values computed in R with: # > wilcox.test(x, y, paired=TRUE, exact=FALSE, correct={FALSE,TRUE}) x = np.array([120, 114, 181, 188, 180, 146, 121, 191, 132, 113, 127, 112]) y = np.array([133, 143, 119, 189, 112, 199, 198, 113, 115, 121, 142, 187]) T, p = stats.wilcoxon(x, y, correction=False) assert_equal(T, 34) assert_allclose(p, 0.6948866, rtol=1e-6) T, p = stats.wilcoxon(x, y, correction=True) assert_equal(T, 34) assert_allclose(p, 0.7240817, rtol=1e-6) def test_wilcoxon_tie(): # Regression test for gh-2391. # Corresponding R code is: # > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=FALSE) # > result$p.value # [1] 0.001565402 # > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=TRUE) # > result$p.value # [1] 0.001904195 stat, p = stats.wilcoxon([0.1] * 10) expected_p = 0.001565402 assert_equal(stat, 0) assert_allclose(p, expected_p, rtol=1e-6) stat, p = stats.wilcoxon([0.1] * 10, correction=True) expected_p = 0.001904195 assert_equal(stat, 0) assert_allclose(p, expected_p, rtol=1e-6) class TestMedianTest(TestCase): def test_bad_n_samples(self): # median_test requires at least two samples. assert_raises(ValueError, stats.median_test, [1, 2, 3]) def test_empty_sample(self): # Each sample must contain at least one value. assert_raises(ValueError, stats.median_test, [], [1, 2, 3]) def test_empty_when_ties_ignored(self): # The grand median is 1, and all values in the first argument are # equal to the grand median. With ties="ignore", those values are # ignored, which results in the first sample being (in effect) empty. # This should raise a ValueError. assert_raises(ValueError, stats.median_test, [1, 1, 1, 1], [2, 0, 1], [2, 0], ties="ignore") def test_empty_contingency_row(self): # The grand median is 1, and with the default ties="below", all the # values in the samples are counted as being below the grand median. # This would result a row of zeros in the contingency table, which is # an error. assert_raises(ValueError, stats.median_test, [1, 1, 1], [1, 1, 1]) # With ties="above", all the values are counted as above the # grand median. assert_raises(ValueError, stats.median_test, [1, 1, 1], [1, 1, 1], ties="above") def test_bad_ties(self): assert_raises(ValueError, stats.median_test, [1, 2, 3], [4, 5], ties="foo") def test_bad_keyword(self): assert_raises(TypeError, stats.median_test, [1, 2, 3], [4, 5], foo="foo") def test_simple(self): x = [1, 2, 3] y = [1, 2, 3] stat, p, med, tbl = stats.median_test(x, y) # The median is floating point, but this equality test should be safe. assert_equal(med, 2.0) assert_array_equal(tbl, [[1, 1], [2, 2]]) # The expected values of the contingency table equal the contingency table, # so the statistic should be 0 and the p-value should be 1. assert_equal(stat, 0) assert_equal(p, 1) def test_ties_options(self): # Test the contingency table calculation. x = [1, 2, 3, 4] y = [5, 6] z = [7, 8, 9] # grand median is 5. # Default 'ties' option is "below". stat, p, m, tbl = stats.median_test(x, y, z) assert_equal(m, 5) assert_equal(tbl, [[0, 1, 3], [4, 1, 0]]) stat, p, m, tbl = stats.median_test(x, y, z, ties="ignore") assert_equal(m, 5) assert_equal(tbl, [[0, 1, 3], [4, 0, 0]]) stat, p, m, tbl = stats.median_test(x, y, z, ties="above") assert_equal(m, 5) assert_equal(tbl, [[0, 2, 3], [4, 0, 0]]) def test_basic(self): # median_test calls chi2_contingency to compute the test statistic # and p-value. Make sure it hasn't screwed up the call... x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8] stat, p, m, tbl = stats.median_test(x, y) assert_equal(m, 4) assert_equal(tbl, [[1, 2], [4, 2]]) exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl) assert_allclose(stat, exp_stat) assert_allclose(p, exp_p) stat, p, m, tbl = stats.median_test(x, y, lambda_=0) assert_equal(m, 4) assert_equal(tbl, [[1, 2], [4, 2]]) exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl, lambda_=0) assert_allclose(stat, exp_stat) assert_allclose(p, exp_p) stat, p, m, tbl = stats.median_test(x, y, correction=False) assert_equal(m, 4) assert_equal(tbl, [[1, 2], [4, 2]]) exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl, correction=False) assert_allclose(stat, exp_stat) assert_allclose(p, exp_p) if __name__ == "__main__": run_module_suite()
mit
Vimos/scikit-learn
sklearn/utils/testing.py
29
25405
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # Denis Engemann # Giorgio Patrini # Thierry Guillemot # License: BSD 3 clause import os import inspect import pkgutil import warnings import sys import struct import scipy as sp import scipy.io from functools import wraps from operator import itemgetter try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import tempfile import shutil import os.path as op import atexit import unittest # WindowsError only exist on Windows try: WindowsError except NameError: WindowsError = None import sklearn from sklearn.base import BaseEstimator from sklearn.externals import joblib from nose.tools import raises from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less from numpy.testing import assert_approx_equal import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) from sklearn.cluster import DBSCAN __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "assert_raises_regexp", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less", "assert_less", "assert_less_equal", "assert_greater", "assert_greater_equal", "assert_approx_equal", "SkipTest"] _dummy = unittest.TestCase('__init__') assert_equal = _dummy.assertEqual assert_not_equal = _dummy.assertNotEqual assert_true = _dummy.assertTrue assert_false = _dummy.assertFalse assert_raises = _dummy.assertRaises SkipTest = unittest.case.SkipTest assert_dict_equal = _dummy.assertDictEqual assert_in = _dummy.assertIn assert_not_in = _dummy.assertNotIn assert_less = _dummy.assertLess assert_greater = _dummy.assertGreater assert_less_equal = _dummy.assertLessEqual assert_greater_equal = _dummy.assertGreaterEqual try: assert_raises_regex = _dummy.assertRaisesRegex except AttributeError: # Python 2.7 assert_raises_regex = _dummy.assertRaisesRegexp # assert_raises_regexp is deprecated in Python 3.4 in favor of # assert_raises_regex but lets keep the backward compat in scikit-learn with # the old name for now assert_raises_regexp = assert_raises_regex def assert_warns(warning_class, func, *args, **kw): """Test that a certain warning occurs. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func` Returns ------- result : the return value of `func` """ # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = any(warning.category is warning_class for warning in w) if not found: raise AssertionError("%s did not give warning: %s( is %s)" % (func.__name__, warning_class, w)) return result def assert_warns_message(warning_class, message, func, *args, **kw): # very important to avoid uncontrolled state propagation """Test that a certain warning occurs and with a certain message. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. message : str | callable The entire message or a substring to test for. If callable, it takes a string as argument and will trigger an assertion error if it returns `False`. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func`. Returns ------- result : the return value of `func` """ clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") if hasattr(np, 'VisibleDeprecationWarning'): # Let's not catch the numpy internal DeprecationWarnings warnings.simplefilter('ignore', np.VisibleDeprecationWarning) # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = [issubclass(warning.category, warning_class) for warning in w] if not any(found): raise AssertionError("No warning raised for %s with class " "%s" % (func.__name__, warning_class)) message_found = False # Checks the message of all warnings belong to warning_class for index in [i for i, x in enumerate(found) if x]: # substring will match, the entire message with typo won't msg = w[index].message # For Python 3 compatibility msg = str(msg.args[0] if hasattr(msg, 'args') else msg) if callable(message): # add support for certain tests check_in_message = message else: check_in_message = lambda msg: message in msg if check_in_message(msg): message_found = True break if not message_found: raise AssertionError("Did not receive the message you expected " "('%s') for <%s>, got: '%s'" % (message, func.__name__, msg)) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] if len(w) > 0: raise AssertionError("Got warnings when calling %s: [%s]" % (func.__name__, ', '.join(str(warning) for warning in w))) return result def ignore_warnings(obj=None, category=Warning): """Context manager and decorator to ignore warnings. Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Parameters ---------- category : warning class, defaults to Warning. The category to filter. If Warning, all categories will be muted. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _IgnoreWarnings(category=category)(obj) else: return _IgnoreWarnings(category=category) class _IgnoreWarnings(object): """Improved and simplified Python warnings context manager and decorator. This class allows to ignore the warnings raise by a function. Copied from Python 2.7.5 and modified as required. Parameters ---------- category : tuple of warning class, defaut to Warning The category to filter. By default, all the categories will be muted. """ def __init__(self, category): self._record = True self._module = sys.modules['warnings'] self._entered = False self.log = [] self.category = category def __call__(self, fn): """Decorator to catch and hide warnings without visual nesting.""" @wraps(fn) def wrapper(*args, **kwargs): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(): warnings.simplefilter("ignore", self.category) return fn(*args, **kwargs) return wrapper def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): clean_warning_registry() # be safe and not propagate state + chaos warnings.simplefilter("ignore", self.category) if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning self.log[:] = [] clean_warning_registry() # be safe and not propagate state + chaos assert_less = _dummy.assertLess assert_greater = _dummy.assertGreater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exceptions, message, function, *args, **kwargs): """Helper function to test error messages in exceptions. Parameters ---------- exceptions : exception or tuple of exception Name of the estimator function : callable Calable object to raise error *args : the positional arguments to `function`. **kw : the keyword arguments to `function` """ try: function(*args, **kwargs) except exceptions as e: error_message = str(e) if message not in error_message: raise AssertionError("Error message does not include the expected" " string: %r. Observed error message: %r" % (message, error_message)) else: # concatenate exception names if isinstance(exceptions, tuple): names = " or ".join(e.__name__ for e in exceptions) else: names = exceptions.__name__ raise AssertionError("%s not raised by %s" % (names, function.__name__)) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict : dict, keys=str, values=ndarray Contains data as columns_dict[column_name] = array of data. dataname : string Name of data set. matfile : string or file object The file name string or the file-like object of the output file. ordering : list, default None List of column_names, determines the ordering in the data set. Notes ----- This function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. META_ESTIMATORS = ["OneVsOneClassifier", "MultiOutputEstimator", "MultiOutputRegressor", "MultiOutputClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly OTHER = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV", "SelectFromModel"] # some trange ones DONT_TEST = ['SparseCoder', 'EllipticEnvelope', 'DictVectorizer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'TfidfTransformer', 'TfidfVectorizer', 'IsotonicRegression', 'OneHotEncoder', 'RandomTreesEmbedding', 'FeatureHasher', 'DummyClassifier', 'DummyRegressor', 'TruncatedSVD', 'PolynomialFeatures', 'GaussianRandomProjectionHash', 'HashingVectorizer', 'CheckingClassifier', 'PatchExtractor', 'CountVectorizer', # GradientBoosting base estimators, maybe should # exclude them in another way 'ZeroEstimator', 'ScaledLogOddsEstimator', 'QuantileEstimator', 'MeanEstimator', 'LogOddsEstimator', 'PriorProbabilityEstimator', '_SigmoidCalibration', 'VotingClassifier'] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None, include_dont_test=False): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_other : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV include_dont_test : boolean, default=False Whether to include "special" label estimator or test processors. type_filter : string, list of string, or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types, or a list of these to get the estimators that fit at least one of the types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): if (".tests." in modname): continue module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_dont_test: estimators = [c for c in estimators if not c[0] in DONT_TEST] if not include_other: estimators = [c for c in estimators if not c[0] in OTHER] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in META_ESTIMATORS] if type_filter is not None: if not isinstance(type_filter, list): type_filter = [type_filter] else: type_filter = list(type_filter) # copy filtered_estimators = [] filters = {'classifier': ClassifierMixin, 'regressor': RegressorMixin, 'transformer': TransformerMixin, 'cluster': ClusterMixin} for name, mixin in filters.items(): if name in type_filter: type_filter.remove(name) filtered_estimators.extend([est for est in estimators if issubclass(est[1], mixin)]) estimators = filtered_estimators if type_filter: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or " "None, got" " %s." % repr(type_filter)) # drop duplicates, sort for reproducibility # itemgetter is used to ensure the sort does not extend to the 2nd item of # the tuple return sorted(set(estimators), key=itemgetter(0)) def set_random_state(estimator, random_state=0): """Set random state of an estimator if it has the `random_state` param. Classes for whom random_state is deprecated are ignored. Currently DBSCAN is one such class. """ if isinstance(estimator, DBSCAN): return if "random_state" in estimator.get_params(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed.""" @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified import matplotlib.pyplot as plt plt.figure() except ImportError: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test def skip_if_32bit(func): """Test decorator that skips tests on 32bit platforms.""" @wraps(func) def run_test(*args, **kwargs): bits = 8 * struct.calcsize("P") if bits == 32: raise SkipTest('Test skipped on 32bit platforms.') else: return func(*args, **kwargs) return run_test def if_safe_multiprocessing_with_blas(func): """Decorator for tests involving both BLAS calls and multiprocessing. Under POSIX (e.g. Linux or OSX), using multiprocessing in conjunction with some implementation of BLAS (or other libraries that manage an internal posix thread pool) can cause a crash or a freeze of the Python process. In practice all known packaged distributions (from Linux distros or Anaconda) of BLAS under Linux seems to be safe. So we this problem seems to only impact OSX users. This wrapper makes it possible to skip tests that can possibly cause this crash under OS X with. Under Python 3.4+ it is possible to use the `forkserver` start method for multiprocessing to avoid this issue. However it can cause pickling errors on interactively defined functions. It therefore not enabled by default. """ @wraps(func) def run_test(*args, **kwargs): if sys.platform == 'darwin': raise SkipTest( "Possible multi-process bug with some BLAS") return func(*args, **kwargs) return run_test def clean_warning_registry(): """Safe way to reset warnings.""" warnings.resetwarnings() reg = "__warningregistry__" for mod_name, mod in list(sys.modules.items()): if 'six.moves' in mod_name: continue if hasattr(mod, reg): getattr(mod, reg).clear() def check_skip_network(): if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)): raise SkipTest("Text tutorial requires large dataset download") def check_skip_travis(): """Skip test if being run on Travis.""" if os.environ.get('TRAVIS') == "true": raise SkipTest("This test needs to be skipped on Travis") def _delete_folder(folder_path, warn=False): """Utility function to cleanup a temporary folder if still existing. Copy from joblib.pool (for independence). """ try: if os.path.exists(folder_path): # This can fail under windows, # but will succeed when called by atexit shutil.rmtree(folder_path) except WindowsError: if warn: warnings.warn("Could not delete temporary folder %s" % folder_path) class TempMemmap(object): def __init__(self, data, mmap_mode='r'): self.temp_folder = tempfile.mkdtemp(prefix='sklearn_testing_') self.mmap_mode = mmap_mode self.data = data def __enter__(self): fpath = op.join(self.temp_folder, 'data.pkl') joblib.dump(self.data, fpath) data_read_only = joblib.load(fpath, mmap_mode=self.mmap_mode) atexit.register(lambda: _delete_folder(self.temp_folder, warn=True)) return data_read_only def __exit__(self, exc_type, exc_val, exc_tb): _delete_folder(self.temp_folder) with_network = with_setup(check_skip_network) with_travis = with_setup(check_skip_travis) class _named_check(object): """Wraps a check to show a useful description Parameters ---------- check : function Must have ``__name__`` and ``__call__`` arg_text : str A summary of arguments to the check """ # Setting the description on the function itself can give incorrect results # in failing tests def __init__(self, check, arg_text): self.check = check self.description = ("{0[1]}.{0[3]}:{1.__name__}({2})".format( inspect.stack()[1], check, arg_text)) def __call__(self, *args, **kwargs): return self.check(*args, **kwargs)
bsd-3-clause
antoinecarme/pyaf
tests/perf/test_ozone_debug_perf.py
1
1566
import pandas as pd import numpy as np # from memory_profiler import profile # from memprof import * import pyaf.ForecastEngine as autof import pyaf.Bench.TS_datasets as tsds #get_ipython().magic('matplotlib inline') # @memprof def test_ozone_debug_perf(): b1 = tsds.load_ozone() df = b1.mPastData # df.tail(10) # df[:-10].tail() # df[:-10:-1] # df.describe() lEngine = autof.cForecastEngine() lEngine H = b1.mHorizon; lEngine.mOptions.mDebugPerformance = True; lEngine.mOptions.mEnableCycles = False; lEngine.mOptions.mEnableTimeBasedTrends = False; lEngine.mOptions.mEnableARModels = False; lEngine.train(df , b1.mTimeVar , b1.mSignalVar, H); lEngine.getModelInfo(); print(lEngine.mSignalDecomposition.mTrPerfDetails.head()); lEngine.mSignalDecomposition.mBestModel.mTimeInfo.mResolution lEngine.standardPlots("outputs/my_ozone"); dfapp_in = df.copy(); dfapp_in.tail() dfapp_out = lEngine.forecast(dfapp_in, H); #dfapp_out.to_csv("outputs/ozone_apply_out.csv") dfapp_out.tail(2 * H) print("Forecast Columns " , dfapp_out.columns); Forecast_DF = dfapp_out[[b1.mTimeVar , b1.mSignalVar, b1.mSignalVar + '_Forecast']] print(Forecast_DF.info()) print("Forecasts\n" , Forecast_DF.tail(H).values); print("\n\n<ModelInfo>") print(lEngine.to_json()); print("</ModelInfo>\n\n") print("\n\n<Forecast>") print(Forecast_DF.tail(2*H).to_json(date_format='iso')) print("</Forecast>\n\n") test_ozone_debug_perf();
bsd-3-clause
stevertaylor/NX01
newcmaps.py
28
50518
# New matplotlib colormaps by Nathaniel J. Smith, Stefan van der Walt, # and (in the case of viridis) Eric Firing. # # This file and the colormaps in it are released under the CC0 license / # public domain dedication. We would appreciate credit if you use or # redistribute these colormaps, but do not impose any legal restrictions. # # To the extent possible under law, the persons who associated CC0 with # mpl-colormaps have waived all copyright and related or neighboring rights # to mpl-colormaps. # # You should have received a copy of the CC0 legalcode along with this # work. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. __all__ = ['magma', 'inferno', 'plasma', 'viridis'] _magma_data = [[0.001462, 0.000466, 0.013866], [0.002258, 0.001295, 0.018331], [0.003279, 0.002305, 0.023708], [0.004512, 0.003490, 0.029965], [0.005950, 0.004843, 0.037130], [0.007588, 0.006356, 0.044973], [0.009426, 0.008022, 0.052844], [0.011465, 0.009828, 0.060750], [0.013708, 0.011771, 0.068667], [0.016156, 0.013840, 0.076603], [0.018815, 0.016026, 0.084584], [0.021692, 0.018320, 0.092610], [0.024792, 0.020715, 0.100676], [0.028123, 0.023201, 0.108787], [0.031696, 0.025765, 0.116965], [0.035520, 0.028397, 0.125209], [0.039608, 0.031090, 0.133515], [0.043830, 0.033830, 0.141886], [0.048062, 0.036607, 0.150327], [0.052320, 0.039407, 0.158841], [0.056615, 0.042160, 0.167446], [0.060949, 0.044794, 0.176129], [0.065330, 0.047318, 0.184892], [0.069764, 0.049726, 0.193735], [0.074257, 0.052017, 0.202660], [0.078815, 0.054184, 0.211667], [0.083446, 0.056225, 0.220755], [0.088155, 0.058133, 0.229922], [0.092949, 0.059904, 0.239164], [0.097833, 0.061531, 0.248477], [0.102815, 0.063010, 0.257854], [0.107899, 0.064335, 0.267289], [0.113094, 0.065492, 0.276784], [0.118405, 0.066479, 0.286321], [0.123833, 0.067295, 0.295879], [0.129380, 0.067935, 0.305443], [0.135053, 0.068391, 0.315000], [0.140858, 0.068654, 0.324538], [0.146785, 0.068738, 0.334011], [0.152839, 0.068637, 0.343404], [0.159018, 0.068354, 0.352688], [0.165308, 0.067911, 0.361816], [0.171713, 0.067305, 0.370771], [0.178212, 0.066576, 0.379497], [0.184801, 0.065732, 0.387973], [0.191460, 0.064818, 0.396152], [0.198177, 0.063862, 0.404009], [0.204935, 0.062907, 0.411514], [0.211718, 0.061992, 0.418647], [0.218512, 0.061158, 0.425392], [0.225302, 0.060445, 0.431742], [0.232077, 0.059889, 0.437695], [0.238826, 0.059517, 0.443256], [0.245543, 0.059352, 0.448436], [0.252220, 0.059415, 0.453248], [0.258857, 0.059706, 0.457710], [0.265447, 0.060237, 0.461840], [0.271994, 0.060994, 0.465660], [0.278493, 0.061978, 0.469190], [0.284951, 0.063168, 0.472451], [0.291366, 0.064553, 0.475462], [0.297740, 0.066117, 0.478243], [0.304081, 0.067835, 0.480812], [0.310382, 0.069702, 0.483186], [0.316654, 0.071690, 0.485380], [0.322899, 0.073782, 0.487408], [0.329114, 0.075972, 0.489287], [0.335308, 0.078236, 0.491024], [0.341482, 0.080564, 0.492631], [0.347636, 0.082946, 0.494121], [0.353773, 0.085373, 0.495501], [0.359898, 0.087831, 0.496778], [0.366012, 0.090314, 0.497960], [0.372116, 0.092816, 0.499053], [0.378211, 0.095332, 0.500067], [0.384299, 0.097855, 0.501002], [0.390384, 0.100379, 0.501864], [0.396467, 0.102902, 0.502658], [0.402548, 0.105420, 0.503386], [0.408629, 0.107930, 0.504052], [0.414709, 0.110431, 0.504662], [0.420791, 0.112920, 0.505215], [0.426877, 0.115395, 0.505714], [0.432967, 0.117855, 0.506160], [0.439062, 0.120298, 0.506555], [0.445163, 0.122724, 0.506901], [0.451271, 0.125132, 0.507198], [0.457386, 0.127522, 0.507448], [0.463508, 0.129893, 0.507652], [0.469640, 0.132245, 0.507809], [0.475780, 0.134577, 0.507921], [0.481929, 0.136891, 0.507989], [0.488088, 0.139186, 0.508011], [0.494258, 0.141462, 0.507988], [0.500438, 0.143719, 0.507920], [0.506629, 0.145958, 0.507806], [0.512831, 0.148179, 0.507648], [0.519045, 0.150383, 0.507443], [0.525270, 0.152569, 0.507192], [0.531507, 0.154739, 0.506895], [0.537755, 0.156894, 0.506551], [0.544015, 0.159033, 0.506159], [0.550287, 0.161158, 0.505719], [0.556571, 0.163269, 0.505230], [0.562866, 0.165368, 0.504692], [0.569172, 0.167454, 0.504105], [0.575490, 0.169530, 0.503466], [0.581819, 0.171596, 0.502777], [0.588158, 0.173652, 0.502035], [0.594508, 0.175701, 0.501241], [0.600868, 0.177743, 0.500394], [0.607238, 0.179779, 0.499492], [0.613617, 0.181811, 0.498536], [0.620005, 0.183840, 0.497524], [0.626401, 0.185867, 0.496456], [0.632805, 0.187893, 0.495332], [0.639216, 0.189921, 0.494150], [0.645633, 0.191952, 0.492910], [0.652056, 0.193986, 0.491611], [0.658483, 0.196027, 0.490253], [0.664915, 0.198075, 0.488836], [0.671349, 0.200133, 0.487358], [0.677786, 0.202203, 0.485819], [0.684224, 0.204286, 0.484219], [0.690661, 0.206384, 0.482558], [0.697098, 0.208501, 0.480835], [0.703532, 0.210638, 0.479049], [0.709962, 0.212797, 0.477201], [0.716387, 0.214982, 0.475290], [0.722805, 0.217194, 0.473316], [0.729216, 0.219437, 0.471279], [0.735616, 0.221713, 0.469180], [0.742004, 0.224025, 0.467018], [0.748378, 0.226377, 0.464794], [0.754737, 0.228772, 0.462509], [0.761077, 0.231214, 0.460162], [0.767398, 0.233705, 0.457755], [0.773695, 0.236249, 0.455289], [0.779968, 0.238851, 0.452765], [0.786212, 0.241514, 0.450184], [0.792427, 0.244242, 0.447543], [0.798608, 0.247040, 0.444848], [0.804752, 0.249911, 0.442102], [0.810855, 0.252861, 0.439305], [0.816914, 0.255895, 0.436461], [0.822926, 0.259016, 0.433573], [0.828886, 0.262229, 0.430644], [0.834791, 0.265540, 0.427671], [0.840636, 0.268953, 0.424666], [0.846416, 0.272473, 0.421631], [0.852126, 0.276106, 0.418573], [0.857763, 0.279857, 0.415496], [0.863320, 0.283729, 0.412403], [0.868793, 0.287728, 0.409303], [0.874176, 0.291859, 0.406205], [0.879464, 0.296125, 0.403118], [0.884651, 0.300530, 0.400047], [0.889731, 0.305079, 0.397002], [0.894700, 0.309773, 0.393995], [0.899552, 0.314616, 0.391037], [0.904281, 0.319610, 0.388137], [0.908884, 0.324755, 0.385308], [0.913354, 0.330052, 0.382563], [0.917689, 0.335500, 0.379915], [0.921884, 0.341098, 0.377376], [0.925937, 0.346844, 0.374959], [0.929845, 0.352734, 0.372677], [0.933606, 0.358764, 0.370541], [0.937221, 0.364929, 0.368567], [0.940687, 0.371224, 0.366762], [0.944006, 0.377643, 0.365136], [0.947180, 0.384178, 0.363701], [0.950210, 0.390820, 0.362468], [0.953099, 0.397563, 0.361438], [0.955849, 0.404400, 0.360619], [0.958464, 0.411324, 0.360014], [0.960949, 0.418323, 0.359630], [0.963310, 0.425390, 0.359469], [0.965549, 0.432519, 0.359529], [0.967671, 0.439703, 0.359810], [0.969680, 0.446936, 0.360311], [0.971582, 0.454210, 0.361030], [0.973381, 0.461520, 0.361965], [0.975082, 0.468861, 0.363111], [0.976690, 0.476226, 0.364466], [0.978210, 0.483612, 0.366025], [0.979645, 0.491014, 0.367783], [0.981000, 0.498428, 0.369734], [0.982279, 0.505851, 0.371874], [0.983485, 0.513280, 0.374198], [0.984622, 0.520713, 0.376698], [0.985693, 0.528148, 0.379371], [0.986700, 0.535582, 0.382210], [0.987646, 0.543015, 0.385210], [0.988533, 0.550446, 0.388365], [0.989363, 0.557873, 0.391671], [0.990138, 0.565296, 0.395122], [0.990871, 0.572706, 0.398714], [0.991558, 0.580107, 0.402441], [0.992196, 0.587502, 0.406299], [0.992785, 0.594891, 0.410283], [0.993326, 0.602275, 0.414390], [0.993834, 0.609644, 0.418613], [0.994309, 0.616999, 0.422950], [0.994738, 0.624350, 0.427397], [0.995122, 0.631696, 0.431951], [0.995480, 0.639027, 0.436607], [0.995810, 0.646344, 0.441361], [0.996096, 0.653659, 0.446213], [0.996341, 0.660969, 0.451160], [0.996580, 0.668256, 0.456192], [0.996775, 0.675541, 0.461314], [0.996925, 0.682828, 0.466526], [0.997077, 0.690088, 0.471811], [0.997186, 0.697349, 0.477182], [0.997254, 0.704611, 0.482635], [0.997325, 0.711848, 0.488154], [0.997351, 0.719089, 0.493755], [0.997351, 0.726324, 0.499428], [0.997341, 0.733545, 0.505167], [0.997285, 0.740772, 0.510983], [0.997228, 0.747981, 0.516859], [0.997138, 0.755190, 0.522806], [0.997019, 0.762398, 0.528821], [0.996898, 0.769591, 0.534892], [0.996727, 0.776795, 0.541039], [0.996571, 0.783977, 0.547233], [0.996369, 0.791167, 0.553499], [0.996162, 0.798348, 0.559820], [0.995932, 0.805527, 0.566202], [0.995680, 0.812706, 0.572645], [0.995424, 0.819875, 0.579140], [0.995131, 0.827052, 0.585701], [0.994851, 0.834213, 0.592307], [0.994524, 0.841387, 0.598983], [0.994222, 0.848540, 0.605696], [0.993866, 0.855711, 0.612482], [0.993545, 0.862859, 0.619299], [0.993170, 0.870024, 0.626189], [0.992831, 0.877168, 0.633109], [0.992440, 0.884330, 0.640099], [0.992089, 0.891470, 0.647116], [0.991688, 0.898627, 0.654202], [0.991332, 0.905763, 0.661309], [0.990930, 0.912915, 0.668481], [0.990570, 0.920049, 0.675675], [0.990175, 0.927196, 0.682926], [0.989815, 0.934329, 0.690198], [0.989434, 0.941470, 0.697519], [0.989077, 0.948604, 0.704863], [0.988717, 0.955742, 0.712242], [0.988367, 0.962878, 0.719649], [0.988033, 0.970012, 0.727077], [0.987691, 0.977154, 0.734536], [0.987387, 0.984288, 0.742002], [0.987053, 0.991438, 0.749504]] _inferno_data = [[0.001462, 0.000466, 0.013866], [0.002267, 0.001270, 0.018570], [0.003299, 0.002249, 0.024239], [0.004547, 0.003392, 0.030909], [0.006006, 0.004692, 0.038558], [0.007676, 0.006136, 0.046836], [0.009561, 0.007713, 0.055143], [0.011663, 0.009417, 0.063460], [0.013995, 0.011225, 0.071862], [0.016561, 0.013136, 0.080282], [0.019373, 0.015133, 0.088767], [0.022447, 0.017199, 0.097327], [0.025793, 0.019331, 0.105930], [0.029432, 0.021503, 0.114621], [0.033385, 0.023702, 0.123397], [0.037668, 0.025921, 0.132232], [0.042253, 0.028139, 0.141141], [0.046915, 0.030324, 0.150164], [0.051644, 0.032474, 0.159254], [0.056449, 0.034569, 0.168414], [0.061340, 0.036590, 0.177642], [0.066331, 0.038504, 0.186962], [0.071429, 0.040294, 0.196354], [0.076637, 0.041905, 0.205799], [0.081962, 0.043328, 0.215289], [0.087411, 0.044556, 0.224813], [0.092990, 0.045583, 0.234358], [0.098702, 0.046402, 0.243904], [0.104551, 0.047008, 0.253430], [0.110536, 0.047399, 0.262912], [0.116656, 0.047574, 0.272321], [0.122908, 0.047536, 0.281624], [0.129285, 0.047293, 0.290788], [0.135778, 0.046856, 0.299776], [0.142378, 0.046242, 0.308553], [0.149073, 0.045468, 0.317085], [0.155850, 0.044559, 0.325338], [0.162689, 0.043554, 0.333277], [0.169575, 0.042489, 0.340874], [0.176493, 0.041402, 0.348111], [0.183429, 0.040329, 0.354971], [0.190367, 0.039309, 0.361447], [0.197297, 0.038400, 0.367535], [0.204209, 0.037632, 0.373238], [0.211095, 0.037030, 0.378563], [0.217949, 0.036615, 0.383522], [0.224763, 0.036405, 0.388129], [0.231538, 0.036405, 0.392400], [0.238273, 0.036621, 0.396353], [0.244967, 0.037055, 0.400007], [0.251620, 0.037705, 0.403378], [0.258234, 0.038571, 0.406485], [0.264810, 0.039647, 0.409345], [0.271347, 0.040922, 0.411976], [0.277850, 0.042353, 0.414392], [0.284321, 0.043933, 0.416608], [0.290763, 0.045644, 0.418637], [0.297178, 0.047470, 0.420491], [0.303568, 0.049396, 0.422182], [0.309935, 0.051407, 0.423721], [0.316282, 0.053490, 0.425116], [0.322610, 0.055634, 0.426377], [0.328921, 0.057827, 0.427511], [0.335217, 0.060060, 0.428524], [0.341500, 0.062325, 0.429425], [0.347771, 0.064616, 0.430217], [0.354032, 0.066925, 0.430906], [0.360284, 0.069247, 0.431497], [0.366529, 0.071579, 0.431994], [0.372768, 0.073915, 0.432400], [0.379001, 0.076253, 0.432719], [0.385228, 0.078591, 0.432955], [0.391453, 0.080927, 0.433109], [0.397674, 0.083257, 0.433183], [0.403894, 0.085580, 0.433179], [0.410113, 0.087896, 0.433098], [0.416331, 0.090203, 0.432943], [0.422549, 0.092501, 0.432714], [0.428768, 0.094790, 0.432412], [0.434987, 0.097069, 0.432039], [0.441207, 0.099338, 0.431594], [0.447428, 0.101597, 0.431080], [0.453651, 0.103848, 0.430498], [0.459875, 0.106089, 0.429846], [0.466100, 0.108322, 0.429125], [0.472328, 0.110547, 0.428334], [0.478558, 0.112764, 0.427475], [0.484789, 0.114974, 0.426548], [0.491022, 0.117179, 0.425552], [0.497257, 0.119379, 0.424488], [0.503493, 0.121575, 0.423356], [0.509730, 0.123769, 0.422156], [0.515967, 0.125960, 0.420887], [0.522206, 0.128150, 0.419549], [0.528444, 0.130341, 0.418142], [0.534683, 0.132534, 0.416667], [0.540920, 0.134729, 0.415123], [0.547157, 0.136929, 0.413511], [0.553392, 0.139134, 0.411829], [0.559624, 0.141346, 0.410078], [0.565854, 0.143567, 0.408258], [0.572081, 0.145797, 0.406369], [0.578304, 0.148039, 0.404411], [0.584521, 0.150294, 0.402385], [0.590734, 0.152563, 0.400290], [0.596940, 0.154848, 0.398125], [0.603139, 0.157151, 0.395891], [0.609330, 0.159474, 0.393589], [0.615513, 0.161817, 0.391219], [0.621685, 0.164184, 0.388781], [0.627847, 0.166575, 0.386276], [0.633998, 0.168992, 0.383704], [0.640135, 0.171438, 0.381065], [0.646260, 0.173914, 0.378359], [0.652369, 0.176421, 0.375586], [0.658463, 0.178962, 0.372748], [0.664540, 0.181539, 0.369846], [0.670599, 0.184153, 0.366879], [0.676638, 0.186807, 0.363849], [0.682656, 0.189501, 0.360757], [0.688653, 0.192239, 0.357603], [0.694627, 0.195021, 0.354388], [0.700576, 0.197851, 0.351113], [0.706500, 0.200728, 0.347777], [0.712396, 0.203656, 0.344383], [0.718264, 0.206636, 0.340931], [0.724103, 0.209670, 0.337424], [0.729909, 0.212759, 0.333861], [0.735683, 0.215906, 0.330245], [0.741423, 0.219112, 0.326576], [0.747127, 0.222378, 0.322856], [0.752794, 0.225706, 0.319085], [0.758422, 0.229097, 0.315266], [0.764010, 0.232554, 0.311399], [0.769556, 0.236077, 0.307485], [0.775059, 0.239667, 0.303526], [0.780517, 0.243327, 0.299523], [0.785929, 0.247056, 0.295477], [0.791293, 0.250856, 0.291390], [0.796607, 0.254728, 0.287264], [0.801871, 0.258674, 0.283099], [0.807082, 0.262692, 0.278898], [0.812239, 0.266786, 0.274661], [0.817341, 0.270954, 0.270390], [0.822386, 0.275197, 0.266085], [0.827372, 0.279517, 0.261750], [0.832299, 0.283913, 0.257383], [0.837165, 0.288385, 0.252988], [0.841969, 0.292933, 0.248564], [0.846709, 0.297559, 0.244113], [0.851384, 0.302260, 0.239636], [0.855992, 0.307038, 0.235133], [0.860533, 0.311892, 0.230606], [0.865006, 0.316822, 0.226055], [0.869409, 0.321827, 0.221482], [0.873741, 0.326906, 0.216886], [0.878001, 0.332060, 0.212268], [0.882188, 0.337287, 0.207628], [0.886302, 0.342586, 0.202968], [0.890341, 0.347957, 0.198286], [0.894305, 0.353399, 0.193584], [0.898192, 0.358911, 0.188860], [0.902003, 0.364492, 0.184116], [0.905735, 0.370140, 0.179350], [0.909390, 0.375856, 0.174563], [0.912966, 0.381636, 0.169755], [0.916462, 0.387481, 0.164924], [0.919879, 0.393389, 0.160070], [0.923215, 0.399359, 0.155193], [0.926470, 0.405389, 0.150292], [0.929644, 0.411479, 0.145367], [0.932737, 0.417627, 0.140417], [0.935747, 0.423831, 0.135440], [0.938675, 0.430091, 0.130438], [0.941521, 0.436405, 0.125409], [0.944285, 0.442772, 0.120354], [0.946965, 0.449191, 0.115272], [0.949562, 0.455660, 0.110164], [0.952075, 0.462178, 0.105031], [0.954506, 0.468744, 0.099874], [0.956852, 0.475356, 0.094695], [0.959114, 0.482014, 0.089499], [0.961293, 0.488716, 0.084289], [0.963387, 0.495462, 0.079073], [0.965397, 0.502249, 0.073859], [0.967322, 0.509078, 0.068659], [0.969163, 0.515946, 0.063488], [0.970919, 0.522853, 0.058367], [0.972590, 0.529798, 0.053324], [0.974176, 0.536780, 0.048392], [0.975677, 0.543798, 0.043618], [0.977092, 0.550850, 0.039050], [0.978422, 0.557937, 0.034931], [0.979666, 0.565057, 0.031409], [0.980824, 0.572209, 0.028508], [0.981895, 0.579392, 0.026250], [0.982881, 0.586606, 0.024661], [0.983779, 0.593849, 0.023770], [0.984591, 0.601122, 0.023606], [0.985315, 0.608422, 0.024202], [0.985952, 0.615750, 0.025592], [0.986502, 0.623105, 0.027814], [0.986964, 0.630485, 0.030908], [0.987337, 0.637890, 0.034916], [0.987622, 0.645320, 0.039886], [0.987819, 0.652773, 0.045581], [0.987926, 0.660250, 0.051750], [0.987945, 0.667748, 0.058329], [0.987874, 0.675267, 0.065257], [0.987714, 0.682807, 0.072489], [0.987464, 0.690366, 0.079990], [0.987124, 0.697944, 0.087731], [0.986694, 0.705540, 0.095694], [0.986175, 0.713153, 0.103863], [0.985566, 0.720782, 0.112229], [0.984865, 0.728427, 0.120785], [0.984075, 0.736087, 0.129527], [0.983196, 0.743758, 0.138453], [0.982228, 0.751442, 0.147565], [0.981173, 0.759135, 0.156863], [0.980032, 0.766837, 0.166353], [0.978806, 0.774545, 0.176037], [0.977497, 0.782258, 0.185923], [0.976108, 0.789974, 0.196018], [0.974638, 0.797692, 0.206332], [0.973088, 0.805409, 0.216877], [0.971468, 0.813122, 0.227658], [0.969783, 0.820825, 0.238686], [0.968041, 0.828515, 0.249972], [0.966243, 0.836191, 0.261534], [0.964394, 0.843848, 0.273391], [0.962517, 0.851476, 0.285546], [0.960626, 0.859069, 0.298010], [0.958720, 0.866624, 0.310820], [0.956834, 0.874129, 0.323974], [0.954997, 0.881569, 0.337475], [0.953215, 0.888942, 0.351369], [0.951546, 0.896226, 0.365627], [0.950018, 0.903409, 0.380271], [0.948683, 0.910473, 0.395289], [0.947594, 0.917399, 0.410665], [0.946809, 0.924168, 0.426373], [0.946392, 0.930761, 0.442367], [0.946403, 0.937159, 0.458592], [0.946903, 0.943348, 0.474970], [0.947937, 0.949318, 0.491426], [0.949545, 0.955063, 0.507860], [0.951740, 0.960587, 0.524203], [0.954529, 0.965896, 0.540361], [0.957896, 0.971003, 0.556275], [0.961812, 0.975924, 0.571925], [0.966249, 0.980678, 0.587206], [0.971162, 0.985282, 0.602154], [0.976511, 0.989753, 0.616760], [0.982257, 0.994109, 0.631017], [0.988362, 0.998364, 0.644924]] _plasma_data = [[0.050383, 0.029803, 0.527975], [0.063536, 0.028426, 0.533124], [0.075353, 0.027206, 0.538007], [0.086222, 0.026125, 0.542658], [0.096379, 0.025165, 0.547103], [0.105980, 0.024309, 0.551368], [0.115124, 0.023556, 0.555468], [0.123903, 0.022878, 0.559423], [0.132381, 0.022258, 0.563250], [0.140603, 0.021687, 0.566959], [0.148607, 0.021154, 0.570562], [0.156421, 0.020651, 0.574065], [0.164070, 0.020171, 0.577478], [0.171574, 0.019706, 0.580806], [0.178950, 0.019252, 0.584054], [0.186213, 0.018803, 0.587228], [0.193374, 0.018354, 0.590330], [0.200445, 0.017902, 0.593364], [0.207435, 0.017442, 0.596333], [0.214350, 0.016973, 0.599239], [0.221197, 0.016497, 0.602083], [0.227983, 0.016007, 0.604867], [0.234715, 0.015502, 0.607592], [0.241396, 0.014979, 0.610259], [0.248032, 0.014439, 0.612868], [0.254627, 0.013882, 0.615419], [0.261183, 0.013308, 0.617911], [0.267703, 0.012716, 0.620346], [0.274191, 0.012109, 0.622722], [0.280648, 0.011488, 0.625038], [0.287076, 0.010855, 0.627295], [0.293478, 0.010213, 0.629490], [0.299855, 0.009561, 0.631624], [0.306210, 0.008902, 0.633694], [0.312543, 0.008239, 0.635700], [0.318856, 0.007576, 0.637640], [0.325150, 0.006915, 0.639512], [0.331426, 0.006261, 0.641316], [0.337683, 0.005618, 0.643049], [0.343925, 0.004991, 0.644710], [0.350150, 0.004382, 0.646298], [0.356359, 0.003798, 0.647810], [0.362553, 0.003243, 0.649245], [0.368733, 0.002724, 0.650601], [0.374897, 0.002245, 0.651876], [0.381047, 0.001814, 0.653068], [0.387183, 0.001434, 0.654177], [0.393304, 0.001114, 0.655199], [0.399411, 0.000859, 0.656133], [0.405503, 0.000678, 0.656977], [0.411580, 0.000577, 0.657730], [0.417642, 0.000564, 0.658390], [0.423689, 0.000646, 0.658956], [0.429719, 0.000831, 0.659425], [0.435734, 0.001127, 0.659797], [0.441732, 0.001540, 0.660069], [0.447714, 0.002080, 0.660240], [0.453677, 0.002755, 0.660310], [0.459623, 0.003574, 0.660277], [0.465550, 0.004545, 0.660139], [0.471457, 0.005678, 0.659897], [0.477344, 0.006980, 0.659549], [0.483210, 0.008460, 0.659095], [0.489055, 0.010127, 0.658534], [0.494877, 0.011990, 0.657865], [0.500678, 0.014055, 0.657088], [0.506454, 0.016333, 0.656202], [0.512206, 0.018833, 0.655209], [0.517933, 0.021563, 0.654109], [0.523633, 0.024532, 0.652901], [0.529306, 0.027747, 0.651586], [0.534952, 0.031217, 0.650165], [0.540570, 0.034950, 0.648640], [0.546157, 0.038954, 0.647010], [0.551715, 0.043136, 0.645277], [0.557243, 0.047331, 0.643443], [0.562738, 0.051545, 0.641509], [0.568201, 0.055778, 0.639477], [0.573632, 0.060028, 0.637349], [0.579029, 0.064296, 0.635126], [0.584391, 0.068579, 0.632812], [0.589719, 0.072878, 0.630408], [0.595011, 0.077190, 0.627917], [0.600266, 0.081516, 0.625342], [0.605485, 0.085854, 0.622686], [0.610667, 0.090204, 0.619951], [0.615812, 0.094564, 0.617140], [0.620919, 0.098934, 0.614257], [0.625987, 0.103312, 0.611305], [0.631017, 0.107699, 0.608287], [0.636008, 0.112092, 0.605205], [0.640959, 0.116492, 0.602065], [0.645872, 0.120898, 0.598867], [0.650746, 0.125309, 0.595617], [0.655580, 0.129725, 0.592317], [0.660374, 0.134144, 0.588971], [0.665129, 0.138566, 0.585582], [0.669845, 0.142992, 0.582154], [0.674522, 0.147419, 0.578688], [0.679160, 0.151848, 0.575189], [0.683758, 0.156278, 0.571660], [0.688318, 0.160709, 0.568103], [0.692840, 0.165141, 0.564522], [0.697324, 0.169573, 0.560919], [0.701769, 0.174005, 0.557296], [0.706178, 0.178437, 0.553657], [0.710549, 0.182868, 0.550004], [0.714883, 0.187299, 0.546338], [0.719181, 0.191729, 0.542663], [0.723444, 0.196158, 0.538981], [0.727670, 0.200586, 0.535293], [0.731862, 0.205013, 0.531601], [0.736019, 0.209439, 0.527908], [0.740143, 0.213864, 0.524216], [0.744232, 0.218288, 0.520524], [0.748289, 0.222711, 0.516834], [0.752312, 0.227133, 0.513149], [0.756304, 0.231555, 0.509468], [0.760264, 0.235976, 0.505794], [0.764193, 0.240396, 0.502126], [0.768090, 0.244817, 0.498465], [0.771958, 0.249237, 0.494813], [0.775796, 0.253658, 0.491171], [0.779604, 0.258078, 0.487539], [0.783383, 0.262500, 0.483918], [0.787133, 0.266922, 0.480307], [0.790855, 0.271345, 0.476706], [0.794549, 0.275770, 0.473117], [0.798216, 0.280197, 0.469538], [0.801855, 0.284626, 0.465971], [0.805467, 0.289057, 0.462415], [0.809052, 0.293491, 0.458870], [0.812612, 0.297928, 0.455338], [0.816144, 0.302368, 0.451816], [0.819651, 0.306812, 0.448306], [0.823132, 0.311261, 0.444806], [0.826588, 0.315714, 0.441316], [0.830018, 0.320172, 0.437836], [0.833422, 0.324635, 0.434366], [0.836801, 0.329105, 0.430905], [0.840155, 0.333580, 0.427455], [0.843484, 0.338062, 0.424013], [0.846788, 0.342551, 0.420579], [0.850066, 0.347048, 0.417153], [0.853319, 0.351553, 0.413734], [0.856547, 0.356066, 0.410322], [0.859750, 0.360588, 0.406917], [0.862927, 0.365119, 0.403519], [0.866078, 0.369660, 0.400126], [0.869203, 0.374212, 0.396738], [0.872303, 0.378774, 0.393355], [0.875376, 0.383347, 0.389976], [0.878423, 0.387932, 0.386600], [0.881443, 0.392529, 0.383229], [0.884436, 0.397139, 0.379860], [0.887402, 0.401762, 0.376494], [0.890340, 0.406398, 0.373130], [0.893250, 0.411048, 0.369768], [0.896131, 0.415712, 0.366407], [0.898984, 0.420392, 0.363047], [0.901807, 0.425087, 0.359688], [0.904601, 0.429797, 0.356329], [0.907365, 0.434524, 0.352970], [0.910098, 0.439268, 0.349610], [0.912800, 0.444029, 0.346251], [0.915471, 0.448807, 0.342890], [0.918109, 0.453603, 0.339529], [0.920714, 0.458417, 0.336166], [0.923287, 0.463251, 0.332801], [0.925825, 0.468103, 0.329435], [0.928329, 0.472975, 0.326067], [0.930798, 0.477867, 0.322697], [0.933232, 0.482780, 0.319325], [0.935630, 0.487712, 0.315952], [0.937990, 0.492667, 0.312575], [0.940313, 0.497642, 0.309197], [0.942598, 0.502639, 0.305816], [0.944844, 0.507658, 0.302433], [0.947051, 0.512699, 0.299049], [0.949217, 0.517763, 0.295662], [0.951344, 0.522850, 0.292275], [0.953428, 0.527960, 0.288883], [0.955470, 0.533093, 0.285490], [0.957469, 0.538250, 0.282096], [0.959424, 0.543431, 0.278701], [0.961336, 0.548636, 0.275305], [0.963203, 0.553865, 0.271909], [0.965024, 0.559118, 0.268513], [0.966798, 0.564396, 0.265118], [0.968526, 0.569700, 0.261721], [0.970205, 0.575028, 0.258325], [0.971835, 0.580382, 0.254931], [0.973416, 0.585761, 0.251540], [0.974947, 0.591165, 0.248151], [0.976428, 0.596595, 0.244767], [0.977856, 0.602051, 0.241387], [0.979233, 0.607532, 0.238013], [0.980556, 0.613039, 0.234646], [0.981826, 0.618572, 0.231287], [0.983041, 0.624131, 0.227937], [0.984199, 0.629718, 0.224595], [0.985301, 0.635330, 0.221265], [0.986345, 0.640969, 0.217948], [0.987332, 0.646633, 0.214648], [0.988260, 0.652325, 0.211364], [0.989128, 0.658043, 0.208100], [0.989935, 0.663787, 0.204859], [0.990681, 0.669558, 0.201642], [0.991365, 0.675355, 0.198453], [0.991985, 0.681179, 0.195295], [0.992541, 0.687030, 0.192170], [0.993032, 0.692907, 0.189084], [0.993456, 0.698810, 0.186041], [0.993814, 0.704741, 0.183043], [0.994103, 0.710698, 0.180097], [0.994324, 0.716681, 0.177208], [0.994474, 0.722691, 0.174381], [0.994553, 0.728728, 0.171622], [0.994561, 0.734791, 0.168938], [0.994495, 0.740880, 0.166335], [0.994355, 0.746995, 0.163821], [0.994141, 0.753137, 0.161404], [0.993851, 0.759304, 0.159092], [0.993482, 0.765499, 0.156891], [0.993033, 0.771720, 0.154808], [0.992505, 0.777967, 0.152855], [0.991897, 0.784239, 0.151042], [0.991209, 0.790537, 0.149377], [0.990439, 0.796859, 0.147870], [0.989587, 0.803205, 0.146529], [0.988648, 0.809579, 0.145357], [0.987621, 0.815978, 0.144363], [0.986509, 0.822401, 0.143557], [0.985314, 0.828846, 0.142945], [0.984031, 0.835315, 0.142528], [0.982653, 0.841812, 0.142303], [0.981190, 0.848329, 0.142279], [0.979644, 0.854866, 0.142453], [0.977995, 0.861432, 0.142808], [0.976265, 0.868016, 0.143351], [0.974443, 0.874622, 0.144061], [0.972530, 0.881250, 0.144923], [0.970533, 0.887896, 0.145919], [0.968443, 0.894564, 0.147014], [0.966271, 0.901249, 0.148180], [0.964021, 0.907950, 0.149370], [0.961681, 0.914672, 0.150520], [0.959276, 0.921407, 0.151566], [0.956808, 0.928152, 0.152409], [0.954287, 0.934908, 0.152921], [0.951726, 0.941671, 0.152925], [0.949151, 0.948435, 0.152178], [0.946602, 0.955190, 0.150328], [0.944152, 0.961916, 0.146861], [0.941896, 0.968590, 0.140956], [0.940015, 0.975158, 0.131326]] _viridis_data = [[0.267004, 0.004874, 0.329415], [0.268510, 0.009605, 0.335427], [0.269944, 0.014625, 0.341379], [0.271305, 0.019942, 0.347269], [0.272594, 0.025563, 0.353093], [0.273809, 0.031497, 0.358853], [0.274952, 0.037752, 0.364543], [0.276022, 0.044167, 0.370164], [0.277018, 0.050344, 0.375715], [0.277941, 0.056324, 0.381191], [0.278791, 0.062145, 0.386592], [0.279566, 0.067836, 0.391917], [0.280267, 0.073417, 0.397163], [0.280894, 0.078907, 0.402329], [0.281446, 0.084320, 0.407414], [0.281924, 0.089666, 0.412415], [0.282327, 0.094955, 0.417331], [0.282656, 0.100196, 0.422160], [0.282910, 0.105393, 0.426902], [0.283091, 0.110553, 0.431554], [0.283197, 0.115680, 0.436115], [0.283229, 0.120777, 0.440584], [0.283187, 0.125848, 0.444960], [0.283072, 0.130895, 0.449241], [0.282884, 0.135920, 0.453427], [0.282623, 0.140926, 0.457517], [0.282290, 0.145912, 0.461510], [0.281887, 0.150881, 0.465405], [0.281412, 0.155834, 0.469201], [0.280868, 0.160771, 0.472899], [0.280255, 0.165693, 0.476498], [0.279574, 0.170599, 0.479997], [0.278826, 0.175490, 0.483397], [0.278012, 0.180367, 0.486697], [0.277134, 0.185228, 0.489898], [0.276194, 0.190074, 0.493001], [0.275191, 0.194905, 0.496005], [0.274128, 0.199721, 0.498911], [0.273006, 0.204520, 0.501721], [0.271828, 0.209303, 0.504434], [0.270595, 0.214069, 0.507052], [0.269308, 0.218818, 0.509577], [0.267968, 0.223549, 0.512008], [0.266580, 0.228262, 0.514349], [0.265145, 0.232956, 0.516599], [0.263663, 0.237631, 0.518762], [0.262138, 0.242286, 0.520837], [0.260571, 0.246922, 0.522828], [0.258965, 0.251537, 0.524736], [0.257322, 0.256130, 0.526563], [0.255645, 0.260703, 0.528312], [0.253935, 0.265254, 0.529983], [0.252194, 0.269783, 0.531579], [0.250425, 0.274290, 0.533103], [0.248629, 0.278775, 0.534556], [0.246811, 0.283237, 0.535941], [0.244972, 0.287675, 0.537260], [0.243113, 0.292092, 0.538516], [0.241237, 0.296485, 0.539709], [0.239346, 0.300855, 0.540844], [0.237441, 0.305202, 0.541921], [0.235526, 0.309527, 0.542944], [0.233603, 0.313828, 0.543914], [0.231674, 0.318106, 0.544834], [0.229739, 0.322361, 0.545706], [0.227802, 0.326594, 0.546532], [0.225863, 0.330805, 0.547314], [0.223925, 0.334994, 0.548053], [0.221989, 0.339161, 0.548752], [0.220057, 0.343307, 0.549413], [0.218130, 0.347432, 0.550038], [0.216210, 0.351535, 0.550627], [0.214298, 0.355619, 0.551184], [0.212395, 0.359683, 0.551710], [0.210503, 0.363727, 0.552206], [0.208623, 0.367752, 0.552675], [0.206756, 0.371758, 0.553117], [0.204903, 0.375746, 0.553533], [0.203063, 0.379716, 0.553925], [0.201239, 0.383670, 0.554294], [0.199430, 0.387607, 0.554642], [0.197636, 0.391528, 0.554969], [0.195860, 0.395433, 0.555276], [0.194100, 0.399323, 0.555565], [0.192357, 0.403199, 0.555836], [0.190631, 0.407061, 0.556089], [0.188923, 0.410910, 0.556326], [0.187231, 0.414746, 0.556547], [0.185556, 0.418570, 0.556753], [0.183898, 0.422383, 0.556944], [0.182256, 0.426184, 0.557120], [0.180629, 0.429975, 0.557282], [0.179019, 0.433756, 0.557430], [0.177423, 0.437527, 0.557565], [0.175841, 0.441290, 0.557685], [0.174274, 0.445044, 0.557792], [0.172719, 0.448791, 0.557885], [0.171176, 0.452530, 0.557965], [0.169646, 0.456262, 0.558030], [0.168126, 0.459988, 0.558082], [0.166617, 0.463708, 0.558119], [0.165117, 0.467423, 0.558141], [0.163625, 0.471133, 0.558148], [0.162142, 0.474838, 0.558140], [0.160665, 0.478540, 0.558115], [0.159194, 0.482237, 0.558073], [0.157729, 0.485932, 0.558013], [0.156270, 0.489624, 0.557936], [0.154815, 0.493313, 0.557840], [0.153364, 0.497000, 0.557724], [0.151918, 0.500685, 0.557587], [0.150476, 0.504369, 0.557430], [0.149039, 0.508051, 0.557250], [0.147607, 0.511733, 0.557049], [0.146180, 0.515413, 0.556823], [0.144759, 0.519093, 0.556572], [0.143343, 0.522773, 0.556295], [0.141935, 0.526453, 0.555991], [0.140536, 0.530132, 0.555659], [0.139147, 0.533812, 0.555298], [0.137770, 0.537492, 0.554906], [0.136408, 0.541173, 0.554483], [0.135066, 0.544853, 0.554029], [0.133743, 0.548535, 0.553541], [0.132444, 0.552216, 0.553018], [0.131172, 0.555899, 0.552459], [0.129933, 0.559582, 0.551864], [0.128729, 0.563265, 0.551229], [0.127568, 0.566949, 0.550556], [0.126453, 0.570633, 0.549841], [0.125394, 0.574318, 0.549086], [0.124395, 0.578002, 0.548287], [0.123463, 0.581687, 0.547445], [0.122606, 0.585371, 0.546557], [0.121831, 0.589055, 0.545623], [0.121148, 0.592739, 0.544641], [0.120565, 0.596422, 0.543611], [0.120092, 0.600104, 0.542530], [0.119738, 0.603785, 0.541400], [0.119512, 0.607464, 0.540218], [0.119423, 0.611141, 0.538982], [0.119483, 0.614817, 0.537692], [0.119699, 0.618490, 0.536347], [0.120081, 0.622161, 0.534946], [0.120638, 0.625828, 0.533488], [0.121380, 0.629492, 0.531973], [0.122312, 0.633153, 0.530398], [0.123444, 0.636809, 0.528763], [0.124780, 0.640461, 0.527068], [0.126326, 0.644107, 0.525311], [0.128087, 0.647749, 0.523491], [0.130067, 0.651384, 0.521608], [0.132268, 0.655014, 0.519661], [0.134692, 0.658636, 0.517649], [0.137339, 0.662252, 0.515571], [0.140210, 0.665859, 0.513427], [0.143303, 0.669459, 0.511215], [0.146616, 0.673050, 0.508936], [0.150148, 0.676631, 0.506589], [0.153894, 0.680203, 0.504172], [0.157851, 0.683765, 0.501686], [0.162016, 0.687316, 0.499129], [0.166383, 0.690856, 0.496502], [0.170948, 0.694384, 0.493803], [0.175707, 0.697900, 0.491033], [0.180653, 0.701402, 0.488189], [0.185783, 0.704891, 0.485273], [0.191090, 0.708366, 0.482284], [0.196571, 0.711827, 0.479221], [0.202219, 0.715272, 0.476084], [0.208030, 0.718701, 0.472873], [0.214000, 0.722114, 0.469588], [0.220124, 0.725509, 0.466226], [0.226397, 0.728888, 0.462789], [0.232815, 0.732247, 0.459277], [0.239374, 0.735588, 0.455688], [0.246070, 0.738910, 0.452024], [0.252899, 0.742211, 0.448284], [0.259857, 0.745492, 0.444467], [0.266941, 0.748751, 0.440573], [0.274149, 0.751988, 0.436601], [0.281477, 0.755203, 0.432552], [0.288921, 0.758394, 0.428426], [0.296479, 0.761561, 0.424223], [0.304148, 0.764704, 0.419943], [0.311925, 0.767822, 0.415586], [0.319809, 0.770914, 0.411152], [0.327796, 0.773980, 0.406640], [0.335885, 0.777018, 0.402049], [0.344074, 0.780029, 0.397381], [0.352360, 0.783011, 0.392636], [0.360741, 0.785964, 0.387814], [0.369214, 0.788888, 0.382914], [0.377779, 0.791781, 0.377939], [0.386433, 0.794644, 0.372886], [0.395174, 0.797475, 0.367757], [0.404001, 0.800275, 0.362552], [0.412913, 0.803041, 0.357269], [0.421908, 0.805774, 0.351910], [0.430983, 0.808473, 0.346476], [0.440137, 0.811138, 0.340967], [0.449368, 0.813768, 0.335384], [0.458674, 0.816363, 0.329727], [0.468053, 0.818921, 0.323998], [0.477504, 0.821444, 0.318195], [0.487026, 0.823929, 0.312321], [0.496615, 0.826376, 0.306377], [0.506271, 0.828786, 0.300362], [0.515992, 0.831158, 0.294279], [0.525776, 0.833491, 0.288127], [0.535621, 0.835785, 0.281908], [0.545524, 0.838039, 0.275626], [0.555484, 0.840254, 0.269281], [0.565498, 0.842430, 0.262877], [0.575563, 0.844566, 0.256415], [0.585678, 0.846661, 0.249897], [0.595839, 0.848717, 0.243329], [0.606045, 0.850733, 0.236712], [0.616293, 0.852709, 0.230052], [0.626579, 0.854645, 0.223353], [0.636902, 0.856542, 0.216620], [0.647257, 0.858400, 0.209861], [0.657642, 0.860219, 0.203082], [0.668054, 0.861999, 0.196293], [0.678489, 0.863742, 0.189503], [0.688944, 0.865448, 0.182725], [0.699415, 0.867117, 0.175971], [0.709898, 0.868751, 0.169257], [0.720391, 0.870350, 0.162603], [0.730889, 0.871916, 0.156029], [0.741388, 0.873449, 0.149561], [0.751884, 0.874951, 0.143228], [0.762373, 0.876424, 0.137064], [0.772852, 0.877868, 0.131109], [0.783315, 0.879285, 0.125405], [0.793760, 0.880678, 0.120005], [0.804182, 0.882046, 0.114965], [0.814576, 0.883393, 0.110347], [0.824940, 0.884720, 0.106217], [0.835270, 0.886029, 0.102646], [0.845561, 0.887322, 0.099702], [0.855810, 0.888601, 0.097452], [0.866013, 0.889868, 0.095953], [0.876168, 0.891125, 0.095250], [0.886271, 0.892374, 0.095374], [0.896320, 0.893616, 0.096335], [0.906311, 0.894855, 0.098125], [0.916242, 0.896091, 0.100717], [0.926106, 0.897330, 0.104071], [0.935904, 0.898570, 0.108131], [0.945636, 0.899815, 0.112838], [0.955300, 0.901065, 0.118128], [0.964894, 0.902323, 0.123941], [0.974417, 0.903590, 0.130215], [0.983868, 0.904867, 0.136897], [0.993248, 0.906157, 0.143936]] from matplotlib.colors import ListedColormap cmaps = {} for (name, data) in (('magma', _magma_data), ('inferno', _inferno_data), ('plasma', _plasma_data), ('viridis', _viridis_data)): cmaps[name] = ListedColormap(data, name=name) magma = cmaps['magma'] inferno = cmaps['inferno'] plasma = cmaps['plasma'] viridis = cmaps['viridis']
mit
natj/bender
paper/figs/fig9.py
1
4141
import numpy as np import math from pylab import * from palettable.wesanderson import Zissou_5 as wsZ import matplotlib.ticker as mtick from scipy.interpolate import interp1d from scipy.interpolate import griddata from scipy.signal import savgol_filter def smooth(xx, yy): yy = savgol_filter(yy, 7, 2) np.clip(yy, 0.0, 1000.0, out=yy) yy[0] = 0.0 yy[-1] = 0.0 return xx, yy #Read JN files def read_lineprof(fname): da = np.genfromtxt(fname, delimiter=",") des = np.diff(da[:,0])[2] norm = np.sum(des*da[:,1]) return da[:,0],da[:,1]/norm #Read JN files def read_csv(fname): da = np.genfromtxt(fname, delimiter=",") des = np.diff(da[:,0])[2] norm = np.sum(des*da[:,1]) return da[:,0],da[:,1] #/norm ## Plot fig = figure(figsize=(5,3), dpi=80) rc('font', family='serif') rc('xtick', labelsize='xx-small') rc('ytick', labelsize='xx-small') gs = GridSpec(1, 1) #gs.update(wspace = 0.34) #gs.update(hspace = 0.4) lsize = 10.0 xmin = 0.69 xmax = 0.82 #error window limits eymin = -0.5 eymax = 0.5 #path to files #path_JN = "../../out3/lines/" path_JN = "../../out/lines2/" #labels size tsize = 10.0 nu = '700' #fig.text(0.5, 0.92, '$\\theta_s = 18^{\\circ}$', ha='center', va='center', size=tsize) #fig.text(0.5, 0.72, '$\\theta_s = 45^{\\circ}$', ha='center', va='center', size=tsize) #fig.text(0.5, 0.52, '$\\theta_s = 90^{\\circ}$', ha='center', va='center', size=tsize) #fig.text(0.5, 0.32, 'Hopf $\\theta_s = 45^{\circ}$', ha='center', va='center', size=tsize) #fig.text(0.5, 0.12, 'Phase',ha='center', va='center', size=lsize) ax1 = subplot(gs[0,0]) ax1.minorticks_on() ax1.set_xlim(xmin, xmax) ax1.set_ylim(0.0, 30) ax1.set_ylabel('Normalized flux',size=lsize) ax1.set_xlabel('Energy $E/E\'$',size=lsize) #xx1, yy1 = read_lineprof(path_JN+'lineprof_f700pbbr10m1.4i20.csv') #ax1.plot(xx1, yy1, "k--") #xx2, yy2 = read_lineprof(path_JN+'lineprof_obl_HTq0_f700pbbr10m1.4i20.csv') #ax1.plot(xx2, yy2, "k-") #lineprof_obl_HTq3_f700pbbr10m1.4i20.csv #lineprof_obl_HTq5_f700pbbr10m1.4i20.csv #lineprof_obl_HTq2_f700pbbr10m1.4i20.csv files_JN = [ "lineprof_f700pbbr10m1.4i20.csv", "lineprof_obl_f700pbbr10m1.4i20.csv", #"lineprof_sph2_HTqfix_f700pbbr10m1.4i20.csv"] #"lineprof_obl_HTq0_f700pbbr10m1.4i20.csv", "lineprof_obl_HTq1_f700pbbr10m1.4i20.csv"] #"lineprof_obl_HTq4_f700pbbr10m1.4i20.csv"] files_JN = ['sch/lineprofile_f700_bb_r10_m1.4_i20.csv', 'obl/lineprofile_f700_bb_r10_m1.4_i20.csv', 'q/lineprofile_f700_bb_r10_m1.4_i20.csv'] cols = ["black", "blue", "red", "magenta"] i = 0 for file_name in files_JN: xx, yy = read_lineprof(path_JN+file_name) xx, yy = smooth(xx, yy) ax1.plot(xx, yy, color=cols[i], linestyle="solid") i += 1 #path_JN = "../../out3/lines/" xx, yy = read_lineprof("../../out3/lines/lineprof_obl_HTq4_f700pbbr10m1.4i20.csv") ax1.plot(xx, yy, color="red", linestyle="dashed") #files_Bau = [ #"sch+dopp.csv", #"sch+dopp+obl.csv", #"HT.csv", #"HT_obl.csv"] files_Bau = ['sch.csv', 'obl.csv', 'ht.csv'] i = 0 for file_name in files_Bau: xx, yy = read_csv(path_JN+file_name) #rescale xx for correct scaling #xx = (xx-0.72)/(0.89-0.72)*(0.8-0.72) + 0.72 #ax1.plot(xx, yy, color=cols[i], linestyle="dashed") i += 1 ############ q's #xx3, yy3 = read_lineprof(path_JN+'lineprof_obl_HTq1_f700pbbr10m1.4i20.csv') #ax1.plot(xx3, yy3, "k-", label="$q = -0.268$") # #xx4, yy4 = read_lineprof(path_JN+'lineprof_obl_HTq2_f700pbbr10m1.4i20.csv') #ax1.plot(xx4, yy4, "r-", label="$q \\times 2$") # #xx5, yy5 = read_lineprof(path_JN+'lineprof_obl_HTq3_f700pbbr10m1.4i20.csv') #ax1.plot(xx5, yy5, "g-", label="$q \\times 3$") # #xx6, yy6 = read_lineprof(path_JN+'lineprof_obl_HTq4_f700pbbr10m1.4i20.csv') #ax1.plot(xx6, yy6, "b-", label="$q \\times 4$") # #xx7, yy7 = read_lineprof(path_JN+'lineprof_obl_HTq5_f700pbbr10m1.4i20.csv') #ax1.plot(xx7, yy7, "m-", label="$q \\times 5$") # #legend = ax1.legend(loc='upper left', shadow=False, labelspacing=0.1) #for label in legend.get_texts(): # label.set_fontsize('x-small') savefig('fig9_testi.pdf', bbox_inches='tight')
mit
mhue/scikit-learn
examples/text/document_classification_20newsgroups.py
222
10500
""" ====================================================== Classification of text documents using sparse features ====================================================== This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices. The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached. The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier. """ # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Lars Buitinck <L.J.Buitinck@uva.nl> # License: BSD 3 clause from __future__ import print_function import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--report", action="store_true", dest="print_report", help="Print a detailed classification report.") op.add_option("--chi2_select", action="store", type="int", dest="select_chi2", help="Select some number of features using a chi-squared test") op.add_option("--confusion_matrix", action="store_true", dest="print_cm", help="Print the confusion matrix.") op.add_option("--top10", action="store_true", dest="print_top10", help="Print ten most discriminative terms per class" " for every classifier.") op.add_option("--all_categories", action="store_true", dest="all_categories", help="Whether to use all categories or not.") op.add_option("--use_hashing", action="store_true", help="Use a hashing vectorizer.") op.add_option("--n_features", action="store", type=int, default=2 ** 16, help="n_features when using the hashing vectorizer.") op.add_option("--filtered", action="store_true", help="Remove newsgroup information that is easily overfit: " "headers, signatures, and quoting.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) print(__doc__) op.print_help() print() ############################################################################### # Load some categories from the training set if opts.all_categories: categories = None else: categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] if opts.filtered: remove = ('headers', 'footers', 'quotes') else: remove = () print("Loading 20 newsgroups dataset for categories:") print(categories if categories else "all") data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove) print('data loaded') categories = data_train.target_names # for case categories == None def size_mb(docs): return sum(len(s.encode('utf-8')) for s in docs) / 1e6 data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print("%d documents - %0.3fMB (training set)" % ( len(data_train.data), data_train_size_mb)) print("%d documents - %0.3fMB (test set)" % ( len(data_test.data), data_test_size_mb)) print("%d categories" % len(categories)) print() # split a training set and a test set y_train, y_test = data_train.target, data_test.target print("Extracting features from the training data using a sparse vectorizer") t0 = time() if opts.use_hashing: vectorizer = HashingVectorizer(stop_words='english', non_negative=True, n_features=opts.n_features) X_train = vectorizer.transform(data_train.data) else: vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_train.shape) print() print("Extracting features from the test data using the same vectorizer") t0 = time() X_test = vectorizer.transform(data_test.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_test.shape) print() # mapping from integer feature name to original token string if opts.use_hashing: feature_names = None else: feature_names = vectorizer.get_feature_names() if opts.select_chi2: print("Extracting %d best features by a chi-squared test" % opts.select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=opts.select_chi2) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) if feature_names: # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] print("done in %fs" % (time() - t0)) print() if feature_names: feature_names = np.asarray(feature_names) def trim(s): """Trim string to fit on terminal (assuming 80-column display)""" return s if len(s) <= 80 else s[:77] + "..." ############################################################################### # Benchmark classifiers def benchmark(clf): print('_' * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print("train time: %0.3fs" % train_time) t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print("test time: %0.3fs" % test_time) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) if hasattr(clf, 'coef_'): print("dimensionality: %d" % clf.coef_.shape[1]) print("density: %f" % density(clf.coef_)) if opts.print_top10 and feature_names is not None: print("top 10 keywords per class:") for i, category in enumerate(categories): top10 = np.argsort(clf.coef_[i])[-10:] print(trim("%s: %s" % (category, " ".join(feature_names[top10])))) print() if opts.print_report: print("classification report:") print(metrics.classification_report(y_test, pred, target_names=categories)) if opts.print_cm: print("confusion matrix:") print(metrics.confusion_matrix(y_test, pred)) print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"), (RandomForestClassifier(n_estimators=100), "Random forest")): print('=' * 80) print(name) results.append(benchmark(clf)) for penalty in ["l2", "l1"]: print('=' * 80) print("%s penalty" % penalty.upper()) # Train Liblinear model results.append(benchmark(LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3))) # Train SGD model results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty=penalty))) # Train SGD with Elastic Net penalty print('=' * 80) print("Elastic-Net penalty") results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty="elasticnet"))) # Train NearestCentroid without threshold print('=' * 80) print("NearestCentroid (aka Rocchio classifier)") results.append(benchmark(NearestCentroid())) # Train sparse Naive Bayes classifiers print('=' * 80) print("Naive Bayes") results.append(benchmark(MultinomialNB(alpha=.01))) results.append(benchmark(BernoulliNB(alpha=.01))) print('=' * 80) print("LinearSVC with L1-based feature selection") # The smaller C, the stronger the regularization. # The more regularization, the more sparsity. results.append(benchmark(Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC()) ]))) # make some plots indices = np.arange(len(results)) results = [[x[i] for x in results] for i in range(4)] clf_names, score, training_time, test_time = results training_time = np.array(training_time) / np.max(training_time) test_time = np.array(test_time) / np.max(test_time) plt.figure(figsize=(12, 8)) plt.title("Score") plt.barh(indices, score, .2, label="score", color='r') plt.barh(indices + .3, training_time, .2, label="training time", color='g') plt.barh(indices + .6, test_time, .2, label="test time", color='b') plt.yticks(()) plt.legend(loc='best') plt.subplots_adjust(left=.25) plt.subplots_adjust(top=.95) plt.subplots_adjust(bottom=.05) for i, c in zip(indices, clf_names): plt.text(-.3, i, c) plt.show()
bsd-3-clause
Shatki/PyIMU
test/magnetosphere.py
1
1580
from mpl_toolkits.mplot3d import axes3d import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from socket import * import time # Объявляем все глобальные переменные HOST = '192.168.0.76' PORT = 21566 BUFSIZ = 512 ADDR = (HOST, PORT) bad_packet = 0 good_packet = 0 # fig, ax = plt.subplots() fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Socket # tcpCliSock = socket(AF_INET, SOCK_STREAM) # tcpCliSock.connect(ADDR) # Запрет на ожидание plt.ion() tstart = time.time() # real-time plotting loop X, Y, Z = [], [], [] while True: try: # читаем данные из сети tcpCliSock.c data = tcpCliSock.recv(BUFSIZ) if data: print(len(X), data) data = data.decode().split(',') if len(data) == 9: # print('Data received', data) # tcpCliSock.send(b'Ok') good_packet += 1 else: bad_packet += 1 # читаем данные из сети data = tcpCliSock.recv(BUFSIZ) X.append(data[0]) Y.append(data[1]) Z.append(data[2]) frame = ax.scatter(X, Y, Z, c='b', marker='o') # Remove old line collection before drawing #if oldcol is not None: # ax.collections.remove(oldcol) plt.pause(0.001 / len(X)) except KeyboardInterrupt: tcpCliSock.close() print('FPS: %f' % (len(X) / (time.time() - tstart))) break
gpl-3.0
DamCB/tyssue
tyssue/draw/ipv_draw.py
2
8114
"""3D visualisation inside the notebook. """ import warnings import numpy as np import pandas as pd from matplotlib import cm from ipywidgets import interact from ..config.draw import sheet_spec from ..utils.utils import spec_updater, get_sub_eptm try: import ipyvolume as ipv except ImportError: print( """ This module needs ipyvolume to work. You can install it with: $ conda install -c conda-forge ipyvolume """ ) def browse_history(history, coords=["x", "y", "z"], **draw_specs_kw): times = history.time_stamps num_frames = times.size draw_specs = sheet_spec() spec_updater(draw_specs, draw_specs_kw) sheet = history.retrieve(0) ipv.clear() fig, meshes = sheet_view(sheet, coords, **draw_specs_kw) lim_inf = sheet.vert_df[sheet.coords].min().min() lim_sup = sheet.vert_df[sheet.coords].max().max() ipv.xyzlim(lim_inf, lim_sup) def set_frame(i=0): fig.animation = 0 t = times[i] meshes = _get_meshes(history.retrieve(t), coords, draw_specs) update_view(fig, meshes) ipv.show() interact(set_frame, i=(0, num_frames - 1)) def update_view(fig, meshes): for old, new in zip(fig.meshes, meshes): old.x = new.x old.y = new.y old.z = new.z old.color = new.color old.triangles = new.triangles old.lines = new.lines def sheet_view(sheet, coords=["x", "y", "z"], **draw_specs_kw): """ Creates a javascript renderer of the edge lines to be displayed in Jupyter Notebooks Returns ------- fig: a :class:`ipyvolume.widgets.Figure` widget mesh: a :class:`ipyvolume.widgets.Mesh` mesh widget """ # ipv.style.use(["dark", "minimal"]) draw_specs = sheet_spec() spec_updater(draw_specs, draw_specs_kw) fig = ipv.gcf() fig.meshes = fig.meshes + _get_meshes(sheet, coords, draw_specs) box_size = max(*(np.ptp(sheet.vert_df[u]) for u in sheet.coords)) border = 0.05 * box_size lim_inf = sheet.vert_df[sheet.coords].min().min() - border lim_sup = sheet.vert_df[sheet.coords].max().max() + border ipv.xyzlim(lim_inf, lim_sup) return fig, fig.meshes def view_ipv(sheet, coords=["x", "y", "z"], **edge_specs): """ Creates a javascript renderer of the edge lines to be displayed in Jupyter Notebooks Returns ------- fig: a :class:`ipyvolume.widgets.Figure` widget mesh: a :class:`ipyvolume.widgets.Mesh` mesh widget """ warnings.warn("`view_ipv` is deprecated, use the more generic `sheet_view`") mesh = edge_mesh(sheet, coords, **edge_specs) fig = ipv.gcf() fig.meshes = fig.meshes + [mesh] box_size = max(*(np.ptp(sheet.vert_df[u]) for u in sheet.coords)) border = 0.05 * box_size lim_inf = sheet.vert_df[sheet.coords].min().min() - border lim_sup = sheet.vert_df[sheet.coords].max().max() + border ipv.xyzlim(lim_inf, lim_sup) return fig, mesh def edge_mesh(sheet, coords, **edge_specs): """ Creates a ipyvolume Mesh of the edge lines to be displayed in Jupyter Notebooks Returns ------- mesh: a :class:`ipyvolume.widgets.Mesh` mesh widget """ spec = sheet_spec()["edge"] spec.update(**edge_specs) if callable(spec["color"]): spec["color"] = spec["color"](sheet) if isinstance(spec["color"], str): color = spec["color"] elif hasattr(spec["color"], "__len__"): color = _wire_color_from_sequence(spec, sheet)[:, :3] u, v, w = coords mesh = ipv.Mesh( x=sheet.vert_df[u], y=sheet.vert_df[v], z=sheet.vert_df[w], lines=sheet.edge_df[["srce", "trgt"]].astype(dtype=np.uint32), color=color, ) return mesh def face_mesh(sheet, coords, **face_draw_specs): """ Creates a ipyvolume Mesh of the face polygons """ Ne, Nf = sheet.Ne, sheet.Nf if callable(face_draw_specs["color"]): face_draw_specs["color"] = face_draw_specs["color"](sheet) if isinstance(face_draw_specs["color"], str): color = face_draw_specs["color"] elif hasattr(face_draw_specs["color"], "__len__"): color = _face_color_from_sequence(face_draw_specs, sheet)[:, :3] if "visible" in sheet.face_df.columns: edges = sheet.edge_df[sheet.upcast_face(sheet.face_df["visible"])].index _sheet = get_sub_eptm(sheet, edges) if _sheet is not None: sheet = _sheet if isinstance(color, np.ndarray): faces = sheet.face_df["face_o"].values.astype(np.uint32) edges = edges.values.astype(np.uint32) indexer = np.concatenate([faces, edges + Nf, edges + Ne + Nf]) color = color.take(indexer, axis=0) epsilon = face_draw_specs.get("epsilon", 0) up_srce = sheet.edge_df[["s" + c for c in coords]] up_trgt = sheet.edge_df[["t" + c for c in coords]] Ne, Nf = sheet.Ne, sheet.Nf if epsilon > 0: up_face = sheet.edge_df[["f" + c for c in coords]].values up_srce = (up_srce - up_face) * (1 - epsilon) + up_face up_trgt = (up_trgt - up_face) * (1 - epsilon) + up_face mesh_ = np.concatenate( [sheet.face_df[coords].values, up_srce.values, up_trgt.values] ) triangles = np.vstack( [sheet.edge_df["face"], np.arange(Ne) + Nf, np.arange(Ne) + Ne + Nf] ).T.astype(dtype=np.uint32) mesh = ipv.Mesh( x=mesh_[:, 0], y=mesh_[:, 1], z=mesh_[:, 2], triangles=triangles, color=color ) return mesh def _wire_color_from_sequence(edge_spec, sheet): """ """ color_ = edge_spec["color"] cmap = cm.get_cmap(edge_spec.get("colormap", "viridis")) if color_.shape in [(sheet.Nv, 3), (sheet.Nv, 4)]: return np.asarray(color_) if color_.shape == (sheet.Nv,): if np.ptp(color_) < 1e-10: return np.ones((sheet.Nv, 3)) * 0.7 return cmap((color_ - color_.min()) / np.ptp(color_)) if color_.shape in [(sheet.Ne, 3), (sheet.Ne, 4)]: color_ = pd.DataFrame(color_, index=sheet.edge_df.index) color_["srce"] = sheet.edge_df["srce"] color_ = color_.groupby("srce").mean().values return color_ if color_.shape == (sheet.Ne,): color_ = pd.DataFrame(color_, index=sheet.edge_df.index) color_["srce"] = sheet.edge_df["srce"] color_ = color_.groupby("srce").mean().values.ravel() if np.ptp(color_) < 1e-10: warnings.warn("Attempting to draw a colormap " "with a uniform value") return np.ones((sheet.Nv, 3)) * 0.7 return cmap((color_ - color_.min()) / np.ptp(color_)) else: raise ValueError("The 'color' value of the spec doesn't have a correct shape.") def _face_color_from_sequence(face_spec, sheet): color_ = face_spec["color"] cmap = cm.get_cmap(face_spec.get("colormap", "viridis")) Nf, Ne = sheet.Nf, sheet.Ne color_min, color_max = face_spec.get("color_range", (color_.min(), color_.max())) face_mesh_shape = Nf + 2 * Ne if color_.shape in [(sheet.Nf, 3), (sheet.Nf, 4)]: return np.concatenate([color_, color_, color_]) elif color_.shape == (sheet.Nf,): if np.ptp(color_) < 1e-10: # warnings.warn("Attempting to draw a colormap with a uniform value") return np.ones((face_mesh_shape, 3)) * 0.5 normed = (color_ - color_min) / (color_max - color_min) up_color = sheet.upcast_face(normed).values return cmap(np.concatenate([normed, up_color, up_color])) else: raise ValueError( "shape of `face_spec['color']` must be either (Nf, 3), (Nf, 4) or (Nf,)" ) def _get_meshes(sheet, coords, draw_specs): meshes = [] edge_spec = draw_specs["edge"] if edge_spec["visible"]: edges = edge_mesh(sheet, coords, **edge_spec) meshes.append(edges) else: edges = None face_spec = draw_specs["face"] if face_spec["visible"]: faces = face_mesh(sheet, coords, **face_spec) meshes.append(faces) else: faces = None return meshes
