Deleting loading script as it is no longer needed (parquet conversion)

#4
Files changed (1) hide show
  1. UsenetArchiveIT.py +0 -188
UsenetArchiveIT.py DELETED
@@ -1,188 +0,0 @@
1
- from datasets import DatasetBuilder, SplitGenerator, Split, Features, Value, ClassLabel, BuilderConfig, Version, DatasetInfo, DownloadManager, ArrowBasedBuilder
2
- import glob
3
- import json
4
- import multiprocessing as mp
5
- import os
6
- import pyarrow as pa
7
- import pyarrow.parquet as pq
8
- import pandas as pd
9
- import pyarrow as pa
10
- import pyarrow.json
11
- # jsonl
12
-
13
- pattern="*.bz2"
14
-
15
- paths=glob.glob(pattern)
16
-
17
- # exclude txt files
18
-
19
- paths=[file for file in paths if not ".txt." in file]
20
-
21
- n_files=len(paths)
22
-
23
- # labels are file names without the extension .jsonl.bz2
24
-
25
- labels=[file.replace(".jsonl.bz2","") for file in paths]
26
-
27
-
28
-
29
- ## handle parquet conversion
30
-
31
- # create parquet directory
32
-
33
- dl_manager = DownloadManager()
34
-
35
- parquet_dir="parquet"
36
-
37
-
38
-
39
-
40
- def convert_jsonl_to_parquet(file_list, parquet_dir, chunk_size=100000):
41
- """Converts JSONL files to Parquet with memory efficiency.
42
-
43
- Args:
44
- file_list (list): List of JSONL file paths.
45
- parquet_dir (str): Path to store output Parquet files.
46
- chunk_size (int): Number of records to write to each Parquet file.
47
- """
48
-
49
- os.makedirs(parquet_dir, exist_ok=True) # Create output directory
50
-
51
- parquet_file_index = 0
52
- current_records = []
53
- file_index = 0
54
- for file in file_list:
55
- # try:
56
- reader = pa.json.read_json(file) # PyArrow JSON reader
57
-
58
- for batch in reader:
59
- pandas_df = batch.to_pandas()
60
- print(pandas_df.shape)
61
- current_records.extend(pandas_df.to_dict('list'))
62
- if len(current_records) >= chunk_size:
63
- table = pa.Table.from_pandas(pd.DataFrame(current_records))
64
- parquet_filename = f"output_{parquet_file_index}.parquet"
65
- parquet_path = os.path.join(parquet_dir, parquet_filename)
66
- pq.write_table(table, parquet_path)
67
-
68
- current_records = []
69
- parquet_file_index += 1
70
- # except Exception as e:
71
- # print(f"Error in file {file} with error {e}")
72
- file_index += 1
73
- print(f"Finished processing file {file_index} of {len(file_list)}")
74
- print(f"Writing last chunk to parquet file {parquet_file_index}")
75
- # Write any remaining data in the last chunk
76
- if current_records:
77
- table = pa.Table.from_pandas(pd.DataFrame(current_records))
78
- parquet_filename = f"output_{parquet_file_index}.parquet"
79
- parquet_path = os.path.join(parquet_dir, parquet_filename)
80
- pq.write_table(table, parquet_path)
81
-
82
- print(f"Conversion complete, wrote {parquet_file_index + 1} Parquet files.")
83
-
84
-
85
-
86
-
87
-
88
- class UsenetConfig(BuilderConfig):
89
- def __init__(self, version, **kwargs):
90
- ().__init__(version, **kwargs)
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100
- class UsenetArchiveIt(ArrowBasedBuilder):
101
- VERSION = "1.0.0" # Example version
102
-
103
- BUILDER_CONFIG_CLASS = UsenetConfig
104
-
105
- BUILDER_CONFIGS = [
106
- UsenetConfig(
107
- name="usenet_archive_it",
108
- version=Version("1.0.0"),
109
- description="Usenet Archive-It dataset",
110
- ),
111
- ]
112
-
113
- def _info(self):
114
- # Specify dataset features here
115
- return DatasetInfo(
116
- features=Features({
117
- "title": Value("string"),
118
- "author": Value("string"),
119
- "id": Value("int32"),
120
- "timestamp": Value("string"),
121
- "progressive_number": Value("int32"),
122
- "original_url": Value("string"),
123
- "newsgroup": Value("string"), # this could be a label but difficult to get all possible labels
124
- "text": Value("string"),
125
- }),)
126
-
127
- def _split_generators(self, dl_manager):
128
- n = mp.cpu_count()//10 # Number of paths to process at a time
129
- print(f"Extracting {n} files at a time")
130
- if not os.path.isdir('parquet'):
131
- extracted_files = []
132
- for i in range(0, len(paths), n):
133
-
134
- files = paths[i:i+n]
135
- extracted_files.extend(dl_manager.extract(files, num_proc=len(files)))
136
- print(f"Extracted {files}")
137
- else:
138
- extracted_files = glob.glob(parquet_dir + "/*.parquet")
139
-
140
- return [
141
- SplitGenerator(
142
- name=Split.TRAIN,
143
- gen_kwargs={"filepath": extracted_files},
144
- ),
145
-
146
- ]
147
-
148
- def _generate_tables(self, filepath):
149
-
150
- # print("Filepath: ", filepath)
151
-
152
- # if parquet files are not present, convert jsonl to parquet
153
- if not os.path.exists(parquet_dir):
154
- print("Generating parquet files from jsonl files...")
155
- convert_jsonl_to_parquet(filepath, parquet_dir)
156
-
157
- # read parquet files
158
- parquet_files=glob.glob(parquet_dir+"/*.parquet")
159
-
160
-
161
- for index, file in enumerate(parquet_files):
162
- table = pq.read_table(file)
163
- yield index, table
164
-
165
-
166
- # for file in parquet_files:
167
- # table = pq.read_table(file)
168
- # df = table.to_pandas()
169
- # for index, row in df.iterrows():
170
- # yield index, row.to_dict()
171
-
172
-
173
- # Yields (key, example) tuples from the dataset
174
- # id=0
175
- # for file in filepath:
176
- # # Open and yield examples from the compressed JSON files
177
- # with open(file, "r") as f:
178
- # for i, line in enumerate(f):
179
- # try:
180
- # data = json.loads(line)
181
- # yield id, data
182
- # id+=1
183
- # except Exception as e:
184
- # print(f"Error in file {file} at line {i} with error {e}")
185
-
186
-
187
- # Finally, set the name of the dataset to match the script name
188
- datasets = UsenetArchiveIt