code
stringlengths
193
97.3k
apis
sequencelengths
1
8
extract_api
stringlengths
113
214k
# Ultralytics YOLO 🚀, AGPL-3.0 license import getpass from typing import List import cv2 import numpy as np import pandas as pd from ultralytics.data.augment import LetterBox from ultralytics.utils import LOGGER as logger from ultralytics.utils import SETTINGS from ultralytics.utils.checks import check_requirements from ultralytics.utils.ops import xyxy2xywh from ultralytics.utils.plotting import plot_images def get_table_schema(vector_size): """Extracts and returns the schema of a database table.""" from lancedb.pydantic import LanceModel, Vector class Schema(LanceModel): im_file: str labels: List[str] cls: List[int] bboxes: List[List[float]] masks: List[List[List[int]]] keypoints: List[List[List[float]]] vector: Vector(vector_size) return Schema def get_sim_index_schema(): """Returns a LanceModel schema for a database table with specified vector size.""" from lancedb.pydantic import LanceModel class Schema(LanceModel): idx: int im_file: str count: int sim_im_files: List[str] return Schema def sanitize_batch(batch, dataset_info): """Sanitizes input batch for inference, ensuring correct format and dimensions.""" batch["cls"] = batch["cls"].flatten().int().tolist() box_cls_pair = sorted(zip(batch["bboxes"].tolist(), batch["cls"]), key=lambda x: x[1]) batch["bboxes"] = [box for box, _ in box_cls_pair] batch["cls"] = [cls for _, cls in box_cls_pair] batch["labels"] = [dataset_info["names"][i] for i in batch["cls"]] batch["masks"] = batch["masks"].tolist() if "masks" in batch else [[[]]] batch["keypoints"] = batch["keypoints"].tolist() if "keypoints" in batch else [[[]]] return batch def plot_query_result(similar_set, plot_labels=True): """ Plot images from the similar set. Args: similar_set (list): Pyarrow or pandas object containing the similar data points plot_labels (bool): Whether to plot labels or not """ similar_set = ( similar_set.to_dict(orient="list") if isinstance(similar_set, pd.DataFrame) else similar_set.to_pydict() ) empty_masks = [[[]]] empty_boxes = [[]] images = similar_set.get("im_file", []) bboxes = similar_set.get("bboxes", []) if similar_set.get("bboxes") is not empty_boxes else [] masks = similar_set.get("masks") if similar_set.get("masks")[0] != empty_masks else [] kpts = similar_set.get("keypoints") if similar_set.get("keypoints")[0] != empty_masks else [] cls = similar_set.get("cls", []) plot_size = 640 imgs, batch_idx, plot_boxes, plot_masks, plot_kpts = [], [], [], [], [] for i, imf in enumerate(images): im = cv2.imread(imf) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) h, w = im.shape[:2] r = min(plot_size / h, plot_size / w) imgs.append(LetterBox(plot_size, center=False)(image=im).transpose(2, 0, 1)) if plot_labels: if len(bboxes) > i and len(bboxes[i]) > 0: box = np.array(bboxes[i], dtype=np.float32) box[:, [0, 2]] *= r box[:, [1, 3]] *= r plot_boxes.append(box) if len(masks) > i and len(masks[i]) > 0: mask = np.array(masks[i], dtype=np.uint8)[0] plot_masks.append(LetterBox(plot_size, center=False)(image=mask)) if len(kpts) > i and kpts[i] is not None: kpt = np.array(kpts[i], dtype=np.float32) kpt[:, :, :2] *= r plot_kpts.append(kpt) batch_idx.append(np.ones(len(np.array(bboxes[i], dtype=np.float32))) * i) imgs = np.stack(imgs, axis=0) masks = np.stack(plot_masks, axis=0) if plot_masks else np.zeros(0, dtype=np.uint8) kpts = np.concatenate(plot_kpts, axis=0) if plot_kpts else np.zeros((0, 51), dtype=np.float32) boxes = xyxy2xywh(np.concatenate(plot_boxes, axis=0)) if plot_boxes else np.zeros(0, dtype=np.float32) batch_idx = np.concatenate(batch_idx, axis=0) cls = np.concatenate([np.array(c, dtype=np.int32) for c in cls], axis=0) return plot_images( imgs, batch_idx, cls, bboxes=boxes, masks=masks, kpts=kpts, max_subplots=len(images), save=False, threaded=False ) def prompt_sql_query(query): """Plots images with optional labels from a similar data set.""" check_requirements("openai>=1.6.1") from openai import OpenAI if not SETTINGS["openai_api_key"]: logger.warning("OpenAI API key not found in settings. Please enter your API key below.") openai_api_key = getpass.getpass("OpenAI API key: ") SETTINGS.update({"openai_api_key": openai_api_key}) openai = OpenAI(api_key=SETTINGS["openai_api_key"]) messages = [ { "role": "system", "content": """ You are a helpful data scientist proficient in SQL. You need to output exactly one SQL query based on the following schema and a user request. You only need to output the format with fixed selection statement that selects everything from "'table'", like `SELECT * from 'table'` Schema: im_file: string not null labels: list<item: string> not null child 0, item: string cls: list<item: int64> not null child 0, item: int64 bboxes: list<item: list<item: double>> not null child 0, item: list<item: double> child 0, item: double masks: list<item: list<item: list<item: int64>>> not null child 0, item: list<item: list<item: int64>> child 0, item: list<item: int64> child 0, item: int64 keypoints: list<item: list<item: list<item: double>>> not null child 0, item: list<item: list<item: double>> child 0, item: list<item: double> child 0, item: double vector: fixed_size_list<item: float>[256] not null child 0, item: float Some details about the schema: - the "labels" column contains the string values like 'person' and 'dog' for the respective objects in each image - the "cls" column contains the integer values on these classes that map them the labels Example of a correct query: request - Get all data points that contain 2 or more people and at least one dog correct query- SELECT * FROM 'table' WHERE ARRAY_LENGTH(cls) >= 2 AND ARRAY_LENGTH(FILTER(labels, x -> x = 'person')) >= 2 AND ARRAY_LENGTH(FILTER(labels, x -> x = 'dog')) >= 1; """, }, {"role": "user", "content": f"{query}"}, ] response = openai.chat.completions.create(model="gpt-3.5-turbo", messages=messages) return response.choices[0].message.content
[ "lancedb.pydantic.Vector" ]
[((3694, 3716), 'numpy.stack', 'np.stack', (['imgs'], {'axis': '(0)'}), '(imgs, axis=0)\n', (3702, 3716), True, 'import numpy as np\n'), ((4027, 4060), 'numpy.concatenate', 'np.concatenate', (['batch_idx'], {'axis': '(0)'}), '(batch_idx, axis=0)\n', (4041, 4060), True, 'import numpy as np\n'), ((4394, 4429), 'ultralytics.utils.checks.check_requirements', 'check_requirements', (['"""openai>=1.6.1"""'], {}), "('openai>=1.6.1')\n", (4412, 4429), False, 'from ultralytics.utils.checks import check_requirements\n'), ((4731, 4773), 'openai.OpenAI', 'OpenAI', ([], {'api_key': "SETTINGS['openai_api_key']"}), "(api_key=SETTINGS['openai_api_key'])\n", (4737, 4773), False, 'from openai import OpenAI\n'), ((798, 817), 'lancedb.pydantic.Vector', 'Vector', (['vector_size'], {}), '(vector_size)\n', (804, 817), False, 'from lancedb.pydantic import LanceModel, Vector\n'), ((2746, 2761), 'cv2.imread', 'cv2.imread', (['imf'], {}), '(imf)\n', (2756, 2761), False, 'import cv2\n'), ((2775, 2810), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_BGR2RGB'], {}), '(im, cv2.COLOR_BGR2RGB)\n', (2787, 2810), False, 'import cv2\n'), ((3729, 3757), 'numpy.stack', 'np.stack', (['plot_masks'], {'axis': '(0)'}), '(plot_masks, axis=0)\n', (3737, 3757), True, 'import numpy as np\n'), ((3777, 3804), 'numpy.zeros', 'np.zeros', (['(0)'], {'dtype': 'np.uint8'}), '(0, dtype=np.uint8)\n', (3785, 3804), True, 'import numpy as np\n'), ((3816, 3849), 'numpy.concatenate', 'np.concatenate', (['plot_kpts'], {'axis': '(0)'}), '(plot_kpts, axis=0)\n', (3830, 3849), True, 'import numpy as np\n'), ((3868, 3903), 'numpy.zeros', 'np.zeros', (['(0, 51)'], {'dtype': 'np.float32'}), '((0, 51), dtype=np.float32)\n', (3876, 3903), True, 'import numpy as np\n'), ((3981, 4010), 'numpy.zeros', 'np.zeros', (['(0)'], {'dtype': 'np.float32'}), '(0, dtype=np.float32)\n', (3989, 4010), True, 'import numpy as np\n'), ((4508, 4601), 'ultralytics.utils.LOGGER.warning', 'logger.warning', (['"""OpenAI API key not found in settings. Please enter your API key below."""'], {}), "(\n 'OpenAI API key not found in settings. Please enter your API key below.')\n", (4522, 4601), True, 'from ultralytics.utils import LOGGER as logger\n'), ((4622, 4657), 'getpass.getpass', 'getpass.getpass', (['"""OpenAI API key: """'], {}), "('OpenAI API key: ')\n", (4637, 4657), False, 'import getpass\n'), ((4666, 4717), 'ultralytics.utils.SETTINGS.update', 'SETTINGS.update', (["{'openai_api_key': openai_api_key}"], {}), "({'openai_api_key': openai_api_key})\n", (4681, 4717), False, 'from ultralytics.utils import SETTINGS\n'), ((3926, 3960), 'numpy.concatenate', 'np.concatenate', (['plot_boxes'], {'axis': '(0)'}), '(plot_boxes, axis=0)\n', (3940, 3960), True, 'import numpy as np\n'), ((4087, 4114), 'numpy.array', 'np.array', (['c'], {'dtype': 'np.int32'}), '(c, dtype=np.int32)\n', (4095, 4114), True, 'import numpy as np\n'), ((3071, 3108), 'numpy.array', 'np.array', (['bboxes[i]'], {'dtype': 'np.float32'}), '(bboxes[i], dtype=np.float32)\n', (3079, 3108), True, 'import numpy as np\n'), ((3492, 3527), 'numpy.array', 'np.array', (['kpts[i]'], {'dtype': 'np.float32'}), '(kpts[i], dtype=np.float32)\n', (3500, 3527), True, 'import numpy as np\n'), ((3296, 3330), 'numpy.array', 'np.array', (['masks[i]'], {'dtype': 'np.uint8'}), '(masks[i], dtype=np.uint8)\n', (3304, 3330), True, 'import numpy as np\n'), ((2905, 2939), 'ultralytics.data.augment.LetterBox', 'LetterBox', (['plot_size'], {'center': '(False)'}), '(plot_size, center=False)\n', (2914, 2939), False, 'from ultralytics.data.augment import LetterBox\n'), ((3368, 3402), 'ultralytics.data.augment.LetterBox', 'LetterBox', (['plot_size'], {'center': '(False)'}), '(plot_size, center=False)\n', (3377, 3402), False, 'from ultralytics.data.augment import LetterBox\n'), ((3638, 3675), 'numpy.array', 'np.array', (['bboxes[i]'], {'dtype': 'np.float32'}), '(bboxes[i], dtype=np.float32)\n', (3646, 3675), True, 'import numpy as np\n')]
# type: ignore import lancedb import uuid from datetime import datetime from tqdm import tqdm from typing import Optional, List, Iterator, Dict from memgpt.config import MemGPTConfig from memgpt.agent_store.storage import StorageConnector, TableType from memgpt.config import AgentConfig, MemGPTConfig from memgpt.constants import MEMGPT_DIR from memgpt.utils import printd from memgpt.data_types import Record, Message, Passage, Source from datetime import datetime from lancedb.pydantic import Vector, LanceModel """ Initial implementation - not complete """ def get_db_model(table_name: str, table_type: TableType): config = MemGPTConfig.load() if table_type == TableType.ARCHIVAL_MEMORY or table_type == TableType.PASSAGES: # create schema for archival memory class PassageModel(LanceModel): """Defines data model for storing Passages (consisting of text, embedding)""" id: uuid.UUID user_id: str text: str doc_id: str agent_id: str data_source: str embedding: Vector(config.default_embedding_config.embedding_dim) metadata_: Dict def __repr__(self): return f"<Passage(passage_id='{self.id}', text='{self.text}', embedding='{self.embedding})>" def to_record(self): return Passage( text=self.text, embedding=self.embedding, doc_id=self.doc_id, user_id=self.user_id, id=self.id, data_source=self.data_source, agent_id=self.agent_id, metadata=self.metadata_, ) return PassageModel elif table_type == TableType.RECALL_MEMORY: class MessageModel(LanceModel): """Defines data model for storing Message objects""" __abstract__ = True # this line is necessary # Assuming message_id is the primary key id: uuid.UUID user_id: str agent_id: str # openai info role: str name: str text: str model: str user: str # function info function_name: str function_args: str function_response: str embedding = Vector(config.default_embedding_config.embedding_dim) # Add a datetime column, with default value as the current time created_at = datetime def __repr__(self): return f"<Message(message_id='{self.id}', text='{self.text}', embedding='{self.embedding})>" def to_record(self): return Message( user_id=self.user_id, agent_id=self.agent_id, role=self.role, name=self.name, text=self.text, model=self.model, function_name=self.function_name, function_args=self.function_args, function_response=self.function_response, embedding=self.embedding, created_at=self.created_at, id=self.id, ) """Create database model for table_name""" return MessageModel else: raise ValueError(f"Table type {table_type} not implemented") class LanceDBConnector(StorageConnector): """Storage via LanceDB""" # TODO: this should probably eventually be moved into a parent DB class def __init__(self, name: Optional[str] = None, agent_config: Optional[AgentConfig] = None): # TODO pass def generate_where_filter(self, filters: Dict) -> str: where_filters = [] for key, value in filters.items(): where_filters.append(f"{key}={value}") return where_filters.join(" AND ") @abstractmethod def get_all_paginated(self, filters: Optional[Dict] = {}, page_size: Optional[int] = 1000) -> Iterator[List[Record]]: # TODO pass @abstractmethod def get_all(self, filters: Optional[Dict] = {}, limit=10) -> List[Record]: # TODO pass @abstractmethod def get(self, id: uuid.UUID) -> Optional[Record]: # TODO pass @abstractmethod def size(self, filters: Optional[Dict] = {}) -> int: # TODO pass @abstractmethod def insert(self, record: Record): # TODO pass @abstractmethod def insert_many(self, records: List[Record], show_progress=False): # TODO pass @abstractmethod def query(self, query: str, query_vec: List[float], top_k: int = 10, filters: Optional[Dict] = {}) -> List[Record]: # TODO pass @abstractmethod def query_date(self, start_date, end_date): # TODO pass @abstractmethod def query_text(self, query): # TODO pass @abstractmethod def delete_table(self): # TODO pass @abstractmethod def delete(self, filters: Optional[Dict] = {}): # TODO pass @abstractmethod def save(self): # TODO pass
[ "lancedb.pydantic.Vector" ]
[((639, 658), 'memgpt.config.MemGPTConfig.load', 'MemGPTConfig.load', ([], {}), '()\n', (656, 658), False, 'from memgpt.config import AgentConfig, MemGPTConfig\n'), ((1094, 1147), 'lancedb.pydantic.Vector', 'Vector', (['config.default_embedding_config.embedding_dim'], {}), '(config.default_embedding_config.embedding_dim)\n', (1100, 1147), False, 'from lancedb.pydantic import Vector, LanceModel\n'), ((1375, 1565), 'memgpt.data_types.Passage', 'Passage', ([], {'text': 'self.text', 'embedding': 'self.embedding', 'doc_id': 'self.doc_id', 'user_id': 'self.user_id', 'id': 'self.id', 'data_source': 'self.data_source', 'agent_id': 'self.agent_id', 'metadata': 'self.metadata_'}), '(text=self.text, embedding=self.embedding, doc_id=self.doc_id,\n user_id=self.user_id, id=self.id, data_source=self.data_source,\n agent_id=self.agent_id, metadata=self.metadata_)\n', (1382, 1565), False, 'from memgpt.data_types import Record, Message, Passage, Source\n'), ((2399, 2452), 'lancedb.pydantic.Vector', 'Vector', (['config.default_embedding_config.embedding_dim'], {}), '(config.default_embedding_config.embedding_dim)\n', (2405, 2452), False, 'from lancedb.pydantic import Vector, LanceModel\n'), ((2763, 3078), 'memgpt.data_types.Message', 'Message', ([], {'user_id': 'self.user_id', 'agent_id': 'self.agent_id', 'role': 'self.role', 'name': 'self.name', 'text': 'self.text', 'model': 'self.model', 'function_name': 'self.function_name', 'function_args': 'self.function_args', 'function_response': 'self.function_response', 'embedding': 'self.embedding', 'created_at': 'self.created_at', 'id': 'self.id'}), '(user_id=self.user_id, agent_id=self.agent_id, role=self.role, name=\n self.name, text=self.text, model=self.model, function_name=self.\n function_name, function_args=self.function_args, function_response=self\n .function_response, embedding=self.embedding, created_at=self.\n created_at, id=self.id)\n', (2770, 3078), False, 'from memgpt.data_types import Record, Message, Passage, Source\n')]
# Copyright 2023 LanceDB Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import click from lancedb.utils import CONFIG @click.group() @click.version_option(help="LanceDB command line interface entry point") def cli(): "LanceDB command line interface" diagnostics_help = """ Enable or disable LanceDB diagnostics. When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. You can find more about diagnosis on our docs: https://lancedb.github.io/lancedb/cli_config/ """ @cli.command(help=diagnostics_help) @click.option("--enabled/--disabled", default=True) def diagnostics(enabled): CONFIG.update({"diagnostics": True if enabled else False}) click.echo("LanceDB diagnostics is %s" % ("enabled" if enabled else "disabled")) @cli.command(help="Show current LanceDB configuration") def config(): # TODO: pretty print as table with colors and formatting click.echo("Current LanceDB configuration:") cfg = CONFIG.copy() cfg.pop("uuid") # Don't show uuid as it is not configurable for item, amount in cfg.items(): click.echo("{} ({})".format(item, amount))
[ "lancedb.utils.CONFIG.copy", "lancedb.utils.CONFIG.update" ]
[((641, 654), 'click.group', 'click.group', ([], {}), '()\n', (652, 654), False, 'import click\n'), ((656, 727), 'click.version_option', 'click.version_option', ([], {'help': '"""LanceDB command line interface entry point"""'}), "(help='LanceDB command line interface entry point')\n", (676, 727), False, 'import click\n'), ((1131, 1181), 'click.option', 'click.option', (['"""--enabled/--disabled"""'], {'default': '(True)'}), "('--enabled/--disabled', default=True)\n", (1143, 1181), False, 'import click\n'), ((1212, 1270), 'lancedb.utils.CONFIG.update', 'CONFIG.update', (["{'diagnostics': True if enabled else False}"], {}), "({'diagnostics': True if enabled else False})\n", (1225, 1270), False, 'from lancedb.utils import CONFIG\n'), ((1275, 1360), 'click.echo', 'click.echo', (["('LanceDB diagnostics is %s' % ('enabled' if enabled else 'disabled'))"], {}), "('LanceDB diagnostics is %s' % ('enabled' if enabled else 'disabled')\n )\n", (1285, 1360), False, 'import click\n'), ((1493, 1537), 'click.echo', 'click.echo', (['"""Current LanceDB configuration:"""'], {}), "('Current LanceDB configuration:')\n", (1503, 1537), False, 'import click\n'), ((1548, 1561), 'lancedb.utils.CONFIG.copy', 'CONFIG.copy', ([], {}), '()\n', (1559, 1561), False, 'from lancedb.utils import CONFIG\n')]