gpl-3.0
ephes/scikit-learn
examples/decomposition/plot_faces_decomposition.py
204
4452
""" ============================ Faces dataset decompositions ============================ This example applies to :ref:`olivetti_faces` different unsupervised matrix decomposition (dimension reduction) methods from the module :py:mod:`sklearn.decomposition` (see the documentation chapter :ref:`decompositions`) . """ print(__doc__) # Authors: Vlad Niculae, Alexandre Gramfort # License: BSD 3 clause import logging from time import time from numpy.random import RandomState import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.cluster import MiniBatchKMeans from sklearn import decomposition # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') n_row, n_col = 2, 3 n_components = n_row * n_col image_shape = (64, 64) rng = RandomState(0) ############################################################################### # Load faces data dataset = fetch_olivetti_faces(shuffle=True, random_state=rng) faces = dataset.data n_samples, n_features = faces.shape # global centering faces_centered = faces - faces.mean(axis=0) # local centering faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1) print("Dataset consists of %d faces" % n_samples) ############################################################################### def plot_gallery(title, images, n_col=n_col, n_row=n_row): plt.figure(figsize=(2. * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.) ############################################################################### # List of the different estimators, whether to center and transpose the # problem, and whether the transformer uses the clustering API. estimators = [ ('Eigenfaces - RandomizedPCA', decomposition.RandomizedPCA(n_components=n_components, whiten=True), True), ('Non-negative components - NMF', decomposition.NMF(n_components=n_components, init='nndsvda', beta=5.0, tol=5e-3, sparseness='components'), False), ('Independent components - FastICA', decomposition.FastICA(n_components=n_components, whiten=True), True), ('Sparse comp. - MiniBatchSparsePCA', decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8, n_iter=100, batch_size=3, random_state=rng), True), ('MiniBatchDictionaryLearning', decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1, n_iter=50, batch_size=3, random_state=rng), True), ('Cluster centers - MiniBatchKMeans', MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20, max_iter=50, random_state=rng), True), ('Factor Analysis components - FA', decomposition.FactorAnalysis(n_components=n_components, max_iter=2), True), ] ############################################################################### # Plot a sample of the input data plot_gallery("First centered Olivetti faces", faces_centered[:n_components]) ############################################################################### # Do the estimation and plot it for name, estimator, center in estimators: print("Extracting the top %d %s..." % (n_components, name)) t0 = time() data = faces if center: data = faces_centered estimator.fit(data) train_time = (time() - t0) print("done in %0.3fs" % train_time) if hasattr(estimator, 'cluster_centers_'): components_ = estimator.cluster_centers_ else: components_ = estimator.components_ if hasattr(estimator, 'noise_variance_'): plot_gallery("Pixelwise variance", estimator.noise_variance_.reshape(1, -1), n_col=1, n_row=1) plot_gallery('%s - Train time %.1fs' % (name, train_time), components_[:n_components]) plt.show()
bsd-3-clause
devanshdalal/scikit-learn
examples/ensemble/plot_isolation_forest.py
39
2361
""" ========================================== IsolationForest example ========================================== An example using IsolationForest for anomaly detection. The IsolationForest 'isolates' observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of the selected feature. Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a sample is equivalent to the path length from the root node to the terminating node. This path length, averaged over a forest of such random trees, is a measure of normality and our decision function. Random partitioning produces noticeable shorter paths for anomalies. Hence, when a forest of random trees collectively produce shorter path lengths for particular samples, they are highly likely to be anomalies. .. [1] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation forest." Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import IsolationForest rng = np.random.RandomState(42) # Generate train data X = 0.3 * rng.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rng.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = IsolationForest(max_samples=100, random_state=rng) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) # plot the line, the samples, and the nearest vectors to the plane xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50)) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("IsolationForest") plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r) b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([b1, b2, c], ["training observations", "new regular observations", "new abnormal observations"], loc="upper left") plt.show()
bsd-3-clause
thp44/delphin_6_automation
data_process/2d_1d/archieve/moisture_content_comparison.py
1
18274
__author__ = "Christian Kongsgaard" __license__ = 'MIT' # -------------------------------------------------------------------------------------------------------------------- # # IMPORTS # Modules import pandas as pd import matplotlib.pyplot as plt # RiBuild Modules # -------------------------------------------------------------------------------------------------------------------- # # RIBuild out_folder = r'C:\Users\ocni\PycharmProjects\delphin_6_automation\data_process\2d_1d\processed_data' graphic_folder = r'U:\RIBuild\2D_1D\Processed Results\4A' hdf_file = out_folder + '/relative_moisture_content.h5' # Open HDF # Uninsulated dresdenzp_highratio_uninsulated_4a = pd.read_hdf(hdf_file, 'dresden_zp_high_ratio_uninsulated_4a') dresdenzd_highratio_uninsulated_4a = pd.read_hdf(hdf_file, 'dresden_zd_high_ratio_uninsulated_4a') postdam_highratio_uninsulated_4a = pd.read_hdf(hdf_file, 'potsdam_high_ratio_uninsulated_4a') dresdenzp_lowratio_uninsulated_4a = pd.read_hdf(hdf_file, 'dresden_zp_low_ratio_uninsulated_4a') dresdenzd_lowratio_uninsulated_4a = pd.read_hdf(hdf_file, 'dresden_zd_low_ratio_uninsulated_4a') postdam_lowratio_uninsulated_4a = pd.read_hdf(hdf_file, 'potsdam_low_ratio_uninsulated_4a') total_uninsulated_4a = pd.concat([dresdenzp_highratio_uninsulated_4a, dresdenzd_highratio_uninsulated_4a, postdam_highratio_uninsulated_4a, dresdenzp_lowratio_uninsulated_4a, dresdenzd_lowratio_uninsulated_4a, postdam_lowratio_uninsulated_4a]) # Insulated dresdenzp_highratio_insulated_4a = pd.read_hdf(hdf_file, 'dresden_zp_high_ratio_insulated_4a') dresdenzd_highratio_insulated_4a = pd.read_hdf(hdf_file, 'dresden_zd_high_ratio_insulated_4a') postdam_highratio_insulated_4a = pd.read_hdf(hdf_file, 'potsdam_high_ratio_insulated_4a') dresdenzp_lowratio_insulated_4a = pd.read_hdf(hdf_file, 'dresden_zp_low_ratio_insulated_4a') dresdenzd_lowratio_insulated_4a = pd.read_hdf(hdf_file, 'dresden_zd_low_ratio_insulated_4a') postdam_lowratio_insulated_4a = pd.read_hdf(hdf_file, 'potsdam_low_ratio_insulated_4a') total_insulated_4a = pd.concat([dresdenzp_highratio_insulated_4a, dresdenzd_highratio_insulated_4a, postdam_highratio_insulated_4a, dresdenzp_lowratio_insulated_4a, dresdenzd_lowratio_insulated_4a, postdam_lowratio_insulated_4a]) def plots(plot, save=False): """ Creates box plots from all the wall scenarios """ if plot == 'uninsulated' or plot == 'all': plt.figure('dresdenzp_highratio_uninsulated_4a_moisture', figsize=(16, 8), tight_layout=True) dresdenzp_highratio_uninsulated_4a.boxplot(showfliers=False) plt.ylim(-5, 1100) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Dresden ZP - Mortar: High Cement Ratio - Insulation: None') if save: plt.savefig(f"{graphic_folder}/dresdenzp_highratio_uninsulated_4a_moisture") plt.figure('dresdenzd_highratio_uninsulated_4a_moisture', figsize=(16, 8), tight_layout=True) dresdenzd_highratio_uninsulated_4a.boxplot(showfliers=False) plt.ylim(-5, 1100) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Dresden ZD - Mortar: High Cement Ratio - Insulation: None') if save: plt.savefig(f"{graphic_folder}/dresdenzd_highratio_uninsulated_4a_moisture") plt.figure('postdam_highratio_uninsulated_4a_moisture', figsize=(16, 8), tight_layout=True) postdam_highratio_uninsulated_4a.boxplot(showfliers=False) plt.ylim(-5, 1100) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Potsdam - Mortar: High Cement Ratio - Insulation: None') if save: plt.savefig(f"{graphic_folder}/postdam_highratio_uninsulated_4a_moisture") plt.figure('dresdenzp_lowratio_uninsulated_4a_moisture', figsize=(16, 8), tight_layout=True) dresdenzp_lowratio_uninsulated_4a.boxplot(showfliers=False) plt.ylim(-5, 1100) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Dresden ZP - Mortar: Low Cement Ratio - Insulation: None') if save: plt.savefig(f"{graphic_folder}/dresdenzp_lowratio_uninsulated_4a_moisture") plt.figure('dresdenzd_lowratio_uninsulated_4a_moisture', figsize=(16, 8), tight_layout=True) dresdenzd_lowratio_uninsulated_4a.boxplot(showfliers=False) plt.ylim(-5, 1100) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Dresden ZD - Mortar: Low Cement Ratio - Insulation: None') if save: plt.savefig(f"{graphic_folder}/dresdenzd_lowratio_uninsulated_4a_moisture") plt.figure('postdam_lowratio_uninsulated_4a_moisture', figsize=(16, 8), tight_layout=True) postdam_lowratio_uninsulated_4a.boxplot(showfliers=False) plt.ylim(-5, 1100) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Potsdam - Mortar: Low Cement Ratio - Insulation: None') if save: plt.savefig(f"{graphic_folder}/postdam_lowratio_uninsulated_4a_moisture") plt.figure('total_uninsulated_4a_moisture', figsize=(16, 8), tight_layout=True) total_uninsulated_4a.boxplot(showfliers=False) plt.ylim(-5, 1100) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: All - Mortar: All - Insulation: None') if save: plt.savefig(f"{graphic_folder}/total_uninsulated_4a_moisture") if plot == 'insulated' or plot == 'all': plt.figure('dresdenzp_highratio_insulated_4a_moisture', figsize=(16, 8), tight_layout=True) dresdenzp_highratio_insulated_4a.boxplot(showfliers=False) plt.ylim(-5, 2000) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Dresden ZP - Mortar: High Cement Ratio - Insulation: Calcium Silicate') if save: plt.savefig(f"{graphic_folder}/dresdenzp_highratio_insulated_4a_moisture") plt.figure('dresdenzd_highratio_insulated_4a_moisture', figsize=(16, 8), tight_layout=True) dresdenzd_highratio_insulated_4a.boxplot(showfliers=False) plt.ylim(-5, 2000) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Dresden ZD - Mortar: High Cement Ratio - Insulation: Calcium Silicate') if save: plt.savefig(f"{graphic_folder}/dresdenzd_highratio_insulated_4a_moisture") plt.figure('postdam_highratio_insulated_4a_moisture', figsize=(16, 8), tight_layout=True) postdam_highratio_insulated_4a.boxplot(showfliers=False) plt.ylim(-5, 2000) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Potsdam - Mortar: High Cement Ratio - Insulation: Calcium Silicate') if save: plt.savefig(f"{graphic_folder}/postdam_highratio_insulated_4a_moisture") plt.figure('dresdenzp_lowratio_insulated_4a_moisture', figsize=(16, 8), tight_layout=True) dresdenzp_lowratio_insulated_4a.boxplot(showfliers=False) plt.ylim(-5, 2000) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Dresden ZP - Mortar: Low Cement Ratio - Insulation: Calcium Silicate') if save: plt.savefig(f"{graphic_folder}/dresdenzp_lowratio_insulated_4a_moisture") plt.figure('dresdenzd_lowratio_insulated_4a_moisture', figsize=(16, 8), tight_layout=True) dresdenzd_lowratio_insulated_4a.boxplot(showfliers=False) plt.ylim(-5, 2000) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Dresden ZD - Mortar: Low Cement Ratio - Insulation: Calcium Silicate') if save: plt.savefig(f"{graphic_folder}/dresdenzd_lowratio_insulated_4a_moisture") plt.figure('postdam_lowratio_insulated_4a_moisture', figsize=(16, 8), tight_layout=True) postdam_lowratio_insulated_4a.boxplot(showfliers=False) plt.ylim(-5, 2000) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: Potsdam - Mortar: Low Cement Ratio - Insulation: Calcium Silicate') if save: plt.savefig(f"{graphic_folder}/postdam_lowratio_insulated_4a_moisture") plt.figure('total_insulated_4a_moisture', figsize=(16, 8), tight_layout=True) total_insulated_4a.boxplot(showfliers=False) plt.ylim(-5, 2000) plt.ylabel('Relative Difference in %') plt.title('Weighted Relative Difference between 1D and 2D\n' 'Moisture Content\n' 'Brick: All - Mortar: All - Insulation: Calcium Silicate') if save: plt.savefig(f"{graphic_folder}/total_insulated_4a_moisture") plt.show() plots('all', False) def std3_ratio(print_=False, excel=False): """Computes ratio of outliers in the data sets. Outliers is here defined as data points deviating with more the 3 standard deviations from the mean.""" std3_uninsulated_ratio_ = uninsulated() std3_insulated_ratio_ = insulated() if print_: print('Uninsulated') print(std3_uninsulated_ratio_) print('') print('Insulated') print(std3_insulated_ratio_) if excel: writer = pd.ExcelWriter(f'{out_folder}/moisture_std_ratios.xlsx') std3_uninsulated_ratio_.to_excel(writer, 'Uninsulated') std3_insulated_ratio_.to_excel(writer, 'Insulated') writer.save() def uninsulated(): """Computes the outliers for the uninsulated cases""" outliers_total_uninsulated = (total_uninsulated_4a.shape[0] - total_uninsulated_4a.sub(total_uninsulated_4a.mean()) .div(total_uninsulated_4a.std()).abs().lt(3).sum()) / total_uninsulated_4a.shape[0] outliers_zd_high_uninsulated = (dresdenzd_highratio_uninsulated_4a.shape[0] - dresdenzd_highratio_uninsulated_4a.sub(dresdenzd_highratio_uninsulated_4a.mean()) .div(dresdenzd_highratio_uninsulated_4a.std()).abs().lt(3).sum()) \ / dresdenzd_highratio_uninsulated_4a.shape[0] outliers_zp_high_uninsulated = (dresdenzp_highratio_uninsulated_4a.shape[0] - dresdenzp_highratio_uninsulated_4a.sub(dresdenzp_highratio_uninsulated_4a.mean()) .div(dresdenzp_highratio_uninsulated_4a.std()).abs().lt(3).sum()) \ / dresdenzp_highratio_uninsulated_4a.shape[0] outliers_pd_high_uninsulated = (postdam_highratio_uninsulated_4a.shape[0] - postdam_highratio_uninsulated_4a.sub(postdam_highratio_uninsulated_4a.mean()) .div(postdam_highratio_uninsulated_4a.std()).abs().lt(3).sum()) \ / postdam_highratio_uninsulated_4a.shape[0] outliers_zd_low_uninsulated = (dresdenzd_lowratio_uninsulated_4a.shape[0] - dresdenzd_lowratio_uninsulated_4a.sub(dresdenzd_lowratio_uninsulated_4a.mean()) .div(dresdenzd_lowratio_uninsulated_4a.std()).abs().lt(3).sum()) \ / dresdenzd_lowratio_uninsulated_4a.shape[0] outliers_zp_low_uninsulated = (dresdenzp_lowratio_uninsulated_4a.shape[0] - dresdenzp_lowratio_uninsulated_4a.sub(dresdenzp_lowratio_uninsulated_4a.mean()) .div(dresdenzp_lowratio_uninsulated_4a.std()).abs().lt(3).sum()) \ / dresdenzp_lowratio_uninsulated_4a.shape[0] outliers_pd_low_uninsulated = (postdam_lowratio_uninsulated_4a.shape[0] - postdam_lowratio_uninsulated_4a.sub(postdam_lowratio_uninsulated_4a.mean()) .div(postdam_lowratio_uninsulated_4a.std()).abs().lt(3).sum()) \ / postdam_lowratio_uninsulated_4a.shape[0] outliers_uninsulated_ratio_ = pd.concat([outliers_total_uninsulated, outliers_zd_high_uninsulated, outliers_zp_high_uninsulated, outliers_pd_high_uninsulated, outliers_zd_low_uninsulated, outliers_zp_low_uninsulated, outliers_pd_low_uninsulated], axis=1) outliers_uninsulated_ratio_.columns = ["Brick: All - Mortar: All - Insulation: None", "Brick: Dresden ZD - Mortar: High Cement Ratio - Insulation: None", "Brick: Dresden ZP - Mortar: High Cement Ratio - Insulation: None", "Brick: Potsdam - Mortar: High Cement Ratio - Insulation: None", "Brick: Dresden ZD - Mortar: Low Cement Ratio - Insulation: None", "Brick: Dresden ZP - Mortar: Low Cement Ratio - Insulation: None", "Brick: Potsdam - Mortar: Low Cement Ratio - Insulation: None"] return outliers_uninsulated_ratio_ def insulated(): """Computes the outliers for the insulated cases""" outliers_total_insulated = (total_insulated_4a.shape[0] - total_insulated_4a.sub(total_insulated_4a.mean()) .div(total_insulated_4a.std()).abs().lt(3).sum()) / total_insulated_4a.shape[0] outliers_zd_high_insulated = (dresdenzd_highratio_insulated_4a.shape[0] - dresdenzd_highratio_insulated_4a.sub(dresdenzd_highratio_insulated_4a.mean()) .div(dresdenzd_highratio_insulated_4a.std()).abs().lt(3).sum()) \ / dresdenzd_highratio_insulated_4a.shape[0] outliers_zp_high_insulated = (dresdenzp_highratio_insulated_4a.shape[0] - dresdenzp_highratio_insulated_4a.sub(dresdenzp_highratio_insulated_4a.mean()) .div(dresdenzp_highratio_insulated_4a.std()).abs().lt(3).sum()) \ / dresdenzp_highratio_insulated_4a.shape[0] outliers_pd_high_insulated = (postdam_highratio_insulated_4a.shape[0] - postdam_highratio_insulated_4a.sub(postdam_highratio_insulated_4a.mean()) .div(postdam_highratio_insulated_4a.std()).abs().lt(3).sum()) \ / postdam_highratio_insulated_4a.shape[0] outliers_zd_low_insulated = (dresdenzd_lowratio_insulated_4a.shape[0] - dresdenzd_lowratio_insulated_4a.sub(dresdenzd_lowratio_insulated_4a.mean()) .div(dresdenzd_lowratio_insulated_4a.std()).abs().lt(3).sum()) \ / dresdenzd_lowratio_insulated_4a.shape[0] outliers_zp_low_insulated = (dresdenzp_lowratio_insulated_4a.shape[0] - dresdenzp_lowratio_insulated_4a.sub(dresdenzp_lowratio_insulated_4a.mean()) .div(dresdenzp_lowratio_insulated_4a.std()).abs().lt(3).sum()) \ / dresdenzp_lowratio_insulated_4a.shape[0] outliers_pd_low_insulated = (postdam_lowratio_insulated_4a.shape[0] - postdam_lowratio_insulated_4a.sub(postdam_lowratio_insulated_4a.mean()) .div(postdam_lowratio_insulated_4a.std()).abs().lt(3).sum()) \ / postdam_lowratio_insulated_4a.shape[0] std2_insulated_ratio_ = pd.concat([outliers_total_insulated, outliers_zd_high_insulated, outliers_zp_high_insulated, outliers_pd_high_insulated, outliers_zd_low_insulated, outliers_zp_low_insulated, outliers_pd_low_insulated], axis=1) std2_insulated_ratio_.columns = ["Brick: All - Mortar: All - Insulation: None", "Brick: Dresden ZD - Mortar: High Cement Ratio - Insulation: Calcium Silicate", "Brick: Dresden ZP - Mortar: High Cement Ratio - Insulation: Calcium Silicate", "Brick: Potsdam - Mortar: High Cement Ratio - Insulation: Calcium Silicate", "Brick: Dresden ZD - Mortar: Low Cement Ratio - Insulation: Calcium Silicate", "Brick: Dresden ZP - Mortar: Low Cement Ratio - Insulation: Calcium Silicate", "Brick: Potsdam - Mortar: Low Cement Ratio - Insulation: Calcium Silicate"] return std2_insulated_ratio_ #std3_ratio(False, True)
mit
miaecle/deepchem
devtools/archive/jenkins/generate_graph.py
2
5220
import csv import os import numpy as np import matplotlib.pyplot as plt import time plt.switch_backend('agg') TODO = { ('tox21', 'random'): [ 'weave', 'graphconv', 'tf', 'tf_robust', 'irv', 'xgb', 'logreg', 'textcnn' ], ('clintox', 'random'): [ 'weave', 'graphconv', 'tf', 'tf_robust', 'irv', 'xgb', 'logreg', 'textcnn' ], ('sider', 'random'): [ 'weave', 'graphconv', 'tf', 'tf_robust', 'irv', 'xgb', 'logreg', 'textcnn' ], ('bbbp', 'scaffold'): ['weave', 'graphconv', 'tf', 'irv', 'xgb', 'logreg', 'textcnn'], ('bace_c', 'scaffold'): ['weave', 'graphconv', 'tf', 'irv', 'xgb', 'logreg', 'textcnn'], ('hiv', 'scaffold'): ['weave', 'graphconv', 'tf', 'irv', 'xgb', 'logreg', 'textcnn'], ('muv', 'random'): ['graphconv', 'tf', 'tf_robust', 'irv', 'xgb', 'logreg'], ('delaney', 'random'): [ 'weave_regression', 'graphconvreg', 'tf_regression', 'xgb_regression', 'krr', 'textcnn_regression', 'dag_regression', 'mpnn' ], ('sampl', 'random'): [ 'weave_regression', 'graphconvreg', 'tf_regression', 'xgb_regression', 'krr', 'textcnn_regression', 'dag_regression', 'mpnn' ], ('lipo', 'random'): [ 'weave_regression', 'graphconvreg', 'tf_regression', 'xgb_regression', 'krr', 'textcnn_regression', 'dag_regression', 'mpnn' ], ('qm7', 'stratified'): [ 'dtnn', 'graphconvreg', 'tf_regression_ft', 'krr_ft' ], ('qm8', 'random'): [ 'dtnn', 'graphconvreg', 'weave_regression', 'textcnn_regression', 'mpnn', 'tf_regression', 'tf_regression_ft' ], } ORDER = [ 'logreg', 'rf', 'rf_regression', 'xgb', 'xgb_regression', 'kernelsvm', 'krr', 'krr_ft', 'tf', 'tf_regression', 'tf_regression_ft', 'tf_robust', 'irv', 'textcnn', 'textcnn_regression', 'graphconv', 'graphconvreg', 'dag', 'dag_regression', 'ani', 'weave', 'weave_regression', 'dtnn', 'mpnn' ] COLOR = { 'logreg': '#3F3F3F', 'rf': '#67AD4F', 'rf_regression': '#67AD4F', 'xgb': '#0E766C', 'xgb_regression': '#0E766C', 'kernelsvm': '#FC926B', 'krr': '#FC926B', 'krr_ft': '#5A372A', 'tf': '#2B6596', 'tf_regression': '#2B6596', 'tf_regression_ft': '#162939', 'tf_robust': '#775183', 'irv': '#D9D9D9', 'graphconv': '#A4D192', 'graphconvreg': '#A4D192', 'dag': '#D06329', 'dag_regression': '#D06329', 'ani': '#D9D9D9', 'weave': '#8196AE', 'weave_regression': '#8196AE', 'textcnn': '#811B18', 'textcnn_regression': '#811B18', 'dtnn': '#D06329', 'mpnn': '#7B0A48' } TODO_list = set() for key in TODO.keys(): for val in TODO[key]: TODO_list.add((key[0], key[1], val)) def read_results(path): Results = set() with open(path, 'r') as f: reader = csv.reader(f) for line in reader: Results.add((line[0], line[1], line[3])) return Results def run_benchmark(path, deepchem_dir): finished = read_results(path) os.chdir(deepchem_dir) os.chdir('./examples') while len(TODO_list - finished) > 0: todo = TODO_list - finished for p in todo: os.system('python benchmark.py --seed 123 -d ' + p[0] + ' -s ' + p[1] + ' -m ' + p[2]) def plot(dataset, split, path, out_path): if dataset in [ 'bace_c', 'bbbp', 'clintox', 'hiv', 'muv', 'pcba', 'pcba_146', 'pcba_2475', 'sider', 'tox21', 'toxcast' ]: mode = 'classification' else: mode = 'regression' data = {} with open(path, 'r') as f: reader = csv.reader(f) for line in reader: if line[0] == dataset and line[1] == split: data[line[3]] = line[8] labels = [] values = [] colors = [] for model in ORDER: if model in data.keys(): labels.append(model) colors.append(COLOR[model]) values.append(float(data[model])) y_pos = np.arange(len(labels)) plt.rcdefaults() fig, ax = plt.subplots() ax.barh(y_pos, values, align='center', color='green') ax.set_yticks(y_pos) ax.set_yticklabels(labels) ax.invert_yaxis() if mode == 'regression': ax.set_xlabel('R square') ax.set_xlim(left=0., right=1.) else: ax.set_xlabel('ROC-AUC') ax.set_xlim(left=0.4, right=1.) t = time.localtime(time.time()) ax.set_title("Performance on %s (%s split), %i-%i-%i" % (dataset, split, t.tm_year, t.tm_mon, t.tm_mday)) plt.tight_layout() for i in range(len(colors)): ax.get_children()[i].set_color(colors[i]) ax.text( values[i] - 0.1, y_pos[i] + 0.1, str("%.3f" % values[i]), color='white') fig.savefig(os.path.join(out_path, dataset + '_' + split + '.png')) #plt.show() if __name__ == '__main__': current_dir = os.path.dirname(os.path.realpath(__file__)) DEEPCHEM_DIR = os.path.split(os.path.split(current_dir)[0])[0] FILE = os.path.join(os.path.join(DEEPCHEM_DIR, 'examples'), 'results.csv') #run_benchmark(FILE, DEEPCHEM_DIR) save_dir = os.path.join(DEEPCHEM_DIR, 'datasets/MolNet_pic') if not os.path.exists(save_dir): os.mkdir(save_dir) for pair in TODO.keys(): plot(pair[0], pair[1], FILE, save_dir) os.system('aws s3 sync ' + save_dir + ' s3://deepchem.io/trained_models/MolNet_pic')
mit
xiongzhenggang/xiongzhenggang.github.io
AI/data/deeplearning24054/planar_utils.py
2
2271
import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, Y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=Y.reshape(X[0,:].shape), cmap=plt.cm.Spectral) def sigmoid(x): """ Compute the sigmoid of x Arguments: x -- A scalar or numpy array of any size. Return: s -- sigmoid(x) """ s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(N*j,N*(j+1)) t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius X[ix] = np.c_[r*np.sin(t), r*np.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
gpl-3.0
airanmehr/bio
Scripts/TimeSeriesPaper/Plot/topSNPs.py
1
1589
''' Copyleft Oct 14, 2016 Arya Iranmehr, PhD Student, Bafna Lab, UC San Diego, Email: airanmehr@gmail.com ''' import numpy as np; np.set_printoptions(linewidth=200, precision=5, suppress=True) import pandas as pd; pd.options.display.max_rows = 20; pd.options.display.expand_frame_repr = False import seaborn as sns import matplotlib as mpl import os; home = os.path.expanduser('~') + '/' import Utils.Util as utl import Scripts.TimeSeriesPaper.RealData.Utils as rutl a = rutl.loadAllScores().groupby(level='h', axis=1).apply(rutl.HstatisticAll) df = pd.read_pickle(utl.outpath + 'real/scores.df') i = df.lrd.sort_values().index[-1] df.loc[i] cd = pd.read_pickle(utl.outpath + 'real/CD.F59.df') import Utils.Plots as pplt import pylab as plt names = rutl.loadSNPIDs() sns.set_style("white", {"grid.color": "0.9", 'axes.linewidth': .5, "grid.linewidth": "9.99"}) mpl.rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}); mpl.rc('text', usetex=True) reload(pplt) f, ax = plt.subplots(1, 2, sharey=True, dpi=300, figsize=(4, 2)) i = a[0.5].sort_values().index[-1] sns.set_context("notebook", font_scale=1, rc={"lines.linewidth": 1.2}) pplt.plotSiteReal(cd.loc[i], ax=ax[0], legend=True) ax[0].set_title('{}:{:.0f} ({})'.format(i[0], i[1], names.loc[i]), fontsize=8) i = df.lrdiff.sort_values().index[-1] pplt.plotSiteReal(cd.loc[i], ax=ax[1]) sns.set_context("notebook", font_scale=1, rc={"lines.linewidth": 1.2}) ax[1].set_title('{}:{:.0f} ({})'.format(i[0], i[1], names.loc[i]), fontsize=8) plt.gcf().subplots_adjust(bottom=0.2) pplt.savefig('topSNPs', 300) plt.show()
mit
sighingnow/sighingnow.github.io
resource/k_nearest_neighbors/dating.py
1
3622
#! /usr/bin/env python # -*- coding: utf-8 ''' Name: dating.py(KNN algorithm) Training and test dataset: dating.txt Created on Feb 8, 2015 @author: Tao He ''' __author__ = 'Tao He' from numpy import array as nmarray from matplotlib import pyplot as plt LABEL_MAP = { 'didntLike': 1, 'smallDoses': 2, 'largeDoses': 3, } ATTR_MAP = { 1: 'Number of frequent flyer miles earned per year', 2: 'Percentage of time spent playing video games', 3: 'Liters of ice cream consumed per week', } def create_dataset(filename=None): ''' Return data group and labels. Get the data from file. If the filename is not specialed, return None. dataformat: flyerMiles, gameTime, icecream, label. ''' def normalize_data(data=None): ''' Normalized dataset. Normalize all data to range 0-1. ''' if data is None: return None for column in range(data[0].__len__()): max_val, min_val = max(data[:, column]), min(data[:, column]) for row in range(data.__len__()): data[row][column] = (data[row][column]-min_val)/(max_val-min_val) return data if filename == None: return (None, None) group = [] labels = [] with open(filename, mode='r') as fp_data: for line in fp_data: group.append([float(num) for num in line[:-1].split('\t')[0:3]]) labels.append(LABEL_MAP[line[:-1].split('\t')[3]]) return normalize_data(nmarray(group)), labels def draw_pic(group=None, labels=None, x=0, y=0): ''' Draw a subplot from data group. ''' if group is None or labels is None: return None name = 'knn-dating' figure = plt.figure(num=name, dpi=100) ax_main = figure.add_subplot(1, 1, 1, xlabel=ATTR_MAP[x+1], ylabel=ATTR_MAP[y+1], title=name) ax_main.scatter(group[:, x], group[:, y], s=15*nmarray(labels), c=[[i/LABEL_MAP.__len__()] for i in labels]) plt.show() ## plt.savefig('%s.png'%name, format='png', dpi=100) def knn_classify(group, labels, attrs, ratio=0.5, item=0, k=3): ''' Return the type of item. knn classify function. ''' def get_dist(i, j): ''' Return the distence of group[i] and group[j]. ''' dist = 0.0 for attr in attrs: dist += (group[i][attr]-group[j][attr])*(group[i][attr]-group[j][attr]) return dist length = group.__len__() distence = [] for i in range(int(length*ratio), length): distence.append((i, get_dist(item, i))) cnt = {} distence.sort(key=lambda item: item[1]) for i in range(k): label = labels[distence[i][0]] if label in cnt: cnt[label] += 1 else: cnt[label] = 1 return sorted(cnt.items(), key=lambda item: item[1], reverse=True)[0][0] def knn(): ''' KNN classify algorithm. ''' data, labels = create_dataset('dating.txt') ratio, attr = 0.5, [0, 1, 2] cnt, cnt_correct = 0, 0 length = data.__len__() for i in range(0, int(length*ratio)): cnt += 1 knn_type = knn_classify(data, labels, attr, ratio, i, 3) # print('case[%d]: real: %d, knn: %d'%(i, labels[i], knn_type)) if knn_type == labels[i]: cnt_correct += 1 print('total: %d, correct: %d, correct ratio: %f'%(cnt, cnt_correct, cnt_correct/cnt)) if __name__ == '__main__': knn() # vim: set sw=4, ts=4, fileencoding=utf-8
mit
Obus/scikit-learn
benchmarks/bench_plot_approximate_neighbors.py
85
6377
""" Benchmark for approximate nearest neighbor search using locality sensitive hashing forest. There are two types of benchmarks. First, accuracy of LSHForest queries are measured for various hyper-parameters and index sizes. Second, speed up of LSHForest queries compared to brute force method in exact nearest neighbors is measures for the aforementioned settings. In general, speed up is increasing as the index size grows. """ from __future__ import division import numpy as np from tempfile import gettempdir from time import time from sklearn.neighbors import NearestNeighbors from sklearn.neighbors.approximate import LSHForest from sklearn.datasets import make_blobs from sklearn.externals.joblib import Memory m = Memory(cachedir=gettempdir()) @m.cache() def make_data(n_samples, n_features, n_queries, random_state=0): """Create index and query data.""" print('Generating random blob-ish data') X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=100, shuffle=True, random_state=random_state) # Keep the last samples as held out query vectors: note since we used # shuffle=True we have ensured that index and query vectors are # samples from the same distribution (a mixture of 100 gaussians in this # case) return X[:n_samples], X[n_samples:] def calc_exact_neighbors(X, queries, n_queries, n_neighbors): """Measures average times for exact neighbor queries.""" print ('Building NearestNeighbors for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) average_time = 0 t0 = time() neighbors = nbrs.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time = (time() - t0) / n_queries return neighbors, average_time def calc_accuracy(X, queries, n_queries, n_neighbors, exact_neighbors, average_time_exact, **lshf_params): """Calculates accuracy and the speed up of LSHForest.""" print('Building LSHForest for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) lshf = LSHForest(**lshf_params) t0 = time() lshf.fit(X) lshf_build_time = time() - t0 print('Done in %0.3fs' % lshf_build_time) accuracy = 0 t0 = time() approx_neighbors = lshf.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time_approx = (time() - t0) / n_queries for i in range(len(queries)): accuracy += np.in1d(approx_neighbors[i], exact_neighbors[i]).mean() accuracy /= n_queries speed_up = average_time_exact / average_time_approx print('Average time for lshf neighbor queries: %0.3fs' % average_time_approx) print ('Average time for exact neighbor queries: %0.3fs' % average_time_exact) print ('Average Accuracy : %0.2f' % accuracy) print ('Speed up: %0.1fx' % speed_up) return speed_up, accuracy if __name__ == '__main__': import matplotlib.pyplot as plt # Initialize index sizes n_samples = [int(1e3), int(1e4), int(1e5), int(1e6)] n_features = int(1e2) n_queries = 100 n_neighbors = 10 X_index, X_query = make_data(np.max(n_samples), n_features, n_queries, random_state=0) params_list = [{'n_estimators': 3, 'n_candidates': 50}, {'n_estimators': 5, 'n_candidates': 70}, {'n_estimators': 10, 'n_candidates': 100}] accuracies = np.zeros((len(n_samples), len(params_list)), dtype=float) speed_ups = np.zeros((len(n_samples), len(params_list)), dtype=float) for i, sample_size in enumerate(n_samples): print ('==========================================================') print ('Sample size: %i' % sample_size) print ('------------------------') exact_neighbors, average_time_exact = calc_exact_neighbors( X_index[:sample_size], X_query, n_queries, n_neighbors) for j, params in enumerate(params_list): print ('LSHF parameters: n_estimators = %i, n_candidates = %i' % (params['n_estimators'], params['n_candidates'])) speed_ups[i, j], accuracies[i, j] = calc_accuracy( X_index[:sample_size], X_query, n_queries, n_neighbors, exact_neighbors, average_time_exact, random_state=0, **params) print ('') print ('==========================================================') # Set labels for LSHForest parameters colors = ['c', 'm', 'y'] p1 = plt.Rectangle((0, 0), 0.1, 0.1, fc=colors[0]) p2 = plt.Rectangle((0, 0), 0.1, 0.1, fc=colors[1]) p3 = plt.Rectangle((0, 0), 0.1, 0.1, fc=colors[2]) labels = ['n_estimators=' + str(params_list[0]['n_estimators']) + ', n_candidates=' + str(params_list[0]['n_candidates']), 'n_estimators=' + str(params_list[1]['n_estimators']) + ', n_candidates=' + str(params_list[1]['n_candidates']), 'n_estimators=' + str(params_list[2]['n_estimators']) + ', n_candidates=' + str(params_list[2]['n_candidates'])] # Plot precision plt.figure() plt.legend((p1, p2, p3), (labels[0], labels[1], labels[2]), loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, accuracies[:, i], c=colors[i]) plt.plot(n_samples, accuracies[:, i], c=colors[i]) plt.ylim([0, 1.3]) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Precision@10") plt.xlabel("Index size") plt.grid(which='both') plt.title("Precision of first 10 neighbors with index size") # Plot speed up plt.figure() plt.legend((p1, p2, p3), (labels[0], labels[1], labels[2]), loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, speed_ups[:, i], c=colors[i]) plt.plot(n_samples, speed_ups[:, i], c=colors[i]) plt.ylim(0, np.max(speed_ups)) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Speed up") plt.xlabel("Index size") plt.grid(which='both') plt.title("Relationship between Speed up and index size") plt.show()
bsd-3-clause
cswiercz/sympy
sympy/physics/quantum/state.py
58
29186
"""Dirac notation for states.""" from __future__ import print_function, division from sympy import (cacheit, conjugate, Expr, Function, integrate, oo, sqrt, Tuple) from sympy.core.compatibility import u, range from sympy.printing.pretty.stringpict import stringPict from sympy.physics.quantum.qexpr import QExpr, dispatch_method __all__ = [ 'KetBase', 'BraBase', 'StateBase', 'State', 'Ket', 'Bra', 'TimeDepState', 'TimeDepBra', 'TimeDepKet', 'Wavefunction' ] #----------------------------------------------------------------------------- # States, bras and kets. #----------------------------------------------------------------------------- # ASCII brackets _lbracket = "<" _rbracket = ">" _straight_bracket = "|" # Unicode brackets # MATHEMATICAL ANGLE BRACKETS _lbracket_ucode = u("\N{MATHEMATICAL LEFT ANGLE BRACKET}") _rbracket_ucode = u("\N{MATHEMATICAL RIGHT ANGLE BRACKET}") # LIGHT VERTICAL BAR _straight_bracket_ucode = u("\N{LIGHT VERTICAL BAR}") # Other options for unicode printing of <, > and | for Dirac notation. # LEFT-POINTING ANGLE BRACKET # _lbracket = u"\u2329" # _rbracket = u"\u232A" # LEFT ANGLE BRACKET # _lbracket = u"\u3008" # _rbracket = u"\u3009" # VERTICAL LINE # _straight_bracket = u"\u007C" class StateBase(QExpr): """Abstract base class for general abstract states in quantum mechanics. All other state classes defined will need to inherit from this class. It carries the basic structure for all other states such as dual, _eval_adjoint and label. This is an abstract base class and you should not instantiate it directly, instead use State. """ @classmethod def _operators_to_state(self, ops, **options): """ Returns the eigenstate instance for the passed operators. This method should be overridden in subclasses. It will handle being passed either an Operator instance or set of Operator instances. It should return the corresponding state INSTANCE or simply raise a NotImplementedError. See cartesian.py for an example. """ raise NotImplementedError("Cannot map operators to states in this class. Method not implemented!") def _state_to_operators(self, op_classes, **options): """ Returns the operators which this state instance is an eigenstate of. This method should be overridden in subclasses. It will be called on state instances and be passed the operator classes that we wish to make into instances. The state instance will then transform the classes appropriately, or raise a NotImplementedError if it cannot return operator instances. See cartesian.py for examples, """ raise NotImplementedError( "Cannot map this state to operators. Method not implemented!") @property def operators(self): """Return the operator(s) that this state is an eigenstate of""" from .operatorset import state_to_operators # import internally to avoid circular import errors return state_to_operators(self) def _enumerate_state(self, num_states, **options): raise NotImplementedError("Cannot enumerate this state!") def _represent_default_basis(self, **options): return self._represent(basis=self.operators) #------------------------------------------------------------------------- # Dagger/dual #------------------------------------------------------------------------- @property def dual(self): """Return the dual state of this one.""" return self.dual_class()._new_rawargs(self.hilbert_space, *self.args) @classmethod def dual_class(self): """Return the class used to construt the dual.""" raise NotImplementedError( 'dual_class must be implemented in a subclass' ) def _eval_adjoint(self): """Compute the dagger of this state using the dual.""" return self.dual #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _pretty_brackets(self, height, use_unicode=True): # Return pretty printed brackets for the state # Ideally, this could be done by pform.parens but it does not support the angled < and > # Setup for unicode vs ascii if use_unicode: lbracket, rbracket = self.lbracket_ucode, self.rbracket_ucode slash, bslash, vert = u('\N{BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT}'), \ u('\N{BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT}'), \ u('\N{BOX DRAWINGS LIGHT VERTICAL}') else: lbracket, rbracket = self.lbracket, self.rbracket slash, bslash, vert = '/', '\\', '|' # If height is 1, just return brackets if height == 1: return stringPict(lbracket), stringPict(rbracket) # Make height even height += (height % 2) brackets = [] for bracket in lbracket, rbracket: # Create left bracket if bracket in set([_lbracket, _lbracket_ucode]): bracket_args = [ ' ' * (height//2 - i - 1) + slash for i in range(height // 2)] bracket_args.extend( [ ' ' * i + bslash for i in range(height // 2)]) # Create right bracket elif bracket in set([_rbracket, _rbracket_ucode]): bracket_args = [ ' ' * i + bslash for i in range(height // 2)] bracket_args.extend([ ' ' * ( height//2 - i - 1) + slash for i in range(height // 2)]) # Create straight bracket elif bracket in set([_straight_bracket, _straight_bracket_ucode]): bracket_args = [vert for i in range(height)] else: raise ValueError(bracket) brackets.append( stringPict('\n'.join(bracket_args), baseline=height//2)) return brackets def _sympystr(self, printer, *args): contents = self._print_contents(printer, *args) return '%s%s%s' % (self.lbracket, contents, self.rbracket) def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm # Get brackets pform = self._print_contents_pretty(printer, *args) lbracket, rbracket = self._pretty_brackets( pform.height(), printer._use_unicode) # Put together state pform = prettyForm(*pform.left(lbracket)) pform = prettyForm(*pform.right(rbracket)) return pform def _latex(self, printer, *args): contents = self._print_contents_latex(printer, *args) # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. return '{%s%s%s}' % (self.lbracket_latex, contents, self.rbracket_latex) class KetBase(StateBase): """Base class for Kets. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Ket. """ lbracket = _straight_bracket rbracket = _rbracket lbracket_ucode = _straight_bracket_ucode rbracket_ucode = _rbracket_ucode lbracket_latex = r'\left|' rbracket_latex = r'\right\rangle ' @classmethod def default_args(self): return ("psi",) @classmethod def dual_class(self): return BraBase def __mul__(self, other): """KetBase*other""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, BraBase): return OuterProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*KetBase""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, BraBase): return InnerProduct(other, self) else: return Expr.__rmul__(self, other) #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_innerproduct(self, bra, **hints): """Evaluate the inner product betweeen this ket and a bra. This is called to compute <bra|ket>, where the ket is ``self``. This method will dispatch to sub-methods having the format:: ``def _eval_innerproduct_BraClass(self, **hints):`` Subclasses should define these methods (one for each BraClass) to teach the ket how to take inner products with bras. """ return dispatch_method(self, '_eval_innerproduct', bra, **hints) def _apply_operator(self, op, **options): """Apply an Operator to this Ket. This method will dispatch to methods having the format:: ``def _apply_operator_OperatorName(op, **options):`` Subclasses should define these methods (one for each OperatorName) to teach the Ket how operators act on it. Parameters ========== op : Operator The Operator that is acting on the Ket. options : dict A dict of key/value pairs that control how the operator is applied to the Ket. """ return dispatch_method(self, '_apply_operator', op, **options) class BraBase(StateBase): """Base class for Bras. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Bra. """ lbracket = _lbracket rbracket = _straight_bracket lbracket_ucode = _lbracket_ucode rbracket_ucode = _straight_bracket_ucode lbracket_latex = r'\left\langle ' rbracket_latex = r'\right|' @classmethod def _operators_to_state(self, ops, **options): state = self.dual_class().operators_to_state(ops, **options) return state.dual def _state_to_operators(self, op_classes, **options): return self.dual._state_to_operators(op_classes, **options) def _enumerate_state(self, num_states, **options): dual_states = self.dual._enumerate_state(num_states, **options) return [x.dual for x in dual_states] @classmethod def default_args(self): return self.dual_class().default_args() @classmethod def dual_class(self): return KetBase def __mul__(self, other): """BraBase*other""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, KetBase): return InnerProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*BraBase""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, KetBase): return OuterProduct(other, self) else: return Expr.__rmul__(self, other) def _represent(self, **options): """A default represent that uses the Ket's version.""" from sympy.physics.quantum.dagger import Dagger return Dagger(self.dual._represent(**options)) class State(StateBase): """General abstract quantum state used as a base class for Ket and Bra.""" pass class Ket(State, KetBase): """A general time-independent Ket in quantum mechanics. Inherits from State and KetBase. This class should be used as the base class for all physical, time-independent Kets in a system. This class and its subclasses will be the main classes that users will use for expressing Kets in Dirac notation [1]_. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Ket and looking at its properties:: >>> from sympy.physics.quantum import Ket, Bra >>> from sympy import symbols, I >>> k = Ket('psi') >>> k |psi> >>> k.hilbert_space H >>> k.is_commutative False >>> k.label (psi,) Ket's know about their associated bra:: >>> k.dual <psi| >>> k.dual_class() <class 'sympy.physics.quantum.state.Bra'> Take a linear combination of two kets:: >>> k0 = Ket(0) >>> k1 = Ket(1) >>> 2*I*k0 - 4*k1 2*I*|0> - 4*|1> Compound labels are passed as tuples:: >>> n, m = symbols('n,m') >>> k = Ket(n,m) >>> k |nm> References ========== .. [1] http://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Bra class Bra(State, BraBase): """A general time-independent Bra in quantum mechanics. Inherits from State and BraBase. A Bra is the dual of a Ket [1]_. This class and its subclasses will be the main classes that users will use for expressing Bras in Dirac notation. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Bra and look at its properties:: >>> from sympy.physics.quantum import Ket, Bra >>> from sympy import symbols, I >>> b = Bra('psi') >>> b <psi| >>> b.hilbert_space H >>> b.is_commutative False Bra's know about their dual Ket's:: >>> b.dual |psi> >>> b.dual_class() <class 'sympy.physics.quantum.state.Ket'> Like Kets, Bras can have compound labels and be manipulated in a similar manner:: >>> n, m = symbols('n,m') >>> b = Bra(n,m) - I*Bra(m,n) >>> b -I*<mn| + <nm| Symbols in a Bra can be substituted using ``.subs``:: >>> b.subs(n,m) <mm| - I*<mm| References ========== .. [1] http://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Ket #----------------------------------------------------------------------------- # Time dependent states, bras and kets. #----------------------------------------------------------------------------- class TimeDepState(StateBase): """Base class for a general time-dependent quantum state. This class is used as a base class for any time-dependent state. The main difference between this class and the time-independent state is that this class takes a second argument that is the time in addition to the usual label argument. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. """ #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def default_args(self): return ("psi", "t") #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def label(self): """The label of the state.""" return self.args[:-1] @property def time(self): """The time of the state.""" return self.args[-1] #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _print_time(self, printer, *args): return printer._print(self.time, *args) _print_time_repr = _print_time _print_time_latex = _print_time def _print_time_pretty(self, printer, *args): pform = printer._print(self.time, *args) return pform def _print_contents(self, printer, *args): label = self._print_label(printer, *args) time = self._print_time(printer, *args) return '%s;%s' % (label, time) def _print_label_repr(self, printer, *args): label = self._print_sequence(self.label, ',', printer, *args) time = self._print_time_repr(printer, *args) return '%s,%s' % (label, time) def _print_contents_pretty(self, printer, *args): label = self._print_label_pretty(printer, *args) time = self._print_time_pretty(printer, *args) return printer._print_seq((label, time), delimiter=';') def _print_contents_latex(self, printer, *args): label = self._print_sequence( self.label, self._label_separator, printer, *args) time = self._print_time_latex(printer, *args) return '%s;%s' % (label, time) class TimeDepKet(TimeDepState, KetBase): """General time-dependent Ket in quantum mechanics. This inherits from ``TimeDepState`` and ``KetBase`` and is the main class that should be used for Kets that vary with time. Its dual is a ``TimeDepBra``. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== Create a TimeDepKet and look at its attributes:: >>> from sympy.physics.quantum import TimeDepKet >>> k = TimeDepKet('psi', 't') >>> k |psi;t> >>> k.time t >>> k.label (psi,) >>> k.hilbert_space H TimeDepKets know about their dual bra:: >>> k.dual <psi;t| >>> k.dual_class() <class 'sympy.physics.quantum.state.TimeDepBra'> """ @classmethod def dual_class(self): return TimeDepBra class TimeDepBra(TimeDepState, BraBase): """General time-dependent Bra in quantum mechanics. This inherits from TimeDepState and BraBase and is the main class that should be used for Bras that vary with time. Its dual is a TimeDepBra. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== >>> from sympy.physics.quantum import TimeDepBra >>> from sympy import symbols, I >>> b = TimeDepBra('psi', 't') >>> b <psi;t| >>> b.time t >>> b.label (psi,) >>> b.hilbert_space H >>> b.dual |psi;t> """ @classmethod def dual_class(self): return TimeDepKet class Wavefunction(Function): """Class for representations in continuous bases This class takes an expression and coordinates in its constructor. It can be used to easily calculate normalizations and probabilities. Parameters ========== expr : Expr The expression representing the functional form of the w.f. coords : Symbol or tuple The coordinates to be integrated over, and their bounds Examples ======== Particle in a box, specifying bounds in the more primitive way of using Piecewise: >>> from sympy import Symbol, Piecewise, pi, N >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = Symbol('x', real=True) >>> n = 1 >>> L = 1 >>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) >>> f = Wavefunction(g, x) >>> f.norm 1 >>> f.is_normalized True >>> p = f.prob() >>> p(0) 0 >>> p(L) 0 >>> p(0.5) 2 >>> p(0.85*L) 2*sin(0.85*pi)**2 >>> N(p(0.85*L)) 0.412214747707527 Additionally, you can specify the bounds of the function and the indices in a more compact way: >>> from sympy import symbols, pi, diff >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> f(L+1) 0 >>> f(L-1) sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L) >>> f(-1) 0 >>> f(0.85) sqrt(2)*sin(0.85*pi*n/L)/sqrt(L) >>> f(0.85, n=1, L=1) sqrt(2)*sin(0.85*pi) >>> f.is_commutative False All arguments are automatically sympified, so you can define the variables as strings rather than symbols: >>> expr = x**2 >>> f = Wavefunction(expr, 'x') >>> type(f.variables[0]) <class 'sympy.core.symbol.Symbol'> Derivatives of Wavefunctions will return Wavefunctions: >>> diff(f, x) Wavefunction(2*x, x) """ #Any passed tuples for coordinates and their bounds need to be #converted to Tuples before Function's constructor is called, to #avoid errors from calling is_Float in the constructor def __new__(cls, *args, **options): new_args = [None for i in args] ct = 0 for arg in args: if isinstance(arg, tuple): new_args[ct] = Tuple(*arg) else: new_args[ct] = arg ct += 1 return super(Function, cls).__new__(cls, *new_args, **options) def __call__(self, *args, **options): var = self.variables if len(args) != len(var): raise NotImplementedError( "Incorrect number of arguments to function!") ct = 0 #If the passed value is outside the specified bounds, return 0 for v in var: lower, upper = self.limits[v] #Do the comparison to limits only if the passed symbol is actually #a symbol present in the limits; #Had problems with a comparison of x > L if isinstance(args[ct], Expr) and \ not (lower in args[ct].free_symbols or upper in args[ct].free_symbols): continue if (args[ct] < lower) == True or (args[ct] > upper) == True: return 0 ct += 1 expr = self.expr #Allows user to make a call like f(2, 4, m=1, n=1) for symbol in list(expr.free_symbols): if str(symbol) in options.keys(): val = options[str(symbol)] expr = expr.subs(symbol, val) return expr.subs(zip(var, args)) def _eval_derivative(self, symbol): expr = self.expr deriv = expr._eval_derivative(symbol) return Wavefunction(deriv, *self.args[1:]) def _eval_conjugate(self): return Wavefunction(conjugate(self.expr), *self.args[1:]) def _eval_transpose(self): return self @property def free_symbols(self): return self.expr.free_symbols @property def is_commutative(self): """ Override Function's is_commutative so that order is preserved in represented expressions """ return False @classmethod def eval(self, *args): return None @property def variables(self): """ Return the coordinates which the wavefunction depends on Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x,y = symbols('x,y') >>> f = Wavefunction(x*y, x, y) >>> f.variables (x, y) >>> g = Wavefunction(x*y, x) >>> g.variables (x,) """ var = [g[0] if isinstance(g, Tuple) else g for g in self._args[1:]] return tuple(var) @property def limits(self): """ Return the limits of the coordinates which the w.f. depends on If no limits are specified, defaults to ``(-oo, oo)``. Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, (x, 0, 1)) >>> f.limits {x: (0, 1)} >>> f = Wavefunction(x**2, x) >>> f.limits {x: (-oo, oo)} >>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2)) >>> f.limits {x: (-oo, oo), y: (-1, 2)} """ limits = [(g[1], g[2]) if isinstance(g, Tuple) else (-oo, oo) for g in self._args[1:]] return dict(zip(self.variables, tuple(limits))) @property def expr(self): """ Return the expression which is the functional form of the Wavefunction Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, x) >>> f.expr x**2 """ return self._args[0] @property def is_normalized(self): """ Returns true if the Wavefunction is properly normalized Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.is_normalized True """ return (self.norm == 1.0) @property @cacheit def norm(self): """ Return the normalization of the specified functional form. This function integrates over the coordinates of the Wavefunction, with the bounds specified. Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm sqrt(2)*sqrt(L)/2 """ exp = self.expr*conjugate(self.expr) var = self.variables limits = self.limits for v in var: curr_limits = limits[v] exp = integrate(exp, (v, curr_limits[0], curr_limits[1])) return sqrt(exp) def normalize(self): """ Return a normalized version of the Wavefunction Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = symbols('x', real=True) >>> L = symbols('L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.normalize() Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L)) """ const = self.norm if const == oo: raise NotImplementedError("The function is not normalizable!") else: return Wavefunction((const)**(-1)*self.expr, *self.args[1:]) def prob(self): """ Return the absolute magnitude of the w.f., `|\psi(x)|^2` Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', real=True) >>> n = symbols('n', integer=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.prob() Wavefunction(sin(pi*n*x/L)**2, x) """ return Wavefunction(self.expr*conjugate(self.expr), *self.variables)
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/doc/mpl_examples/pylab_examples/demo_bboximage.py
12
1805
import matplotlib.pyplot as plt import numpy as np from matplotlib.image import BboxImage from matplotlib.transforms import Bbox, TransformedBbox if __name__ == "__main__": fig = plt.figure(1) ax = plt.subplot(121) txt = ax.text(0.5, 0.5, "test", size=30, ha="center", color="w") kwargs = dict() bbox_image = BboxImage(txt.get_window_extent, norm = None, origin=None, clip_on=False, **kwargs ) a = np.arange(256).reshape(1,256)/256. bbox_image.set_data(a) ax.add_artist(bbox_image) ax = plt.subplot(122) a = np.linspace(0, 1, 256).reshape(1,-1) a = np.vstack((a,a)) maps = sorted(m for m in plt.cm.datad if not m.endswith("_r")) #nmaps = len(maps) + 1 #fig.subplots_adjust(top=0.99, bottom=0.01, left=0.2, right=0.99) ncol = 2 nrow = len(maps)//ncol + 1 xpad_fraction = 0.3 dx = 1./(ncol + xpad_fraction*(ncol-1)) ypad_fraction = 0.3 dy = 1./(nrow + ypad_fraction*(nrow-1)) for i,m in enumerate(maps): ix, iy = divmod(i, nrow) #plt.figimage(a, 10, i*10, cmap=plt.get_cmap(m), origin='lower') bbox0 = Bbox.from_bounds(ix*dx*(1+xpad_fraction), 1.-iy*dy*(1+ypad_fraction)-dy, dx, dy) bbox = TransformedBbox(bbox0, ax.transAxes) bbox_image = BboxImage(bbox, cmap = plt.get_cmap(m), norm = None, origin=None, **kwargs ) bbox_image.set_data(a) ax.add_artist(bbox_image) plt.draw() plt.show()
gpl-2.0
cle1109/scot
doc/sphinxext/inheritance_diagram.py
4
13650
""" Defines a docutils directive for inserting inheritance diagrams. Provide the directive with one or more classes or modules (separated by whitespace). For modules, all of the classes in that module will be used. Example:: Given the following classes: class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(B): pass .. inheritance-diagram: D E Produces a graph like the following: A / \ B C / \ / E D The graph is inserted as a PNG+image map into HTML and a PDF in LaTeX. """ import inspect import os import re import subprocess try: from hashlib import md5 except ImportError: from md5 import md5 from docutils.nodes import Body, Element from docutils.parsers.rst import directives from sphinx.roles import xfileref_role def my_import(name): """Module importer - taken from the python documentation. This function allows importing names with dots in them.""" mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod class DotException(Exception): pass class InheritanceGraph(object): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a graphviz dot graph from them. """ def __init__(self, class_names, show_builtins=False): """ *class_names* is a list of child classes to show bases from. If *show_builtins* is True, then Python builtins will be shown in the graph. """ self.class_names = class_names self.classes = self._import_classes(class_names) self.all_classes = self._all_classes(self.classes) if len(self.all_classes) == 0: raise ValueError("No classes found for inheritance diagram") self.show_builtins = show_builtins py_sig_re = re.compile(r'''^([\w.]*\.)? # class names (\w+) \s* $ # optionally arguments ''', re.VERBOSE) def _import_class_or_module(self, name): """ Import a class using its fully-qualified *name*. """ try: path, base = self.py_sig_re.match(name).groups() except: raise ValueError( "Invalid class or module '%s' specified for inheritance diagram" % name) fullname = (path or '') + base path = (path and path.rstrip('.')) if not path: path = base try: module = __import__(path, None, None, []) # We must do an import of the fully qualified name. Otherwise if a # subpackage 'a.b' is requested where 'import a' does NOT provide # 'a.b' automatically, then 'a.b' will not be found below. This # second call will force the equivalent of 'import a.b' to happen # after the top-level import above. my_import(fullname) except ImportError: raise ValueError( "Could not import class or module '%s' specified for inheritance diagram" % name) try: todoc = module for comp in fullname.split('.')[1:]: todoc = getattr(todoc, comp) except AttributeError: raise ValueError( "Could not find class or module '%s' specified for inheritance diagram" % name) # If a class, just return it if inspect.isclass(todoc): return [todoc] elif inspect.ismodule(todoc): classes = [] for cls in todoc.__dict__.values(): if inspect.isclass(cls) and cls.__module__ == todoc.__name__: classes.append(cls) return classes raise ValueError( "'%s' does not resolve to a class or module" % name) def _import_classes(self, class_names): """ Import a list of classes. """ classes = [] for name in class_names: classes.extend(self._import_class_or_module(name)) return classes def _all_classes(self, classes): """ Return a list of all classes that are ancestors of *classes*. """ all_classes = {} def recurse(cls): all_classes[cls] = None for c in cls.__bases__: if c not in all_classes: recurse(c) for cls in classes: recurse(cls) return all_classes.keys() def class_name(self, cls, parts=0): """ Given a class object, return a fully-qualified name. This works for things I've tested in matplotlib so far, but may not be completely general. """ module = cls.__module__ if module == '__builtin__': fullname = cls.__name__ else: fullname = "%s.%s" % (module, cls.__name__) if parts == 0: return fullname name_parts = fullname.split('.') return '.'.join(name_parts[-parts:]) def get_all_class_names(self): """ Get all of the class names involved in the graph. """ return [self.class_name(x) for x in self.all_classes] # These are the default options for graphviz default_graph_options = { "rankdir": "LR", "size": '"8.0, 12.0"' } default_node_options = { "shape": "box", "fontsize": 10, "height": 0.25, "fontname": "Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans", "style": '"setlinewidth(0.5)"' } default_edge_options = { "arrowsize": 0.5, "style": '"setlinewidth(0.5)"' } def _format_node_options(self, options): return ','.join(["%s=%s" % x for x in options.items()]) def _format_graph_options(self, options): return ''.join(["%s=%s;\n" % x for x in options.items()]) def generate_dot(self, fd, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Generate a graphviz dot graph from the classes that were passed in to __init__. *fd* is a Python file-like object to write to. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls *graph_options*, *node_options*, *edge_options* are dictionaries containing key/value pairs to pass on as graphviz properties. """ g_options = self.default_graph_options.copy() g_options.update(graph_options) n_options = self.default_node_options.copy() n_options.update(node_options) e_options = self.default_edge_options.copy() e_options.update(edge_options) fd.write('digraph %s {\n' % name) fd.write(self._format_graph_options(g_options)) for cls in self.all_classes: if not self.show_builtins and cls in __builtins__.values(): continue name = self.class_name(cls, parts) # Write the node this_node_options = n_options.copy() url = urls.get(self.class_name(cls)) if url is not None: this_node_options['URL'] = '"%s"' % url fd.write(' "%s" [%s];\n' % (name, self._format_node_options(this_node_options))) # Write the edges for base in cls.__bases__: if not self.show_builtins and base in __builtins__.values(): continue base_name = self.class_name(base, parts) fd.write(' "%s" -> "%s" [%s];\n' % (base_name, name, self._format_node_options(e_options))) fd.write('}\n') def run_dot(self, args, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Run graphviz 'dot' over this graph, returning whatever 'dot' writes to stdout. *args* will be passed along as commandline arguments. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls Raises DotException for any of the many os and installation-related errors that may occur. """ try: dot = subprocess.Popen(['dot'] + list(args), stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True) except OSError: raise DotException("Could not execute 'dot'. Are you sure you have 'graphviz' installed?") except ValueError: raise DotException("'dot' called with invalid arguments") except: raise DotException("Unexpected error calling 'dot'") self.generate_dot(dot.stdin, name, parts, urls, graph_options, node_options, edge_options) dot.stdin.close() result = dot.stdout.read() returncode = dot.wait() if returncode != 0: raise DotException("'dot' returned the errorcode %d" % returncode) return result class inheritance_diagram(Body, Element): """ A docutils node to use as a placeholder for the inheritance diagram. """ pass def inheritance_diagram_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): """ Run when the inheritance_diagram directive is first encountered. """ node = inheritance_diagram() class_names = arguments # Create a graph starting with the list of classes graph = InheritanceGraph(class_names) # Create xref nodes for each target of the graph's image map and # add them to the doc tree so that Sphinx can resolve the # references to real URLs later. These nodes will eventually be # removed from the doctree after we're done with them. for name in graph.get_all_class_names(): refnodes, x = xfileref_role( 'class', ':class:`%s`' % name, name, 0, state) node.extend(refnodes) # Store the graph object so we can use it to generate the # dot file later node['graph'] = graph # Store the original content for use as a hash node['parts'] = options.get('parts', 0) node['content'] = " ".join(class_names) return [node] def get_graph_hash(node): return md5(node['content'] + str(node['parts'])).hexdigest()[-10:] def html_output_graph(self, node): """ Output the graph for HTML. This will insert a PNG with clickable image map. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash path = '_images' dest_path = os.path.join(setup.app.builder.outdir, path) if not os.path.exists(dest_path): os.makedirs(dest_path) png_path = os.path.join(dest_path, name + ".png") path = setup.app.builder.imgpath # Create a mapping from fully-qualified class names to URLs. urls = {} for child in node: if child.get('refuri') is not None: urls[child['reftitle']] = child.get('refuri') elif child.get('refid') is not None: urls[child['reftitle']] = '#' + child.get('refid') # These arguments to dot will save a PNG file to disk and write # an HTML image map to stdout. image_map = graph.run_dot(['-Tpng', '-o%s' % png_path, '-Tcmapx'], name, parts, urls) return ('<img src="%s/%s.png" usemap="#%s" class="inheritance"/>%s' % (path, name, name, image_map)) def latex_output_graph(self, node): """ Output the graph for LaTeX. This will insert a PDF. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash dest_path = os.path.abspath(os.path.join(setup.app.builder.outdir, '_images')) if not os.path.exists(dest_path): os.makedirs(dest_path) pdf_path = os.path.abspath(os.path.join(dest_path, name + ".pdf")) graph.run_dot(['-Tpdf', '-o%s' % pdf_path], name, parts, graph_options={'size': '"6.0,6.0"'}) return '\n\\includegraphics{%s}\n\n' % pdf_path def visit_inheritance_diagram(inner_func): """ This is just a wrapper around html/latex_output_graph to make it easier to handle errors and insert warnings. """ def visitor(self, node): try: content = inner_func(self, node) except DotException as e: # Insert the exception as a warning in the document warning = self.document.reporter.warning(str(e), line=node.line) warning.parent = node node.children = [warning] else: source = self.document.attributes['source'] self.body.append(content) node.children = [] return visitor def do_nothing(self, node): pass def setup(app): setup.app = app setup.confdir = app.confdir app.add_node( inheritance_diagram, latex=(visit_inheritance_diagram(latex_output_graph), do_nothing), html=(visit_inheritance_diagram(html_output_graph), do_nothing)) app.add_directive( 'inheritance-diagram', inheritance_diagram_directive, False, (1, 100, 0), parts = directives.nonnegative_int)
mit
davidtrem/ThunderStorm
thunderstorm/lightning/utils.py
1
5027
# -*- coding: utf-8 -*- # Copyright (C) 2010-2013 Trémouilles David #This file is part of Thunderstorm. # #ThunderStrom is free software: you can redistribute it and/or modify #it under the terms of the GNU Lesser General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. # #ThunderStorm is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU Lesser General Public License for more details. # #You should have received a copy of the GNU Lesser General Public License #along with ThunderStorm. If not, see <http://www.gnu.org/licenses/>. """ Various utility functions """ import matplotlib from weakref import WeakValueDictionary from weakref import WeakKeyDictionary import warnings class UniversalCursors(object): def __init__(self): self.all_cursor_orient = WeakKeyDictionary() self.all_canvas = WeakValueDictionary() self.all_axes = WeakValueDictionary() self.backgrounds = {} self.visible = True self.needclear = False def _onmove(self, event): for canvas in self.all_canvas.values(): if not canvas.widgetlock.available(self): return if event.inaxes is None or not self.visible: if self.needclear: self._update(event) for canvas in self.all_canvas.values(): canvas.draw() self.needclear = False return self._update(event) def _update(self, event): # 1/ Reset background for canvas in self.all_canvas.values(): canvas.restore_region(self.backgrounds[id(canvas)]) # 2/ update cursors for cursors in self.all_cursor_orient.keys(): orient = self.all_cursor_orient[cursors] if (event.inaxes in [line.get_axes() for line in cursors] and self.visible): visible = True self.needclear = True else: visible = False for line in cursors: if orient == 'vertical': line.set_xdata((event.xdata, event.xdata)) if orient == 'horizontal': line.set_ydata((event.ydata, event.ydata)) line.set_visible(visible) ax = line.get_axes() ax.draw_artist(line) # 3/ update canvas for canvas in self.all_canvas.values(): canvas.blit(canvas.figure.bbox) def _clear(self, event): """clear the cursor""" self.backgrounds = {} for canvas in self.all_canvas.values(): self.backgrounds[id(canvas)] = ( canvas.copy_from_bbox(canvas.figure.bbox)) for cursor in self.all_cursor_orient.keys(): for line in cursor: line.set_visible(False) def add_cursor(self, axes=(), orient='vertical', **lineprops): class CursorList(list): def __hash__(self): return hash(tuple(self)) cursors = CursorList() # Required to keep weakref for ax in axes: self.all_axes[id(ax)] = ax ax_canvas = ax.get_figure().canvas if ax_canvas not in self.all_canvas.values(): #if not ax_canvas.supports_blit: # warnings.warn("Must use canvas that support blit") # return self.all_canvas[id(ax_canvas)] = ax_canvas ax_canvas.mpl_connect('motion_notify_event', self._onmove) ax_canvas.mpl_connect('draw_event', self._clear) if orient == 'vertical': line = ax.axvline(ax.get_xbound()[0], visible=False, animated=True, **lineprops) if orient == 'horizontal': line = ax.axhline(ax.get_ybound()[0], visible=False, animated=True, **lineprops) cursors.append(line) self.all_cursor_orient[cursors] = orient return cursors def autoscale_visible_lines(axs): """ Function to autoscale only on visible lines. """ mplt_ver = [int(elem) for elem in matplotlib.__version__.split('.')[0:2]] ignore = True for line in (axs.lines): if not line.get_visible(): continue # jump to next line if this one is not visible if mplt_ver[0] == 0 and mplt_ver[1] < 98: axs.dataLim.update_numerix(line.get_xdata(), line.get_ydata(), ignore) else: axs.dataLim.update_from_data_xy(line.get_xydata(), ignore) ignore = False axs.autoscale_view() return None def neg_bool_list(a_list): return [not elem for elem in a_list]
gpl-3.0
mtconley/turntable
test/lib/python2.7/site-packages/scipy/interpolate/fitpack2.py
7
57978
""" fitpack --- curve and surface fitting with splines fitpack is based on a collection of Fortran routines DIERCKX by P. Dierckx (see http://www.netlib.org/dierckx/) transformed to double routines by Pearu Peterson. """ # Created by Pearu Peterson, June,August 2003 from __future__ import division, print_function, absolute_import __all__ = [ 'UnivariateSpline', 'InterpolatedUnivariateSpline', 'LSQUnivariateSpline', 'BivariateSpline', 'LSQBivariateSpline', 'SmoothBivariateSpline', 'LSQSphereBivariateSpline', 'SmoothSphereBivariateSpline', 'RectBivariateSpline', 'RectSphereBivariateSpline'] import warnings from numpy import zeros, concatenate, alltrue, ravel, all, diff, array, ones import numpy as np from . import fitpack from . import dfitpack ################ Univariate spline #################### _curfit_messages = {1:""" The required storage space exceeds the available storage space, as specified by the parameter nest: nest too small. If nest is already large (say nest > m/2), it may also indicate that s is too small. The approximation returned is the weighted least-squares spline according to the knots t[0],t[1],...,t[n-1]. (n=nest) the parameter fp gives the corresponding weighted sum of squared residuals (fp>s). """, 2:""" A theoretically impossible result was found during the iteration proces for finding a smoothing spline with fp = s: s too small. There is an approximation returned but the corresponding weighted sum of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""", 3:""" The maximal number of iterations maxit (set to 20 by the program) allowed for finding a smoothing spline with fp=s has been reached: s too small. There is an approximation returned but the corresponding weighted sum of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""", 10:""" Error on entry, no approximation returned. The following conditions must hold: xb<=x[0]<x[1]<...<x[m-1]<=xe, w[i]>0, i=0..m-1 if iopt=-1: xb<t[k+1]<t[k+2]<...<t[n-k-2]<xe""" } # UnivariateSpline, ext parameter can be an int or a string _extrap_modes = {0: 0, 'extrapolate': 0, 1: 1, 'zeros': 1, 2: 2, 'raise': 2, 3: 3, 'const': 3} class UnivariateSpline(object): """ One-dimensional smoothing spline fit to a given set of data points. Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `s` specifies the number of knots by specifying a smoothing condition. Parameters ---------- x : (N,) array_like 1-D array of independent input data. Must be increasing. y : (N,) array_like 1-D array of dependent input data, of the same length as `x`. w : (N,) array_like, optional Weights for spline fitting. Must be positive. If None (default), weights are all equal. bbox : (2,) array_like, optional 2-sequence specifying the boundary of the approximation interval. If None (default), ``bbox=[x[0], x[-1]]``. k : int, optional Degree of the smoothing spline. Must be <= 5. Default is k=3, a cubic spline. s : float or None, optional Positive smoothing factor used to choose the number of knots. Number of knots will be increased until the smoothing condition is satisfied:: sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s If None (default), ``s = len(w)`` which should be a good value if ``1/w[i]`` is an estimate of the standard deviation of ``y[i]``. If 0, spline will interpolate through all data points. ext : int or str, optional Controls the extrapolation mode for elements not in the interval defined by the knot sequence. * if ext=0 or 'extrapolate', return the extrapolated value. * if ext=1 or 'zeros', return 0 * if ext=2 or 'raise', raise a ValueError * if ext=3 of 'const', return the boundary value. The default value is 0. See Also -------- InterpolatedUnivariateSpline : Subclass with smoothing forced to 0 LSQUnivariateSpline : Subclass in which knots are user-selected instead of being set by smoothing condition splrep : An older, non object-oriented wrapping of FITPACK splev, sproot, splint, spalde BivariateSpline : A similar class for two-dimensional spline interpolation Notes ----- The number of data points must be larger than the spline degree `k`. **NaN handling**: If the input arrays contain ``nan`` values, the result is not useful, since the underlying spline fitting routines cannot deal with ``nan`` . A workaround is to use zero weights for not-a-number data points: >>> w = np.isnan(y) >>> y[w] = 0. >>> spl = UnivariateSpline(x, y, w=~w) Notice the need to replace a ``nan`` by a numerical value (precise value does not matter as long as the corresponding weight is zero.) Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.interpolate import UnivariateSpline >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50) >>> plt.plot(x, y, 'ro', ms=5) Use the default value for the smoothing parameter: >>> spl = UnivariateSpline(x, y) >>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(xs, spl(xs), 'g', lw=3) Manually change the amount of smoothing: >>> spl.set_smoothing_factor(0.5) >>> plt.plot(xs, spl(xs), 'b', lw=3) >>> plt.show() """ def __init__(self, x, y, w=None, bbox=[None]*2, k=3, s=None, ext=0): # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier try: self.ext = _extrap_modes[ext] except KeyError: raise ValueError("Unknown extrapolation mode %s." % ext) data = dfitpack.fpcurf0(x,y,k,w=w, xb=bbox[0],xe=bbox[1],s=s) if data[-1] == 1: # nest too small, setting to maximum bound data = self._reset_nest(data) self._data = data self._reset_class() @classmethod def _from_tck(cls, tck, ext=0): """Construct a spline object from given tck""" self = cls.__new__(cls) t, c, k = tck self._eval_args = tck #_data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier self._data = (None,None,None,None,None,k,None,len(t),t, c,None,None,None,None) self.ext = ext return self def _reset_class(self): data = self._data n,t,c,k,ier = data[7],data[8],data[9],data[5],data[-1] self._eval_args = t[:n],c[:n],k if ier == 0: # the spline returned has a residual sum of squares fp # such that abs(fp-s)/s <= tol with tol a relative # tolerance set to 0.001 by the program pass elif ier == -1: # the spline returned is an interpolating spline self._set_class(InterpolatedUnivariateSpline) elif ier == -2: # the spline returned is the weighted least-squares # polynomial of degree k. In this extreme case fp gives # the upper bound fp0 for the smoothing factor s. self._set_class(LSQUnivariateSpline) else: # error if ier == 1: self._set_class(LSQUnivariateSpline) message = _curfit_messages.get(ier,'ier=%s' % (ier)) warnings.warn(message) def _set_class(self, cls): self._spline_class = cls if self.__class__ in (UnivariateSpline, InterpolatedUnivariateSpline, LSQUnivariateSpline): self.__class__ = cls else: # It's an unknown subclass -- don't change class. cf. #731 pass def _reset_nest(self, data, nest=None): n = data[10] if nest is None: k,m = data[5],len(data[0]) nest = m+k+1 # this is the maximum bound for nest else: if not n <= nest: raise ValueError("`nest` can only be increased") t, c, fpint, nrdata = [np.resize(data[j], nest) for j in [8,9,11,12]] args = data[:8] + (t,c,n,fpint,nrdata,data[13]) data = dfitpack.fpcurf1(*args) return data def set_smoothing_factor(self, s): """ Continue spline computation with the given smoothing factor s and with the knots found at the last call. This routine modifies the spline in place. """ data = self._data if data[6] == -1: warnings.warn('smoothing factor unchanged for' 'LSQ spline with fixed knots') return args = data[:6] + (s,) + data[7:] data = dfitpack.fpcurf1(*args) if data[-1] == 1: # nest too small, setting to maximum bound data = self._reset_nest(data) self._data = data self._reset_class() def __call__(self, x, nu=0, ext=None): """ Evaluate spline (or its nu-th derivative) at positions x. Parameters ---------- x : array_like A 1-D array of points at which to return the value of the smoothed spline or its derivatives. Note: x can be unordered but the evaluation is more efficient if x is (partially) ordered. nu : int The order of derivative of the spline to compute. ext : int Controls the value returned for elements of ``x`` not in the interval defined by the knot sequence. * if ext=0 or 'extrapolate', return the extrapolated value. * if ext=1 or 'zeros', return 0 * if ext=2 or 'raise', raise a ValueError * if ext=3 or 'const', return the boundary value. The default value is 0, passed from the initialization of UnivariateSpline. """ x = np.asarray(x) # empty input yields empty output if x.size == 0: return array([]) # if nu is None: # return dfitpack.splev(*(self._eval_args+(x,))) # return dfitpack.splder(nu=nu,*(self._eval_args+(x,))) if ext is None: ext = self.ext else: try: ext = _extrap_modes[ext] except KeyError: raise ValueError("Unknown extrapolation mode %s." % ext) return fitpack.splev(x, self._eval_args, der=nu, ext=ext) def get_knots(self): """ Return positions of (boundary and interior) knots of the spline. """ data = self._data k,n = data[5],data[7] return data[8][k:n-k] def get_coeffs(self): """Return spline coefficients.""" data = self._data k,n = data[5],data[7] return data[9][:n-k-1] def get_residual(self): """Return weighted sum of squared residuals of the spline approximation: ``sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)``. """ return self._data[10] def integral(self, a, b): """ Return definite integral of the spline between two given points. """ return dfitpack.splint(*(self._eval_args+(a,b))) def derivatives(self, x): """ Return all derivatives of the spline at the point x.""" d,ier = dfitpack.spalde(*(self._eval_args+(x,))) if not ier == 0: raise ValueError("Error code returned by spalde: %s" % ier) return d def roots(self): """ Return the zeros of the spline. Restriction: only cubic splines are supported by fitpack. """ k = self._data[5] if k == 3: z,m,ier = dfitpack.sproot(*self._eval_args[:2]) if not ier == 0: raise ValueError("Error code returned by spalde: %s" % ier) return z[:m] raise NotImplementedError('finding roots unsupported for ' 'non-cubic splines') def derivative(self, n=1): """ Construct a new spline representing the derivative of this spline. Parameters ---------- n : int, optional Order of derivative to evaluate. Default: 1 Returns ------- spline : UnivariateSpline Spline of order k2=k-n representing the derivative of this spline. See Also -------- splder, antiderivative Notes ----- .. versionadded:: 0.13.0 Examples -------- This can be used for finding maxima of a curve: >>> from scipy.interpolate import UnivariateSpline >>> x = np.linspace(0, 10, 70) >>> y = np.sin(x) >>> spl = UnivariateSpline(x, y, k=4, s=0) Now, differentiate the spline and find the zeros of the derivative. (NB: `sproot` only works for order 3 splines, so we fit an order 4 spline): >>> spl.derivative().roots() / np.pi array([ 0.50000001, 1.5 , 2.49999998]) This agrees well with roots :math:`\pi/2 + n\pi` of `cos(x) = sin'(x)`. """ tck = fitpack.splder(self._eval_args, n) return UnivariateSpline._from_tck(tck, self.ext) def antiderivative(self, n=1): """ Construct a new spline representing the antiderivative of this spline. Parameters ---------- n : int, optional Order of antiderivative to evaluate. Default: 1 Returns ------- spline : UnivariateSpline Spline of order k2=k+n representing the antiderivative of this spline. Notes ----- .. versionadded:: 0.13.0 See Also -------- splantider, derivative Examples -------- >>> from scipy.interpolate import UnivariateSpline >>> x = np.linspace(0, np.pi/2, 70) >>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2) >>> spl = UnivariateSpline(x, y, s=0) The derivative is the inverse operation of the antiderivative, although some floating point error accumulates: >>> spl(1.7), spl.antiderivative().derivative()(1.7) (array(2.1565429877197317), array(2.1565429877201865)) Antiderivative can be used to evaluate definite integrals: >>> ispl = spl.antiderivative() >>> ispl(np.pi/2) - ispl(0) 2.2572053588768486 This is indeed an approximation to the complete elliptic integral :math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`: >>> from scipy.special import ellipk >>> ellipk(0.8) 2.2572053268208538 """ tck = fitpack.splantider(self._eval_args, n) return UnivariateSpline._from_tck(tck, self.ext) class InterpolatedUnivariateSpline(UnivariateSpline): """ One-dimensional interpolating spline for a given set of data points. Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. Spline function passes through all provided points. Equivalent to `UnivariateSpline` with s=0. Parameters ---------- x : (N,) array_like Input dimension of data points -- must be increasing y : (N,) array_like input dimension of data points w : (N,) array_like, optional Weights for spline fitting. Must be positive. If None (default), weights are all equal. bbox : (2,) array_like, optional 2-sequence specifying the boundary of the approximation interval. If None (default), ``bbox=[x[0], x[-1]]``. k : int, optional Degree of the smoothing spline. Must be 1 <= `k` <= 5. ext : int or str, optional Controls the extrapolation mode for elements not in the interval defined by the knot sequence. * if ext=0 or 'extrapolate', return the extrapolated value. * if ext=1 or 'zeros', return 0 * if ext=2 or 'raise', raise a ValueError * if ext=3 of 'const', return the boundary value. The default value is 0. See Also -------- UnivariateSpline : Superclass -- allows knots to be selected by a smoothing condition LSQUnivariateSpline : spline for which knots are user-selected splrep : An older, non object-oriented wrapping of FITPACK splev, sproot, splint, spalde BivariateSpline : A similar class for two-dimensional spline interpolation Notes ----- The number of data points must be larger than the spline degree `k`. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.interpolate import InterpolatedUnivariateSpline >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50) >>> spl = InterpolatedUnivariateSpline(x, y) >>> plt.plot(x, y, 'ro', ms=5) >>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7) >>> plt.show() Notice that the ``spl(x)`` interpolates `y`: >>> spl.get_residual() 0.0 """ def __init__(self, x, y, w=None, bbox=[None]*2, k=3, ext=0): # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier self._data = dfitpack.fpcurf0(x,y,k,w=w, xb=bbox[0],xe=bbox[1],s=0) self._reset_class() try: self.ext = _extrap_modes[ext] except KeyError: raise ValueError("Unknown extrapolation mode %s." % ext) _fpchec_error_string = """The input parameters have been rejected by fpchec. \ This means that at least one of the following conditions is violated: 1) k+1 <= n-k-1 <= m 2) t(1) <= t(2) <= ... <= t(k+1) t(n-k) <= t(n-k+1) <= ... <= t(n) 3) t(k+1) < t(k+2) < ... < t(n-k) 4) t(k+1) <= x(i) <= t(n-k) 5) The conditions specified by Schoenberg and Whitney must hold for at least one subset of data points, i.e., there must be a subset of data points y(j) such that t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1 """ class LSQUnivariateSpline(UnivariateSpline): """ One-dimensional spline with explicit internal knots. Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t` specifies the internal knots of the spline Parameters ---------- x : (N,) array_like Input dimension of data points -- must be increasing y : (N,) array_like Input dimension of data points t : (M,) array_like interior knots of the spline. Must be in ascending order and:: bbox[0] < t[0] < ... < t[-1] < bbox[-1] w : (N,) array_like, optional weights for spline fitting. Must be positive. If None (default), weights are all equal. bbox : (2,) array_like, optional 2-sequence specifying the boundary of the approximation interval. If None (default), ``bbox = [x[0], x[-1]]``. k : int, optional Degree of the smoothing spline. Must be 1 <= `k` <= 5. Default is k=3, a cubic spline. ext : int or str, optional Controls the extrapolation mode for elements not in the interval defined by the knot sequence. * if ext=0 or 'extrapolate', return the extrapolated value. * if ext=1 or 'zeros', return 0 * if ext=2 or 'raise', raise a ValueError * if ext=3 of 'const', return the boundary value. The default value is 0. Raises ------ ValueError If the interior knots do not satisfy the Schoenberg-Whitney conditions See Also -------- UnivariateSpline : Superclass -- knots are specified by setting a smoothing condition InterpolatedUnivariateSpline : spline passing through all points splrep : An older, non object-oriented wrapping of FITPACK splev, sproot, splint, spalde BivariateSpline : A similar class for two-dimensional spline interpolation Notes ----- The number of data points must be larger than the spline degree `k`. Knots `t` must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points ``x[j]`` such that ``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``. Examples -------- >>> from scipy.interpolate import LSQUnivariateSpline >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50) Fit a smoothing spline with a pre-defined internal knots: >>> t = [-1, 0, 1] >>> spl = LSQUnivariateSpline(x, y, t) >>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(x, y, 'ro', ms=5) >>> plt.plot(xs, spl(xs), 'g-', lw=3) >>> plt.show() Check the knot vector: >>> spl.get_knots() array([-3., -1., 0., 1., 3.]) """ def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3, ext=0): # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier xb = bbox[0] xe = bbox[1] if xb is None: xb = x[0] if xe is None: xe = x[-1] t = concatenate(([xb]*(k+1), t, [xe]*(k+1))) n = len(t) if not alltrue(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0): raise ValueError('Interior knots t must satisfy ' 'Schoenberg-Whitney conditions') if not dfitpack.fpchec(x, t, k) == 0: raise ValueError(_fpchec_error_string) data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe) self._data = data[:-3] + (None, None, data[-1]) self._reset_class() try: self.ext = _extrap_modes[ext] except KeyError: raise ValueError("Unknown extrapolation mode %s." % ext) ################ Bivariate spline #################### class _BivariateSplineBase(object): """ Base class for Bivariate spline s(x,y) interpolation on the rectangle [xb,xe] x [yb, ye] calculated from a given set of data points (x,y,z). See Also -------- bisplrep, bisplev : an older wrapping of FITPACK BivariateSpline : implementation of bivariate spline interpolation on a plane grid SphereBivariateSpline : implementation of bivariate spline interpolation on a spherical grid """ def get_residual(self): """ Return weighted sum of squared residuals of the spline approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0) """ return self.fp def get_knots(self): """ Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively. """ return self.tck[:2] def get_coeffs(self): """ Return spline coefficients.""" return self.tck[2] def __call__(self, x, y, mth=None, dx=0, dy=0, grid=True): """ Evaluate the spline or its derivatives at given positions. Parameters ---------- x, y : array-like Input coordinates. If `grid` is False, evaluate the spline at points ``(x[i], y[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting is obeyed. If `grid` is True: evaluate spline at the grid points defined by the coordinate arrays x, y. The arrays must be sorted to increasing order. dx : int Order of x-derivative .. versionadded:: 0.14.0 dy : int Order of y-derivative .. versionadded:: 0.14.0 grid : bool Whether to evaluate the results on a grid spanned by the input arrays, or at points specified by the input arrays. .. versionadded:: 0.14.0 mth : str Deprecated argument. Has no effect. """ x = np.asarray(x) y = np.asarray(y) if mth is not None: warnings.warn("The `mth` argument is deprecated and will be removed", FutureWarning) tx, ty, c = self.tck[:3] kx, ky = self.degrees if grid: if x.size == 0 or y.size == 0: return np.zeros((x.size, y.size), dtype=self.tck[2].dtype) if dx or dy: z,ier = dfitpack.parder(tx,ty,c,kx,ky,dx,dy,x,y) if not ier == 0: raise ValueError("Error code returned by parder: %s" % ier) else: z,ier = dfitpack.bispev(tx,ty,c,kx,ky,x,y) if not ier == 0: raise ValueError("Error code returned by bispev: %s" % ier) else: # standard Numpy broadcasting if x.shape != y.shape: x, y = np.broadcast_arrays(x, y) shape = x.shape x = x.ravel() y = y.ravel() if x.size == 0 or y.size == 0: return np.zeros(shape, dtype=self.tck[2].dtype) if dx or dy: z,ier = dfitpack.pardeu(tx,ty,c,kx,ky,dx,dy,x,y) if not ier == 0: raise ValueError("Error code returned by pardeu: %s" % ier) else: z,ier = dfitpack.bispeu(tx,ty,c,kx,ky,x,y) if not ier == 0: raise ValueError("Error code returned by bispeu: %s" % ier) z = z.reshape(shape) return z _surfit_messages = {1:""" The required storage space exceeds the available storage space: nxest or nyest too small, or s too small. The weighted least-squares spline corresponds to the current set of knots.""", 2:""" A theoretically impossible result was found during the iteration process for finding a smoothing spline with fp = s: s too small or badly chosen eps. Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""", 3:""" the maximal number of iterations maxit (set to 20 by the program) allowed for finding a smoothing spline with fp=s has been reached: s too small. Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""", 4:""" No more knots can be added because the number of b-spline coefficients (nx-kx-1)*(ny-ky-1) already exceeds the number of data points m: either s or m too small. The weighted least-squares spline corresponds to the current set of knots.""", 5:""" No more knots can be added because the additional knot would (quasi) coincide with an old one: s too small or too large a weight to an inaccurate data point. The weighted least-squares spline corresponds to the current set of knots.""", 10:""" Error on entry, no approximation returned. The following conditions must hold: xb<=x[i]<=xe, yb<=y[i]<=ye, w[i]>0, i=0..m-1 If iopt==-1, then xb<tx[kx+1]<tx[kx+2]<...<tx[nx-kx-2]<xe yb<ty[ky+1]<ty[ky+2]<...<ty[ny-ky-2]<ye""", -3:""" The coefficients of the spline returned have been computed as the minimal norm least-squares solution of a (numerically) rank deficient system (deficiency=%i). If deficiency is large, the results may be inaccurate. Deficiency may strongly depend on the value of eps.""" } class BivariateSpline(_BivariateSplineBase): """ Base class for bivariate splines. This describes a spline ``s(x, y)`` of degrees ``kx`` and ``ky`` on the rectangle ``[xb, xe] * [yb, ye]`` calculated from a given set of data points ``(x, y, z)``. This class is meant to be subclassed, not instantiated directly. To construct these splines, call either `SmoothBivariateSpline` or `LSQBivariateSpline`. See Also -------- UnivariateSpline : a similar class for univariate spline interpolation SmoothBivariateSpline : to create a BivariateSpline through the given points LSQBivariateSpline : to create a BivariateSpline using weighted least-squares fitting SphereBivariateSpline : bivariate spline interpolation in spherical cooridinates bisplrep : older wrapping of FITPACK bisplev : older wrapping of FITPACK """ @classmethod def _from_tck(cls, tck): """Construct a spline object from given tck and degree""" self = cls.__new__(cls) if len(tck) != 5: raise ValueError("tck should be a 5 element tuple of tx, ty, c, kx, ky") self.tck = tck[:3] self.degrees = tck[3:] return self def ev(self, xi, yi, dx=0, dy=0): """ Evaluate the spline at points Returns the interpolated value at ``(xi[i], yi[i]), i=0,...,len(xi)-1``. Parameters ---------- xi, yi : array-like Input coordinates. Standard Numpy broadcasting is obeyed. dx : int Order of x-derivative .. versionadded:: 0.14.0 dy : int Order of y-derivative .. versionadded:: 0.14.0 """ return self.__call__(xi, yi, dx=dx, dy=dy, grid=False) def integral(self, xa, xb, ya, yb): """ Evaluate the integral of the spline over area [xa,xb] x [ya,yb]. Parameters ---------- xa, xb : float The end-points of the x integration interval. ya, yb : float The end-points of the y integration interval. Returns ------- integ : float The value of the resulting integral. """ tx,ty,c = self.tck[:3] kx,ky = self.degrees return dfitpack.dblint(tx,ty,c,kx,ky,xa,xb,ya,yb) class SmoothBivariateSpline(BivariateSpline): """ Smooth bivariate spline approximation. Parameters ---------- x, y, z : array_like 1-D sequences of data points (order is not important). w : array_like, optional Positive 1-D sequence of weights, of same length as `x`, `y` and `z`. bbox : array_like, optional Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``. kx, ky : ints, optional Degrees of the bivariate spline. Default is 3. s : float, optional Positive smoothing factor defined for estimation condition: ``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s`` Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an estimate of the standard deviation of ``z[i]``. eps : float, optional A threshold for determining the effective rank of an over-determined linear system of equations. `eps` should have a value between 0 and 1, the default is 1e-16. See Also -------- bisplrep : an older wrapping of FITPACK bisplev : an older wrapping of FITPACK UnivariateSpline : a similar class for univariate spline interpolation LSQUnivariateSpline : to create a BivariateSpline using weighted Notes ----- The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``. """ def __init__(self, x, y, z, w=None, bbox=[None] * 4, kx=3, ky=3, s=None, eps=None): xb,xe,yb,ye = bbox nx,tx,ny,ty,c,fp,wrk1,ier = dfitpack.surfit_smth(x,y,z,w, xb,xe,yb,ye, kx,ky,s=s, eps=eps,lwrk2=1) if ier > 10: # lwrk2 was to small, re-run nx,tx,ny,ty,c,fp,wrk1,ier = dfitpack.surfit_smth(x,y,z,w, xb,xe,yb,ye, kx,ky,s=s, eps=eps,lwrk2=ier) if ier in [0,-1,-2]: # normal return pass else: message = _surfit_messages.get(ier,'ier=%s' % (ier)) warnings.warn(message) self.fp = fp self.tck = tx[:nx],ty[:ny],c[:(nx-kx-1)*(ny-ky-1)] self.degrees = kx,ky class LSQBivariateSpline(BivariateSpline): """ Weighted least-squares bivariate spline approximation. Parameters ---------- x, y, z : array_like 1-D sequences of data points (order is not important). tx, ty : array_like Strictly ordered 1-D sequences of knots coordinates. w : array_like, optional Positive 1-D array of weights, of the same length as `x`, `y` and `z`. bbox : (4,) array_like, optional Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``. kx, ky : ints, optional Degrees of the bivariate spline. Default is 3. s : float, optional Positive smoothing factor defined for estimation condition: ``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s`` Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an estimate of the standard deviation of ``z[i]``. eps : float, optional A threshold for determining the effective rank of an over-determined linear system of equations. `eps` should have a value between 0 and 1, the default is 1e-16. See Also -------- bisplrep : an older wrapping of FITPACK bisplev : an older wrapping of FITPACK UnivariateSpline : a similar class for univariate spline interpolation SmoothBivariateSpline : create a smoothing BivariateSpline Notes ----- The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``. """ def __init__(self, x, y, z, tx, ty, w=None, bbox=[None]*4, kx=3, ky=3, eps=None): nx = 2*kx+2+len(tx) ny = 2*ky+2+len(ty) tx1 = zeros((nx,),float) ty1 = zeros((ny,),float) tx1[kx+1:nx-kx-1] = tx ty1[ky+1:ny-ky-1] = ty xb,xe,yb,ye = bbox tx1,ty1,c,fp,ier = dfitpack.surfit_lsq(x,y,z,tx1,ty1,w, xb,xe,yb,ye, kx,ky,eps,lwrk2=1) if ier > 10: tx1,ty1,c,fp,ier = dfitpack.surfit_lsq(x,y,z,tx1,ty1,w, xb,xe,yb,ye, kx,ky,eps,lwrk2=ier) if ier in [0,-1,-2]: # normal return pass else: if ier < -2: deficiency = (nx-kx-1)*(ny-ky-1)+ier message = _surfit_messages.get(-3) % (deficiency) else: message = _surfit_messages.get(ier, 'ier=%s' % (ier)) warnings.warn(message) self.fp = fp self.tck = tx1, ty1, c self.degrees = kx, ky class RectBivariateSpline(BivariateSpline): """ Bivariate spline approximation over a rectangular mesh. Can be used for both smoothing and interpolating data. Parameters ---------- x,y : array_like 1-D arrays of coordinates in strictly ascending order. z : array_like 2-D array of data with shape (x.size,y.size). bbox : array_like, optional Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``. kx, ky : ints, optional Degrees of the bivariate spline. Default is 3. s : float, optional Positive smoothing factor defined for estimation condition: ``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s`` Default is ``s=0``, which is for interpolation. See Also -------- SmoothBivariateSpline : a smoothing bivariate spline for scattered data bisplrep : an older wrapping of FITPACK bisplev : an older wrapping of FITPACK UnivariateSpline : a similar class for univariate spline interpolation """ def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0): x, y = ravel(x), ravel(y) if not all(diff(x) > 0.0): raise TypeError('x must be strictly increasing') if not all(diff(y) > 0.0): raise TypeError('y must be strictly increasing') if not ((x.min() == x[0]) and (x.max() == x[-1])): raise TypeError('x must be strictly ascending') if not ((y.min() == y[0]) and (y.max() == y[-1])): raise TypeError('y must be strictly ascending') if not x.size == z.shape[0]: raise TypeError('x dimension of z must have same number of ' 'elements as x') if not y.size == z.shape[1]: raise TypeError('y dimension of z must have same number of ' 'elements as y') z = ravel(z) xb, xe, yb, ye = bbox nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(x, y, z, xb, xe, yb, ye, kx, ky, s) if ier not in [0, -1, -2]: msg = _surfit_messages.get(ier, 'ier=%s' % (ier)) raise ValueError(msg) self.fp = fp self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)] self.degrees = kx, ky _spherefit_messages = _surfit_messages.copy() _spherefit_messages[10] = """ ERROR. On entry, the input data are controlled on validity. The following restrictions must be satisfied: -1<=iopt<=1, m>=2, ntest>=8 ,npest >=8, 0<eps<1, 0<=teta(i)<=pi, 0<=phi(i)<=2*pi, w(i)>0, i=1,...,m lwrk1 >= 185+52*v+10*u+14*u*v+8*(u-1)*v**2+8*m kwrk >= m+(ntest-7)*(npest-7) if iopt=-1: 8<=nt<=ntest , 9<=np<=npest 0<tt(5)<tt(6)<...<tt(nt-4)<pi 0<tp(5)<tp(6)<...<tp(np-4)<2*pi if iopt>=0: s>=0 if one of these conditions is found to be violated,control is immediately repassed to the calling program. in that case there is no approximation returned.""" _spherefit_messages[-3] = """ WARNING. The coefficients of the spline returned have been computed as the minimal norm least-squares solution of a (numerically) rank deficient system (deficiency=%i, rank=%i). Especially if the rank deficiency, which is computed by 6+(nt-8)*(np-7)+ier, is large, the results may be inaccurate. They could also seriously depend on the value of eps.""" class SphereBivariateSpline(_BivariateSplineBase): """ Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a given set of data points (theta,phi,r). .. versionadded:: 0.11.0 See Also -------- bisplrep, bisplev : an older wrapping of FITPACK UnivariateSpline : a similar class for univariate spline interpolation SmoothUnivariateSpline : to create a BivariateSpline through the given points LSQUnivariateSpline : to create a BivariateSpline using weighted least-squares fitting """ def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True): """ Evaluate the spline or its derivatives at given positions. Parameters ---------- theta, phi : array-like Input coordinates. If `grid` is False, evaluate the spline at points ``(theta[i], phi[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting is obeyed. If `grid` is True: evaluate spline at the grid points defined by the coordinate arrays theta, phi. The arrays must be sorted to increasing order. dtheta : int Order of theta-derivative .. versionadded:: 0.14.0 dphi : int Order of phi-derivative .. versionadded:: 0.14.0 grid : bool Whether to evaluate the results on a grid spanned by the input arrays, or at points specified by the input arrays. .. versionadded:: 0.14.0 """ theta = np.asarray(theta) phi = np.asarray(phi) if theta.size > 0 and (theta.min() < 0. or theta.max() > np.pi): raise ValueError("requested theta out of bounds.") if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi): raise ValueError("requested phi out of bounds.") return _BivariateSplineBase.__call__(self, theta, phi, dx=dtheta, dy=dphi, grid=grid) def ev(self, theta, phi, dtheta=0, dphi=0): """ Evaluate the spline at points Returns the interpolated value at ``(theta[i], phi[i]), i=0,...,len(theta)-1``. Parameters ---------- theta, phi : array-like Input coordinates. Standard Numpy broadcasting is obeyed. dtheta : int Order of theta-derivative .. versionadded:: 0.14.0 dphi : int Order of phi-derivative .. versionadded:: 0.14.0 """ return self.__call__(theta, phi, dtheta=dtheta, dphi=dphi, grid=False) class SmoothSphereBivariateSpline(SphereBivariateSpline): """ Smooth bivariate spline approximation in spherical coordinates. .. versionadded:: 0.11.0 Parameters ---------- theta, phi, r : array_like 1-D sequences of data points (order is not important). Coordinates must be given in radians. Theta must lie within the interval (0, pi), and phi must lie within the interval (0, 2pi). w : array_like, optional Positive 1-D sequence of weights. s : float, optional Positive smoothing factor defined for estimation condition: ``sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s`` Default ``s=len(w)`` which should be a good value if 1/w[i] is an estimate of the standard deviation of r[i]. eps : float, optional A threshold for determining the effective rank of an over-determined linear system of equations. `eps` should have a value between 0 and 1, the default is 1e-16. Notes ----- For more information, see the FITPACK_ site about this function. .. _FITPACK: http://www.netlib.org/dierckx/sphere.f Examples -------- Suppose we have global data on a coarse grid (the input data does not have to be on a grid): >>> theta = np.linspace(0., np.pi, 7) >>> phi = np.linspace(0., 2*np.pi, 9) >>> data = np.empty((theta.shape[0], phi.shape[0])) >>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0. >>> data[1:-1,1], data[1:-1,-1] = 1., 1. >>> data[1,1:-1], data[-2,1:-1] = 1., 1. >>> data[2:-2,2], data[2:-2,-2] = 2., 2. >>> data[2,2:-2], data[-3,2:-2] = 2., 2. >>> data[3,3:-2] = 3. >>> data = np.roll(data, 4, 1) We need to set up the interpolator object >>> lats, lons = np.meshgrid(theta, phi) >>> from scipy.interpolate import SmoothSphereBivariateSpline >>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(), data.T.ravel(),s=3.5) As a first test, we'll see what the algorithm returns when run on the input coordinates >>> data_orig = lut(theta, phi) Finally we interpolate the data to a finer grid >>> fine_lats = np.linspace(0., np.pi, 70) >>> fine_lons = np.linspace(0., 2 * np.pi, 90) >>> data_smth = lut(fine_lats, fine_lons) >>> fig = plt.figure() >>> ax1 = fig.add_subplot(131) >>> ax1.imshow(data, interpolation='nearest') >>> ax2 = fig.add_subplot(132) >>> ax2.imshow(data_orig, interpolation='nearest') >>> ax3 = fig.add_subplot(133) >>> ax3.imshow(data_smth, interpolation='nearest') >>> plt.show() """ def __init__(self, theta, phi, r, w=None, s=0., eps=1E-16): if np.issubclass_(w, float): w = ones(len(theta)) * w nt_, tt_, np_, tp_, c, fp, ier = dfitpack.spherfit_smth(theta, phi, r, w=w, s=s, eps=eps) if ier not in [0, -1, -2]: message = _spherefit_messages.get(ier, 'ier=%s' % (ier)) raise ValueError(message) self.fp = fp self.tck = tt_[:nt_], tp_[:np_], c[:(nt_ - 4) * (np_ - 4)] self.degrees = (3, 3) class LSQSphereBivariateSpline(SphereBivariateSpline): """ Weighted least-squares bivariate spline approximation in spherical coordinates. .. versionadded:: 0.11.0 Parameters ---------- theta, phi, r : array_like 1-D sequences of data points (order is not important). Coordinates must be given in radians. Theta must lie within the interval (0, pi), and phi must lie within the interval (0, 2pi). tt, tp : array_like Strictly ordered 1-D sequences of knots coordinates. Coordinates must satisfy ``0 < tt[i] < pi``, ``0 < tp[i] < 2*pi``. w : array_like, optional Positive 1-D sequence of weights, of the same length as `theta`, `phi` and `r`. eps : float, optional A threshold for determining the effective rank of an over-determined linear system of equations. `eps` should have a value between 0 and 1, the default is 1e-16. Notes ----- For more information, see the FITPACK_ site about this function. .. _FITPACK: http://www.netlib.org/dierckx/sphere.f Examples -------- Suppose we have global data on a coarse grid (the input data does not have to be on a grid): >>> theta = np.linspace(0., np.pi, 7) >>> phi = np.linspace(0., 2*np.pi, 9) >>> data = np.empty((theta.shape[0], phi.shape[0])) >>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0. >>> data[1:-1,1], data[1:-1,-1] = 1., 1. >>> data[1,1:-1], data[-2,1:-1] = 1., 1. >>> data[2:-2,2], data[2:-2,-2] = 2., 2. >>> data[2,2:-2], data[-3,2:-2] = 2., 2. >>> data[3,3:-2] = 3. >>> data = np.roll(data, 4, 1) We need to set up the interpolator object. Here, we must also specify the coordinates of the knots to use. >>> lats, lons = np.meshgrid(theta, phi) >>> knotst, knotsp = theta.copy(), phi.copy() >>> knotst[0] += .0001 >>> knotst[-1] -= .0001 >>> knotsp[0] += .0001 >>> knotsp[-1] -= .0001 >>> from scipy.interpolate import LSQSphereBivariateSpline >>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(), data.T.ravel(),knotst,knotsp) As a first test, we'll see what the algorithm returns when run on the input coordinates >>> data_orig = lut(theta, phi) Finally we interpolate the data to a finer grid >>> fine_lats = np.linspace(0., np.pi, 70) >>> fine_lons = np.linspace(0., 2*np.pi, 90) >>> data_lsq = lut(fine_lats, fine_lons) >>> fig = plt.figure() >>> ax1 = fig.add_subplot(131) >>> ax1.imshow(data, interpolation='nearest') >>> ax2 = fig.add_subplot(132) >>> ax2.imshow(data_orig, interpolation='nearest') >>> ax3 = fig.add_subplot(133) >>> ax3.imshow(data_lsq, interpolation='nearest') >>> plt.show() """ def __init__(self, theta, phi, r, tt, tp, w=None, eps=1E-16): if np.issubclass_(w, float): w = ones(len(theta)) * w nt_, np_ = 8 + len(tt), 8 + len(tp) tt_, tp_ = zeros((nt_,), float), zeros((np_,), float) tt_[4:-4], tp_[4:-4] = tt, tp tt_[-4:], tp_[-4:] = np.pi, 2. * np.pi tt_, tp_, c, fp, ier = dfitpack.spherfit_lsq(theta, phi, r, tt_, tp_, w=w, eps=eps) if ier < -2: deficiency = 6 + (nt_ - 8) * (np_ - 7) + ier message = _spherefit_messages.get(-3) % (deficiency, -ier) warnings.warn(message) elif ier not in [0, -1, -2]: message = _spherefit_messages.get(ier, 'ier=%s' % (ier)) raise ValueError(message) self.fp = fp self.tck = tt_, tp_, c self.degrees = (3, 3) _spfit_messages = _surfit_messages.copy() _spfit_messages[10] = """ ERROR: on entry, the input data are controlled on validity the following restrictions must be satisfied. -1<=iopt(1)<=1, 0<=iopt(2)<=1, 0<=iopt(3)<=1, -1<=ider(1)<=1, 0<=ider(2)<=1, ider(2)=0 if iopt(2)=0. -1<=ider(3)<=1, 0<=ider(4)<=1, ider(4)=0 if iopt(3)=0. mu >= mumin (see above), mv >= 4, nuest >=8, nvest >= 8, kwrk>=5+mu+mv+nuest+nvest, lwrk >= 12+nuest*(mv+nvest+3)+nvest*24+4*mu+8*mv+max(nuest,mv+nvest) 0< u(i-1)<u(i)< pi,i=2,..,mu, -pi<=v(1)< pi, v(1)<v(i-1)<v(i)<v(1)+2*pi, i=3,...,mv if iopt(1)=-1: 8<=nu<=min(nuest,mu+6+iopt(2)+iopt(3)) 0<tu(5)<tu(6)<...<tu(nu-4)< pi 8<=nv<=min(nvest,mv+7) v(1)<tv(5)<tv(6)<...<tv(nv-4)<v(1)+2*pi the schoenberg-whitney conditions, i.e. there must be subset of grid co-ordinates uu(p) and vv(q) such that tu(p) < uu(p) < tu(p+4) ,p=1,...,nu-4 (iopt(2)=1 and iopt(3)=1 also count for a uu-value tv(q) < vv(q) < tv(q+4) ,q=1,...,nv-4 (vv(q) is either a value v(j) or v(j)+2*pi) if iopt(1)>=0: s>=0 if s=0: nuest>=mu+6+iopt(2)+iopt(3), nvest>=mv+7 if one of these conditions is found to be violated,control is immediately repassed to the calling program. in that case there is no approximation returned.""" class RectSphereBivariateSpline(SphereBivariateSpline): """ Bivariate spline approximation over a rectangular mesh on a sphere. Can be used for smoothing data. .. versionadded:: 0.11.0 Parameters ---------- u : array_like 1-D array of latitude coordinates in strictly ascending order. Coordinates must be given in radians and lie within the interval (0, pi). v : array_like 1-D array of longitude coordinates in strictly ascending order. Coordinates must be given in radians, and must lie within (0, 2pi). r : array_like 2-D array of data with shape ``(u.size, v.size)``. s : float, optional Positive smoothing factor defined for estimation condition (``s=0`` is for interpolation). pole_continuity : bool or (bool, bool), optional Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and ``u=pi`` (``pole_continuity[1]``). The order of continuity at the pole will be 1 or 0 when this is True or False, respectively. Defaults to False. pole_values : float or (float, float), optional Data values at the poles ``u=0`` and ``u=pi``. Either the whole parameter or each individual element can be None. Defaults to None. pole_exact : bool or (bool, bool), optional Data value exactness at the poles ``u=0`` and ``u=pi``. If True, the value is considered to be the right function value, and it will be fitted exactly. If False, the value will be considered to be a data value just like the other data values. Defaults to False. pole_flat : bool or (bool, bool), optional For the poles at ``u=0`` and ``u=pi``, specify whether or not the approximation has vanishing derivatives. Defaults to False. See Also -------- RectBivariateSpline : bivariate spline approximation over a rectangular mesh Notes ----- Currently, only the smoothing spline approximation (``iopt[0] = 0`` and ``iopt[0] = 1`` in the FITPACK routine) is supported. The exact least-squares spline approximation is not implemented yet. When actually performing the interpolation, the requested `v` values must lie within the same length 2pi interval that the original `v` values were chosen from. For more information, see the FITPACK_ site about this function. .. _FITPACK: http://www.netlib.org/dierckx/spgrid.f Examples -------- Suppose we have global data on a coarse grid >>> lats = np.linspace(10, 170, 9) * np.pi / 180. >>> lons = np.linspace(0, 350, 18) * np.pi / 180. >>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T, np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T We want to interpolate it to a global one-degree grid >>> new_lats = np.linspace(1, 180, 180) * np.pi / 180 >>> new_lons = np.linspace(1, 360, 360) * np.pi / 180 >>> new_lats, new_lons = np.meshgrid(new_lats, new_lons) We need to set up the interpolator object >>> from scipy.interpolate import RectSphereBivariateSpline >>> lut = RectSphereBivariateSpline(lats, lons, data) Finally we interpolate the data. The `RectSphereBivariateSpline` object only takes 1-D arrays as input, therefore we need to do some reshaping. >>> data_interp = lut.ev(new_lats.ravel(), ... new_lons.ravel()).reshape((360, 180)).T Looking at the original and the interpolated data, one can see that the interpolant reproduces the original data very well: >>> fig = plt.figure() >>> ax1 = fig.add_subplot(211) >>> ax1.imshow(data, interpolation='nearest') >>> ax2 = fig.add_subplot(212) >>> ax2.imshow(data_interp, interpolation='nearest') >>> plt.show() Chosing the optimal value of ``s`` can be a delicate task. Recommended values for ``s`` depend on the accuracy of the data values. If the user has an idea of the statistical errors on the data, she can also find a proper estimate for ``s``. By assuming that, if she specifies the right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly reproduces the function underlying the data, she can evaluate ``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``. For example, if she knows that the statistical errors on her ``r(i,j)``-values are not greater than 0.1, she may expect that a good ``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``. If nothing is known about the statistical error in ``r(i,j)``, ``s`` must be determined by trial and error. The best is then to start with a very large value of ``s`` (to determine the least-squares polynomial and the corresponding upper bound ``fp0`` for ``s``) and then to progressively decrease the value of ``s`` (say by a factor 10 in the beginning, i.e. ``s = fp0 / 10, fp0 / 100, ...`` and more carefully as the approximation shows more detail) to obtain closer fits. The interpolation results for different values of ``s`` give some insight into this process: >>> fig2 = plt.figure() >>> s = [3e9, 2e9, 1e9, 1e8] >>> for ii in xrange(len(s)): >>> lut = RectSphereBivariateSpline(lats, lons, data, s=s[ii]) >>> data_interp = lut.ev(new_lats.ravel(), ... new_lons.ravel()).reshape((360, 180)).T >>> ax = fig2.add_subplot(2, 2, ii+1) >>> ax.imshow(data_interp, interpolation='nearest') >>> ax.set_title("s = %g" % s[ii]) >>> plt.show() """ def __init__(self, u, v, r, s=0., pole_continuity=False, pole_values=None, pole_exact=False, pole_flat=False): iopt = np.array([0, 0, 0], dtype=int) ider = np.array([-1, 0, -1, 0], dtype=int) if pole_values is None: pole_values = (None, None) elif isinstance(pole_values, (float, np.float32, np.float64)): pole_values = (pole_values, pole_values) if isinstance(pole_continuity, bool): pole_continuity = (pole_continuity, pole_continuity) if isinstance(pole_exact, bool): pole_exact = (pole_exact, pole_exact) if isinstance(pole_flat, bool): pole_flat = (pole_flat, pole_flat) r0, r1 = pole_values iopt[1:] = pole_continuity if r0 is None: ider[0] = -1 else: ider[0] = pole_exact[0] if r1 is None: ider[2] = -1 else: ider[2] = pole_exact[1] ider[1], ider[3] = pole_flat u, v = np.ravel(u), np.ravel(v) if not np.all(np.diff(u) > 0.0): raise TypeError('u must be strictly increasing') if not np.all(np.diff(v) > 0.0): raise TypeError('v must be strictly increasing') if not u.size == r.shape[0]: raise TypeError('u dimension of r must have same number of ' 'elements as u') if not v.size == r.shape[1]: raise TypeError('v dimension of r must have same number of ' 'elements as v') if pole_continuity[1] is False and pole_flat[1] is True: raise TypeError('if pole_continuity is False, so must be ' 'pole_flat') if pole_continuity[0] is False and pole_flat[0] is True: raise TypeError('if pole_continuity is False, so must be ' 'pole_flat') r = np.ravel(r) nu, tu, nv, tv, c, fp, ier = dfitpack.regrid_smth_spher(iopt, ider, u.copy(), v.copy(), r.copy(), r0, r1, s) if ier not in [0, -1, -2]: msg = _spfit_messages.get(ier, 'ier=%s' % (ier)) raise ValueError(msg) self.fp = fp self.tck = tu[:nu], tv[:nv], c[:(nu - 4) * (nv-4)] self.degrees = (3, 3)
mit
imatge-upc/saliency
shallow/train.py
2
3064
# add to kfkd.py from lasagne import layers from lasagne.updates import nesterov_momentum from nolearn.lasagne import NeuralNet,BatchIterator import os import numpy as np from sklearn.utils import shuffle import cPickle as pickle import matplotlib.pyplot as plt import Image import ImageOps from scipy import misc import scipy.io import theano def load(): f = file('data_Salicon_T.cPickle', 'rb') loaded_obj = pickle.load(f) f.close() X, y = loaded_obj return X, y def float32(k): return np.cast['float32'](k) class AdjustVariable(object): def __init__(self, name, start=0.03, stop=0.001): self.name = name self.start, self.stop = start, stop self.ls = None def __call__(self, nn, train_history): if self.ls is None: self.ls = np.linspace(self.start, self.stop, nn.max_epochs) epoch = train_history[-1]['epoch'] new_value = float32(self.ls[epoch - 1]) getattr(nn, self.name).set_value(new_value) class FlipBatchIterator(BatchIterator): def transform(self, Xb, yb): Xb, yb = super(FlipBatchIterator, self).transform(Xb, yb) # Flip half of the images in this batch at random: bs = Xb.shape[0] indices = np.random.choice(bs, bs / 2, replace=False) Xb[indices] = Xb[indices, :, :, ::-1] tmp = yb[indices].reshape(bs/2,1,48,48) mirror = tmp[ :,:,:, ::-1] yb[indices] = mirror.reshape(bs/2,48*48) return Xb, yb net2 = NeuralNet( layers=[ ('input', layers.InputLayer), ('conv1', layers.Conv2DLayer), ('pool1', layers.MaxPool2DLayer), ('conv2', layers.Conv2DLayer), ('pool2', layers.MaxPool2DLayer), ('conv3', layers.Conv2DLayer), ('pool3', layers.MaxPool2DLayer), ('hidden4', layers.DenseLayer), ('maxout6',layers.FeaturePoolLayer), ('output', layers.DenseLayer), ], input_shape=(None, 3, 96, 96), conv1_num_filters=32, conv1_filter_size=(5, 5), pool1_pool_size=(2, 2), conv2_num_filters=64, conv2_filter_size=(3, 3), pool2_pool_size=(2, 2), conv3_num_filters=64, conv3_filter_size=(3, 3), pool3_pool_size=(2, 2), hidden4_num_units=48*48*2, maxout6_pool_size=2,output_num_units=48*48,output_nonlinearity=None, update_learning_rate=theano.shared(float32(0.05)), update_momentum=theano.shared(float32(0.9)), regression=True, on_epoch_finished=[ AdjustVariable('update_learning_rate', start=0.05, stop=0.0001), AdjustVariable('update_momentum', start=0.9, stop=0.999), ], batch_iterator_train=FlipBatchIterator(batch_size=128), max_epochs=1200, verbose=1, ) X, y = load() print("X.shape == {}; X.min == {:.3f}; X.max == {:.3f}".format( X.shape, X.min(), X.max())) print("y.shape == {}; y.min == {:.3f}; y.max == {:.3f}".format( y.shape, y.min(), y.max())) X = X.astype(np.float32) y = y.astype(np.float32) net.fit(X, y) with open('JuntingNet_SALICON.pickle', 'wb') as f: pickle.dump(net2, f, -1)
mit
MikeLing/shogun
examples/undocumented/python/graphical/interactive_svm_demo.py
6
12586
""" Shogun demo, based on PyQT Demo by Eli Bendersky Christian Widmer Soeren Sonnenburg License: GPLv3 """ import numpy import sys, os, csv from PyQt4.QtCore import * from PyQt4.QtGui import * import matplotlib from matplotlib.colorbar import make_axes, Colorbar from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure from shogun import * import util class Form(QMainWindow): def __init__(self, parent=None): super(Form, self).__init__(parent) self.setWindowTitle('SHOGUN interactive demo') self.data = DataHolder() self.series_list_model = QStandardItemModel() self.create_menu() self.create_main_frame() self.create_status_bar() self.on_show() def load_file(self, filename=None): filename = QFileDialog.getOpenFileName(self, 'Open a data file', '.', 'CSV files (*.csv);;All Files (*.*)') if filename: self.data.load_from_file(filename) self.fill_series_list(self.data.series_names()) self.status_text.setText("Loaded " + filename) def on_show(self): self.axes.clear() self.axes.grid(True) self.axes.plot(self.data.x1_pos, self.data.x2_pos, 'ro') self.axes.plot(self.data.x1_neg, self.data.x2_neg, 'bo') self.axes.set_xlim((-5,5)) self.axes.set_ylim((-5,5)) self.canvas.draw() self.fill_series_list(self.data.get_stats()) def on_about(self): msg = __doc__ QMessageBox.about(self, "About the demo", msg.strip()) def fill_series_list(self, names): self.series_list_model.clear() for name in names: item = QStandardItem(name) item.setCheckState(Qt.Unchecked) item.setCheckable(False) self.series_list_model.appendRow(item) def onclick(self, event): print 'button=%d, x=%d, y=%d, xdata=%f, ydata=%f'%(event.button, event.x, event.y, event.xdata, event.ydata) if event.button==1: label = 1.0 else: label = -1.0 self.data.add_example(event.xdata, event.ydata, label) self.on_show() def clear(self): self.data.clear() self.on_show() def enable_widgets(self): kernel_name = self.kernel_combo.currentText() if kernel_name == "LinearKernel": self.sigma.setDisabled(True) self.degree.setDisabled(True) elif kernel_name == "PolynomialKernel": self.sigma.setDisabled(True) self.degree.setEnabled(True) elif kernel_name == "GaussianKernel": self.sigma.setEnabled(True) self.degree.setDisabled(True) def train_svm(self): width = float(self.sigma.text()) degree = int(self.degree.text()) self.axes.clear() self.axes.grid(True) self.axes.plot(self.data.x1_pos, self.data.x2_pos, 'ro') self.axes.plot(self.data.x1_neg, self.data.x2_neg, 'bo') # train svm labels = self.data.get_labels() print type(labels) lab = BinaryLabels(labels) features = self.data.get_examples() train = RealFeatures(features) kernel_name = self.kernel_combo.currentText() print "current kernel is %s" % (kernel_name) if kernel_name == "LinearKernel": gk = LinearKernel(train, train) gk.set_normalizer(IdentityKernelNormalizer()) elif kernel_name == "PolynomialKernel": gk = PolyKernel(train, train, degree, True) gk.set_normalizer(IdentityKernelNormalizer()) elif kernel_name == "GaussianKernel": gk = GaussianKernel(train, train, width) cost = float(self.cost.text()) print "cost", cost svm = LibSVM(cost, gk, lab) svm.train() svm.set_epsilon(1e-2) x, y, z = util.compute_output_plot_isolines(svm, gk, train) plt=self.axes.pcolor(x, y, z) CS=self.axes.contour(x, y, z, [-1,0,1], linewidths=1, colors='black', hold=True) #CS=self.axes.contour(x, y, z, linewidths=1, colors='black', hold=True) #CS=self.axes.contour(x, y, z, 5, linewidths=1, colors='black', hold=True) matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) self.axes.set_xlim((-5,5)) self.axes.set_ylim((-5,5)) cmap = matplotlib.cm.jet norm = matplotlib.colors.Normalize(numpy.min(z), numpy.max(z)) print CS.get_clim() if not self.cax: self.cax, kw = make_axes(self.axes) # ColorbarBase derives from ScalarMappable and puts a colorbar # in a specified axes, so it has everything needed for a # standalone colorbar. There are many more kwargs, but the # following gives a basic continuous colorbar with ticks # and labels. cb1 = matplotlib.colorbar.ColorbarBase(self.cax, cmap=cmap, norm=norm) self.canvas.draw() def create_main_frame(self): self.main_frame = QWidget() plot_frame = QWidget() self.dpi = 100 self.fig = Figure((6.0, 6.0), dpi=self.dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self.main_frame) cid = self.canvas.mpl_connect('button_press_event', self.onclick) self.axes = self.fig.add_subplot(111) self.cax = None #self.mpl_toolbar = NavigationToolbar(self.canvas, self.main_frame) log_label = QLabel("Number of examples:") self.series_list_view = QListView() self.series_list_view.setModel(self.series_list_model) cost_label = QLabel('C') #self.cost = QSpinBox()#QLineEdit() self.cost = QLineEdit() self.cost.setText("1.0") #self.cost.setMinimum(1) spin_label2 = QLabel('sigma') self.sigma = QLineEdit() self.sigma.setText("1.2") #self.sigma.setMinimum(1) self.degree = QLineEdit() self.degree.setText("2") #self.sigma.setMinimum(1) spins_hbox = QHBoxLayout() spins_hbox.addWidget(cost_label) spins_hbox.addWidget(self.cost) spins_hbox.addWidget(spin_label2) spins_hbox.addWidget(self.sigma) spins_hbox.addWidget(self.degree) spins_hbox.addStretch(1) self.legend_cb = QCheckBox("Show Support Vectors") self.legend_cb.setChecked(False) self.show_button = QPushButton("&Train SVM") self.connect(self.show_button, SIGNAL('clicked()'), self.train_svm) self.clear_button = QPushButton("&Clear") self.connect(self.clear_button, SIGNAL('clicked()'), self.clear) self.kernel_combo = QComboBox() self.kernel_combo.insertItem(-1, "GaussianKernel") self.kernel_combo.insertItem(-1, "PolynomialKernel") self.kernel_combo.insertItem(-1, "LinearKernel") self.kernel_combo.maximumSize = QSize(300, 50) self.connect(self.kernel_combo, SIGNAL("currentIndexChanged(QString)"), self.enable_widgets) left_vbox = QVBoxLayout() left_vbox.addWidget(self.canvas) #left_vbox.addWidget(self.mpl_toolbar) right0_vbox = QVBoxLayout() right0_vbox.addWidget(log_label) right0_vbox.addWidget(self.series_list_view) #right0_vbox.addWidget(self.legend_cb) right0_vbox.addStretch(1) right2_vbox = QVBoxLayout() right2_label = QLabel("Settings") right2_vbox.addWidget(right2_label) right2_vbox.addWidget(self.show_button) right2_vbox.addWidget(self.kernel_combo) right2_vbox.addLayout(spins_hbox) right2_clearlabel = QLabel("Remove Data") right2_vbox.addWidget(right2_clearlabel) right2_vbox.addWidget(self.clear_button) right2_vbox.addStretch(1) right_vbox = QHBoxLayout() right_vbox.addLayout(right0_vbox) right_vbox.addLayout(right2_vbox) hbox = QVBoxLayout() hbox.addLayout(left_vbox) hbox.addLayout(right_vbox) self.main_frame.setLayout(hbox) self.setCentralWidget(self.main_frame) self.enable_widgets() def create_status_bar(self): self.status_text = QLabel("") self.statusBar().addWidget(self.status_text, 1) def create_menu(self): self.file_menu = self.menuBar().addMenu("&File") load_action = self.create_action("&Load file", shortcut="Ctrl+L", slot=self.load_file, tip="Load a file") quit_action = self.create_action("&Quit", slot=self.close, shortcut="Ctrl+Q", tip="Close the application") self.add_actions(self.file_menu, (load_action, None, quit_action)) self.help_menu = self.menuBar().addMenu("&Help") about_action = self.create_action("&About", shortcut='F1', slot=self.on_about, tip='About the demo') self.add_actions(self.help_menu, (about_action,)) def add_actions(self, target, actions): for action in actions: if action is None: target.addSeparator() else: target.addAction(action) def create_action( self, text, slot=None, shortcut=None, icon=None, tip=None, checkable=False, signal="triggered()"): action = QAction(text, self) if icon is not None: action.setIcon(QIcon(":/%s.png" % icon)) if shortcut is not None: action.setShortcut(shortcut) if tip is not None: action.setToolTip(tip) action.setStatusTip(tip) if slot is not None: self.connect(action, SIGNAL(signal), slot) if checkable: action.setCheckable(True) return action class DataHolder(object): """ Just a thin wrapper over a dictionary that holds integer data series. Each series has a name and a list of numbers as its data. The length of all series is assumed to be the same. The series can be read from a CSV file, where each line is a separate series. In each series, the first item in the line is the name, and the rest are data numbers. """ def __init__(self, filename=None): self.clear() self.load_from_file(filename) def clear(self): self.x1_pos = [] self.x2_pos = [] self.x1_neg = [] self.x2_neg = [] def get_stats(self): num_neg = len(self.x1_neg) num_pos = len(self.x1_pos) str_neg = "num negative examples: %i" % num_neg str_pos = "num positive examples: %i" % num_pos return (str_neg, str_pos) def get_labels(self): return numpy.array([1]*len(self.x1_pos) + [-1]*len(self.x1_neg), dtype=numpy.float64) def get_examples(self): num_pos = len(self.x1_pos) num_neg = len(self.x1_neg) examples = numpy.zeros((2,num_pos+num_neg)) for i in xrange(num_pos): examples[0,i] = self.x1_pos[i] examples[1,i] = self.x2_pos[i] for i in xrange(num_neg): examples[0,i+num_pos] = self.x1_neg[i] examples[1,i+num_pos] = self.x2_neg[i] return examples def add_example(self, x1, x2, label): if label==1: self.x1_pos.append(x1) self.x2_pos.append(x2) else: self.x1_neg.append(x1) self.x2_neg.append(x2) def load_from_file(self, filename=None): self.data = {} self.names = [] if filename: for line in csv.reader(open(filename, 'rb')): self.names.append(line[0]) self.data[line[0]] = map(int, line[1:]) self.datalen = len(line[1:]) def series_names(self): """ Names of the data series """ return self.names def series_len(self): """ Length of a data series """ return self.datalen def series_count(self): return len(self.data) def get_series_data(self, name): return self.data[name] def main(): app = QApplication(sys.argv) form = Form() form.show() app.exec_() if __name__ == "__main__": main() #~ dh = DataHolder('qt_mpl_data.csv') #~ print dh.data #~ print dh.get_series_data('1991 Sales') #~ print dh.series_names() #~ print dh.series_count()
gpl-3.0
jlcarmic/producthunt_simulator
venv/lib/python2.7/site-packages/scipy/integrate/odepack.py
62
9420
# Author: Travis Oliphant from __future__ import division, print_function, absolute_import __all__ = ['odeint'] from . import _odepack from copy import copy import warnings class ODEintWarning(Warning): pass _msgs = {2: "Integration successful.", 1: "Nothing was done; the integration time was 0.", -1: "Excess work done on this call (perhaps wrong Dfun type).", -2: "Excess accuracy requested (tolerances too small).", -3: "Illegal input detected (internal error).", -4: "Repeated error test failures (internal error).", -5: "Repeated convergence failures (perhaps bad Jacobian or tolerances).", -6: "Error weight became zero during problem.", -7: "Internal workspace insufficient to finish (internal error)." } def odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0): """ Integrate a system of ordinary differential equations. Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack. Solves the initial value problem for stiff or non-stiff systems of first order ode-s:: dy/dt = func(y, t0, ...) where y can be a vector. *Note*: The first two arguments of ``func(y, t0, ...)`` are in the opposite order of the arguments in the system definition function used by the `scipy.integrate.ode` class. Parameters ---------- func : callable(y, t0, ...) Computes the derivative of y at t0. y0 : array Initial condition on y (can be a vector). t : array A sequence of time points for which to solve for y. The initial value point should be the first element of this sequence. args : tuple, optional Extra arguments to pass to function. Dfun : callable(y, t0, ...) Gradient (Jacobian) of `func`. col_deriv : bool, optional True if `Dfun` defines derivatives down columns (faster), otherwise `Dfun` should define derivatives across rows. full_output : bool, optional True if to return a dictionary of optional outputs as the second output printmessg : bool, optional Whether to print the convergence message Returns ------- y : array, shape (len(t), len(y0)) Array containing the value of y for each desired time in t, with the initial value `y0` in the first row. infodict : dict, only returned if full_output == True Dictionary containing additional output information ======= ============================================================ key meaning ======= ============================================================ 'hu' vector of step sizes successfully used for each time step. 'tcur' vector with the value of t reached for each time step. (will always be at least as large as the input times). 'tolsf' vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected. 'tsw' value of t at the time of the last method switch (given for each time step) 'nst' cumulative number of time steps 'nfe' cumulative number of function evaluations for each time step 'nje' cumulative number of jacobian evaluations for each time step 'nqu' a vector of method orders for each successful step. 'imxer' index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise. 'lenrw' the length of the double work array required. 'leniw' the length of integer work array required. 'mused' a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff) ======= ============================================================ Other Parameters ---------------- ml, mu : int, optional If either of these are not None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, `Dfun` should return a matrix whose rows contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix `jac` from `Dfun` should have shape ``(ml + mu + 1, len(y0))`` when ``ml >=0`` or ``mu >=0``. The data in `jac` must be stored such that ``jac[i - j + mu, j]`` holds the derivative of the `i`th equation with respect to the `j`th state variable. If `col_deriv` is True, the transpose of this `jac` must be returned. rtol, atol : float, optional The input parameters `rtol` and `atol` determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form ``max-norm of (e / ewt) <= 1``, where ewt is a vector of positive error weights computed as ``ewt = rtol * abs(y) + atol``. rtol and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8. tcrit : ndarray, optional Vector of critical points (e.g. singularities) where integration care should be taken. h0 : float, (0: solver-determined), optional The step size to be attempted on the first step. hmax : float, (0: solver-determined), optional The maximum absolute step size allowed. hmin : float, (0: solver-determined), optional The minimum absolute step size allowed. ixpr : bool, optional Whether to generate extra printing at method switches. mxstep : int, (0: solver-determined), optional Maximum number of (internally defined) steps allowed for each integration point in t. mxhnil : int, (0: solver-determined), optional Maximum number of messages printed. mxordn : int, (0: solver-determined), optional Maximum order to be allowed for the non-stiff (Adams) method. mxords : int, (0: solver-determined), optional Maximum order to be allowed for the stiff (BDF) method. See Also -------- ode : a more object-oriented integrator based on VODE. quad : for finding the area under a curve. Examples -------- The second order differential equation for the angle `theta` of a pendulum acted on by gravity with friction can be written:: theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0 where `b` and `c` are positive constants, and a prime (') denotes a derivative. To solve this equation with `odeint`, we must first convert it to a system of first order equations. By defining the angular velocity ``omega(t) = theta'(t)``, we obtain the system:: theta'(t) = omega(t) omega'(t) = -b*omega(t) - c*sin(theta(t)) Let `y` be the vector [`theta`, `omega`]. We implement this system in python as: >>> def pend(y, t, b, c): ... theta, omega = y ... dydt = [omega, -b*omega - c*np.sin(theta)] ... return dydt ... We assume the constants are `b` = 0.25 and `c` = 5.0: >>> b = 0.25 >>> c = 5.0 For initial conditions, we assume the pendulum is nearly vertical with `theta(0)` = `pi` - 0.1, and it initially at rest, so `omega(0)` = 0. Then the vector of initial conditions is >>> y0 = [np.pi - 0.1, 0.0] We generate a solution 101 evenly spaced samples in the interval 0 <= `t` <= 10. So our array of times is: >>> t = np.linspace(0, 10, 101) Call `odeint` to generate the solution. To pass the parameters `b` and `c` to `pend`, we give them to `odeint` using the `args` argument. >>> from scipy.integrate import odeint >>> sol = odeint(pend, y0, t, args=(b, c)) The solution is an array with shape (101, 2). The first column is `theta(t)`, and the second is `omega(t)`. The following code plots both components. >>> import matplotlib.pyplot as plt >>> plt.plot(t, sol[:, 0], 'b', label='theta(t)') >>> plt.plot(t, sol[:, 1], 'g', label='omega(t)') >>> plt.legend(loc='best') >>> plt.xlabel('t') >>> plt.grid() >>> plt.show() """ if ml is None: ml = -1 # changed to zero inside function call if mu is None: mu = -1 # changed to zero inside function call t = copy(t) y0 = copy(y0) output = _odepack.odeint(func, y0, t, args, Dfun, col_deriv, ml, mu, full_output, rtol, atol, tcrit, h0, hmax, hmin, ixpr, mxstep, mxhnil, mxordn, mxords) if output[-1] < 0: warning_msg = _msgs[output[-1]] + " Run with full_output = 1 to get quantitative information." warnings.warn(warning_msg, ODEintWarning) elif printmessg: warning_msg = _msgs[output[-1]] warnings.warn(warning_msg, ODEintWarning) if full_output: output[1]['message'] = _msgs[output[-1]] output = output[:-1] if len(output) == 1: return output[0] else: return output
mit