# Copyright (c) Hegel AI, Inc. # All rights reserved. # # This source code's license can be found in the # LICENSE file in the root directory of this source tree. import itertools import warnings import pandas as pd from typing import Callable, Optional try: import lancedb from lancedb.embeddings import with_embeddings except ImportError: lancedb = None import logging from time import perf_counter from .experiment import Experiment from ._utils import _get_dynamic_columns VALID_TASKS = [""] def query_builder( table: "lancedb.Table", embed_fn: Callable, text: str, metric: str = "cosine", limit: int = 3, filter: str = None, nprobes: int = None, refine_factor: int = None, ): if nprobes is not None or refine_factor is not None: warnings.warn( "`nprobes` and `refine_factor` are not used by the default `query_builder`. " "Feel free to open an issue to request adding support for them." ) query = table.search(embed_fn(text)[0]).metric(metric) if filter: query = query.where(filter) return query.limit(limit).to_df() class LanceDBExperiment(Experiment): r""" Perform an experiment with ``LanceDB`` to test different embedding functions or retrieval arguments. You can query from an existing table, or create a new one (and insert documents into it) during the experiment. Args: uri (str): LanceDB uri to interact with your database. Default is "lancedb" table_name (str): the table that you will get or create. Default is "table" use_existing_table (bool): determines whether to create a new collection or use an existing one embedding_fns (list[Callable]): embedding functions to test in the experiment by default only uses the default one in LanceDB query_args (dict[str, list]): parameters used to query the table Each value is expected to be a list to create all possible combinations data (Optional[list[dict]]): documents or embeddings that will be added to the newly created table text_col_name (str): name of the text column in the table. Default is "text" clean_up (bool): determines whether to drop the table after the experiment ends """ def __init__( self, embedding_fns: dict[str, Callable], query_args: dict[str, list], uri: str = "lancedb", table_name: str = "table", use_existing_table: bool = False, data: Optional[list[dict]] = None, text_col_name: str = "text", clean_up: bool = False, ): if lancedb is None: raise ModuleNotFoundError( "Package `lancedb` is required to be installed to use this experiment." "Please use `pip install lancedb` to install the package" ) self.table_name = table_name self.use_existing_table = use_existing_table self.embedding_fns = embedding_fns if use_existing_table and data: raise RuntimeError("You can either use an existing collection or create a new one during the experiment.") if not use_existing_table and data is None: raise RuntimeError("If you choose to create a new collection, you must also add to it.") self.data = data if data is not None else [] self.argument_combos: list[dict] = [] self.text_col_name = text_col_name self.db = lancedb.connect(uri) self.completion_fn = self.lancedb_completion_fn self.query_args = query_args self.clean_up = clean_up super().__init__() def prepare(self): for combo in itertools.product(*self.query_args.values()): self.argument_combos.append(dict(zip(self.query_args.keys(), combo))) def run(self, runs: int = 1): input_args = [] # This will be used to construct DataFrame table results = [] latencies = [] if not self.argument_combos: logging.info("Preparing first...") self.prepare() for emb_fn_name, emb_fn in self.embedding_fns.items(): if self.use_existing_table: # Use existing table table = self.db.open_table(self.table_name) if not table: raise RuntimeError(f"Table {self.table_name} does not exist.") else: # Create table and insert data data = with_embeddings(emb_fn, self.data, self.text_col_name) table = self.db.create_table(self.table_name, data, mode="overwrite") # Query from table for query_arg_dict in self.argument_combos: query_args = query_arg_dict.copy() for _ in range(runs): start = perf_counter() results.append(self.lancedb_completion_fn(table=table, embedding_fn=emb_fn, **query_args)) latencies.append(perf_counter() - start) query_args["emb_fn"] = emb_fn_name # Saving for visualization input_args.append(query_args) # Clean up if self.clean_up: self.db.drop_table(self.table_name) self._construct_result_dfs(input_args, results, latencies) def lancedb_completion_fn(self, table, embedding_fn, **kwargs): return query_builder(table, embedding_fn, **kwargs) def _construct_result_dfs( self, input_args: list[dict[str, object]], results: list[dict[str, object]], latencies: list[float], ): r""" Construct a few DataFrames that contain all relevant data (i.e. input arguments, results, evaluation metrics). This version only extract the most relevant objects returned by LanceDB. Args: input_args (list[dict[str, object]]): list of dictionaries, where each of them is a set of input argument that was passed into the model results (list[dict[str, object]]): list of responses from the model latencies (list[float]): list of latency measurements """ # `input_arg_df` contains all all input args input_arg_df = pd.DataFrame(input_args) # `dynamic_input_arg_df` contains input args that has more than one unique values dynamic_input_arg_df = _get_dynamic_columns(input_arg_df) # `response_df` contains the extracted response (often being the text response) response_dict = dict() response_dict["top doc ids"] = [self._extract_top_doc_ids(result) for result in results] response_dict["distances"] = [self._extract_lancedb_dists(result) for result in results] response_dict["documents"] = [self._extract_lancedb_docs(result) for result in results] response_df = pd.DataFrame(response_dict) # `result_df` contains everything returned by the completion function result_df = response_df # pd.concat([self.response_df, pd.DataFrame(results)], axis=1) # `score_df` contains computed metrics (e.g. latency, evaluation metrics) self.score_df = pd.DataFrame({"latency": latencies}) # `partial_df` contains some input arguments, extracted responses, and score self.partial_df = pd.concat([dynamic_input_arg_df, response_df, self.score_df], axis=1) # `full_df` contains all input arguments, responses, and score self.full_df = pd.concat([input_arg_df, result_df, self.score_df], axis=1) @staticmethod def _extract_top_doc_ids(output: pd.DataFrame) -> list[tuple[str, float]]: r"""Helper function to get distances between documents from LanceDB.""" return output.to_dict(orient="list")["ids"] @staticmethod def _extract_lancedb_dists(output: pd.DataFrame) -> list[tuple[str, float]]: r"""Helper function to get distances between documents from LanceDB.""" return output.to_dict(orient="list")["_distance"] @staticmethod def _extract_lancedb_docs(output: pd.DataFrame) -> list[tuple[str, float]]: r"""Helper function to get distances between documents from LanceDB.""" return output.to_dict(orient="list")["text"]
[ "lancedb.connect", "lancedb.embeddings.with_embeddings" ]
[((797, 961), 'warnings.warn', 'warnings.warn', (['"""`nprobes` and `refine_factor` are not used by the default `query_builder`. Feel free to open an issue to request adding support for them."""'], {}), "(\n '`nprobes` and `refine_factor` are not used by the default `query_builder`. Feel free to open an issue to request adding support for them.'\n )\n", (810, 961), False, 'import warnings\n'), ((3496, 3516), 'lancedb.connect', 'lancedb.connect', (['uri'], {}), '(uri)\n', (3511, 3516), False, 'import lancedb\n'), ((6251, 6275), 'pandas.DataFrame', 'pd.DataFrame', (['input_args'], {}), '(input_args)\n', (6263, 6275), True, 'import pandas as pd\n'), ((6864, 6891), 'pandas.DataFrame', 'pd.DataFrame', (['response_dict'], {}), '(response_dict)\n', (6876, 6891), True, 'import pandas as pd\n'), ((7173, 7209), 'pandas.DataFrame', 'pd.DataFrame', (["{'latency': latencies}"], {}), "({'latency': latencies})\n", (7185, 7209), True, 'import pandas as pd\n'), ((7322, 7391), 'pandas.concat', 'pd.concat', (['[dynamic_input_arg_df, response_df, self.score_df]'], {'axis': '(1)'}), '([dynamic_input_arg_df, response_df, self.score_df], axis=1)\n', (7331, 7391), True, 'import pandas as pd\n'), ((7486, 7545), 'pandas.concat', 'pd.concat', (['[input_arg_df, result_df, self.score_df]'], {'axis': '(1)'}), '([input_arg_df, result_df, self.score_df], axis=1)\n', (7495, 7545), True, 'import pandas as pd\n'), ((4045, 4079), 'logging.info', 'logging.info', (['"""Preparing first..."""'], {}), "('Preparing first...')\n", (4057, 4079), False, 'import logging\n'), ((4479, 4533), 'lancedb.embeddings.with_embeddings', 'with_embeddings', (['emb_fn', 'self.data', 'self.text_col_name'], {}), '(emb_fn, self.data, self.text_col_name)\n', (4494, 4533), False, 'from lancedb.embeddings import with_embeddings\n'), ((4825, 4839), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (4837, 4839), False, 'from time import perf_counter\n'), ((4988, 5002), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (5000, 5002), False, 'from time import perf_counter\n')]
import os from pathlib import Path from tqdm import tqdm from lancedb import connect from pydantic import BaseModel from lancedb.pydantic import LanceModel, Vector from lancedb.embeddings import get_registry from typing import Iterable DB_PATH = Path(os.getcwd(), "db") DATA_PATH = Path(os.getcwd(), "data") DB_TABLE = "paul_graham" class Document(BaseModel): id: int text: str filename: str openai = get_registry().get("openai").create(name="text-embedding-3-large", dim=256) class TextChunk(LanceModel): id: int doc_id: int chunk_num: int start_pos: int end_pos: int text: str = openai.SourceField() # For some reason if we call openai.ndim(), it returns 1536 instead of 256 like we want vector: Vector(openai.ndims()) = openai.VectorField(default=None) def chunk_text( documents: Iterable[Document], window_size: int = 1024, overlap: int = 0 ): id = 0 for doc in documents: for chunk_num, start_pos in enumerate( range(0, len(doc.text), window_size - overlap) ): # TODO: Fix up this and use a Lance Model instead - have reached out to the team to ask for some help yield { "id": id, "doc_id": doc.id, "chunk_num": chunk_num, "start_pos": start_pos, "end_pos": start_pos + window_size, "text": doc.text[start_pos : start_pos + window_size], } id += 1 def read_file_content(path: Path, file_suffix: str) -> Iterable[Document]: for i, file in enumerate(path.iterdir()): if file.suffix != file_suffix: continue yield Document(id=i, text=file.read_text(), filename=file.name) def batch_chunks(chunks, batch_size=10): batch = [] for item in chunks: batch.append(item) if len(batch) == batch_size: yield batch batch = [] if batch: yield batch def main(): assert "OPENAI_API_KEY" in os.environ, "OPENAI_API_KEY is not set" db = connect(DB_PATH) table = db.create_table(DB_TABLE, schema=TextChunk, mode="overwrite") documents = read_file_content(DATA_PATH, file_suffix=".md") chunks = chunk_text(documents) batched_chunks = batch_chunks(chunks, 20) for chunk_batch in tqdm(batched_chunks): table.add(chunk_batch) if __name__ == "__main__": main()
[ "lancedb.connect", "lancedb.embeddings.get_registry" ]
[((253, 264), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (262, 264), False, 'import os\n'), ((289, 300), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (298, 300), False, 'import os\n'), ((2068, 2084), 'lancedb.connect', 'connect', (['DB_PATH'], {}), '(DB_PATH)\n', (2075, 2084), False, 'from lancedb import connect\n'), ((2329, 2349), 'tqdm.tqdm', 'tqdm', (['batched_chunks'], {}), '(batched_chunks)\n', (2333, 2349), False, 'from tqdm import tqdm\n'), ((419, 433), 'lancedb.embeddings.get_registry', 'get_registry', ([], {}), '()\n', (431, 433), False, 'from lancedb.embeddings import get_registry\n')]
import lancedb import lancedb.embeddings.imagebind from lancedb.embeddings import get_registry from lancedb.pydantic import LanceModel, Vector import gradio as gr from downloader import dowload_and_save_audio, dowload_and_save_image, base_path model = get_registry().get("imagebind").create() class TextModel(LanceModel): text: str image_uri: str = model.SourceField() audio_path: str vector: Vector(model.ndims()) = model.VectorField() text_list = ["A bird", "A dragon", "A car", "A guitar", "A witch", "Thunder"] image_paths = dowload_and_save_image() audio_paths = dowload_and_save_audio() # Load data inputs = [ {"text": a, "audio_path": b, "image_uri": c} for a, b, c in zip(text_list, audio_paths, image_paths) ] db = lancedb.connect("/tmp/lancedb") table = db.create_table("img_bind", schema=TextModel) table.add(inputs) def process_image(inp_img) -> str: actual = ( table.search(inp_img, vector_column_name="vector") .limit(1) .to_pydantic(TextModel)[0] ) return actual.text, actual.audio_path def process_text(inp_text) -> str: actual = ( table.search(inp_text, vector_column_name="vector") .limit(1) .to_pydantic(TextModel)[0] ) return actual.image_uri, actual.audio_path def process_audio(inp_audio) -> str: actual = ( table.search(inp_audio, vector_column_name="vector") .limit(1) .to_pydantic(TextModel)[0] ) return actual.image_uri, actual.text im_to_at = gr.Interface( process_image, gr.Image(type="filepath", value=image_paths[0]), [gr.Text(label="Output Text"), gr.Audio(label="Output Audio")], examples=image_paths, allow_flagging="never", ) txt_to_ia = gr.Interface( process_text, gr.Textbox(label="Enter a prompt:"), [gr.Image(label="Output Image"), gr.Audio(label="Output Audio")], allow_flagging="never", examples=text_list, ) a_to_it = gr.Interface( process_audio, gr.Audio(type="filepath", value=audio_paths[0]), [gr.Image(label="Output Image"), gr.Text(label="Output Text")], examples=audio_paths, allow_flagging="never", ) demo = gr.TabbedInterface( [im_to_at, txt_to_ia, a_to_it], ["Image to Text/Audio", "Text to Image/Audio", "Audio to Image/Text"], ) if __name__ == "__main__": demo.launch(share=True, allowed_paths=[f"{base_path}/test_inputs/"])
[ "lancedb.connect", "lancedb.embeddings.get_registry" ]
[((550, 574), 'downloader.dowload_and_save_image', 'dowload_and_save_image', ([], {}), '()\n', (572, 574), False, 'from downloader import dowload_and_save_audio, dowload_and_save_image, base_path\n'), ((589, 613), 'downloader.dowload_and_save_audio', 'dowload_and_save_audio', ([], {}), '()\n', (611, 613), False, 'from downloader import dowload_and_save_audio, dowload_and_save_image, base_path\n'), ((755, 786), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (770, 786), False, 'import lancedb\n'), ((2166, 2291), 'gradio.TabbedInterface', 'gr.TabbedInterface', (['[im_to_at, txt_to_ia, a_to_it]', "['Image to Text/Audio', 'Text to Image/Audio', 'Audio to Image/Text']"], {}), "([im_to_at, txt_to_ia, a_to_it], ['Image to Text/Audio',\n 'Text to Image/Audio', 'Audio to Image/Text'])\n", (2184, 2291), True, 'import gradio as gr\n'), ((1557, 1604), 'gradio.Image', 'gr.Image', ([], {'type': '"""filepath"""', 'value': 'image_paths[0]'}), "(type='filepath', value=image_paths[0])\n", (1565, 1604), True, 'import gradio as gr\n'), ((1778, 1813), 'gradio.Textbox', 'gr.Textbox', ([], {'label': '"""Enter a prompt:"""'}), "(label='Enter a prompt:')\n", (1788, 1813), True, 'import gradio as gr\n'), ((1986, 2033), 'gradio.Audio', 'gr.Audio', ([], {'type': '"""filepath"""', 'value': 'audio_paths[0]'}), "(type='filepath', value=audio_paths[0])\n", (1994, 2033), True, 'import gradio as gr\n'), ((1611, 1639), 'gradio.Text', 'gr.Text', ([], {'label': '"""Output Text"""'}), "(label='Output Text')\n", (1618, 1639), True, 'import gradio as gr\n'), ((1641, 1671), 'gradio.Audio', 'gr.Audio', ([], {'label': '"""Output Audio"""'}), "(label='Output Audio')\n", (1649, 1671), True, 'import gradio as gr\n'), ((1820, 1850), 'gradio.Image', 'gr.Image', ([], {'label': '"""Output Image"""'}), "(label='Output Image')\n", (1828, 1850), True, 'import gradio as gr\n'), ((1852, 1882), 'gradio.Audio', 'gr.Audio', ([], {'label': '"""Output Audio"""'}), "(label='Output Audio')\n", (1860, 1882), True, 'import gradio as gr\n'), ((2040, 2070), 'gradio.Image', 'gr.Image', ([], {'label': '"""Output Image"""'}), "(label='Output Image')\n", (2048, 2070), True, 'import gradio as gr\n'), ((2072, 2100), 'gradio.Text', 'gr.Text', ([], {'label': '"""Output Text"""'}), "(label='Output Text')\n", (2079, 2100), True, 'import gradio as gr\n'), ((253, 267), 'lancedb.embeddings.get_registry', 'get_registry', ([], {}), '()\n', (265, 267), False, 'from lancedb.embeddings import get_registry\n')]
"""LanceDB vector store with cloud storage support.""" import os from typing import Any, Optional from dotenv import load_dotenv from llama_index.schema import NodeRelationship, RelatedNodeInfo, TextNode from llama_index.vector_stores import LanceDBVectorStore as LanceDBVectorStoreBase from llama_index.vector_stores.lancedb import _to_lance_filter, _to_llama_similarities from llama_index.vector_stores.types import VectorStoreQuery, VectorStoreQueryResult from pandas import DataFrame load_dotenv() class LanceDBVectorStore(LanceDBVectorStoreBase): """Advanced LanceDB Vector Store supporting cloud storage and prefiltering.""" from lancedb.query import LanceQueryBuilder from lancedb.table import Table def __init__( self, uri: str, table_name: str = "vectors", nprobes: int = 20, refine_factor: Optional[int] = None, api_key: Optional[str] = None, region: Optional[str] = None, **kwargs: Any, ) -> None: """Init params.""" self._setup_connection(uri, api_key, region) self.uri = uri self.table_name = table_name self.nprobes = nprobes self.refine_factor = refine_factor self.api_key = api_key self.region = region def _setup_connection(self, uri: str, api_key: Optional[str] = None, region: Optional[str] = None): """Establishes a robust connection to LanceDB.""" api_key = api_key or os.getenv('LANCEDB_API_KEY') region = region or os.getenv('LANCEDB_REGION') import_err_msg = "`lancedb` package not found, please run `pip install lancedb`" try: import lancedb except ImportError: raise ImportError(import_err_msg) if api_key and region: self.connection = lancedb.connect(uri, api_key=api_key, region=region) else: self.connection = lancedb.connect(uri) def query( self, query: VectorStoreQuery, **kwargs: Any, ) -> VectorStoreQueryResult: """Enhanced query method to support prefiltering in LanceDB queries.""" table = self.connection.open_table(self.table_name) lance_query = self._prepare_lance_query(query, table, **kwargs) results = lance_query.to_df() return self._construct_query_result(results) def _prepare_lance_query(self, query: VectorStoreQuery, table: Table, **kwargs) -> LanceQueryBuilder: """Prepares the LanceDB query considering prefiltering and additional parameters.""" if query.filters is not None: if "where" in kwargs: raise ValueError( "Cannot specify filter via both query and kwargs. " "Use kwargs only for lancedb specific items that are " "not supported via the generic query interface.") where = _to_lance_filter(query.filters) else: where = kwargs.pop("where", None) prefilter = kwargs.pop("prefilter", False) table = self.connection.open_table(self.table_name) lance_query = ( table.search(query.query_embedding).limit(query.similarity_top_k).where( where, prefilter=prefilter).nprobes(self.nprobes)) if self.refine_factor is not None: lance_query.refine_factor(self.refine_factor) return lance_query def _construct_query_result(self, results: DataFrame) -> VectorStoreQueryResult: """Constructs a VectorStoreQueryResult from a LanceDB query result.""" nodes = [] for _, row in results.iterrows(): node = TextNode( text=row.get('text', ''), # ensure text is a string id_=row['id'], relationships={ NodeRelationship.SOURCE: RelatedNodeInfo(node_id=row['doc_id']), }) nodes.append(node) return VectorStoreQueryResult( nodes=nodes, similarities=_to_llama_similarities(results), ids=results["id"].tolist(), )
[ "lancedb.connect" ]
[((490, 503), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (501, 503), False, 'from dotenv import load_dotenv\n'), ((1464, 1492), 'os.getenv', 'os.getenv', (['"""LANCEDB_API_KEY"""'], {}), "('LANCEDB_API_KEY')\n", (1473, 1492), False, 'import os\n'), ((1520, 1547), 'os.getenv', 'os.getenv', (['"""LANCEDB_REGION"""'], {}), "('LANCEDB_REGION')\n", (1529, 1547), False, 'import os\n'), ((1814, 1866), 'lancedb.connect', 'lancedb.connect', (['uri'], {'api_key': 'api_key', 'region': 'region'}), '(uri, api_key=api_key, region=region)\n', (1829, 1866), False, 'import lancedb\n'), ((1911, 1931), 'lancedb.connect', 'lancedb.connect', (['uri'], {}), '(uri)\n', (1926, 1931), False, 'import lancedb\n'), ((2898, 2929), 'llama_index.vector_stores.lancedb._to_lance_filter', '_to_lance_filter', (['query.filters'], {}), '(query.filters)\n', (2914, 2929), False, 'from llama_index.vector_stores.lancedb import _to_lance_filter, _to_llama_similarities\n'), ((4021, 4052), 'llama_index.vector_stores.lancedb._to_llama_similarities', '_to_llama_similarities', (['results'], {}), '(results)\n', (4043, 4052), False, 'from llama_index.vector_stores.lancedb import _to_lance_filter, _to_llama_similarities\n'), ((3841, 3879), 'llama_index.schema.RelatedNodeInfo', 'RelatedNodeInfo', ([], {'node_id': "row['doc_id']"}), "(node_id=row['doc_id'])\n", (3856, 3879), False, 'from llama_index.schema import NodeRelationship, RelatedNodeInfo, TextNode\n')]