blab/antibody-response-pulse
bcell-array/code/Virus_Bcell_IgM_IgG_Infection_OAS_new.py
1
13195
# coding: utf-8 # # Antibody Response Pulse # https://github.com/blab/antibody-response-pulse # # ### B-cells evolution --- cross-reactive antibody response after influenza virus infection or vaccination # ### Adaptive immune response for repeated infection # In[3]: ''' author: Alvason Zhenhua Li date: 04/09/2015 ''' get_ipython().magic(u'matplotlib inline') import numpy as np import matplotlib.pyplot as plt import os from matplotlib.ticker import FuncFormatter import alva_machinery_event_OAS_new as alva AlvaFontSize = 23 AlvaFigSize = (15, 5) numberingFig = 0 # plotting dir_path = '/Users/al/Desktop/GitHub/antibody-response-pulse/bcell-array/figure' file_name = 'Virus-Bcell-IgM-IgG' figure_name = '-equation' file_suffix = '.png' save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix) numberingFig = numberingFig + 1 plt.figure(numberingFig, figsize=(12, 5)) plt.axis('off') plt.title(r'$ Virus-Bcell-IgM-IgG \ equations \ (antibody-response \ for \ repeated-infection) $' , fontsize = AlvaFontSize) plt.text(0, 7.0/9, r'$ \frac{\partial V_n(t)}{\partial t} = +\mu_{v}V_{n}(t)(1 - \frac{V_n(t)}{V_{max}}) - \phi_{m} M_{n}(t) V_{n}(t) - \phi_{g} G_{n}(t) V_{n}(t) $' , fontsize = 1.2*AlvaFontSize) plt.text(0, 5.0/9, r'$ \frac{\partial B_n(t)}{\partial t} = +\mu_{b}V_{n}(t)(1 - \frac{V_n(t)}{V_{max}}) + (\beta_{m} + \beta_{g}) V_{n}(t) B_{n}(t) - \mu_{b} B_{n}(t) + m_b V_{n}(t)\frac{B_{i-1}(t) - 2B_i(t) + B_{i+1}(t)}{(\Delta i)^2} $' , fontsize = 1.2*AlvaFontSize) plt.text(0, 3.0/9,r'$ \frac{\partial M_n(t)}{\partial t} = +\xi_{m} B_{n}(t) - \phi_{m} M_{n}(t) V_{n}(t) - \mu_{m} M_{n}(t) $' , fontsize = 1.2*AlvaFontSize) plt.text(0, 1.0/9,r'$ \frac{\partial G_n(t)}{\partial t} = +\xi_{g} B_{n}(t) - \phi_{g} G_{n}(t) V_{n}(t) - \mu_{g} G_{n}(t) + m_a V_{n}(t)\frac{G_{i-1}(t) - 2G_i(t) + G_{i+1}(t)}{(\Delta i)^2} $' , fontsize = 1.2*AlvaFontSize) plt.savefig(save_figure, dpi = 100) plt.show() # define the V-M-G partial differential equations def dVdt_array(VBMGxt = [], *args): # naming V = VBMGxt[0] B = VBMGxt[1] M = VBMGxt[2] G = VBMGxt[3] x_totalPoint = VBMGxt.shape[1] # there are n dSdt dV_dt_array = np.zeros(x_totalPoint) # each dSdt with the same equation form dV_dt_array[:] = +inRateV*V[:]*(1 - V[:]/maxV) - killRateVm*M[:]*V[:] - killRateVg*G[:]*V[:] return(dV_dt_array) def dBdt_array(VBMGxt = [], *args): # naming V = VBMGxt[0] B = VBMGxt[1] M = VBMGxt[2] G = VBMGxt[3] x_totalPoint = VBMGxt.shape[1] # there are n dSdt dB_dt_array = np.zeros(x_totalPoint) # each dSdt with the same equation form Bcopy = np.copy(B) centerX = Bcopy[:] leftX = np.roll(Bcopy[:], 1) rightX = np.roll(Bcopy[:], -1) leftX[0] = centerX[0] rightX[-1] = centerX[-1] dB_dt_array[:] = +inRateB*V[:]*(1 - V[:]/maxV) + (actRateBm + alva.event_active + alva.event_OAS_B)*V[:]*B[:] - outRateB*B[:] + mutatRateB*V[:]*(leftX[:] - 2*centerX[:] + rightX[:])/(dx**2) return(dB_dt_array) def dMdt_array(VBMGxt = [], *args): # naming V = VBMGxt[0] B = VBMGxt[1] M = VBMGxt[2] G = VBMGxt[3] x_totalPoint = VBMGxt.shape[1] # there are n dSdt dM_dt_array = np.zeros(x_totalPoint) # each dSdt with the same equation form dM_dt_array[:] = +inRateM*B[:] - consumeRateM*M[:]*V[:] - outRateM*M[:] return(dM_dt_array) def dGdt_array(VBMGxt = [], *args): # naming V = VBMGxt[0] B = VBMGxt[1] M = VBMGxt[2] G = VBMGxt[3] x_totalPoint = VBMGxt.shape[1] # there are n dSdt dG_dt_array = np.zeros(x_totalPoint) # each dSdt with the same equation form Gcopy = np.copy(G) centerX = Gcopy[:] leftX = np.roll(Gcopy[:], 1) rightX = np.roll(Gcopy[:], -1) leftX[0] = centerX[0] rightX[-1] = centerX[-1] dG_dt_array[:] = +(inRateG + alva.event_OAS)*B[:] - consumeRateG*G[:]*V[:] - outRateG*G[:] + mutatRateA*(leftX[:] - 2*centerX[:] + rightX[:])/(dx**2) return(dG_dt_array) # In[7]: # setting parameter timeUnit = 'day' if timeUnit == 'hour': hour = float(1) day = float(24) elif timeUnit == 'day': day = float(1) hour = float(1)/24 elif timeUnit == 'year': year = float(1) day = float(1)/365 hour = float(1)/24/365 maxV = float(50) # max virus/micro-liter inRateV = 0.2/hour # in-rate of virus killRateVm = 0.0003/hour # kill-rate of virus by antibody-IgM killRateVg = killRateVm # kill-rate of virus by antibody-IgG inRateB = 0.06/hour # in-rate of B-cell outRateB = inRateB/8 # out-rate of B-cell actRateBm = killRateVm # activation rate of naive B-cell inRateM = 0.16/hour # in-rate of antibody-IgM from naive B-cell outRateM = inRateM/1 # out-rate of antibody-IgM from naive B-cell consumeRateM = killRateVm # consume-rate of antibody-IgM by cleaning virus inRateG = inRateM/10 # in-rate of antibody-IgG from memory B-cell outRateG = outRateM/250 # out-rate of antibody-IgG from memory B-cell consumeRateG = killRateVg # consume-rate of antibody-IgG by cleaning virus mutatRateB = 0.00003/hour # B-cell mutation rate mutatRateA = 0.0001/hour # antibody mutation rate mutatRateB = 0.0000/hour # B-cell mutation rate mutatRateA = 0.000/hour # antibody mutation rate # time boundary and griding condition minT = float(0) maxT = float(6*28*day) totalPoint_T = int(1*10**3 + 1) gT = np.linspace(minT, maxT, totalPoint_T) spacingT = np.linspace(minT, maxT, num = totalPoint_T, retstep = True) gT = spacingT[0] dt = spacingT[1] # space boundary and griding condition minX = float(0) maxX = float(3) totalPoint_X = int(maxX - minX + 1) gX = np.linspace(minX, maxX, totalPoint_X) gridingX = np.linspace(minX, maxX, num = totalPoint_X, retstep = True) gX = gridingX[0] dx = gridingX[1] gV_array = np.zeros([totalPoint_X, totalPoint_T]) gB_array = np.zeros([totalPoint_X, totalPoint_T]) gM_array = np.zeros([totalPoint_X, totalPoint_T]) gG_array = np.zeros([totalPoint_X, totalPoint_T]) # initial output condition #gV_array[1, 0] = float(2) #[pre-parameter, post-parameter, recovered-day, OAS+, OSA-] actRateBg_1st = 0.0002/hour # activation rate of memory B-cell at 1st time (pre-) actRateBg_2nd = actRateBg_1st*10 # activation rate of memory B-cell at 2nd time (post-) origin_virus = int(1) current_virus = int(2) event_parameter = np.array([[actRateBg_1st, actRateBg_2nd, 14*day, +5/hour, -actRateBm - actRateBg_1st + (actRateBm + actRateBg_1st)/3, origin_virus, current_virus]]) # [viral population, starting time, first] # [viral population, starting time] ---first infection_period = 1*28*day viral_population = np.zeros(int(maxX + 1)) viral_population[origin_virus:current_virus + 1] = 3 infection_starting_time = np.arange(int(maxX + 1))*infection_period event_1st = np.zeros([int(maxX + 1), 2]) event_1st[:, 0] = viral_population event_1st[:, 1] = infection_starting_time print ('event_1st = {:}'.format(event_1st)) # [viral population, starting time] ---2nd] viral_population = np.zeros(int(maxX + 1)) viral_population[origin_virus:current_virus + 1] = 0 infection_starting_time = np.arange(int(maxX + 1))*0 event_2nd = np.zeros([int(maxX + 1), 2]) event_2nd[:, 0] = viral_population event_2nd[:, 1] = infection_starting_time print ('event_2nd = {:}'.format(event_2nd)) event_table = np.array([event_parameter, event_1st, event_2nd]) # Runge Kutta numerical solution pde_array = np.array([dVdt_array, dBdt_array, dMdt_array, dGdt_array]) initial_Out = np.array([gV_array, gB_array, gM_array, gG_array]) gOut_array = alva.AlvaRungeKutta4XT(pde_array, initial_Out, minX, maxX, totalPoint_X, minT, maxT, totalPoint_T, event_table) # plotting gV = gOut_array[0] gB = gOut_array[1] gM = gOut_array[2] gG = gOut_array[3] numberingFig = numberingFig + 1 for i in range(totalPoint_X): figure_name = '-response-%i'%(i) figure_suffix = '.png' save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix) plt.figure(numberingFig, figsize = AlvaFigSize) plt.plot(gT, gV[i], color = 'red', label = r'$ V_{%i}(t) $'%(i), linewidth = 3.0, alpha = 0.5) plt.plot(gT, gM[i], color = 'blue', label = r'$ IgM_{%i}(t) $'%(i), linewidth = 3.0, alpha = 0.5) plt.plot(gT, gG[i], color = 'green', label = r'$ IgG_{%i}(t) $'%(i), linewidth = 3.0, alpha = 0.5) plt.plot(gT, gM[i] + gG[i], color = 'gray', linewidth = 5.0, alpha = 0.5, linestyle = 'dashed' , label = r'$ IgM_{%i}(t) + IgG_{%i}(t) $'%(i, i)) plt.grid(True, which = 'both') plt.title(r'$ Antibody \ from \ Virus-{%i} $'%(i), fontsize = AlvaFontSize) plt.xlabel(r'$time \ (%s)$'%(timeUnit), fontsize = AlvaFontSize) plt.ylabel(r'$ Neutralization \ \ titer $', fontsize = AlvaFontSize) plt.xlim([minT, maxT]) plt.xticks(fontsize = AlvaFontSize*0.6) plt.yticks(fontsize = AlvaFontSize*0.6) plt.ylim([2**0, 2**14]) plt.yscale('log', basey = 2) plt.legend(loc = (1,0), fontsize = AlvaFontSize) plt.savefig(save_figure, dpi = 100) plt.show() # In[5]: # Experimental lab data from OAS paper gT_lab = np.array([28, 28 + 7, 28 + 14, 28 + 28]) + 28 gPR8_lab = np.array([2**(9 + 1.0/10), 2**(13 - 1.0/5), 2**(13 + 1.0/3), 2**(13 - 1.0/4)]) standard_PR8 = gPR8_lab**(3.0/4) gFM1_lab = np.array([0, 2**(6 - 1.0/5), 2**(7 - 1.0/4), 2**(8 + 1.0/4)]) standard_FM1 = gFM1_lab**(3.0/4) bar_width = 2.0 # Sequential immunization graph numberingFig = numberingFig + 1 plt.figure(numberingFig, figsize = (12, 6)) plt.subplot(111) plt.plot(gT, (gM[origin_virus] + gG[origin_virus]), linewidth = 5.0, alpha = 0.5, color = 'gray' , label = r'$ Origin-virus $') plt.plot(gT, (gM[origin_virus + 1] + gG[origin_virus + 1]), linewidth = 5.0, alpha = 0.5, color = 'red' , label = r'$ Subsequence-virus $') plt.bar(gT_lab - bar_width/2, gPR8_lab, bar_width, alpha = 0.6, color = 'gray', yerr = standard_PR8 , error_kw = dict(elinewidth = 1, ecolor = 'black'), label = r'$ PR8-virus $') plt.bar(gT_lab + bar_width/2, gFM1_lab, bar_width, alpha = 0.6, color = 'red', yerr = standard_FM1 , error_kw = dict(elinewidth = 1, ecolor = 'black'), label = r'$ FM1-virus $') plt.grid(True, which = 'both') plt.title(r'$ Original \ Antigenic \ Sin \ (sequential-infection)$', fontsize = AlvaFontSize) plt.xlabel(r'$time \ (%s)$'%(timeUnit), fontsize = AlvaFontSize) plt.ylabel(r'$ Neutralization \ \ titer $', fontsize = AlvaFontSize) plt.xticks(fontsize = AlvaFontSize*0.6) plt.yticks(fontsize = AlvaFontSize*0.6) plt.xlim([minT, 6*30*day]) plt.ylim([2**5, 2**14]) plt.yscale('log', basey = 2) # gca()---GetCurrentAxis and Format the ticklabel to be 2**x plt.gca().yaxis.set_major_formatter(FuncFormatter(lambda x, pos: int(2**(np.log(x)/np.log(2))))) #plt.gca().xaxis.set_major_locator(plt.MultipleLocator(7)) plt.legend(loc = (1, 0), fontsize = AlvaFontSize) plt.show() # In[6]: # Experimental lab data from OAS paper gT_lab = np.array([28, 28 + 7, 28 + 14, 28 + 28]) + 28 gPR8_lab = np.array([2**(9 + 1.0/10), 2**(13 - 1.0/5), 2**(13 + 1.0/3), 2**(13 - 1.0/4)]) standard_PR8 = gPR8_lab**(3.0/4) gFM1_lab = np.array([0, 2**(6 - 1.0/5), 2**(7 - 1.0/4), 2**(8 + 1.0/4)]) standard_FM1 = gFM1_lab**(3.0/4) bar_width = 1.0 # Sequential immunization graph figure_name = '-Original-Antigenic-Sin-infection' figure_suffix = '.png' save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix) numberingFig = numberingFig + 1 plt.figure(numberingFig, figsize = (12, 6)) plt.subplot(111) plt.plot(gT, (gM[origin_virus] + gG[origin_virus]), linewidth = 5.0, alpha = 0.5, color = 'gray' , label = r'$ Origin-virus $') plt.plot(gT, (gM[origin_virus + 1] + gG[origin_virus + 1]), linewidth = 5.0, alpha = 0.5, color = 'red' , label = r'$ Subsequence-virus $') plt.bar(gT_lab - bar_width/2, gPR8_lab, bar_width, alpha = 0.6, color = 'gray', yerr = standard_PR8 , error_kw = dict(elinewidth = 1, ecolor = 'black'), label = r'$ PR8-virus $') plt.bar(gT_lab + bar_width/2, gFM1_lab, bar_width, alpha = 0.6, color = 'red', yerr = standard_FM1 , error_kw = dict(elinewidth = 1, ecolor = 'black'), label = r'$ FM1-virus $') plt.grid(True, which = 'both') plt.title(r'$ Original \ Antigenic \ Sin \ (sequential-infection)$', fontsize = AlvaFontSize) plt.xlabel(r'$time \ (%s)$'%(timeUnit), fontsize = AlvaFontSize) plt.ylabel(r'$ Neutralization \ \ titer $', fontsize = AlvaFontSize) plt.xticks(fontsize = AlvaFontSize*0.6) plt.yticks(fontsize = AlvaFontSize*0.6) plt.xlim([minT, 3*30*day]) plt.ylim([2**5, 2**14]) plt.yscale('log', basey = 2) # gca()---GetCurrentAxis and Format the ticklabel to be 2**x plt.gca().yaxis.set_major_formatter(FuncFormatter(lambda x, pos: int(2**(np.log(x)/np.log(2))))) plt.gca().xaxis.set_major_locator(plt.MultipleLocator(7)) plt.legend(loc = (1, 0), fontsize = AlvaFontSize) plt.savefig(save_figure, dpi = 100, bbox_inches='tight') plt.show() # In[ ]:
gpl-2.0
adhix11/pmtk3
python/demos/linregDemo1.py
26
1104
#!/usr/bin/python2.4 import numpy import scipy.stats import matplotlib.pyplot as plt def main(): # true parameters w = 2 w0 = 3 sigma = 2 # make data numpy.random.seed(1) Ntrain = 20 xtrain = numpy.linspace(0,10,Ntrain) ytrain = w*xtrain + w0 + numpy.random.random(Ntrain)*sigma Ntest = 100 xtest = numpy.linspace(0,10,Ntest) ytest = w*xtest + w0 + numpy.random.random(Ntest)*sigma # from http://www2.warwick.ac.uk/fac/sci/moac/students/peter_cock/python/lin_reg/ # fit west, w0est, r_value, p_value, std_err = scipy.stats.linregress(xtrain, ytrain) # display print "Param \t True \t Est" print "w0 \t %5.3f \t %5.3f" % (w0, w0est) print "w \t %5.3f \t %5.3f" % (w, west) # plot plt.close() plt.plot(xtrain, ytrain, 'ro') plt.hold(True) #plt.plot(xtest, ytest, 'ka-') ytestPred = west*xtest + w0est #ndx = range(0, Ntest, 10) #h = plt.plot(xtest[ndx], ytestPred[ndx], 'b*') h = plt.plot(xtest, ytestPred, 'b-') plt.setp(h, 'markersize', 12) if __name__ == '__main__': main()
mit
marcusmueller/gnuradio
gr-filter/examples/fft_filter_ccc.py
7
4367
#!/usr/bin/env python # # Copyright 2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from __future__ import print_function from __future__ import division from __future__ import unicode_literals from gnuradio import gr, filter from gnuradio import analog from gnuradio import blocks from gnuradio import eng_notation from gnuradio.eng_arg import eng_float, intx from argparse import ArgumentParser import sys import numpy try: from matplotlib import pyplot except ImportError: print("Error: could not from matplotlib import pyplot (http://matplotlib.sourceforge.net/)") sys.exit(1) class example_fft_filter_ccc(gr.top_block): def __init__(self, N, fs, bw0, bw1, tw, atten, D): gr.top_block.__init__(self) self._nsamps = N self._fs = fs self._bw0 = bw0 self._bw1 = bw1 self._tw = tw self._at = atten self._decim = D taps = filter.firdes.complex_band_pass_2(1, self._fs, self._bw0, self._bw1, self._tw, self._at) print("Num. Taps: ", len(taps)) self.src = analog.noise_source_c(analog.GR_GAUSSIAN, 1) self.head = blocks.head(gr.sizeof_gr_complex, self._nsamps) self.filt0 = filter.fft_filter_ccc(self._decim, taps) self.vsnk_src = blocks.vector_sink_c() self.vsnk_out = blocks.vector_sink_c() self.connect(self.src, self.head, self.vsnk_src) self.connect(self.head, self.filt0, self.vsnk_out) def main(): parser = ArgumentParser(conflict_handler="resolve") parser.add_argument("-N", "--nsamples", type=int, default=10000, help="Number of samples to process [default=%(default)r]") parser.add_argument("-s", "--samplerate", type=eng_float, default=8000, help="System sample rate [default=%(default)r]") parser.add_argument("-S", "--start-pass", type=eng_float, default=1000, help="Start of Passband [default=%(default)r]") parser.add_argument("-E", "--end-pass", type=eng_float, default=2000, help="End of Passband [default=%(default)r]") parser.add_argument("-T", "--transition", type=eng_float, default=100, help="Transition band [default=%(default)r]") parser.add_argument("-A", "--attenuation", type=eng_float, default=80, help="Stopband attenuation [default=%(default)r]") parser.add_argument("-D", "--decimation", type=int, default=1, help="Decmation factor [default=%(default)r]") args = parser.parse_args() put = example_fft_filter_ccc(args.nsamples, args.samplerate, args.start_pass, args.end_pass, args.transition, args.attenuation, args.decimation) put.run() data_src = numpy.array(put.vsnk_src.data()) data_snk = numpy.array(put.vsnk_out.data()) # Plot the signals PSDs nfft = 1024 f1 = pyplot.figure(1, figsize=(12,10)) s1 = f1.add_subplot(1,1,1) s1.psd(data_src, NFFT=nfft, noverlap=nfft / 4, Fs=args.samplerate) s1.psd(data_snk, NFFT=nfft, noverlap=nfft / 4, Fs=args.samplerate) f2 = pyplot.figure(2, figsize=(12,10)) s2 = f2.add_subplot(1,1,1) s2.plot(data_src) s2.plot(data_snk.real, 'g') pyplot.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
ttthy1/2017sejongAI
week14/Mnist.py
1
2273
# Lab 7 Learning rate and Evaluation import tensorflow as tf import random import matplotlib.pyplot as plt tf.set_random_seed(777) # for reproducibility from tensorflow.examples.tutorials.mnist import input_data # Check out https://www.tensorflow.org/get_started/mnist/beginners for # more information about the mnist dataset mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) nb_classes = 10 # MNIST data image of shape 28 * 28 = 784 X = tf.placeholder(tf.float32, [None, 784]) # 0 - 9 digits recognition = 10 classes Y = tf.placeholder(tf.float32, [None, nb_classes]) W = tf.Variable(tf.random_normal([784, nb_classes])) b = tf.Variable(tf.random_normal([nb_classes])) # Hypothesis (using softmax) hypothesis = tf.nn.softmax(tf.matmul(X, W) + b) cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost) # Test model is_correct = tf.equal(tf.arg_max(hypothesis, 1), tf.arg_max(Y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32)) # parameters training_epochs = 15 batch_size = 100 with tf.Session() as sess: # Initialize TensorFlow variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(training_epochs): avg_cost = 0 total_batch = int(mnist.train.num_examples / batch_size) for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) c, _ = sess.run([cost, optimizer], feed_dict={ X: batch_xs, Y: batch_ys}) avg_cost += c / total_batch print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost)) print("Learning finished") # Test the model using test sets print("Accuracy: ", accuracy.eval(session=sess, feed_dict={ X: mnist.test.images, Y: mnist.test.labels})) # Get one and predict r = random.randint(0, mnist.test.num_examples - 1) print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1))) print("Prediction: ", sess.run( tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r + 1]})) plt.imshow( mnist.test.images[r:r + 1].reshape(28, 28), cmap='Greys', interpolation='nearest') plt.show()
gpl-3.0
Micket/CCBuilder
make_cc.py
1
8680
#!/usr/bin/env python3 from __future__ import print_function from __future__ import division import argparse import pickle import time import CCBuilder as ccb import CCBuilder_c as ccb_c import numpy as np import scipy.special def uniform_dist(x): """ Returns uniform distributions of given range """ return lambda: np.random.uniform(x[0], x[1]) def weibull_dist(a, mu): """ Returns Weibull distributions for given shape parameter and average """ return lambda: np.random.weibull(a) * mu / scipy.special.gamma(1/a + 1) def parse_dist(arg): # Parses input string for given distribution. # Returns a distribution, and the average d, params = arg.split(':') params = [float(x) for x in params.split(',')] if d == 'U': return uniform_dist(params), np.mean(params) elif d == 'W': a, mu = params return weibull_dist(a, mu), mu parser = argparse.ArgumentParser(description='''Generate a WC microstructure. Grain shape/size supports 2 types of distributions: Uniform: U:low,high Weibull: U:a,mu (a=k in some notation, mu=mean) ''', formatter_class=argparse.ArgumentDefaultsHelpFormatter) # parser.add_argument('-V', dest='verbose', action='store_true', help='Verbose mode.') parser.add_argument('-f', dest='fname', metavar='basename', required=True, help='Output base filename.') parser.add_argument('-L', dest='L', metavar='length', required=True, type=float, help='Cell length (volume is L^3)') parser.add_argument('-m', dest='m', metavar='m', required=True, type=int, help='Grid resolution. Total number of voxels are (m*L)^3') parser.add_argument('--vol_frac_goal', dest="vol_frac_goal", metavar='v', required=True, type=float, help='Goal for volume fraction WC (excluding overlap)') parser.add_argument('-s', dest='seed', metavar='s', default=None, type=int, help='Seed for RNG. Given identical parameters, ' + 'CCBuilder will generate identical output given a controlled seed.') parser.add_argument('--stray_cleanup', action='store_true', help='Clean up stray voxels') group = parser.add_argument_group('WC grain shape') group.add_argument('-k', dest='k_dist', metavar='type,[params]', default='U:0.4,1.4', help='k distribution') group.add_argument('-r', dest='r_dist', metavar='type,[params]', default='U:0.1,0.4', help='r distribution') group.add_argument('-d', dest='d_dist', metavar='type,[params]', default='U:0.5,1.5', help='d distribution') group = parser.add_argument_group('Packing') group.add_argument('--use_potential', action='store_true', help='Use repulsive potential.') group.add_argument('--nr_tries', dest='nr_tries', metavar='n', default=2500, type=int, help='Number of random translations.') group.add_argument('--delta', dest='delta', metavar='d', type=float, help='Maximum distance for randomized translations.') group.add_argument('--m_coarse', dest="m_coarse", metavar='mc', default=10, help='Grid resolution during packing.') group = parser.add_argument_group('Potts simulation') group.add_argument('--mc_steps', dest="mc_steps", metavar='steps', default=0.05, type=float, help='Monte-Carlo steps (scales with (m*L)^4. Set to zero to turn off.') group.add_argument('--tau', dest='tau', metavar='t', default=0.5, type=float, help='Ficticious temperature in Potts model.') options = parser.parse_args() if options.seed is not None: np.random.seed(options.seed) # Heuristic mapping from actual to goal volume fraction # vol_frac_goal = (alpha - 2)/(2 * alpha) + 1/alpha * np.sqrt(1 - alpha * np.log(-2*(vol_frac - 1))) d_eq, d_0 = parse_dist(options.d_dist) r, r_0 = parse_dist(options.r_dist) k, k_0 = parse_dist(options.k_dist) fname = options.fname # to avoid confusion with types: m = np.int(options.m) m_coarse = np.int(options.m_coarse) L = np.float(options.L) mc_steps = np.float(options.mc_steps) vol_frac_goal = np.double(options.vol_frac_goal) tau = np.double(options.tau) nr_tries = np.int(options.nr_tries) delta_x = d_0/float(m) M = np.int(m * L / d_0) M_coarse = np.int(m_coarse * L / d_0) idelta = M idelta_coarse = M_coarse if options.delta: idelta = np.int(M * options.delta / L) idelta_coarse = np.int(M_coarse * options.delta / L) trunc_triangles = ccb.prepare_triangles(vol_frac_goal, L, r, k, d_eq) # trunc_triangles = trunc_triangles[:1] # trunc_triangles[0].rot_matrix = np.eye(3) # trunc_triangles[0].rot_matrix_tr = np.eye(3) # trunc_triangles[0].midpoint = np.array([2., 2., 2.]) # Sort triangles w.r.t. volume, so that large triangles are added to the box first (better packing) trunc_triangles.sort(key=lambda x: x.volume, reverse=True) print('Prepared', len(trunc_triangles), 'triangles') if options.use_potential: ccb.optimize_midpoints(L, trunc_triangles) if m_coarse == m: grain_ids, overlaps, voxel_indices = ccb_c.populate_voxels(M, L, trunc_triangles, nr_tries, idelta, 1.0) else: if nr_tries > 0: # Optimization: Use coarser grid for packing, then insert packed grains into fine grid # No need to get the return values, trunc_triangles ccb_c.populate_voxels(M_coarse, L, trunc_triangles, nr_tries, idelta_coarse, 1.0) grain_ids, overlaps, voxel_indices = ccb_c.populate_voxels(M, L, trunc_triangles, 1, 0, 1.0) if mc_steps > 0: start_time = time.time() # Do Potts on coarse grid first for an improved initial guess. M_coarseMC = M//2 grain_ids_coarse, overlaps_coarse, voxel_indices_coarse = ccb_c.populate_voxels(M_coarseMC, L, trunc_triangles, 0, 0, 1.0) _, gb_voxels_coarse, _ = ccb_c.calc_surface_prop(M_coarseMC, grain_ids_coarse) ccb_c.make_mcp_bound(M_coarseMC, grain_ids_coarse, gb_voxels_coarse, overlaps_coarse, voxel_indices_coarse, np.int(mc_steps * M_coarseMC**4), tau) # Copy over that solution to the overlap regions of the fine grid as a starting point M2 = M**2 i = np.nonzero(overlaps)[0] iz = i // M2 iy = (i - iz*M2) // M ix = i - iz*M2 - iy*M cix = ix * M_coarseMC // M ciy = iy * M_coarseMC // M ciz = iz * M_coarseMC // M ci = cix + ciy*M_coarseMC + ciz*M_coarseMC**2 gid = grain_ids_coarse[ci] # Could use a Cython implementation for efficiency. for ii, g in zip(i, gid): if g != grain_ids[ii] and np.searchsorted(voxel_indices[g-2], ii) < len(voxel_indices[g-2]): grain_ids[ii] = g # This might change a few voxels to a value that they shouldn't obtain, but it's barely noticeable # grain_ids_1[i] = grain_ids_coarse[ci] _, gb_voxels, _ = ccb_c.calc_surface_prop(M, grain_ids) # and run the full resolution MCP: ccb_c.make_mcp_bound(M, grain_ids, gb_voxels, overlaps, voxel_indices, np.int(mc_steps * M ** 4), tau) print('Potts model took {} seconds'.format(np.str(time.time() - start_time))) if options.stray_cleanup: start_time = time.time() ccb_c.stray_cleanup(M, grain_ids) print('Stray voxel cleanup took {} seconds'.format(np.str(time.time() - start_time))) surface_voxels, gb_voxels, interface_voxels = ccb_c.calc_surface_prop(M, grain_ids) phases, good_voxels, euler_angles = ccb_c.calc_grain_prop(M, grain_ids, trunc_triangles) phase_volumes = np.bincount(phases) vol_frac_WC = phase_volumes[2] / np.float(M ** 3) vol_frac_Co = 1 - vol_frac_WC mass_frac_WC = ccb.mass_fraction(vol_frac_WC) sum_gb_voxels = np.sum(gb_voxels) contiguity = sum_gb_voxels / np.float(sum_gb_voxels + np.sum(interface_voxels)) print('Contiguity {:5f}, Co volume frac {:.5f}, mass frac {:.5f}'.format( contiguity, 1 - vol_frac_WC, ccb.mass_fraction(vol_frac_WC))) ccb.write_dream3d(fname, 3 * [M], 3 * [delta_x], trunc_triangles, grain_ids, phases, good_voxels, euler_angles, surface_voxels, gb_voxels, interface_voxels, overlaps) with open(fname + '_trunc_triangles.data', 'wb') as f: pickle.dump([t.rot_matrix for t in trunc_triangles], f) # Saving grain volume data if False: grain_volumes = np.bincount(grain_ids) d_eq = ccb.volume_to_eq_d(grain_volumes[2:] * delta_x ** 3) # np.savetxt(fname + '_d_orig.txt', [t.d_eq for t in trunc_triangles]) np.savetxt(fname + '_d.txt', d_eq) # Plot initial and final distributions import matplotlib.pyplot as plt plt.hist(np.array([t.d_eq for t in trunc_triangles]), alpha=0.5, bins=15, normed=True, label='Initial') plt.hist(d_eq, alpha=0.5, bins=15, normed=True, label='Final') plt.legend(loc='upper right') plt.show()
gpl-3.0
BlueBrain/NEST
testsuite/manualtests/cross_check_test_mip_corrdet.py
13
2594
# -*- coding: utf-8 -*- # # cross_check_test_mip_corrdet.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. # Script to check correlation_detector. # Calculates spike cross correlation function of both spike trains in # spike_detector-0-0-3.gdf. The file is generated after running the # testscript testsuite/unittests/test_mip_corrdet.sli # # Author: Helias # Date: 08-04-07 # from scipy import * from matplotlib.pylab import * # for plot # Auto- and crosscorrelation functions for spike trains. # # A time bin of size tbin is centered around the time difference it # represents If the correlation function is calculated for tau in # [-tau_max, tau_max], the pair events contributing to the left-most # bin are those for which tau in [-tau_max-tbin/2, tau_max+tbin/2) and # so on. # correlate two spike trains with each other # assumes spike times to be ordered in time # tau > 0 means spike2 is later than spike1 # # tau_max: maximum time lag in ms correlation function # tbin: bin size # spike1: first spike train [tspike...] # spike2: second spike train [tspike...] # def corr_spikes_sorted(spike1, spike2, tbin, tau_max, h): tau_max_i = int(tau_max/h) tbin_i = int(tbin/h) cross = zeros(int(2*tau_max_i/tbin_i+1), 'd') j0 = 0 for spki in spike1: j = j0 while j < len(spike2) and spike2[j] - spki < -tau_max_i - tbin_i/2.0: j += 1 j0 = j while j < len(spike2) and spike2[j] - spki < tau_max_i + tbin_i/2.0: cross[int((spike2[j] - spki + tau_max_i + 0.5*tbin_i)/tbin_i)] += 1.0 j += 1 return cross def main(): # resolution h = 0.1 tau_max = 100.0 # ms correlation window t_bin = 10.0 # ms bin size # read input from spike detector spikes = load('spike_detector-0-0-3.gdf') sp1 = spikes[find(spikes[:,0] == 4), 1] sp2 = spikes[find(spikes[:,0] == 5), 1] cross = corr_spikes_sorted(sp1, sp2, t_bin, tau_max, h) print cross print sum(cross) main()
gpl-2.0
jcasner/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/path.py
69
20263
""" Contains a class for managing paths (polylines). """ import math from weakref import WeakValueDictionary import numpy as np from numpy import ma from matplotlib._path import point_in_path, get_path_extents, \ point_in_path_collection, get_path_collection_extents, \ path_in_path, path_intersects_path, convert_path_to_polygons from matplotlib.cbook import simple_linear_interpolation class Path(object): """ :class:`Path` represents a series of possibly disconnected, possibly closed, line and curve segments. The underlying storage is made up of two parallel numpy arrays: - *vertices*: an Nx2 float array of vertices - *codes*: an N-length uint8 array of vertex types These two arrays always have the same length in the first dimension. For example, to represent a cubic curve, you must provide three vertices as well as three codes ``CURVE3``. The code types are: - ``STOP`` : 1 vertex (ignored) A marker for the end of the entire path (currently not required and ignored) - ``MOVETO`` : 1 vertex Pick up the pen and move to the given vertex. - ``LINETO`` : 1 vertex Draw a line from the current position to the given vertex. - ``CURVE3`` : 1 control point, 1 endpoint Draw a quadratic Bezier curve from the current position, with the given control point, to the given end point. - ``CURVE4`` : 2 control points, 1 endpoint Draw a cubic Bezier curve from the current position, with the given control points, to the given end point. - ``CLOSEPOLY`` : 1 vertex (ignored) Draw a line segment to the start point of the current polyline. Users of Path objects should not access the vertices and codes arrays directly. Instead, they should use :meth:`iter_segments` to get the vertex/code pairs. This is important, since many :class:`Path` objects, as an optimization, do not store a *codes* at all, but have a default one provided for them by :meth:`iter_segments`. Note also that the vertices and codes arrays should be treated as immutable -- there are a number of optimizations and assumptions made up front in the constructor that will not change when the data changes. """ # Path codes STOP = 0 # 1 vertex MOVETO = 1 # 1 vertex LINETO = 2 # 1 vertex CURVE3 = 3 # 2 vertices CURVE4 = 4 # 3 vertices CLOSEPOLY = 5 # 1 vertex NUM_VERTICES = [1, 1, 1, 2, 3, 1] code_type = np.uint8 def __init__(self, vertices, codes=None): """ Create a new path with the given vertices and codes. *vertices* is an Nx2 numpy float array, masked array or Python sequence. *codes* is an N-length numpy array or Python sequence of type :attr:`matplotlib.path.Path.code_type`. These two arrays must have the same length in the first dimension. If *codes* is None, *vertices* will be treated as a series of line segments. If *vertices* contains masked values, they will be converted to NaNs which are then handled correctly by the Agg PathIterator and other consumers of path data, such as :meth:`iter_segments`. """ if ma.isMaskedArray(vertices): vertices = vertices.astype(np.float_).filled(np.nan) else: vertices = np.asarray(vertices, np.float_) if codes is not None: codes = np.asarray(codes, self.code_type) assert codes.ndim == 1 assert len(codes) == len(vertices) assert vertices.ndim == 2 assert vertices.shape[1] == 2 self.should_simplify = (len(vertices) >= 128 and (codes is None or np.all(codes <= Path.LINETO))) self.has_nonfinite = not np.isfinite(vertices).all() self.codes = codes self.vertices = vertices #@staticmethod def make_compound_path(*args): """ (staticmethod) Make a compound path from a list of Path objects. Only polygons (not curves) are supported. """ for p in args: assert p.codes is None lengths = [len(x) for x in args] total_length = sum(lengths) vertices = np.vstack([x.vertices for x in args]) vertices.reshape((total_length, 2)) codes = Path.LINETO * np.ones(total_length) i = 0 for length in lengths: codes[i] = Path.MOVETO i += length return Path(vertices, codes) make_compound_path = staticmethod(make_compound_path) def __repr__(self): return "Path(%s, %s)" % (self.vertices, self.codes) def __len__(self): return len(self.vertices) def iter_segments(self, simplify=None): """ Iterates over all of the curve segments in the path. Each iteration returns a 2-tuple (*vertices*, *code*), where *vertices* is a sequence of 1 - 3 coordinate pairs, and *code* is one of the :class:`Path` codes. If *simplify* is provided, it must be a tuple (*width*, *height*) defining the size of the figure, in native units (e.g. pixels or points). Simplification implies both removing adjacent line segments that are very close to parallel, and removing line segments outside of the figure. The path will be simplified *only* if :attr:`should_simplify` is True, which is determined in the constructor by this criteria: - No curves - More than 128 vertices """ vertices = self.vertices if not len(vertices): return codes = self.codes len_vertices = len(vertices) isfinite = np.isfinite NUM_VERTICES = self.NUM_VERTICES MOVETO = self.MOVETO LINETO = self.LINETO CLOSEPOLY = self.CLOSEPOLY STOP = self.STOP if simplify is not None and self.should_simplify: polygons = self.to_polygons(None, *simplify) for vertices in polygons: yield vertices[0], MOVETO for v in vertices[1:]: yield v, LINETO elif codes is None: if self.has_nonfinite: next_code = MOVETO for v in vertices: if np.isfinite(v).all(): yield v, next_code next_code = LINETO else: next_code = MOVETO else: yield vertices[0], MOVETO for v in vertices[1:]: yield v, LINETO else: i = 0 was_nan = False while i < len_vertices: code = codes[i] if code == CLOSEPOLY: yield [], code i += 1 elif code == STOP: return else: num_vertices = NUM_VERTICES[int(code)] curr_vertices = vertices[i:i+num_vertices].flatten() if not isfinite(curr_vertices).all(): was_nan = True elif was_nan: yield curr_vertices[-2:], MOVETO was_nan = False else: yield curr_vertices, code i += num_vertices def transformed(self, transform): """ Return a transformed copy of the path. .. seealso:: :class:`matplotlib.transforms.TransformedPath`: A specialized path class that will cache the transformed result and automatically update when the transform changes. """ return Path(transform.transform(self.vertices), self.codes) def contains_point(self, point, transform=None): """ Returns *True* if the path contains the given point. If *transform* is not *None*, the path will be transformed before performing the test. """ if transform is not None: transform = transform.frozen() return point_in_path(point[0], point[1], self, transform) def contains_path(self, path, transform=None): """ Returns *True* if this path completely contains the given path. If *transform* is not *None*, the path will be transformed before performing the test. """ if transform is not None: transform = transform.frozen() return path_in_path(self, None, path, transform) def get_extents(self, transform=None): """ Returns the extents (*xmin*, *ymin*, *xmax*, *ymax*) of the path. Unlike computing the extents on the *vertices* alone, this algorithm will take into account the curves and deal with control points appropriately. """ from transforms import Bbox if transform is not None: transform = transform.frozen() return Bbox(get_path_extents(self, transform)) def intersects_path(self, other, filled=True): """ Returns *True* if this path intersects another given path. *filled*, when True, treats the paths as if they were filled. That is, if one path completely encloses the other, :meth:`intersects_path` will return True. """ return path_intersects_path(self, other, filled) def intersects_bbox(self, bbox, filled=True): """ Returns *True* if this path intersects a given :class:`~matplotlib.transforms.Bbox`. *filled*, when True, treats the path as if it was filled. That is, if one path completely encloses the other, :meth:`intersects_path` will return True. """ from transforms import BboxTransformTo rectangle = self.unit_rectangle().transformed( BboxTransformTo(bbox)) result = self.intersects_path(rectangle, filled) return result def interpolated(self, steps): """ Returns a new path resampled to length N x steps. Does not currently handle interpolating curves. """ vertices = simple_linear_interpolation(self.vertices, steps) codes = self.codes if codes is not None: new_codes = Path.LINETO * np.ones(((len(codes) - 1) * steps + 1, )) new_codes[0::steps] = codes else: new_codes = None return Path(vertices, new_codes) def to_polygons(self, transform=None, width=0, height=0): """ Convert this path to a list of polygons. Each polygon is an Nx2 array of vertices. In other words, each polygon has no ``MOVETO`` instructions or curves. This is useful for displaying in backends that do not support compound paths or Bezier curves, such as GDK. If *width* and *height* are both non-zero then the lines will be simplified so that vertices outside of (0, 0), (width, height) will be clipped. """ if len(self.vertices) == 0: return [] if transform is not None: transform = transform.frozen() if self.codes is None and (width == 0 or height == 0): if transform is None: return [self.vertices] else: return [transform.transform(self.vertices)] # Deal with the case where there are curves and/or multiple # subpaths (using extension code) return convert_path_to_polygons(self, transform, width, height) _unit_rectangle = None #@classmethod def unit_rectangle(cls): """ (staticmethod) Returns a :class:`Path` of the unit rectangle from (0, 0) to (1, 1). """ if cls._unit_rectangle is None: cls._unit_rectangle = \ Path([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]]) return cls._unit_rectangle unit_rectangle = classmethod(unit_rectangle) _unit_regular_polygons = WeakValueDictionary() #@classmethod def unit_regular_polygon(cls, numVertices): """ (staticmethod) Returns a :class:`Path` for a unit regular polygon with the given *numVertices* and radius of 1.0, centered at (0, 0). """ if numVertices <= 16: path = cls._unit_regular_polygons.get(numVertices) else: path = None if path is None: theta = (2*np.pi/numVertices * np.arange(numVertices + 1).reshape((numVertices + 1, 1))) # This initial rotation is to make sure the polygon always # "points-up" theta += np.pi / 2.0 verts = np.concatenate((np.cos(theta), np.sin(theta)), 1) path = Path(verts) cls._unit_regular_polygons[numVertices] = path return path unit_regular_polygon = classmethod(unit_regular_polygon) _unit_regular_stars = WeakValueDictionary() #@classmethod def unit_regular_star(cls, numVertices, innerCircle=0.5): """ (staticmethod) Returns a :class:`Path` for a unit regular star with the given numVertices and radius of 1.0, centered at (0, 0). """ if numVertices <= 16: path = cls._unit_regular_stars.get((numVertices, innerCircle)) else: path = None if path is None: ns2 = numVertices * 2 theta = (2*np.pi/ns2 * np.arange(ns2 + 1)) # This initial rotation is to make sure the polygon always # "points-up" theta += np.pi / 2.0 r = np.ones(ns2 + 1) r[1::2] = innerCircle verts = np.vstack((r*np.cos(theta), r*np.sin(theta))).transpose() path = Path(verts) cls._unit_regular_polygons[(numVertices, innerCircle)] = path return path unit_regular_star = classmethod(unit_regular_star) #@classmethod def unit_regular_asterisk(cls, numVertices): """ (staticmethod) Returns a :class:`Path` for a unit regular asterisk with the given numVertices and radius of 1.0, centered at (0, 0). """ return cls.unit_regular_star(numVertices, 0.0) unit_regular_asterisk = classmethod(unit_regular_asterisk) _unit_circle = None #@classmethod def unit_circle(cls): """ (staticmethod) Returns a :class:`Path` of the unit circle. The circle is approximated using cubic Bezier curves. This uses 8 splines around the circle using the approach presented here: Lancaster, Don. `Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_. """ if cls._unit_circle is None: MAGIC = 0.2652031 SQRTHALF = np.sqrt(0.5) MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0) vertices = np.array( [[0.0, -1.0], [MAGIC, -1.0], [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45], [SQRTHALF, -SQRTHALF], [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45], [1.0, -MAGIC], [1.0, 0.0], [1.0, MAGIC], [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45], [SQRTHALF, SQRTHALF], [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45], [MAGIC, 1.0], [0.0, 1.0], [-MAGIC, 1.0], [-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45], [-SQRTHALF, SQRTHALF], [-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45], [-1.0, MAGIC], [-1.0, 0.0], [-1.0, -MAGIC], [-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45], [-SQRTHALF, -SQRTHALF], [-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45], [-MAGIC, -1.0], [0.0, -1.0], [0.0, -1.0]], np.float_) codes = cls.CURVE4 * np.ones(26) codes[0] = cls.MOVETO codes[-1] = cls.CLOSEPOLY cls._unit_circle = Path(vertices, codes) return cls._unit_circle unit_circle = classmethod(unit_circle) #@classmethod def arc(cls, theta1, theta2, n=None, is_wedge=False): """ (staticmethod) Returns an arc on the unit circle from angle *theta1* to angle *theta2* (in degrees). If *n* is provided, it is the number of spline segments to make. If *n* is not provided, the number of spline segments is determined based on the delta between *theta1* and *theta2*. Masionobe, L. 2003. `Drawing an elliptical arc using polylines, quadratic or cubic Bezier curves <http://www.spaceroots.org/documents/ellipse/index.html>`_. """ # degrees to radians theta1 *= np.pi / 180.0 theta2 *= np.pi / 180.0 twopi = np.pi * 2.0 halfpi = np.pi * 0.5 eta1 = np.arctan2(np.sin(theta1), np.cos(theta1)) eta2 = np.arctan2(np.sin(theta2), np.cos(theta2)) eta2 -= twopi * np.floor((eta2 - eta1) / twopi) if (theta2 - theta1 > np.pi) and (eta2 - eta1 < np.pi): eta2 += twopi # number of curve segments to make if n is None: n = int(2 ** np.ceil((eta2 - eta1) / halfpi)) if n < 1: raise ValueError("n must be >= 1 or None") deta = (eta2 - eta1) / n t = np.tan(0.5 * deta) alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0 steps = np.linspace(eta1, eta2, n + 1, True) cos_eta = np.cos(steps) sin_eta = np.sin(steps) xA = cos_eta[:-1] yA = sin_eta[:-1] xA_dot = -yA yA_dot = xA xB = cos_eta[1:] yB = sin_eta[1:] xB_dot = -yB yB_dot = xB if is_wedge: length = n * 3 + 4 vertices = np.zeros((length, 2), np.float_) codes = Path.CURVE4 * np.ones((length, ), Path.code_type) vertices[1] = [xA[0], yA[0]] codes[0:2] = [Path.MOVETO, Path.LINETO] codes[-2:] = [Path.LINETO, Path.CLOSEPOLY] vertex_offset = 2 end = length - 2 else: length = n * 3 + 1 vertices = np.zeros((length, 2), np.float_) codes = Path.CURVE4 * np.ones((length, ), Path.code_type) vertices[0] = [xA[0], yA[0]] codes[0] = Path.MOVETO vertex_offset = 1 end = length vertices[vertex_offset :end:3, 0] = xA + alpha * xA_dot vertices[vertex_offset :end:3, 1] = yA + alpha * yA_dot vertices[vertex_offset+1:end:3, 0] = xB - alpha * xB_dot vertices[vertex_offset+1:end:3, 1] = yB - alpha * yB_dot vertices[vertex_offset+2:end:3, 0] = xB vertices[vertex_offset+2:end:3, 1] = yB return Path(vertices, codes) arc = classmethod(arc) #@classmethod def wedge(cls, theta1, theta2, n=None): """ (staticmethod) Returns a wedge of the unit circle from angle *theta1* to angle *theta2* (in degrees). If *n* is provided, it is the number of spline segments to make. If *n* is not provided, the number of spline segments is determined based on the delta between *theta1* and *theta2*. """ return cls.arc(theta1, theta2, n, True) wedge = classmethod(wedge) _get_path_collection_extents = get_path_collection_extents def get_path_collection_extents(*args): """ Given a sequence of :class:`Path` objects, returns the bounding box that encapsulates all of them. """ from transforms import Bbox if len(args[1]) == 0: raise ValueError("No paths provided") return Bbox.from_extents(*_get_path_collection_extents(*args))
agpl-3.0
nik-hil/fastai
deeplearning2/rossman_exp.py
10
5451
train_ratio=0.9 use_dict=True use_scaler=False init_emb=False split_contins=True samp_size = 100000 #samp_size = 0 import math, keras, datetime, pandas as pd, numpy as np, keras.backend as K import matplotlib.pyplot as plt, xgboost, operator, random, pickle, os from sklearn_pandas import DataFrameMapper from sklearn.preprocessing import LabelEncoder, Imputer, StandardScaler from keras.models import Model from keras.layers import merge, Input from keras.layers.core import Dense, Activation, Reshape, Flatten, Dropout from keras.layers.embeddings import Embedding from keras.optimizers import Adam from keras.layers.normalization import BatchNormalization from keras.regularizers import l2 from keras import initializations np.set_printoptions(4) cfg = K.tf.ConfigProto() cfg.gpu_options.allow_growth = True K.set_session(K.tf.Session(config=cfg)) os.chdir('data/rossman') cat_var_dict = {'Store': 50, 'DayOfWeek': 6, 'Year': 2, 'Month': 6, 'Day': 10, 'StateHoliday': 3, 'CompetitionMonthsOpen': 2, 'Promo2Weeks': 1, 'StoreType': 2, 'Assortment': 3, 'PromoInterval': 3, 'CompetitionOpenSinceYear': 4, 'Promo2SinceYear': 4, 'State': 6, 'Week': 2, 'Events': 4, 'Promo_fw': 1, 'Promo_bw': 1, 'StateHoliday_fw': 1, 'StateHoliday_bw': 1, 'SchoolHoliday_fw': 1, 'SchoolHoliday_bw': 1} cats, contins= [o for n,o in np.load('vars.npz').items()] y = np.load('deps.npz').items()[0][1] if samp_size != 0: np.random.seed(42) idxs = sorted(np.random.choice(len(y), samp_size, replace=False)) cats= cats[idxs] contins= contins[idxs] y= y[idxs] n=len(y) train_size = int(n*train_ratio) contins_trn_orig, contins_val_orig = contins[:train_size], contins[train_size:] cats_trn, cats_val = cats[:train_size], cats[train_size:] y_trn, y_val = y[:train_size], y[train_size:] contin_map_fit = pickle.load(open('contin_maps.pickle', 'rb')) cat_map_fit = pickle.load(open('cat_maps.pickle', 'rb')) def cat_map_info(feat): return feat[0], len(feat[1].classes_) co_enc = StandardScaler().fit(contins_trn_orig) tf_contins_trn = co_enc.transform(contins_trn_orig) tf_contins_val = co_enc.transform(contins_val_orig) """ def rmspe(y_pred, targ = y_valid_orig): return math.sqrt(np.square((targ - y_pred)/targ).mean()) def log_max_inv(preds, mx = max_log_y): return np.exp(preds * mx) def normalize_inv(preds): return preds * ystd + ymean """ def split_cols(arr): return np.hsplit(arr,arr.shape[1]) def emb_init(shape, name=None): return initializations.uniform(shape, scale=0.6/shape[1], name=name) def get_emb(feat): name, c = cat_map_info(feat) if use_dict: c2 = cat_var_dict[name] else: c2 = (c+2)//3 if c2>50: c2=50 inp = Input((1,), dtype='int64', name=name+'_in') if init_emb: u = Flatten(name=name+'_flt')(Embedding(c, c2, input_length=1)(inp)) else: u = Flatten(name=name+'_flt')(Embedding(c, c2, input_length=1, init=emb_init)(inp)) return inp,u def get_contin(feat): name = feat[0][0] inp = Input((1,), name=name+'_in') return inp, Dense(1, name=name+'_d')(inp) def split_data(): if split_contins: map_train = split_cols(cats_trn) + split_cols(contins_trn) map_valid = split_cols(cats_val) + split_cols(contins_val) else: map_train = split_cols(cats_trn) + [contins_trn] map_valid = split_cols(cats_val) + [contins_val] return (map_train, map_valid) def get_contin_one(): n_contin = contins_trn.shape[1] contin_inp = Input((n_contin,), name='contin') contin_out = BatchNormalization()(contin_inp) return contin_inp, contin_out def train(model, map_train, map_valid, bs=128, ne=10): return model.fit(map_train, y_trn, batch_size=bs, nb_epoch=ne, verbose=0, validation_data=(map_valid, y_val)) def get_model(): if split_contins: conts = [get_contin(feat) for feat in contin_map_fit.features] cont_out = [d for inp,d in conts] cont_inp = [inp for inp,d in conts] else: contin_inp, contin_out = get_contin_one() cont_out = [contin_out] cont_inp = [contin_inp] embs = [get_emb(feat) for feat in cat_map_fit.features] x = merge([emb for inp,emb in embs] + cont_out, mode='concat') x = Dropout(0.02)(x) x = Dense(1000, activation='relu', init='uniform')(x) x = Dense(500, activation='relu', init='uniform')(x) x = Dense(1, activation='sigmoid')(x) model = Model([inp for inp,emb in embs] + cont_inp, x) model.compile('adam', 'mean_absolute_error') #model.compile(Adam(), 'mse') return model for split_contins in [True, False]: for use_dict in [True, False]: for use_scaler in [True, False]: for init_emb in [True, False]: print ({'split_contins':split_contins, 'use_dict':use_dict, 'use_scaler':use_scaler, 'init_emb':init_emb}) if use_scaler: contins_trn = tf_contins_trn contins_val = tf_contins_val else: contins_trn = contins_trn_orig contins_val = contins_val_orig map_train, map_valid = split_data() model = get_model() hist = np.array(train(model, map_train, map_valid, 128, 10) .history['val_loss']) print(hist) print(hist.min())
apache-2.0
adiIspas/Machine-Learning_A-Z
Machine Learning A-Z/Part 7 - Natural Language Processing/Section 36 - Natural Language Processing/natural_language_processing.py
3
1452
# Natural Language Processing # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Restaurant_Reviews.tsv', delimiter = '\t', quoting = 3) # Cleaning the texts import re import nltk nltk.download('stopwords') from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer corpus = [] for i in range(0, 1000): review = re.sub('[^a-zA-Z]', ' ', dataset['Review'][i]) review = review.lower() review = review.split() ps = PorterStemmer() review = [ps.stem(word) for word in review if not word in set(stopwords.words('english'))] review = ' '.join(review) corpus.append(review) # Creating the Bag of Words model from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(max_features = 1500) X = cv.fit_transform(corpus).toarray() y = dataset.iloc[:, 1].values # Splitting the dataset into the Training set and Test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0) # Fitting Naive Bayes to the Training set from sklearn.naive_bayes import GaussianNB classifier = GaussianNB() classifier.fit(X_train, y_train) # Predicting the Test set results y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred)
mit
nomadcube/scikit-learn
examples/bicluster/plot_spectral_coclustering.py
276
1736
""" ============================================== A demo of the Spectral Co-Clustering algorithm ============================================== This example demonstrates how to generate a dataset and bicluster it using the the Spectral Co-Clustering algorithm. The dataset is generated using the ``make_biclusters`` function, which creates a matrix of small values and implants bicluster with large values. The rows and columns are then shuffled and passed to the Spectral Co-Clustering algorithm. Rearranging the shuffled matrix to make biclusters contiguous shows how accurately the algorithm found the biclusters. """ print(__doc__) # Author: Kemal Eren <kemal@kemaleren.com> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_biclusters from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.metrics import consensus_score data, rows, columns = make_biclusters( shape=(300, 300), n_clusters=5, noise=5, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralCoclustering(n_clusters=5, random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.3f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.show()
bsd-3-clause
tayebzaidi/snova_analysis
Miscellaneous/typ1a_features.py
1
2252
import matplotlib.pyplot as plt import scipy.interpolate as scinterp import numpy as np import peakfinding import peak_original import smoothing import plotter import random import readin import sys import os if __name__== '__main__': Mbdata = [] delM15data = [] path = "/Users/zaidi/Documents/REU/restframe/" filenames = os.listdir(path) random.shuffle(filenames) for filename in filenames: current_file = os.path.join(path, filename) data= readin.readin_SNrest(filename) indB = np.where((data.band == 'B')) Bdata = data[indB] Bdata = np.sort(Bdata) if len(Bdata.phase) > 3: spl = scinterp.UnivariateSpline(Bdata.phase, Bdata.mag) spl.set_smoothing_factor(2./len(Bdata.phase)) phase_new = np.arange(Bdata.phase[0], Bdata.phase[-1], 1) mag_new = spl(phase_new) maxp, minp = peak_original.peakdet(mag_new, 0.5, phase_new) if len(minp) > 0 and minp[0][0] < 5 and minp[0][0] > -5: Mb = minp[0][1] delM15 = minp[0][1] - spl(minp[0][0]+15) Mbdata.append(Mb) delM15data.append(delM15) if delM15 > 0 or delM15 < -5: print minp print filename print spl(minp[0][0] + 15) fig = plt.figure(1) ax = fig.add_subplot(1,1,1) ax.plot(phase_new, mag_new) ax.plot(Bdata.phase, Bdata.mag) if len(minp) > 0: ax.scatter(minp[:,0],minp[:,1]) plt.show(fig) ''' maxp, minp = peakfinding.peakdetect(mag_new, phase_new, 200, 1.5) if len(minp) > 0: print minp print filename fig = plt.figure(1) ax = fig.add_subplot(1,1,1) #ax.scatter(minp[:,0], minp[:,1],'bo') #ax.plot(Bdata.phase, Bdata.mag) #plt.show(fig) ''' #interp = smoothing.Interpolate1D(data.phase print Mbdata print delM15data fig = plt.figure(2) ax = fig.add_subplot(1,1,1) ax.scatter(Mbdata, delM15data) plt.show(fig)
gpl-3.0
gmatteo/pymatgen
pymatgen/io/gaussian.py
2
59623
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module implements input and output processing from Gaussian. """ import re import warnings import numpy as np import scipy.constants as cst from monty.io import zopen from pymatgen.core.composition import Composition from pymatgen.core.periodic_table import Element from pymatgen.core.structure import Molecule from pymatgen.core.operations import SymmOp from pymatgen.core.units import Ha_to_eV from pymatgen.electronic_structure.core import Spin from pymatgen.util.coord import get_angle __author__ = "Shyue Ping Ong, Germain Salvato-Vallverdu, Xin Chen" __copyright__ = "Copyright 2013, The Materials Virtual Lab" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "ongsp@ucsd.edu" __date__ = "8/1/15" float_patt = re.compile(r"\s*([+-]?\d+\.\d+)") def read_route_line(route): """ read route line in gaussian input/output and return functional basis_set and a dictionary of other route parameters Args: route (str) : the route line return functional (str) : the method (HF, PBE ...) basis_set (str) : the basis set route (dict) : dictionary of parameters """ scrf_patt = re.compile(r"^([sS][cC][rR][fF])\s*=\s*(.+)") multi_params_patt = re.compile(r"^([A-z]+[0-9]*)[\s=]+\((.*)\)$") functional = None basis_set = None route_params = {} dieze_tag = None if route: if "/" in route: tok = route.split("/") functional = tok[0].split()[-1] basis_set = tok[1].split()[0] for tok in [functional, basis_set, "/"]: route = route.replace(tok, "") for tok in route.split(): if scrf_patt.match(tok): m = scrf_patt.match(tok) route_params[m.group(1)] = m.group(2) elif tok.upper() in ["#", "#N", "#P", "#T"]: # does not store # in route to avoid error in input if tok == "#": dieze_tag = "#N" else: dieze_tag = tok continue else: m = re.match(multi_params_patt, tok.strip("#")) if m: pars = {} for par in m.group(2).split(","): p = par.split("=") pars[p[0]] = None if len(p) == 1 else p[1] route_params[m.group(1)] = pars else: d = tok.strip("#").split("=") route_params[d[0]] = None if len(d) == 1 else d[1] return functional, basis_set, route_params, dieze_tag class GaussianInput: """ An object representing a Gaussian input file. """ # Commonly used regex patterns _zmat_patt = re.compile(r"^(\w+)*([\s,]+(\w+)[\s,]+(\w+))*[\-\.\s,\w]*$") _xyz_patt = re.compile(r"^(\w+)[\s,]+([\d\.eE\-]+)[\s,]+([\d\.eE\-]+)[\s,]+" r"([\d\.eE\-]+)[\-\.\s,\w.]*$") def __init__( self, mol, charge=None, spin_multiplicity=None, title=None, functional="HF", basis_set="6-31G(d)", route_parameters=None, input_parameters=None, link0_parameters=None, dieze_tag="#P", gen_basis=None, ): """ Args: mol: Input molecule. It can either be a Molecule object, a string giving the geometry in a format supported by Guassian, or ``None``. If the molecule is ``None``, you will need to use read it in from a checkpoint. Consider adding ``CHK`` to the ``link0_parameters``. charge: Charge of the molecule. If None, charge on molecule is used. Defaults to None. This allows the input file to be set a charge independently from the molecule itself. If ``mol`` is not a Molecule object, then you must specify a charge. spin_multiplicity: Spin multiplicity of molecule. Defaults to None, which means that the spin multiplicity is set to 1 if the molecule has no unpaired electrons and to 2 if there are unpaired electrons. If ``mol`` is not a Molecule object, then you must specify the multiplicity title: Title for run. Defaults to formula of molecule if None. functional: Functional for run. basis_set: Basis set for run. route_parameters: Additional route parameters as a dict. For example, {'SP':"", "SCF":"Tight"} input_parameters: Additional input parameters for run as a dict. Used for example, in PCM calculations. E.g., {"EPS":12} link0_parameters: Link0 parameters as a dict. E.g., {"%mem": "1000MW"} dieze_tag: # preceding the route line. E.g. "#p" gen_basis: allows a user-specified basis set to be used in a Gaussian calculation. If this is not None, the attribute ``basis_set`` will be set to "Gen". """ self._mol = mol # Determine multiplicity and charge settings if isinstance(mol, Molecule): self.charge = charge if charge is not None else mol.charge nelectrons = mol.charge + mol.nelectrons - self.charge if spin_multiplicity is not None: self.spin_multiplicity = spin_multiplicity if (nelectrons + spin_multiplicity) % 2 != 1: raise ValueError( "Charge of {} and spin multiplicity of {} is" " not possible for this molecule".format(self.charge, spin_multiplicity) ) else: self.spin_multiplicity = 1 if nelectrons % 2 == 0 else 2 # Get a title from the molecule name self.title = title if title else self._mol.composition.formula else: self.charge = charge self.spin_multiplicity = spin_multiplicity # Set a title self.title = title if title else "Restart" # Store the remaining settings self.functional = functional self.basis_set = basis_set self.link0_parameters = link0_parameters if link0_parameters else {} self.route_parameters = route_parameters if route_parameters else {} self.input_parameters = input_parameters if input_parameters else {} self.dieze_tag = dieze_tag if dieze_tag[0] == "#" else "#" + dieze_tag self.gen_basis = gen_basis if gen_basis is not None: self.basis_set = "Gen" @property def molecule(self): """ Returns molecule associated with this GaussianInput. """ return self._mol @staticmethod def _parse_coords(coord_lines): """ Helper method to parse coordinates. """ paras = {} var_pattern = re.compile(r"^([A-Za-z]+\S*)[\s=,]+([\d\-\.]+)$") for l in coord_lines: m = var_pattern.match(l.strip()) if m: paras[m.group(1).strip("=")] = float(m.group(2)) species = [] coords = [] # Stores whether a Zmatrix format is detected. Once a zmatrix format # is detected, it is assumed for the remaining of the parsing. zmode = False for l in coord_lines: l = l.strip() if not l: break if (not zmode) and GaussianInput._xyz_patt.match(l): m = GaussianInput._xyz_patt.match(l) species.append(m.group(1)) toks = re.split(r"[,\s]+", l.strip()) if len(toks) > 4: coords.append([float(i) for i in toks[2:5]]) else: coords.append([float(i) for i in toks[1:4]]) elif GaussianInput._zmat_patt.match(l): zmode = True toks = re.split(r"[,\s]+", l.strip()) species.append(toks[0]) toks.pop(0) if len(toks) == 0: coords.append(np.array([0, 0, 0])) else: nn = [] parameters = [] while len(toks) > 1: ind = toks.pop(0) data = toks.pop(0) try: nn.append(int(ind)) except ValueError: nn.append(species.index(ind) + 1) try: val = float(data) parameters.append(val) except ValueError: if data.startswith("-"): parameters.append(-paras[data[1:]]) else: parameters.append(paras[data]) if len(nn) == 1: coords.append(np.array([0, 0, parameters[0]])) elif len(nn) == 2: coords1 = coords[nn[0] - 1] coords2 = coords[nn[1] - 1] bl = parameters[0] angle = parameters[1] axis = [0, 1, 0] op = SymmOp.from_origin_axis_angle(coords1, axis, angle, False) coord = op.operate(coords2) vec = coord - coords1 coord = vec * bl / np.linalg.norm(vec) + coords1 coords.append(coord) elif len(nn) == 3: coords1 = coords[nn[0] - 1] coords2 = coords[nn[1] - 1] coords3 = coords[nn[2] - 1] bl = parameters[0] angle = parameters[1] dih = parameters[2] v1 = coords3 - coords2 v2 = coords1 - coords2 axis = np.cross(v1, v2) op = SymmOp.from_origin_axis_angle(coords1, axis, angle, False) coord = op.operate(coords2) v1 = coord - coords1 v2 = coords1 - coords2 v3 = np.cross(v1, v2) adj = get_angle(v3, axis) axis = coords1 - coords2 op = SymmOp.from_origin_axis_angle(coords1, axis, dih - adj, False) coord = op.operate(coord) vec = coord - coords1 coord = vec * bl / np.linalg.norm(vec) + coords1 coords.append(coord) def _parse_species(sp_str): """ The species specification can take many forms. E.g., simple integers representing atomic numbers ("8"), actual species string ("C") or a labelled species ("C1"). Sometimes, the species string is also not properly capitalized, e.g, ("c1"). This method should take care of these known formats. """ try: return int(sp_str) except ValueError: sp = re.sub(r"\d", "", sp_str) return sp.capitalize() species = [_parse_species(sp) for sp in species] return Molecule(species, coords) @staticmethod def from_string(contents): """ Creates GaussianInput from a string. Args: contents: String representing an Gaussian input file. Returns: GaussianInput object """ lines = [l.strip() for l in contents.split("\n")] link0_patt = re.compile(r"^(%.+)\s*=\s*(.+)") link0_dict = {} for i, l in enumerate(lines): if link0_patt.match(l): m = link0_patt.match(l) link0_dict[m.group(1).strip("=")] = m.group(2) route_patt = re.compile(r"^#[sSpPnN]*.*") route = "" route_index = None for i, l in enumerate(lines): if route_patt.match(l): route += " " + l route_index = i # This condition allows for route cards spanning multiple lines elif (l == "" or l.isspace()) and route_index: break functional, basis_set, route_paras, dieze_tag = read_route_line(route) ind = 2 title = [] while lines[route_index + ind].strip(): title.append(lines[route_index + ind].strip()) ind += 1 title = " ".join(title) ind += 1 toks = re.split(r"[,\s]+", lines[route_index + ind]) charge = int(float(toks[0])) spin_mult = int(toks[1]) coord_lines = [] spaces = 0 input_paras = {} ind += 1 for i in range(route_index + ind, len(lines)): if lines[i].strip() == "": spaces += 1 if spaces >= 2: d = lines[i].split("=") if len(d) == 2: input_paras[d[0]] = d[1] else: coord_lines.append(lines[i].strip()) mol = GaussianInput._parse_coords(coord_lines) mol.set_charge_and_spin(charge, spin_mult) return GaussianInput( mol, charge=charge, spin_multiplicity=spin_mult, title=title, functional=functional, basis_set=basis_set, route_parameters=route_paras, input_parameters=input_paras, link0_parameters=link0_dict, dieze_tag=dieze_tag, ) @staticmethod def from_file(filename): """ Creates GaussianInput from a file. Args: filename: Gaussian input filename Returns: GaussianInput object """ with zopen(filename, "r") as f: return GaussianInput.from_string(f.read()) def _find_nn_pos_before_site(self, siteindex): """ Returns index of nearest neighbor atoms. """ alldist = [(self._mol.get_distance(siteindex, i), i) for i in range(siteindex)] alldist = sorted(alldist, key=lambda x: x[0]) return [d[1] for d in alldist] def get_zmatrix(self): """ Returns a z-matrix representation of the molecule. """ output = [] outputvar = [] for i, site in enumerate(self._mol): if i == 0: output.append("{}".format(site.specie)) elif i == 1: nn = self._find_nn_pos_before_site(i) bondlength = self._mol.get_distance(i, nn[0]) output.append("{} {} B{}".format(self._mol[i].specie, nn[0] + 1, i)) outputvar.append("B{}={:.6f}".format(i, bondlength)) elif i == 2: nn = self._find_nn_pos_before_site(i) bondlength = self._mol.get_distance(i, nn[0]) angle = self._mol.get_angle(i, nn[0], nn[1]) output.append("{} {} B{} {} A{}".format(self._mol[i].specie, nn[0] + 1, i, nn[1] + 1, i)) outputvar.append("B{}={:.6f}".format(i, bondlength)) outputvar.append("A{}={:.6f}".format(i, angle)) else: nn = self._find_nn_pos_before_site(i) bondlength = self._mol.get_distance(i, nn[0]) angle = self._mol.get_angle(i, nn[0], nn[1]) dih = self._mol.get_dihedral(i, nn[0], nn[1], nn[2]) output.append( "{} {} B{} {} A{} {} D{}".format(self._mol[i].specie, nn[0] + 1, i, nn[1] + 1, i, nn[2] + 1, i) ) outputvar.append("B{}={:.6f}".format(i, bondlength)) outputvar.append("A{}={:.6f}".format(i, angle)) outputvar.append("D{}={:.6f}".format(i, dih)) return "\n".join(output) + "\n\n" + "\n".join(outputvar) def get_cart_coords(self): """ Return the cartesian coordinates of the molecule """ def to_s(x): return "%0.6f" % x outs = [] for i, site in enumerate(self._mol): outs.append(" ".join([site.species_string, " ".join([to_s(j) for j in site.coords])])) return "\n".join(outs) def __str__(self): return self.to_string() def to_string(self, cart_coords=False): """ Return GaussianInput string Option: whe cart_coords sets to True return the cartesian coordinates instead of the z-matrix """ def para_dict_to_string(para, joiner=" "): para_str = [] # sorted is only done to make unittests work reliably for par, val in sorted(para.items()): if val is None or val == "": para_str.append(par) elif isinstance(val, dict): val_str = para_dict_to_string(val, joiner=",") para_str.append("{}=({})".format(par, val_str)) else: para_str.append("{}={}".format(par, val)) return joiner.join(para_str) output = [] if self.link0_parameters: output.append(para_dict_to_string(self.link0_parameters, "\n")) # Handle functional or basis set set to None, empty string or whitespace func_str = "" if self.functional is None else self.functional.strip() bset_str = "" if self.basis_set is None else self.basis_set.strip() if func_str != "" and bset_str != "": func_bset_str = " {}/{}".format(func_str, bset_str) else: # don't use the slash if either or both are set as empty func_bset_str = " {}{}".format(func_str, bset_str).rstrip() output.append( "{diez}{func_bset} {route}".format( diez=self.dieze_tag, func_bset=func_bset_str, route=para_dict_to_string(self.route_parameters), ) ) output.append("") output.append(self.title) output.append("") charge_str = "" if self.charge is None else "%d" % self.charge multip_str = "" if self.spin_multiplicity is None else " %d" % self.spin_multiplicity output.append("{}{}".format(charge_str, multip_str)) if isinstance(self._mol, Molecule): if cart_coords is True: output.append(self.get_cart_coords()) else: output.append(self.get_zmatrix()) elif self._mol is not None: output.append(str(self._mol)) output.append("") if self.gen_basis is not None: output.append("{:s}\n".format(self.gen_basis)) output.append(para_dict_to_string(self.input_parameters, "\n")) output.append("\n") return "\n".join(output) def write_file(self, filename, cart_coords=False): """ Write the input string into a file Option: see __str__ method """ with zopen(filename, "w") as f: f.write(self.to_string(cart_coords)) def as_dict(self): """ :return: MSONable dict """ return { "@module": self.__class__.__module__, "@class": self.__class__.__name__, "molecule": self.molecule.as_dict(), "functional": self.functional, "basis_set": self.basis_set, "route_parameters": self.route_parameters, "title": self.title, "charge": self.charge, "spin_multiplicity": self.spin_multiplicity, "input_parameters": self.input_parameters, "link0_parameters": self.link0_parameters, "dieze_tag": self.dieze_tag, } @classmethod def from_dict(cls, d): """ :param d: dict :return: GaussianInput """ return GaussianInput( mol=Molecule.from_dict(d["molecule"]), functional=d["functional"], basis_set=d["basis_set"], route_parameters=d["route_parameters"], title=d["title"], charge=d["charge"], spin_multiplicity=d["spin_multiplicity"], input_parameters=d["input_parameters"], link0_parameters=d["link0_parameters"], ) class GaussianOutput: """ Parser for Gaussian output files. .. note:: Still in early beta. Attributes: .. attribute:: structures All structures from the calculation in the standard orientation. If the symmetry is not considered, the standard orientation is not printed out and the input orientation is used instead. Check the `standard_orientation` attribute. .. attribute:: structures_input_orientation All structures from the calculation in the input orientation or the Z-matrix orientation (if an opt=z-matrix was requested). .. attribute:: opt_structures All optimized structures from the calculation in the standard orientation, if the attribute 'standard_orientation' is True, otherwise in the input or the Z-matrix orientation. .. attribute:: energies All energies from the calculation. .. attribute:: eigenvalues List of eigenvalues for the last geometry .. attribute:: MO_coefficients Matrix of MO coefficients for the last geometry .. attribute:: cart_forces All cartesian forces from the calculation. .. attribute:: frequencies A list for each freq calculation and for each mode of a dict with { "frequency": freq in cm-1, "symmetry": symmetry tag "r_mass": Reduce mass, "f_constant": force constant, "IR_intensity": IR Intensity, "mode": normal mode } The normal mode is a 1D vector of dx, dy dz of each atom. .. attribute:: hessian Matrix of second derivatives of the energy with respect to cartesian coordinates in the **input orientation** frame. Need #P in the route section in order to be in the output. .. attribute:: properly_terminated True if run has properly terminated .. attribute:: is_pcm True if run is a PCM run. .. attribute:: is_spin True if it is an unrestricted run .. attribute:: stationary_type If it is a relaxation run, indicates whether it is a minimum (Minimum) or a saddle point ("Saddle"). .. attribute:: corrections Thermochemical corrections if this run is a Freq run as a dict. Keys are "Zero-point", "Thermal", "Enthalpy" and "Gibbs Free Energy" .. attribute:: functional Functional used in the run. .. attribute:: basis_set Basis set used in the run .. attribute:: route Additional route parameters as a dict. For example, {'SP':"", "SCF":"Tight"} .. attribute:: dieze_tag # preceding the route line, e.g. "#P" .. attribute:: link0 Link0 parameters as a dict. E.g., {"%mem": "1000MW"} .. attribute:: charge Charge for structure .. attribute:: spin_multiplicity Spin multiplicity for structure .. attribute:: num_basis_func Number of basis functions in the run. .. attribute:: electrons number of alpha and beta electrons as (N alpha, N beta) .. attribute:: pcm PCM parameters and output if available. .. attribute:: errors error if not properly terminated (list to be completed in error_defs) .. attribute:: Mulliken_charges Mulliken atomic charges .. attribute:: eigenvectors Matrix of shape (num_basis_func, num_basis_func). Each column is an eigenvectors and contains AO coefficients of an MO. eigenvectors[Spin] = mat(num_basis_func, num_basis_func) .. attribute:: molecular_orbital MO development coefficients on AO in a more convenient array dict for each atom and basis set label. mo[Spin][OM j][atom i] = {AO_k: coeff, AO_k: coeff ... } .. attribute:: atom_basis_labels Labels of AO for each atoms. These labels are those used in the output of molecular orbital coefficients (POP=Full) and in the molecular_orbital array dict. atom_basis_labels[iatom] = [AO_k, AO_k, ...] .. attribute:: resumes List of gaussian data resume given at the end of the output file before the quotation. The resumes are given as string. .. attribute:: title Title of the gaussian run. .. attribute:: standard_orientation If True, the geometries stored in the structures are in the standard orientation. Else, the geometries are in the input orientation. .. attribute:: bond_orders Dict of bond order values read in the output file such as: {(0, 1): 0.8709, (1, 6): 1.234, ...} The keys are the atom indexes and the values are the Wiberg bond indexes that are printed using `pop=NBOREAD` and `$nbo bndidx $end`. Methods: .. method:: to_input() Return a GaussianInput object using the last geometry and the same calculation parameters. .. method:: read_scan() Read a potential energy surface from a gaussian scan calculation. .. method:: get_scan_plot() Get a matplotlib plot of the potential energy surface .. method:: save_scan_plot() Save a matplotlib plot of the potential energy surface to a file """ def __init__(self, filename): """ Args: filename: Filename of Gaussian output file. """ self.filename = filename self._parse(filename) @property def final_energy(self): """ :return: Final energy in Gaussian output. """ return self.energies[-1] @property def final_structure(self): """ :return: Final structure in Gaussian output. """ return self.structures[-1] def _parse(self, filename): start_patt = re.compile(r" \(Enter \S+l101\.exe\)") route_patt = re.compile(r" #[pPnNtT]*.*") link0_patt = re.compile(r"^\s(%.+)\s*=\s*(.+)") charge_mul_patt = re.compile(r"Charge\s+=\s*([-\d]+)\s+" r"Multiplicity\s+=\s*(\d+)") num_basis_func_patt = re.compile(r"([0-9]+)\s+basis functions") num_elec_patt = re.compile(r"(\d+)\s+alpha electrons\s+(\d+)\s+beta electrons") pcm_patt = re.compile(r"Polarizable Continuum Model") stat_type_patt = re.compile(r"imaginary frequencies") scf_patt = re.compile(r"E\(.*\)\s*=\s*([-\.\d]+)\s+") mp2_patt = re.compile(r"EUMP2\s*=\s*(.*)") oniom_patt = re.compile(r"ONIOM:\s+extrapolated energy\s*=\s*(.*)") termination_patt = re.compile(r"(Normal|Error) termination") error_patt = re.compile(r"(! Non-Optimized Parameters !|Convergence failure)") mulliken_patt = re.compile(r"^\s*(Mulliken charges|Mulliken atomic charges)") mulliken_charge_patt = re.compile(r"^\s+(\d+)\s+([A-Z][a-z]?)\s*(\S*)") end_mulliken_patt = re.compile(r"(Sum of Mulliken )(.*)(charges)\s*=\s*(\D)") std_orientation_patt = re.compile(r"Standard orientation") input_orientation_patt = re.compile(r"Input orientation|Z-Matrix orientation") orbital_patt = re.compile(r"(Alpha|Beta)\s*\S+\s*eigenvalues --(.*)") thermo_patt = re.compile(r"(Zero-point|Thermal) correction(.*)=" r"\s+([\d\.-]+)") forces_on_patt = re.compile(r"Center\s+Atomic\s+Forces\s+\(Hartrees/Bohr\)") forces_off_patt = re.compile(r"Cartesian\s+Forces:\s+Max.*RMS.*") forces_patt = re.compile(r"\s+(\d+)\s+(\d+)\s+([0-9\.-]+)\s+([0-9\.-]+)\s+([0-9\.-]+)") freq_on_patt = re.compile(r"Harmonic\sfrequencies\s+\(cm\*\*-1\),\sIR\sintensities.*Raman.*") normal_mode_patt = re.compile(r"\s+(\d+)\s+(\d+)\s+([0-9\.-]{4,5})\s+([0-9\.-]{4,5}).*") mo_coeff_patt = re.compile(r"Molecular Orbital Coefficients:") mo_coeff_name_patt = re.compile(r"\d+\s((\d+|\s+)\s+([a-zA-Z]{1,2}|\s+))\s+(\d+\S+)") hessian_patt = re.compile(r"Force constants in Cartesian coordinates:") resume_patt = re.compile(r"^\s1\\1\\GINC-\S*") resume_end_patt = re.compile(r"^\s.*\\\\@") bond_order_patt = re.compile(r"Wiberg bond index matrix in the NAO basis:") self.properly_terminated = False self.is_pcm = False self.stationary_type = "Minimum" self.corrections = {} self.energies = [] self.pcm = None self.errors = [] self.Mulliken_charges = {} self.link0 = {} self.cart_forces = [] self.frequencies = [] self.eigenvalues = [] self.is_spin = False self.hessian = None self.resumes = [] self.title = None self.bond_orders = {} read_coord = 0 read_mulliken = False read_eigen = False eigen_txt = [] parse_stage = 0 num_basis_found = False terminated = False parse_forces = False forces = [] parse_freq = False frequencies = [] read_mo = False parse_hessian = False routeline = "" standard_orientation = False parse_bond_order = False input_structures = list() std_structures = list() geom_orientation = None opt_structures = list() with zopen(filename) as f: for line in f: if parse_stage == 0: if start_patt.search(line): parse_stage = 1 elif link0_patt.match(line): m = link0_patt.match(line) self.link0[m.group(1)] = m.group(2) elif route_patt.search(line) or routeline != "": if set(line.strip()) == {"-"}: params = read_route_line(routeline) self.functional = params[0] self.basis_set = params[1] self.route_parameters = params[2] route_lower = {k.lower(): v for k, v in self.route_parameters.items()} self.dieze_tag = params[3] parse_stage = 1 else: routeline += line.strip() elif parse_stage == 1: if set(line.strip()) == {"-"} and self.title is None: self.title = "" elif self.title == "": self.title = line.strip() elif charge_mul_patt.search(line): m = charge_mul_patt.search(line) self.charge = int(m.group(1)) self.spin_multiplicity = int(m.group(2)) parse_stage = 2 elif parse_stage == 2: if self.is_pcm: self._check_pcm(line) if "freq" in route_lower and thermo_patt.search(line): m = thermo_patt.search(line) if m.group(1) == "Zero-point": self.corrections["Zero-point"] = float(m.group(3)) else: key = m.group(2).strip(" to ") self.corrections[key] = float(m.group(3)) if read_coord: [f.readline() for i in range(3)] line = f.readline() sp = [] coords = [] while set(line.strip()) != {"-"}: toks = line.split() sp.append(Element.from_Z(int(toks[1]))) coords.append([float(x) for x in toks[3:6]]) line = f.readline() read_coord = False if geom_orientation == "input": input_structures.append(Molecule(sp, coords)) elif geom_orientation == "standard": std_structures.append(Molecule(sp, coords)) if parse_forces: m = forces_patt.search(line) if m: forces.extend([float(_v) for _v in m.groups()[2:5]]) elif forces_off_patt.search(line): self.cart_forces.append(forces) forces = [] parse_forces = False # read molecular orbital eigenvalues if read_eigen: m = orbital_patt.search(line) if m: eigen_txt.append(line) else: read_eigen = False self.eigenvalues = {Spin.up: []} for eigenline in eigen_txt: if "Alpha" in eigenline: self.eigenvalues[Spin.up] += [float(e) for e in float_patt.findall(eigenline)] elif "Beta" in eigenline: if Spin.down not in self.eigenvalues: self.eigenvalues[Spin.down] = [] self.eigenvalues[Spin.down] += [float(e) for e in float_patt.findall(eigenline)] eigen_txt = [] # read molecular orbital coefficients if (not num_basis_found) and num_basis_func_patt.search(line): m = num_basis_func_patt.search(line) self.num_basis_func = int(m.group(1)) num_basis_found = True elif read_mo: # build a matrix with all coefficients all_spin = [Spin.up] if self.is_spin: all_spin.append(Spin.down) mat_mo = {} for spin in all_spin: mat_mo[spin] = np.zeros((self.num_basis_func, self.num_basis_func)) nMO = 0 end_mo = False while nMO < self.num_basis_func and not end_mo: f.readline() f.readline() self.atom_basis_labels = [] for i in range(self.num_basis_func): line = f.readline() # identify atom and OA labels m = mo_coeff_name_patt.search(line) if m.group(1).strip() != "": iat = int(m.group(2)) - 1 # atname = m.group(3) self.atom_basis_labels.append([m.group(4)]) else: self.atom_basis_labels[iat].append(m.group(4)) # MO coefficients coeffs = [float(c) for c in float_patt.findall(line)] for j, c in enumerate(coeffs): mat_mo[spin][i, nMO + j] = c nMO += len(coeffs) line = f.readline() # manage pop=regular case (not all MO) if nMO < self.num_basis_func and ( "Density Matrix:" in line or mo_coeff_patt.search(line) ): end_mo = True warnings.warn("POP=regular case, matrix " "coefficients not complete") f.readline() self.eigenvectors = mat_mo read_mo = False # build a more convenient array dict with MO # coefficient of each atom in each MO. # mo[Spin][OM j][atom i] = # {AO_k: coeff, AO_k: coeff ... } mo = {} for spin in all_spin: mo[spin] = [ [{} for iat in range(len(self.atom_basis_labels))] for j in range(self.num_basis_func) ] for j in range(self.num_basis_func): i = 0 for iat in range(len(self.atom_basis_labels)): for label in self.atom_basis_labels[iat]: mo[spin][j][iat][label] = self.eigenvectors[spin][i, j] i += 1 self.molecular_orbital = mo elif parse_freq: while line.strip() != "": #  blank line ifreqs = [int(val) - 1 for val in line.split()] for ifreq in ifreqs: frequencies.append( { "frequency": None, "r_mass": None, "f_constant": None, "IR_intensity": None, "symmetry": None, "mode": [], } ) # read freq, intensity, masses, symmetry ... while "Atom AN" not in line: if "Frequencies --" in line: freqs = map(float, float_patt.findall(line)) for ifreq, freq in zip(ifreqs, freqs): frequencies[ifreq]["frequency"] = freq elif "Red. masses --" in line: r_masses = map(float, float_patt.findall(line)) for ifreq, r_mass in zip(ifreqs, r_masses): frequencies[ifreq]["r_mass"] = r_mass elif "Frc consts --" in line: f_consts = map(float, float_patt.findall(line)) for ifreq, f_const in zip(ifreqs, f_consts): frequencies[ifreq]["f_constant"] = f_const elif "IR Inten --" in line: IR_intens = map(float, float_patt.findall(line)) for ifreq, intens in zip(ifreqs, IR_intens): frequencies[ifreq]["IR_intensity"] = intens else: syms = line.split()[:3] for ifreq, sym in zip(ifreqs, syms): frequencies[ifreq]["symmetry"] = sym line = f.readline() #  read normal modes line = f.readline() while normal_mode_patt.search(line): values = list(map(float, float_patt.findall(line))) for i, ifreq in zip(range(0, len(values), 3), ifreqs): frequencies[ifreq]["mode"].extend(values[i : i + 3]) line = f.readline() parse_freq = False self.frequencies.append(frequencies) frequencies = [] elif parse_hessian: #  read Hessian matrix under "Force constants in Cartesian coordinates" #  Hessian matrix is in the input orientation framework # WARNING : need #P in the route line parse_hessian = False ndf = 3 * len(input_structures[0]) self.hessian = np.zeros((ndf, ndf)) j_indices = range(5) jndf = 0 while jndf < ndf: for i in range(jndf, ndf): line = f.readline() vals = re.findall(r"\s*([+-]?\d+\.\d+[eEdD]?[+-]\d+)", line) vals = [float(val.replace("D", "E")) for val in vals] for jval, val in enumerate(vals): j = j_indices[jval] self.hessian[i, j] = val self.hessian[j, i] = val jndf += len(vals) line = f.readline() j_indices = [j + 5 for j in j_indices] elif parse_bond_order: # parse Wiberg bond order line = f.readline() line = f.readline() nat = len(input_structures[0]) matrix = list() for iat in range(nat): line = f.readline() matrix.append([float(v) for v in line.split()[2:]]) self.bond_orders = dict() for iat in range(nat): for jat in range(iat + 1, nat): self.bond_orders[(iat, jat)] = matrix[iat][jat] parse_bond_order = False elif termination_patt.search(line): m = termination_patt.search(line) if m.group(1) == "Normal": self.properly_terminated = True terminated = True elif error_patt.search(line): error_defs = { "! Non-Optimized Parameters !": "Optimization " "error", "Convergence failure": "SCF convergence error", } m = error_patt.search(line) self.errors.append(error_defs[m.group(1)]) elif num_elec_patt.search(line): m = num_elec_patt.search(line) self.electrons = (int(m.group(1)), int(m.group(2))) elif (not self.is_pcm) and pcm_patt.search(line): self.is_pcm = True self.pcm = {} elif "freq" in route_lower and "opt" in route_lower and stat_type_patt.search(line): self.stationary_type = "Saddle" elif mp2_patt.search(line): m = mp2_patt.search(line) self.energies.append(float(m.group(1).replace("D", "E"))) elif oniom_patt.search(line): m = oniom_patt.matcher(line) self.energies.append(float(m.group(1))) elif scf_patt.search(line): m = scf_patt.search(line) self.energies.append(float(m.group(1))) elif std_orientation_patt.search(line): standard_orientation = True geom_orientation = "standard" read_coord = True elif input_orientation_patt.search(line): geom_orientation = "input" read_coord = True elif "Optimization completed." in line: line = f.readline() if " -- Stationary point found." not in line: warnings.warn( "\n" + self.filename + ": Optimization complete but this is not a stationary point" ) if standard_orientation: opt_structures.append(std_structures[-1]) else: opt_structures.append(input_structures[-1]) elif not read_eigen and orbital_patt.search(line): eigen_txt.append(line) read_eigen = True elif mulliken_patt.search(line): mulliken_txt = [] read_mulliken = True elif not parse_forces and forces_on_patt.search(line): parse_forces = True elif freq_on_patt.search(line): parse_freq = True [f.readline() for i in range(3)] elif mo_coeff_patt.search(line): if "Alpha" in line: self.is_spin = True read_mo = True elif hessian_patt.search(line): parse_hessian = True elif resume_patt.search(line): resume = [] while not resume_end_patt.search(line): resume.append(line) line = f.readline() #  security if \\@ not in one line ! if line == "\n": break resume.append(line) resume = "".join([r.strip() for r in resume]) self.resumes.append(resume) elif bond_order_patt.search(line): parse_bond_order = True if read_mulliken: if not end_mulliken_patt.search(line): mulliken_txt.append(line) else: m = end_mulliken_patt.search(line) mulliken_charges = {} for line in mulliken_txt: if mulliken_charge_patt.search(line): m = mulliken_charge_patt.search(line) dic = {int(m.group(1)): [m.group(2), float(m.group(3))]} mulliken_charges.update(dic) read_mulliken = False self.Mulliken_charges = mulliken_charges # store the structures. If symmetry is considered, the standard orientation # is used. Else the input orientation is used. if standard_orientation: self.structures = std_structures self.structures_input_orientation = input_structures else: self.structures = input_structures self.structures_input_orientation = input_structures # store optimized structure in input orientation self.opt_structures = opt_structures if not terminated: warnings.warn("\n" + self.filename + ": Termination error or bad Gaussian output file !") def _check_pcm(self, line): energy_patt = re.compile(r"(Dispersion|Cavitation|Repulsion) energy" r"\s+\S+\s+=\s+(\S*)") total_patt = re.compile(r"with all non electrostatic terms\s+\S+\s+" r"=\s+(\S*)") parameter_patt = re.compile(r"(Eps|Numeral density|RSolv|Eps" r"\(inf[inity]*\))\s+=\s*(\S*)") if energy_patt.search(line): m = energy_patt.search(line) self.pcm["{} energy".format(m.group(1))] = float(m.group(2)) elif total_patt.search(line): m = total_patt.search(line) self.pcm["Total energy"] = float(m.group(1)) elif parameter_patt.search(line): m = parameter_patt.search(line) self.pcm[m.group(1)] = float(m.group(2)) def as_dict(self): """ Json-serializable dict representation. """ structure = self.final_structure d = { "has_gaussian_completed": self.properly_terminated, "nsites": len(structure), } comp = structure.composition d["unit_cell_formula"] = comp.as_dict() d["reduced_cell_formula"] = Composition(comp.reduced_formula).as_dict() d["pretty_formula"] = comp.reduced_formula d["is_pcm"] = self.is_pcm d["errors"] = self.errors d["Mulliken_charges"] = self.Mulliken_charges unique_symbols = sorted(list(d["unit_cell_formula"].keys())) d["elements"] = unique_symbols d["nelements"] = len(unique_symbols) d["charge"] = self.charge d["spin_multiplicity"] = self.spin_multiplicity vin = { "route": self.route_parameters, "functional": self.functional, "basis_set": self.basis_set, "nbasisfunctions": self.num_basis_func, "pcm_parameters": self.pcm, } d["input"] = vin nsites = len(self.final_structure) vout = { "energies": self.energies, "final_energy": self.final_energy, "final_energy_per_atom": self.final_energy / nsites, "molecule": structure.as_dict(), "stationary_type": self.stationary_type, "corrections": self.corrections, } d["output"] = vout d["@module"] = self.__class__.__module__ d["@class"] = self.__class__.__name__ return d def read_scan(self): """ Read a potential energy surface from a gaussian scan calculation. Returns: A dict: {"energies": [ values ], "coords": {"d1": [ values ], "A2", [ values ], ... }} "energies" are the energies of all points of the potential energy surface. "coords" are the internal coordinates used to compute the potential energy surface and the internal coordinates optimized, labelled by their name as defined in the calculation. """ def floatList(l): """return a list of float from a list of string""" return [float(v) for v in l] scan_patt = re.compile(r"^\sSummary of the potential surface scan:") optscan_patt = re.compile(r"^\sSummary of Optimized Potential Surface Scan") coord_patt = re.compile(r"^\s*(\w+)((\s*[+-]?\d+\.\d+)+)") # data dict return data = {"energies": list(), "coords": dict()} # read in file with zopen(self.filename, "r") as f: line = f.readline() while line != "": if optscan_patt.match(line): f.readline() line = f.readline() endScan = False while not endScan: data["energies"] += floatList(float_patt.findall(line)) line = f.readline() while coord_patt.match(line): icname = line.split()[0].strip() if icname in data["coords"]: data["coords"][icname] += floatList(float_patt.findall(line)) else: data["coords"][icname] = floatList(float_patt.findall(line)) line = f.readline() if not re.search(r"^\s+((\s*\d+)+)", line): endScan = True else: line = f.readline() elif scan_patt.match(line): line = f.readline() data["coords"] = {icname: list() for icname in line.split()[1:-1]} f.readline() line = f.readline() while not re.search(r"^\s-+", line): values = floatList(line.split()) data["energies"].append(values[-1]) for i, icname in enumerate(data["coords"]): data["coords"][icname].append(values[i + 1]) line = f.readline() else: line = f.readline() return data def get_scan_plot(self, coords=None): """ Get a matplotlib plot of the potential energy surface. Args: coords: internal coordinate name to use as abcissa. """ from pymatgen.util.plotting import pretty_plot plt = pretty_plot(12, 8) d = self.read_scan() if coords and coords in d["coords"]: x = d["coords"][coords] plt.xlabel(coords) else: x = range(len(d["energies"])) plt.xlabel("points") plt.ylabel("Energy (eV)") e_min = min(d["energies"]) y = [(e - e_min) * Ha_to_eV for e in d["energies"]] plt.plot(x, y, "ro--") return plt def save_scan_plot(self, filename="scan.pdf", img_format="pdf", coords=None): """ Save matplotlib plot of the potential energy surface to a file. Args: filename: Filename to write to. img_format: Image format to use. Defaults to EPS. coords: internal coordinate name to use as abcissa. """ plt = self.get_scan_plot(coords) plt.savefig(filename, format=img_format) def read_excitation_energies(self): """ Read a excitation energies after a TD-DFT calculation. Returns: A list: A list of tuple for each transition such as [(energie (eV), lambda (nm), oscillatory strength), ... ] """ transitions = list() # read in file with zopen(self.filename, "r") as f: line = f.readline() td = False while line != "": if re.search(r"^\sExcitation energies and oscillator strengths:", line): td = True if td: if re.search(r"^\sExcited State\s*\d", line): val = [float(v) for v in float_patt.findall(line)] transitions.append(tuple(val[0:3])) line = f.readline() return transitions def get_spectre_plot(self, sigma=0.05, step=0.01): """ Get a matplotlib plot of the UV-visible xas. Transition are plotted as vertical lines and as a sum of normal functions with sigma with. The broadening is applied in energy and the xas is plotted as a function of the wavelength. Args: sigma: Full width at half maximum in eV for normal functions. step: bin interval in eV Returns: A dict: {"energies": values, "lambda": values, "xas": values} where values are lists of abscissa (energies, lamba) and the sum of gaussian functions (xas). A matplotlib plot. """ from scipy.stats import norm from pymatgen.util.plotting import pretty_plot plt = pretty_plot(12, 8) transitions = self.read_excitation_energies() minval = min([val[0] for val in transitions]) - 5.0 * sigma maxval = max([val[0] for val in transitions]) + 5.0 * sigma npts = int((maxval - minval) / step) + 1 eneval = np.linspace(minval, maxval, npts) # in eV lambdaval = [cst.h * cst.c / (val * cst.e) * 1.0e9 for val in eneval] # in nm # sum of gaussian functions spectre = np.zeros(npts) for trans in transitions: spectre += trans[2] * norm(eneval, trans[0], sigma) spectre /= spectre.max() plt.plot(lambdaval, spectre, "r-", label="spectre") data = {"energies": eneval, "lambda": lambdaval, "xas": spectre} # plot transitions as vlines plt.vlines( [val[1] for val in transitions], 0.0, [val[2] for val in transitions], color="blue", label="transitions", linewidth=2, ) plt.xlabel("$\\lambda$ (nm)") plt.ylabel("Arbitrary unit") plt.legend() return data, plt def save_spectre_plot(self, filename="spectre.pdf", img_format="pdf", sigma=0.05, step=0.01): """ Save matplotlib plot of the spectre to a file. Args: filename: Filename to write to. img_format: Image format to use. Defaults to EPS. sigma: Full width at half maximum in eV for normal functions. step: bin interval in eV """ d, plt = self.get_spectre_plot(sigma, step) plt.savefig(filename, format=img_format) def to_input( self, mol=None, charge=None, spin_multiplicity=None, title=None, functional=None, basis_set=None, route_parameters=None, input_parameters=None, link0_parameters=None, dieze_tag=None, cart_coords=False, ): """ Create a new input object using by default the last geometry read in the output file and with the same calculation parameters. Arguments are the same as GaussianInput class. Returns gaunip (GaussianInput) : the gaussian input object """ if not mol: mol = self.final_structure if charge is None: charge = self.charge if spin_multiplicity is None: spin_multiplicity = self.spin_multiplicity if not title: title = self.title if not functional: functional = self.functional if not basis_set: basis_set = self.basis_set if not route_parameters: route_parameters = self.route_parameters if not link0_parameters: link0_parameters = self.link0 if not dieze_tag: dieze_tag = self.dieze_tag return GaussianInput( mol=mol, charge=charge, spin_multiplicity=spin_multiplicity, title=title, functional=functional, basis_set=basis_set, route_parameters=route_parameters, input_parameters=input_parameters, link0_parameters=link0_parameters, dieze_tag=dieze_tag, )
mit
CalvinNeo/EasyMLPlatform
py/graphic/tree.py
1
4067
#coding:utf8 import numpy as np import math import pylab as pl import matplotlib.cm as cm import matplotlib.mlab as mlab import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import json class GraphTree: def __init__(self): self.jsonobj = {} self.leafNode = dict(boxstyle = 'round4',fc = '0.8') self.branchNode = dict(boxstyle = 'sawtooth',fc = '0.8') self.arrow = dict(arrowstyle = '<-') self.depth = 0 self.leafcount = 0 def get_depth_leafcount(self,root): current_node = root.keys()[0] #name of choice node(string) branch_dict = root[current_node] maxdepth, thisdepth, thisleafcount = 0,0,0 for current_node in branch_dict.keys(): # print current_node,type(branch_dict[current_node]).__name__ if type(branch_dict[current_node]).__name__ == 'dict': temp = self.get_depth_leafcount(branch_dict[current_node]) thisdepth = 1 + temp[0] thisleafcount += temp[1] else: thisdepth = 1 thisleafcount += 1 if thisdepth > maxdepth: maxdepth = thisdepth return maxdepth,thisleafcount def load(self,strjson): self.jsonobj = dict(strjson) self.depth,self.leafcount = self.get_depth_leafcount(self.jsonobj) def plotMidText(self, cntrPt, parentPt, txtString): xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0] yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1] self.ax1.text(xMid, yMid, txtString) def plotNode(self, nodeTxt, cntrPt, parentPt, nodeType): self.ax1.annotate(nodeTxt, xy = parentPt, xycoords = 'axes fraction', xytext = cntrPt, \ textcoords = 'axes fraction', va = 'center', ha = 'center', bbox = nodeType, arrowprops = self.arrow) def plotTree(self, myTree, parentPt, nodeTxt): depth, leaves = self.get_depth_leafcount(myTree) current_node = myTree.keys()[0] cntrPt = (self.xOff + (1.0 + leaves) / 2.0 / self.leafcount, self.yOff) self.plotMidText(cntrPt, parentPt, nodeTxt) self.plotNode(current_node, cntrPt, parentPt, self.branchNode) branch_dict = myTree[current_node] self.yOff -= 1.0 / self.depth for current_node in branch_dict.keys(): if type(branch_dict[current_node]).__name__ == 'dict': self.plotTree(branch_dict[current_node], cntrPt, str(current_node)) else: self.xOff += 1.0 / self.leafcount self.plotNode(branch_dict[current_node], (self.xOff, self.yOff), cntrPt, self.leafNode) self.plotMidText((self.xOff, self.yOff), cntrPt, str(current_node)) self.yOff += 1.0 / self.depth def createPlot(self, show = True, save = ''): fig = plt.figure(1, facecolor = 'white') fig.clf() axprops = dict(xticks = [], yticks = []) self.ax1 = plt.subplot(111,frameon = False, **axprops) self.xOff, self.yOff = -0.5 / self.leafcount, 1.0 self.plotTree(self.jsonobj, (0.5,1.0), '') import StringIO, urllib, base64 if show: plt.show() else: imgdata = StringIO.StringIO() fig.savefig(imgdata, format='png') imgdata.seek(0) # rewind the data uri = 'data:image/png;base64,' + urllib.quote(base64.b64encode(imgdata.buf)) imgdata.close() return uri def showPlot(self): plt.show() if __name__ == '__main__': tr = GraphTree() # aa = '{"no surfacing":{"0":"no","1":{"flippers":{"0":"no","1":"yes"}}}}' # tr.load(json.loads(aa)) #JSON can't have non-string key aa = {"aged":{"0":"no","1":{"male":{"0":"no","1":"yes"}}}} # aa = {'water': {0: 1, 1: {'foot': {0: "'no'", 1: "'yes'"}}}} print dict(aa) # aa = {"no surfacing":{0:"no",1:{"flippers":{0:"no",1:"yes"}}}} # print dict(aa) tr.load(aa) print tr.leafcount,tr.depth tr.createPlot(show=True)
apache-2.0
khiner/aubio
python/demos/demo_waveform_plot.py
10
2099
#! /usr/bin/env python import sys from aubio import pvoc, source from numpy import zeros, hstack def get_waveform_plot(filename, samplerate = 0, block_size = 4096, ax = None, downsample = 2**4): import matplotlib.pyplot as plt if not ax: fig = plt.figure() ax = fig.add_subplot(111) hop_s = block_size allsamples_max = zeros(0,) downsample = downsample # to plot n samples / hop_s a = source(filename, samplerate, hop_s) # source file if samplerate == 0: samplerate = a.samplerate total_frames = 0 while True: samples, read = a() # keep some data to plot it later new_maxes = (abs(samples.reshape(hop_s/downsample, downsample))).max(axis=0) allsamples_max = hstack([allsamples_max, new_maxes]) total_frames += read if read < hop_s: break allsamples_max = (allsamples_max > 0) * allsamples_max allsamples_max_times = [ ( float (t) / downsample ) * hop_s for t in range(len(allsamples_max)) ] ax.plot(allsamples_max_times, allsamples_max, '-b') ax.plot(allsamples_max_times, -allsamples_max, '-b') ax.axis(xmin = allsamples_max_times[0], xmax = allsamples_max_times[-1]) set_xlabels_sample2time(ax, allsamples_max_times[-1], samplerate) return ax def set_xlabels_sample2time(ax, latest_sample, samplerate): ax.axis(xmin = 0, xmax = latest_sample) if latest_sample / float(samplerate) > 60: ax.set_xlabel('time (mm:ss)') ax.set_xticklabels([ "%02d:%02d" % (t/float(samplerate)/60, (t/float(samplerate))%60) for t in ax.get_xticks()[:-1]], rotation = 50) else: ax.set_xlabel('time (ss.mm)') ax.set_xticklabels([ "%02d.%02d" % (t/float(samplerate), 100*((t/float(samplerate))%1) ) for t in ax.get_xticks()[:-1]], rotation = 50) if __name__ == '__main__': import matplotlib.pyplot as plt if len(sys.argv) < 2: print "Usage: %s <filename>" % sys.argv[0] else: for soundfile in sys.argv[1:]: get_waveform_plot(soundfile) # display graph plt.show()
gpl-3.0
xunilrj/sandbox
courses/course-edx-dat2031x/Simulation.py
1
2680
# -*- coding: utf-8 -*- def sim_normal(nums, mean = 600, sd = 30): import numpy as np import numpy.random as nr for n in nums: dist = nr.normal(loc = mean, scale = sd, size = n) titl = 'Normal distribution with ' + str(n) + ' values' print('Summary for ' + str(n) + ' samples') print(dist_summary(dist, titl)) print('Emperical 95% CIs') print(np.percentile(dist, [2.5, 97.5])) print(' ') return('Done!') def sim_poisson(nums, mean = 600): import numpy as np import numpy.random as nr for n in nums: dist = nr.poisson(lam = mean, size = n) titl = 'Poisson distribution with ' + str(n) + ' values' print(dist_summary(dist, titl)) print('Emperical 95% CIs') print(np.percentile(dist, [2.5, 97.5])) print(' ') return('Done!') def dist_summary(dist, names = 'dist_name'): import pandas as pd import matplotlib.pyplot as plt ser = pd.Series(dist) fig = plt.figure(1, figsize=(9, 6)) ax = fig.gca() ser.hist(ax = ax, bins = 120) ax.set_title('Frequency distribution of ' + names) ax.set_ylabel('Frequency') plt.show() return(ser.describe()) def gen_profits(num): import numpy.random as nr unif = nr.uniform(size = num) out = [5 if x < 0.3 else (3.5 if x < 0.6 else 4) for x in unif] return(out) def gen_tips(num): import numpy.random as nr unif = nr.uniform(size = num) out = [0 if x < 0.5 else (0.25 if x < 0.7 else (1.0 if x < 0.9 else 2.0)) for x in unif] return(out) def sim_lemonade(num, mean = 600, sd = 30, pois = False): ## Simulate the profits and tips for ## a lemonade stand. import numpy.random as nr ## number of customer arrivals if pois: arrivals = nr.poisson(lam = mean, size = num) else: arrivals = nr.normal(loc = mean, scale = sd, size = num) print(dist_summary(arrivals, 'customer arrivals per day')) ## Compute distibution of average profit per arrival proft = gen_profits(num) print(dist_summary(proft, 'profit per arrival')) ## Total profits are profit per arrival ## times number of arrivals. total_profit = arrivals * proft print(dist_summary(total_profit, 'total profit per day')) ## Compute distribution of average tips per arrival tps = gen_tips(num) print(dist_summary(tps, 'tips per arrival')) ## Compute average tips per day total_tips = arrivals * tps print(dist_summary(total_tips, 'total tips per day')) ## Compute total profits plus total tips. total_take = total_profit + total_tips return(dist_summary(total_take, 'total net per day'))
apache-2.0
EconForge/Smolyak
doc/sphinxext/docscrape_sphinx.py
62
7703
import re, inspect, textwrap, pydoc import sphinx from docscrape import NumpyDocString, FunctionDoc, ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param,param_type,desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc,8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::', ' :toctree:', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "="*maxlen_0 + " " + "="*maxlen_1 + " " + "="*10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Raises'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
mit
joergkappes/opengm
src/interfaces/python/examples/python_visitor_gui.py
14
1377
""" Usage: python_visitor_gui.py This script shows how one can implement visitors in pure python and inject them into OpenGM solver. ( not all OpenGM solvers support this kind of code injection ) """ import opengm import numpy import matplotlib from matplotlib import pyplot as plt shape=[100,100] numLabels=10 unaries=numpy.random.rand(shape[0], shape[1],numLabels) potts=opengm.PottsFunction([numLabels,numLabels],0.0,0.4) gm=opengm.grid2d2Order(unaries=unaries,regularizer=potts) inf=opengm.inference.BeliefPropagation(gm,parameter=opengm.InfParam(damping=0.5)) class PyCallback(object): def __init__(self,shape,numLabels): self.shape=shape self.numLabels=numLabels self.cmap = matplotlib.colors.ListedColormap ( numpy.random.rand ( self.numLabels,3)) matplotlib.interactive(True) def begin(self,inference): print "begin of inference" def end(self,inference): print "end of inference" def visit(self,inference): gm=inference.gm() labelVector=inference.arg() print "energy ",gm.evaluate(labelVector) labelVector=labelVector.reshape(self.shape) plt.imshow(labelVector*255.0, cmap=self.cmap,interpolation="nearest") plt.draw() callback=PyCallback(shape,numLabels) visitor=inf.pythonVisitor(callback,visitNth=1) inf.infer(visitor) argmin=inf.arg()
mit
UCBerkeleySETI/blimpy
blimpy/plotting/plot_time_series.py
1
1628
from .config import * from ..utils import rebin, db from .plot_utils import calc_extent def plot_time_series(wf, f_start=None, f_stop=None, if_id=0, logged=True, orientation='h', MJD_time=False, **kwargs): """ Plot the time series. Args: f_start (float): start frequency, in MHz f_stop (float): stop frequency, in MHz logged (bool): Plot in linear (False) or dB units (True), kwargs: keyword args to be passed to matplotlib imshow() """ ax = plt.gca() plot_f, plot_data = wf.grab_data(f_start, f_stop, if_id) # Since the data has been squeezed, the axis for time goes away if only one bin, causing a bug with axis=1 if len(plot_data.shape) > 1: plot_data = np.nanmean(plot_data, axis=1) else: plot_data = np.nanmean(plot_data) if logged and wf.header['nbits'] >= 8: plot_data = db(plot_data) # Make proper time axis for plotting (but only for plotting!). Note that this makes the values inclusive. extent = calc_extent(wf, plot_f=plot_f, plot_t=wf.timestamps, MJD_time=MJD_time) plot_t = np.linspace(extent[2], extent[3], len(wf.timestamps)) if MJD_time: tlabel = "Time [MJD]" else: tlabel = "Time [s]" if logged: plabel = "Power [dB]" else: plabel = "Power [counts]" # Reverse oder if vertical orientation. if 'v' in orientation: plt.plot(plot_data, plot_t, **kwargs) plt.xlabel(plabel) else: plt.plot(plot_t, plot_data, **kwargs) plt.xlabel(tlabel) plt.ylabel(plabel) ax.autoscale(axis='both', tight=True)
bsd-3-clause
pyIMS/pyimzML
pyimzml/ImzMLParser.py
2
24463
# -*- coding: utf-8 -*- # Copyright 2015 Dominik Fay # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from bisect import bisect_left, bisect_right import sys import re from pathlib import Path from warnings import warn import numpy as np from pyimzml.metadata import Metadata, SpectrumData from pyimzml.ontology.ontology import convert_cv_param PRECISION_DICT = {"32-bit float": 'f', "64-bit float": 'd', "32-bit integer": 'i', "64-bit integer": 'l'} SIZE_DICT = {'f': 4, 'd': 8, 'i': 4, 'l': 8} INFER_IBD_FROM_IMZML = object() XMLNS_PREFIX = "{http://psi.hupo.org/ms/mzml}" param_group_elname = "referenceableParamGroup" data_processing_elname = "dataProcessing" instrument_confid_elname = "instrumentConfiguration" def choose_iterparse(parse_lib=None): if parse_lib == 'ElementTree': from xml.etree.ElementTree import iterparse elif parse_lib == 'lxml': from lxml.etree import iterparse else: try: from lxml.etree import iterparse except ImportError: from xml.etree.ElementTree import iterparse return iterparse def _get_cv_param(elem, accession, deep=False, convert=False): base = './/' if deep else '' node = elem.find('%s%scvParam[@accession="%s"]' % (base, XMLNS_PREFIX, accession)) if node is not None: if convert: return convert_cv_param(accession, node.get('value')) return node.get('value') class ImzMLParser: """ Parser for imzML 1.1.0 files (see specification here: http://imzml.org/download/imzml/specifications_imzML1.1.0_RC1.pdf). Iteratively reads the .imzML file into memory while pruning the per-spectrum metadata (everything in <spectrumList> elements) during initialization. Returns a spectrum upon calling getspectrum(i). The binary file is read in every call of getspectrum(i). Use enumerate(parser.coordinates) to get all coordinates with their respective index. Coordinates are always 3-dimensional. If the third spatial dimension is not present in the data, it will be set to zero. The global metadata fields in the imzML file are stored in parser.metadata. Spectrum-specific metadata fields are not stored by default due to avoid memory issues, use the `include_spectra_metadata` parameter if spectrum-specific metadata is needed. """ def __init__( self, filename, parse_lib=None, ibd_file=INFER_IBD_FROM_IMZML, include_spectra_metadata=None, ): """ Opens the two files corresponding to the file name, reads the entire .imzML file and extracts required attributes. Does not read any binary data, yet. :param filename: name of the XML file. Must end with .imzML. Binary data file must be named equally but ending with .ibd Alternatively an open file or Buffer Protocol object can be supplied, if ibd_file is also supplied :param parse_lib: XML-parsing library to use: 'ElementTree' or 'lxml', the later will be used if argument not provided :param ibd_file: File or Buffer Protocol object for the .ibd file. Leave blank to infer it from the imzml filename. Set to None if no data from the .ibd file is needed (getspectrum calls will not work) :param include_spectra_metadata: None, 'full', or a list/set of accession IDs. If 'full' is given, parser.spectrum_full_metadata will be populated with a list of complex objects containing the full metadata for each spectrum. If a list or set is given, parser.spectrum_metadata_fields will be populated with a dict mapping accession IDs to lists. Each list will contain the values for that accession ID for each spectrum. Note that for performance reasons, this mode only searches the spectrum itself for the value. It won't check any referenced referenceable param groups if the accession ID isn't present in the spectrum metadata. """ # ElementTree requires the schema location for finding tags (why?) but # fails to read it from the root element. As this should be identical # for all imzML files, it is hard-coded here and prepended before every tag self.sl = "{http://psi.hupo.org/ms/mzml}" # maps each imzML number format to its struct equivalent self.precisionDict = dict(PRECISION_DICT) # maps each number format character to its amount of bytes used self.sizeDict = dict(SIZE_DICT) self.filename = filename self.mzOffsets = [] self.intensityOffsets = [] self.mzLengths = [] self.intensityLengths = [] # list of all (x,y,z) coordinates as tuples. self.coordinates = [] self.root = None self.metadata = None if include_spectra_metadata == 'full': self.spectrum_full_metadata = [] elif include_spectra_metadata is not None: include_spectra_metadata = set(include_spectra_metadata) self.spectrum_metadata_fields = { k: [] for k in include_spectra_metadata } self.mzGroupId = self.intGroupId = self.mzPrecision = self.intensityPrecision = None self.iterparse = choose_iterparse(parse_lib) self.__iter_read_spectrum_meta(include_spectra_metadata) if ibd_file is INFER_IBD_FROM_IMZML: # name of the binary file ibd_filename = self._infer_bin_filename(self.filename) self.m = open(ibd_filename, "rb") else: self.m = ibd_file # Dict for basic imzML metadata other than those required for reading # spectra. See method __readimzmlmeta() self.imzmldict = self.__readimzmlmeta() self.imzmldict['max count of pixels z'] = np.asarray(self.coordinates)[:,2].max() @staticmethod def _infer_bin_filename(imzml_path): imzml_path = Path(imzml_path) ibd_path = [f for f in imzml_path.parent.glob('*') if re.match(r'.+\.ibd', str(f), re.IGNORECASE) and f.stem == imzml_path.stem][0] return str(ibd_path) # system method for use of 'with ... as' def __enter__(self): return self # system method for use of 'with ... as' def __exit__(self, exc_t, exc_v, trace): if self.m is not None: self.m.close() def __iter_read_spectrum_meta(self, include_spectra_metadata): """ This method should only be called by __init__. Reads the data formats, coordinates and offsets from the .imzML file and initializes the respective attributes. While traversing the XML tree, the per-spectrum metadata is pruned, i.e. the <spectrumList> element(s) are left behind empty. Supported accession values for the number formats: "MS:1000521", "MS:1000523", "IMS:1000141" or "IMS:1000142". The string values are "32-bit float", "64-bit float", "32-bit integer", "64-bit integer". """ mz_group = int_group = None slist = None elem_iterator = self.iterparse(self.filename, events=("start", "end")) if sys.version_info > (3,): _, self.root = next(elem_iterator) else: _, self.root = elem_iterator.next() for event, elem in elem_iterator: if elem.tag == self.sl + "spectrumList" and event == "start": self.__process_metadata() slist = elem elif elem.tag == self.sl + "spectrum" and event == "end": self.__process_spectrum(elem, include_spectra_metadata) slist.remove(elem) self.__fix_offsets() def __fix_offsets(self): # clean up the mess after morons who use signed 32-bit where unsigned 64-bit is appropriate def fix(array): fixed = [] delta = 0 prev_value = float('nan') for value in array: if value < 0 and prev_value >= 0: delta += 2**32 fixed.append(value + delta) prev_value = value return fixed self.mzOffsets = fix(self.mzOffsets) self.intensityOffsets = fix(self.intensityOffsets) def __process_metadata(self): if self.metadata is None: self.metadata = Metadata(self.root) for param_id, param_group in self.metadata.referenceable_param_groups.items(): if 'm/z array' in param_group.param_by_name: self.mzGroupId = param_id for name, dtype in self.precisionDict.items(): if name in param_group.param_by_name: self.mzPrecision = dtype if 'intensity array' in param_group.param_by_name: self.intGroupId = param_id for name, dtype in self.precisionDict.items(): if name in param_group.param_by_name: self.intensityPrecision = dtype if not hasattr(self, 'mzPrecision'): raise RuntimeError("Could not determine m/z precision") if not hasattr(self, 'intensityPrecision'): raise RuntimeError("Could not determine intensity precision") def __process_spectrum(self, elem, include_spectra_metadata): arrlistelem = elem.find('%sbinaryDataArrayList' % self.sl) mz_group = None int_group = None for e in arrlistelem: ref = e.find('%sreferenceableParamGroupRef' % self.sl).attrib["ref"] if ref == self.mzGroupId: mz_group = e elif ref == self.intGroupId: int_group = e self.mzOffsets.append(int(_get_cv_param(mz_group, 'IMS:1000102'))) self.mzLengths.append(int(_get_cv_param(mz_group, 'IMS:1000103'))) self.intensityOffsets.append(int(_get_cv_param(int_group, 'IMS:1000102'))) self.intensityLengths.append(int(_get_cv_param(int_group, 'IMS:1000103'))) scan_elem = elem.find('%sscanList/%sscan' % (self.sl, self.sl)) x = _get_cv_param(scan_elem, 'IMS:1000050') y = _get_cv_param(scan_elem, 'IMS:1000051') z = _get_cv_param(scan_elem, 'IMS:1000052') if z is not None: self.coordinates.append((int(x), int(y), int(z))) else: self.coordinates.append((int(x), int(y), 1)) if include_spectra_metadata == 'full': self.spectrum_full_metadata.append( SpectrumData(elem, self.metadata.referenceable_param_groups) ) elif include_spectra_metadata: for param in include_spectra_metadata: value = _get_cv_param(elem, param, deep=True, convert=True) self.spectrum_metadata_fields[param].append(value) def __readimzmlmeta(self): """ DEPRECATED - use self.metadata instead, as it has much greater detail and allows for multiple scan settings / instruments. This method should only be called by __init__. Initializes the imzmldict with frequently used metadata from the .imzML file. :return d: dict containing above mentioned meta data :rtype: dict :raises Warning: if an xml attribute has a number format different from the imzML specification """ d = {} scan_settings_list_elem = self.root.find('%sscanSettingsList' % self.sl) instrument_config_list_elem = self.root.find('%sinstrumentConfigurationList' % self.sl) scan_settings_params = [ ("max count of pixels x", "IMS:1000042"), ("max count of pixels y", "IMS:1000043"), ("max dimension x", "IMS:1000044"), ("max dimension y", "IMS:1000045"), ("pixel size x", "IMS:1000046"), ("pixel size y", "IMS:1000047"), ("matrix solution concentration", "MS:1000835"), ] instrument_config_params = [ ("wavelength", "MS:1000843"), ("focus diameter x", "MS:1000844"), ("focus diameter y", "MS:1000845"), ("pulse energy", "MS:1000846"), ("pulse duration", "MS:1000847"), ("attenuation", "MS:1000848"), ] for name, accession in scan_settings_params: try: val = _get_cv_param(scan_settings_list_elem, accession, deep=True, convert=True) if val is not None: d[name] = val except ValueError: warn(Warning('Wrong data type in XML file. Skipped attribute "%s"' % name)) for name, accession in instrument_config_params: try: val = _get_cv_param(instrument_config_list_elem, accession, deep=True, convert=True) if val is not None: d[name] = val except ValueError: warn(Warning('Wrong data type in XML file. Skipped attribute "%s"' % name)) return d def get_physical_coordinates(self, i): """ For a pixel index i, return the real-world coordinates in nanometers. This is equivalent to multiplying the image coordinates of the given pixel with the pixel size. :param i: the pixel index :return: a tuple of x and y coordinates. :rtype: Tuple[float] :raises KeyError: if the .imzML file does not specify the attributes "pixel size x" and "pixel size y" """ try: pixel_size_x = self.imzmldict["pixel size x"] pixel_size_y = self.imzmldict["pixel size y"] except KeyError: raise KeyError("Could not find all pixel size attributes in imzML file") image_x, image_y = self.coordinates[i][:2] return image_x * pixel_size_x, image_y * pixel_size_y def getspectrum(self, index): """ Reads the spectrum at specified index from the .ibd file. :param index: Index of the desired spectrum in the .imzML file Output: mz_array: numpy.ndarray Sequence of m/z values representing the horizontal axis of the desired mass spectrum intensity_array: numpy.ndarray Sequence of intensity values corresponding to mz_array """ mz_bytes, intensity_bytes = self.get_spectrum_as_string(index) mz_array = np.frombuffer(mz_bytes, dtype=self.mzPrecision) intensity_array = np.frombuffer(intensity_bytes, dtype=self.intensityPrecision) return mz_array, intensity_array def get_spectrum_as_string(self, index): """ Reads m/z array and intensity array of the spectrum at specified location from the binary file as a byte string. The string can be unpacked by the struct module. To get the arrays as numbers, use getspectrum :param index: Index of the desired spectrum in the .imzML file :rtype: Tuple[str, str] Output: mz_string: string where each character represents a byte of the mz array of the spectrum intensity_string: string where each character represents a byte of the intensity array of the spectrum """ offsets = [self.mzOffsets[index], self.intensityOffsets[index]] lengths = [self.mzLengths[index], self.intensityLengths[index]] lengths[0] *= self.sizeDict[self.mzPrecision] lengths[1] *= self.sizeDict[self.intensityPrecision] self.m.seek(offsets[0]) mz_string = self.m.read(lengths[0]) self.m.seek(offsets[1]) intensity_string = self.m.read(lengths[1]) return mz_string, intensity_string def portable_spectrum_reader(self): """ Builds a PortableSpectrumReader that holds the coordinates list and spectrum offsets in the .ibd file so that the .ibd file can be read without opening the .imzML file again. The PortableSpectrumReader can be safely pickled and unpickled, making it useful for reading the spectra in a distributed environment such as PySpark or PyWren. """ return PortableSpectrumReader(self.coordinates, self.mzPrecision, self.mzOffsets, self.mzLengths, self.intensityPrecision, self.intensityOffsets, self.intensityLengths) def getionimage(p, mz_value, tol=0.1, z=1, reduce_func=sum): """ Get an image representation of the intensity distribution of the ion with specified m/z value. By default, the intensity values within the tolerance region are summed. :param p: the ImzMLParser (or anything else with similar attributes) for the desired dataset :param mz_value: m/z value for which the ion image shall be returned :param tol: Absolute tolerance for the m/z value, such that all ions with values mz_value-|tol| <= x <= mz_value+|tol| are included. Defaults to 0.1 :param z: z Value if spectrogram is 3-dimensional. :param reduce_func: the bahaviour for reducing the intensities between mz_value-|tol| and mz_value+|tol| to a single value. Must be a function that takes a sequence as input and outputs a number. By default, the values are summed. :return: numpy matrix with each element representing the ion intensity in this pixel. Can be easily plotted with matplotlib """ tol = abs(tol) im = np.zeros((p.imzmldict["max count of pixels y"], p.imzmldict["max count of pixels x"])) for i, (x, y, z_) in enumerate(p.coordinates): if z_ == 0: UserWarning("z coordinate = 0 present, if you're getting blank images set getionimage(.., .., z=0)") if z_ == z: mzs, ints = map(lambda x: np.asarray(x), p.getspectrum(i)) min_i, max_i = _bisect_spectrum(mzs, mz_value, tol) im[y - 1, x - 1] = reduce_func(ints[min_i:max_i+1]) return im def browse(p): """ Create a per-spectrum metadata browser for the parser. Usage:: # get a list of the instrument configurations used in the first pixel instrument_configurations = browse(p).for_spectrum(0).get_ids("instrumentConfiguration") Currently, ``instrumentConfiguration``, ``dataProcessing`` and ``referenceableParamGroup`` are supported. For browsing all spectra iteratively, you should by all means use **ascending** indices. Doing otherwise can result in quadratic runtime. The following example shows how to retrieve all unique instrumentConfigurations used:: browser = browse(p) all_config_ids = set() for i, _ in enumerate(p.coordinates): all_config_ids.update(browser.for_spectrum(i).get_ids("instrumentConfiguration")) This is a list of ids with which you can find the corresponding ``<instrumentConfiguration>`` tag in the xml tree. :param p: the parser :return: the browser """ return _ImzMLMetaDataBrowser(p.root, p.filename, p.sl) def _bisect_spectrum(mzs, mz_value, tol): ix_l, ix_u = bisect_left(mzs, mz_value - tol), bisect_right(mzs, mz_value + tol) - 1 if ix_l == len(mzs): return len(mzs), len(mzs) if ix_u < 1: return 0, 0 if ix_u == len(mzs): ix_u -= 1 if mzs[ix_l] < (mz_value - tol): ix_l += 1 if mzs[ix_u] > (mz_value + tol): ix_u -= 1 return ix_l, ix_u class _ImzMLMetaDataBrowser(object): def __init__(self, root, fn, sl): self._root = root self._sl = sl self._fn = fn self._iter, self._previous, self._list_elem = None, None, None self.iterparse = choose_iterparse() def for_spectrum(self, i): if self._previous is None or i <= self._previous: self._iter = self.iterparse(self._fn, events=("start", "end")) for event, s in self._iter: if s.tag == self._sl + "spectrumList" and event == "start": self._list_elem = s elif s.tag == self._sl + "spectrum" and event == "end": self._list_elem.remove(s) if s.attrib["index"] == str(i): self._previous = i return _SpectrumMetaDataBrowser(self._root, self._sl, s) class _SpectrumMetaDataBrowser(object): def __init__(self, root, sl, spectrum): self._root = root self._sl = sl self._spectrum = spectrum def get_ids(self, element): param_methods = { param_group_elname: self._find_referenceable_param_groups, data_processing_elname: self._find_data_processing, instrument_confid_elname: self._find_instrument_configurations, } try: return param_methods[element]() except KeyError as e: raise ValueError("Unsupported element: " + str(element)) def _find_referenceable_param_groups(self): param_group_refs = self._spectrum.findall("%sreferenceableParamGroupRef" % self._sl) ids = map(lambda g: g.attrib["ref"], param_group_refs) return ids def _find_instrument_configurations(self): ids = None scan_list = self._spectrum.find("%sscanList" % self._sl) if scan_list: scans = scan_list.findall("%sscan[@instrumentConfigurationRef]" % self._sl) ids = map(lambda s: s.attrib["instrumentConfigurationRef"], scans) if not ids: run = self._root.find("%srun") try: return [run.attrib["defaultInstrumentConfigurationRef"]] except KeyError as _: return list() else: return ids def _find_data_processing(self): try: return self._spectrum.attrib["dataProcessingRef"] except KeyError as _: spectrum_list = self._root.find("%srun/%sspectrumList" % tuple(2 * [self._sl])) try: return [spectrum_list.attrib["defaultDataProcessingRef"]] except KeyError as _: return [] class PortableSpectrumReader(object): """ A pickle-able class for holding the minimal set of data required for reading, without holding any references to open files that wouldn't survive pickling. """ def __init__(self, coordinates, mzPrecision, mzOffsets, mzLengths, intensityPrecision, intensityOffsets, intensityLengths): self.coordinates = coordinates self.mzPrecision = mzPrecision self.mzOffsets = mzOffsets self.mzLengths = mzLengths self.intensityPrecision = intensityPrecision self.intensityOffsets = intensityOffsets self.intensityLengths = intensityLengths def read_spectrum_from_file(self, file, index): """ Reads the spectrum at specified index from the .ibd file. :param file: File or file-like object for the .ibd file :param index: Index of the desired spectrum in the .imzML file Output: mz_array: numpy.ndarray Sequence of m/z values representing the horizontal axis of the desired mass spectrum intensity_array: numpy.ndarray Sequence of intensity values corresponding to mz_array """ file.seek(self.mzOffsets[index]) mz_bytes = file.read(self.mzLengths[index] * SIZE_DICT[self.mzPrecision]) file.seek(self.intensityOffsets[index]) intensity_bytes = file.read(self.intensityLengths[index] * SIZE_DICT[self.intensityPrecision]) mz_array = np.frombuffer(mz_bytes, dtype=self.mzPrecision) intensity_array = np.frombuffer(intensity_bytes, dtype=self.intensityPrecision) return mz_array, intensity_array
apache-2.0
InnovArul/codesmart
Assignments/Jul-Nov-2017/reinforcement_learning_udemy/rl/monte_carlo_soft_epsilon.py
1
3861
from __future__ import print_function import numpy as np from grid import standard_grid, negative_grid from iterative_policy_evaluation import print_values, print_policy import matplotlib.pyplot as plt from monte_carlo_exploring_starts import max_dict EPS = 1e-4 GAMMA = 0.9 ALL_POSSIBLE_ACTIONS = {'U', 'D', 'L', 'R'} def random_action(a, eps=0.1): p = np.random.random() if(p < 1 - eps): return a else: return np.random.choice(list(ALL_POSSIBLE_ACTIONS)) # monte carlo sampling - finding out optimal policy (policy iteration) def play_game(grid, policy): all_states = list(grid.actions.keys()) state = (2, 0) # instead of taking random action at first step, consider the action which is probabilistic with the policy a = random_action(policy[state]) grid.set_state(state) states_actions_rewards = [(state, a, 0)] # action is corresponding to the one which is going to be taken while True: r = grid.move(a) state = grid.current_state() #print(prev_state) # if game over, break the loop if grid.game_over(): states_actions_rewards.append((state, None, r)) # agent has hit the wall and we should not allow it to happen break else: # collect the next action that we are gonna take and insert into the trace a = random_action(policy[state]) states_actions_rewards.append((state, a, r)) # calculate the returns by working backwards from terminal state G = 0 states_actions_returns = [] for i, state_action_reward in enumerate(reversed(states_actions_rewards)): state, action, reward = state_action_reward if i != 0: states_actions_returns.append((state, action, G)) G = reward + GAMMA * G states_actions_returns.reverse() return states_actions_returns def max_dict(hash): max_key = None max_val = float('-inf') for k in hash: if(hash[k] > max_val): max_key, max_val = k, hash[k] return max_key, max_val if __name__ == '__main__': #grid = standard_grid() grid = negative_grid(-0.1) print('grid') print_values(grid.rewards, grid) # init random policy policy = {} for s in grid.actions: policy[s] = np.random.choice(list(ALL_POSSIBLE_ACTIONS)) print('policy') print_policy(policy, grid) # initialioze Q(s, a) Q = {} returns = {} # buffer to hold all the returns for a state during monte-carlo game plays for s in grid.actions: # if state is non terminal Q[s] = {} for a in ALL_POSSIBLE_ACTIONS: # for all the possible actions, initialize Q(s,a) Q[s][a] = 0 returns[(s, a)] = [] # deltas deltas = [] for sample in range(5000): if sample % 500 == 0: print(sample) biggest_change = 0 # generate an episode and adapt Q(s, a) states_actions_returns = play_game(grid, policy) seen_states_actions = set() for s, a, G in states_actions_returns: key = (s, a) if s not in seen_states_actions: old_q = Q[s][a] returns[key].append(G) Q[s][a] = np.mean(returns[key]) seen_states_actions.add(key) biggest_change = max(biggest_change, abs(G - old_q)) deltas.append(biggest_change) # policy improvement for s in Q: policy[s] = max_dict(Q[s])[0] plt.plot(deltas) plt.show() V = {} # policy improvement for s in Q: V[s] = max_dict(Q[s])[1] print('grid') print_values(V, grid) print('policy') print_policy(policy, grid)
gpl-2.0
khrapovs/datastorage
datastorage/compustat.py
1
2589
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Short interest dynamics """ from __future__ import print_function, division import os import zipfile import datetime as dt import pandas as pd import matplotlib.pyplot as plt import seaborn as sns path = os.getenv("HOME") + '/Dropbox/Research/data/Compustat/data/' # __location__ = os.path.realpath(os.path.join(os.getcwd(), # os.path.dirname(__file__))) # path = os.path.join(__location__, path + 'Compustat/data/') def date_convert(string): return dt.datetime.strptime(string, '%d-%m-%Y') def import_data(): """Import data and save it to the disk. """ zf = zipfile.ZipFile(path + 'short_int.zip', 'r') name = zf.namelist()[0] short_int = pd.read_csv(zf.open(name), converters={'datadate': date_convert}) columns = {'datadate': 'date', 'SHORTINTADJ': 'short_int', 'GVKEY': 'gvkey'} short_int.rename(columns=columns, inplace=True) short_int.set_index(['gvkey', 'date'], inplace=True) short_int.sort_index(inplace=True) short_int.to_hdf(path + 'short_int.h5', key='short_int') print(short_int.head()) print(short_int.dtypes) print('Number of unique companies: ', short_int.index.get_level_values('gvkey').nunique()) print('Number of unique dates: ', short_int.index.get_level_values('date').nunique()) print('Min and Max date: ', short_int.index.get_level_values('date').min().date(), ',', short_int.index.get_level_values('date').max().date()) def load_data(): """Load data from disk and check for sanity. """ return pd.read_hdf(path + 'short_int.h5', 'short_int') def count_companies(short_int): """Plot number of companies over time. """ df = short_int.reset_index().groupby('date')['gvkey'].nunique() sns.set_context('paper') df.plot(figsize=(10, 3)) plt.show() data = df.ix[dt.date(2006, 1, 1):dt.date(2007, 6, 30)] data.plot(figsize=(10, 3)) plt.show() def mean_short_int(short_int): """Mean short interest on each date. """ df = short_int.groupby(level='date')['short_int'].mean() sns.set_context('paper') df.plot(figsize=(10, 3)) plt.show() df.ix[:dt.date(2004, 12, 31)].plot(figsize=(10, 3)) plt.show() df.ix[dt.date(2006, 1, 1):dt.date(2007, 6, 30)].plot(figsize=(10, 3)) plt.show() if __name__ == '__main__': import_data() short_int = load_data() count_companies(short_int) mean_short_int(short_int)
mit
SanPen/GridCal
src/GridCal/Engine/Simulations/LinearFactors/linear_analysis_ts_driver.py
1
10126
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. import json import pandas as pd import numpy as np import scipy.sparse as sp from scipy.sparse.linalg import spsolve, factorized import time from GridCal.Engine.Simulations.result_types import ResultTypes from GridCal.Engine.Core.multi_circuit import MultiCircuit from GridCal.Engine.Simulations.PowerFlow.power_flow_options import PowerFlowOptions from GridCal.Engine.Simulations.LinearFactors.linear_analysis import LinearAnalysis from GridCal.Engine.Simulations.LinearFactors.linear_analysis_driver import LinearAnalysisOptions from GridCal.Engine.Simulations.results_model import ResultsModel from GridCal.Engine.Core.time_series_pf_data import compile_time_circuit from GridCal.Engine.Simulations.driver_types import SimulationTypes from GridCal.Engine.Simulations.results_template import ResultsTemplate from GridCal.Engine.Simulations.driver_template import TSDriverTemplate class LinearAnalysisTimeSeriesResults(ResultsTemplate): def __init__(self, n, m, time_array, bus_names, bus_types, branch_names): """ TimeSeriesResults constructor @param n: number of buses @param m: number of branches @param nt: number of time steps """ ResultsTemplate.__init__(self, name='Linear Analysis time series', available_results=[ResultTypes.BusActivePower, ResultTypes.BranchActivePowerFrom, ResultTypes.BranchLoading ], data_variables=['bus_names', 'bus_types', 'time', 'branch_names', 'voltage', 'S', 'Sf', 'loading', 'losses']) self.nt = len(time_array) self.m = m self.n = n self.time = time_array self.bus_names = bus_names self.bus_types = bus_types self.branch_names = branch_names self.voltage = np.ones((self.nt, n), dtype=float) self.S = np.zeros((self.nt, n), dtype=float) self.Sf = np.zeros((self.nt, m), dtype=float) self.loading = np.zeros((self.nt, m), dtype=float) self.losses = np.zeros((self.nt, m), dtype=float) def apply_new_time_series_rates(self, nc: "TimeCircuit"): rates = nc.Rates.T self.loading = self.Sf / (rates + 1e-9) def get_results_dict(self): """ Returns a dictionary with the results sorted in a dictionary :return: dictionary of 2D numpy arrays (probably of complex numbers) """ data = {'V': self.voltage.tolist(), 'P': self.S.real.tolist(), 'Q': self.S.imag.tolist(), 'Sbr_real': self.Sf.real.tolist(), 'Sbr_imag': self.Sf.imag.tolist(), 'loading': np.abs(self.loading).tolist()} return data def mdl(self, result_type: ResultTypes) -> "ResultsModel": """ Get ResultsModel instance :param result_type: :return: ResultsModel instance """ if result_type == ResultTypes.BusActivePower: labels = self.bus_names data = self.S y_label = '(MW)' title = 'Bus active power ' elif result_type == ResultTypes.BranchActivePowerFrom: labels = self.branch_names data = self.Sf.real y_label = '(MW)' title = 'Branch power ' elif result_type == ResultTypes.BranchLoading: labels = self.branch_names data = self.loading * 100 y_label = '(%)' title = 'Branch loading ' elif result_type == ResultTypes.BranchLosses: labels = self.branch_names data = self.losses y_label = '(MVA)' title = 'Branch losses' elif result_type == ResultTypes.BusVoltageModule: labels = self.bus_names data = self.voltage y_label = '(p.u.)' title = 'Bus voltage' else: raise Exception('Result type not understood:' + str(result_type)) if self.time is not None: index = self.time else: index = list(range(data.shape[0])) # assemble model return ResultsModel(data=data, index=index, columns=labels, title=title, ylabel=y_label, units=y_label) class LinearAnalysisTimeSeries(TSDriverTemplate): name = 'Linear analysis time series' tpe = SimulationTypes.LinearAnalysis_TS_run def __init__(self, grid: MultiCircuit, options: LinearAnalysisOptions, start_=0, end_=None): """ TimeSeries constructor @param grid: MultiCircuit instance @param options: LinearAnalysisOptions instance """ TSDriverTemplate.__init__(self, grid=grid, start_=start_, end_=end_) self.options = options self.results = LinearAnalysisTimeSeriesResults(n=0, m=0, time_array=[], bus_names=[], bus_types=[], branch_names=[]) self.ptdf_driver = LinearAnalysis(grid=self.grid, distributed_slack=self.options.distribute_slack) def get_steps(self): """ Get time steps list of strings """ return [l.strftime('%d-%m-%Y %H:%M') for l in self.indices] def run(self): """ Run the time series simulation @return: """ self.__cancel__ = False a = time.time() if self.end_ is None: self.end_ = len(self.grid.time_profile) time_indices = np.arange(self.start_, self.end_ + 1) ts_numeric_circuit = compile_time_circuit(self.grid) self.results = LinearAnalysisTimeSeriesResults(n=ts_numeric_circuit.nbus, m=ts_numeric_circuit.nbr, time_array=ts_numeric_circuit.time_array[time_indices], bus_names=ts_numeric_circuit.bus_names, bus_types=ts_numeric_circuit.bus_types, branch_names=ts_numeric_circuit.branch_names) self.indices = pd.to_datetime(ts_numeric_circuit.time_array[time_indices]) self.progress_text.emit('Computing PTDF...') linear_analysis = LinearAnalysis(grid=self.grid, distributed_slack=self.options.distribute_slack, correct_values=self.options.correct_values ) linear_analysis.run() self.progress_text.emit('Computing branch flows...') Pbus_0 = ts_numeric_circuit.Sbus.real[:, time_indices] self.results.Sf = linear_analysis.get_flows_time_series(Pbus_0) # compute post process self.results.loading = self.results.Sf / (ts_numeric_circuit.Rates[:, time_indices].T + 1e-9) self.results.S = Pbus_0.T self.elapsed = time.time() - a # send the finnish signal self.progress_signal.emit(0.0) self.progress_text.emit('Done!') self.done_signal.emit() if __name__ == '__main__': from matplotlib import pyplot as plt from GridCal.Engine import * fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/IEEE39_1W.gridcal' # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/grid_2_islands.xlsx' # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/1354 Pegase.xlsx' main_circuit = FileOpen(fname).open() options_ = LinearAnalysisOptions() ptdf_driver = LinearAnalysisTimeSeries(grid=main_circuit, options=options_) ptdf_driver.run() pf_options_ = PowerFlowOptions(solver_type=SolverType.NR) ts_driver = TimeSeries(grid=main_circuit, options=pf_options_) ts_driver.run() fig = plt.figure() ax1 = fig.add_subplot(221) ax1.set_title('Newton-Raphson based flow') ax1.plot(ts_driver.results.Sf.real) ax2 = fig.add_subplot(222) ax2.set_title('PTDF based flow') ax2.plot(ptdf_driver.results.Sf.real) ax3 = fig.add_subplot(223) ax3.set_title('Difference') diff = ts_driver.results.Sf.real - ptdf_driver.results.Sf.real ax3.plot(diff) fig2 = plt.figure() ax1 = fig2.add_subplot(221) ax1.set_title('Newton-Raphson based voltage') ax1.plot(np.abs(ts_driver.results.voltage)) ax2 = fig2.add_subplot(222) ax2.set_title('PTDF based voltage') ax2.plot(ptdf_driver.results.voltage) ax3 = fig2.add_subplot(223) ax3.set_title('Difference') diff = np.abs(ts_driver.results.voltage) - ptdf_driver.results.voltage ax3.plot(diff) plt.show()