from pathlib import Path from typing import Any, Callable from lancedb import DBConnection as LanceDBConnection from lancedb import connect as lancedb_connect from lancedb.table import Table as LanceDBTable from openai import Client as OpenAIClient from pydantic import Field, PrivateAttr from crewai_tools.tools.rag.rag_tool import Adapter def _default_embedding_function(): client = OpenAIClient() def _embedding_function(input): rs = client.embeddings.create(input=input, model="text-embedding-ada-002") return [record.embedding for record in rs.data] return _embedding_function class LanceDBAdapter(Adapter): uri: str | Path table_name: str embedding_function: Callable = Field(default_factory=_default_embedding_function) top_k: int = 3 vector_column_name: str = "vector" text_column_name: str = "text" _db: LanceDBConnection = PrivateAttr() _table: LanceDBTable = PrivateAttr() def model_post_init(self, __context: Any) -> None: self._db = lancedb_connect(self.uri) self._table = self._db.open_table(self.table_name) return super().model_post_init(__context) def query(self, question: str) -> str: query = self.embedding_function([question])[0] results = ( self._table.search(query, vector_column_name=self.vector_column_name) .limit(self.top_k) .select([self.text_column_name]) .to_list() ) values = [result[self.text_column_name] for result in results] return "\n".join(values)
[ "lancedb.connect" ]
[((393, 407), 'openai.Client', 'OpenAIClient', ([], {}), '()\n', (405, 407), True, 'from openai import Client as OpenAIClient\n'), ((724, 774), 'pydantic.Field', 'Field', ([], {'default_factory': '_default_embedding_function'}), '(default_factory=_default_embedding_function)\n', (729, 774), False, 'from pydantic import Field, PrivateAttr\n'), ((898, 911), 'pydantic.PrivateAttr', 'PrivateAttr', ([], {}), '()\n', (909, 911), False, 'from pydantic import Field, PrivateAttr\n'), ((939, 952), 'pydantic.PrivateAttr', 'PrivateAttr', ([], {}), '()\n', (950, 952), False, 'from pydantic import Field, PrivateAttr\n'), ((1028, 1053), 'lancedb.connect', 'lancedb_connect', (['self.uri'], {}), '(self.uri)\n', (1043, 1053), True, 'from lancedb import connect as lancedb_connect\n')]
import logging from typing import Any, Dict, Generator, List, Optional, Sequence, Tuple, Type import lancedb import pandas as pd from dotenv import load_dotenv from lancedb.pydantic import LanceModel, Vector from lancedb.query import LanceVectorQueryBuilder from pydantic import BaseModel, ValidationError, create_model from langroid.embedding_models.base import ( EmbeddingModel, EmbeddingModelsConfig, ) from langroid.embedding_models.models import OpenAIEmbeddingsConfig from langroid.mytypes import Document, EmbeddingFunction from langroid.utils.configuration import settings from langroid.utils.pydantic_utils import ( dataframe_to_document_model, dataframe_to_documents, extend_document_class, extra_metadata, flatten_pydantic_instance, flatten_pydantic_model, nested_dict_from_flat, ) from langroid.vector_store.base import VectorStore, VectorStoreConfig logger = logging.getLogger(__name__) class LanceDBConfig(VectorStoreConfig): cloud: bool = False collection_name: str | None = "temp" storage_path: str = ".lancedb/data" embedding: EmbeddingModelsConfig = OpenAIEmbeddingsConfig() distance: str = "cosine" # document_class is used to store in lancedb with right schema, # and also to retrieve the right type of Documents when searching. document_class: Type[Document] = Document flatten: bool = False # flatten Document class into LanceSchema ? class LanceDB(VectorStore): def __init__(self, config: LanceDBConfig = LanceDBConfig()): super().__init__(config) self.config: LanceDBConfig = config emb_model = EmbeddingModel.create(config.embedding) self.embedding_fn: EmbeddingFunction = emb_model.embedding_fn() self.embedding_dim = emb_model.embedding_dims self.host = config.host self.port = config.port self.is_from_dataframe = False # were docs ingested from a dataframe? self.df_metadata_columns: List[str] = [] # metadata columns from dataframe self._setup_schemas(config.document_class) load_dotenv() if self.config.cloud: logger.warning( "LanceDB Cloud is not available yet. Switching to local storage." ) config.cloud = False else: try: self.client = lancedb.connect( uri=config.storage_path, ) except Exception as e: new_storage_path = config.storage_path + ".new" logger.warning( f""" Error connecting to local LanceDB at {config.storage_path}: {e} Switching to {new_storage_path} """ ) self.client = lancedb.connect( uri=new_storage_path, ) # Note: Only create collection if a non-null collection name is provided. # This is useful to delay creation of vecdb until we have a suitable # collection name (e.g. we could get it from the url or folder path). if config.collection_name is not None: self.create_collection( config.collection_name, replace=config.replace_collection ) def _setup_schemas(self, doc_cls: Type[Document] | None) -> None: doc_cls = doc_cls or self.config.document_class self.unflattened_schema = self._create_lance_schema(doc_cls) self.schema = ( self._create_flat_lance_schema(doc_cls) if self.config.flatten else self.unflattened_schema ) def clear_empty_collections(self) -> int: coll_names = self.list_collections() n_deletes = 0 for name in coll_names: nr = self.client.open_table(name).head(1).shape[0] if nr == 0: n_deletes += 1 self.client.drop_table(name) return n_deletes def clear_all_collections(self, really: bool = False, prefix: str = "") -> int: """Clear all collections with the given prefix.""" if not really: logger.warning("Not deleting all collections, set really=True to confirm") return 0 coll_names = [ c for c in self.list_collections(empty=True) if c.startswith(prefix) ] if len(coll_names) == 0: logger.warning(f"No collections found with prefix {prefix}") return 0 n_empty_deletes = 0 n_non_empty_deletes = 0 for name in coll_names: nr = self.client.open_table(name).head(1).shape[0] n_empty_deletes += nr == 0 n_non_empty_deletes += nr > 0 self.client.drop_table(name) logger.warning( f""" Deleted {n_empty_deletes} empty collections and {n_non_empty_deletes} non-empty collections. """ ) return n_empty_deletes + n_non_empty_deletes def list_collections(self, empty: bool = False) -> List[str]: """ Returns: List of collection names that have at least one vector. Args: empty (bool, optional): Whether to include empty collections. """ colls = self.client.table_names(limit=None) if len(colls) == 0: return [] if empty: # include empty tbls return colls # type: ignore counts = [self.client.open_table(coll).head(1).shape[0] for coll in colls] return [coll for coll, count in zip(colls, counts) if count > 0] def _create_lance_schema(self, doc_cls: Type[Document]) -> Type[BaseModel]: """ Create a subclass of LanceModel with fields: - id (str) - Vector field that has dims equal to the embedding dimension of the embedding model, and a data field of type DocClass. - other fields from doc_cls Args: doc_cls (Type[Document]): A Pydantic model which should be a subclass of Document, to be used as the type for the data field. Returns: Type[BaseModel]: A new Pydantic model subclassing from LanceModel. Raises: ValueError: If `n` is not a non-negative integer or if `DocClass` is not a subclass of Document. """ if not issubclass(doc_cls, Document): raise ValueError("DocClass must be a subclass of Document") n = self.embedding_dim # Prepare fields for the new model fields = {"id": (str, ...), "vector": (Vector(n), ...)} sorted_fields = dict( sorted(doc_cls.__fields__.items(), key=lambda item: item[0]) ) # Add both statically and dynamically defined fields from doc_cls for field_name, field in sorted_fields.items(): fields[field_name] = (field.outer_type_, field.default) # Create the new model with dynamic fields NewModel = create_model( "NewModel", __base__=LanceModel, **fields ) # type: ignore return NewModel # type: ignore def _create_flat_lance_schema(self, doc_cls: Type[Document]) -> Type[BaseModel]: """ Flat version of the lance_schema, as nested Pydantic schemas are not yet supported by LanceDB. """ lance_model = self._create_lance_schema(doc_cls) FlatModel = flatten_pydantic_model(lance_model, base_model=LanceModel) return FlatModel def create_collection(self, collection_name: str, replace: bool = False) -> None: """ Create a collection with the given name, optionally replacing an existing collection if `replace` is True. Args: collection_name (str): Name of the collection to create. replace (bool): Whether to replace an existing collection with the same name. Defaults to False. """ self.config.collection_name = collection_name collections = self.list_collections() if collection_name in collections: coll = self.client.open_table(collection_name) if coll.head().shape[0] > 0: logger.warning(f"Non-empty Collection {collection_name} already exists") if not replace: logger.warning("Not replacing collection") return else: logger.warning("Recreating fresh collection") self.client.create_table(collection_name, schema=self.schema, mode="overwrite") if settings.debug: level = logger.getEffectiveLevel() logger.setLevel(logging.INFO) logger.setLevel(level) def _maybe_set_doc_class_schema(self, doc: Document) -> None: """ Set the config.document_class and self.schema based on doc if needed Args: doc: an instance of Document, to be added to a collection """ extra_metadata_fields = extra_metadata(doc, self.config.document_class) if len(extra_metadata_fields) > 0: logger.warning( f""" Added documents contain extra metadata fields: {extra_metadata_fields} which were not present in the original config.document_class. Trying to change document_class and corresponding schemas. Overriding LanceDBConfig.document_class with an auto-generated Pydantic class that includes these extra fields. If this fails, or you see odd results, it is recommended that you define a subclass of Document, with metadata of class derived from DocMetaData, with extra fields defined via `Field(..., description="...")` declarations, and set this document class as the value of the LanceDBConfig.document_class attribute. """ ) doc_cls = extend_document_class(doc) self.config.document_class = doc_cls self._setup_schemas(doc_cls) def add_documents(self, documents: Sequence[Document]) -> None: super().maybe_add_ids(documents) colls = self.list_collections(empty=True) if len(documents) == 0: return embedding_vecs = self.embedding_fn([doc.content for doc in documents]) coll_name = self.config.collection_name if coll_name is None: raise ValueError("No collection name set, cannot ingest docs") self._maybe_set_doc_class_schema(documents[0]) if ( coll_name not in colls or self.client.open_table(coll_name).head(1).shape[0] == 0 ): # collection either doesn't exist or is empty, so replace it, self.create_collection(coll_name, replace=True) ids = [str(d.id()) for d in documents] # don't insert all at once, batch in chunks of b, # else we get an API error b = self.config.batch_size def make_batches() -> Generator[List[BaseModel], None, None]: for i in range(0, len(ids), b): batch = [ self.unflattened_schema( id=ids[i + j], vector=embedding_vecs[i + j], **doc.dict(), ) for j, doc in enumerate(documents[i : i + b]) ] if self.config.flatten: batch = [ flatten_pydantic_instance(instance) # type: ignore for instance in batch ] yield batch tbl = self.client.open_table(self.config.collection_name) try: tbl.add(make_batches()) except Exception as e: logger.error( f""" Error adding documents to LanceDB: {e} POSSIBLE REMEDY: Delete the LancdDB storage directory {self.config.storage_path} and try again. """ ) def add_dataframe( self, df: pd.DataFrame, content: str = "content", metadata: List[str] = [], ) -> None: """ Add a dataframe to the collection. Args: df (pd.DataFrame): A dataframe content (str): The name of the column in the dataframe that contains the text content to be embedded using the embedding model. metadata (List[str]): A list of column names in the dataframe that contain metadata to be stored in the database. Defaults to []. """ self.is_from_dataframe = True actual_metadata = metadata.copy() self.df_metadata_columns = actual_metadata # could be updated below # get content column content_values = df[content].values.tolist() embedding_vecs = self.embedding_fn(content_values) # add vector column df["vector"] = embedding_vecs if content != "content": # rename content column to "content", leave existing column intact df = df.rename(columns={content: "content"}, inplace=False) if "id" not in df.columns: docs = dataframe_to_documents(df, content="content", metadata=metadata) ids = [str(d.id()) for d in docs] df["id"] = ids if "id" not in actual_metadata: actual_metadata += ["id"] colls = self.list_collections(empty=True) coll_name = self.config.collection_name if ( coll_name not in colls or self.client.open_table(coll_name).head(1).shape[0] == 0 ): # collection either doesn't exist or is empty, so replace it # and set new schema from df self.client.create_table( self.config.collection_name, data=df, mode="overwrite", ) doc_cls = dataframe_to_document_model( df, content=content, metadata=actual_metadata, exclude=["vector"], ) self.config.document_class = doc_cls # type: ignore self._setup_schemas(doc_cls) # type: ignore else: # collection exists and is not empty, so append to it tbl = self.client.open_table(self.config.collection_name) tbl.add(df) def delete_collection(self, collection_name: str) -> None: self.client.drop_table(collection_name) def _lance_result_to_docs(self, result: LanceVectorQueryBuilder) -> List[Document]: if self.is_from_dataframe: df = result.to_pandas() return dataframe_to_documents( df, content="content", metadata=self.df_metadata_columns, doc_cls=self.config.document_class, ) else: records = result.to_arrow().to_pylist() return self._records_to_docs(records) def _records_to_docs(self, records: List[Dict[str, Any]]) -> List[Document]: if self.config.flatten: docs = [ self.unflattened_schema(**nested_dict_from_flat(rec)) for rec in records ] else: try: docs = [self.schema(**rec) for rec in records] except ValidationError as e: raise ValueError( f""" Error validating LanceDB result: {e} HINT: This could happen when you're re-using an existing LanceDB store with a different schema. Try deleting your local lancedb storage at `{self.config.storage_path}` re-ingesting your documents and/or replacing the collections. """ ) doc_cls = self.config.document_class doc_cls_field_names = doc_cls.__fields__.keys() return [ doc_cls( **{ field_name: getattr(doc, field_name) for field_name in doc_cls_field_names } ) for doc in docs ] def get_all_documents(self, where: str = "") -> List[Document]: if self.config.collection_name is None: raise ValueError("No collection name set, cannot retrieve docs") tbl = self.client.open_table(self.config.collection_name) pre_result = tbl.search(None).where(where or None).limit(None) return self._lance_result_to_docs(pre_result) def get_documents_by_ids(self, ids: List[str]) -> List[Document]: if self.config.collection_name is None: raise ValueError("No collection name set, cannot retrieve docs") _ids = [str(id) for id in ids] tbl = self.client.open_table(self.config.collection_name) docs = [] for _id in _ids: results = self._lance_result_to_docs(tbl.search().where(f"id == '{_id}'")) if len(results) > 0: docs.append(results[0]) return docs def similar_texts_with_scores( self, text: str, k: int = 1, where: Optional[str] = None, ) -> List[Tuple[Document, float]]: embedding = self.embedding_fn([text])[0] tbl = self.client.open_table(self.config.collection_name) result = ( tbl.search(embedding).metric(self.config.distance).where(where).limit(k) ) docs = self._lance_result_to_docs(result) # note _distance is 1 - cosine if self.is_from_dataframe: scores = [ 1 - rec["_distance"] for rec in result.to_pandas().to_dict("records") ] else: scores = [1 - rec["_distance"] for rec in result.to_arrow().to_pylist()] if len(docs) == 0: logger.warning(f"No matches found for {text}") return [] if settings.debug: logger.info(f"Found {len(docs)} matches, max score: {max(scores)}") doc_score_pairs = list(zip(docs, scores)) self.show_if_debug(doc_score_pairs) return doc_score_pairs
[ "lancedb.connect", "lancedb.pydantic.Vector" ]
[((911, 938), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (928, 938), False, 'import logging\n'), ((1125, 1149), 'langroid.embedding_models.models.OpenAIEmbeddingsConfig', 'OpenAIEmbeddingsConfig', ([], {}), '()\n', (1147, 1149), False, 'from langroid.embedding_models.models import OpenAIEmbeddingsConfig\n'), ((1627, 1666), 'langroid.embedding_models.base.EmbeddingModel.create', 'EmbeddingModel.create', (['config.embedding'], {}), '(config.embedding)\n', (1648, 1666), False, 'from langroid.embedding_models.base import EmbeddingModel, EmbeddingModelsConfig\n'), ((2080, 2093), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (2091, 2093), False, 'from dotenv import load_dotenv\n'), ((7037, 7092), 'pydantic.create_model', 'create_model', (['"""NewModel"""'], {'__base__': 'LanceModel'}), "('NewModel', __base__=LanceModel, **fields)\n", (7049, 7092), False, 'from pydantic import BaseModel, ValidationError, create_model\n'), ((7469, 7527), 'langroid.utils.pydantic_utils.flatten_pydantic_model', 'flatten_pydantic_model', (['lance_model'], {'base_model': 'LanceModel'}), '(lance_model, base_model=LanceModel)\n', (7491, 7527), False, 'from langroid.utils.pydantic_utils import dataframe_to_document_model, dataframe_to_documents, extend_document_class, extra_metadata, flatten_pydantic_instance, flatten_pydantic_model, nested_dict_from_flat\n'), ((9064, 9111), 'langroid.utils.pydantic_utils.extra_metadata', 'extra_metadata', (['doc', 'self.config.document_class'], {}), '(doc, self.config.document_class)\n', (9078, 9111), False, 'from langroid.utils.pydantic_utils import dataframe_to_document_model, dataframe_to_documents, extend_document_class, extra_metadata, flatten_pydantic_instance, flatten_pydantic_model, nested_dict_from_flat\n'), ((10124, 10150), 'langroid.utils.pydantic_utils.extend_document_class', 'extend_document_class', (['doc'], {}), '(doc)\n', (10145, 10150), False, 'from langroid.utils.pydantic_utils import dataframe_to_document_model, dataframe_to_documents, extend_document_class, extra_metadata, flatten_pydantic_instance, flatten_pydantic_model, nested_dict_from_flat\n'), ((13444, 13508), 'langroid.utils.pydantic_utils.dataframe_to_documents', 'dataframe_to_documents', (['df'], {'content': '"""content"""', 'metadata': 'metadata'}), "(df, content='content', metadata=metadata)\n", (13466, 13508), False, 'from langroid.utils.pydantic_utils import dataframe_to_document_model, dataframe_to_documents, extend_document_class, extra_metadata, flatten_pydantic_instance, flatten_pydantic_model, nested_dict_from_flat\n'), ((14182, 14280), 'langroid.utils.pydantic_utils.dataframe_to_document_model', 'dataframe_to_document_model', (['df'], {'content': 'content', 'metadata': 'actual_metadata', 'exclude': "['vector']"}), "(df, content=content, metadata=actual_metadata,\n exclude=['vector'])\n", (14209, 14280), False, 'from langroid.utils.pydantic_utils import dataframe_to_document_model, dataframe_to_documents, extend_document_class, extra_metadata, flatten_pydantic_instance, flatten_pydantic_model, nested_dict_from_flat\n'), ((14943, 15064), 'langroid.utils.pydantic_utils.dataframe_to_documents', 'dataframe_to_documents', (['df'], {'content': '"""content"""', 'metadata': 'self.df_metadata_columns', 'doc_cls': 'self.config.document_class'}), "(df, content='content', metadata=self.\n df_metadata_columns, doc_cls=self.config.document_class)\n", (14965, 15064), False, 'from langroid.utils.pydantic_utils import dataframe_to_document_model, dataframe_to_documents, extend_document_class, extra_metadata, flatten_pydantic_instance, flatten_pydantic_model, nested_dict_from_flat\n'), ((2342, 2382), 'lancedb.connect', 'lancedb.connect', ([], {'uri': 'config.storage_path'}), '(uri=config.storage_path)\n', (2357, 2382), False, 'import lancedb\n'), ((6637, 6646), 'lancedb.pydantic.Vector', 'Vector', (['n'], {}), '(n)\n', (6643, 6646), False, 'from lancedb.pydantic import LanceModel, Vector\n'), ((2806, 2843), 'lancedb.connect', 'lancedb.connect', ([], {'uri': 'new_storage_path'}), '(uri=new_storage_path)\n', (2821, 2843), False, 'import lancedb\n'), ((11696, 11731), 'langroid.utils.pydantic_utils.flatten_pydantic_instance', 'flatten_pydantic_instance', (['instance'], {}), '(instance)\n', (11721, 11731), False, 'from langroid.utils.pydantic_utils import dataframe_to_document_model, dataframe_to_documents, extend_document_class, extra_metadata, flatten_pydantic_instance, flatten_pydantic_model, nested_dict_from_flat\n'), ((15432, 15458), 'langroid.utils.pydantic_utils.nested_dict_from_flat', 'nested_dict_from_flat', (['rec'], {}), '(rec)\n', (15453, 15458), False, 'from langroid.utils.pydantic_utils import dataframe_to_document_model, dataframe_to_documents, extend_document_class, extra_metadata, flatten_pydantic_instance, flatten_pydantic_model, nested_dict_from_flat\n')]