gpl-3.0
AllenDowney/HeriReligion
archive/thinkplot.py
3
22756
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import math import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import warnings # customize some matplotlib attributes #matplotlib.rc('figure', figsize=(4, 3)) #matplotlib.rc('font', size=14.0) #matplotlib.rc('axes', labelsize=22.0, titlesize=22.0) #matplotlib.rc('legend', fontsize=20.0) #matplotlib.rc('xtick.major', size=6.0) #matplotlib.rc('xtick.minor', size=3.0) #matplotlib.rc('ytick.major', size=6.0) #matplotlib.rc('ytick.minor', size=3.0) class _Brewer(object): """Encapsulates a nice sequence of colors. Shades of blue that look good in color and can be distinguished in grayscale (up to a point). Borrowed from http://colorbrewer2.org/ """ color_iter = None colors = ['#f7fbff', '#deebf7', '#c6dbef', '#9ecae1', '#6baed6', '#4292c6', '#2171b5','#08519c','#08306b'][::-1] # lists that indicate which colors to use depending on how many are used which_colors = [[], [1], [1, 3], [0, 2, 4], [0, 2, 4, 6], [0, 2, 3, 5, 6], [0, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6, 7], [0, 1, 2, 3, 4, 5, 6, 7, 8], ] current_figure = None @classmethod def Colors(cls): """Returns the list of colors. """ return cls.colors @classmethod def ColorGenerator(cls, num): """Returns an iterator of color strings. n: how many colors will be used """ for i in cls.which_colors[num]: yield cls.colors[i] raise StopIteration('Ran out of colors in _Brewer.') @classmethod def InitIter(cls, num): """Initializes the color iterator with the given number of colors.""" cls.color_iter = cls.ColorGenerator(num) fig = plt.gcf() cls.current_figure = fig @classmethod def ClearIter(cls): """Sets the color iterator to None.""" cls.color_iter = None cls.current_figure = None @classmethod def GetIter(cls, num): """Gets the color iterator.""" fig = plt.gcf() if fig != cls.current_figure: cls.InitIter(num) cls.current_figure = fig if cls.color_iter is None: cls.InitIter(num) return cls.color_iter def _UnderrideColor(options): """If color is not in the options, chooses a color. """ if 'color' in options: return options # get the current color iterator; if there is none, init one color_iter = _Brewer.GetIter(5) try: options['color'] = next(color_iter) except StopIteration: # if you run out of colors, initialize the color iterator # and try again warnings.warn('Ran out of colors. Starting over.') _Brewer.ClearIter() _UnderrideColor(options) return options def PrePlot(num=None, rows=None, cols=None): """Takes hints about what's coming. num: number of lines that will be plotted rows: number of rows of subplots cols: number of columns of subplots """ if num: _Brewer.InitIter(num) if rows is None and cols is None: return if rows is not None and cols is None: cols = 1 if cols is not None and rows is None: rows = 1 # resize the image, depending on the number of rows and cols size_map = {(1, 1): (8, 6), (1, 2): (12, 6), (1, 3): (12, 6), (1, 4): (12, 5), (1, 5): (12, 4), (2, 2): (10, 10), (2, 3): (16, 10), (3, 1): (8, 10), (4, 1): (8, 12), } if (rows, cols) in size_map: fig = plt.gcf() fig.set_size_inches(*size_map[rows, cols]) # create the first subplot if rows > 1 or cols > 1: ax = plt.subplot(rows, cols, 1) global SUBPLOT_ROWS, SUBPLOT_COLS SUBPLOT_ROWS = rows SUBPLOT_COLS = cols else: ax = plt.gca() return ax def SubPlot(plot_number, rows=None, cols=None, **options): """Configures the number of subplots and changes the current plot. rows: int cols: int plot_number: int options: passed to subplot """ rows = rows or SUBPLOT_ROWS cols = cols or SUBPLOT_COLS return plt.subplot(rows, cols, plot_number, **options) def _Underride(d, **options): """Add key-value pairs to d only if key is not in d. If d is None, create a new dictionary. d: dictionary options: keyword args to add to d """ if d is None: d = {} for key, val in options.items(): d.setdefault(key, val) return d def Clf(): """Clears the figure and any hints that have been set.""" global LOC LOC = None _Brewer.ClearIter() plt.clf() fig = plt.gcf() fig.set_size_inches(8, 6) def Figure(**options): """Sets options for the current figure.""" _Underride(options, figsize=(6, 8)) plt.figure(**options) def Plot(obj, ys=None, style='', **options): """Plots a line. Args: obj: sequence of x values, or Series, or anything with Render() ys: sequence of y values style: style string passed along to plt.plot options: keyword args passed to plt.plot """ options = _UnderrideColor(options) label = getattr(obj, 'label', '_nolegend_') options = _Underride(options, linewidth=3, alpha=0.7, label=label) xs = obj if ys is None: if hasattr(obj, 'Render'): xs, ys = obj.Render() if isinstance(obj, pd.Series): ys = obj.values xs = obj.index if ys is None: plt.plot(xs, style, **options) else: plt.plot(xs, ys, style, **options) def Vlines(xs, y1, y2, **options): """Plots a set of vertical lines. Args: xs: sequence of x values y1: sequence of y values y2: sequence of y values options: keyword args passed to plt.vlines """ options = _UnderrideColor(options) options = _Underride(options, linewidth=1, alpha=0.5) plt.vlines(xs, y1, y2, **options) def Hlines(ys, x1, x2, **options): """Plots a set of horizontal lines. Args: ys: sequence of y values x1: sequence of x values x2: sequence of x values options: keyword args passed to plt.vlines """ options = _UnderrideColor(options) options = _Underride(options, linewidth=1, alpha=0.5) plt.hlines(ys, x1, x2, **options) def axvline(x, **options): """Plots a vertical line. Args: x: x location options: keyword args passed to plt.axvline """ options = _UnderrideColor(options) options = _Underride(options, linewidth=1, alpha=0.5) plt.axvline(x, **options) def axhline(y, **options): """Plots a horizontal line. Args: y: y location options: keyword args passed to plt.axhline """ options = _UnderrideColor(options) options = _Underride(options, linewidth=1, alpha=0.5) plt.axhline(y, **options) def tight_layout(**options): """Adjust subplots to minimize padding and margins. """ options = _Underride(options, wspace=0.1, hspace=0.1, left=0, right=1, bottom=0, top=1) plt.tight_layout() plt.subplots_adjust(**options) def FillBetween(xs, y1, y2=None, where=None, **options): """Fills the space between two lines. Args: xs: sequence of x values y1: sequence of y values y2: sequence of y values where: sequence of boolean options: keyword args passed to plt.fill_between """ options = _UnderrideColor(options) options = _Underride(options, linewidth=0, alpha=0.5) plt.fill_between(xs, y1, y2, where, **options) def Bar(xs, ys, **options): """Plots a line. Args: xs: sequence of x values ys: sequence of y values options: keyword args passed to plt.bar """ options = _UnderrideColor(options) options = _Underride(options, linewidth=0, alpha=0.6) plt.bar(xs, ys, **options) def Scatter(xs, ys=None, **options): """Makes a scatter plot. xs: x values ys: y values options: options passed to plt.scatter """ options = _Underride(options, color='blue', alpha=0.2, s=30, edgecolors='none') if ys is None and isinstance(xs, pd.Series): ys = xs.values xs = xs.index plt.scatter(xs, ys, **options) def HexBin(xs, ys, **options): """Makes a scatter plot. xs: x values ys: y values options: options passed to plt.scatter """ options = _Underride(options, cmap=matplotlib.cm.Blues) plt.hexbin(xs, ys, **options) def Pdf(pdf, **options): """Plots a Pdf, Pmf, or Hist as a line. Args: pdf: Pdf, Pmf, or Hist object options: keyword args passed to plt.plot """ low, high = options.pop('low', None), options.pop('high', None) n = options.pop('n', 101) xs, ps = pdf.Render(low=low, high=high, n=n) options = _Underride(options, label=pdf.label) Plot(xs, ps, **options) def Pdfs(pdfs, **options): """Plots a sequence of PDFs. Options are passed along for all PDFs. If you want different options for each pdf, make multiple calls to Pdf. Args: pdfs: sequence of PDF objects options: keyword args passed to plt.plot """ for pdf in pdfs: Pdf(pdf, **options) def Hist(hist, **options): """Plots a Pmf or Hist with a bar plot. The default width of the bars is based on the minimum difference between values in the Hist. If that's too small, you can override it by providing a width keyword argument, in the same units as the values. Args: hist: Hist or Pmf object options: keyword args passed to plt.bar """ # find the minimum distance between adjacent values xs, ys = hist.Render() # see if the values support arithmetic try: xs[0] - xs[0] except TypeError: # if not, replace values with numbers labels = [str(x) for x in xs] xs = np.arange(len(xs)) plt.xticks(xs+0.5, labels) if 'width' not in options: try: options['width'] = 0.9 * np.diff(xs).min() except TypeError: warnings.warn("Hist: Can't compute bar width automatically." "Check for non-numeric types in Hist." "Or try providing width option." ) options = _Underride(options, label=hist.label) options = _Underride(options, align='center') if options['align'] == 'left': options['align'] = 'edge' elif options['align'] == 'right': options['align'] = 'edge' options['width'] *= -1 Bar(xs, ys, **options) def Hists(hists, **options): """Plots two histograms as interleaved bar plots. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: hists: list of two Hist or Pmf objects options: keyword args passed to plt.plot """ for hist in hists: Hist(hist, **options) def Pmf(pmf, **options): """Plots a Pmf or Hist as a line. Args: pmf: Hist or Pmf object options: keyword args passed to plt.plot """ xs, ys = pmf.Render() low, high = min(xs), max(xs) width = options.pop('width', None) if width is None: try: width = np.diff(xs).min() except TypeError: warnings.warn("Pmf: Can't compute bar width automatically." "Check for non-numeric types in Pmf." "Or try providing width option.") points = [] lastx = np.nan lasty = 0 for x, y in zip(xs, ys): if (x - lastx) > 1e-5: points.append((lastx, 0)) points.append((x, 0)) points.append((x, lasty)) points.append((x, y)) points.append((x+width, y)) lastx = x + width lasty = y points.append((lastx, 0)) pxs, pys = zip(*points) align = options.pop('align', 'center') if align == 'center': pxs = np.array(pxs) - width/2.0 if align == 'right': pxs = np.array(pxs) - width options = _Underride(options, label=pmf.label) Plot(pxs, pys, **options) def Pmfs(pmfs, **options): """Plots a sequence of PMFs. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: pmfs: sequence of PMF objects options: keyword args passed to plt.plot """ for pmf in pmfs: Pmf(pmf, **options) def Diff(t): """Compute the differences between adjacent elements in a sequence. Args: t: sequence of number Returns: sequence of differences (length one less than t) """ diffs = [t[i+1] - t[i] for i in range(len(t)-1)] return diffs def Cdf(cdf, complement=False, transform=None, **options): """Plots a CDF as a line. Args: cdf: Cdf object complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to plt.plot Returns: dictionary with the scale options that should be passed to Config, Show or Save. """ xs, ps = cdf.Render() xs = np.asarray(xs) ps = np.asarray(ps) scale = dict(xscale='linear', yscale='linear') for s in ['xscale', 'yscale']: if s in options: scale[s] = options.pop(s) if transform == 'exponential': complement = True scale['yscale'] = 'log' if transform == 'pareto': complement = True scale['yscale'] = 'log' scale['xscale'] = 'log' if complement: ps = [1.0-p for p in ps] if transform == 'weibull': xs = np.delete(xs, -1) ps = np.delete(ps, -1) ps = [-math.log(1.0-p) for p in ps] scale['xscale'] = 'log' scale['yscale'] = 'log' if transform == 'gumbel': xs = np.delete(xs, 0) ps = np.delete(ps, 0) ps = [-math.log(p) for p in ps] scale['yscale'] = 'log' options = _Underride(options, label=cdf.label) Plot(xs, ps, **options) return scale def Cdfs(cdfs, complement=False, transform=None, **options): """Plots a sequence of CDFs. cdfs: sequence of CDF objects complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to plt.plot """ for cdf in cdfs: Cdf(cdf, complement, transform, **options) def Contour(obj, pcolor=False, contour=True, imshow=False, **options): """Makes a contour plot. d: map from (x, y) to z, or object that provides GetDict pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot imshow: boolean, whether to use plt.imshow options: keyword args passed to plt.pcolor and/or plt.contour """ try: d = obj.GetDict() except AttributeError: d = obj _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) xs, ys = zip(*d.keys()) xs = sorted(set(xs)) ys = sorted(set(ys)) X, Y = np.meshgrid(xs, ys) func = lambda x, y: d.get((x, y), 0) func = np.vectorize(func) Z = func(X, Y) x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = plt.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: plt.pcolormesh(X, Y, Z, **options) if contour: cs = plt.contour(X, Y, Z, **options) plt.clabel(cs, inline=1, fontsize=10) if imshow: extent = xs[0], xs[-1], ys[0], ys[-1] plt.imshow(Z, extent=extent, **options) def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options): """Makes a pseudocolor plot. xs: ys: zs: pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot options: keyword args passed to plt.pcolor and/or plt.contour """ _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) X, Y = np.meshgrid(xs, ys) Z = zs x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = plt.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: plt.pcolormesh(X, Y, Z, **options) if contour: cs = plt.contour(X, Y, Z, **options) plt.clabel(cs, inline=1, fontsize=10) def Text(x, y, s, **options): """Puts text in a figure. x: number y: number s: string options: keyword args passed to plt.text """ options = _Underride(options, fontsize=16, verticalalignment='top', horizontalalignment='left') plt.text(x, y, s, **options) LEGEND = True LOC = None def Config(**options): """Configures the plot. Pulls options out of the option dictionary and passes them to the corresponding plt functions. """ names = ['title', 'xlabel', 'ylabel', 'xscale', 'yscale', 'xticks', 'yticks', 'axis', 'xlim', 'ylim'] for name in names: if name in options: getattr(plt, name)(options[name]) global LEGEND LEGEND = options.get('legend', LEGEND) # see if there are any elements with labels; # if not, don't draw a legend ax = plt.gca() handles, labels = ax.get_legend_handles_labels() if LEGEND and len(labels) > 0: global LOC LOC = options.get('loc', LOC) frameon = options.get('frameon', True) try: plt.legend(loc=LOC, frameon=frameon) except UserWarning: pass # x and y ticklabels can be made invisible val = options.get('xticklabels', None) if val is not None: if val == 'invisible': ax = plt.gca() labels = ax.get_xticklabels() plt.setp(labels, visible=False) val = options.get('yticklabels', None) if val is not None: if val == 'invisible': ax = plt.gca() labels = ax.get_yticklabels() plt.setp(labels, visible=False) def set_font_size(title_size=16, label_size=16, ticklabel_size=14, legend_size=14): """Set font sizes for the title, labels, ticklabels, and legend. """ def set_text_size(texts, size): for text in texts: text.set_size(size) ax = plt.gca() # TODO: Make this function more robust if any of these elements # is missing. # title ax.title.set_size(title_size) # x axis ax.xaxis.label.set_size(label_size) set_text_size(ax.xaxis.get_ticklabels(), ticklabel_size) # y axis ax.yaxis.label.set_size(label_size) set_text_size(ax.yaxis.get_ticklabels(), ticklabel_size) # legend legend = ax.get_legend() if legend is not None: set_text_size(legend.texts, legend_size) def bigger_text(): sizes = dict(title_size=16, label_size=16, ticklabel_size=14, legend_size=14) set_font_size(**sizes) def Show(**options): """Shows the plot. For options, see Config. options: keyword args used to invoke various plt functions """ clf = options.pop('clf', True) Config(**options) plt.show() if clf: Clf() def Plotly(**options): """Shows the plot. For options, see Config. options: keyword args used to invoke various plt functions """ clf = options.pop('clf', True) Config(**options) import plotly.plotly as plotly url = plotly.plot_mpl(plt.gcf()) if clf: Clf() return url def Save(root=None, formats=None, **options): """Saves the plot in the given formats and clears the figure. For options, see Config. Note: With a capital S, this is the original save, maintained for compatibility. New code should use save(), which works better with my newer code, especially in Jupyter notebooks. Args: root: string filename root formats: list of string formats options: keyword args used to invoke various plt functions """ clf = options.pop('clf', True) save_options = {} for option in ['bbox_inches', 'pad_inches']: if option in options: save_options[option] = options.pop(option) # TODO: falling Config inside Save was probably a mistake, but removing # it will require some work Config(**options) if formats is None: formats = ['pdf', 'png'] try: formats.remove('plotly') Plotly(clf=False) except ValueError: pass if root: for fmt in formats: SaveFormat(root, fmt, **save_options) if clf: Clf() def save(root, formats=None, **options): """Saves the plot in the given formats and clears the figure. For options, see plt.savefig. Args: root: string filename root formats: list of string formats options: keyword args passed to plt.savefig """ if formats is None: formats = ['pdf', 'png'] try: formats.remove('plotly') Plotly(clf=False) except ValueError: pass for fmt in formats: SaveFormat(root, fmt, **options) def SaveFormat(root, fmt='eps', **options): """Writes the current figure to a file in the given format. Args: root: string filename root fmt: string format """ _Underride(options, dpi=300) filename = '%s.%s' % (root, fmt) print('Writing', filename) plt.savefig(filename, format=fmt, **options) # provide aliases for calling functions with lower-case names preplot = PrePlot subplot = SubPlot clf = Clf figure = Figure plot = Plot vlines = Vlines hlines = Hlines fill_between = FillBetween text = Text scatter = Scatter pmf = Pmf pmfs = Pmfs hist = Hist hists = Hists diff = Diff cdf = Cdf cdfs = Cdfs contour = Contour pcolor = Pcolor config = Config show = Show def main(): color_iter = _Brewer.ColorGenerator(7) for color in color_iter: print(color) if __name__ == '__main__': main()
mit
PyQuake/earthquakemodels
code/runExperiments/histogramMagnitude.py
1
1982
import matplotlib.pyplot as plt import models.model as model import earthquake.catalog as catalog from collections import OrderedDict def histogramMagnitude(catalog_, region): """ Creates the histogram of magnitudes by a given region. Saves the histogram to the follwing path ./code/Zona2/histograms/'+region+'/Magnitude Histogram of ' + str(year) + " " + region + '.png' Where region, year are given by the application From 2000 to 2011 """ definition = model.loadModelDefinition('../params/' + region + '.txt') catalogFiltred = catalog.filter(catalog_, definition) year = 2000 while(year < 2012): data = dict() for i in range(len(catalogFiltred)): if catalogFiltred[i]['year'] == year and catalogFiltred[i]['lat'] > 34.8 and catalogFiltred[i][ 'lat'] < 37.05 and catalogFiltred[i]['lon'] > 138.8 and catalogFiltred[i]['lon'] < 141.05: data[catalogFiltred[i]['mag']] = data.get(catalogFiltred[i]['mag'], 0) + 1 b = OrderedDict(sorted(data.items())) plt.title('Histogram of ' + str(year) + " " + region) plt.bar(range(len(data)), b.values(), align='center') plt.xticks(range(len(data)), b.keys(), rotation=25) # print(b) axes = plt.gca() plt.savefig( '../Zona2/histograms/'+region+'/Magnitude Histogram of ' + str(year) + " " + region + '.png') del data year += 1 def main(): """ Calls function to plot a hitogram of magnitudes by region, based on JMA catalog """ catalog_ = catalog.readFromFile('../data/jmacat_2000_2013.dat') region = "Kanto" histogramMagnitude(catalog_, region) region = "Kansai" histogramMagnitude(catalog_, region) region = "Tohoku" histogramMagnitude(catalog_, region) region = "EastJapan" histogramMagnitude(catalog_, region) if __name__ == "__main__": main()
bsd-3-clause
nicproulx/mne-python
mne/time_frequency/tests/test_psd.py
2
7360
import numpy as np import os.path as op from numpy.testing import assert_array_almost_equal, assert_raises from nose.tools import assert_true from mne import pick_types, Epochs, read_events from mne.io import RawArray, read_raw_fif from mne.utils import requires_version, slow_test, run_tests_if_main from mne.time_frequency import psd_welch, psd_multitaper base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(base_dir, 'test_raw.fif') event_fname = op.join(base_dir, 'test-eve.fif') @requires_version('scipy', '0.12') def test_psd(): """Tests the welch and multitaper PSD.""" raw = read_raw_fif(raw_fname) picks_psd = [0, 1] # Populate raw with sinusoids rng = np.random.RandomState(40) data = 0.1 * rng.randn(len(raw.ch_names), raw.n_times) freqs_sig = [8., 50.] for ix, freq in zip(picks_psd, freqs_sig): data[ix, :] += 2 * np.sin(np.pi * 2. * freq * raw.times) first_samp = raw._first_samps[0] raw = RawArray(data, raw.info) tmin, tmax = 0, 20 # use a few seconds of data fmin, fmax = 2, 70 # look at frequencies between 2 and 70Hz n_fft = 128 # -- Raw -- kws_psd = dict(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, picks=picks_psd) # Common to all kws_welch = dict(n_fft=n_fft) kws_mt = dict(low_bias=True) funcs = [(psd_welch, kws_welch), (psd_multitaper, kws_mt)] for func, kws in funcs: kws = kws.copy() kws.update(kws_psd) psds, freqs = func(raw, proj=False, **kws) psds_proj, freqs_proj = func(raw, proj=True, **kws) assert_true(psds.shape == (len(kws['picks']), len(freqs))) assert_true(np.sum(freqs < 0) == 0) assert_true(np.sum(psds < 0) == 0) # Is power found where it should be ixs_max = np.argmax(psds, axis=1) for ixmax, ifreq in zip(ixs_max, freqs_sig): # Find nearest frequency to the "true" freq ixtrue = np.argmin(np.abs(ifreq - freqs)) assert_true(np.abs(ixmax - ixtrue) < 2) # Make sure the projection doesn't change channels it shouldn't assert_array_almost_equal(psds, psds_proj) # Array input shouldn't work assert_raises(ValueError, func, raw[:3, :20][0]) # test n_per_seg in psd_welch (and padding) psds1, freqs1 = psd_welch(raw, proj=False, n_fft=128, n_per_seg=128, **kws_psd) psds2, freqs2 = psd_welch(raw, proj=False, n_fft=256, n_per_seg=128, **kws_psd) assert_true(len(freqs1) == np.floor(len(freqs2) / 2.)) assert_true(psds1.shape[-1] == np.floor(psds2.shape[-1] / 2.)) # tests ValueError when n_per_seg=None and n_fft > signal length kws_psd.update(dict(n_fft=tmax * 1.1 * raw.info['sfreq'])) assert_raises(ValueError, psd_welch, raw, proj=False, n_per_seg=None, **kws_psd) # ValueError when n_overlap > n_per_seg kws_psd.update(dict(n_fft=128, n_per_seg=64, n_overlap=90)) assert_raises(ValueError, psd_welch, raw, proj=False, **kws_psd) # -- Epochs/Evoked -- events = read_events(event_fname) events[:, 0] -= first_samp tmin, tmax, event_id = -0.5, 0.5, 1 epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks_psd, proj=False, preload=True, baseline=None) evoked = epochs.average() tmin_full, tmax_full = -1, 1 epochs_full = Epochs(raw, events[:10], event_id, tmin_full, tmax_full, picks=picks_psd, proj=False, preload=True, baseline=None) kws_psd = dict(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, picks=picks_psd) # Common to all funcs = [(psd_welch, kws_welch), (psd_multitaper, kws_mt)] for func, kws in funcs: kws = kws.copy() kws.update(kws_psd) psds, freqs = func( epochs[:1], proj=False, **kws) psds_proj, freqs_proj = func( epochs[:1], proj=True, **kws) psds_f, freqs_f = func( epochs_full[:1], proj=False, **kws) # this one will fail if you add for example 0.1 to tmin assert_array_almost_equal(psds, psds_f, 27) # Make sure the projection doesn't change channels it shouldn't assert_array_almost_equal(psds, psds_proj, 27) # Is power found where it should be ixs_max = np.argmax(psds.mean(0), axis=1) for ixmax, ifreq in zip(ixs_max, freqs_sig): # Find nearest frequency to the "true" freq ixtrue = np.argmin(np.abs(ifreq - freqs)) assert_true(np.abs(ixmax - ixtrue) < 2) assert_true(psds.shape == (1, len(kws['picks']), len(freqs))) assert_true(np.sum(freqs < 0) == 0) assert_true(np.sum(psds < 0) == 0) # Array input shouldn't work assert_raises(ValueError, func, epochs.get_data()) # Testing evoked (doesn't work w/ compute_epochs_psd) psds_ev, freqs_ev = func( evoked, proj=False, **kws) psds_ev_proj, freqs_ev_proj = func( evoked, proj=True, **kws) # Is power found where it should be ixs_max = np.argmax(psds_ev, axis=1) for ixmax, ifreq in zip(ixs_max, freqs_sig): # Find nearest frequency to the "true" freq ixtrue = np.argmin(np.abs(ifreq - freqs_ev)) assert_true(np.abs(ixmax - ixtrue) < 2) # Make sure the projection doesn't change channels it shouldn't assert_array_almost_equal(psds_ev, psds_ev_proj, 27) assert_true(psds_ev.shape == (len(kws['picks']), len(freqs))) @slow_test @requires_version('scipy', '0.12') def test_compares_psd(): """Test PSD estimation on raw for plt.psd and scipy.signal.welch.""" raw = read_raw_fif(raw_fname) exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = pick_types(raw.info, meg='grad', eeg=False, stim=False, exclude=exclude)[:2] tmin, tmax = 0, 10 # use the first 60s of data fmin, fmax = 2, 70 # look at frequencies between 5 and 70Hz n_fft = 2048 # Compute psds with the new implementation using Welch psds_welch, freqs_welch = psd_welch(raw, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, proj=False, picks=picks, n_fft=n_fft, n_jobs=1) # Compute psds with plt.psd start, stop = raw.time_as_index([tmin, tmax]) data, times = raw[picks, start:(stop + 1)] from matplotlib.pyplot import psd out = [psd(d, Fs=raw.info['sfreq'], NFFT=n_fft) for d in data] freqs_mpl = out[0][1] psds_mpl = np.array([o[0] for o in out]) mask = (freqs_mpl >= fmin) & (freqs_mpl <= fmax) freqs_mpl = freqs_mpl[mask] psds_mpl = psds_mpl[:, mask] assert_array_almost_equal(psds_welch, psds_mpl) assert_array_almost_equal(freqs_welch, freqs_mpl) assert_true(psds_welch.shape == (len(picks), len(freqs_welch))) assert_true(psds_mpl.shape == (len(picks), len(freqs_mpl))) assert_true(np.sum(freqs_welch < 0) == 0) assert_true(np.sum(freqs_mpl < 0) == 0) assert_true(np.sum(psds_welch < 0) == 0) assert_true(np.sum(psds_mpl < 0) == 0) run_tests_if_main()
bsd-3-clause
jadecastro/LTLMoP
src/lib/handlers/motionControl/RRTController.py
1
37133
#!/usr/bin/env python """ =================================================================== RRTController.py - Rapidly-Exploring Random Trees Motion Controller =================================================================== Uses Rapidly-exploring Random Tree Algorithm to generate paths given the starting position and the goal point. """ from numpy import * from __is_inside import * import math import sys,os from scipy.linalg import norm from numpy.matlib import zeros import __is_inside import time, sys,os import scipy as Sci import scipy.linalg import Polygon, Polygon.IO import Polygon.Utils as PolyUtils import Polygon.Shapes as PolyShapes from math import sqrt, fabs , pi import random import thread import threading # importing matplotlib to show the path if possible try: import matplotlib.pyplot as plt import matplotlib.animation as animation import_matplotlib = True except: print "matplotlib is not imported. Plotting is disabled" import_matplotlib = False class motionControlHandler: def __init__(self, proj, shared_data,robot_type,max_angle_goal,max_angle_overlap,plotting): """ Rapidly-Exploring Random Trees alogorithm motion planning controller robot_type (int): Which robot is used for execution. BasicSim is 1, ODE is 2, ROS is 3, Nao is 4, Pioneer is 5(default=1) max_angle_goal (float): The biggest difference in angle between the new node and the goal point that is acceptable. If it is bigger than the max_angle, the new node will not be connected to the goal point. The value should be within 0 to 6.28 = 2*pi. Default set to 6.28 = 2*pi (default=6.28) max_angle_overlap (float): difference in angle allowed for two nodes overlapping each other. If you don't want any node overlapping with each other, put in 2*pi = 6.28. Default set to 1.57 = pi/2 (default=1.57) plotting (bool): Check the box to enable plotting. Uncheck to disable plotting (default=True) """ self.system_print = False # for debugging. print on GUI ( a bunch of stuffs) self.finish_print = False # set to 1 to print the original finished E and V before trimming the tree self.orientation_print = False # show the orientation information of the robot # Get references to handlers we'll need to communicate with self.drive_handler = proj.h_instance['drive'] self.pose_handler = proj.h_instance['pose'] # Get information about regions self.proj = proj self.coordmap_map2lab = proj.coordmap_map2lab self.coordmap_lab2map = proj.coordmap_lab2map self.last_warning = 0 self.previous_next_reg = None # Store the Rapidly-Exploring Random Tress Built self.RRT_V = None # array containing all the points on the RRT Tree self.RRT_E = None # array specifying the connection of points on the Tree self.E_current_column = None # the current column on the tree (to find the current heading point) self.Velocity = None self.currentRegionPoly = None self.nextRegionPoly = None self.map = {} self.all = Polygon.Polygon() self.trans_matrix = mat([[0,1],[-1,0]]) # transformation matrix for find the normal to the vector self.stuck_thres = 20 # threshold for changing the range of sampling omega # Information about the robot (default set to ODE) if robot_type not in [1,2,3,4,5]: robot_type = 1 self.system = robot_type # Information about maximum turning angle allowed from the latest node to the goal point if max_angle_goal > 2*pi: max_angle_goal = 2*pi if max_angle_goal < 0: max_angle_goal = 0 self.max_angle_allowed = max_angle_goal # Information about maximum difference in angle allowed between two overlapping nodes if max_angle_overlap > 2*pi: max_angle_overlap = 2*pi if max_angle_overlap < 0: max_angle_overlap = 0 self.max_angle_overlap = max_angle_overlap # Information about whether plotting is enabled. if plotting is True and import_matplotlib == True: self.plotting = True else: self.plotting = False # Specify the size of the robot # 1: basicSim; 2: ODE; 3: ROS 4: Nao; 5: Pioneer # self.radius: radius of the robot # self.timestep : number of linear segments to break the curve into for calculation of x, y position # self.step_size : the length of each step for connection to goal point # self.velocity : Velocity of the robot in m/s in control space (m/s) if self.system == 1: self.radius = 5 self.step_size = 25 self.timeStep = 10 self.velocity = 2 # 1.5 if self.system == 2: self.radius = 5 self.step_size = 15 self.timeStep = 10 self.velocity = 2 # 1.5 elif self.system == 3: self.ROSInitHandler = shared_data['ROS_INIT_HANDLER'] self.radius = self.ROSInitHandler.robotPhysicalWidth/2 self.step_size = self.radius*3 #0.2 self.timeStep = 8 self.velocity = self.radius/2 #0.08 elif self.system == 4: self.radius = 0.15*1.2 self.step_size = 0.2 #set the step_size for points be 1/5 of the norm ORIGINAL = 0.4 self.timeStep = 5 self.velocity = 0.05 elif self.system == 5: self.radius = 0.15 self.step_size = 0.2 #set the step_size for points be 1/5 of the norm ORIGINAL = 0.4 self.timeStep = 5 self.velocity = 0.05 # Operate_system (int): Which operating system is used for execution. # Ubuntu and Mac is 1, Windows is 2 if sys.platform in ['win32', 'cygwin']: self.operate_system = 2 else: self.operate_system = 1 if self.system_print == True: print "The operate_system is "+ str(self.operate_system) # Generate polygon for regions in the map for region in self.proj.rfi.regions: self.map[region.name] = self.createRegionPolygon(region) for n in range(len(region.holeList)): # no of holes self.map[region.name] -= self.createRegionPolygon(region,n) # Generate the boundary polygon for regionName,regionPoly in self.map.iteritems(): self.all += regionPoly # Start plotting if operating in Windows if self.operate_system == 2 and self.plotting ==True: # start using anmination to plot the robot self.fig = plt.figure() self.ax = self.fig.add_subplot(111) self.scope = _Scope(self.ax,self) thread.start_new_thread(self.jplot,()) def gotoRegion(self, current_reg, next_reg, last=False): """ If ``last`` is True, we will move to the center of the destination region. Returns ``True`` if we've reached the destination region. """ if current_reg == next_reg and not last: # No need to move! self.drive_handler.setVelocity(0, 0) # So let's stop return True # Find our current configuration pose = self.pose_handler.getPose() # Check if Vicon has cut out # TODO: this should probably go in posehandler? if math.isnan(pose[2]): print "WARNING: No Vicon data! Pausing." self.drive_handler.setVelocity(0, 0) # So let's stop time.sleep(1) return False ###This part will be run when the robot goes to a new region, otherwise, the original tree will be used. if not self.previous_next_reg == next_reg: # Entered a new region. New tree should be formed. self.nextRegionPoly = self.map[self.proj.rfi.regions[next_reg].name] self.currentRegionPoly = self.map[self.proj.rfi.regions[current_reg].name] if self.system_print == True: print "next Region is " + str(self.proj.rfi.regions[next_reg].name) print "Current Region is " + str(self.proj.rfi.regions[current_reg].name) #set to zero velocity before tree is generated self.drive_handler.setVelocity(0, 0) if last: transFace = None else: # Determine the mid points on the faces connecting to the next region (one goal point will be picked among all the mid points later in buildTree) transFace = None q_gBundle = [[],[]] # list of goal points (midpoints of transition faces) face_normal = [[],[]] # normal of the trnasition faces for i in range(len(self.proj.rfi.transitions[current_reg][next_reg])): pointArray_transface = [x for x in self.proj.rfi.transitions[current_reg][next_reg][i]] transFace = asarray(map(self.coordmap_map2lab,pointArray_transface)) bundle_x = (transFace[0,0] +transFace[1,0])/2 #mid-point coordinate x bundle_y = (transFace[0,1] +transFace[1,1])/2 #mid-point coordinate y q_gBundle = hstack((q_gBundle,vstack((bundle_x,bundle_y)))) #find the normal vector to the face face = transFace[0,:] - transFace[1,:] distance_face = norm(face) normal = face/distance_face * self.trans_matrix face_normal = hstack((face_normal,vstack((normal[0,0],normal[0,1])))) if transFace is None: print "ERROR: Unable to find transition face between regions %s and %s. Please check the decomposition (try viewing projectname_decomposed.regions in RegionEditor or a text editor)." % (self.proj.rfi.regions[current_reg].name, self.proj.rfi.regions[next_reg].name) # Run algorithm to build the Rapid-Exploring Random Trees self.RRT_V = None self.RRT_E = None # For plotting if self.operate_system == 2: if self.plotting == True: self.ax.cla() else: self.ax = None else: self.ax = None if self.operate_system == 1 and self.plotting == True: plt.cla() self.plotMap(self.map) plt.plot(pose[0],pose[1],'ko') self.RRT_V,self.RRT_E,self.E_current_column = self.buildTree(\ [pose[0], pose[1]],pose[2],self.currentRegionPoly, self.nextRegionPoly,q_gBundle,face_normal) """ # map the lab coordinates back to pixels V_tosend = array(mat(self.RRT_V[1:,:])).T V_tosend = map(self.coordmap_lab2map, V_tosend) V_tosend = mat(V_tosend).T s = 'RRT:E'+"["+str(list(self.RRT_E[0]))+","+str(list(self.RRT_E[1]))+"]"+':V'+"["+str(list(self.RRT_V[0]))+","+str(list(V_tosend[0]))+","+str(list(V_tosend[1]))+"]"+':T'+"["+str(list(q_gBundle[0]))+","+str(list(q_gBundle[1]))+"]" #print s """ # Run algorithm to find a velocity vector (global frame) to take the robot to the next region self.Velocity = self.getVelocity([pose[0], pose[1]], self.RRT_V,self.RRT_E) #self.Node = self.getNode([pose[0], pose[1]], self.RRT_V,self.RRT_E) self.previous_next_reg = next_reg # Pass this desired velocity on to the drive handler self.drive_handler.setVelocity(self.Velocity[0,0], self.Velocity[1,0], pose[2]) #self.drive_handler.setVelocity(self.Node[0,0], self.Node[1,0], pose[2]) RobotPoly = Polygon.Shapes.Circle(self.radius,(pose[0],pose[1])) # check if robot is inside the current region departed = not self.currentRegionPoly.overlaps(RobotPoly) arrived = self.nextRegionPoly.covers(RobotPoly) if departed and (not arrived) and (time.time()-self.last_warning) > 0.5: # Figure out what region we think we stumbled into for r in self.proj.rfi.regions: pointArray = [self.coordmap_map2lab(x) for x in r.getPoints()] vertices = mat(pointArray).T if is_inside([pose[0], pose[1]], vertices): print "I think I'm in " + r.name print pose break self.last_warning = time.time() #print "arrived:"+str(arrived) return arrived def createRegionPolygon(self,region,hole = None): """ This function takes in the region points and make it a Polygon. """ if hole == None: pointArray = [x for x in region.getPoints()] else: pointArray = [x for x in region.getPoints(hole_id = hole)] pointArray = map(self.coordmap_map2lab, pointArray) regionPoints = [(pt[0],pt[1]) for pt in pointArray] formedPolygon= Polygon.Polygon(regionPoints) return formedPolygon def getVelocity(self,p, V, E, last=False): """ This function calculates the velocity for the robot with RRT. The inputs are (given in order): p = the current x-y position of the robot E = edges of the tree (2 x No. of nodes on the tree) V = points of the tree (2 x No. of vertices) last = True, if the current region is the last region = False, if the current region is NOT the last region """ pose = mat(p).T #dis_cur = distance between current position and the next point dis_cur = vstack((V[1,E[1,self.E_current_column]],V[2,E[1,self.E_current_column]]))- pose heading = E[1,self.E_current_column] # index of the current heading point on the tree if norm(dis_cur) < 1.5*self.radius: # go to next point if not heading == shape(V)[1]-1: self.E_current_column = self.E_current_column + 1 dis_cur = vstack((V[1,E[1,self.E_current_column]],V[2,E[1,self.E_current_column]]))- pose #else: # dis_cur = vstack((V[1,E[1,self.E_current_column]],V[2,E[1,self.E_current_column]]))- vstack((V[1,E[0,self.E_current_column]],V[2,E[0,self.E_current_column]])) Vel = zeros([2,1]) Vel[0:2,0] = dis_cur/norm(dis_cur)*0.5 #TUNE THE SPEED LATER return Vel def getNode(self,p, V, E, last=False): """ This function calculates the velocity for the robot with RRT. The inputs are (given in order): p = the current x-y position of the robot E = edges of the tree (2 x No. of nodes on the tree) V = points of the tree (2 x No. of vertices) last = True, if the current region is the last region = False, if the current region is NOT the last region """ pose = mat(p).T #dis_cur = distance between current position and the next point dis_cur = vstack((V[1,E[1,self.E_current_column]],V[2,E[1,self.E_current_column]]))- pose heading = E[1,self.E_current_column] # index of the current heading point on the tree if norm(dis_cur) < 1.5*self.radius: # go to next point if not heading == shape(V)[1]-1: self.E_current_column = self.E_current_column + 1 dis_cur = vstack((V[1,E[1,self.E_current_column]],V[2,E[1,self.E_current_column]]))- pose Node = zeros([2,1]) Node[0,0] = V[1,E[1,self.E_current_column]] Node[1,0] = V[2,E[1,self.E_current_column]] #Vel[0:2,0] = dis_cur/norm(dis_cur)*0.5 #TUNE THE SPEED LATER return Node def buildTree(self,p,theta,regionPoly,nextRegionPoly,q_gBundle,face_normal, last=False): """ This function builds the RRT tree. p : x,y position of the robot theta : current orientation of the robot regionPoly : current region polygon nextRegionPoly : next region polygon q_gBundle : coordinates of q_goals that the robot can reach face_normal : the normal vector of each face corresponding to each goal point in q_gBundle """ q_init = mat(p).T V = vstack((0,q_init)) theta = self.orientation_bound(theta) V_theta = array([theta]) #!!! CONTROL SPACE: generate a list of omega for random sampling omegaLowerBound = -math.pi/20 # upper bound for the value of omega omegaUpperBound = math.pi/20 # lower bound for the value of omega omegaNoOfSteps = 20 self.omega_range = linspace(omegaLowerBound,omegaUpperBound,omegaNoOfSteps) self.omega_range_escape = linspace(omegaLowerBound*4,omegaUpperBound*4,omegaNoOfSteps*4) # range used when stuck > stuck_thres regionPolyOld = Polygon.Polygon(regionPoly) regionPoly += PolyShapes.Circle(self.radius*2.5,(q_init[0,0],q_init[1,0])) # check faces of the current region for goal points E = [[],[]] # the tree matrix Other = [[],[]] path = False # if path formed then = 1 stuck = 0 # count for changing the range of sampling omega append_after_latest_node = False # append new nodes to the latest node if self.system_print == True: print "plotting in buildTree is " + str(self.plotting) if self.plotting == True: if not plt.isinteractive(): plt.ion() plt.hold(True) while not path: #step -1: try connection to q_goal (generate path to goal) i = 0 if self.system_print == True: print "Try Connection to the goal points" # pushing possible q_goals into the current region (ensure path is covered by the current region polygon) q_pass = [[],[],[]] q_pass_dist = [] q_gBundle = mat(q_gBundle) face_normal = mat(face_normal) while i < q_gBundle.shape[1]: q_g_original = q_gBundle[:,i] q_g = q_gBundle[:,i]+face_normal[:,i]*1.5*self.radius ##original 2*self.radius #q_g = q_gBundle[:,i]+(q_gBundle[:,i]-V[1:,(shape(V)[1]-1)])/norm(q_gBundle[:,i]-V[1:,(shape(V)[1]-1)])*1.5*self.radius ##original 2*self.radius if not regionPolyOld.isInside(q_g[0],q_g[1]): #q_g = q_gBundle[:,i]-(q_gBundle[:,i]-V[1:,(shape(V)[1]-1)])/norm(q_gBundle[:,i]-V[1:,(shape(V)[1]-1)])*1.5*self.radius ##original 2*self.radius q_g = q_gBundle[:,i]-face_normal[:,i]*1.5*self.radius ##original 2*self.radius #forming polygon for path checking EdgePolyGoal = PolyShapes.Circle(self.radius,(q_g[0,0],q_g[1,0])) + PolyShapes.Circle(self.radius,(V[1,shape(V)[1]-1],V[2:,shape(V)[1]-1])) EdgePolyGoal = PolyUtils.convexHull(EdgePolyGoal) dist = norm(q_g - V[1:,shape(V)[1]-1]) #check connection to goal connect_goal = regionPoly.covers(EdgePolyGoal) #check coverage of path from new point to goal # compare orientation difference thetaPrev = V_theta[shape(V)[1]-1] theta_orientation = abs(arctan((q_g[1,0]- V[2,shape(V)[1]-1])/(q_g[0,0]- V[1,shape(V)[1]-1]))) if q_g[1,0] > V[2,shape(V)[1]-1]: if q_g[0,0] < V[1,shape(V)[1]-1]: # second quadrant theta_orientation = pi - theta_orientation elif q_g[0,0] > V[1,shape(V)[1]-1]: # first quadrant theta_orientation = theta_orientation elif q_g[1,0] < V[2,shape(V)[1]-1]: if q_g[0,0] < V[1,shape(V)[1]-1]: #third quadrant theta_orientation = pi + theta_orientation elif q_g[0,0] > V[1,shape(V)[1]-1]: # foruth quadrant theta_orientation = 2*pi - theta_orientation # check the angle between vector(new goal to goal_original ) and vector( latest node to new goal) Goal_to_GoalOriginal = q_g_original - q_g LatestNode_to_Goal = q_g - V[1:,shape(V)[1]-1] Angle_Goal_LatestNode= arccos(vdot(array(Goal_to_GoalOriginal), array(LatestNode_to_Goal))/norm(Goal_to_GoalOriginal)/norm(LatestNode_to_Goal)) # if connection to goal can be established and the max change in orientation of the robot is smaller than max_angle, tree is said to be completed. if self.orientation_print == True: print "theta_orientation is " + str(theta_orientation) print "thetaPrev is " + str(thetaPrev) print "(theta_orientation - thetaPrev) is " + str(abs(theta_orientation - thetaPrev)) print "self.max_angle_allowed is " + str(self.max_angle_allowed) print "abs(theta_orientation - thetaPrev) < self.max_angle_allowed" + str(abs(theta_orientation - thetaPrev) < self.max_angle_allowed) print"Goal_to_GoalOriginal: " + str( array(Goal_to_GoalOriginal)) + "; LatestNode_to_Goal: " + str( array(LatestNode_to_Goal)) print vdot(array(Goal_to_GoalOriginal), array(LatestNode_to_Goal)) print "Angle_Goal_LatestNode" + str(Angle_Goal_LatestNode) if connect_goal and (abs(theta_orientation - thetaPrev) < self.max_angle_allowed) and (Angle_Goal_LatestNode < self.max_angle_allowed): path = True q_pass = hstack((q_pass,vstack((i,q_g)))) q_pass_dist = hstack((q_pass_dist,dist)) i = i + 1 if self.system_print == True: print "checked goal points" self.E = E self.V = V # connection to goal has established # Obtain the closest goal point that path can be formed. if path: if shape(q_pass_dist)[0] == 1: cols = 0 else: (cols,) = nonzero(q_pass_dist == min(q_pass_dist)) cols = asarray(cols)[0] q_g = q_pass[1:,cols] """ q_g = q_g-(q_gBundle[:,q_pass[0,cols]]-V[1:,(shape(V)[1]-1)])/norm(q_gBundle[:,q_pass[0,cols]]-V[1:,(shape(V)[1]-1)])*3*self.radius #org 3 if not nextRegionPoly.isInside(q_g[0],q_g[1]): q_g = q_g+(q_gBundle[:,q_pass[0,cols]]-V[1:,(shape(V)[1]-1)])/norm(q_gBundle[:,q_pass[0,cols]]-V[1:,(shape(V)[1]-1)])*6*self.radius #org 3 """ if self.plotting == True : if self.operate_system == 1: plt.suptitle('Rapidly-exploring Random Tree', fontsize=12) plt.xlabel('x') plt.ylabel('y') if shape(V)[1] <= 2: plt.plot(( V[1,shape(V)[1]-1],q_g[0,0]),( V[2,shape(V)[1]-1],q_g[1,0]),'b') else: plt.plot(( V[1,E[0,shape(E)[1]-1]], V[1,shape(V)[1]-1],q_g[0,0]),( V[2,E[0,shape(E)[1]-1]], V[2,shape(V)[1]-1],q_g[1,0]),'b') plt.plot(q_g[0,0],q_g[1,0],'ko') plt.figure(1).canvas.draw() else: BoundPolyPoints = asarray(PolyUtils.pointList(regionPoly)) self.ax.plot(BoundPolyPoints[:,0],BoundPolyPoints[:,1],'k') if shape(V)[1] <= 2: self.ax.plot(( V[1,shape(V)[1]-1],q_g[0,0]),( V[2,shape(V)[1]-1],q_g[1,0]),'b') else: self.ax.plot(( V[1,E[0,shape(E)[1]-1]], V[1,shape(V)[1]-1],q_g[0,0]),( V[2,E[0,shape(E)[1]-1]], V[2,shape(V)[1]-1],q_g[1,0]),'b') self.ax.plot(q_g[0,0],q_g[1,0],'ko') # trim the path connecting current node to goal point into pieces if the path is too long now numOfPoint = floor(norm(V[1:,shape(V)[1]-1]- q_g)/self.step_size) if numOfPoint < 3: numOfPoint = 3 x = linspace( V[1,shape(V)[1]-1], q_g[0,0], numOfPoint ) y = linspace( V[2,shape(V)[1]-1], q_g[1,0], numOfPoint ) for i in range(x.shape[0]): if i != 0: V = hstack((V,vstack((shape(V)[1],x[i],y[i])))) E = hstack((E,vstack((shape(V)[1]-2,shape(V)[1]-1)))) #push the goal point to the next region q_g = q_g+face_normal[:,q_pass[0,cols]]*3*self.radius ##original 2*self.radius if not nextRegionPoly.isInside(q_g[0],q_g[1]): q_g = q_g-face_normal[:,q_pass[0,cols]]*6*self.radius ##original 2*self.radius V = hstack((V,vstack((shape(V)[1],q_g[0,0],q_g[1,0])))) E = hstack((E,vstack((shape(V)[1]-2 ,shape(V)[1]-1)))) if self.plotting == True : if self.operate_system == 1: plt.plot(q_g[0,0],q_g[1,0],'ko') plt.plot(( V[1,shape(V)[1]-1],V[1,shape(V)[1]-2]),( V[2,shape(V)[1]-1],V[2,shape(V)[1]-2]),'b') plt.figure(1).canvas.draw() else: self.ax.plot(q_g[0,0],q_g[1,0],'ko') self.ax.plot(( V[1,shape(V)[1]-1],V[1,shape(V)[1]-2]),( V[2,shape(V)[1]-1],V[2,shape(V)[1]-2]),'b') # path is not formed, try to append points onto the tree if not path: # connection_to_tree : connection to the tree is successful if append_after_latest_node: V,V_theta,E,Other,stuck,append_after_latest_node, connection_to_tree = self.generateNewNode(V,V_theta,E,Other,regionPoly,stuck, append_after_latest_node) else: connection_to_tree = False while not connection_to_tree: V,V_theta,E,Other,stuck,append_after_latest_node, connection_to_tree = self.generateNewNode (V,V_theta,E,Other,regionPoly,stuck) if self.finish_print: print 'Here is the V matrix:', V, 'Here is the E matrix:',E print >>sys.__stdout__, 'Here is the V matrix:\n', V, '\nHere is the E matrix:\n',E #B: trim to a single path single = 0 while single == 0: trim = 0 for j in range(shape(V)[1]-3): (row,col) = nonzero(E == j+1) if len(col) == 1: E = delete(E, col[0], 1) trim = 1 if trim == 0: single = 1; ####print with matlib if self.plotting ==True : if self.operate_system == 1: plt.plot(V[1,:],V[2,:],'b') for i in range(shape(E)[1]): plt.text(V[1,E[0,i]],V[2,E[0,i]], V[0,E[0,i]], fontsize=12) plt.text(V[1,E[1,i]],V[2,E[1,i]], V[0,E[1,i]], fontsize=12) plt.figure(1).canvas.draw() else: BoundPolyPoints = asarray(PolyUtils.pointList(regionPoly)) self.ax.plot(BoundPolyPoints[:,0],BoundPolyPoints[:,1],'k') self.ax.plot(V[1,:],V[2,:],'b') for i in range(shape(E)[1]): self.ax.text(V[1,E[0,i]],V[2,E[0,i]], V[0,E[0,i]], fontsize=12) self.ax.text(V[1,E[1,i]],V[2,E[1,i]], V[0,E[1,i]], fontsize=12) #return V, E, and the current node number on the tree V = array(V) return V, E, 0 def generateNewNode(self,V,V_theta,E,Other,regionPoly,stuck,append_after_latest_node =False): """ Generate a new node on the current tree matrix V : the node matrix V_theta : the orientation matrix E : the tree matrix (or edge matrix) Other : the matrix containing the velocity and angular velocity(omega) information regionPoly: the polygon of current region stuck : count on the number of times failed to generate new node append_after_latest_node : append new nodes to the latest node (True only if the previous node addition is successful) """ if self.system_print == True: print "In control space generating path,stuck = " + str(stuck) connection_to_tree = False # True when connection to the tree is successful if stuck > self.stuck_thres: # increase the range of omega since path cannot ge generated omega = random.choice(self.omega_range_escape) else: #!!!! CONTROL SPACE STEP 1 - generate random omega omega = random.choice(self.omega_range) #!!!! CONTROL SPACE STEP 2 - pick a random point on the tree if append_after_latest_node: tree_index = shape(V)[1]-1 else: if random.choice([1,2]) == 1: tree_index = random.choice(array(V[0])[0]) else: tree_index = shape(V)[1]-1 xPrev = V[1,tree_index] yPrev = V[2,tree_index] thetaPrev = V_theta[tree_index] j = 1 #!!!! CONTROL SPACE STEP 3 - Check path of the robot path_robot = PolyShapes.Circle(self.radius,(xPrev,yPrev)) while j <= self.timeStep: xOrg = xPrev yOrg = yPrev xPrev = xPrev + self.velocity/omega*(sin(omega* 1 + thetaPrev)-sin(thetaPrev)) yPrev = yPrev - self.velocity/omega*(cos(omega* 1 + thetaPrev)-cos(thetaPrev)) thetaPrev = omega* 1 + thetaPrev path_robot = path_robot + PolyShapes.Circle(self.radius,(xPrev,yPrev)) j = j + 1 thetaPrev = self.orientation_bound(thetaPrev) path_all = PolyUtils.convexHull(path_robot) in_bound = regionPoly.covers(path_all) """ # plotting if plotting == True: self.plotPoly(path_all,'r',1) """ stuck = stuck + 1 if in_bound: robot_new_node = PolyShapes.Circle(self.radius,(xPrev,yPrev)) # check how many nodes on the tree does the new node overlaps with nodes_overlap_count = 0 for k in range(shape(V)[1]-1): robot_old_node = PolyShapes.Circle(self.radius,(V[1,k],V[2,k])) if robot_new_node.overlaps(robot_old_node): if abs(thetaPrev - V_theta[k]) < self.max_angle_overlap: nodes_overlap_count += 1 if nodes_overlap_count == 0 or (stuck > self.stuck_thres+1 and nodes_overlap_count < 2) or (stuck > self.stuck_thres+500): if stuck > self.stuck_thres+1: append_after_latest_node = False if (stuck > self.stuck_thres+500): stuck = 0 stuck = stuck - 20 # plotting if self.plotting == True: self.plotPoly(path_all,'b',1) if self.system_print == True: print "node connected" V = hstack((V,vstack((shape(V)[1],xPrev,yPrev)))) V_theta = hstack((V_theta,thetaPrev)) E = hstack((E,vstack((tree_index ,shape(V)[1]-1)))) Other = hstack((Other,vstack((self.velocity,omega)))) ##################### E should add omega and velocity connection_to_tree = True append_after_latest_node = True else: append_after_latest_node = False if self.system_print == True: print "node not connected. check goal point" else: append_after_latest_node = False return V,V_theta,E,Other,stuck,append_after_latest_node, connection_to_tree def orientation_bound(self,theta): """ make sure the returned angle is between 0 to 2*pi """ while theta > 2*pi or theta < 0: if theta > 2*pi: theta = theta - 2*pi else: theta = theta + 2*pi return theta def plotMap(self,mappedRegions): """ Plotting regions and obstacles with matplotlib.pyplot number: figure number (see on top) """ #if not plt.isinteractive(): # plt.ion() #plt.hold(True) if self.operate_system == 1: for regionName,regionPoly in mappedRegions.iteritems(): self.plotPoly(regionPoly,'k') plt.figure(1).canvas.draw() def plotPoly(self,c,string,w = 1): """ Plot polygons inside the boundary c = polygon to be plotted with matlabplot string = string that specify color w = width of the line plotting """ if bool(c): for i in range(len(c)): #toPlot = Polygon.Polygon(c.contour(i)) toPlot = Polygon.Polygon(c.contour(i)) & self.all if bool(toPlot): for j in range(len(toPlot)): #BoundPolyPoints = asarray(PolyUtils.pointList(toPlot.contour(j))) BoundPolyPoints = asarray(PolyUtils.pointList(Polygon.Polygon(toPlot.contour(j)))) if self.operate_system == 2: self.ax.plot(BoundPolyPoints[:,0],BoundPolyPoints[:,1],string,linewidth=w) self.ax.plot([BoundPolyPoints[-1,0],BoundPolyPoints[0,0]],[BoundPolyPoints[-1,1],BoundPolyPoints[0,1]],string,linewidth=w) else: plt.plot(BoundPolyPoints[:,0],BoundPolyPoints[:,1],string,linewidth=w) plt.plot([BoundPolyPoints[-1,0],BoundPolyPoints[0,0]],[BoundPolyPoints[-1,1],BoundPolyPoints[0,1]],string,linewidth=w) plt.figure(1).canvas.draw() def data_gen(self): #self.ax.cla() for regionName,regionPoly in self.map.iteritems(): self.plotPoly(regionPoly,'k') """ #for i in range(len(self.V)): if shape(V)[1] <= 2: plt.plot(( V[1,shape(V)[1]-1],q_g[0,0]),( V[2,shape(V)[1]-1],q_g[1,0]),'b') else: plt.plot(( V[1,E[0,shape(E)[1]-1]], V[1,shape(V)[1]-1],q_g[0,0]),( V[2,E[0,shape(E)[1]-1]], V[2,shape(V)[1]-1],q_g[1,0]),'b') self.plotPoly(self.realRobot, 'r') self.plotPoly(self.robot, 'b') """ pose = self.pose_handler.getPose() self.ax.plot(pose[0],pose[1],'bo') """ self.ax.plot(self.q_g[0],self.q_g[1],'ro') self.plotPoly(self.overlap,'g') self.plotPoly(self.m_line,'b') """ yield(pose[0],pose[1]) """ self.ax.plot(self.prev_follow[0],self.prev_follow[1],'ko') """ def jplot(self): ani = animation.FuncAnimation(self.fig, self.scope.update, self.data_gen) plt.show() class _Scope: def __init__(self, ax, motion, maxt=2, dt=0.02): self.i = 0 self.ax = ax self.line, = self.ax.plot(1) self.ax.set_ylim(0, 1) self.motion = motion def update(self,data): (data1) = self.motion.data_gen() a = data1.next() self.line.set_data(a) self.ax.relim() self.ax.autoscale() return self.line,
gpl-3.0
rbharvs/mnd-learning
supervised.py
1
8636
import sys import parsetags import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB from sklearn import svm from sklearn.decomposition import PCA as PCA from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import nltk from nltk.stem import LancasterStemmer import re def get_top_tags(segment_tags, n): tag_freqs = {} for tag_list in segment_tags.values(): for tag in tag_list: if tag not in tag_freqs: tag_freqs[tag] = 0 tag_freqs[tag] += 1 return ['NULL'] + sorted(tag_freqs.keys(), key=lambda x: tag_freqs[x])[-n:] def get_common_words(n=100): try: file_content = open(sys.argv[3]).read() common_words = nltk.word_tokenize(file_content) except IndexError: return None return set(common_words[:n]) def get_named_entities(): try: file_content = open(sys.argv[2]).read() named_entities = nltk.word_tokenize(file_content) except IndexError: return None return set(named_entities) def filter_segments(segment_tags, ntags): filtered_segtags = {} for segment in segment_tags: # np.random.shuffle(segment_tags[segment]) for tag in segment_tags[segment]: if tag not in ntags: continue filtered_segtags[segment] = ntags.index(tag) if segment not in filtered_segtags: filtered_segtags[segment] = 0 return filtered_segtags def increase_num_segments(segment_tags, n, length=1000): new_segment_tags = {} segments = sorted(segment_tags.keys(), key=len) lengths = np.array([len(seg) for seg in segments]) dist = lengths/np.sum(lengths) random_segments = np.random.choice(segments, size=n, p=dist) for segment in random_segments: new_segment = segment if len(new_segment) > length: index = np.random.randint(0, len(new_segment)-length) new_segment = new_segment[index:index+length] new_segment_tags[new_segment] = segment_tags[segment] return new_segment_tags def named_entity_reduction(segment_tags, named_entities, common_words): punctuation = [',', '.', "'", '?', ';', ':', '!', '(', ')', '`', '--' '\xe2', '\x80', '\x94', '\x99'] new_segments = [] segments = list(segment_tags.keys()) for segment in segments: new_segment = '' tokens = nltk.word_tokenize(segment) for token in tokens: if token in punctuation: continue if token.lower() in common_words: continue if token not in named_entities: continue new_segment += token + ' ' new_segments.append(new_segment) new_segment_tags = {} for i in range(len(segments)): new_segment_tags[new_segments[i]] = segment_tags[segments[i]] return new_segment_tags def stemming_reduction(segment_tags): punctuation = [',', '.', "'", '?', ';', ':', '!', '(', ')', '`', '--' '\xe2', '\x80', '\x94', '\x99'] new_segments = [] stemmer = LancasterStemmer() segments = list(segment_tags.keys()) for segment in segments: new_segment = '' segment = re.sub(r'[^\x00-\x7f]',r'', segment) tokens = nltk.word_tokenize(segment) for token in tokens: if token in punctuation: continue try: new_segment += stemmer.stem(token)+' ' except UnicodeDecodeError: new_segment += '' new_segments.append(new_segment) stemmed_segment_tags = {} for i in range(len(segments)): stemmed_segment_tags[new_segments[i]] = segment_tags[segments[i]] return stemmed_segment_tags def separate_segments(segment_tags, k): train = {} for segment in segment_tags.keys(): if np.random.random() < k: train[segment] = segment_tags.pop(segment) return train, segment_tags def bag_of_words(segment_tags, tfidf=False): #create matrix of word frequencies segments = list(segment_tags.keys()) vec = CountVectorizer() word_freqs = vec.fit_transform(segments).toarray() if tfidf: tfidf_transformer = TfidfTransformer() word_freqs = tfidf_transformer.fit_transform(word_freqs) labels = np.empty(shape=len(segments)) for i in range(len(segments)): labels[i] = segment_tags[segments[i]] return word_freqs, labels, segments def entity_bow(segment_tags, named_entities, common_words): punctuation = [',', '.', "'", '?', ';', ':', '!', '(', ')', '`', '--' '\xe2', '\x80', '\x94', '\x99'] new_segments = [] segments = list(segment_tags.keys()) for segment in segments: new_segment = '' tokens = nltk.word_tokenize(segment) for token in tokens: if token in punctuation: continue if token.lower() in common_words: continue if token not in named_entities: continue new_segment += token + ' ' new_segments.append(new_segment) vec = CountVectorizer() word_freqs = vec.fit_transform(new_segments).toarray() tfidf_transformer = TfidfTransformer() X_train_tfidf = tfidf_transformer.fit_transform(word_freqs) print(word_freqs.shape, X_train_tfidf.shape) labels = np.empty(shape=len(segments)) for i in range(len(segments)): labels[i] = segment_tags[segments[i]] return X_train_tfidf, labels, segments def pca_plot(Xtrain, ytrain): #binary classification case X_reduced = Xtrain pca = PCA(3) X_pca = pca.fit_transform(X_reduced) ax = plt.axes(projection='3d') for i in range(X_pca.shape[0]): if ytrain[i] == 1: ax.scatter(X_pca[i, 0], X_pca[i, 2], X_pca[i, 1], 'o', color='blue') else: ax.scatter(X_pca[i, 0], X_pca[i, 2], X_pca[i,1], 'x', color='red') plt.show() def randomize_order(X, y, segments): shuffled_segments = [] indices = np.arange(len(segments)) np.random.shuffle(indices) X, y = X[indices], y[indices] for i in indices: shuffled_segments.append(segments[i]) return X, y, segments def naive_bayes(segment_tags, k=0.5, normalize=False): X, y, segments = randomize_order(*bag_of_words(segment_tags, tfidf=normalize)) num_examples = len(segments) Xtest, ytest = X[int(k*num_examples):, :], y[int(k*num_examples):] Xtrain, ytrain = X[:int(k*num_examples), :], y[:int(k*num_examples)] nb_classifier = MultinomialNB().fit(Xtrain, ytrain) nb_predicted_tags = nb_classifier.predict(Xtest) nb_success_rate = np.mean(nb_predicted_tags == ytest) return 1-nb_success_rate def support_vector(segment_tags, k=0.5, normalize=False): X, y, segments = randomize_order(*bag_of_words(segment_tags, tfidf=normalize)) num_examples = len(segments) Xtest, ytest = X[int(k*num_examples):, :], y[int(k*num_examples):] Xtrain, ytrain = X[:int(k*num_examples), :], y[:int(k*num_examples)] svm_classifier = svm.SVC() svm_classifier.fit(Xtrain, ytrain) svm_predicted_tags = svm_classifier.predict(Xtest) svm_success_rate = np.mean(svm_predicted_tags == ytest) return 1-svm_success_rate if __name__ == "__main__": orig_segment_tags = parsetags.parse_tags(sys.argv[1]) common_words = get_common_words() named_entities = get_named_entities() for sample_size in ['BIG']: if sample_size == 'BIG': segment_tags = increase_num_segments(orig_segment_tags, 3000, length=1000) orig_segment_tags = segment_tags for text_features in ['REGULAR', 'STEMMED', 'NAMED']: if text_features == 'STEMMED': segment_tags = stemming_reduction(orig_segment_tags) if text_features == 'NAMED': segment_tags = named_entity_reduction(orig_segment_tags, named_entities, common_words) for freq_feature in ['COUNT', 'TFIDF']: # ntags = get_top_tags(segment_tags, 7) print(sample_size, text_features, freq_feature) ntags = ['ETA', 'EHDRH', 'AFR'] filtered_segtags = filter_segments(segment_tags, ntags) with open('Results/' + sample_size + '_' + text_features + '_' + freq_feature + '.txt', 'w') as f: for i in range(100): f.write(str(naive_bayes(filtered_segtags, normalize=(freq_feature is 'TFIDF'))) + '\n') # segment_tags = parsetags.parse_tags(sys.argv[1]) # big_segment_tags = increase_num_segments(segment_tags, 3000, length=1000) # ntags = get_top_tags(segment_tags, 7) # for # # ntags = ['NULL', 'ETA', 'EHDRH', 'AFR'] # common_words = get_common_words() # named_entities = get_named_entities() # filtered_segtags = filter_segments(segment_tags, ntags) # #entity_bow(filtered_segtags, named_entities, common_words) # naive_bayes(filtered_segtags, named_entities, common_words, features=entity_bow) # naive_bayes(filtered_segtags) # support_vector(filtered_segtags) # predicted_tags = [ntags[int(np.round(nb_predicted_tags[i]))] for i in range(len(svm_predicted_tags))] # count = 0 # print(ntags) # for i in range(len(predicted_tags)): # if predicted_tags[i] == 'NULL': # if all(tag not in segment_tags[shuffled_segments[i]] for tag in ntags): # count += 1 # else: # if predicted_tags[i] in segment_tags[shuffled_segments[i]]: # count += 1 # print(count/len(predicted_tags))
mit
dariox2/CADL
test/testyida6b.py
1
4901
# # test shuffle_batch - 6b # # generates a pair of files (color+bn) # pending: make the tuple match # print("Loading tensorflow...") import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import os from libs import utils import datetime tf.set_random_seed(1) def create_input_pipeline_yida(files1, files2, batch_size, n_epochs, shape, crop_shape=None, crop_factor=1.0, n_threads=1, seed=None): producer1 = tf.train.string_input_producer( files1, capacity=len(files1), shuffle=False) producer2 = tf.train.string_input_producer( files2, capacity=len(files2), shuffle=False) # We need something which can open the files and read its contents. reader = tf.WholeFileReader() # We pass the filenames to this object which can read the file's contents. # This will create another queue running which dequeues the previous queue. keys1, vals1 = reader.read(producer1) keys2, vals2 = reader.read(producer2) # And then have to decode its contents as we know it is a jpeg image imgs1 = tf.image.decode_jpeg(vals1, channels=3) imgs2 = tf.image.decode_jpeg(vals2, channels=3) # We have to explicitly define the shape of the tensor. # This is because the decode_jpeg operation is still a node in the graph # and doesn't yet know the shape of the image. Future operations however # need explicit knowledge of the image's shape in order to be created. imgs1.set_shape(shape) imgs2.set_shape(shape) # Next we'll centrally crop the image to the size of 100x100. # This operation required explicit knowledge of the image's shape. if shape[0] > shape[1]: rsz_shape = [int(shape[0] / shape[1] * crop_shape[0] / crop_factor), int(crop_shape[1] / crop_factor)] else: rsz_shape = [int(crop_shape[0] / crop_factor), int(shape[1] / shape[0] * crop_shape[1] / crop_factor)] rszs1 = tf.image.resize_images(imgs1, rsz_shape[0], rsz_shape[1]) rszs2 = tf.image.resize_images(imgs2, rsz_shape[0], rsz_shape[1]) crops1 = (tf.image.resize_image_with_crop_or_pad( rszs1, crop_shape[0], crop_shape[1]) if crop_shape is not None else imgs1) crops2 = (tf.image.resize_image_with_crop_or_pad( rszs2, crop_shape[0], crop_shape[1]) if crop_shape is not None else imgs2) # Now we'll create a batch generator that will also shuffle our examples. # We tell it how many it should have in its buffer when it randomly # permutes the order. min_after_dequeue = len(files1) // 5 # The capacity should be larger than min_after_dequeue, and determines how # many examples are prefetched. TF docs recommend setting this value to: # min_after_dequeue + (num_threads + a small safety margin) * batch_size capacity = min_after_dequeue + (n_threads + 1) * batch_size # Randomize the order and output batches of batch_size. batch = tf.train.shuffle_batch([crops1, crops2], enqueue_many=False, batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue, num_threads=n_threads, #seed=seed, )#shapes=(64,64,3)) # alternatively, we could use shuffle_batch_join to use multiple reader # instances, or set shuffle_batch's n_threads to higher than 1. return batch def CELEByida(path): fs = [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.jpg')] fs=sorted(fs) return fs print("Loading celebrities...") from libs.datasets import CELEB files1 = CELEByida("../session-1/img_align_celeba/") # only 100 files2 = CELEByida("../session-1/img_align_celeba_n/") # only 100 from libs.dataset_utils import create_input_pipeline batch_size = 8 n_epochs = 3 input_shape = [218, 178, 3] crop_shape = [64, 64, 3] crop_factor = 0.8 seed=15 batch1 = create_input_pipeline_yida( files1=files1, files2=files2, batch_size=batch_size, n_epochs=n_epochs, crop_shape=crop_shape, crop_factor=crop_factor, shape=input_shape, seed=seed) mntg=[] sess = tf.Session() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) batres = sess.run(batch1) batch_xs1=np.array(batres[0]) batch_xs2=np.array(batres[1]) for i in range(0,len(batch_xs1)): img=batch_xs1[i] / 255.0 mntg.append(img) img=batch_xs2[i] / 255.0 mntg.append(img) TID=datetime.date.today().strftime("%Y%m%d")+"_"+datetime.datetime.now().time().strftime("%H%M%S") m=utils.montage(mntg, saveto="montage_"+TID+".png") # mntg[0]=color # mntg[1]=b/n plt.figure(figsize=(5, 5)) plt.imshow(m) plt.show() # eop
apache-2.0
alphacsc/alphacsc
examples/csc/plot_lfp_data.py
1
3791
""" ============================== CSC to learn LFP spiking atoms ============================== Here, we show how CSC can be used to learn spiking atoms from Local Field Potential (LFP) data [1]. [1] Hitziger, Sebastian, et al. Adaptive Waveform Learning: A Framework for Modeling Variability in Neurophysiological Signals. IEEE Transactions on Signal Processing (2017). """ ############################################################################### # First, let us fetch the data (~14 MB) import os from mne.utils import _fetch_file url = ('https://github.com/hitziger/AWL/raw/master/Experiments/data/' 'LFP_data_contiguous_1250_Hz.mat') fname = './LFP_data_contiguous_1250_Hz.mat' if not os.path.exists(fname): _fetch_file(url, fname) ############################################################################### # It is a mat file, so we use scipy to load it from scipy import io data = io.loadmat(fname) X, sfreq = data['X'].T, float(data['sfreq']) ############################################################################### # And now let us look at the data import numpy as np import matplotlib.pyplot as plt start, stop = 11000, 15000 times = np.arange(start, stop) / sfreq plt.plot(times, X[0, start:stop], color='b') plt.xlabel('Time (s)') plt.ylabel(r'$\mu$ V') plt.xlim([9., 12.]) ############################################################################### # and filter it using a convenient function from MNE. This will remove low # frequency drifts, but we keep the high frequencies from mne.filter import filter_data X = filter_data( X.astype(np.float64), sfreq, l_freq=1, h_freq=None, fir_design='firwin') ############################################################################### # Now, we define the parameters of our model. reg = 6.0 n_times = 2500 n_times_atom = 350 n_trials = 100 n_atoms = 3 n_iter = 60 ############################################################################### # Let's stick to one random state for now, but if you want to learn how to # select the random state, consult :ref:`this example # <sphx_glr_auto_examples_plot_simulate_randomstate.py>`. random_state = 10 ############################################################################### # Now, we epoch the trials overlap = 0 starts = np.arange(0, X.shape[1] - n_times, n_times - overlap) stops = np.arange(n_times, X.shape[1], n_times - overlap) X_new = [] for idx, (start, stop) in enumerate(zip(starts, stops)): if idx >= n_trials: break X_new.append(X[0, start:stop]) X_new = np.vstack(X_new) del X ############################################################################### # We remove the mean and scale to unit variance. X_new -= np.mean(X_new) X_new /= np.std(X_new) ############################################################################### # The convolutions can result in edge artifacts at the edges of the trials. # Therefore, we discount the contributions from the edges by windowing the # trials. from numpy import hamming X_new *= hamming(n_times)[None, :] ############################################################################### # Of course, in a data-limited setting we want to use as much of the data as # possible. If this is the case, you can set `overlap` to non-zero (for example # half the epoch length). # # Now, we run regular CSC since the trials are not too noisy from alphacsc import learn_d_z pobj, times, d_hat, z_hat, reg = learn_d_z(X_new, n_atoms, n_times_atom, reg=reg, n_iter=n_iter, random_state=random_state, n_jobs=1) ############################################################################### # Let's look at the atoms now. plt.figure() plt.plot(d_hat.T) plt.show()
bsd-3-clause
rbn920/feebb
feebb/test.py
1
1640
from feebb import * import matplotlib.pyplot as plt pre = Preprocessor() pre.load_json('ex_json/test2.json') elems = [Element(elem) for elem in pre.elements] print(pre.supports) beam = Beam(elems, pre.supports) post = Postprocessor(beam, 10) print(max(post.interp('moment'))) print(min(post.interp('moment'))) plt.plot(post.interp('moment')) plt.show() print(max(post.interp('shear'))) print(min(post.interp('shear'))) plt.plot(post.interp('shear')) plt.show() pre = Preprocessor() pre.load_json('ex_json/test2m.json') elems = [Element(elem) for elem in pre.elements] beam = Beam(elems, pre.supports) post = Postprocessor(beam, 10) print(max(post.interp('moment'))) print(min(post.interp('moment'))) plt.plot(post.interp('moment')) plt.show() print(max(post.interp('shear'))) print(min(post.interp('shear'))) plt.plot(post.interp('shear')) plt.show() pre = Preprocessor() pre.load_json('ex_json/test2mm.json') elems = [Element(elem) for elem in pre.elements] beam = Beam(elems, pre.supports) post = Postprocessor(beam, 10) print(max(post.interp('moment'))) print(min(post.interp('moment'))) plt.plot(post.interp('moment')) plt.show() print(max(post.interp('shear'))) print(min(post.interp('shear'))) plt.plot(post.interp('shear')) plt.show() pre = Preprocessor() pre.load_json('ex_json/test2mmm.json') elems = [Element(elem) for elem in pre.elements] beam = Beam(elems, pre.supports) post = Postprocessor(beam, 10) print(max(post.interp('moment'))) print(min(post.interp('moment'))) plt.plot(post.interp('moment')) plt.show() print(max(post.interp('shear'))) print(min(post.interp('shear'))) plt.plot(post.interp('shear')) plt.show()
mit
Garrett-R/scikit-learn
examples/decomposition/plot_image_denoising.py
84
5820
""" ========================================= Image denoising using dictionary learning ========================================= An example comparing the effect of reconstructing noisy fragments of the Lena image using firstly online :ref:`DictionaryLearning` and various transform methods. The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available. A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise. It can be seen from the plots that the results of :ref:`omp` with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm. The result of :ref:`least_angle_regression` is much more strongly biased: the difference is reminiscent of the local intensity value of the original image. Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation. """ print(__doc__) from time import time import matplotlib.pyplot as plt import numpy as np from scipy.misc import lena from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.feature_extraction.image import extract_patches_2d from sklearn.feature_extraction.image import reconstruct_from_patches_2d ############################################################################### # Load Lena image and extract patches lena = lena() / 256.0 # downsample for higher speed lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena /= 4.0 height, width = lena.shape # Distort the right half of the image print('Distorting image...') distorted = lena.copy() distorted[:, height // 2:] += 0.075 * np.random.randn(width, height // 2) # Extract all reference patches from the left half of the image print('Extracting reference patches...') t0 = time() patch_size = (7, 7) data = extract_patches_2d(distorted[:, :height // 2], patch_size) data = data.reshape(data.shape[0], -1) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) print('done in %.2fs.' % (time() - t0)) ############################################################################### # Learn the dictionary from reference patches print('Learning the dictionary...') t0 = time() dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500) V = dico.fit(data).components_ dt = time() - t0 print('done in %.2fs.' % dt) plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(V[:100]): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Dictionary learned from Lena patches\n' + 'Train time %.1fs on %d patches' % (dt, len(data)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) ############################################################################### # Display the distorted image def show_with_diff(image, reference, title): """Helper function to display denoising""" plt.figure(figsize=(5, 3.3)) plt.subplot(1, 2, 1) plt.title('Image') plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.subplot(1, 2, 2) difference = image - reference plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2))) plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle(title, size=16) plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2) show_with_diff(distorted, lena, 'Distorted image') ############################################################################### # Extract noisy patches and reconstruct them using the dictionary print('Extracting noisy patches... ') t0 = time() data = extract_patches_2d(distorted[:, height // 2:], patch_size) data = data.reshape(data.shape[0], -1) intercept = np.mean(data, axis=0) data -= intercept print('done in %.2fs.' % (time() - t0)) transform_algorithms = [ ('Orthogonal Matching Pursuit\n1 atom', 'omp', {'transform_n_nonzero_coefs': 1}), ('Orthogonal Matching Pursuit\n2 atoms', 'omp', {'transform_n_nonzero_coefs': 2}), ('Least-angle regression\n5 atoms', 'lars', {'transform_n_nonzero_coefs': 5}), ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})] reconstructions = {} for title, transform_algorithm, kwargs in transform_algorithms: print(title + '...') reconstructions[title] = lena.copy() t0 = time() dico.set_params(transform_algorithm=transform_algorithm, **kwargs) code = dico.transform(data) patches = np.dot(code, V) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() patches += intercept patches = patches.reshape(len(data), *patch_size) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() reconstructions[title][:, height // 2:] = reconstruct_from_patches_2d( patches, (width, height // 2)) dt = time() - t0 print('done in %.2fs.' % dt) show_with_diff(reconstructions[title], lena, title + ' (time: %.1fs)' % dt) plt.show()
bsd-3-clause
yunque/sms-tools
lectures/03-Fourier-properties/plots-code/symmetry-real-even.py
26
1150
import matplotlib.pyplot as plt import numpy as np import sys import math from scipy.signal import triang from scipy.fftpack import fft, fftshift M = 127 N = 128 hM1 = int(math.floor((M+1)/2)) hM2 = int(math.floor(M/2)) x = triang(M) fftbuffer = np.zeros(N) fftbuffer[:hM1] = x[hM2:] fftbuffer[N-hM2:] = x[:hM2] X = fftshift(fft(fftbuffer)) mX = abs(X) pX = np.unwrap(np.angle(X)) plt.figure(1, figsize=(9.5, 4)) plt.subplot(311) plt.title('x[n]') plt.plot(np.arange(-hM2, hM1, 1.0), x, 'b', lw=1.5) plt.axis([-hM2, hM1, 0, 1]) plt.subplot(323) plt.title('real(X)') plt.plot(np.arange(-N/2, N/2, 1.0), np.real(X), 'r', lw=1.5) plt.axis([-N/2, N/2, min(np.real(X)), max(np.real(X))]) plt.subplot(324) plt.title('im(X)') plt.plot(np.arange(-N/2, N/2, 1.0), np.imag(X), 'c', lw=1.5) plt.axis([-N/2, N/2, -1, 1]) plt.subplot(325) plt.title('abs(X)') plt.plot(np.arange(-N/2, N/2, 1.0), mX, 'r', lw=1.5) plt.axis([-N/2,N/2,min(mX),max(mX)]) plt.subplot(326) plt.title('angle(X)') plt.plot(np.arange(-N/2, N/2, 1.0), pX, 'c', lw=1.5) plt.axis([-N/2, N/2, -1, 1]) plt.tight_layout() plt.savefig('symmetry-real-even.png') plt.show()
agpl-3.0
nickgentoo/LSTM-timepredictionPMdata
code/nick_evaluate_suffix_and_remaining_time_only_time_OHenc.py
1
15048
''' this script takes as input the LSTM or RNN weights found by train.py change the path in line 178 of this script to point to the h5 file with LSTM or RNN weights generated by train.py Author: Niek Tax ''' from __future__ import division from keras.models import load_model import csv import copy import numpy as np import distance from itertools import izip from jellyfish._jellyfish import damerau_levenshtein_distance import unicodecsv from sklearn import metrics from math import sqrt import time from datetime import datetime, timedelta import matplotlib.pyplot as plt from collections import Counter from keras.models import model_from_json import sys fileprefix=sys.argv[1] eventlog = sys.argv[2] csvfile = open('../data/%s' % eventlog, 'r') spamreader = csv.reader(csvfile, delimiter=',', quotechar='|') next(spamreader, None) # skip the headers ascii_offset = 161 lastcase = '' line = '' firstLine = True lines = [] timeseqs = [] timeseqs2 = [] timeseqs3 = [] timeseqs4 = [] y_times = [] times = [] times2 = [] times3 = [] times4 = [] # nick attributes = [] attributes_dict = [] attributes_sizes = [] numlines = 0 casestarttime = None lasteventtime = None csvfile = open('../data/%s' % eventlog, 'r') spamreader = csv.reader(csvfile, delimiter=',', quotechar='|') next(spamreader, None) # skip the headers ascii_offset = 161 y = [] for row in spamreader: #print(row) t = time.strptime(row[2], "%Y-%m-%d %H:%M:%S") #test different format #t = 0#time.strptime(row[2], "%Y/%m/%d %H:%M:%S") if row[0]!=lastcase: casestarttime = t lasteventtime = t lastcase = row[0] if not firstLine: #print (line) lines.append(line) timeseqs.append(times) timeseqs2.append(times2) #target y_times.extend([times2[-1]-k for k in times2]) timeseqs3.append(times3) timeseqs4.append(times4) for i in xrange(len(attributes)): #print(attributesvalues[i]) attributes[i].append(attributesvalues[i]) else: #if firstline. I have to add te elements to attributes for a in row[3:]: attributes.append([]) attributes_dict.append({}) attributes_sizes.append(0) #print(attributes) n_events_in_trace=0 line = '' times = [] times2 = [] times3 = [] times4 = [] attributesvalues = [ ] numlines+=1 n_events_in_trace+=1 line+=unichr(int(row[1])+ascii_offset) timesincelastevent = datetime.fromtimestamp(time.mktime(t))-datetime.fromtimestamp(time.mktime(lasteventtime)) timesincecasestart = datetime.fromtimestamp(time.mktime(t))-datetime.fromtimestamp(time.mktime(casestarttime)) midnight = datetime.fromtimestamp(time.mktime(t)).replace(hour=0, minute=0, second=0, microsecond=0) timesincemidnight = datetime.fromtimestamp(time.mktime(t))-midnight timediff = 86400 * timesincelastevent.days + timesincelastevent.seconds timediff2 = 86400 * timesincecasestart.days + timesincecasestart.seconds timediff3 = timesincemidnight.seconds timediff4 = datetime.fromtimestamp(time.mktime(t)).weekday() times.append(timediff) times2.append(timediff2) times3.append(timediff3) times4.append(timediff4) lasteventtime = t firstLine = False indexnick=0 for a in row[3:]: if len(attributesvalues)<=indexnick: attributesvalues.append([]) a=a.strip('"') #todo cast a intero se e intero if if a!="": try: attr=float(a) attributesvalues[indexnick].append(attr) #print("float attr") #print(a) except: if a not in attributes_dict[indexnick]: attributes_dict[indexnick][a]=attributes_sizes[indexnick]+1 attributes_sizes[indexnick]=attributes_sizes[indexnick]+1 attributesvalues[indexnick].append(attributes_dict[indexnick][a]) else: attributesvalues[indexnick].append(-1) # if a in attributes_dict[indexnick]: # attributesvalues.append(attributes_dict[indexnick][a]) # else: # attributes_dict[indexnick][a]=attributes_sizes[indexnick] # attributes_sizes[indexnick]+=1 # attributesvalues.append(attributes_dict[indexnick][a]) indexnick+=1 # add last case lines.append(line) timeseqs.append(times) timeseqs2.append(times2) timeseqs3.append(times3) timeseqs4.append(times4) y_times.extend([times2[-1] - k for k in times2]) for i in xrange(len(attributes)): attributes[i].append(attributesvalues[i]) numlines+=1 divisor = np.mean([item for sublist in timeseqs for item in sublist]) print('divisor: {}'.format(divisor)) divisor2 = np.mean([item for sublist in timeseqs2 for item in sublist]) print('divisor2: {}'.format(divisor2)) step = 1 sentences = [] softness = 0 next_chars = [] lines = map(lambda x: x + '!', lines) maxlen = max(map(lambda x: len(x), lines)) chars = map(lambda x: set(x), lines) chars = list(set().union(*chars)) chars.sort() target_chars = copy.copy(chars) chars.remove('!') lines = map(lambda x: x[:-2], lines) print('total chars: {}, target chars: {}'.format(len(chars), len(target_chars))) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) target_char_indices = dict((c, i) for i, c in enumerate(target_chars)) target_indices_char = dict((i, c) for i, c in enumerate(target_chars)) #print(indices_char) elems_per_fold = int(round(numlines / 3)) fold1 = lines[:elems_per_fold] fold1_t = timeseqs[:elems_per_fold] fold1_t2 = timeseqs2[:elems_per_fold] fold1_t3 = timeseqs3[:elems_per_fold] fold1_t4 = timeseqs4[:elems_per_fold] with open('output_files/folds/' + eventlog + 'fold1.csv', 'wb') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) for row, timeseq in izip(fold1, fold1_t): spamwriter.writerow([unicode(s).encode("utf-8") + '#{}'.format(t) for s, t in izip(row, timeseq)]) fold2 = lines[elems_per_fold:2 * elems_per_fold] fold2_t = timeseqs[elems_per_fold:2 * elems_per_fold] fold2_t2 = timeseqs2[elems_per_fold:2 * elems_per_fold] fold2_t3 = timeseqs3[elems_per_fold:2 * elems_per_fold] fold2_t4 = timeseqs4[elems_per_fold:2 * elems_per_fold] with open('output_files/folds/' + eventlog + 'fold2.csv', 'wb') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) for row, timeseq in izip(fold2, fold2_t): spamwriter.writerow([unicode(s).encode("utf-8") + '#{}'.format(t) for s, t in izip(row, timeseq)]) fold3 = lines[2 * elems_per_fold:] fold3_t = timeseqs[2 * elems_per_fold:] fold3_t2 = timeseqs2[2 * elems_per_fold:] fold3_t3 = timeseqs3[2 * elems_per_fold:] fold3_t4 = timeseqs4[2 * elems_per_fold:] fold3_a=[a[2*elems_per_fold:] for a in attributes] with open('output_files/folds/' + eventlog + 'fold3.csv', 'wb') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) for row, timeseq in izip(fold3, fold3_t): spamwriter.writerow([unicode(s).encode("utf-8") + '#{}'.format(t) for s, t in izip(row, timeseq)]) y_t_seq=[] for line in fold1+fold2: for i in range(0, len(line), 1): if i == 0: continue y_t_seq.append(y_times[0:i]) divisory = np.mean([item for sublist in y_t_seq for item in sublist]) print('divisory: {}'.format(divisory)) lines = fold3 lines_t = fold3_t lines_t2 = fold3_t2 lines_t3 = fold3_t3 lines_t4 = fold3_t4 attributes=fold3_a # set parameters predict_size = maxlen # load json and create model json_file = open('output_files/models/'+fileprefix+'_model.json', 'r') loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json) # load weights into new model model.load_weights("output_files/models/"+fileprefix+"_weights_best.h5") print("Loaded model from disk") y_t_seq=[] # load model, set this to the model generated by train.py #model = load_model('output_files/models/200_model_59-1.50.h5') # define helper functions def encode(ex, sentence, times,times2, times3,times4, sentences_attributes,maxlen=maxlen): #num_features = len(chars)+5+len(sentences_attributes) num_features = len(chars) + 5 for idx in xrange(len(attributes)): num_features += attributes_sizes[idx] + 1 #print(num_features) X = np.zeros((1, maxlen, num_features), dtype=np.float32) leftpad = maxlen-len(sentence) times2 = np.cumsum(times) #print "sentence",len(sentence) for t, char in enumerate(sentence): #print(t) #midnight = times3[t].replace(hour=0, minute=0, second=0, microsecond=0) #timesincemidnight = times3[t]-midnight multiset_abstraction = Counter(sentence[:t+1]) for c in chars: if c==char: X[0, t+leftpad, char_indices[c]] = 1 X[0, t+leftpad, len(chars)] = t+1 X[0, t+leftpad, len(chars)+1] = times[t]/divisor X[0, t+leftpad, len(chars)+2] = times2[t]/divisor2 X[0, t+leftpad, len(chars)+3] = times3[t]/86400 X[0, t+leftpad, len(chars)+4] = times4[t]/7 # for i in xrange(len(sentences_attributes)): # #print(str(i)+" "+str(t)) # #print(sentences_attributes[i][t]) # #nick check the zero, it is there because it was a list # X[0, t + leftpad, len(chars) + 5 + i] = sentences_attributes[i][t] startoh = 0 for j in xrange(len(attributes)): # X[i, t + leftpad, len(chars) + 5+j]=sentences_attributes[j][i][t] if attributes_sizes[j] > 0: X[0, t + leftpad, len(chars) + 5 + startoh + sentences_attributes[j][t]] = 1 else: X[0, t + leftpad, len(chars) + 5 + startoh] = sentences_attributes[j][t] startoh += (attributes_sizes[j] + 1) return X # # define helper functions # def encode(sentence, times, times3, sentences_attributes,maxlen=maxlen): # num_features = len(chars)+5+len(sentences_attributes) # X = np.zeros((1, maxlen, num_features), dtype=np.float32) # leftpad = maxlen-len(sentence) # times2 = np.cumsum(times) # print "sentence",len(sentence) # for t, char in enumerate(sentence): # midnight = times3[t].replace(hour=0, minute=0, second=0, microsecond=0) # timesincemidnight = times3[t]-midnight # multiset_abstraction = Counter(sentence[:t+1]) # for c in chars: # if c==char: # X[0, t+leftpad, char_indices[c]] = 1 # X[0, t+leftpad, len(chars)] = t+1 # X[0, t+leftpad, len(chars)+1] = times[t]/divisor # X[0, t+leftpad, len(chars)+2] = times2[t]/divisor2 # X[0, t+leftpad, len(chars)+3] = timesincemidnight.seconds/86400 # X[0, t+leftpad, len(chars)+4] = times3[t].weekday()/7 # for i in xrange(len(sentences_attributes)): # print(str(i)+" "+str(t)) # print(sentences_attributes[i][t]) # #nick check the zero, it is there because it was a list # X[0, t + leftpad, len(chars) + 5+i]=sentences_attributes[i][t] # return X,y def getSymbol(predictions): maxPrediction = 0 symbol = '' i = 0; for prediction in predictions: if(prediction>=maxPrediction): maxPrediction = prediction symbol = target_indices_char[i] i += 1 return symbol one_ahead_gt = [] one_ahead_pred = [] two_ahead_gt = [] two_ahead_pred = [] three_ahead_gt = [] three_ahead_pred = [] y_t_seq=[] # make predictions with open('output_files/results/'+fileprefix+'_suffix_and_remaining_time_%s' % eventlog, 'wb') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) spamwriter.writerow(["Prefix length", "Groud truth", "Ground truth times", "Predicted times", "RMSE", "MAE", "Median AE"]) #considering also size 1 prefixes #for prefix_size in range(1,maxlen): #print(prefix_size) #print(len(lines),len(attributes[0])) for ex, (line, times, times2, times3, times4) in enumerate(izip(lines, lines_t, lines_t2, lines_t3, lines_t3)): for prefix_size in range(1, len(line)):#aggiunto -1 perche non voglio avere 0 nel ground truth #print(line,ex,len(line), len(attributes[0][ex])) times.append(0) cropped_line = ''.join(line[:prefix_size]) cropped_times = times[:prefix_size] #print "times_len",len(cropped_times) cropped_times2 = times2[:prefix_size] cropped_times4 = times4[:prefix_size] cropped_times3 = times3[:prefix_size] cropped_attributes = [[] for i in xrange(len(attributes))] for j in xrange(len(attributes)): #print(attributes[j][ex]) cropped_attributes[j].extend(attributes[j][ex][0:prefix_size]) #print cropped_attributes #y_t_seq.append(y_times[0:prefix_size]) #cropped_attributes= [a[:prefix_size] for a in attributes] #print cropped_attribute ground_truth = ''.join(line[prefix_size:prefix_size+predict_size]) ground_truth_t = times2[prefix_size-1] # era -1 #print(prefix_size,len(times2)-1) case_end_time = times2[len(times2)-1] ground_truth_t = case_end_time-ground_truth_t predicted = '' total_predicted_time = 0 #perform single prediction enc = encode(ex,cropped_line, cropped_times,cropped_times2, cropped_times3,cropped_times4, cropped_attributes) y = model.predict(enc, verbose=0) # make predictions # split predictions into seperate activity and time predictions #print y y_t = y[0][0] #prediction = getSymbol(y_char) # undo one-hot encoding #cropped_line += prediction if y_t<0: y_t=0 cropped_times.append(y_t) y_t = y_t * divisor #cropped_times3.append(cropped_times3[-1] + timedelta(seconds=y_t)) total_predicted_time = total_predicted_time + y_t output = [] if len(ground_truth)>0: output.append(prefix_size) output.append(unicode(ground_truth).encode("utf-8")) output.append(ground_truth_t) output.append(total_predicted_time) output.append(metrics.mean_squared_error([ground_truth_t], [total_predicted_time])) output.append(metrics.mean_absolute_error([ground_truth_t], [total_predicted_time])) output.append(metrics.median_absolute_error([ground_truth_t], [total_predicted_time])) spamwriter.writerow(output)
gpl-3.0
mph-/lcapy
lcapy/nexpr.py
1
7914
"""This module provides the DiscreteTimeDomainExpression class to represent discrete-time expressions. Copyright 2020--2021 Michael Hayes, UCECE """ from __future__ import division from .domains import DiscreteTimeDomain from .sequence import Sequence from .functions import exp from .sym import j, oo, pi, fsym, oo from .dsym import nsym, ksym, zsym, dt from .ztransform import ztransform from .dft import DFT from .seqexpr import SequenceExpression from .nseq import DiscreteTimeDomainSequence, nseq from sympy import Sum, summation, limit, DiracDelta __all__ = ('nexpr', ) class DiscreteTimeDomainExpression(DiscreteTimeDomain, SequenceExpression): """Discrete-time expression or symbol.""" var = nsym seqcls = DiscreteTimeDomainSequence def __init__(self, val, **assumptions): check = assumptions.pop('check', True) if 'integer' not in assumptions: assumptions['real'] = True super(DiscreteTimeDomainExpression, self).__init__(val, **assumptions) expr = self.expr if check and expr.has(zsym) and not expr.has(Sum): raise ValueError( 'n-domain expression %s cannot depend on z' % expr) if check and expr.has(ksym) and not expr.has(Sum): raise ValueError( 'n-domain expression %s cannot depend on k' % expr) def _mul_compatible_domains(self, x): if self.domain == x.domain: return True return x.is_constant_domain def _div_compatible_domains(self, x): if self.domain == x.domain: return True return x.is_constant_domain def as_expr(self): return DiscreteTimeDomainExpression(self) def differentiate(self): """First order difference.""" result = (self.expr - self.subs(n - 1).expr) / dt return self.__class__(result, **self.assumptions) def integrate(self): """First order integration.""" from .sym import symsymbol from .utils import factor_const from .extrafunctions import UnitImpulse from .functions import u # TODO, get SymPy to optimize this case. expr = self.expr const, expr = factor_const(expr, nsym) if expr.is_Function and expr.func == UnitImpulse: return dt * u(expr.args[0]) * const msym = symsymbol('m', integer=True) result = dt * summation(self.subs(msym).expr, (msym, -oo, nsym)) return self.__class__(result, **self.assumptions) def ztransform(self, evaluate=True, **assumptions): """Determine one-sided z-transform.""" assumptions = self.assumptions.merge_and_infer(self, **assumptions) result = ztransform(self.expr, self.var, zsym, evaluate) return self.change(result, domain='Z', **assumptions) def ZT(self, **assumptions): return self.ztransform(**assumptions) def plot(self, ni=None, **kwargs): """Plot the sequence. If `ni` is not specified, it defaults to the range (-20, 20). `ni` can be a vector of specified sequence indices, a tuple specifing the range, or a constant specifying the maximum value with the minimum value set to 0. kwargs include: axes - the plot axes to use otherwise a new figure is created xlabel - the x-axis label ylabel - the y-axis label xscale - the x-axis scaling, say for plotting as ms yscale - the y-axis scaling, say for plotting mV in addition to those supported by the matplotlib plot command. The plot axes are returned. """ if ni is None: ni = (-20, 20) from .plot import plot_sequence return plot_sequence(self, ni, **kwargs) def initial_value(self): """Determine value at n = 0.""" return self.subs(0) def final_value(self): """Determine value at n = oo.""" return self.__class__(limit(self.expr, self.var, oo)) def DFT(self, N=None, evaluate=True): if N is None: from .sym import symsymbol N = symsymbol('N', integer=True, positive=True) result = DFT(self.expr, nsym, ksym, N, evaluate=evaluate) return self.change(result, domain='discrete fourier') def delay(self,m): """Delay signal by m samples.""" return self.subs(n - m) def extent(self, n1=-100, n2=100): """Determine extent of the signal. For example, nexpr([1, 1]).extent() = 2 nexpr([1, 0, 1]).extent() = 3 nexpr([0, 1, 0, 1]).extent() = 3 This performs a search between n=n1 and n=n2.""" return self.seq((n1, n2)).extent() def discrete_time_fourier_transform(self, var=None, images=oo, **assumptions): """Convert to Fourier domain using discrete time Fourier transform. Use `images = 0` to avoid the infinite number of spectral images. """ return self.DTFT(var, images, **assumptions) def DTFT(self, var=None, images=oo, **assumptions): """Convert to Fourier domain using discrete time Fourier transform. By default this returns the DTFT in terms of `f`. Use `.DTFT(w)` to get the angular frequency form, `.DTFT(F)` to get the normalised frequency form, or `.DTFT(W)` to get the normalised angular frequency form. Use `images = 0` to avoid the infinite number of spectral images. """ from .extrafunctions import UnitStep from .symbols import f, omega, Omega, F from .fexpr import fexpr from .dtft import DTFT if var is None: var = f if id(var) not in (id(f), id(F), id(omega), id(Omega)): raise ValueError('DTFT requires var to be f, F, omega, or Omega`, not %s' % var) dtft = DTFT(self.expr, self.var, fsym, images=images) result = fexpr(dtft)(var) result = result.simplify_dirac_delta() result = result.simplify_heaviside() result = result.simplify_rect() # There is a bug in SymPy when simplifying Sum('X(n - m)', (m, -oo, oo)) # result = result.simplify() result = result.cancel_terms() return result def norm_angular_fourier(self, **assumptions): from .normomegaexpr import Omega return self.DTFT()(Omega) def difference_equation(self, inputsym='x', outputsym='y', form='iir'): """Create difference equation from impulse response. `form` can be 'fir' or 'iir' ('direct form I'). """ H = self.ZT() return H.difference_equation(inputsym, outputsym, form) def remove_condition(self): """Remove the piecewise condition from the expression.""" if not self.is_conditional: return self expr = self.expr expr = expr.args[0].args[0] return self.__class__(expr) def nexpr(arg, **assumptions): """Create nExpr object. If `arg` is nsym return n""" from .expr import Expr from .seq import seq if arg is nsym: return n if isinstance(arg, Expr): if assumptions == {}: return arg return arg.__class__(arg, **assumptions) if isinstance(arg, str) and arg.startswith('{'): return nseq(arg) from numpy import ndarray if isinstance(arg, (list, ndarray)): return DiscreteTimeDomainSequence(arg, var=n).as_impulses() return DiscreteTimeDomainExpression(arg, **assumptions) from .expressionclasses import expressionclasses expressionclasses.register('discrete time', DiscreteTimeDomainExpression) n = DiscreteTimeDomainExpression('n', integer=True)
lgpl-2.1
fja05680/pinkfish
examples/310.cryptocurrencies/strategy.py
1
6833
""" The SMA-ROC-portfolio stategy. This is SMA-ROC strategy applied to a portfolio. SMA-ROC is a rate of change calculation smoothed by a moving average. This module allows us to examine this strategy and try different period, stop loss percent, margin, and whether to use a regime filter or not. We split up the total capital between the symbols in the portfolio and allocate based on either equal weight or volatility parity weight (inverse volatility). """ import datetime import matplotlib.pyplot as plt import pandas as pd from talib.abstract import * import pinkfish as pf # A custom indicator to use in this strategy. def SMA_ROC(ts, mom_lookback=1, sma_timeperiod=20, price='close'): """ Returns a series which is an SMA with of a daily MOM. """ mom = pf.MOMENTUM(ts, lookback=mom_lookback, time_frame='daily', price=price) sma_mom = SMA(mom, timeperiod=sma_timeperiod) return sma_mom default_options = { 'use_adj' : False, 'use_cache' : True, 'stock_market_calendar' : False, 'stop_loss_pct' : 1.0, 'margin' : 1, 'lookback' : 1, 'sma_timeperiod': 20, 'sma_pct_band': 0, 'use_regime_filter' : True, 'use_vola_weight' : False } class Strategy: def __init__(self, symbols, capital, start, end, options=default_options): self.symbols = symbols self.capital = capital self.start = start self.end = end self.options = options.copy() self.ts = None self.rlog = None self.tlog = None self.dbal = None self.stats = None def _algo(self): pf.TradeLog.cash = self.capital pf.TradeLog.margin = self.options['margin'] # Create a stop_loss dict for each symbol. stop_loss = {symbol:0 for symbol in self.portfolio.symbols} # stop loss pct should range between 0 and 1, user may have # expressed this as a percentage 0-100 if self.options['stop_loss_pct'] > 1: self.options['stop_loss_pct'] /= 100 upper_band = self.options['sma_pct_band']/1000 lower_band = -self.options['sma_pct_band']/1000 # Loop though timeseries. for i, row in enumerate(self.ts.itertuples()): date = row.Index.to_pydatetime() end_flag = pf.is_last_row(self.ts, i) # Get the prices for this row, put in dict p. p = self.portfolio.get_prices(row, fields=['close', 'regime', 'sma_roc', 'vola']) # Sum the inverse volatility for each row. inverse_vola_sum = 0 for symbol in self.portfolio.symbols: inverse_vola_sum += 1 / p[symbol]['vola'] # Loop though each symbol in portfolio. for symbol in self.portfolio.symbols: # Use variables to make code cleaner. close = p[symbol]['close'] regime = p[symbol]['regime'] sma_roc = p[symbol]['sma_roc'] inverse_vola = 1 / p[symbol]['vola'] # Sell Logic # First we check if an existing position in symbol should be sold # - sell sma_roc < 0 # - sell if price closes below stop loss # - sell if end of data by adjusted the percent to zero if symbol in self.portfolio.positions: if sma_roc < lower_band or close < stop_loss[symbol] or end_flag: if close < stop_loss[symbol]: print('STOP LOSS!!!') self.portfolio.adjust_percent(date, close, 0, symbol, row) # Buy Logic # First we check to see if there is an existing position, if so do nothing # - Buy if (regime > 0 or not use_regime_filter) and sma_roc > 0 else: if (regime > 0 or not self.options['use_regime_filter']) and sma_roc > upper_band: # Use volatility weight. if self.options['use_vola_weight']: weight = inverse_vola / inverse_vola_sum # Use equal weight. else: weight = 1 / len(self.portfolio.symbols) self.portfolio.adjust_percent(date, close, weight, symbol, row) # Set stop loss stop_loss[symbol] = (1-self.options['stop_loss_pct'])*close # record daily balance self.portfolio.record_daily_balance(date, row) def run(self): self.portfolio = pf.Portfolio() self.ts = self.portfolio.fetch_timeseries(self.symbols, self.start, self.end, fields=['close'], use_cache=self.options['use_cache'], use_adj=self.options['use_adj'], dir_name='cryptocurrencies', stock_market_calendar=self.options['stock_market_calendar']) # Add technical indicator: 200 sma regime filter for each symbol. def _crossover(ts, ta_param, input_column): return pf.CROSSOVER(ts, timeperiod_fast=1, timeperiod_slow=200, price=input_column, prevday=False) self.ts = self.portfolio.add_technical_indicator( self.ts, ta_func=_crossover, ta_param=None, output_column_suffix='regime', input_column_suffix='close') # Add technical indicator: volatility. def _volatility(ts, ta_param, input_column): return pf.VOLATILITY(ts, price=input_column) self.ts = self.portfolio.add_technical_indicator( self.ts, ta_func=_volatility, ta_param=None, output_column_suffix='vola', input_column_suffix='close') # Add techincal indicator: X day SMA_ROC. def _sma_roc(ts, ta_param, input_column): return SMA_ROC(ts, mom_lookback=self.options['lookback'], sma_timeperiod=self.options['sma_timeperiod'], price=input_column) self.ts = self.portfolio.add_technical_indicator( self.ts, ta_func=_sma_roc, ta_param=None, output_column_suffix='sma_roc', input_column_suffix='close') # Finalize timeseries. self.ts, self.start = self.portfolio.finalize_timeseries(self.ts, self.start) # Init trade log objects. self.portfolio.init_trade_logs(self.ts) self._algo() self._get_logs() self._get_stats() def _get_logs(self): self.rlog, self.tlog, self.dbal = self.portfolio.get_logs() def _get_stats(self): self.stats = pf.stats(self.ts, self.tlog, self.dbal, self.capital)
mit
tasoc/photometry
notes/halo_shift.py
1
2629
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ .. codeauthor:: Rasmus Handberg <rasmush@phys.au.dk> """ import numpy as np import matplotlib.pyplot as plt from astropy.io import fits import sqlite3 import os.path #------------------------------------------------------------------------------ def mag2flux(mag): """ Convert from magnitude to flux using scaling relation from aperture photometry. This is an estimate. Parameters: mag (float): Magnitude in TESS band. Returns: float: Corresponding flux value """ return 10**(-0.4*(mag - 20.54)) if __name__ == '__main__': pass folder = r'C:\Users\au195407\Documents\tess_data_local\S01_DR01-2114872' conn = sqlite3.connect(os.path.join(folder, 'todo.sqlite')) conn.row_factory = sqlite3.Row cursor = conn.cursor() cursor.execute("SELECT todolist.starid,tmag,onedge,edgeflux FROM todolist INNER JOIN diagnostics ON todolist.priority=diagnostics.priority;") results = cursor.fetchall() starid = np.array([row['starid'] for row in results], dtype='int64') tmag = np.array([row['tmag'] for row in results]) OnEdge = np.array([np.NaN if row['onedge'] is None else row['onedge'] for row in results]) EdgeFlux = np.array([np.NaN if row['edgeflux'] is None else row['edgeflux'] for row in results]) cursor.close() conn.close() print(tmag) print(OnEdge) print(EdgeFlux) tmag_limit = 3.0 flux_limit = 1e-3 indx = (OnEdge > 0) indx_halo = (tmag <= tmag_limit) & (OnEdge > 0) & (EdgeFlux/mag2flux(tmag) > flux_limit) indx_spec = (starid == 382420379) print(starid[indx_halo]) fig = plt.figure() ax = fig.add_subplot(111) plt.scatter(tmag[indx], OnEdge[indx], alpha=0.5) plt.scatter(tmag[indx_halo], OnEdge[indx_halo], marker='x', c='r') plt.xlim(xmax=tmag_limit) plt.ylim(ymin=0) ax.set_xlabel('Tmag') fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(tmag[indx], EdgeFlux[indx], alpha=0.5) ax.set_xlim(xmax=5.0) #ax.set_ylim(ymin=0.0) ax.set_yscale('log') ax.set_xlabel('Tmag') fig = plt.figure() ax = fig.add_subplot(111) plt.scatter(tmag[indx], EdgeFlux[indx]/mag2flux(tmag[indx]), alpha=0.5) plt.scatter(tmag[indx_halo], EdgeFlux[indx_halo]/mag2flux(tmag[indx_halo]), alpha=0.3, marker='x', c='r') plt.scatter(tmag[indx_spec], EdgeFlux[indx_spec]/mag2flux(tmag[indx_spec]), alpha=0.3, marker='o', c='g', lw=2) plt.plot([2.0, 6.0], [1e-3, 2e-2], 'r--') plt.axhline(flux_limit, c='r', ls='--') plt.axvline(tmag_limit, c='r', ls='--') #plt.xlim(xmax=tmag_limit) ax.set_ylim(ymin=1e-5, ymax=1) ax.set_yscale('log') ax.set_ylabel('Edge Flux / Expected Total Flux') ax.set_xlabel('Tmag') plt.show()
gpl-3.0
Barmaley-exe/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
43
1791
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model clf_1 = DecisionTreeRegressor(max_depth=2) clf_2 = DecisionTreeRegressor(max_depth=5) clf_3 = DecisionTreeRegressor(max_depth=8) clf_1.fit(X, y) clf_2.fit(X, y) clf_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = clf_1.predict(X_test) y_2 = clf_2.predict(X_test) y_3 = clf_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
JosmanPS/scikit-learn
examples/cluster/plot_lena_ward_segmentation.py
271
1998
""" =============================================================== A demo of structured Ward hierarchical clustering on Lena image =============================================================== Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in order for each segmented region to be in one piece. """ # Author : Vincent Michel, 2010 # Alexandre Gramfort, 2011 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction.image import grid_to_graph from sklearn.cluster import AgglomerativeClustering ############################################################################### # Generate data lena = sp.misc.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] X = np.reshape(lena, (-1, 1)) ############################################################################### # Define the structure A of the data. Pixels connected to their neighbors. connectivity = grid_to_graph(*lena.shape) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() n_clusters = 15 # number of regions ward = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward', connectivity=connectivity).fit(X) label = np.reshape(ward.labels_, lena.shape) print("Elapsed time: ", time.time() - st) print("Number of pixels: ", label.size) print("Number of clusters: ", np.unique(label).size) ############################################################################### # Plot the results on an image plt.figure(figsize=(5, 5)) plt.imshow(lena, cmap=plt.cm.gray) for l in range(n_clusters): plt.contour(label == l, contours=1, colors=[plt.cm.spectral(l / float(n_clusters)), ]) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
Habasari/sms-tools
lectures/08-Sound-transformations/plots-code/stftFiltering-orchestra.py
18
1677
import numpy as np import time, os, sys import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/transformations/')) import utilFunctions as UF import stftTransformations as STFTT import stft as STFT (fs, x) = UF.wavread('../../../sounds/orchestra.wav') w = np.hamming(2048) N = 2048 H = 512 # design a band stop filter using a hanning window startBin = int(N*500.0/fs) nBins = int(N*2000.0/fs) bandpass = (np.hanning(nBins) * 65.0) - 60 filt = np.zeros(N/2+1)-60 filt[startBin:startBin+nBins] = bandpass y = STFTT.stftFiltering(x, fs, w, N, H, filt) mX,pX = STFT.stftAnal(x, fs, w, N, H) mY,pY = STFT.stftAnal(y, fs, w, N, H) plt.figure(1, figsize=(12, 9)) plt.subplot(311) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(mX[0,:].size)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX)) plt.title('mX (orchestra.wav)') plt.autoscale(tight=True) plt.subplot(312) plt.plot(fs*np.arange(mX[0,:].size)/float(N), filt, 'k', lw=1.3) plt.axis([0, fs/2, -60, 7]) plt.title('filter shape') plt.subplot(313) numFrames = int(mY[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(mY[0,:].size)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mY)) plt.title('mY') plt.autoscale(tight=True) plt.tight_layout() UF.wavwrite(y, fs, 'orchestra-stft-filtering.wav') plt.savefig('stftFiltering-orchestra.png') plt.show()
agpl-3.0
heli522/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_scalability.py
225
5719
""" ============================================ Scalability of Approximate Nearest Neighbors ============================================ This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with ``n_estimators=20`` and ``n_candidates=200`` when varying the number of samples in the dataset. The first plot demonstrates the relationship between query time and index size of LSHForest. Query time is compared with the brute force method in exact nearest neighbor search for the same index sizes. The brute force queries have a very predictable linear scalability with the index (full scan). LSHForest index have sub-linear scalability profile but can be slower for small datasets. The second plot shows the speedup when using approximate queries vs brute force exact queries. The speedup tends to increase with the dataset size but should reach a plateau typically when doing queries on datasets with millions of samples and a few hundreds of dimensions. Higher dimensional datasets tends to benefit more from LSHForest indexing. The break even point (speedup = 1) depends on the dimensionality and structure of the indexed data and the parameters of the LSHForest index. The precision of approximate queries should decrease slowly with the dataset size. The speed of the decrease depends mostly on the LSHForest parameters and the dimensionality of the data. """ from __future__ import division print(__doc__) # Authors: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk> # Olivier Grisel <olivier.grisel@ensta.org> # # License: BSD 3 clause ############################################################################### import time import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Parameters of the study n_samples_min = int(1e3) n_samples_max = int(1e5) n_features = 100 n_centers = 100 n_queries = 100 n_steps = 6 n_iter = 5 # Initialize the range of `n_samples` n_samples_values = np.logspace(np.log10(n_samples_min), np.log10(n_samples_max), n_steps).astype(np.int) # Generate some structured data rng = np.random.RandomState(42) all_data, _ = make_blobs(n_samples=n_samples_max + n_queries, n_features=n_features, centers=n_centers, shuffle=True, random_state=0) queries = all_data[:n_queries] index_data = all_data[n_queries:] # Metrics to collect for the plots average_times_exact = [] average_times_approx = [] std_times_approx = [] accuracies = [] std_accuracies = [] average_speedups = [] std_speedups = [] # Calculate the average query time for n_samples in n_samples_values: X = index_data[:n_samples] # Initialize LSHForest for queries of a single neighbor lshf = LSHForest(n_estimators=20, n_candidates=200, n_neighbors=10).fit(X) nbrs = NearestNeighbors(algorithm='brute', metric='cosine', n_neighbors=10).fit(X) time_approx = [] time_exact = [] accuracy = [] for i in range(n_iter): # pick one query at random to study query time variability in LSHForest query = queries[rng.randint(0, n_queries)] t0 = time.time() exact_neighbors = nbrs.kneighbors(query, return_distance=False) time_exact.append(time.time() - t0) t0 = time.time() approx_neighbors = lshf.kneighbors(query, return_distance=False) time_approx.append(time.time() - t0) accuracy.append(np.in1d(approx_neighbors, exact_neighbors).mean()) average_time_exact = np.mean(time_exact) average_time_approx = np.mean(time_approx) speedup = np.array(time_exact) / np.array(time_approx) average_speedup = np.mean(speedup) mean_accuracy = np.mean(accuracy) std_accuracy = np.std(accuracy) print("Index size: %d, exact: %0.3fs, LSHF: %0.3fs, speedup: %0.1f, " "accuracy: %0.2f +/-%0.2f" % (n_samples, average_time_exact, average_time_approx, average_speedup, mean_accuracy, std_accuracy)) accuracies.append(mean_accuracy) std_accuracies.append(std_accuracy) average_times_exact.append(average_time_exact) average_times_approx.append(average_time_approx) std_times_approx.append(np.std(time_approx)) average_speedups.append(average_speedup) std_speedups.append(np.std(speedup)) # Plot average query time against n_samples plt.figure() plt.errorbar(n_samples_values, average_times_approx, yerr=std_times_approx, fmt='o-', c='r', label='LSHForest') plt.plot(n_samples_values, average_times_exact, c='b', label="NearestNeighbors(algorithm='brute', metric='cosine')") plt.legend(loc='upper left', fontsize='small') plt.ylim(0, None) plt.ylabel("Average query time in seconds") plt.xlabel("n_samples") plt.grid(which='both') plt.title("Impact of index size on response time for first " "nearest neighbors queries") # Plot average query speedup versus index size plt.figure() plt.errorbar(n_samples_values, average_speedups, yerr=std_speedups, fmt='o-', c='r') plt.ylim(0, None) plt.ylabel("Average speedup") plt.xlabel("n_samples") plt.grid(which='both') plt.title("Speedup of the approximate NN queries vs brute force") # Plot average precision versus index size plt.figure() plt.errorbar(n_samples_values, accuracies, std_accuracies, fmt='o-', c='c') plt.ylim(0, 1.1) plt.ylabel("precision@10") plt.xlabel("n_samples") plt.grid(which='both') plt.title("precision of 10-nearest-neighbors queries with index size") plt.show()
bsd-3-clause
kaku289/paparazzi
sw/airborne/test/ahrs/ahrs_utils.py
86
4923
#! /usr/bin/env python # Copyright (C) 2011 Antoine Drouin # # This file is part of Paparazzi. # # Paparazzi is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # Paparazzi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Paparazzi; see the file COPYING. If not, write to # the Free Software Foundation, 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # from __future__ import print_function import subprocess import numpy as np import matplotlib.pyplot as plt def run_simulation(ahrs_type, build_opt, traj_nb): print("\nBuilding ahrs") args = ["make", "clean", "run_ahrs_on_synth", "AHRS_TYPE=AHRS_TYPE_" + ahrs_type] + build_opt #print(args) p = subprocess.Popen(args=args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=False) outputlines = p.stdout.readlines() p.wait() for i in outputlines: print(" # " + i, end=' ') print() print("Running simulation") print(" using traj " + str(traj_nb)) p = subprocess.Popen(args=["./run_ahrs_on_synth", str(traj_nb)], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=False) outputlines = p.stdout.readlines() p.wait() # for i in outputlines: # print(" "+i, end=' ') # print("\n") ahrs_data_type = [('time', 'float32'), ('phi_true', 'float32'), ('theta_true', 'float32'), ('psi_true', 'float32'), ('p_true', 'float32'), ('q_true', 'float32'), ('r_true', 'float32'), ('bp_true', 'float32'), ('bq_true', 'float32'), ('br_true', 'float32'), ('phi_ahrs', 'float32'), ('theta_ahrs', 'float32'), ('psi_ahrs', 'float32'), ('p_ahrs', 'float32'), ('q_ahrs', 'float32'), ('r_ahrs', 'float32'), ('bp_ahrs', 'float32'), ('bq_ahrs', 'float32'), ('br_ahrs', 'float32')] mydescr = np.dtype(ahrs_data_type) data = [[] for dummy in xrange(len(mydescr))] # import code; code.interact(local=locals()) for line in outputlines: if line.startswith("#"): print(" " + line, end=' ') else: fields = line.strip().split(' ') #print(fields) for i, number in enumerate(fields): data[i].append(number) print() for i in xrange(len(mydescr)): data[i] = np.cast[mydescr[i]](data[i]) return np.rec.array(data, dtype=mydescr) def plot_simulation_results(plot_true_state, lsty, label, sim_res): print("Plotting Results") # f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, sharey=True) plt.subplot(3, 3, 1) plt.plot(sim_res.time, sim_res.phi_ahrs, lsty, label=label) plt.ylabel('degres') plt.title('phi') plt.legend() plt.subplot(3, 3, 2) plt.plot(sim_res.time, sim_res.theta_ahrs, lsty) plt.title('theta') plt.subplot(3, 3, 3) plt.plot(sim_res.time, sim_res.psi_ahrs, lsty) plt.title('psi') plt.subplot(3, 3, 4) plt.plot(sim_res.time, sim_res.p_ahrs, lsty) plt.ylabel('degres/s') plt.title('p') plt.subplot(3, 3, 5) plt.plot(sim_res.time, sim_res.q_ahrs, lsty) plt.title('q') plt.subplot(3, 3, 6) plt.plot(sim_res.time, sim_res.r_ahrs, lsty) plt.title('r') plt.subplot(3, 3, 7) plt.plot(sim_res.time, sim_res.bp_ahrs, lsty) plt.ylabel('degres/s') plt.xlabel('time in s') plt.title('bp') plt.subplot(3, 3, 8) plt.plot(sim_res.time, sim_res.bq_ahrs, lsty) plt.xlabel('time in s') plt.title('bq') plt.subplot(3, 3, 9) plt.plot(sim_res.time, sim_res.br_ahrs, lsty) plt.xlabel('time in s') plt.title('br') if plot_true_state: plt.subplot(3, 3, 1) plt.plot(sim_res.time, sim_res.phi_true, 'r--') plt.subplot(3, 3, 2) plt.plot(sim_res.time, sim_res.theta_true, 'r--') plt.subplot(3, 3, 3) plt.plot(sim_res.time, sim_res.psi_true, 'r--') plt.subplot(3, 3, 4) plt.plot(sim_res.time, sim_res.p_true, 'r--') plt.subplot(3, 3, 5) plt.plot(sim_res.time, sim_res.q_true, 'r--') plt.subplot(3, 3, 6) plt.plot(sim_res.time, sim_res.r_true, 'r--') plt.subplot(3, 3, 7) plt.plot(sim_res.time, sim_res.bp_true, 'r--') plt.subplot(3, 3, 8) plt.plot(sim_res.time, sim_res.bq_true, 'r--') plt.subplot(3, 3, 9) plt.plot(sim_res.time, sim_res.br_true, 'r--') def show_plot(): plt.show()
gpl-2.0
df8oe/UHSDR
mchf-eclipse/drivers/ui/lcd/edit-8x8-font.py
4
2343
# Tool to extract 8x8 font data, save to bitmap file, and apply modifications # to source code after editing the bitmap. from __future__ import print_function from matplotlib.pyplot import imread, imsave, imshow, show import numpy as np import sys # Where to find the font data - may need updated if code has changed. source_file = 'ui_lcd_hy28_fonts.c' start_marker = 'const uint8_t GL_ASCII8x8_Table [] =' start_offset = 2 # Data starts this number of lines after start marker. end_marker = '};' # Indicates end of font data. # Image filename used in extract and insert modes. image_file = 'font-8x8.png' mode = None if len(sys.argv) > 1: mode = sys.argv[1] if mode not in ('show', 'extract', 'insert'): print("Usage: %s { show | extract | insert }" % sys.argv[0]) sys.exit(1) # Get the literals used to populate the font array in the source file lines = [line.rstrip() for line in open(source_file).readlines()] start = lines.index(start_marker) + start_offset end = start + lines[start:].index(end_marker) data = str.join("", lines[start:end]) # Eval the literals to get the values into a numpy array packed = eval("np.array([%s], np.uint8)" % data) # Reorganise into a monochrome image, with the 96 8 x 8 characters # laid out in 8 rows by 12 columns for easier viewing/editing unpacked = np.unpackbits(packed) bitmaps = unpacked.reshape(96, 8, 8) indices = np.arange(96).reshape(8, 12) image = np.block([[bitmaps[idx] for idx in row] for row in indices]) if mode == 'show': # Display font image imshow(image, cmap='binary') show() elif mode == 'extract': # Save font image imsave(image_file, image, format='png', cmap='binary') elif mode == 'insert': # Read in modified font image image = imread(image_file)[:,:,0].astype(bool) # Reorganise back to original order bitmaps = np.vstack([np.vstack(np.split(row, 12, 1)) for row in np.split(image, 8)]) unpacked = bitmaps.reshape(-1) packed = ~np.packbits(unpacked) # Replace lines of file in same format as used before grouped = packed.reshape(-1, 8) for i, group in enumerate(grouped): line = (" " + " 0x%02x," * 8) % tuple(group) lines[start + i] = line # Write out modified source file open(source_file, 'w').writelines([line + "\n" for line in lines])
gpl-3.0
kezilu/pextant
pextant/api.py
2
3350
import csv import json import logging import re from pextant.solvers.astarMesh import astarSolver from pextant.analysis.loadWaypoints import JSONloader import matplotlib.pyplot as plt logger = logging.getLogger() class Pathfinder: """ This class performs the A* path finding algorithm and contains the Cost Functions. Also includes capabilities for analysis of a path. This class still needs performance testing for maps of larger sizes. I don't believe that we will be doing anything extremely computationally intensive though. Current cost functions are Time, Distance, and (Metabolic) Energy. It would be useful to be able to optimize on other resources like battery power or water sublimated, but those are significantly more difficult because they depend on shadowing and was not implemented by Aaron. """ def __init__(self, explorer_model, environmental_model): cheating = 1 self.solver = astarSolver(environmental_model, explorer_model, optimize_on = 'Energy', heuristic_accelerate = cheating) def aStarCompletePath(self, optimize_on, waypoints, returnType="JSON", dh=None, fileName=None ): pass def completeSearch(self, optimize_on, waypoints, filepath=None ): """ Returns a tuple representing the path and the total cost of the path. The path will be a list. All activity points will be duplicated in the returned path. waypoints is a list of activityPoint objects, in the correct order. fileName is used when we would like to write stuff to a file and is currently necessary for csv return types. """ segmentsout, rawpoints, items = self.solver.solvemultipoint(waypoints) if filepath: extension = re.search('^(.+\/[^/]+)\.(\w+)$', filepath).group(2) else: extension = None if extension == "json": json.dump(segmentsout.tojson(), filepath) elif extension == "csv": header = [['isStation', 'x', 'y', 'z', 'distanceMeters', 'energyJoules', 'timeSeconds']] rows = header + segmentsout.tocsv() with open(filepath, 'wb') as csvfile: writer = csv.writer(csvfile) for row in rows: writer.writerow(row) return rows return segmentsout, rawpoints, items def completeSearchFromJSON(self, optimize_on, jsonInput, filepath=None, algorithm="A*", numTestPoints=0): jloader = JSONloader.from_string(jsonInput) waypoints = jloader.get_waypoints() #if algorithm == "A*": segmentsout,_,_ = self.completeSearch(optimize_on, waypoints, filepath) updatedjson = jloader.add_search_sol(segmentsout.list) return updatedjson if __name__ == '__main__': from pextant.analysis.loadWaypoints import loadPoints from explorers import Astronaut from EnvironmentalModel import GDALMesh hi_low = GDALMesh('maps/HI_lowqual_DEM.tif') waypoints = loadPoints('waypoints/HI_13Nov16_MD7_A.json') env_model = hi_low.loadSubSection(waypoints.geoEnvelope()) astronaut = Astronaut(80) pathfinder = Pathfinder(astronaut, env_model) out = pathfinder.aStarCompletePath('Energy', waypoints) print out
mit
qrsforever/workspace
python/learn/thinkstats/rankit.py
1
1807
#!/usr/bin/python3 # -*- coding: utf-8 -*- """This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import random import thinkstats import myplot import matplotlib.pyplot as pyplot def Sample(n=6): """Generates a sample from a standard normal variate. n: sample size Returns: list of n floats """ t = [random.normalvariate(0.0, 1.0) for i in range(n)] t.sort() return t def Samples(n=6, m=1000): """Generates m samples with size n each. n: sample size m: number of samples Returns: list of m samples """ t = [Sample(n) for i in range(m)] return t def EstimateRankits(n=6, m=1000): """Estimates the expected values of sorted random samples. n: sample size m: number of iterations Returns: list of n rankits """ t = Samples(n, m) t = zip(*t) means = [thinkstats.Mean(x) for x in t] return means def MakeNormalPlot(ys, root=None, line_options={}, **options): """Makes a normal probability plot. Args: ys: sequence of values line_options: dictionary of options for pyplot.plot options: dictionary of options for myplot.Save """ # TODO: when n is small, generate a larger sample and desample n = len(ys) xs = [random.normalvariate(0.0, 1.0) for i in range(n)] pyplot.clf() pyplot.plot(sorted(xs), sorted(ys), 'b.', markersize=3, **line_options) myplot.Save(root, xlabel = 'Standard normal values', legend=False, **options) def main(): means = EstimateRankits(84) print(means) if __name__ == "__main__": main()
mit
ralbayaty/KaggleRetina
testing/censureHistCalc.py
1
4517
from skimage.feature import CENSURE from skimage.color import rgb2gray import matplotlib.pyplot as plt import numpy as np import cv2 import sys from PIL import Image, ImageDraw def draw_keypoints(img, kp, scale): draw = ImageDraw.Draw(img) # Draw a maximum of 300 keypoints for i in range(min(len(scale),300)): x1 = kp[i,1] y1 = kp[i,0] x2 = kp[i,1]+2**scale[i] y2 = kp[i,0]+2**scale[i] coords = (x1, y1, x2, y2) draw.ellipse(coords, fill = None, outline ='white') if __name__ == '__main__': try: file_name = sys.argv[1] except: print("Didn't give me a file...") file_name = "Lenna.png" def nothing(*arg): pass # Create sliderbars to change the values of CENSURE parameters online # Defaults: min_scale=1, max_scale=7, mode='DoB', non_max_threshold=0.15, line_threshold=10 cv2.namedWindow('censure') cv2.createTrackbar('min_scale', 'censure', 1, 10, nothing) cv2.createTrackbar('max_scale', 'censure', 7, 20, nothing) cv2.createTrackbar('mode', 'censure', 2, 2, nothing) cv2.createTrackbar('non_max_threshold', 'censure', 6, 1000, nothing) cv2.createTrackbar('line_threshold', 'censure', 10, 100, nothing) # Read image from file, then inspect the image dimensions img = cv2.imread(file_name,1) height, width, channels = img.shape # Pull the different color channels from the image blue = img[:,:,0] green = img[:,:,1] red = img[:,:,2] gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Make a PIL image from each channel so we can use PIL.Iamge.thumbnail to resize if needed blue1 = Image.fromarray(blue) green1 = Image.fromarray(green) red1 = Image.fromarray(red) gray1 = Image.fromarray(gray) # Check if dimensions are above desired, if so then resize keepig aspect ratio m, n = 512, 512 if height > m or width > n: blue1.thumbnail((m,n), Image.ANTIALIAS) green1.thumbnail((m,n), Image.ANTIALIAS) red1.thumbnail((m,n), Image.ANTIALIAS) gray1.thumbnail((m,n), Image.ANTIALIAS) # CENSURE related mode_dict = {"0": "DoB", "1": "Octagon", "2": "STAR"} last_num_kp = 0 while True: vis = gray.copy() img = img1.copy() # Read the values of the sliderbars and save them to variables min_scale = cv2.getTrackbarPos('min_scale', 'censure') max_scale = cv2.getTrackbarPos('max_scale', 'censure') if min_scale is 0: min_scale = 1 if min_scale + max_scale < 3: max_scale = min_scale + 2 mode = mode_dict[str(cv2.getTrackbarPos('mode', 'censure'))] non_max_threshold = float(cv2.getTrackbarPos('non_max_threshold', 'censure'))/1000 line_threshold = cv2.getTrackbarPos('line_threshold', 'censure') # Create a CENSURE feature detector censure = CENSURE(min_scale=min_scale, max_scale=max_scale, mode=mode, non_max_threshold=non_max_threshold, line_threshold=line_threshold) # Obtain the CENSURE features censure.detect(blue1) kp_blue, scale_blue = censure.keypoints, censure.scales censure.detect(green1) kp_green, scale_green = censure.keypoints, censure.scales censure.detect(red1) kp_red, scale_red = censure.keypoints, censure.scales censure.detect(gray1) kp_gray, scale_gray = censure.keypoints, censure.scales # Print the # of features if it has changed between iterations num_kp = len(censure.keypoints) if last_num_kp != num_kp: print("Number of keypoints: " + str(len(censure.keypoints))) last_num_kp = num_kp # Draw the feature points on the images draw_keypoints(blue1, kp_blue, scale_blue) draw_keypoints(green1, kp_green, scale_green) draw_keypoints(red1, kp_red, scale_red) draw_keypoints(gray1, kp_gray, scale_gray) # Obtain the histogram of scale values plt.clf() # clear the figure from any previous plot scale_hist, bin_edges = np.histogram(censure.scales,max_scale-min_scale, (min_scale,max_scale+1)) plt.bar(bin_edges[:-1]-0.5, scale_hist, width = 1) plt.show(block=False) plt.draw() # Show the image with keypoints drawn over image = cv2.cvtColor(np.asarray(img),cv2.COLOR_BGR2RGB) cv2.imshow('censure', image) if 0xFF & cv2.waitKey(500) == 27: break cv2.destroyAllWindows()
gpl-2.0
gfyoung/numpy
numpy/lib/twodim_base.py
2
27180
""" Basic functions for manipulating 2d arrays """ from __future__ import division, absolute_import, print_function import functools from numpy.core.numeric import ( absolute, asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types, diagonal, nonzero ) from numpy.core import overrides from numpy.core import iinfo, transpose __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def _flip_dispatcher(m): return (m,) @array_function_dispatch(_flip_dispatcher) def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to m[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.fliplr(A) array([[ 0., 0., 1.], [ 0., 2., 0.], [ 3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A) == A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] @array_function_dispatch(_flip_dispatcher) def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``m[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.flipud(A) array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A) == A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] def eye(N, M=None, k=0, dtype=float, order='C'): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. order : {'C', 'F'}, optional Whether the output should be stored in row-major (C-style) or column-major (Fortran-style) order in memory. .. versionadded:: 1.14.0 Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype, order=order) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def _diag_dispatcher(v, k=None): return (v,) @array_function_dispatch(_diag_dispatcher) def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asanyarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return diagonal(v, k) else: raise ValueError("Input must be 1- or 2-d.") @array_function_dispatch(_diag_dispatcher) def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def _trilu_dispatcher(m, k=None): return (m,) @array_function_dispatch(_trilu_dispatcher) def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) @array_function_dispatch(_trilu_dispatcher) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) def _vander_dispatcher(x, N=None, increasing=None): return (x,) # Originally borrowed from John Hunter and matplotlib @array_function_dispatch(_vander_dispatcher) def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def _histogram2d_dispatcher(x, y, bins=None, range=None, normed=None, weights=None, density=None): return (x, y, bins, weights) @array_function_dispatch(_histogram2d_dispatcher) def histogram2d(x, y, bins=10, range=None, normed=None, weights=None, density=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or array_like or [int, int] or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). * A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges. range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. density : bool, optional If False, the default, returns the number of samples in each bin. If True, returns the probability *density* function at the bin, ``bin_count / sample_count / bin_area``. normed : bool, optional An alias for the density argument that behaves identically. To avoid confusion with the broken normed argument to `histogram`, `density` should be preferred. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx+1,) The bin edges along the first dimension. yedges : ndarray, shape(ny+1,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt Construct a 2-D histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(2, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) >>> H = H.T # Let each row list bins with common y range. :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131, title='imshow: square bins') >>> plt.imshow(H, interpolation='nearest', origin='low', ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges: >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', ... aspect='equal') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to display actual bin edges with interpolation: >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights, density) return hist, edges[0], edges[1] def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return nonzero(a != 0) def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return nonzero(tri(n, m, k=k, dtype=bool)) def _trilu_indices_form_dispatcher(arr, k=None): return (arr,) @array_function_dispatch(_trilu_indices_form_dispatcher) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return nonzero(~tri(n, m, k=k-1, dtype=bool)) @array_function_dispatch(_trilu_indices_form_dispatcher) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
bsd-3-clause
deepmind/open_spiel
open_spiel/python/egt/alpharank_visualizer_test.py
1
2447
# Copyright 2019 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for open_spiel.python.egt.alpharank_visualizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest # pylint: disable=g-import-not-at-top import matplotlib matplotlib.use("agg") # switch backend for testing import mock import numpy as np from open_spiel.python.egt import alpharank from open_spiel.python.egt import alpharank_visualizer from open_spiel.python.egt import utils import pyspiel class AlpharankVisualizerTest(absltest.TestCase): @mock.patch("%s.alpharank_visualizer.plt" % __name__) def test_plot_pi_vs_alpha(self, mock_plt): # Construct game game = pyspiel.load_matrix_game("matrix_rps") payoff_tables = utils.game_payoffs_array(game) _, payoff_tables = utils.is_symmetric_matrix_game(payoff_tables) payoffs_are_hpt_format = utils.check_payoffs_are_hpt(payoff_tables) # Compute alpharank alpha = 1e2 _, _, pi, num_profiles, num_strats_per_population =\ alpharank.compute(payoff_tables, alpha=alpha) strat_labels = utils.get_strat_profile_labels(payoff_tables, payoffs_are_hpt_format) num_populations = len(payoff_tables) # Construct synthetic pi-vs-alpha history pi_list = np.empty((num_profiles, 0)) alpha_list = [] for _ in range(2): pi_list = np.append(pi_list, np.reshape(pi, (-1, 1)), axis=1) alpha_list.append(alpha) # Test plotting code (via pyplot mocking to prevent plot pop-up) alpharank_visualizer.plot_pi_vs_alpha( pi_list.T, alpha_list, num_populations, num_strats_per_population, strat_labels, num_strats_to_label=0) self.assertTrue(mock_plt.show.called) if __name__ == "__main__": absltest.main()
apache-2.0
BhallaLab/moose-core
tests/core/test_function_example.py
2
3483
# Modified from function.py --- import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import moose simtime = 1.0 def test_example(): moose.Neutral('/model') function = moose.Function('/model/function') function.c['c0'] = 1.0 function.c['c1'] = 2.0 #function.x.num = 1 function.expr = 'c0 * exp(c1*x0) * cos(y0) + sin(t)' # mode 0 - evaluate function value, derivative and rate # mode 1 - just evaluate function value, # mode 2 - evaluate derivative, # mode 3 - evaluate rate function.mode = 0 function.independent = 'y0' nsteps = 1000 xarr = np.linspace(0.0, 1.0, nsteps) # Stimulus tables allow you to store sequences of numbers which # are delivered via the 'output' message at each time step. This # is a placeholder and in real scenario you will be using any # sourceFinfo that sends out a double value. input_x = moose.StimulusTable('/xtab') input_x.vector = xarr input_x.startTime = 0.0 input_x.stepPosition = xarr[0] input_x.stopTime = simtime moose.connect(input_x, 'output', function.x[0], 'input') yarr = np.linspace(-np.pi, np.pi, nsteps) input_y = moose.StimulusTable('/ytab') input_y.vector = yarr input_y.startTime = 0.0 input_y.stepPosition = yarr[0] input_y.stopTime = simtime moose.connect(function, 'requestOut', input_y, 'getOutputValue') # data recording result = moose.Table('/ztab') moose.connect(result, 'requestOut', function, 'getValue') derivative = moose.Table('/zprime') moose.connect(derivative, 'requestOut', function, 'getDerivative') rate = moose.Table('/dz_by_dt') moose.connect(rate, 'requestOut', function, 'getRate') x_rec = moose.Table('/xrec') moose.connect(x_rec, 'requestOut', input_x, 'getOutputValue') y_rec = moose.Table('/yrec') moose.connect(y_rec, 'requestOut', input_y, 'getOutputValue') dt = simtime/nsteps for ii in range(32): moose.setClock(ii, dt) moose.reinit() moose.start(simtime) # Uncomment the following lines and the import matplotlib.pyplot as plt on top # of this file to display the plot. plt.subplot(3,1,1) plt.plot(x_rec.vector, result.vector, 'r-', label='z = {}'.format(function.expr)) z = function.c['c0'] * np.exp(function.c['c1'] * xarr) * np.cos(yarr) + np.sin(np.arange(len(xarr)) * dt) plt.plot(xarr, z, 'b--', label='numpy computed') plt.xlabel('x') plt.ylabel('z') plt.legend() plt.subplot(3,1,2) plt.plot(y_rec.vector, derivative.vector, 'r-', label='dz/dy0') # derivatives computed by putting x values in the analytical formula dzdy = function.c['c0'] * np.exp(function.c['c1'] * xarr) * (- np.sin(yarr)) plt.plot(yarr, dzdy, 'b--', label='numpy computed') plt.xlabel('y') plt.ylabel('dz/dy') plt.legend() plt.subplot(3,1,3) # *** BEWARE *** The first two entries are spurious. Entry 0 is # *** from reinit sending out the defaults. Entry 2 is because # *** there is no lastValue for computing real forward difference. plt.plot(np.arange(2, len(rate.vector), 1) * dt, rate.vector[2:], 'r-', label='dz/dt') dzdt = np.diff(z)/dt plt.plot(np.arange(0, len(dzdt), 1.0) * dt, dzdt, 'b--', label='numpy computed') plt.xlabel('t') plt.ylabel('dz/dt') plt.legend() plt.tight_layout() plt.savefig(__file__+'.png') if __name__ == '__main__': test_example()
gpl-3.0