import json import lancedb from lancedb.pydantic import Vector, LanceModel from datetime import datetime # import pyarrow as pa TABLE_NAME = "documents" uri = "data/sample-lancedb" db = lancedb.connect(uri) # vector: list of vectors # file_name: name of file # file_path: path of file # id # updated_at # created_at class Document(LanceModel): id: str file_name: str file_path: str created_at: datetime updated_at: datetime vector: Vector(768) # Palm Embeddings size try: table = db.create_table(TABLE_NAME, schema=Document) except OSError: print("table exists") table = db.open_table(TABLE_NAME) except Exception as inst: # Print out the type of exceptions. print(type(inst)) print(inst.args) print(inst) if True: now = datetime.now() # Idempotent upsert. Alternatively we can delete first, then insert. table.add( [ Document( id="1", file_name="test_name", file_path="test_path", created_at=now, updated_at=now, vector=[i for i in range(768)], ) ] ) table.delete(f'id="1" AND created_at != timestamp "{now}"') if False: table.update( where='id="1"', values=Document( id="1", file_name="test_name", file_path="test_path", created_at=datetime.now(), updated_at=datetime.now(), vector=[i for i in range(768)], ), ) vector = [i for i in range(768)] result = table.search(vector).limit(2).to_list() for item in result: print(item) # print(json.dumps(item, indent=2)) print(db[TABLE_NAME].head())
[ "lancedb.connect", "lancedb.pydantic.Vector" ]
[((189, 209), 'lancedb.connect', 'lancedb.connect', (['uri'], {}), '(uri)\n', (204, 209), False, 'import lancedb\n'), ((461, 472), 'lancedb.pydantic.Vector', 'Vector', (['(768)'], {}), '(768)\n', (467, 472), False, 'from lancedb.pydantic import Vector, LanceModel\n'), ((786, 800), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (798, 800), False, 'from datetime import datetime\n'), ((1421, 1435), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1433, 1435), False, 'from datetime import datetime\n'), ((1460, 1474), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1472, 1474), False, 'from datetime import datetime\n')]
import json from sentence_transformers import SentenceTransformer from pydantic.main import ModelMetaclass from pathlib import Path import pandas as pd import sqlite3 from uuid import uuid4 import lancedb encoder = SentenceTransformer('all-MiniLM-L6-v2') data_folder = Path('data/collections') config_file = Path('data/config/indexes.yaml') index_folder = Path('indexes') lance_folder = Path('indexes') lance_folder.mkdir(parents=True, exist_ok=True) sqlite_folder = Path('data/indexes/') class LanceDBDocument(): def __init__(self, document:dict, title:str, text:str, fields, tags=None, date=None, file_path=None): self.document = self.fill_missing_fields(document, text, title, tags, date) # self.text = document[text] # self.tags = document[tags] if tags is not None else list() # self.date = document[date] if date is not None else None self.file_path = file_path self.metadata = {k:document[k] for k in fields if k not in [title, text, tags, date]} self.uuid = str(uuid4()) if 'uuid' not in document else document['uuid'] self.save_uuids = list() self.sqlite_fields = list() self.lance_exclude = list() def fill_missing_fields(self, document, text, title, tags, date): if title not in document: self.title = '' else: self.title = document[title] if text not in document: self.text = '' else: self.text = document[text] if date not in document: self.date = '' else: self.date = document[date] if tags not in document: self.tags = list() else: self.tags = document[tags] def create_json_document(self, text, uuids=None): """Creates a custom dictionary object that can be used for both sqlite and lancedb The full document is always stored in sqlite where fixed fields are: title text date filepath document_uuid - used for retrieval from lancedb results Json field contains the whole document for retrieval and display Lancedb only gets searching text, vectorization of that, and filter fields """ _document = {'title':self.title, 'text':text, 'tags':self.tags, 'date':self.date, 'file_path':str(self.file_path), 'uuid':self.uuid, 'metadata': self.metadata} self._enforce_tags_schema() for field in ['title','date','file_path']: self.enforce_string_schema(field, _document) return _document def enforce_string_schema(self, field, test_document): if not isinstance(test_document[field], str): self.lance_exclude.append(field) def _enforce_tags_schema(self): # This enforces a simple List[str] format for the tags to match what lancedb can use for filtering # If they are of type List[Dict] as a nested field, they are stored in sqlite for retrieval if isinstance(self.tags, list): tags_are_list = True for _tag in self.tags: if not isinstance(_tag, str): tags_are_list = False break if not tags_are_list: self.lance_exclude.append('tags') def return_document(self): document = self.create_json_document(self.text) return document class SqlLiteIngest(): def __init__(self, documents, source_file, db_location, index_name, overwrite): self.documents = documents self.source_file = source_file self.db_location = db_location self.index_name = index_name self.overwrite = overwrite def initialize(self): self.connection = sqlite3.connect(self.db_location) if self.overwrite: self.connection.execute(f"""DROP TABLE IF EXISTS {self.index_name};""") table_exists = self.connection.execute(f"SELECT name FROM sqlite_master WHERE type='table' AND name='{self.index_name}';").fetchall() if len(table_exists) == 0: self.connection.execute(f""" CREATE TABLE {self.index_name}( id INTEGER PRIMARY KEY NOT NULL, uuid STRING NOT NULL, text STRING NOT NULL, title STRING, date STRING, source_file STRING, metadata JSONB);""") def insert(self, document): self.connection.execute(f"""INSERT INTO {self.index_name} (uuid, text, title, date, source_file, metadata) VALUES ('{document.uuid.replace("'","''")}', '{document.text.replace("'","''")}', '{document.title.replace("'","''")}', '{document.date.replace("'","''")}', '{self.index_name.replace("'","''")}', '{json.dumps(document.metadata).replace("'","''")}');""") def bulk_insert(self): for document in self.documents: self.insert(document) self.connection.commit() self.connection.close() from lancedb.pydantic import LanceModel, Vector, List class LanceDBSchema384(LanceModel): uuid: str text: str title: str tags: List[str] vector: Vector(384) class LanceDBSchema512(LanceModel): uuid: str text: str title: str tags: List[str] vector: Vector(512) class LanceDBIngest(): def __init__(self, documents, lance_location, index_name, overwrite, encoder, schema): self.documents = documents self.lance_location = lance_location self.index_name = index_name self.overwrite = overwrite self.encoder = encoder self.schema = schema def initialize(self): self.db = lancedb.connect(self.lance_location) existing_tables = self.db.table_names() self.documents = [self.prep_documents(document) for document in self.documents] if self.overwrite: self.table = self.db.create_table(self.index_name, data=self.documents, mode='overwrite', schema=self.schema.to_arrow_schema()) else: if self.index_name in existing_tables: self.table = self.db.open_table(self.index_name) self.table.add(self.documents) else: self.table = self.db.create_table(self.index_name, data=self.documents, schema=self.schema.to_arrow_schema()) def prep_documents(self, document): lance_document = dict() lance_document['text'] = document.text lance_document['vector'] = self.encoder.encode(document.text) lance_document['uuid'] = document.uuid lance_document['title'] = document.title lance_document['tags'] = document.tags return lance_document def insert(self, document): document['vector'] = self.encoder.encode(document.text) self.table.add(document) def bulk_insert(self, create_vectors=False): if create_vectors: self.table.create_index(vector_column_name='vector', metric='cosine') self.table.create_fts_index(field_names=['title','text'], replace=True) return self.table class IndexDocuments(): def __init__(self,field_mapping, source_file, index_name, overwrite): self.field_mapping = field_mapping self.source_file = source_file self.index_name = index_name self.overwrite = overwrite def open_json(self): with open(self.source_file, 'r') as f: self.data = json.load(f) print(self.data) def open_csv(self): self.data = pd.read_csv(self.source_file) def create_document(self, document): document = LanceDBDocument(document, text=self.field_mapping['text'], title=self.field_mapping['title'], tags=self.field_mapping['tags'], date=self.field_mapping['date'], fields=list(document.keys()), file_path=self.source_file ) return document def create_documents(self): self.documents = [self.create_document(document) for document in self.data] def ingest(self, overwrite=False): # lance_path = Path(f'../indexes/lance') lance_folder.mkdir(parents=True, exist_ok=True) lance_ingest = LanceDBIngest(documents=self.documents, lance_location=lance_folder, # field_mapping=self.field_mapping, index_name=self.index_name, overwrite=self.overwrite, encoder=encoder, schema=LanceDBSchema384) lance_ingest.initialize() if len(self.documents) <= 256: _table = lance_ingest.bulk_insert(create_vectors=False) else: _table = lance_ingest.bulk_insert(create_vectors=True) sql_path = sqlite_folder.joinpath('documents.sqlite') sqlite_ingest = SqlLiteIngest(documents=self.documents, source_file=self.source_file, db_location=sql_path, index_name=self.index_name, overwrite=self.overwrite) sqlite_ingest.initialize() sqlite_ingest.bulk_insert()
[ "lancedb.connect", "lancedb.pydantic.Vector" ]
[((216, 255), 'sentence_transformers.SentenceTransformer', 'SentenceTransformer', (['"""all-MiniLM-L6-v2"""'], {}), "('all-MiniLM-L6-v2')\n", (235, 255), False, 'from sentence_transformers import SentenceTransformer\n'), ((271, 295), 'pathlib.Path', 'Path', (['"""data/collections"""'], {}), "('data/collections')\n", (275, 295), False, 'from pathlib import Path\n'), ((310, 342), 'pathlib.Path', 'Path', (['"""data/config/indexes.yaml"""'], {}), "('data/config/indexes.yaml')\n", (314, 342), False, 'from pathlib import Path\n'), ((358, 373), 'pathlib.Path', 'Path', (['"""indexes"""'], {}), "('indexes')\n", (362, 373), False, 'from pathlib import Path\n'), ((390, 405), 'pathlib.Path', 'Path', (['"""indexes"""'], {}), "('indexes')\n", (394, 405), False, 'from pathlib import Path\n'), ((471, 492), 'pathlib.Path', 'Path', (['"""data/indexes/"""'], {}), "('data/indexes/')\n", (475, 492), False, 'from pathlib import Path\n'), ((5306, 5317), 'lancedb.pydantic.Vector', 'Vector', (['(384)'], {}), '(384)\n', (5312, 5317), False, 'from lancedb.pydantic import LanceModel, Vector, List\n'), ((5430, 5441), 'lancedb.pydantic.Vector', 'Vector', (['(512)'], {}), '(512)\n', (5436, 5441), False, 'from lancedb.pydantic import LanceModel, Vector, List\n'), ((3896, 3929), 'sqlite3.connect', 'sqlite3.connect', (['self.db_location'], {}), '(self.db_location)\n', (3911, 3929), False, 'import sqlite3\n'), ((5814, 5850), 'lancedb.connect', 'lancedb.connect', (['self.lance_location'], {}), '(self.lance_location)\n', (5829, 5850), False, 'import lancedb\n'), ((7670, 7699), 'pandas.read_csv', 'pd.read_csv', (['self.source_file'], {}), '(self.source_file)\n', (7681, 7699), True, 'import pandas as pd\n'), ((7583, 7595), 'json.load', 'json.load', (['f'], {}), '(f)\n', (7592, 7595), False, 'import json\n'), ((1035, 1042), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (1040, 1042), False, 'from uuid import uuid4\n'), ((4948, 4977), 'json.dumps', 'json.dumps', (['document.metadata'], {}), '(document.metadata)\n', (4958, 4977), False, 'import json\n')]
import os import urllib.request import html2text import predictionguard as pg from langchain import PromptTemplate, FewShotPromptTemplate from langchain.text_splitter import CharacterTextSplitter from sentence_transformers import SentenceTransformer import numpy as np import lancedb from lancedb.embeddings import with_embeddings import pandas as pd os.environ['PREDICTIONGUARD_TOKEN'] = "q1VuOjnffJ3NO2oFN8Q9m8vghYc84ld13jaqdF7E" # Let's get the html off of a website. fp = urllib.request.urlopen("file:////home/shaunak_joshi/gt/insuranceagent.html") mybytes = fp.read() html = mybytes.decode("utf8") fp.close() # And convert it to text. h = html2text.HTML2Text() h.ignore_links = True text = h.handle(html) # Clean things up just a bit. text = text.split("Introduction")[1] #print(text) #text = text.split("Location, Location, Location")[0] #print(text) #print(type(text)) # Chunk the text into smaller pieces for injection into LLM prompts. text_splitter = CharacterTextSplitter(chunk_size=700, chunk_overlap=50) docs = text_splitter.split_text(text) # Let's checkout some of the chunks! #for i in range(0, 10): # print("Chunk", str(i+1)) # print("----------------------------") # print(docs[i]) # print("") # Let's take care of some of the formatting so it doesn't conflict with our # typical prompt template structure docs = [x.replace('#', '-') for x in docs] # Now we need to embed these documents and put them into a "vector store" or # "vector db" that we will use for semantic search and retrieval. # Embeddings setup name="all-MiniLM-L12-v2" model = SentenceTransformer(name) def embed_batch(batch): return [model.encode(sentence) for sentence in batch] def embed(sentence): return model.encode(sentence) # LanceDB setup os.mkdir(".lancedb") uri = ".lancedb" db = lancedb.connect(uri) # Create a dataframe with the chunk ids and chunks metadata = [] for i in range(len(docs)): metadata.append([i,docs[i]]) doc_df = pd.DataFrame(metadata, columns=["chunk", "text"]) # Embed the documents data = with_embeddings(embed_batch, doc_df) # Create the DB table and add the records. db.create_table("linux", data=data) table = db.open_table("linux") table.add(data=data) # Let's try to match a query to one of our documents. #message = "What plays a crucial role in deciding insurance policies?" #results = table.search(embed(message)).limit(5).to_pandas() #print(results.head()) # Now let's augment our Q&A prompt with this external knowledge on-the-fly!!! template = """### Instruction: Read the below input context and respond with a short answer to the given question. Use only the information in the bel> ### Input: Context: {context} Question: {question} ### Response: """ qa_prompt = PromptTemplate( input_variables=["context", "question"], template=template, ) def rag_answer(message): # Search the for relevant context results = table.search(embed(message)).limit(5).to_pandas() results.sort_values(by=['_distance'], inplace=True, ascending=True) doc_use = results['text'].values[0] # Augment the prompt with the context prompt = qa_prompt.format(context=doc_use, question=message) # Get a response result = pg.Completion.create( model="Nous-Hermes-Llama2-13B", prompt=prompt ) return result['choices'][0]['text'] response = rag_answer("A house has been destroyed by a tornado and also has been set on fire. The water doesn't work but the gas lines are fine. The area the house is in is notorious for crime. It is built in an earthquake prone zone. There are cracks in the walls and it is quite old. Based on this information, generate three insights about the type of insurance policy the house will require and any other thing you find important. Keep the insights under 20 words each.") print('') print("RESPONSE:", response)
[ "lancedb.connect", "lancedb.embeddings.with_embeddings" ]
[((670, 691), 'html2text.HTML2Text', 'html2text.HTML2Text', ([], {}), '()\n', (689, 691), False, 'import html2text\n'), ((1001, 1056), 'langchain.text_splitter.CharacterTextSplitter', 'CharacterTextSplitter', ([], {'chunk_size': '(700)', 'chunk_overlap': '(50)'}), '(chunk_size=700, chunk_overlap=50)\n', (1022, 1056), False, 'from langchain.text_splitter import CharacterTextSplitter\n'), ((1627, 1652), 'sentence_transformers.SentenceTransformer', 'SentenceTransformer', (['name'], {}), '(name)\n', (1646, 1652), False, 'from sentence_transformers import SentenceTransformer\n'), ((1818, 1838), 'os.mkdir', 'os.mkdir', (['""".lancedb"""'], {}), "('.lancedb')\n", (1826, 1838), False, 'import os\n'), ((1863, 1883), 'lancedb.connect', 'lancedb.connect', (['uri'], {}), '(uri)\n', (1878, 1883), False, 'import lancedb\n'), ((2025, 2074), 'pandas.DataFrame', 'pd.DataFrame', (['metadata'], {'columns': "['chunk', 'text']"}), "(metadata, columns=['chunk', 'text'])\n", (2037, 2074), True, 'import pandas as pd\n'), ((2108, 2144), 'lancedb.embeddings.with_embeddings', 'with_embeddings', (['embed_batch', 'doc_df'], {}), '(embed_batch, doc_df)\n', (2123, 2144), False, 'from lancedb.embeddings import with_embeddings\n'), ((2827, 2901), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'input_variables': "['context', 'question']", 'template': 'template'}), "(input_variables=['context', 'question'], template=template)\n", (2841, 2901), False, 'from langchain import PromptTemplate, FewShotPromptTemplate\n'), ((3294, 3361), 'predictionguard.Completion.create', 'pg.Completion.create', ([], {'model': '"""Nous-Hermes-Llama2-13B"""', 'prompt': 'prompt'}), "(model='Nous-Hermes-Llama2-13B', prompt=prompt)\n", (3314, 3361), True, 'import predictionguard as pg\n')]
from lancedb.pydantic import LanceModel, Vector from lancedb.embeddings import EmbeddingFunctionRegistry registry = EmbeddingFunctionRegistry.get_instance() func = registry.get("openai").create() class Questions(LanceModel): question: str = func.SourceField() vector: Vector(func.ndims()) = func.VectorField()
[ "lancedb.embeddings.EmbeddingFunctionRegistry.get_instance" ]
[((117, 157), 'lancedb.embeddings.EmbeddingFunctionRegistry.get_instance', 'EmbeddingFunctionRegistry.get_instance', ([], {}), '()\n', (155, 157), False, 'from lancedb.embeddings import EmbeddingFunctionRegistry\n')]
""" ---------Parameters to be changed between different devices---------- 1. Models and directory 2. Input and output directory 3. Device selection (CPU/GPU) - LINE 46 AND 300 Reference: 1. similarity_search_by_vector(): https://python.langchain.com/docs/modules/data_connection/vectorstores/ 2. LanceDB Code documentation Q&A bot example with LangChain: https://lancedb.github.io/lancedb/notebooks/code_qa_bot/ 3. LanceDB embedding functions: https://lancedb.github.io/lancedb/embeddings/embedding_functions/ 4. LanceDB available models: https://lancedb.github.io/lancedb/embeddings/default_embedding_functions/#sentence-transformers 5. https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb """ import os import logging import time from collections import Counter from collections import defaultdict import csv import json import torch import nltk from nltk.tokenize import sent_tokenize from nltk.stem import PorterStemmer from nltk.corpus import stopwords import string from heapq import nlargest import torch.nn as nn from pathlib import Path from langchain_community.llms import GPT4All from langchain_community.vectorstores import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.huggingface import HuggingFaceInstructEmbeddings from transformers import set_seed from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA import lancedb from lancedb.pydantic import LanceModel, Vector from lancedb.embeddings import get_registry from lancedb.embeddings import EmbeddingFunctionRegistry # from langchain_community.vectorstores import LanceDB print("LanceDB config.") registry = EmbeddingFunctionRegistry.get_instance() func = registry.get("sentence-transformers").create(device="cpu") def process_story_and_store_chunks(data, db_dir, embedding_model, chunk_size, overlap_percentage, embedding_function_name): storyId = data['storyId'] story_text = data['text'] # Ensure the database directory exists if not os.path.exists(db_dir): os.makedirs(db_dir, exist_ok=True) # Define a unique directory name for the story with the specified chunk size and overlap unique_dir_name = f"story_{storyId}_{embedding_function_name}_chunk_{chunk_size}_overlap_{int(chunk_size * overlap_percentage)}" story_db_dir = f"{db_dir}/{unique_dir_name}" if not os.path.exists(story_db_dir): os.makedirs(story_db_dir, exist_ok=True) # Connect to Lancedb using the directory for this specific story, chunk size, and overlap db = lancedb.connect(story_db_dir) # Initialize the text splitter with the specified chunk size and overlap text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=int(chunk_size * overlap_percentage)) chunk_splits = text_splitter.split_text(story_text) # Generate embeddings for each chunk # chunk_embs = Chroma.from_texts(texts=chunk_splits, embedding=embedding_model) chunk_embs = embedding_model.embed_documents(chunk_splits) # Prepare the data for storage chunks_embs_data = [ { "storyId": storyId, "chunk_size": chunk_size, "overlap_size": overlap_percentage, "embedding_function": embedding_function_name, "vector": c_emb, "chunk_text": chunk_splits[i] } for i, c_emb in enumerate(chunk_embs) ] # Create a new table for this story and configuration, and store the data db.create_table( "chunks", data=chunks_embs_data, mode="overwrite" # Each story and configuration combination gets its own table ) return chunk_splits # Return the last used database connection for further operations if necessary # Function to normalize and stem text def normalize_and_stem(text): stemmer = PorterStemmer() tokens = nltk.word_tokenize(text.lower()) # Normalize to lowercase and tokenize stemmed_tokens = [stemmer.stem(token) for token in tokens if token not in string.punctuation and token not in stopwords.words('english')] # Stemming and removing punctuation return ' '.join(stemmed_tokens) # Modified function to calculate the token-wise F1 score and return precision and recall def token_eval(predicted, actual): predicted_tokens = predicted.split() actual_tokens = actual.split() common_tokens = Counter(predicted_tokens) & Counter(actual_tokens) num_same = sum(common_tokens.values()) if num_same == 0 and len(predicted_tokens) == 0 and len(actual_tokens) == 0: # Case where both predicted and actual answers are empty return 1.0, 1.0, 1.0, 1 # Perfect score elif num_same == 0: return 0, 0, 0, 0 # Return zero precision, recall, F1 score, and exact match precision = 1.0 * num_same / len(predicted_tokens) recall = 1.0 * num_same / len(actual_tokens) f1 = (2 * precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 em = int(predicted.strip() == actual.strip()) # Exact match score return f1, precision, recall, em # # Modified function to calculate Exact Match (EM) score # def calculate_em(predicted, actual): # return int(predicted == actual) # # Modified function to calculate the token-wise F1 score and return precision and recall # def calculate_token_f1(predicted, actual): # predicted_tokens = predicted.split() # actual_tokens = actual.split() # common_tokens = Counter(predicted_tokens) & Counter(actual_tokens) # num_same = sum(common_tokens.values()) # if num_same == 0: # return 0, 0, 0 # Return zero precision, recall, and F1 score # precision = 1.0 * num_same / len(predicted_tokens) # recall = 1.0 * num_same / len(actual_tokens) # f1 = (2 * precision * recall) / (precision + recall) # return f1, precision, recall def newsqa_loop(data, llm, output_csv_path, output_log_path, max_stories, chunk_sizes, overlap_percentages, instruct_embedding_model_name, instruct_embedding_model_kwargs, instruct_embedding_encode_kwargs, QA_CHAIN_PROMPT, db_dir, embedding_function_name): with open(output_csv_path, 'w', newline='') as file: writer = csv.writer(file) writer.writerow(['Chunk_size', 'Chunk_Overlap', 'Time', 'Story Number', 'Question Number', 'EM', 'Precision', 'Recall', 'F1', 'Error']) if embedding_function_name == 'hf_emb': # Embedding for story sentences story_embs = HuggingFaceInstructEmbeddings( model_name=instruct_embedding_model_name, model_kwargs=instruct_embedding_model_kwargs, encode_kwargs=instruct_embedding_encode_kwargs, embed_instruction="Use the following pieces of context to answer the question at the end:" ) # Embedding for questions query_embs = HuggingFaceInstructEmbeddings( model_name=instruct_embedding_model_name, model_kwargs=instruct_embedding_model_kwargs, encode_kwargs=instruct_embedding_encode_kwargs, query_instruction="How does this information relate to the question?" ) else: print("Unsupported embedding functions!") start_time = time.time() for chunk_size in chunk_sizes: print(f"\n{time.time()-start_time} Processing chunk size {chunk_size}:") last_time = time.time() for overlap_percentage in overlap_percentages: actual_overlap = int(chunk_size * overlap_percentage) print(f"\n{time.time()-start_time}\t{time.time()-last_time}\tOverlap [{overlap_percentage}] {actual_overlap}") # text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=actual_overlap) for i, story in enumerate(data['data']): if i >= max_stories: break now_time = time.time() print(f"\n{now_time - start_time}\t{now_time - last_time}\t\tstory {i + 1}: ", end='') last_time = now_time # Process the story and store its data in a separate table/database story_db_dir = f"{db_dir}/{story['storyId']}" # Adjust as necessary for your directory structure chunk_splits = process_story_and_store_chunks( data=story, db_dir=story_db_dir, embedding_model=story_embs, chunk_size=chunk_size, overlap_percentage=overlap_percentage, embedding_function_name=embedding_function_name ) chunk_vectorstore = Chroma.from_texts(texts=chunk_splits, embedding=story_embs) # Initialize the QA chain with the vectorstore as the retriever qa_chain = RetrievalQA.from_chain_type( llm, retriever=chunk_vectorstore.as_retriever(), chain_type="stuff", verbose=False, chain_type_kwargs={ "prompt": QA_CHAIN_PROMPT, "verbose": False}, return_source_documents=False ) for j, question_data in enumerate(story['questions']): if question_data['isAnswerAbsent']: continue # Skip this question because an answer is absent question = question_data['q'] question_emb = query_embs.embed_documents([question])[0] # Retrieve similar sentences docs = chunk_vectorstore.similarity_search_by_vector(question_emb) context_for_qa = "" for doc in docs: context_for_qa += doc.page_content + '.. ' # Check if there is a consensus answer and extract it consensus = question_data['consensus'] if 's' in consensus and 'e' in consensus: actual_answer = story['text'][consensus['s']:consensus['e']] else: continue # No consensus answer, skip to the next question # Get the prediction from the model result = qa_chain({"context": context_for_qa, "query": question}) # print(context_for_qa) # Extract and process the predicted answer predicted_answer = result['result'] if isinstance(result['result'], str) else "" # Normalize and stem the predicted and actual answers normalized_predicted_answer = normalize_and_stem(predicted_answer) normalized_actual_answer = normalize_and_stem(actual_answer) # Calculate the F1 score, precision, and recall using normalized and stemmed answers # f1_score_value, precision, recall, em_score = token_eval(normalized_predicted_answer, normalized_actual_answer) # print("Calling token_eval with:", normalized_predicted_answer, normalized_actual_answer) result = token_eval(normalized_predicted_answer, normalized_actual_answer) # print("token_eval returned:", result) f1_score_value, precision, recall, em_score = result # Write the scores to the file error = 1 if 'error' in normalized_predicted_answer else 0 if error==0: writer.writerow([chunk_size, overlap_percentage, time.time() - start_time, i, j, em_score, precision, recall, f1_score_value, error]) with open(output_log_path, 'a') as details_file: details_file.write(f"Chunk Size: {chunk_size}\n") details_file.write(f"Overlap: {overlap_percentage}\n") details_file.write(f"Story: {i}\n") details_file.write(f"Question: {j}\n") details_file.write(f"Correct Answer: {actual_answer}\n") details_file.write(f"Normalized Actual Answer: {normalized_actual_answer}\n") details_file.write(f"Predicted Answer: {predicted_answer}\n") details_file.write(f"Normalized Predicted Answer: {normalized_predicted_answer}\n") details_file.write(f"Time: {time.time() - start_time}\n") details_file.write(f"EM Score: {em_score}\n") details_file.write(f"Precision: {precision}\n") details_file.write(f"Recall: {recall}\n") details_file.write(f"F1: {f1_score_value}\n") details_file.write("----------------------------------------\n") # Cleanup del qa_chain #del chunk_embs # End of the story loop # del text_splitter ############## Running Parameters ############## max_stories = 50 random_seed = 123 db_dir = 'C:/NewsQA/lancedb' embedding_function_name = 'hf_emb' chunk_sizes = [100, 200, 400] # chunk_sizes = [50,25] # overlap_percentages = [0, 0.1, 0.2] # Expressed as percentages (0.1 = 10%) overlap_percentages = [0, 0.1] # model_location = "C:/Users/24075/AppData/Local/nomic.ai/GPT4All/ggml-model-gpt4all-falcon-q4_0.bin" model_location = "C:/NewsQA/GPT4ALL/mistral-7b-instruct-v0.1.Q4_0.gguf" # model_location = "/Users/wk77/Library/CloudStorage/OneDrive-DrexelUniversity/Documents/data/gpt4all/models/gpt4all-falcon-q4_0.gguf" # model_location = "/Users/wk77/Documents/data/gpt4all-falcon-newbpe-q4_0.gguf" # model_location = "/Users/wk77/Documents/data/mistral-7b-instruct-v0.1.Q4_0.gguf" input_file_path='C:/NewsQA/combined-newsqa-data-story2.json' # input_file_path = "/Users/wk77/Documents/data/newsqa-data-v1/newsqa-data-v1.csv" # input_file_path = "/Users/wk77/Documents/data/newsqa-data-v1/combined-newsqa-data-v1.json" # input_file_path = "/Users/wk77/Documents/git/DeepDelight/Thread2/data/combined-newsqa-data-story1.json" output_csv_path = '../results/combined_chunks2.csv' # output_file_path = "/Users/wk77/Documents/data/newsqa-data-v1/story1_scores_test.csv" # output_file_path = "/Users/wk77/Documents/data/newsqa-data-v1/combined_scores_test.csv" output_log_path = '../results/combined_chunks2.log' # # Initialize PairwiseDistance # pdist = nn.PairwiseDistance(p=2.0, eps=1e-06) ################################################## # logging.basicConfig(level=logging.INFO) # logging.basicConfig(level=logging.WARNING) # This will show only warnings and errors logging.basicConfig(level=logging.ERROR) print("Loading data.") data = json.loads(Path(input_file_path).read_text()) print("Setting template.") template_original = """ Based on the following information only: {context} {question} Please provide the answer in as few words as possible and please do NOT repeat any word in the question, i.e. "{question}". Answer: """ QA_CHAIN_PROMPT_ORIGINAL = PromptTemplate.from_template(template_original) print("Random seeding.") set_seed(random_seed) # Results storage f1_results = defaultdict(list) em_results = defaultdict(list) text_results = [] # Initialize the language model and the QA chain print("Loading LLM.") llm = GPT4All(model=model_location, max_tokens=2048, seed=random_seed) print("Preparing Parameters.") # HuggingFace Instruct Embeddings parameters instruct_embedding_model_name = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1" instruct_embedding_model_kwargs = {'device': 'cpu'} # instruct_embedding_model_kwargs = {'device': 'mps'} instruct_embedding_encode_kwargs = {'normalize_embeddings': True} # The following code would iterate over the stories and questions to calculate the scores start_time = time.time() print(f"{start_time} Started.") # Main Function Execution print("Processing.") newsqa_loop(data, llm, output_csv_path, output_log_path, max_stories, chunk_sizes, overlap_percentages, instruct_embedding_model_name, instruct_embedding_model_kwargs, instruct_embedding_encode_kwargs, QA_CHAIN_PROMPT_ORIGINAL, db_dir, embedding_function_name)
[ "lancedb.connect", "lancedb.embeddings.EmbeddingFunctionRegistry.get_instance" ]
[((1778, 1818), 'lancedb.embeddings.EmbeddingFunctionRegistry.get_instance', 'EmbeddingFunctionRegistry.get_instance', ([], {}), '()\n', (1816, 1818), False, 'from lancedb.embeddings import EmbeddingFunctionRegistry\n'), ((15779, 15819), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.ERROR'}), '(level=logging.ERROR)\n', (15798, 15819), False, 'import logging\n'), ((16333, 16380), 'langchain.prompts.PromptTemplate.from_template', 'PromptTemplate.from_template', (['template_original'], {}), '(template_original)\n', (16361, 16380), False, 'from langchain.prompts import PromptTemplate\n'), ((16410, 16431), 'transformers.set_seed', 'set_seed', (['random_seed'], {}), '(random_seed)\n', (16418, 16431), False, 'from transformers import set_seed\n'), ((16467, 16484), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (16478, 16484), False, 'from collections import defaultdict\n'), ((16499, 16516), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (16510, 16516), False, 'from collections import defaultdict\n'), ((16618, 16682), 'langchain_community.llms.GPT4All', 'GPT4All', ([], {'model': 'model_location', 'max_tokens': '(2048)', 'seed': 'random_seed'}), '(model=model_location, max_tokens=2048, seed=random_seed)\n', (16625, 16682), False, 'from langchain_community.llms import GPT4All\n'), ((17128, 17139), 'time.time', 'time.time', ([], {}), '()\n', (17137, 17139), False, 'import time\n'), ((2689, 2718), 'lancedb.connect', 'lancedb.connect', (['story_db_dir'], {}), '(story_db_dir)\n', (2704, 2718), False, 'import lancedb\n'), ((4033, 4048), 'nltk.stem.PorterStemmer', 'PorterStemmer', ([], {}), '()\n', (4046, 4048), False, 'from nltk.stem import PorterStemmer\n'), ((2138, 2160), 'os.path.exists', 'os.path.exists', (['db_dir'], {}), '(db_dir)\n', (2152, 2160), False, 'import os\n'), ((2171, 2205), 'os.makedirs', 'os.makedirs', (['db_dir'], {'exist_ok': '(True)'}), '(db_dir, exist_ok=True)\n', (2182, 2205), False, 'import os\n'), ((2502, 2530), 'os.path.exists', 'os.path.exists', (['story_db_dir'], {}), '(story_db_dir)\n', (2516, 2530), False, 'import os\n'), ((2541, 2581), 'os.makedirs', 'os.makedirs', (['story_db_dir'], {'exist_ok': '(True)'}), '(story_db_dir, exist_ok=True)\n', (2552, 2581), False, 'import os\n'), ((4579, 4604), 'collections.Counter', 'Counter', (['predicted_tokens'], {}), '(predicted_tokens)\n', (4586, 4604), False, 'from collections import Counter\n'), ((4607, 4629), 'collections.Counter', 'Counter', (['actual_tokens'], {}), '(actual_tokens)\n', (4614, 4629), False, 'from collections import Counter\n'), ((6468, 6484), 'csv.writer', 'csv.writer', (['file'], {}), '(file)\n', (6478, 6484), False, 'import csv\n'), ((7582, 7593), 'time.time', 'time.time', ([], {}), '()\n', (7591, 7593), False, 'import time\n'), ((6752, 7023), 'langchain.embeddings.huggingface.HuggingFaceInstructEmbeddings', 'HuggingFaceInstructEmbeddings', ([], {'model_name': 'instruct_embedding_model_name', 'model_kwargs': 'instruct_embedding_model_kwargs', 'encode_kwargs': 'instruct_embedding_encode_kwargs', 'embed_instruction': '"""Use the following pieces of context to answer the question at the end:"""'}), "(model_name=instruct_embedding_model_name,\n model_kwargs=instruct_embedding_model_kwargs, encode_kwargs=\n instruct_embedding_encode_kwargs, embed_instruction=\n 'Use the following pieces of context to answer the question at the end:')\n", (6781, 7023), False, 'from langchain.embeddings.huggingface import HuggingFaceInstructEmbeddings\n'), ((7160, 7410), 'langchain.embeddings.huggingface.HuggingFaceInstructEmbeddings', 'HuggingFaceInstructEmbeddings', ([], {'model_name': 'instruct_embedding_model_name', 'model_kwargs': 'instruct_embedding_model_kwargs', 'encode_kwargs': 'instruct_embedding_encode_kwargs', 'query_instruction': '"""How does this information relate to the question?"""'}), "(model_name=instruct_embedding_model_name,\n model_kwargs=instruct_embedding_model_kwargs, encode_kwargs=\n instruct_embedding_encode_kwargs, query_instruction=\n 'How does this information relate to the question?')\n", (7189, 7410), False, 'from langchain.embeddings.huggingface import HuggingFaceInstructEmbeddings\n'), ((7747, 7758), 'time.time', 'time.time', ([], {}), '()\n', (7756, 7758), False, 'import time\n'), ((15865, 15886), 'pathlib.Path', 'Path', (['input_file_path'], {}), '(input_file_path)\n', (15869, 15886), False, 'from pathlib import Path\n'), ((4250, 4276), 'nltk.corpus.stopwords.words', 'stopwords.words', (['"""english"""'], {}), "('english')\n", (4265, 4276), False, 'from nltk.corpus import stopwords\n'), ((8318, 8329), 'time.time', 'time.time', ([], {}), '()\n', (8327, 8329), False, 'import time\n'), ((9190, 9249), 'langchain_community.vectorstores.Chroma.from_texts', 'Chroma.from_texts', ([], {'texts': 'chunk_splits', 'embedding': 'story_embs'}), '(texts=chunk_splits, embedding=story_embs)\n', (9207, 9249), False, 'from langchain_community.vectorstores import Chroma\n'), ((7660, 7671), 'time.time', 'time.time', ([], {}), '()\n', (7669, 7671), False, 'import time\n'), ((7932, 7943), 'time.time', 'time.time', ([], {}), '()\n', (7941, 7943), False, 'import time\n'), ((7958, 7969), 'time.time', 'time.time', ([], {}), '()\n', (7967, 7969), False, 'import time\n'), ((12533, 12544), 'time.time', 'time.time', ([], {}), '()\n', (12542, 12544), False, 'import time\n'), ((13468, 13479), 'time.time', 'time.time', ([], {}), '()\n', (13477, 13479), False, 'import time\n')]