nomadcube/scikit-learn
examples/covariance/plot_sparse_cov.py
300
5078
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <gael.varoquaux@inria.fr> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
rajat1994/scikit-learn
examples/covariance/plot_sparse_cov.py
300
5078
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <gael.varoquaux@inria.fr> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
ifarup/colourlab
tests/test_misc.py
1
1116
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ test_misc: Unittests for all functions in the misc module. Copyright (C) 2017 Ivar Farup This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import unittest import matplotlib import matplotlib.pyplot as plt from colourlab import misc, space, data t = data.g_MacAdam() ell = t.get_ellipses(space.xyY) _, ax = plt.subplots() misc.plot_ellipses(ell, ax) misc.plot_ellipses(ell) class TestPlot(unittest.TestCase): def test_plot(self): self.assertTrue(isinstance(ax, matplotlib.axes.Axes))
gpl-3.0
rlouf/patterns-of-segregation
bin/plot_gini.py
1
2527
"""plot_gini.py Plot the Gini of the income distribution as a function of the number of households in cities. """ from __future__ import division import csv import numpy as np import itertools from matplotlib import pylab as plt # # Parameters and functions # income_bins = [1000,12500,17500,22500,27500,32500,37500,42500,47500,55000,70000,90000,115000,135000,175000,300000] # Puerto-rican cities are excluded from the analysis PR_cities = ['7442','0060','6360','4840'] # # Read data # ## List of MSA msa = {} with open('data/names/msa.csv', 'r') as source: reader = csv.reader(source, delimiter='\t') reader.next() for rows in reader: if rows[0] not in PR_cities: msa[rows[0]] = rows[1] # # Compute gini for all msa # gini = [] households = [] for n, city in enumerate(msa): print "Compute Gini index for %s (%s/%s)"%(msa[city], n+1, len(msa)) ## Import households income data = {} with open('data/income/msa/%s/income.csv'%city, 'r') as source: reader = csv.reader(source, delimiter='\t') reader.next() for rows in reader: num_cat = len(rows[1:]) data[rows[0]] = {c:int(h) for c,h in enumerate(rows[1:])} # Sum over all areal units incomes = {cat:sum([data[au][cat] for au in data]) for cat in range(num_cat)} ## Compute the Gini index # See Dixon, P. M.; Weiner, J.; Mitchell-Olds, T.; and Woodley, R. # "Bootstrapping the Gini Coefficient of Inequality." Ecology 68, 1548-1551, 1987. g = 0 pop = 0 for a,b in itertools.permutations(incomes, 2): g += incomes[a]*incomes[b]*abs(income_bins[a]-income_bins[b]) pop = sum([incomes[a] for a in incomes]) average = sum([incomes[a]*income_bins[a] for a in incomes])/pop gini.append((1/(2*pop**2*average))*g) households.append(pop) # # Plot # fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(111) ax.plot(households, gini, 'o', color='black', mec='black') ax.set_xlabel(r'$H$', fontsize=30) ax.set_ylabel(r'$Gini$', fontsize=30) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 10)) # outward by 10 points ax.spines['bottom'].set_position(('outward', 10)) # outward by 10 points ax.spines['left'].set_smart_bounds(True) ax.spines['bottom'].set_smart_bounds(True) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') ax.set_xscale('log') plt.savefig('figures/paper/si/gini_income.pdf', bbox_inches='tight') plt.show()
bsd-3-clause
dhhagan/ACT
ACT/thermo/visualize.py
1
13306
""" Classes and functions used to visualize data for thermo scientific analyzers """ from pandas import Series, DataFrame import pandas as pd import datetime as dt import matplotlib.pyplot as plt import numpy as np from matplotlib import dates as d import os import math import glob import matplotlib import warnings import sys __all__ = ['diurnal_plot','diurnal_plot_single', 'ThermoPlot'] def diurnal_plot(data, dates=[], shaded=False, title="Diurnal Profile of Trace Gases", xlabel="Local Time: East St. Louis, MO"): ''' If plotting the entire DataFrame (data), choose all_data=True, else choose all_data=False and declare the date or dates to plot as a list. `data` should be a pandas core DataFrame with time index and each trace gas concentration as a column returns a single plot for NOx, SO2, and O3 >>> ''' # Check to make sure the data is a valid dataframe if not isinstance(data, pd.DataFrame): print ("data is not a pandas DataFrame, thus this will not end well for you.") exit # If length of dates is zero, plot everything if len(dates) == 0: # Plot everything, yo! pass elif len(dates) == 1: # Plot just this date data = data[dates[0]] elif len(dates) == 2: # Plot between these dates data = data[dates[0]:dates[1]] else: sys.exit("Dates are not properly configured.") # Add columns for time to enable simple diurnal trends to be found data['Time'] = data.index.map(lambda x: x.strftime("%H:%M")) # Group the data by time and grab the statistics grouped = data.groupby('Time').describe().unstack() # set the index to be a str grouped.index = pd.to_datetime(grouped.index.astype(str)) # Plot fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(10,9), sharex=True) # Set plot titles and labels ax1.set_title(title, fontsize=14) ax1.set_ylabel(r'$\ [NO_x] (ppb)$', fontsize=14, weight='bold') ax2.set_ylabel(r'$\ [SO_2] (ppb)$', fontsize=14) ax3.set_ylabel(r'$\ [O_3] (ppb)$', fontsize=14) ax3.set_xlabel(xlabel, fontsize=14) # Make the ticks invisible on the first and second plots plt.setp( ax1.get_xticklabels(), visible=False) plt.setp( ax2.get_xticklabels(), visible=False) # Set y min to zero just in case: ax1.set_ylim(0,grouped['nox']['mean'].max()*1.05) ax2.set_ylim(0,grouped['so2']['mean'].max()*1.05) ax3.set_ylim(0,grouped['o3']['mean'].max()*1.05) # Plot means ax1.plot(grouped.index, grouped['nox']['mean'],'g', linewidth=2.0) ax2.plot(grouped.index, grouped['so2']['mean'], 'r', linewidth=2.0) ax3.plot(grouped.index, grouped['o3']['mean'], 'b', linewidth=2.0) # If shaded=true, plot trends if shaded == True: ax1.plot(grouped.index, grouped['nox']['75%'],'g') ax1.plot(grouped.index, grouped['nox']['25%'],'g') ax1.set_ylim(0,grouped['nox']['75%'].max()*1.05) ax1.fill_between(grouped.index, grouped['nox']['mean'], grouped['nox']['75%'], alpha=.5, facecolor='green') ax1.fill_between(grouped.index, grouped['nox']['mean'], grouped['nox']['25%'], alpha=.5, facecolor='green') ax2.plot(grouped.index, grouped['so2']['75%'],'r') ax2.plot(grouped.index, grouped['so2']['25%'],'r') ax2.set_ylim(0,grouped['so2']['75%'].max()*1.05) ax2.fill_between(grouped.index, grouped['so2']['mean'], grouped['so2']['75%'], alpha=.5, facecolor='red') ax2.fill_between(grouped.index, grouped['so2']['mean'], grouped['so2']['25%'], alpha=.5, facecolor='red') ax3.plot(grouped.index, grouped['o3']['75%'],'b') ax3.plot(grouped.index, grouped['o3']['25%'],'b') ax3.set_ylim(0,grouped['o3']['75%'].max()*1.05) ax3.fill_between(grouped.index, grouped['o3']['mean'], grouped['o3']['75%'], alpha=.5, facecolor='blue') ax3.fill_between(grouped.index, grouped['o3']['mean'], grouped['o3']['25%'], alpha=.5, facecolor='blue') # Get/Set xticks ticks = ax1.get_xticks() ax3.set_xticks(np.linspace(ticks[0], d.date2num(d.num2date(ticks[-1]) + dt.timedelta(hours=3)), 5)) ax3.set_xticks(np.linspace(ticks[0], d.date2num(d.num2date(ticks[-1]) + dt.timedelta(hours=3)), 25), minor=True) ax3.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%I:%M %p')) # Make the layout tight to get rid of some whitespace plt.tight_layout() plt.show() return (fig, (ax1, ax2, ax3)) def diurnal_plot_single(data, model='', dates=[], shaded=False, color1 = 'blue', title="Diurnal Profile of Trace Gases", xlabel="Local Time: East St. Louis, MO", ylabel=r'$\ [NO_x] (ppb)$'): ''' `data` should be a pandas core DataFrame with time index and each trace gas concentration as a column returns a single plot for one of the three analyzers. >>>diurnal_plot_single(data,model='o3', ylabel='O3', shaded=True, color1='green') ''' # Check to make sure the data is a valid dataframe if not isinstance(data, pd.DataFrame): sys.exit("data is not a pandas DataFrame, thus this will not end well for you.") # Check to make sure the model is valid if model.lower() not in ['nox','so2','o3','sox']: sys.exit("Model is not defined correctly: options are ['nox','so2','sox','o3']") # Set model to predefined variable if model.lower() == 'nox': instr = 'nox' elif model.lower() == 'so2' or model.lower() == 'sox': instr = 'sox' else: instr = 'o3' # If not plotting all the data, truncate the dataframe to include only the needed data if len(dates) == 0: # plot everything pass elif len(dates) == 1: # plot just this date data = data[dates[0]] elif len(dates) == 2: # plot between these dates data = data[dates[0]:dates[1]] else: sys.exit("You have an error with how you defined your dates") # Add columns for time to enable simple diurnal trends to be found data['Time'] = data.index.map(lambda x: x.strftime("%H:%M")) # Group the data by time and grab the statistics grouped = data.groupby('Time').describe().unstack() # set the index to be a str grouped.index = pd.to_datetime(grouped.index.astype(str)) # Plot fig, ax = plt.subplots(1, figsize=(8,4)) # Set plot titles and labels ax.set_title(title, fontsize=14) ax.set_ylabel(ylabel, fontsize=14, weight='bold') ax.set_xlabel(xlabel, fontsize=14) # Set y min to zero just in case: ax.set_ylim(0,grouped[instr]['mean'].max()*1.05) # Plot means ax.plot(grouped.index, grouped[instr]['mean'], color1,linewidth=2.0) # If shaded=true, plot trends if shaded == True: ax.plot(grouped.index, grouped[instr]['75%'],color1) ax.plot(grouped.index, grouped[instr]['25%'],color1) ax.set_ylim(0,grouped[instr]['75%'].max()*1.05) ax.fill_between(grouped.index, grouped[instr]['mean'], grouped[instr]['75%'], alpha=.5, facecolor=color1) ax.fill_between(grouped.index, grouped[instr]['mean'], grouped[instr]['25%'], alpha=.5, facecolor=color1) # Get/Set xticks ticks = ax.get_xticks() ax.set_xticks(np.linspace(ticks[0], d.date2num(d.num2date(ticks[-1]) + dt.timedelta(hours=3)), 5)) ax.set_xticks(np.linspace(ticks[0], d.date2num(d.num2date(ticks[-1]) + dt.timedelta(hours=3)), 25), minor=True) ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%I:%M %p')) # Make the layout tight to get rid of some whitespace plt.tight_layout() plt.show() return (fig, ax) class ThermoPlot(): ''' Allows for easy plotting of internal instrument data. Currently supports the following models: - NO, NO2, NOx (42I) - O3 (49I) - SO2 (43I) ''' def __init__(self, data): self.data = data def debug_plot(self, args={}): ''' Plots thermo scientific instrument data for debugging purposes. The top plot contains internal instrument data such as flow rates and temperatures. The bottom plot contains trace gas data for the instrument. instrument must be set to either nox, so2, sox, or o3 >>> nox = ThermoPlot(data) >>> f, (a1, a2, a3) = nox.debug_plot() ''' default_args = { 'xlabel':'Local Time, East St Louis, MO', 'ylabpressure':'Flow (LPM)', 'ylabgas':'Gas Conc. (ppb)', 'ylabtemp':'Temperature (C)', 'title_fontsize':'18', 'labels_fontsize':'14', 'grid':False } # Figure out what model we are trying to plot and set instrument specific default args cols = [i.lower() for i in self.data.columns.values.tolist()] if 'o3' in cols: default_args['instrument'] = 'o3' default_args['title'] = "Debug Plot for " + r'$\ O_{3} $' + ": Model 49I" default_args['color_o3'] = 'blue' elif 'sox' in cols or 'so2' in cols: default_args['instrument'] = 'so2' default_args['title'] = "Debug Plot for " + r'$\ SO_{2} $' + ": Model 43I" default_args['color_so2'] = 'green' elif 'nox' in cols: default_args['instrument'] = 'nox' default_args['title'] = "Debug Plot for " + r'$\ NO_{x} $' + ": Model 42I" default_args['color_no'] = '#FAB923' default_args['color_nox'] = '#FC5603' default_args['color_no2'] = '#FAE823' else: sys.exit("Could not figure out what isntrument this is for") # If kwargs are set, replace the default values for key, val in default_args.iteritems(): if args.has_key(key): default_args[key] = args[key] # Set up Plot and all three axes fig, (ax1, ax3) = plt.subplots(2, figsize=(10,6), sharex=True) ax2 = ax1.twinx() # set up axes labels and titles ax1.set_title(default_args['title'], fontsize=default_args['title_fontsize']) ax1.set_ylabel(default_args['ylabpressure'], fontsize=default_args['labels_fontsize']) ax2.set_ylabel(default_args['ylabtemp'], fontsize=default_args['labels_fontsize']) ax3.set_ylabel(default_args['ylabgas'], fontsize=default_args['labels_fontsize']) ax3.set_xlabel(default_args['xlabel'], fontsize=default_args['labels_fontsize']) # Make the ticks invisible on the first and second plots plt.setp( ax1.get_xticklabels(), visible=False ) # Plot the debug data on the top graph if default_args['instrument'] == 'o3': self.data['bncht'].plot(ax=ax2, label=r'$\ T_{bench}$') self.data['lmpt'].plot(ax=ax2, label=r'$\ T_{lamp}$') self.data['flowa'].plot(ax=ax1, label=r'$\ Q_{A}$', style='--') self.data['flowb'].plot(ax=ax1, label=r'$\ Q_{B}$', style='--') self.data['o3'].plot(ax=ax3, color=default_args['color_o3'], label=r'$\ O_{3}$') elif default_args['instrument'] == 'so2': self.data['intt'].plot(ax=ax2, label=r'$\ T_{internal}$') self.data['rctt'].plot(ax=ax2, label=r'$\ T_{reactor}$') self.data['smplfl'].plot(ax=ax1, label=r'$\ Q_{sample}$', style='--') self.data['so2'].plot(ax=ax3, label=r'$\ SO_2 $', color=default_args['color_so2'], ylim=[0,self.data['so2'].max()*1.05]) else: m = max(self.data['convt'].max(),self.data['intt'].max(),self.data['pmtt'].max()) self.data['convt'].plot(ax=ax2, label=r'$\ T_{converter}$') self.data['intt'].plot(ax=ax2, label=r'$\ T_{internal}$') self.data['rctt'].plot(ax=ax2, label=r'$\ T_{reactor}$') self.data['pmtt'].plot(ax=ax2, label=r'$\ T_{PMT}$') self.data['smplf'].plot(ax=ax1, label=r'$\ Q_{sample}$', style='--') self.data['ozonf'].plot(ax=ax1, label=r'$\ Q_{ozone}$', style='--') self.data['no'].plot(ax=ax3, label=r'$\ NO $', color=default_args['color_no']) self.data['no2'].plot(ax=ax3, label=r'$\ NO_{2}$', color=default_args['color_no2']) self.data['nox'].plot(ax=ax3, label=r'$\ NO_{x}$', color=default_args['color_nox'], ylim=(0,math.ceil(self.data.nox.max()*1.05))) # Legends lines, labels = ax1.get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() plt.legend(lines+lines2, labels+labels2, bbox_to_anchor=(1.10, 1), loc=2, borderaxespad=0.) ax3.legend(bbox_to_anchor=(1.10, 1.), loc=2, borderaxespad=0.) # Hide grids? ax1.grid(default_args['grid']) ax2.grid(default_args['grid']) ax3.grid(default_args['grid']) # More of the things.. plt.tight_layout() plt.show() return fig, (ax1, ax2, ax3)
mit
ottermegazord/ottermegazord.github.io
onexi/data_processing/s05_genPlots.py
1
1460
import pandas as pd import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import os import pdb import sys plt.style.use("ggplot") os.chdir("..") ipath = "./Data/Final_Data/" ifile = "Final_Data" opath = "./Data/Final_Data/Neighborhoods/" imgpath = "./Plots/Neighborhood_TS/" ext = ".csv" input_var = raw_input("Run mode (analysis/plot): ") if input_var == "analysis": df = pd.read_csv(ipath + ifile + ext, low_memory=False) df2 = df.groupby(["TIME", "NEIGHBORHOOD"]).mean().unstack() time = df["TIME"].unique().tolist() nhood = df["NEIGHBORHOOD"].unique().tolist() nhood = [x for x in nhood if str(x) != 'nan'] for n in nhood: mean = [] for t in time: mean.append(df2.loc[t, ("AV_PER_SQFT", n)]) out_df = pd.DataFrame({'TIME': time, 'MEAN_AV_PER_SQFT': mean}) out_df.to_csv(opath + n + ext, index=False) elif input_var == "plot": def makePlot(x, y, xlabel, ylabel, title, filename): x_pos = [i for i, _ in enumerate(x)] plt.bar(x_pos, y, color='green') plt.ylabel(ylabel) plt.xlabel(xlabel) plt.title(title) plt.xticks(x_pos, x, fontsize=8) plt.savefig(filename, bbox_inches="tight", dpi=300) plt.close() nhood_files = os.listdir(opath) for f in nhood_files: nhood = f[:-4] df = pd.read_csv(opath + f, low_memory=False) makePlot(x=df["TIME"].tolist(), y=df["MEAN_AV_PER_SQFT"].tolist(), ylabel="AVG LAND VALUE ($/sqft)", xlabel="TIME (year)", title=nhood, filename=imgpath + nhood +".png")
mit
carlthome/librosa
librosa/feature/utils.py
1
8078
#!/usr/bin/env python # -*- coding: utf-8 -*- """Feature manipulation utilities""" from warnings import warn import numpy as np import scipy.signal from .._cache import cache from ..util.exceptions import ParameterError __all__ = ['delta', 'stack_memory'] @cache(level=40) def delta(data, width=9, order=1, axis=-1, mode='interp', **kwargs): r'''Compute delta features: local estimate of the derivative of the input data along the selected axis. Delta features are computed Savitsky-Golay filtering. Parameters ---------- data : np.ndarray the input data matrix (eg, spectrogram) width : int, positive, odd [scalar] Number of frames over which to compute the delta features. Cannot exceed the length of `data` along the specified axis. If `mode='interp'`, then `width` must be at least `data.shape[axis]`. order : int > 0 [scalar] the order of the difference operator. 1 for first derivative, 2 for second, etc. axis : int [scalar] the axis along which to compute deltas. Default is -1 (columns). mode : str, {'interp', 'nearest', 'mirror', 'constant', 'wrap'} Padding mode for estimating differences at the boundaries. kwargs : additional keyword arguments See `scipy.signal.savgol_filter` Returns ------- delta_data : np.ndarray [shape=(d, t)] delta matrix of `data` at specified order Notes ----- This function caches at level 40. See Also -------- scipy.signal.savgol_filter Examples -------- Compute MFCC deltas, delta-deltas >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> mfcc = librosa.feature.mfcc(y=y, sr=sr) >>> mfcc_delta = librosa.feature.delta(mfcc) >>> mfcc_delta array([[ 1.666e+01, 1.666e+01, ..., 1.869e-15, 1.869e-15], [ 1.784e+01, 1.784e+01, ..., 6.085e-31, 6.085e-31], ..., [ 7.262e-01, 7.262e-01, ..., 9.259e-31, 9.259e-31], [ 6.578e-01, 6.578e-01, ..., 7.597e-31, 7.597e-31]]) >>> mfcc_delta2 = librosa.feature.delta(mfcc, order=2) >>> mfcc_delta2 array([[ -1.703e+01, -1.703e+01, ..., 3.834e-14, 3.834e-14], [ -1.108e+01, -1.108e+01, ..., -1.068e-30, -1.068e-30], ..., [ 4.075e-01, 4.075e-01, ..., -1.565e-30, -1.565e-30], [ 1.676e-01, 1.676e-01, ..., -2.104e-30, -2.104e-30]]) >>> import matplotlib.pyplot as plt >>> plt.subplot(3, 1, 1) >>> librosa.display.specshow(mfcc) >>> plt.title('MFCC') >>> plt.colorbar() >>> plt.subplot(3, 1, 2) >>> librosa.display.specshow(mfcc_delta) >>> plt.title(r'MFCC-$\Delta$') >>> plt.colorbar() >>> plt.subplot(3, 1, 3) >>> librosa.display.specshow(mfcc_delta2, x_axis='time') >>> plt.title(r'MFCC-$\Delta^2$') >>> plt.colorbar() >>> plt.tight_layout() >>> plt.show() ''' data = np.atleast_1d(data) if mode == 'interp' and width > data.shape[axis]: raise ParameterError("when mode='interp', width={} " "cannot exceed data.shape[axis]={}".format(width, data.shape[axis])) if width < 3 or np.mod(width, 2) != 1: raise ParameterError('width must be an odd integer >= 3') if order <= 0 or not isinstance(order, int): raise ParameterError('order must be a positive integer') kwargs.pop('deriv', None) kwargs.setdefault('polyorder', order) return scipy.signal.savgol_filter(data, width, deriv=order, axis=axis, mode=mode, **kwargs) @cache(level=40) def stack_memory(data, n_steps=2, delay=1, **kwargs): """Short-term history embedding: vertically concatenate a data vector or matrix with delayed copies of itself. Each column `data[:, i]` is mapped to:: data[:, i] -> [data[:, i], data[:, i - delay], ... data[:, i - (n_steps-1)*delay]] For columns `i < (n_steps - 1) * delay` , the data will be padded. By default, the data is padded with zeros, but this behavior can be overridden by supplying additional keyword arguments which are passed to `np.pad()`. Parameters ---------- data : np.ndarray [shape=(t,) or (d, t)] Input data matrix. If `data` is a vector (`data.ndim == 1`), it will be interpreted as a row matrix and reshaped to `(1, t)`. n_steps : int > 0 [scalar] embedding dimension, the number of steps back in time to stack delay : int != 0 [scalar] the number of columns to step. Positive values embed from the past (previous columns). Negative values embed from the future (subsequent columns). kwargs : additional keyword arguments Additional arguments to pass to `np.pad`. Returns ------- data_history : np.ndarray [shape=(m * d, t)] data augmented with lagged copies of itself, where `m == n_steps - 1`. Notes ----- This function caches at level 40. Examples -------- Keep two steps (current and previous) >>> data = np.arange(-3, 3) >>> librosa.feature.stack_memory(data) array([[-3, -2, -1, 0, 1, 2], [ 0, -3, -2, -1, 0, 1]]) Or three steps >>> librosa.feature.stack_memory(data, n_steps=3) array([[-3, -2, -1, 0, 1, 2], [ 0, -3, -2, -1, 0, 1], [ 0, 0, -3, -2, -1, 0]]) Use reflection padding instead of zero-padding >>> librosa.feature.stack_memory(data, n_steps=3, mode='reflect') array([[-3, -2, -1, 0, 1, 2], [-2, -3, -2, -1, 0, 1], [-1, -2, -3, -2, -1, 0]]) Or pad with edge-values, and delay by 2 >>> librosa.feature.stack_memory(data, n_steps=3, delay=2, mode='edge') array([[-3, -2, -1, 0, 1, 2], [-3, -3, -3, -2, -1, 0], [-3, -3, -3, -3, -3, -2]]) Stack time-lagged beat-synchronous chroma edge padding >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> chroma = librosa.feature.chroma_stft(y=y, sr=sr) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512) >>> beats = librosa.util.fix_frames(beats, x_min=0, x_max=chroma.shape[1]) >>> chroma_sync = librosa.util.sync(chroma, beats) >>> chroma_lag = librosa.feature.stack_memory(chroma_sync, n_steps=3, ... mode='edge') Plot the result >>> import matplotlib.pyplot as plt >>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512) >>> librosa.display.specshow(chroma_lag, y_axis='chroma', x_axis='time', ... x_coords=beat_times) >>> plt.yticks([0, 12, 24], ['Lag=0', 'Lag=1', 'Lag=2']) >>> plt.title('Time-lagged chroma') >>> plt.colorbar() >>> plt.tight_layout() >>> plt.show() """ if n_steps < 1: raise ParameterError('n_steps must be a positive integer') if delay == 0: raise ParameterError('delay must be a non-zero integer') data = np.atleast_2d(data) t = data.shape[1] kwargs.setdefault('mode', 'constant') if kwargs['mode'] == 'constant': kwargs.setdefault('constant_values', [0]) # Pad the end with zeros, which will roll to the front below if delay > 0: padding = (int((n_steps - 1) * delay), 0) else: padding = (0, int((n_steps - 1) * -delay)) data = np.pad(data, [(0, 0), padding], **kwargs) history = data # TODO: this could be more efficient for i in range(1, n_steps): history = np.vstack([np.roll(data, -i * delay, axis=1), history]) # Trim to original width if delay > 0: history = history[:, :t] else: history = history[:, -t:] # Make contiguous return np.asfortranarray(history)
isc
michigraber/scikit-learn
examples/calibration/plot_calibration_multiclass.py
272
6972
""" ================================================== Probability Calibration for 3-class classification ================================================== This example illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem. Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green: class 2, blue: class 3). The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800 training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical classifier, which was trained on 600 datapoints, with method='sigmoid' on the remaining 200 datapoints reduces the confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center. This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base estimators which would have resulted in a similar decrease in log-loss. """ print(__doc__) # Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD Style. import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import log_loss np.random.seed(0) # Generate data X, y = make_blobs(n_samples=1000, n_features=2, random_state=42, cluster_std=5.0) X_train, y_train = X[:600], y[:600] X_valid, y_valid = X[600:800], y[600:800] X_train_valid, y_train_valid = X[:800], y[:800] X_test, y_test = X[800:], y[800:] # Train uncalibrated random forest classifier on whole train and validation # data and evaluate on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train_valid, y_train_valid) clf_probs = clf.predict_proba(X_test) score = log_loss(y_test, clf_probs) # Train random forest classifier, calibrate on validation data and evaluate # on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) sig_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit") sig_clf.fit(X_valid, y_valid) sig_clf_probs = sig_clf.predict_proba(X_test) sig_score = log_loss(y_test, sig_clf_probs) # Plot changes in predicted probabilities via arrows plt.figure(0) colors = ["r", "g", "b"] for i in range(clf_probs.shape[0]): plt.arrow(clf_probs[i, 0], clf_probs[i, 1], sig_clf_probs[i, 0] - clf_probs[i, 0], sig_clf_probs[i, 1] - clf_probs[i, 1], color=colors[y_test[i]], head_width=1e-2) # Plot perfect predictions plt.plot([1.0], [0.0], 'ro', ms=20, label="Class 1") plt.plot([0.0], [1.0], 'go', ms=20, label="Class 2") plt.plot([0.0], [0.0], 'bo', ms=20, label="Class 3") # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") # Annotate points on the simplex plt.annotate(r'($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)', xy=(1.0/3, 1.0/3), xytext=(1.0/3, .23), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.plot([1.0/3], [1.0/3], 'ko', ms=5) plt.annotate(r'($\frac{1}{2}$, $0$, $\frac{1}{2}$)', xy=(.5, .0), xytext=(.5, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $\frac{1}{2}$, $\frac{1}{2}$)', xy=(.0, .5), xytext=(.1, .5), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($\frac{1}{2}$, $\frac{1}{2}$, $0$)', xy=(.5, .5), xytext=(.6, .6), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $0$, $1$)', xy=(0, 0), xytext=(.1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($1$, $0$, $0$)', xy=(1, 0), xytext=(1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $1$, $0$)', xy=(0, 1), xytext=(.1, 1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') # Add grid plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Change of predicted probabilities after sigmoid calibration") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.legend(loc="best") print("Log-loss of") print(" * uncalibrated classifier trained on 800 datapoints: %.3f " % score) print(" * classifier trained on 600 datapoints and calibrated on " "200 datapoint: %.3f" % sig_score) # Illustrate calibrator plt.figure(1) # generate grid over 2-simplex p1d = np.linspace(0, 1, 20) p0, p1 = np.meshgrid(p1d, p1d) p2 = 1 - p0 - p1 p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()] p = p[p[:, 2] >= 0] calibrated_classifier = sig_clf.calibrated_classifiers_[0] prediction = np.vstack([calibrator.predict(this_p) for calibrator, this_p in zip(calibrated_classifier.calibrators_, p.T)]).T prediction /= prediction.sum(axis=1)[:, None] # Ploit modifications of calibrator for i in range(prediction.shape[0]): plt.arrow(p[i, 0], p[i, 1], prediction[i, 0] - p[i, 0], prediction[i, 1] - p[i, 1], head_width=1e-2, color=colors[np.argmax(p[i])]) # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Illustration of sigmoid calibrator") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.show()
bsd-3-clause
cavestruz/L500analysis
plotting/profiles/T_Vcirc_evolution/Vcirc_evolution/plot_Vcirc2_nu_binned_Vc500c.py
1
3175
from L500analysis.data_io.get_cluster_data import GetClusterData from L500analysis.utils.utils import aexp2redshift from L500analysis.plotting.tools.figure_formatting import * from L500analysis.plotting.profiles.tools.profiles_percentile \ import * from L500analysis.plotting.profiles.tools.select_profiles \ import nu_cut, prune_dict from L500analysis.utils.constants import rbins from derived_field_functions import * color = matplotlib.cm.afmhot_r aexps = [1.0,0.9,0.8,0.7,0.6,0.5,0.45,0.4,0.35] nu_threshold = [2.3,2.7] nu_label = r"%0.1f$\leq\nu_{500c}\leq$%0.1f"%(nu_threshold[0],nu_threshold[1]) db_name = 'L500_NR_0' db_dir = '/home/babyostrich/Documents/Repos/L500analysis/' profiles_list = ['r_mid', 'Vcirc2_Vc500c', 'M_dark', 'M_star', 'M_gas', 'R/R500c'] halo_properties_list=['r500c','M_total_500c','nu_500c'] Vcirc2ratioVc500c=r"$\tilde{V}=V^2_{c}/V^2_{c,500c}$" fVcz1=r"$\tilde{V}/\tilde{V}(z=1)$" pa = PlotAxes(figname='Vcirc2_Vc500c_nu%0.1f'%nu_threshold[0], axes=[[0.15,0.4,0.80,0.55],[0.15,0.15,0.80,0.24]], axes_labels=[Vcirc2ratioVc500c,fVcz1], xlabel=r"$R/R_{500c}$", xlim=(0.2,5), ylims=[(0.6,1.4),(0.6,1.4)]) Vcirc2={} clkeys = ['Vcirc2_Vc500c'] plots = [Vcirc2] linestyles = ['-'] for aexp in aexps : cldata = GetClusterData(aexp=aexp,db_name=db_name, db_dir=db_dir, profiles_list=profiles_list, halo_properties_list=halo_properties_list) nu_cut_hids = nu_cut(nu=cldata['nu_500c'], threshold=nu_threshold) for plot, key in zip(plots,clkeys) : pruned_profiles = prune_dict(d=cldata[key],k=nu_cut_hids) plot[aexp] = calculate_profiles_mean_variance(pruned_profiles) pa.axes[Vcirc2ratioVc500c].plot( rbins, Vcirc2[aexp]['mean'],color=color(aexp), ls='-',label="$z=%3.1f$" % aexp2redshift(aexp)) pa.axes[Vcirc2ratioVc500c].fill_between(rbins, Vcirc2[0.5]['down'], Vcirc2[0.5]['up'], color=color(0.5), zorder=0) for aexp in aexps : for V,ls in zip(plots,linestyles) : fractional_evolution = get_profiles_division_mean_variance( mean_profile1=V[aexp]['mean'], var_profile1=V[aexp]['var'], mean_profile2=V[0.5]['mean'], var_profile2=V[0.5]['var'], ) pa.axes[fVcz1].plot( rbins, fractional_evolution['mean'], color=color(aexp),ls=ls) pa.axes[Vcirc2ratioVc500c].annotate(nu_label, xy=(.75, .75), xytext=(.3, 1.3)) pa.axes[Vcirc2ratioVc500c].tick_params(labelsize=12) pa.axes[Vcirc2ratioVc500c].tick_params(labelsize=12) pa.axes[fVcz1].set_yticks(arange(0.6,1.4,0.2)) matplotlib.rcParams['legend.handlelength'] = 0 matplotlib.rcParams['legend.numpoints'] = 1 matplotlib.rcParams['legend.fontsize'] = 12 pa.set_legend(axes_label=Vcirc2ratioVc500c,ncol=3,loc='upper right', frameon=False) pa.color_legend_texts(axes_label=Vcirc2ratioVc500c) pa.savefig()
mit
soleneulmer/atmos
indicators_molec.py
1
4324
# =================================== # CALCULATES Ioff and Ires # Indicators described in Molecfit II # # Solene 20.09.2016 # =================================== # import numpy as np from astropy.io import fits import matplotlib.pyplot as plt # from PyAstronomy import pyasl from scipy.interpolate import interp1d from scipy.interpolate import InterpolatedUnivariateSpline from scipy import stats # from sklearn.metrics import mean_squared_error # from math import sqrt # from numpy import linalg as LA # MOLECFIT # file_molecfit = '/home/solene/atmos/For_Solene/1203nm/output/molecfit_crires_solene_tac.fits' hdu_molecfit = fits.open(file_molecfit) data_molecfit = hdu_molecfit[1].data cols_molecfit = hdu_molecfit[1].columns # cols_molecfit.info() rawwl_molecfit = data_molecfit.field('mlambda') wl_molecfit = rawwl_molecfit*10e2 trans_molecfit = data_molecfit.field('mtrans') cflux_molecfit = data_molecfit.field('cflux') # TELFIT # file_telfit = '/home/solene/atmos/trans_telfit.txt' wl_telfit, trans_telfit, wl_datatelfit, flux_datatelfit = np.loadtxt( file_telfit, unpack=True) # Interpolation f_molecfit = interp1d(wl_molecfit, cflux_molecfit, kind='cubic') ftrans_molecfit = interp1d(wl_molecfit, trans_molecfit, kind='cubic') # f_tapas = interp1d(wlcorr_tapas, trans_tapas) # **1** BINNED DATA # 3 delta-lambda = 0.036 # Mean and std deviation of bins on the telluric CORRECTED spectrum fluxmean_bin_means, bin_edges, binnumber = stats.binned_statistic( wl_datatelfit, f_molecfit(wl_datatelfit), statistic='mean', bins=np.floor((wl_datatelfit[-1]-wl_datatelfit[0])/0.036)) fluxstd_bin_means, _, _ = stats.binned_statistic( wl_datatelfit, f_molecfit(wl_datatelfit), statistic=np.std, bins=np.floor((wl_datatelfit[-1]-wl_datatelfit[0])/0.036)) bin_width = (bin_edges[1] - bin_edges[0]) bin_centers = bin_edges[1:] - bin_width/2 # **2** Bins where average TRANSMISSION is > 0.99 flux_trans_mean_bin_means, _, _ = stats.binned_statistic( wl_datatelfit, ftrans_molecfit(wl_datatelfit), statistic='mean', bins=np.floor((wl_datatelfit[-1]-wl_datatelfit[0])/0.036)) # cont_bin_means = flux_trans_mean_bin_means[flux_trans_mean_bin_means > 0.99] ind_cont = np.where(flux_trans_mean_bin_means > 0.99) ind_out = np.where((flux_trans_mean_bin_means < 0.95) & (flux_trans_mean_bin_means > 0.1)) # plt.plot(bin_centers[ind_cont], flux_trans_mean_bin_means[ind_cont], 'kx') # **3** Interpolation of the continuum cubic # f_cont = interp1d(bin_centers[ind_cont], flux_trans_mean_bin_means[ind_cont], kind='cubic') # Extrapolation with constant value spline f_cont = InterpolatedUnivariateSpline( bin_centers[ind_cont], flux_trans_mean_bin_means[ind_cont], ext=3) # bbox=[bin_centers[ind_cont][0], bin_centers[ind_cont][-1]], # **5** Subtract cont to mean flux # and Divide offset and std by interpolated continuum mean value sys_offset = (fluxmean_bin_means - f_cont(bin_centers)) / f_cont(bin_centers) flux_std = fluxstd_bin_means / f_cont(bin_centers) # **6** independant WL = Divide by average absorption absorp_molecfit = 1 - flux_trans_mean_bin_means sys_offset_final = sys_offset / absorp_molecfit flux_std_final = flux_std / absorp_molecfit plt.figure(1) plt.plot(wl_datatelfit, flux_datatelfit, 'b.-', label='Raw data') # plt.hlines(flux_bin_means, bin_edges[:-1], # bin_edges[1:], colors='g', lw=5, label='binned statistic of data') plt.plot(bin_centers, fluxmean_bin_means, 'rx-', label='Mean binned data') plt.plot(bin_centers, fluxstd_bin_means, 'kx-', label='Standard deviation binned data') plt.legend() plt.figure(2) plt.plot(wl_datatelfit, flux_datatelfit, 'g.-', label='Data 2nd detector') plt.plot(wl_molecfit, trans_molecfit, 'r-', label='Molecfit') plt.plot(wl_datatelfit, f_molecfit(wl_datatelfit), 'b-', label='Corrected data - Molecfit') plt.plot(wl_datatelfit, f_cont(wl_datatelfit), 'k-', label='Interpolated Continuum') plt.plot(sys_offset_final[ind_out], flux_std_final[ind_out], 'kx') plt.plot(flux_trans_mean_bin_means[ind_out], sys_offset_final[ind_out], 'kx', label='Ioff vs Transmission') plt.plot(flux_trans_mean_bin_means[ind_out], flux_std_final[ind_out], 'r.', label='Ires vs Transmission') plt.xlabel('Wavelength (nm)') plt.ylabel('Transmission') plt.legend(loc=3.) plt.show()
mit
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/examples/misc/rasterization_demo.py
6
1257
import numpy as np import matplotlib.pyplot as plt d = np.arange(100).reshape(10, 10) x, y = np.meshgrid(np.arange(11), np.arange(11)) theta = 0.25*np.pi xx = x*np.cos(theta) - y*np.sin(theta) yy = x*np.sin(theta) + y*np.cos(theta) ax1 = plt.subplot(221) ax1.set_aspect(1) ax1.pcolormesh(xx, yy, d) ax1.set_title("No Rasterization") ax2 = plt.subplot(222) ax2.set_aspect(1) ax2.set_title("Rasterization") m = ax2.pcolormesh(xx, yy, d) m.set_rasterized(True) ax3 = plt.subplot(223) ax3.set_aspect(1) ax3.pcolormesh(xx, yy, d) ax3.text(0.5, 0.5, "Text", alpha=0.2, va="center", ha="center", size=50, transform=ax3.transAxes) ax3.set_title("No Rasterization") ax4 = plt.subplot(224) ax4.set_aspect(1) m = ax4.pcolormesh(xx, yy, d) m.set_zorder(-20) ax4.text(0.5, 0.5, "Text", alpha=0.2, zorder=-15, va="center", ha="center", size=50, transform=ax4.transAxes) ax4.set_rasterization_zorder(-10) ax4.set_title("Rasterization z$<-10$") # ax2.title.set_rasterized(True) # should display a warning plt.savefig("test_rasterization.pdf", dpi=150) plt.savefig("test_rasterization.eps", dpi=150) if not plt.rcParams["text.usetex"]: plt.savefig("test_rasterization.svg", dpi=150) # svg backend currently ignores the dpi
gpl-2.0
fzalkow/scikit-learn
examples/plot_kernel_approximation.py
262
8004
""" ================================================== Explicit feature map approximation for RBF kernels ================================================== An example illustrating the approximation of the feature map of an RBF kernel. .. currentmodule:: sklearn.kernel_approximation It shows how to use :class:`RBFSampler` and :class:`Nystroem` to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte Carlo samplings (in the case of :class:`RBFSampler`, which uses random Fourier features) and different sized subsets of the training set (for :class:`Nystroem`) for the approximate mapping are shown. Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is still reasonably fast. Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via :class:`sklearn.linear_model.SGDClassifier`. This is not easily possible for the case of the kernelized SVM. The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data. This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the region it is lying in, since it will not lie on the plane that the first two principal components span. The usage of :class:`RBFSampler` and :class:`Nystroem` is described in detail in :ref:`kernel_approximation`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Andreas Mueller <amueller@ais.uni-bonn.de> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt import numpy as np from time import time # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, pipeline from sklearn.kernel_approximation import (RBFSampler, Nystroem) from sklearn.decomposition import PCA # The digits dataset digits = datasets.load_digits(n_class=9) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.data) data = digits.data / 16. data -= data.mean(axis=0) # We learn the digits on the first half of the digits data_train, targets_train = data[:n_samples / 2], digits.target[:n_samples / 2] # Now predict the value of the digit on the second half: data_test, targets_test = data[n_samples / 2:], digits.target[n_samples / 2:] #data_test = scaler.transform(data_test) # Create a classifier: a support vector classifier kernel_svm = svm.SVC(gamma=.2) linear_svm = svm.LinearSVC() # create pipeline from kernel approximation # and linear svm feature_map_fourier = RBFSampler(gamma=.2, random_state=1) feature_map_nystroem = Nystroem(gamma=.2, random_state=1) fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier), ("svm", svm.LinearSVC())]) nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem), ("svm", svm.LinearSVC())]) # fit and predict using linear and kernel svm: kernel_svm_time = time() kernel_svm.fit(data_train, targets_train) kernel_svm_score = kernel_svm.score(data_test, targets_test) kernel_svm_time = time() - kernel_svm_time linear_svm_time = time() linear_svm.fit(data_train, targets_train) linear_svm_score = linear_svm.score(data_test, targets_test) linear_svm_time = time() - linear_svm_time sample_sizes = 30 * np.arange(1, 10) fourier_scores = [] nystroem_scores = [] fourier_times = [] nystroem_times = [] for D in sample_sizes: fourier_approx_svm.set_params(feature_map__n_components=D) nystroem_approx_svm.set_params(feature_map__n_components=D) start = time() nystroem_approx_svm.fit(data_train, targets_train) nystroem_times.append(time() - start) start = time() fourier_approx_svm.fit(data_train, targets_train) fourier_times.append(time() - start) fourier_score = fourier_approx_svm.score(data_test, targets_test) nystroem_score = nystroem_approx_svm.score(data_test, targets_test) nystroem_scores.append(nystroem_score) fourier_scores.append(fourier_score) # plot the results: plt.figure(figsize=(8, 8)) accuracy = plt.subplot(211) # second y axis for timeings timescale = plt.subplot(212) accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel") timescale.plot(sample_sizes, nystroem_times, '--', label='Nystroem approx. kernel') accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel") timescale.plot(sample_sizes, fourier_times, '--', label='Fourier approx. kernel') # horizontal lines for exact rbf and linear kernels: accuracy.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_score, linear_svm_score], label="linear svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_time, linear_svm_time], '--', label='linear svm') accuracy.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_score, kernel_svm_score], label="rbf svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_time, kernel_svm_time], '--', label='rbf svm') # vertical line for dataset dimensionality = 64 accuracy.plot([64, 64], [0.7, 1], label="n_features") # legends and labels accuracy.set_title("Classification accuracy") timescale.set_title("Training times") accuracy.set_xlim(sample_sizes[0], sample_sizes[-1]) accuracy.set_xticks(()) accuracy.set_ylim(np.min(fourier_scores), 1) timescale.set_xlabel("Sampling steps = transformed feature dimension") accuracy.set_ylabel("Classification accuracy") timescale.set_ylabel("Training time in seconds") accuracy.legend(loc='best') timescale.legend(loc='best') # visualize the decision surface, projected down to the first # two principal components of the dataset pca = PCA(n_components=8).fit(data_train) X = pca.transform(data_train) # Gemerate grid along first two principal components multiples = np.arange(-2, 2, 0.1) # steps along first component first = multiples[:, np.newaxis] * pca.components_[0, :] # steps along second component second = multiples[:, np.newaxis] * pca.components_[1, :] # combine grid = first[np.newaxis, :, :] + second[:, np.newaxis, :] flat_grid = grid.reshape(-1, data.shape[1]) # title for the plots titles = ['SVC with rbf kernel', 'SVC (linear kernel)\n with Fourier rbf feature map\n' 'n_components=100', 'SVC (linear kernel)\n with Nystroem rbf feature map\n' 'n_components=100'] plt.tight_layout() plt.figure(figsize=(12, 5)) # predict and plot for i, clf in enumerate((kernel_svm, nystroem_approx_svm, fourier_approx_svm)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(1, 3, i + 1) Z = clf.predict(flat_grid) # Put the result into a color plot Z = Z.reshape(grid.shape[:-1]) plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired) plt.title(titles[i]) plt.tight_layout() plt.show()
bsd-3-clause
hugohmk/Epidemic-Emulator
main.py
1
7208
from epidemic_emulator import node from datetime import datetime import platform import argparse import time import os import matplotlib.pyplot as plt import random def parse_network(f, node_id, topology = "clique"): neighbors = [] nd = None t = datetime.now() t = t-t net = [] index = -1 cnt = 0 for i in f: i = i.rstrip("\n").split("|") if len(i)<4: continue u = (i[0],(i[1],int(i[2])),[(i[3],t)]) if i[0]==node_id: nd = u index = cnt net.append(u) cnt+=1 f.close() # clique if topology == "clique": neighbors = [i for i in net if i[0] != node_id] # star elif topology == "star": if index > 0: neighbors = [net[0]] else: neighbors = net[1:] return neighbors,nd def simulation_controller(args,nd,network): # Example nd value: #('9', ('127.0.0.1', 9179), [('S', datetime.timedelta(0))]) # # network is a tuple containing every node identifier constructed from # args.network (default=network.txt) file r = args.recovery_rate e = args.endogenous_rate x = args.exogenous_rate if nd is not None: with node.Node(r,e,x) as a: a.start(nd, network) if args.interaction == 1: try: help_text = """>> Commands: 0 (help) -> print this 1 (print current) -> print current network state 2 (print history) -> print network history 3 (end) -> send shutdown message to all nodes 4 (display state) -> display current network state 5 (display history) -> display network history """ print help_text while True: opt = raw_input(">> Insert command: ") if opt == "0": print help_text elif opt == "1": #print a.network_state(),"\n" a.print_state() elif opt == "2": #print a.network_history(),"\n" a.print_history() elif opt == "3": a.display_history() a.network_shutdown() a.stop() break elif opt == "4": a.display_state() elif opt == "5": a.display_history() else: print "Invalid input\n" except: a.network_shutdown() a.stop() finally: a.network_shutdown() a.stop() elif args.interaction > 1: print("Running simulation for %d seconds." % args.interaction) time.sleep(args.interaction) #a.display_history() simdata = a.save_simulation_data() a.network_shutdown() a.stop() return simdata else: try: while not a.stopped(): time.sleep(2) except: a.stop() finally: a.stop() def process_data(simdata,repetitions,simulation_time): simresults = [[-1 for t in range(simulation_time+1)] for x in range(repetitions)] print_stuff = 1 for k in range(repetitions): if print_stuff: print("") print("Run #%d" % (k+1)) print("time\tinfected count") t = 0 for event in simdata[k]: if print_stuff: print("%.2f\t%d" % (event[0],event[1])) time = int(event[0]) infected_count = event[1] if time < t: continue elif t < simulation_time+1: if print_stuff: print("* %.2f" % event[0]) while t <= time: simresults[k][t] = infected_count t = t+1 while t < simulation_time+1: simresults[k][t] = infected_count t = t+1 if print_stuff: print("") print("Processed output:") print("time\tinfected count") for t in range(simulation_time+1): print("%d\t%d" % (t,simresults[k][t])) average_results = [0.0 for t in range(simulation_time+1)] for t in range(simulation_time+1): for k in range(repetitions): average_results[t] = average_results[t] + simresults[k][t] average_results[t] = float(average_results[t]) / repetitions print(average_results) plt.plot(list(range(0,simulation_time+1)),average_results,'-o') axes = plt.gca() axes.set_xlim([0,simulation_time]) #axes.set_ylim([0,10]) plt.xlabel("Seconds") plt.ylabel("Infected nodes") plt.savefig("average_simulation.pdf") if __name__ == "__main__": dir_path = os.path.dirname(os.path.realpath(__file__)) dir_path_unix = dir_path.replace("\\","/") if (platform.system()!="Windows"): dir_path = dir_path_unix parser = argparse.ArgumentParser() parser.add_argument("-id","--identifier",required=True, help="Node identifier") parser.add_argument("-n","--network",type=argparse.FileType('r'), default = dir_path_unix+"/network.txt", help="File that contains the network's description; each line presents node_id|node_ip|port_number|initial_state") # parser.add_argument("-i","--interactive",type=int,default=0, # help="Interactive mode") parser.add_argument("-i","--interaction",type=int,default=0, help="Interaction mode: default (0), interactive (1), simulation (2)") parser.add_argument("-r","--recovery_rate",type=float,#default=1.0, help="Simulation parameter: recovery_rate") parser.add_argument("-e","--endogenous_rate",type=float,#default=1.0, help="Simulation parameter: endogenous_infection_rate") parser.add_argument("-x","--exogenous_rate",type=float,#default=1e-6, help="Simulation parameter: exogenous_infection_rate") parser.add_argument("-t","--topology",choices=["clique","star"],default="clique", help="Network topology: clique or star") args = parser.parse_args() network = {} if args.network is not None: network,nd = parse_network(args.network, args.identifier, args.topology) simulation_time = args.interaction repetitions = 1 simdata = [] for i in range(repetitions): simdata.append(simulation_controller(args,nd,network)) if args.identifier == '0': process_data(simdata,repetitions,simulation_time)
mit
vascotenner/holoviews
holoviews/plotting/mpl/annotation.py
1
3913
import matplotlib from matplotlib import patches as patches from ...core.util import match_spec from ...core.options import abbreviated_exception from .element import ElementPlot class AnnotationPlot(ElementPlot): """ AnnotationPlot handles the display of all annotation elements. """ def __init__(self, annotation, **params): self._annotation = annotation super(AnnotationPlot, self).__init__(annotation, **params) self.handles['annotations'] = [] def initialize_plot(self, ranges=None): annotation = self.hmap.last key = self.keys[-1] ranges = self.compute_ranges(self.hmap, key, ranges) ranges = match_spec(annotation, ranges) axis = self.handles['axis'] opts = self.style[self.cyclic_index] with abbreviated_exception(): handles = self.draw_annotation(axis, annotation.data, opts) self.handles['annotations'] = handles return self._finalize_axis(key, ranges=ranges) def update_handles(self, key, axis, annotation, ranges, style): # Clear all existing annotations for element in self.handles['annotations']: element.remove() with abbreviated_exception(): self.handles['annotations'] = self.draw_annotation(axis, annotation.data, style) class VLinePlot(AnnotationPlot): "Draw a vertical line on the axis" style_opts = ['alpha', 'color', 'linewidth', 'linestyle', 'visible'] def draw_annotation(self, axis, position, opts): return [axis.axvline(position, **opts)] class HLinePlot(AnnotationPlot): "Draw a horizontal line on the axis" style_opts = ['alpha', 'color', 'linewidth', 'linestyle', 'visible'] def draw_annotation(self, axis, position, opts): "Draw a horizontal line on the axis" return [axis.axhline(position, **opts)] class TextPlot(AnnotationPlot): "Draw the Text annotation object" style_opts = ['alpha', 'color', 'family', 'weight', 'rotation', 'fontsize', 'visible'] def draw_annotation(self, axis, data, opts): (x,y, text, fontsize, horizontalalignment, verticalalignment, rotation) = data opts['fontsize'] = fontsize return [axis.text(x,y, text, horizontalalignment = horizontalalignment, verticalalignment = verticalalignment, rotation=rotation, **opts)] class ArrowPlot(AnnotationPlot): "Draw an arrow using the information supplied to the Arrow annotation" _arrow_style_opts = ['alpha', 'color', 'lw', 'linewidth', 'visible'] _text_style_opts = TextPlot.style_opts style_opts = sorted(set(_arrow_style_opts + _text_style_opts)) def draw_annotation(self, axis, data, opts): direction, text, xy, points, arrowstyle = data arrowprops = dict({'arrowstyle':arrowstyle}, **{k: opts[k] for k in self._arrow_style_opts if k in opts}) textopts = {k: opts[k] for k in self._text_style_opts if k in opts} if direction in ['v', '^']: xytext = (0, points if direction=='v' else -points) elif direction in ['>', '<']: xytext = (points if direction=='<' else -points, 0) return [axis.annotate(text, xy=xy, textcoords='offset points', xytext=xytext, ha="center", va="center", arrowprops=arrowprops, **textopts)] class SplinePlot(AnnotationPlot): "Draw the supplied Spline annotation (see Spline docstring)" style_opts = ['alpha', 'edgecolor', 'linewidth', 'linestyle', 'visible'] def draw_annotation(self, axis, data, opts): verts, codes = data patch = patches.PathPatch(matplotlib.path.Path(verts, codes), facecolor='none', **opts) axis.add_patch(patch) return [patch]
bsd-3-clause
GkAntonius/feynman
examples/Solid_State_Physics/plot_eph.py
2
1265
""" Electron-phonon coupling self-energy ==================================== A diagram containing loopy lines. """ from feynman import Diagram import matplotlib.pyplot as plt fig = plt.figure(figsize=(8,2)) ax = fig.add_axes([0,0,1,1], frameon=False) ax.set_xlim(0, fig.get_size_inches()[0]) ax.set_ylim(0, fig.get_size_inches()[1]) # Init D and ax D = Diagram(ax) D.x0 = 0.2 D.y0 = sum(D.ax.get_ylim()) * .35 # Various size opwidth = 1. linlen = 2. txtpad = .8 wiggle_amplitude=.1 # Line styles Ph_style = dict(style='elliptic loopy', ellipse_spread=.6, xamp=.10, yamp=-.15, nloops=15) DW_style = dict(style='circular loopy', circle_radius=.7, xamp=.10, yamp=.15, nloops=18) G_style = dict(style='simple', arrow=True, arrow_param={'width':0.15, 'length': .3}) # Item 1 v11 = D.vertex([D.x0, D.y0]) v12 = D.vertex(v11.xy, dx=opwidth) Sigma = D.operator([v11, v12]) Sigma.text("$\Sigma^{ep}$") # Symbol D.text(v12.x + txtpad, D.y0, "=") # Item 3 v21 = D.vertex([v12.x + 2 * txtpad, D.y0 - 0.3]) v22 = D.vertex(v21.xy, dx=linlen) G = D.line(v21, v22, **G_style) Ph = D.line(v21, v22, **Ph_style) # Symbol D.text(v22.x + txtpad, D.y0, "+") # Item 3 v31 = D.vertex([v22.x + 3 * txtpad, D.y0 - 0.3]) DW = D.line(v31, v31, **DW_style) D.plot() plt.show()
gpl-3.0
LaRiffle/axa_challenge
fonction_py/train.py
1
12400
from fonction_py.tools import * from fonction_py.preprocess import * from sklearn import linear_model import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation from sklearn.linear_model import LogisticRegression from sklearn import tree from sklearn import svm from sklearn import decomposition from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.grid_search import GridSearchCV from sklearn.grid_search import RandomizedSearchCV from scipy.stats import uniform as sp_randint from sklearn import datasets from sklearn.linear_model import Ridge from fonction_py.tim import * import time def faireTout(): fields = ['DATE', 'DAY_OFF', 'WEEK_END', 'DAY_WE_DS', 'ASS_ASSIGNMENT', 'CSPL_RECEIVED_CALLS' ] # selectionne les colonnes à lire c = pd.DataFrame() <<<<<<< HEAD listmodel = faireListModel()#recupere le nom et les modeles de chaque truc data=pd.read_csv("data/trainPure.csv", sep=";", usecols=fields) # LECTURE du fichier de train, resultat = pd.read_csv("data/submission.txt", sep="\t") # LECTURE dufichier de test res=[] model = listmodel[0] for model in listmodel: print(model[0]) #affiche le ass assignment (xTest, x, souvenir, y)=preprocessTOTAL(model[0]) # ajuste le nombre et le nom de feature pour que xTest et x aient les memes mod= GradientBoostingRegressor(loss='huber', alpha=0.9,n_estimators=100, max_depth=3,learning_rate=.1, min_samples_leaf=9,min_samples_split=9) mod.fit(x, y) #s'entraine pred = mod.predict(xTest) # predit pred[pred>max(y)*1.05]=max(y)*1.05 # pour pas predire trop grand pred[pred<0]=0 # pas de negatif pred =np.round(pred).astype(int) # to int souvenir['prediction']=pred # on l'ajoute a souvenir qui garde le format standard et la date pour qu'on remette tout a la bonne place a la fin resultat=pd.merge(resultat, souvenir, how='left',on=['DATE', 'ASS_ASSIGNMENT']) # on remet chaque prediction à la bonne ligne -> il cree prediction_x et prediction_y car l'ancienne prediction et la nouvelle colonne de prediction resultat=resultat.fillna(0) # on remplit les endroits ou on a pas predit avec des 0 resultat['prediction'] = resultat['prediction_x']+resultat['prediction_y'] # merge les deux colonnes del resultat['prediction_x'] del resultat['prediction_y'] ======= listmodel = faireListModel() #'Evenements', 'Gestion Amex' #setFields = set(pd.read_csv("data/fields.txt", sep=";")['0'].values) # resultat = pd.read_csv("data/submission.txt", sep="\t") i=0 # res = [] start_time = time.time() model = listmodel[24] data=pd.read_csv("data/trainPure.csv", sep=";", usecols=fields) # LECTURE resultat = pd.read_csv("data/submission.txt", sep="\t") # LECTURE res=[] for model in listmodel: i = i+1 print(model[0]) x,y = preprocess(data.copy(), model[0]) # rajoute les features model[1].fit(x, y) #model.score(xTrain, yTrain) (xTest, souvenir)=preprocessFINAL(x,model[0]) pred = model[1].predict(xTest) pred[pred>max(y)*1.05]=max(y)*1.05 pred[pred<0]=0 pred =np.round(pred) souvenir['prediction']=int(pred) resultat=pd.merge(resultat, souvenir, how='left',on=['DATE', 'ASS_ASSIGNMENT']) resultat=resultat.fillna(0) resultat['prediction'] = resultat['prediction_x']+resultat['prediction_y'] del resultat['prediction_x'] del resultat['prediction_y'] x,y = preprocess(data.copy(), 'Téléphonie') # rajoute les features #model.score(xTrain, yTrain) (xTest, souvenir)=preprocessFINAL(x,'Téléphonie') pred=telephoniePred(x,y,xTest) pred[pred>max(y)*1.05]=max(y)*1.05 pred[pred<0]=0 pred =np.round(pred) souvenir['prediction']=int(pred) resultat=pd.merge(resultat, souvenir, how='left',on=['DATE', 'ASS_ASSIGNMENT']) resultat=resultat.fillna(0) resultat['prediction'] = resultat['prediction_x']+resultat['prediction_y'] del resultat['prediction_x'] del resultat['prediction_y'] <<<<<<< HEAD pd.DataFrame(res).to_csv("reslist.csv", sep=";", decimal=",") resultat.to_csv("vraipred.txt", sep="\t", index =False) ======= >>>>>>> origin/master resultat['prediction']=resultat['prediction'].astype(int) resultat.to_csv("pouranalyse.txt", sep="\t", index =False, encoding='utf-8') >>>>>>> origin/master return resultat def faireListModel(): return [('CAT', linear_model.LinearRegression()), ('CMS', RandomForestRegressor(bootstrap=False, criterion='mse', max_depth=5, max_features=30, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Crises',linear_model.LinearRegression()), ('Domicile', RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=30, max_features=30, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=90, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Gestion',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=30, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Gestion - Accueil Telephonique',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=20, max_features=30, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=70, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Gestion Assurances',RandomForestRegressor(bootstrap=False, criterion='mse', max_depth=20, max_features=30, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=20, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Gestion Clients', RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=10, max_features=90, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Gestion DZ', RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=5, max_features=30, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Gestion Relation Clienteles',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=10, max_features=90, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=110, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Gestion Renault', RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=30, max_features=50, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Japon',RandomForestRegressor(bootstrap=False, criterion='mse', max_depth=10, max_features=30, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Manager',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=10, max_features=30, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Mécanicien',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=20, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Médical',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=30, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Nuit', RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=20, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Prestataires',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=20, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('RENAULT',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=80, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('RTC',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=20, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Regulation Medicale',linear_model.LinearRegression()), ('SAP',RandomForestRegressor(bootstrap=False, criterion='mse', max_depth=20, max_features=30, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Services',RandomForestRegressor(bootstrap=False, criterion='mse', max_depth=30, max_features=30, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Tech. Axa',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=20, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Tech. Inter',RandomForestRegressor(bootstrap=False, criterion='mse', max_depth=30, max_features=30, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=30, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Tech. Total',RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=70, max_features='auto', max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False)), ('Téléphonie',GradientBoostingRegressor(loss='huber', alpha=0.9,n_estimators=100, max_depth=3,learning_rate=.1, min_samples_leaf=9,min_samples_split=9) )]
mit
dhhjx880713/GPy
GPy/plotting/matplot_dep/variational_plots.py
6
4094
from matplotlib import pyplot as pb, numpy as np def plot(parameterized, fignum=None, ax=None, colors=None, figsize=(12, 6)): """ Plot latent space X in 1D: - if fig is given, create input_dim subplots in fig and plot in these - if ax is given plot input_dim 1D latent space plots of X into each `axis` - if neither fig nor ax is given create a figure with fignum and plot in there colors: colors of different latent space dimensions input_dim """ if ax is None: fig = pb.figure(num=fignum, figsize=figsize) if colors is None: from ..Tango import mediumList from itertools import cycle colors = cycle(mediumList) pb.clf() else: colors = iter(colors) lines = [] fills = [] bg_lines = [] means, variances = parameterized.mean.values, parameterized.variance.values x = np.arange(means.shape[0]) for i in range(means.shape[1]): if ax is None: a = fig.add_subplot(means.shape[1], 1, i + 1) elif isinstance(ax, (tuple, list)): a = ax[i] else: raise ValueError("Need one ax per latent dimension input_dim") bg_lines.append(a.plot(means, c='k', alpha=.3)) lines.extend(a.plot(x, means.T[i], c=next(colors), label=r"$\mathbf{{X_{{{}}}}}$".format(i))) fills.append(a.fill_between(x, means.T[i] - 2 * np.sqrt(variances.T[i]), means.T[i] + 2 * np.sqrt(variances.T[i]), facecolor=lines[-1].get_color(), alpha=.3)) a.legend(borderaxespad=0.) a.set_xlim(x.min(), x.max()) if i < means.shape[1] - 1: a.set_xticklabels('') pb.draw() a.figure.tight_layout(h_pad=.01) # , rect=(0, 0, 1, .95)) return dict(lines=lines, fills=fills, bg_lines=bg_lines) def plot_SpikeSlab(parameterized, fignum=None, ax=None, colors=None, side_by_side=True): """ Plot latent space X in 1D: - if fig is given, create input_dim subplots in fig and plot in these - if ax is given plot input_dim 1D latent space plots of X into each `axis` - if neither fig nor ax is given create a figure with fignum and plot in there colors: colors of different latent space dimensions input_dim """ if ax is None: if side_by_side: fig = pb.figure(num=fignum, figsize=(16, min(12, (2 * parameterized.mean.shape[1])))) else: fig = pb.figure(num=fignum, figsize=(8, min(12, (2 * parameterized.mean.shape[1])))) if colors is None: from ..Tango import mediumList from itertools import cycle colors = cycle(mediumList) pb.clf() else: colors = iter(colors) plots = [] means, variances, gamma = parameterized.mean, parameterized.variance, parameterized.binary_prob x = np.arange(means.shape[0]) for i in range(means.shape[1]): if side_by_side: sub1 = (means.shape[1],2,2*i+1) sub2 = (means.shape[1],2,2*i+2) else: sub1 = (means.shape[1]*2,1,2*i+1) sub2 = (means.shape[1]*2,1,2*i+2) # mean and variance plot a = fig.add_subplot(*sub1) a.plot(means, c='k', alpha=.3) plots.extend(a.plot(x, means.T[i], c=next(colors), label=r"$\mathbf{{X_{{{}}}}}$".format(i))) a.fill_between(x, means.T[i] - 2 * np.sqrt(variances.T[i]), means.T[i] + 2 * np.sqrt(variances.T[i]), facecolor=plots[-1].get_color(), alpha=.3) a.legend(borderaxespad=0.) a.set_xlim(x.min(), x.max()) if i < means.shape[1] - 1: a.set_xticklabels('') # binary prob plot a = fig.add_subplot(*sub2) a.bar(x,gamma[:,i],bottom=0.,linewidth=1.,width=1.0,align='center') a.set_xlim(x.min(), x.max()) a.set_ylim([0.,1.]) pb.draw() fig.tight_layout(h_pad=.01) # , rect=(0, 0, 1, .95)) return fig
bsd-3-clause
rbalda/neural_ocr
env/lib/python2.7/site-packages/numpy/lib/npyio.py
42
71218
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(*args, **kwargs): import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object or string The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of Numpy arrays is loaded # in. Pickle does not pass on the encoding information to # Numpy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of ``.npz`` file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: usecols = list(usecols) fown = False try: if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4j %.4e %+.4j %.4e %+.4j'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings in Python 3k. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] Numpy User Guide, section `I/O with Numpy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, or generator. " "(got %s instead)" % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
mit
DrSkippy/Gravitational-Three-Body-Symmetric
sim_pendulum.py
1
1975
#!/usr/bin/env python import csv import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.style.use('ggplot') # arg 1 = w init # arg 2 = n periods # arg 3 = n ratio # time step dt = np.float64(0.00010) # constants L_0 = np.float64(1.0) # unstretched length g = np.float64(9.81) # gravitation n = np.float64(sys.argv[3]) K_over_M = (n*n - 1)*g/L_0 # initial conditions theta = np.float64(0) L = L_0 + g/K_over_M # equilibrium length with gravity # 2mgl = 1/2 m l^2 w^2 w_sep = np.sqrt(4.*g/L) w_0 = np.float64(sys.argv[1]) w = w_0 # v_l_0 = 0 v_l = v_l_0 # periods T_p = 2.*np.pi/np.sqrt(g/L) T_k = 2.*np.pi/np.sqrt(K_over_M) # record some stuff print "Tp = {} T/dt = {}".format(T_p, T_p/dt) print "Tk = {} T/dt = {}".format(T_k, T_k/dt) print "Tk/Tp = {}".format(T_k/T_p) print "w_esc = {}".format(w_sep) t = np.float64(0.0) theta_last = theta # keep some records data = [] t_s = [] theta += w*dt/2. L += v_l*dt/2. for i in range(int(sys.argv[2])*int(T_p/dt)): w += -dt*g*np.sin(theta)/L v_l += -K_over_M*(L-L_0) + g*np.cos(theta) + w*w*L theta += w*dt theta = np.fmod(theta, 2.*np.pi) L += v_l*dt t += dt data.append([t, theta, w, L, v_l]) if theta_last < 0 and theta > 0: t_s.append(t) theta_last = theta # periods by measure t_s = [t_s[i] - t_s[i-1] for i in range(1,len(t_s)) ] print "avg period = {} std periods = {}".format(np.average(t_s), np.std(t_s)) # plots df = pd.DataFrame().from_records(data) df.columns = ["t", "theta", "omega", "l", "v_l"] df.set_index("t") ax = df.plot(kind="scatter", x="theta", y="omega", marker=".") fig = ax.get_figure() fig.savefig("phase1.png") ax = df.plot(kind="scatter", x="l", y="v_l", marker=".") fig = ax.get_figure() fig.savefig("phase2.png") # config space df["y_c"] = -df["l"] df["x_c"] = df["l"] * np.sin(df["theta"]) ax = df.plot(kind="scatter", x="x_c", y="y_c", marker=".") fig = ax.get_figure() fig.savefig("config.png")
cc0-1.0
brian-o/CS-CourseWork
CS491/Program2/testForks.py
1
2677
############################################################ ''' testForks.py Written by: Brian O'Dell, Spetember 2017 A program to run each program a 500 times per thread count. Then uses the data collected to make graphs and tables that are useful to evaluate the programs running time. ''' ############################################################ from subprocess import * from numba import jit import numpy as np import csv as csv import pandas as pd from pandas.plotting import table import matplotlib.pyplot as plt ''' Call the C program multiple times with variable arguments to gather data The name of the executable should exist before running ''' @jit def doCount(name): j = 0 while (j < 1025): for i in range(0,501): call([name,"-t",str(j), "-w"]) if (j == 0): j = 1 else: j = 2*j; ''' Turn the data into something meaningful. Takes all the data gets the average and standard deviation for each number of threads. Then plots a graph based on it. Also, makes a csv with the avg and stddev ''' @jit def exportData(name): DF = pd.read_csv("data/"+name+".csv") f = {'ExecTime':['mean','std']} #group by the number of threads in the csv and #apply the mean and standard deviation functions to the groups avgDF = DF.groupby('NumThreads').agg(f) avgTable = DF.groupby('NumThreads', as_index=False).agg(f) #When the data csv was saved we used 0 to indicate serial execution #this was so the rows would be in numerical order instead of Alphabetical #Now rename index 0 to Serial to be an accurate representation indexList = avgDF.index.tolist() indexList[0] = 'Serial' avgDF.index = indexList #make the bar chart and set the axes avgPlot = avgDF.plot(kind='bar', title=('Run Times Using '+ name), legend='False', figsize=(15,8)) avgPlot.set_xlabel("Number of Forks") avgPlot.set_ylabel("Run Time (seconds)") #put the data values on top of the bars for clarity avgPlot.legend(['mean','std deviation']) for p in avgPlot.patches: avgPlot.annotate((str(p.get_height())[:6]), (p.get_x()-.01, p.get_height()), fontsize=9) #save the files we need plt.savefig('data/'+name+'Graph.png') avgTable.to_csv('data/'+name+'Table.csv', index=False, encoding='utf-8') def main(): doCount("./forkedSemaphor") doCount("./forkedPrivateCount") doCount("./forkedPrivateCount32") exportData("forkedSemaphor") exportData("forkedPrivateCount") exportData("forkedPrivateCount32") if __name__ == '__main__': main()
gpl-3.0