import logging import os import time from functools import wraps from pathlib import Path from random import random, seed import lancedb import pyarrow as pa import pyarrow.parquet as pq import typer from lancedb.db import LanceTable log_level = os.environ.get("LOG_LEVEL", "info") logging.basicConfig( level=getattr(logging, log_level.upper()), format="%(asctime)s %(levelname)s | %(processName)s %(name)s | %(message)s", ) logger = logging.getLogger(__name__) app = typer.Typer() V_SIZE = 256 DB_PATH = "benchmark" DB_TABLE = "vectors" DB_TABLE_SIZE = os.environ.get("DB_TABLE_SIZE", 100000) Q_PATH = "query" Q_SIZE = os.environ.get("Q_SIZE", 100) Q_V = "v.parquet" Q_KNN = "knn.parquet" Q_ANN = "ann.parquet" def timeit(func): @wraps(func) def f(*args, **kwargs): start_time = time.perf_counter() result = func(*args, **kwargs) end_time = time.perf_counter() total_time = end_time - start_time logger.info(f"{func.__name__} {args} done in {total_time:.2f} secs") return result return f def get_db(): if int(os.environ["AZURE"]) == 0: f = Path(os.environ["DATA"]) f.mkdir(parents=True, exist_ok=True) return lancedb.connect(f / DB_PATH) else: return lancedb.connect( f"az://{os.environ['AZURE_STORAGE_CONTAINER']}/{DB_PATH}" ) def open_table(table: str): return LanceTable(get_db(), table) def get_q(what="v"): tables = { "v": Q_V, "knn": Q_KNN, "ann": Q_ANN, } f = Path(os.environ["DATA"]) / Q_PATH f.mkdir(parents=True, exist_ok=True) return f / tables[what] def gen_data(n: int, start=1): seed() for i in range(start, start + n): yield ({"id": i, "vector": list(random() for _ in range(V_SIZE))}) @app.command() def db_init(n: int = DB_TABLE_SIZE): get_db().create_table(DB_TABLE, data=list(gen_data(n))) @app.command() def db_info(): table = open_table(DB_TABLE) logger.debug(table.head(10)) @app.command() def db_add(n: int, start: int): table = open_table(DB_TABLE) table.add(list(gen_data(n, start=start))) @app.command() def q_init(n: int = Q_SIZE): pq.write_table(pa.Table.from_pylist(list(gen_data(n))), get_q()) @app.command() def q_info(): logger.debug(pq.read_table(get_q())) @timeit def q_process(what: str): table = open_table(DB_TABLE) r = pa.Table.from_pylist( [ { "id": v["id"], "neighbours": table.search(v["vector"]) .limit(10) .select(["id"]) .to_arrow()["id"] .to_pylist(), } for v in pq.read_table(get_q()).to_pylist() ] ) pq.write_table(r, get_q(what)) @app.command() @timeit def create_index(): open_table(DB_TABLE).create_index( num_sub_vectors=8 ) # TODO :avoid hard coded params @app.command() def q_knn(): q_process("knn") @app.command() def q_ann(): create_index() q_process("ann") if __name__ == "__main__": app()
[ "lancedb.connect" ]
[((248, 283), 'os.environ.get', 'os.environ.get', (['"""LOG_LEVEL"""', '"""info"""'], {}), "('LOG_LEVEL', 'info')\n", (262, 283), False, 'import os\n'), ((446, 473), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (463, 473), False, 'import logging\n'), ((480, 493), 'typer.Typer', 'typer.Typer', ([], {}), '()\n', (491, 493), False, 'import typer\n'), ((569, 608), 'os.environ.get', 'os.environ.get', (['"""DB_TABLE_SIZE"""', '(100000)'], {}), "('DB_TABLE_SIZE', 100000)\n", (583, 608), False, 'import os\n'), ((636, 665), 'os.environ.get', 'os.environ.get', (['"""Q_SIZE"""', '(100)'], {}), "('Q_SIZE', 100)\n", (650, 665), False, 'import os\n'), ((753, 764), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (758, 764), False, 'from functools import wraps\n'), ((1693, 1699), 'random.seed', 'seed', ([], {}), '()\n', (1697, 1699), False, 'from random import random, seed\n'), ((814, 833), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (831, 833), False, 'import time\n'), ((892, 911), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (909, 911), False, 'import time\n'), ((1134, 1158), 'pathlib.Path', 'Path', (["os.environ['DATA']"], {}), "(os.environ['DATA'])\n", (1138, 1158), False, 'from pathlib import Path\n'), ((1219, 1247), 'lancedb.connect', 'lancedb.connect', (['(f / DB_PATH)'], {}), '(f / DB_PATH)\n', (1234, 1247), False, 'import lancedb\n'), ((1273, 1347), 'lancedb.connect', 'lancedb.connect', (['f"""az://{os.environ[\'AZURE_STORAGE_CONTAINER\']}/{DB_PATH}"""'], {}), '(f"az://{os.environ[\'AZURE_STORAGE_CONTAINER\']}/{DB_PATH}")\n', (1288, 1347), False, 'import lancedb\n'), ((1553, 1577), 'pathlib.Path', 'Path', (["os.environ['DATA']"], {}), "(os.environ['DATA'])\n", (1557, 1577), False, 'from pathlib import Path\n'), ((1778, 1786), 'random.random', 'random', ([], {}), '()\n', (1784, 1786), False, 'from random import random, seed\n')]
import argparse import os import shutil from functools import lru_cache from pathlib import Path from typing import Any, Iterator import srsly from codetiming import Timer from config import Settings from dotenv import load_dotenv from rich import progress from schemas.wine import LanceModelWine, Wine from sentence_transformers import SentenceTransformer import lancedb from lancedb.pydantic import pydantic_to_schema from lancedb.table import Table load_dotenv() # Custom types JsonBlob = dict[str, Any] class FileNotFoundError(Exception): pass @lru_cache() def get_settings(): # Use lru_cache to avoid loading .env file for every request return Settings() def chunk_iterable(item_list: list[JsonBlob], chunksize: int) -> Iterator[list[JsonBlob]]: """ Break a large iterable into an iterable of smaller iterables of size `chunksize` """ for i in range(0, len(item_list), chunksize): yield item_list[i : i + chunksize] def get_json_data(data_dir: Path, filename: str) -> list[JsonBlob]: """Get all line-delimited json files (.jsonl) from a directory with a given prefix""" file_path = data_dir / filename if not file_path.is_file(): # File may not have been uncompressed yet so try to do that first data = srsly.read_gzip_jsonl(file_path) # This time if it isn't there it really doesn't exist if not file_path.is_file(): raise FileNotFoundError(f"No valid .jsonl file found in `{data_dir}`") else: data = srsly.read_gzip_jsonl(file_path) return data def validate( data: list[JsonBlob], exclude_none: bool = False, ) -> list[JsonBlob]: validated_data = [Wine(**item).model_dump(exclude_none=exclude_none) for item in data] return validated_data def embed_func(batch: list[str], model) -> list[list[float]]: return [model.encode(sentence.lower()) for sentence in batch] def vectorize_text(data: list[JsonBlob]) -> list[LanceModelWine] | None: # Load a sentence transformer model for semantic similarity from a specified checkpoint model_id = get_settings().embedding_model_checkpoint assert model_id, "Invalid embedding model checkpoint specified in .env file" MODEL = SentenceTransformer(model_id) ids = [item["id"] for item in data] to_vectorize = [text.get("to_vectorize") for text in data] vectors = embed_func(to_vectorize, MODEL) try: data_batch = [{**d, "vector": vector} for d, vector in zip(data, vectors)] except Exception as e: print(f"{e}: Failed to add ID range {min(ids)}-{max(ids)}") return None return data_batch def embed_batches(tbl: str, validated_data: list[JsonBlob]) -> Table: """Ingest vector embeddings in batches for ANN index""" chunked_data = chunk_iterable(validated_data, CHUNKSIZE) print(f"Adding vectors to table for ANN index...") # Add rich progress bar with progress.Progress( "[progress.description]{task.description}", progress.BarColumn(), "[progress.percentage]{task.percentage:>3.0f}%", progress.TimeElapsedColumn(), ) as prog: overall_progress_task = prog.add_task( "Starting vectorization...", total=len(validated_data) // CHUNKSIZE ) for chunk in chunked_data: batch = vectorize_text(chunk) prog.update(overall_progress_task, advance=1) tbl.add(batch, mode="append") def main(tbl: Table, data: list[JsonBlob]) -> None: """Generate sentence embeddings and create ANN and FTS indexes""" with Timer( name="Data validation in pydantic", text="Validated data using Pydantic in {:.4f} sec", ): validated_data = validate(data, exclude_none=False) with Timer( name="Insert vectors in batches", text="Created sentence embeddings in {:.4f} sec", ): embed_batches(tbl, validated_data) print(f"Finished inserting {len(tbl)} vectors into LanceDB table") with Timer(name="Create ANN index", text="Created ANN index in {:.4f} sec"): print("Creating ANN index...") # Creating IVF-PQ index for now, as we eagerly await DiskANN # Choose num partitions as a power of 2 that's closest to len(dataset) // 5000 # In this case, we have 130k datapoints, so the nearest power of 2 is 130000//5000 ~ 32) tbl.create_index(metric="cosine", num_partitions=4, num_sub_vectors=32) with Timer(name="Create FTS index", text="Created FTS index in {:.4f} sec"): # Create a full-text search index via Tantivy (which implements Lucene + BM25 in Rust) tbl.create_fts_index(["to_vectorize"]) if __name__ == "__main__": # fmt: off parser = argparse.ArgumentParser("Bulk index database from the wine reviews JSONL data") parser.add_argument("--limit", "-l", type=int, default=0, help="Limit the size of the dataset to load for testing purposes") parser.add_argument("--chunksize", type=int, default=1000, help="Size of each chunk to break the dataset into before processing") parser.add_argument("--filename", type=str, default="winemag-data-130k-v2.jsonl.gz", help="Name of the JSONL zip file to use") args = vars(parser.parse_args()) # fmt: on LIMIT = args["limit"] DATA_DIR = Path(__file__).parents[1] / "data" FILENAME = args["filename"] CHUNKSIZE = args["chunksize"] data = list(get_json_data(DATA_DIR, FILENAME)) assert data, "No data found in the specified file" data = data[:LIMIT] if LIMIT > 0 else data DB_NAME = "./winemag" TABLE = "wines" if os.path.exists(DB_NAME): shutil.rmtree(DB_NAME) db = lancedb.connect(DB_NAME) try: tbl = db.create_table(TABLE, schema=pydantic_to_schema(LanceModelWine), mode="create") except OSError: tbl = db.open_table(TABLE) main(tbl, data) print("Finished execution!")
[ "lancedb.connect", "lancedb.pydantic.pydantic_to_schema" ]
[((455, 468), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (466, 468), False, 'from dotenv import load_dotenv\n'), ((560, 571), 'functools.lru_cache', 'lru_cache', ([], {}), '()\n', (569, 571), False, 'from functools import lru_cache\n'), ((668, 678), 'config.Settings', 'Settings', ([], {}), '()\n', (676, 678), False, 'from config import Settings\n'), ((2230, 2259), 'sentence_transformers.SentenceTransformer', 'SentenceTransformer', (['model_id'], {}), '(model_id)\n', (2249, 2259), False, 'from sentence_transformers import SentenceTransformer\n'), ((4737, 4816), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Bulk index database from the wine reviews JSONL data"""'], {}), "('Bulk index database from the wine reviews JSONL data')\n", (4760, 4816), False, 'import argparse\n'), ((5613, 5636), 'os.path.exists', 'os.path.exists', (['DB_NAME'], {}), '(DB_NAME)\n', (5627, 5636), False, 'import os\n'), ((5679, 5703), 'lancedb.connect', 'lancedb.connect', (['DB_NAME'], {}), '(DB_NAME)\n', (5694, 5703), False, 'import lancedb\n'), ((1283, 1315), 'srsly.read_gzip_jsonl', 'srsly.read_gzip_jsonl', (['file_path'], {}), '(file_path)\n', (1304, 1315), False, 'import srsly\n'), ((1522, 1554), 'srsly.read_gzip_jsonl', 'srsly.read_gzip_jsonl', (['file_path'], {}), '(file_path)\n', (1543, 1554), False, 'import srsly\n'), ((3582, 3680), 'codetiming.Timer', 'Timer', ([], {'name': '"""Data validation in pydantic"""', 'text': '"""Validated data using Pydantic in {:.4f} sec"""'}), "(name='Data validation in pydantic', text=\n 'Validated data using Pydantic in {:.4f} sec')\n", (3587, 3680), False, 'from codetiming import Timer\n'), ((3770, 3864), 'codetiming.Timer', 'Timer', ([], {'name': '"""Insert vectors in batches"""', 'text': '"""Created sentence embeddings in {:.4f} sec"""'}), "(name='Insert vectors in batches', text=\n 'Created sentence embeddings in {:.4f} sec')\n", (3775, 3864), False, 'from codetiming import Timer\n'), ((4012, 4082), 'codetiming.Timer', 'Timer', ([], {'name': '"""Create ANN index"""', 'text': '"""Created ANN index in {:.4f} sec"""'}), "(name='Create ANN index', text='Created ANN index in {:.4f} sec')\n", (4017, 4082), False, 'from codetiming import Timer\n'), ((4466, 4536), 'codetiming.Timer', 'Timer', ([], {'name': '"""Create FTS index"""', 'text': '"""Created FTS index in {:.4f} sec"""'}), "(name='Create FTS index', text='Created FTS index in {:.4f} sec')\n", (4471, 4536), False, 'from codetiming import Timer\n'), ((5646, 5668), 'shutil.rmtree', 'shutil.rmtree', (['DB_NAME'], {}), '(DB_NAME)\n', (5659, 5668), False, 'import shutil\n'), ((3003, 3023), 'rich.progress.BarColumn', 'progress.BarColumn', ([], {}), '()\n', (3021, 3023), False, 'from rich import progress\n'), ((3090, 3118), 'rich.progress.TimeElapsedColumn', 'progress.TimeElapsedColumn', ([], {}), '()\n', (3116, 3118), False, 'from rich import progress\n'), ((1688, 1700), 'schemas.wine.Wine', 'Wine', ([], {}), '(**item)\n', (1692, 1700), False, 'from schemas.wine import LanceModelWine, Wine\n'), ((5304, 5318), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (5308, 5318), False, 'from pathlib import Path\n'), ((5757, 5791), 'lancedb.pydantic.pydantic_to_schema', 'pydantic_to_schema', (['LanceModelWine'], {}), '(LanceModelWine)\n', (5775, 5791), False, 'from lancedb.pydantic import pydantic_to_schema\n')]
from datasets import load_dataset data = load_dataset('jamescalam/youtube-transcriptions', split='train') from lancedb.context import contextualize df = (contextualize(data.to_pandas()) .groupby("title").text_col("text") .window(20).stride(4) .to_df()) df.head(1) import openai import os # Configuring the environment variable OPENAI_API_KEY if "OPENAI_API_KEY" not in os.environ: # OR set the key here as a variable openai.api_key = "" assert len(openai.Model.list()["data"]) > 0 def embed_func(c): rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002") return [record["embedding"] for record in rs["data"]] import lancedb from lancedb.embeddings import with_embeddings # data = with_embeddings(embed_func, df, show_progress=True) # data.to_pandas().head(1) db = lancedb.connect("/tmp/lancedb") # tbl = db.create_table("youtube-chatbot", data) # get table tbl = db.open_table("youtube-chatbot") #print the length of the table print(len(tbl)) tbl.to_pandas().head(1) def create_prompt(query, context): limit = 3750 prompt_start = ( "Answer the question based on the context below.\n\n"+ "Context:\n" ) prompt_end = ( f"\n\nQuestion: {query}\nAnswer:" ) # append contexts until hitting limit for i in range(1, len(context)): if len("\n\n---\n\n".join(context.text[:i])) >= limit: prompt = ( prompt_start + "\n\n---\n\n".join(context.text[:i-1]) + prompt_end ) break elif i == len(context)-1: prompt = ( prompt_start + "\n\n---\n\n".join(context.text) + prompt_end ) print ( "prompt:", prompt ) return prompt def complete(prompt): # query text-davinci-003 res = openai.Completion.create( engine='text-davinci-003', prompt=prompt, temperature=0, max_tokens=400, top_p=1, frequency_penalty=0, presence_penalty=0, stop=None ) return res['choices'][0]['text'].strip() query = ("How do I use the Pandas library to create embeddings?") # Embed the question emb = embed_func(query)[0] # Use LanceDB to get top 3 most relevant context context = tbl.search(emb).limit(3).to_df() # Get the answer from completion API prompt = create_prompt(query, context) print( "context:", context ) print ( complete( prompt ))
[ "lancedb.connect" ]
[((42, 106), 'datasets.load_dataset', 'load_dataset', (['"""jamescalam/youtube-transcriptions"""'], {'split': '"""train"""'}), "('jamescalam/youtube-transcriptions', split='train')\n", (54, 106), False, 'from datasets import load_dataset\n'), ((831, 862), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (846, 862), False, 'import lancedb\n'), ((549, 614), 'openai.Embedding.create', 'openai.Embedding.create', ([], {'input': 'c', 'engine': '"""text-embedding-ada-002"""'}), "(input=c, engine='text-embedding-ada-002')\n", (572, 614), False, 'import openai\n'), ((1876, 2042), 'openai.Completion.create', 'openai.Completion.create', ([], {'engine': '"""text-davinci-003"""', 'prompt': 'prompt', 'temperature': '(0)', 'max_tokens': '(400)', 'top_p': '(1)', 'frequency_penalty': '(0)', 'presence_penalty': '(0)', 'stop': 'None'}), "(engine='text-davinci-003', prompt=prompt,\n temperature=0, max_tokens=400, top_p=1, frequency_penalty=0,\n presence_penalty=0, stop=None)\n", (1900, 2042), False, 'import openai\n'), ((483, 502), 'openai.Model.list', 'openai.Model.list', ([], {}), '()\n', (500, 502), False, 'import openai\n')]
import hashlib import io import logging from typing import List import numpy as np from lancedb.pydantic import LanceModel, vector from PIL import Image from pydantic import BaseModel, Field, computed_field from homematch.config import IMAGES_DIR logger = logging.getLogger(__name__) class PropertyListingBase(BaseModel): page_source: str resource_title: str resource_country: str operation_type: str active: bool url: str title: str normalized_title: str zone: str current_price: float | None = None ad_text: str basic_info: List[str] last_update: str main_image_url: str scraped_ts: str @computed_field # type: ignore @property def identificator(self) -> str: return hashlib.sha256(self.url.encode()).hexdigest()[:16] @computed_field # type: ignore @property def text_description(self) -> str: basic_info_text = ",".join(self.basic_info) basic_info_text = basic_info_text.replace("habs", "bedrooms") basic_info_text = basic_info_text.replace("baños", "bathrooms") basic_info_text = basic_info_text.replace("baño", "bathroom") basic_info_text = basic_info_text.replace("m²", "square meters") basic_info_text = basic_info_text.replace("planta", "floor") basic_info_text = basic_info_text.replace("Bajo", "0 floor") description = "" description += f"Zone: {self.zone}." description += f"\nPrice: {self.current_price} euros." description += f"\nFeatures: {basic_info_text}" return description class PropertyListing(PropertyListingBase): images_dir: str = Field(str(IMAGES_DIR), description="Directory to store images") @property def image_path(self) -> str: return str(self.images_dir) + f"/{self.identificator}.jpg" def load_image(self) -> Image.Image: try: return Image.open(self.image_path) except FileNotFoundError: logger.error(f"Image file not found: {self.image_path}") raise @classmethod def pil_to_bytes(cls, img: Image.Image) -> bytes: buf = io.BytesIO() img.save(buf, format="PNG") return buf.getvalue() @classmethod def pil_to_numpy(cls, img: Image.Image) -> np.ndarray: return np.array(img) class PropertyData(PropertyListing): class Config: arbitrary_types_allowed = True image: Image.Image class ImageData(PropertyListing, LanceModel): vector: vector(768) # type: ignore image_bytes: bytes
[ "lancedb.pydantic.vector" ]
[((259, 286), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (276, 286), False, 'import logging\n'), ((2511, 2522), 'lancedb.pydantic.vector', 'vector', (['(768)'], {}), '(768)\n', (2517, 2522), False, 'from lancedb.pydantic import LanceModel, vector\n'), ((2146, 2158), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2156, 2158), False, 'import io\n'), ((2317, 2330), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (2325, 2330), True, 'import numpy as np\n'), ((1911, 1938), 'PIL.Image.open', 'Image.open', (['self.image_path'], {}), '(self.image_path)\n', (1921, 1938), False, 'from PIL import Image\n')]
# Copyright 2023 LanceDB Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import logging import os from typing import Any, Callable, Dict, List, Optional, Union from urllib.parse import urljoin import attrs import pyarrow as pa import requests from pydantic import BaseModel from requests.adapters import HTTPAdapter from urllib3 import Retry from lancedb.common import Credential from lancedb.remote import VectorQuery, VectorQueryResult from lancedb.remote.connection_timeout import LanceDBClientHTTPAdapterFactory from lancedb.remote.errors import LanceDBClientError ARROW_STREAM_CONTENT_TYPE = "application/vnd.apache.arrow.stream" def _check_not_closed(f): @functools.wraps(f) def wrapped(self, *args, **kwargs): if self.closed: raise ValueError("Connection is closed") return f(self, *args, **kwargs) return wrapped def _read_ipc(resp: requests.Response) -> pa.Table: resp_body = resp.content with pa.ipc.open_file(pa.BufferReader(resp_body)) as reader: return reader.read_all() @attrs.define(slots=False) class RestfulLanceDBClient: db_name: str region: str api_key: Credential host_override: Optional[str] = attrs.field(default=None) closed: bool = attrs.field(default=False, init=False) connection_timeout: float = attrs.field(default=120.0, kw_only=True) read_timeout: float = attrs.field(default=300.0, kw_only=True) @functools.cached_property def session(self) -> requests.Session: sess = requests.Session() retry_adapter_instance = retry_adapter(retry_adapter_options()) sess.mount(urljoin(self.url, "/v1/table/"), retry_adapter_instance) adapter_class = LanceDBClientHTTPAdapterFactory() sess.mount("https://", adapter_class()) return sess @property def url(self) -> str: return ( self.host_override or f"https://{self.db_name}.{self.region}.api.lancedb.com" ) def close(self): self.session.close() self.closed = True @functools.cached_property def headers(self) -> Dict[str, str]: headers = { "x-api-key": self.api_key, } if self.region == "local": # Local test mode headers["Host"] = f"{self.db_name}.{self.region}.api.lancedb.com" if self.host_override: headers["x-lancedb-database"] = self.db_name return headers @staticmethod def _check_status(resp: requests.Response): if resp.status_code == 404: raise LanceDBClientError(f"Not found: {resp.text}") elif 400 <= resp.status_code < 500: raise LanceDBClientError( f"Bad Request: {resp.status_code}, error: {resp.text}" ) elif 500 <= resp.status_code < 600: raise LanceDBClientError( f"Internal Server Error: {resp.status_code}, error: {resp.text}" ) elif resp.status_code != 200: raise LanceDBClientError( f"Unknown Error: {resp.status_code}, error: {resp.text}" ) @_check_not_closed def get(self, uri: str, params: Union[Dict[str, Any], BaseModel] = None): """Send a GET request and returns the deserialized response payload.""" if isinstance(params, BaseModel): params: Dict[str, Any] = params.dict(exclude_none=True) with self.session.get( urljoin(self.url, uri), params=params, headers=self.headers, timeout=(self.connection_timeout, self.read_timeout), ) as resp: self._check_status(resp) return resp.json() @_check_not_closed def post( self, uri: str, data: Optional[Union[Dict[str, Any], BaseModel, bytes]] = None, params: Optional[Dict[str, Any]] = None, content_type: Optional[str] = None, deserialize: Callable = lambda resp: resp.json(), request_id: Optional[str] = None, ) -> Dict[str, Any]: """Send a POST request and returns the deserialized response payload. Parameters ---------- uri : str The uri to send the POST request to. data: Union[Dict[str, Any], BaseModel] request_id: Optional[str] Optional client side request id to be sent in the request headers. """ if isinstance(data, BaseModel): data: Dict[str, Any] = data.dict(exclude_none=True) if isinstance(data, bytes): req_kwargs = {"data": data} else: req_kwargs = {"json": data} headers = self.headers.copy() if content_type is not None: headers["content-type"] = content_type if request_id is not None: headers["x-request-id"] = request_id with self.session.post( urljoin(self.url, uri), headers=headers, params=params, timeout=(self.connection_timeout, self.read_timeout), **req_kwargs, ) as resp: self._check_status(resp) return deserialize(resp) @_check_not_closed def list_tables(self, limit: int, page_token: Optional[str] = None) -> List[str]: """List all tables in the database.""" if page_token is None: page_token = "" json = self.get("/v1/table/", {"limit": limit, "page_token": page_token}) return json["tables"] @_check_not_closed def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult: """Query a table.""" tbl = self.post(f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc) return VectorQueryResult(tbl) def mount_retry_adapter_for_table(self, table_name: str) -> None: """ Adds an http adapter to session that will retry retryable requests to the table. """ retry_options = retry_adapter_options(methods=["GET", "POST"]) retry_adapter_instance = retry_adapter(retry_options) session = self.session session.mount( urljoin(self.url, f"/v1/table/{table_name}/query/"), retry_adapter_instance ) session.mount( urljoin(self.url, f"/v1/table/{table_name}/describe/"), retry_adapter_instance, ) session.mount( urljoin(self.url, f"/v1/table/{table_name}/index/list/"), retry_adapter_instance, ) def retry_adapter_options(methods=["GET"]) -> Dict[str, Any]: return { "retries": int(os.environ.get("LANCE_CLIENT_MAX_RETRIES", "3")), "connect_retries": int(os.environ.get("LANCE_CLIENT_CONNECT_RETRIES", "3")), "read_retries": int(os.environ.get("LANCE_CLIENT_READ_RETRIES", "3")), "backoff_factor": float( os.environ.get("LANCE_CLIENT_RETRY_BACKOFF_FACTOR", "0.25") ), "backoff_jitter": float( os.environ.get("LANCE_CLIENT_RETRY_BACKOFF_JITTER", "0.25") ), "statuses": [ int(i.strip()) for i in os.environ.get( "LANCE_CLIENT_RETRY_STATUSES", "429, 500, 502, 503" ).split(",") ], "methods": methods, } def retry_adapter(options: Dict[str, Any]) -> HTTPAdapter: total_retries = options["retries"] connect_retries = options["connect_retries"] read_retries = options["read_retries"] backoff_factor = options["backoff_factor"] backoff_jitter = options["backoff_jitter"] statuses = options["statuses"] methods = frozenset(options["methods"]) logging.debug( f"Setting up retry adapter with {total_retries} retries," # noqa G003 + f"connect retries {connect_retries}, read retries {read_retries}," + f"backoff factor {backoff_factor}, statuses {statuses}, " + f"methods {methods}" ) return HTTPAdapter( max_retries=Retry( total=total_retries, connect=connect_retries, read=read_retries, backoff_factor=backoff_factor, backoff_jitter=backoff_jitter, status_forcelist=statuses, allowed_methods=methods, ) )
[ "lancedb.remote.VectorQueryResult", "lancedb.remote.connection_timeout.LanceDBClientHTTPAdapterFactory", "lancedb.remote.errors.LanceDBClientError" ]
[((1587, 1612), 'attrs.define', 'attrs.define', ([], {'slots': '(False)'}), '(slots=False)\n', (1599, 1612), False, 'import attrs\n'), ((1207, 1225), 'functools.wraps', 'functools.wraps', (['f'], {}), '(f)\n', (1222, 1225), False, 'import functools\n'), ((1733, 1758), 'attrs.field', 'attrs.field', ([], {'default': 'None'}), '(default=None)\n', (1744, 1758), False, 'import attrs\n'), ((1779, 1817), 'attrs.field', 'attrs.field', ([], {'default': '(False)', 'init': '(False)'}), '(default=False, init=False)\n', (1790, 1817), False, 'import attrs\n'), ((1851, 1891), 'attrs.field', 'attrs.field', ([], {'default': '(120.0)', 'kw_only': '(True)'}), '(default=120.0, kw_only=True)\n', (1862, 1891), False, 'import attrs\n'), ((1918, 1958), 'attrs.field', 'attrs.field', ([], {'default': '(300.0)', 'kw_only': '(True)'}), '(default=300.0, kw_only=True)\n', (1929, 1958), False, 'import attrs\n'), ((8166, 8402), 'logging.debug', 'logging.debug', (["(f'Setting up retry adapter with {total_retries} retries,' +\n f'connect retries {connect_retries}, read retries {read_retries},' +\n f'backoff factor {backoff_factor}, statuses {statuses}, ' +\n f'methods {methods}')"], {}), "(f'Setting up retry adapter with {total_retries} retries,' +\n f'connect retries {connect_retries}, read retries {read_retries},' +\n f'backoff factor {backoff_factor}, statuses {statuses}, ' +\n f'methods {methods}')\n", (8179, 8402), False, 'import logging\n'), ((2049, 2067), 'requests.Session', 'requests.Session', ([], {}), '()\n', (2065, 2067), False, 'import requests\n'), ((2242, 2275), 'lancedb.remote.connection_timeout.LanceDBClientHTTPAdapterFactory', 'LanceDBClientHTTPAdapterFactory', ([], {}), '()\n', (2273, 2275), False, 'from lancedb.remote.connection_timeout import LanceDBClientHTTPAdapterFactory\n'), ((6258, 6280), 'lancedb.remote.VectorQueryResult', 'VectorQueryResult', (['tbl'], {}), '(tbl)\n', (6275, 6280), False, 'from lancedb.remote import VectorQuery, VectorQueryResult\n'), ((1512, 1538), 'pyarrow.BufferReader', 'pa.BufferReader', (['resp_body'], {}), '(resp_body)\n', (1527, 1538), True, 'import pyarrow as pa\n'), ((2160, 2191), 'urllib.parse.urljoin', 'urljoin', (['self.url', '"""/v1/table/"""'], {}), "(self.url, '/v1/table/')\n", (2167, 2191), False, 'from urllib.parse import urljoin\n'), ((3098, 3143), 'lancedb.remote.errors.LanceDBClientError', 'LanceDBClientError', (['f"""Not found: {resp.text}"""'], {}), "(f'Not found: {resp.text}')\n", (3116, 3143), False, 'from lancedb.remote.errors import LanceDBClientError\n'), ((6665, 6716), 'urllib.parse.urljoin', 'urljoin', (['self.url', 'f"""/v1/table/{table_name}/query/"""'], {}), "(self.url, f'/v1/table/{table_name}/query/')\n", (6672, 6716), False, 'from urllib.parse import urljoin\n'), ((6786, 6840), 'urllib.parse.urljoin', 'urljoin', (['self.url', 'f"""/v1/table/{table_name}/describe/"""'], {}), "(self.url, f'/v1/table/{table_name}/describe/')\n", (6793, 6840), False, 'from urllib.parse import urljoin\n'), ((6923, 6979), 'urllib.parse.urljoin', 'urljoin', (['self.url', 'f"""/v1/table/{table_name}/index/list/"""'], {}), "(self.url, f'/v1/table/{table_name}/index/list/')\n", (6930, 6979), False, 'from urllib.parse import urljoin\n'), ((7127, 7174), 'os.environ.get', 'os.environ.get', (['"""LANCE_CLIENT_MAX_RETRIES"""', '"""3"""'], {}), "('LANCE_CLIENT_MAX_RETRIES', '3')\n", (7141, 7174), False, 'import os\n'), ((7208, 7259), 'os.environ.get', 'os.environ.get', (['"""LANCE_CLIENT_CONNECT_RETRIES"""', '"""3"""'], {}), "('LANCE_CLIENT_CONNECT_RETRIES', '3')\n", (7222, 7259), False, 'import os\n'), ((7290, 7338), 'os.environ.get', 'os.environ.get', (['"""LANCE_CLIENT_READ_RETRIES"""', '"""3"""'], {}), "('LANCE_CLIENT_READ_RETRIES', '3')\n", (7304, 7338), False, 'import os\n'), ((7386, 7445), 'os.environ.get', 'os.environ.get', (['"""LANCE_CLIENT_RETRY_BACKOFF_FACTOR"""', '"""0.25"""'], {}), "('LANCE_CLIENT_RETRY_BACKOFF_FACTOR', '0.25')\n", (7400, 7445), False, 'import os\n'), ((7502, 7561), 'os.environ.get', 'os.environ.get', (['"""LANCE_CLIENT_RETRY_BACKOFF_JITTER"""', '"""0.25"""'], {}), "('LANCE_CLIENT_RETRY_BACKOFF_JITTER', '0.25')\n", (7516, 7561), False, 'import os\n'), ((8487, 8679), 'urllib3.Retry', 'Retry', ([], {'total': 'total_retries', 'connect': 'connect_retries', 'read': 'read_retries', 'backoff_factor': 'backoff_factor', 'backoff_jitter': 'backoff_jitter', 'status_forcelist': 'statuses', 'allowed_methods': 'methods'}), '(total=total_retries, connect=connect_retries, read=read_retries,\n backoff_factor=backoff_factor, backoff_jitter=backoff_jitter,\n status_forcelist=statuses, allowed_methods=methods)\n', (8492, 8679), False, 'from urllib3 import Retry\n'), ((3206, 3280), 'lancedb.remote.errors.LanceDBClientError', 'LanceDBClientError', (['f"""Bad Request: {resp.status_code}, error: {resp.text}"""'], {}), "(f'Bad Request: {resp.status_code}, error: {resp.text}')\n", (3224, 3280), False, 'from lancedb.remote.errors import LanceDBClientError\n'), ((3986, 4008), 'urllib.parse.urljoin', 'urljoin', (['self.url', 'uri'], {}), '(self.url, uri)\n', (3993, 4008), False, 'from urllib.parse import urljoin\n'), ((5430, 5452), 'urllib.parse.urljoin', 'urljoin', (['self.url', 'uri'], {}), '(self.url, uri)\n', (5437, 5452), False, 'from urllib.parse import urljoin\n'), ((3373, 3462), 'lancedb.remote.errors.LanceDBClientError', 'LanceDBClientError', (['f"""Internal Server Error: {resp.status_code}, error: {resp.text}"""'], {}), "(\n f'Internal Server Error: {resp.status_code}, error: {resp.text}')\n", (3391, 3462), False, 'from lancedb.remote.errors import LanceDBClientError\n'), ((3544, 3620), 'lancedb.remote.errors.LanceDBClientError', 'LanceDBClientError', (['f"""Unknown Error: {resp.status_code}, error: {resp.text}"""'], {}), "(f'Unknown Error: {resp.status_code}, error: {resp.text}')\n", (3562, 3620), False, 'from lancedb.remote.errors import LanceDBClientError\n'), ((7643, 7710), 'os.environ.get', 'os.environ.get', (['"""LANCE_CLIENT_RETRY_STATUSES"""', '"""429, 500, 502, 503"""'], {}), "('LANCE_CLIENT_RETRY_STATUSES', '429, 500, 502, 503')\n", (7657, 7710), False, 'import os\n')]
from langchain.text_splitter import ( RecursiveCharacterTextSplitter, Language, LatexTextSplitter, ) from langchain.document_loaders import TextLoader from langchain.embeddings import OpenAIEmbeddings import argparse, os, arxiv os.environ["OPENAI_API_KEY"] = "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" embeddings = OpenAIEmbeddings() from langchain.vectorstores import LanceDB from lancedb.pydantic import Vector, LanceModel from Typing import List from datetime import datetime import lancedb global embedding_out_length embedding_out_length = 1536 class Content(LanceModel): id: str arxiv_id: str vector: Vector(embedding_out_length) text: str uploaded_date: datetime title: str authors: List[str] abstract: str categories: List[str] url: str def PyPDF_to_Vector(table: LanceDB, embeddings: OpenAIEmbeddings, src_dir: str, n_threads: int = 1): pass if __name__ == "__main__": argparser = argparse.ArgumentParser(description="Create Vector DB and perform ingestion from source files") argparser.add_argument('-s', '--src_dir', type=str, required=True, help = "Source directory where arxiv sources are stored") argparser.add_argument('-db', '--db_name', type=str, required=True, help = "Name of the LanceDB database to be created") argparser.add_argument('-t', '--table_name', type=str, required=False, help = "Name of the LanceDB table to be created", default = "EIC_archive") argparser.add_argument('-openai_key', '--openai_api_key', type=str, required=True, help = "OpenAI API key") argparser.add_argument('-c', '--chunking', type = str, required=False, help = "Type of Chunking PDF or LATEX", default = "PDF") argparser.add_argument('-n', '--nthreads', type=int, default=-1) args = argparser.parse_args() SRC_DIR = args.src_dir DB_NAME = args.db_name TABLE_NAME = args.table_name OPENAI_API_KEY = args.openai_api_key NTHREADS = args.nthreads db = lancedb.connect(DB_NAME) table = db.create_table(TABLE_NAME, schema=Content, mode="overwrite") db = lancedb.connect() meta_data = {"arxiv_id": "1", "title": "EIC LLM", "category" : "N/A", "authors": "N/A", "sub_categories": "N/A", "abstract": "N/A", "published": "N/A", "updated": "N/A", "doi": "N/A" }, table = db.create_table( "EIC_archive", data=[ { "vector": embeddings.embed_query("EIC LLM"), "text": "EIC LLM", "id": "1", "arxiv_id" : "N/A", "title" : "N/A", "category" : "N/A", "published" : "N/A" } ], mode="overwrite", ) vectorstore = LanceDB(connection = table, embedding = embeddings) sourcedir = "PDFs" count = 0 for source in os.listdir(sourcedir): if not os.path.isdir(os.path.join("PDFs", source)): continue print (f"Adding the source document {source} to the Vector DB") import arxiv client = arxiv.Client() search = arxiv.Search(id_list=[source]) paper = next(arxiv.Client().results(search)) meta_data = {"arxiv_id": paper.entry_id, "title": paper.title, "category" : categories[paper.primary_category], "published": paper.published } for file in os.listdir(os.path.join(sourcedir, source)): if file.endswith(".tex"): latex_file = os.path.join(sourcedir, source, file) print (source, latex_file) documents = TextLoader(latex_file, encoding = 'latin-1').load() latex_splitter = LatexTextSplitter( chunk_size=120, chunk_overlap=10 ) documents = latex_splitter.split_documents(documents) for doc in documents: for k, v in meta_data.items(): doc.metadata[k] = v vectorstore.add_documents(documents = documents) count+=len(documents)
[ "lancedb.connect", "lancedb.pydantic.Vector" ]
[((342, 360), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (358, 360), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((2116, 2133), 'lancedb.connect', 'lancedb.connect', ([], {}), '()\n', (2131, 2133), False, 'import lancedb\n'), ((2820, 2867), 'langchain.vectorstores.LanceDB', 'LanceDB', ([], {'connection': 'table', 'embedding': 'embeddings'}), '(connection=table, embedding=embeddings)\n', (2827, 2867), False, 'from langchain.vectorstores import LanceDB\n'), ((2916, 2937), 'os.listdir', 'os.listdir', (['sourcedir'], {}), '(sourcedir)\n', (2926, 2937), False, 'import argparse, os, arxiv\n'), ((648, 676), 'lancedb.pydantic.Vector', 'Vector', (['embedding_out_length'], {}), '(embedding_out_length)\n', (654, 676), False, 'from lancedb.pydantic import Vector, LanceModel\n'), ((978, 1078), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Create Vector DB and perform ingestion from source files"""'}), "(description=\n 'Create Vector DB and perform ingestion from source files')\n", (1001, 1078), False, 'import argparse, os, arxiv\n'), ((2006, 2030), 'lancedb.connect', 'lancedb.connect', (['DB_NAME'], {}), '(DB_NAME)\n', (2021, 2030), False, 'import lancedb\n'), ((3110, 3124), 'arxiv.Client', 'arxiv.Client', ([], {}), '()\n', (3122, 3124), False, 'import arxiv\n'), ((3138, 3168), 'arxiv.Search', 'arxiv.Search', ([], {'id_list': '[source]'}), '(id_list=[source])\n', (3150, 3168), False, 'import arxiv\n'), ((3458, 3489), 'os.path.join', 'os.path.join', (['sourcedir', 'source'], {}), '(sourcedir, source)\n', (3470, 3489), False, 'import argparse, os, arxiv\n'), ((2964, 2992), 'os.path.join', 'os.path.join', (['"""PDFs"""', 'source'], {}), "('PDFs', source)\n", (2976, 2992), False, 'import argparse, os, arxiv\n'), ((3551, 3588), 'os.path.join', 'os.path.join', (['sourcedir', 'source', 'file'], {}), '(sourcedir, source, file)\n', (3563, 3588), False, 'import argparse, os, arxiv\n'), ((3733, 3784), 'langchain.text_splitter.LatexTextSplitter', 'LatexTextSplitter', ([], {'chunk_size': '(120)', 'chunk_overlap': '(10)'}), '(chunk_size=120, chunk_overlap=10)\n', (3750, 3784), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter, Language, LatexTextSplitter\n'), ((3186, 3200), 'arxiv.Client', 'arxiv.Client', ([], {}), '()\n', (3198, 3200), False, 'import arxiv\n'), ((3652, 3694), 'langchain.document_loaders.TextLoader', 'TextLoader', (['latex_file'], {'encoding': '"""latin-1"""'}), "(latex_file, encoding='latin-1')\n", (3662, 3694), False, 'from langchain.document_loaders import TextLoader\n')]
# Copyright 2023 LanceDB Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import importlib.metadata import platform import random import sys import time from lancedb.utils import CONFIG from lancedb.utils.general import TryExcept from .general import ( PLATFORMS, get_git_origin_url, is_git_dir, is_github_actions_ci, is_online, is_pip_package, is_pytest_running, threaded_request, ) class _Events: """ A class for collecting anonymous event analytics. Event analytics are enabled when ``diagnostics=True`` in config and disabled when ``diagnostics=False``. You can enable or disable diagnostics by running ``lancedb diagnostics --enabled`` or ``lancedb diagnostics --disabled``. Attributes ---------- url : str The URL to send anonymous events. rate_limit : float The rate limit in seconds for sending events. metadata : dict A dictionary containing metadata about the environment. enabled : bool A flag to enable or disable Events based on certain conditions. """ _instance = None url = "https://app.posthog.com/capture/" headers = {"Content-Type": "application/json"} api_key = "phc_oENDjGgHtmIDrV6puUiFem2RB4JA8gGWulfdulmMdZP" # This api-key is write only and is safe to expose in the codebase. def __init__(self): """ Initializes the Events object with default values for events, rate_limit, and metadata. """ self.events = [] # events list self.throttled_event_names = ["search_table"] self.throttled_events = set() self.max_events = 5 # max events to store in memory self.rate_limit = 60.0 * 60.0 # rate limit (seconds) self.time = 0.0 if is_git_dir(): install = "git" elif is_pip_package(): install = "pip" else: install = "other" self.metadata = { "cli": sys.argv[0], "install": install, "python": ".".join(platform.python_version_tuple()[:2]), "version": importlib.metadata.version("lancedb"), "platforms": PLATFORMS, "session_id": round(random.random() * 1e15), # TODO: In future we might be interested in this metric # 'engagement_time_msec': 1000 } TESTS_RUNNING = is_pytest_running() or is_github_actions_ci() ONLINE = is_online() self.enabled = ( CONFIG["diagnostics"] and not TESTS_RUNNING and ONLINE and ( is_pip_package() or get_git_origin_url() == "https://github.com/lancedb/lancedb.git" ) ) def __call__(self, event_name, params={}): """ Attempts to add a new event to the events list and send events if the rate limit is reached. Args ---- event_name : str The name of the event to be logged. params : dict, optional A dictionary of additional parameters to be logged with the event. """ ### NOTE: We might need a way to tag a session with a label to check usage ### from a source. Setting label should be exposed to the user. if not self.enabled: return if ( len(self.events) < self.max_events ): # Events list limited to self.max_events (drop any events past this) params.update(self.metadata) event = { "event": event_name, "properties": params, "timestamp": datetime.datetime.now( tz=datetime.timezone.utc ).isoformat(), "distinct_id": CONFIG["uuid"], } if event_name not in self.throttled_event_names: self.events.append(event) elif event_name not in self.throttled_events: self.throttled_events.add(event_name) self.events.append(event) # Check rate limit t = time.time() if (t - self.time) < self.rate_limit: return # Time is over rate limiter, send now data = { "api_key": self.api_key, "distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event "batch": self.events, } # POST equivalent to requests.post(self.url, json=data). # threaded request is used to avoid blocking, retries are disabled, and # verbose is disabled to avoid any possible disruption in the console. threaded_request( method="post", url=self.url, headers=self.headers, json=data, retry=0, verbose=False, ) # Flush & Reset self.events = [] self.throttled_events = set() self.time = t @TryExcept(verbose=False) def register_event(name: str, **kwargs): if _Events._instance is None: _Events._instance = _Events() _Events._instance(name, **kwargs)
[ "lancedb.utils.general.TryExcept" ]
[((5469, 5493), 'lancedb.utils.general.TryExcept', 'TryExcept', ([], {'verbose': '(False)'}), '(verbose=False)\n', (5478, 5493), False, 'from lancedb.utils.general import TryExcept\n'), ((4631, 4642), 'time.time', 'time.time', ([], {}), '()\n', (4640, 4642), False, 'import time\n'), ((2582, 2613), 'platform.python_version_tuple', 'platform.python_version_tuple', ([], {}), '()\n', (2611, 2613), False, 'import platform\n'), ((2750, 2765), 'random.random', 'random.random', ([], {}), '()\n', (2763, 2765), False, 'import random\n'), ((4174, 4221), 'datetime.datetime.now', 'datetime.datetime.now', ([], {'tz': 'datetime.timezone.utc'}), '(tz=datetime.timezone.utc)\n', (4195, 4221), False, 'import datetime\n')]
import time import os import pandas as pd import streamlit as st import lancedb from lancedb.embeddings import with_embeddings from langchain import PromptTemplate import predictionguard as pg import streamlit as st import duckdb import re import numpy as np from sentence_transformers import SentenceTransformer #---------------------# # Lance DB Setup # #---------------------# uri = "schema.lancedb" db = lancedb.connect(uri) def embed(query, embModel): return embModel.encode(query) def batch_embed_func(batch): return [st.session_state['en_emb'].encode(sentence) for sentence in batch] #---------------------# # Streamlit config # #---------------------# if "login" not in st.session_state: st.session_state["login"] = False # Hide the hamburger menu hide_streamlit_style = """ <style> #MainMenu {visibility: hidden;} footer {visibility: hidden;} </style> """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) #--------------------------# # Define datasets # #--------------------------# #JOBS df1=pd.read_csv('datasets/jobs.csv') #SOCIAL df2=pd.read_csv('datasets/social.csv') #movies df3=pd.read_csv('datasets/movies.csv') conn = duckdb.connect(database=':memory:') conn.register('jobs', df1) conn.register('social', df2) conn.register('movies', df3) #--------------------------# # Prompt Templates # #--------------------------# ### PROMPT TEMPLATES ### PROMPT TEMPLATES qa_template = """### System: You are a data chatbot who answers the user question. To answer these questions we need to run SQL queries on our data and its output is given below in context. You just have to frame your answer using that context. Give a short and crisp response.Don't add any notes or any extra information after your response. ### User: Question: {question} context: {context} ### Assistant: """ qa_prompt = PromptTemplate(template=qa_template,input_variables=["question", "context"]) sql_template = """<|begin_of_sentence|>You are a SQL expert and you only generate SQL queries which are executable. You provide no extra explanations. You respond with a SQL query that answers the user question in the below instruction by querying a database with the schema provided in the below instruction. Always start your query with SELECT statement and end with a semicolon. ### Instruction: User question: \"{question}\" Database schema: {schema} ### Response: """ sql_prompt=PromptTemplate(template=sql_template, input_variables=["question","schema"]) #--------------------------# # Generate SQL Query # #--------------------------# # Embeddings setup name="all-MiniLM-L12-v2" def load_model(): return SentenceTransformer(name) model = load_model() def generate_sql_query(question, schema): prompt_filled = sql_prompt.format(question=question,schema=schema) try: result = pg.Completion.create( model="deepseek-coder-6.7b-instruct", prompt=prompt_filled, max_tokens=300, temperature=0.1 ) sql_query = result["choices"][0]["text"] return sql_query except Exception as e: return None def extract_and_refine_sql_query(sql_query): # Extract SQL query using a regular expression match = re.search(r"(SELECT.*?);", sql_query, re.DOTALL) if match: refined_query = match.group(1) # Check for and remove any text after a colon colon_index = refined_query.find(':') if colon_index != -1: refined_query = refined_query[:colon_index] # Ensure the query ends with a semicolon if not refined_query.endswith(';'): refined_query += ';' return refined_query else: return "" def get_answer_from_sql(question): # Search Relavent Tables table = db.open_table("schema") results = table.search(embed(question, model)).limit(2).to_df() print(results) results = results[results['_distance'] < 1.5] print("Results:", results) if len(results) == 0: completion = "We did not find any relevant tables." return completion else: results.sort_values(by=['_distance'], inplace=True, ascending=True) doc_use = "" for _, row in results.iterrows(): if len(row['text'].split(' ')) < 10: continue else: schema=row['schema'] table_name=row['text'] st.sidebar.info(table_name) st.sidebar.code(schema) break sql_query = generate_sql_query(question, schema) sql_query = extract_and_refine_sql_query(sql_query) try: # print("Executing SQL Query:", sql_query) result = conn.execute(sql_query).fetchall() # print("Result:", result) return result, sql_query except Exception as e: print(f"Error executing SQL query: {e}") return "There was an error executing the SQL query." #--------------------------# # Get Answer # #--------------------------# def get_answer(question,context): try: prompt_filled = qa_prompt.format(question=question, context=context) # Respond to the user output = pg.Completion.create( model="Neural-Chat-7B", prompt=prompt_filled, max_tokens=200, temperature=0.1 ) completion = output['choices'][0]['text'] return completion except Exception as e: completion = "There was an error executing the SQL query." return completion #--------------------------# # Streamlit app # #--------------------------# if "messages" not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("Ask a question"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" # contruct prompt thread examples = [] turn = "user" example = {} for m in st.session_state.messages: latest_message = m["content"] example[turn] = m["content"] if turn == "user": turn = "assistant" else: turn = "user" examples.append(example) example = {} if len(example) > 2: examples = examples[-2:] else: thread = "" # # Check for PII # with st.spinner("Checking for PII..."): # pii_result = pg.PII.check( # prompt=latest_message, # replace=False, # replace_method="fake" # ) # # Check for injection # with st.spinner("Checking for security vulnerabilities..."): # injection_result = pg.Injection.check( # prompt=latest_message, # detect=True # ) # # Handle insecure states # elif "[" in pii_result['checks'][0]['pii_types_and_positions']: # st.warning('Warning! PII detected. Please avoid using personal information.') # full_response = "Warning! PII detected. Please avoid using personal information." # elif injection_result['checks'][0]['probability'] > 0.5: # st.warning('Warning! Injection detected. Your input might result in a security breach.') # full_response = "Warning! Injection detected. Your input might result in a security breach." # generate response with st.spinner("Generating an answer..."): context=get_answer_from_sql(latest_message) print("context",context) completion = get_answer(latest_message,context) # display response for token in completion.split(" "): full_response += " " + token message_placeholder.markdown(full_response + "▌") time.sleep(0.075) message_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response})
[ "lancedb.connect" ]
[((413, 433), 'lancedb.connect', 'lancedb.connect', (['uri'], {}), '(uri)\n', (428, 433), False, 'import lancedb\n'), ((890, 947), 'streamlit.markdown', 'st.markdown', (['hide_streamlit_style'], {'unsafe_allow_html': '(True)'}), '(hide_streamlit_style, unsafe_allow_html=True)\n', (901, 947), True, 'import streamlit as st\n'), ((1043, 1075), 'pandas.read_csv', 'pd.read_csv', (['"""datasets/jobs.csv"""'], {}), "('datasets/jobs.csv')\n", (1054, 1075), True, 'import pandas as pd\n'), ((1089, 1123), 'pandas.read_csv', 'pd.read_csv', (['"""datasets/social.csv"""'], {}), "('datasets/social.csv')\n", (1100, 1123), True, 'import pandas as pd\n'), ((1137, 1171), 'pandas.read_csv', 'pd.read_csv', (['"""datasets/movies.csv"""'], {}), "('datasets/movies.csv')\n", (1148, 1171), True, 'import pandas as pd\n'), ((1180, 1215), 'duckdb.connect', 'duckdb.connect', ([], {'database': '""":memory:"""'}), "(database=':memory:')\n", (1194, 1215), False, 'import duckdb\n'), ((1861, 1938), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'template': 'qa_template', 'input_variables': "['question', 'context']"}), "(template=qa_template, input_variables=['question', 'context'])\n", (1875, 1938), False, 'from langchain import PromptTemplate\n'), ((2426, 2503), 'langchain.PromptTemplate', 'PromptTemplate', ([], {'template': 'sql_template', 'input_variables': "['question', 'schema']"}), "(template=sql_template, input_variables=['question', 'schema'])\n", (2440, 2503), False, 'from langchain import PromptTemplate\n'), ((2672, 2697), 'sentence_transformers.SentenceTransformer', 'SentenceTransformer', (['name'], {}), '(name)\n', (2691, 2697), False, 'from sentence_transformers import SentenceTransformer\n'), ((3239, 3286), 're.search', 're.search', (['"""(SELECT.*?);"""', 'sql_query', 're.DOTALL'], {}), "('(SELECT.*?);', sql_query, re.DOTALL)\n", (3248, 3286), False, 'import re\n'), ((5846, 5877), 'streamlit.chat_input', 'st.chat_input', (['"""Ask a question"""'], {}), "('Ask a question')\n", (5859, 5877), True, 'import streamlit as st\n'), ((5883, 5952), 'streamlit.session_state.messages.append', 'st.session_state.messages.append', (["{'role': 'user', 'content': prompt}"], {}), "({'role': 'user', 'content': prompt})\n", (5915, 5952), True, 'import streamlit as st\n'), ((8226, 8311), 'streamlit.session_state.messages.append', 'st.session_state.messages.append', (["{'role': 'assistant', 'content': full_response}"], {}), "({'role': 'assistant', 'content':\n full_response})\n", (8258, 8311), True, 'import streamlit as st\n'), ((2856, 2974), 'predictionguard.Completion.create', 'pg.Completion.create', ([], {'model': '"""deepseek-coder-6.7b-instruct"""', 'prompt': 'prompt_filled', 'max_tokens': '(300)', 'temperature': '(0.1)'}), "(model='deepseek-coder-6.7b-instruct', prompt=\n prompt_filled, max_tokens=300, temperature=0.1)\n", (2876, 2974), True, 'import predictionguard as pg\n'), ((5195, 5298), 'predictionguard.Completion.create', 'pg.Completion.create', ([], {'model': '"""Neural-Chat-7B"""', 'prompt': 'prompt_filled', 'max_tokens': '(200)', 'temperature': '(0.1)'}), "(model='Neural-Chat-7B', prompt=prompt_filled,\n max_tokens=200, temperature=0.1)\n", (5215, 5298), True, 'import predictionguard as pg\n'), ((5758, 5790), 'streamlit.chat_message', 'st.chat_message', (["message['role']"], {}), "(message['role'])\n", (5773, 5790), True, 'import streamlit as st\n'), ((5800, 5831), 'streamlit.markdown', 'st.markdown', (["message['content']"], {}), "(message['content'])\n", (5811, 5831), True, 'import streamlit as st\n'), ((5962, 5985), 'streamlit.chat_message', 'st.chat_message', (['"""user"""'], {}), "('user')\n", (5977, 5985), True, 'import streamlit as st\n'), ((5995, 6014), 'streamlit.markdown', 'st.markdown', (['prompt'], {}), '(prompt)\n', (6006, 6014), True, 'import streamlit as st\n'), ((6025, 6053), 'streamlit.chat_message', 'st.chat_message', (['"""assistant"""'], {}), "('assistant')\n", (6040, 6053), True, 'import streamlit as st\n'), ((6085, 6095), 'streamlit.empty', 'st.empty', ([], {}), '()\n', (6093, 6095), True, 'import streamlit as st\n'), ((7748, 7785), 'streamlit.spinner', 'st.spinner', (['"""Generating an answer..."""'], {}), "('Generating an answer...')\n", (7758, 7785), True, 'import streamlit as st\n'), ((4413, 4440), 'streamlit.sidebar.info', 'st.sidebar.info', (['table_name'], {}), '(table_name)\n', (4428, 4440), True, 'import streamlit as st\n'), ((4457, 4480), 'streamlit.sidebar.code', 'st.sidebar.code', (['schema'], {}), '(schema)\n', (4472, 4480), True, 'import streamlit as st\n'), ((8147, 8164), 'time.sleep', 'time.sleep', (['(0.075)'], {}), '(0.075)\n', (8157, 8164), False, 'import time\n')]
from FlagEmbedding import LLMEmbedder, FlagReranker import os import lancedb import re import pandas as pd import random from datasets import load_dataset import torch import gc import lance from lancedb.embeddings import with_embeddings task = "qa" # Encode for a specific task (qa, icl, chat, lrlm, tool, convsearch) embed_model = LLMEmbedder('BAAI/llm-embedder', use_fp16=False) # Load model (automatically use GPUs) reranker_model = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) # use_fp16 speeds up computation with a slight performance degradation """# Load `Chunks` of data from [BeIR Dataset](https://huggingface.co/datasets/BeIR/scidocs) Note: This is a dataset built specially for retrieval tasks to see how good your search is working """ data=pd.read_csv("Kcc_subset.csv") # just random samples for faster embed demo data['documents'] = 'query:' + data['QueryText'] + ', answer:' + data['KccAns'] data = data.dropna() def embed_documents(batch): """ Function to embed the whole text data """ return embed_model.encode_keys(batch, task=task) # Encode data or 'keys' db = lancedb.connect("./db") # Connect Local DB if "doc_embed" in db.table_names(): table = db.open_table("doc_embed") # Open Table else: # Use the train text chunk data to save embed in the DB data1 = with_embeddings(embed_documents, data, column = 'documents',show_progress = True, batch_size = 512) table = db.create_table("doc_embed", data=data1) # create Table """# Search from a random Text""" def search(query, top_k = 10): """ Search a query from the table """ query_vector = embed_model.encode_queries(query, task=task) # Encode the QUERY (it is done differently than the 'key') search_results = table.search(query_vector).limit(top_k) return ",".join(search_results.to_pandas().dropna(subset = "QueryText").reset_index(drop = True)["documents"].to_list()) # query = "how to control flower drop in bottelgourd?" # print("QUERY:-> ", query) # # get top_k search results # search_results = search(query, top_k = 10).to_pandas().dropna(subset = "Query").reset_index(drop = True)["documents"] # print(",".join(search_results.to_list)) # def rerank(query, search_results): # search_results["old_similarity_rank"] = search_results.index+1 # Old ranks # torch.cuda.empty_cache() # gc.collect() # search_results["new_scores"] = reranker_model.compute_score([[query,chunk] for chunk in search_results["text"]]) # Re compute ranks # return search_results.sort_values(by = "new_scores", ascending = False).reset_index(drop = True) # print("QUERY:-> ", query)
[ "lancedb.connect", "lancedb.embeddings.with_embeddings" ]
[((356, 404), 'FlagEmbedding.LLMEmbedder', 'LLMEmbedder', (['"""BAAI/llm-embedder"""'], {'use_fp16': '(False)'}), "('BAAI/llm-embedder', use_fp16=False)\n", (367, 404), False, 'from FlagEmbedding import LLMEmbedder, FlagReranker\n'), ((463, 516), 'FlagEmbedding.FlagReranker', 'FlagReranker', (['"""BAAI/bge-reranker-base"""'], {'use_fp16': '(True)'}), "('BAAI/bge-reranker-base', use_fp16=True)\n", (475, 516), False, 'from FlagEmbedding import LLMEmbedder, FlagReranker\n'), ((803, 832), 'pandas.read_csv', 'pd.read_csv', (['"""Kcc_subset.csv"""'], {}), "('Kcc_subset.csv')\n", (814, 832), True, 'import pandas as pd\n'), ((1162, 1185), 'lancedb.connect', 'lancedb.connect', (['"""./db"""'], {}), "('./db')\n", (1177, 1185), False, 'import lancedb\n'), ((1370, 1469), 'lancedb.embeddings.with_embeddings', 'with_embeddings', (['embed_documents', 'data'], {'column': '"""documents"""', 'show_progress': '(True)', 'batch_size': '(512)'}), "(embed_documents, data, column='documents', show_progress=\n True, batch_size=512)\n", (1385, 1469), False, 'from lancedb.embeddings import with_embeddings\n')]
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
32
Edit dataset card