Datasets:
license: cc-by-4.0
task_categories:
- text-to-speech
language:
- en
size_categories:
- 10K<n<100K
configs:
- config_name: dev
data_files:
- split: dev.clean
path: data/dev.clean/dev.clean*.parquet
- config_name: clean
data_files:
- split: dev.clean
path: data/dev.clean/dev.clean*.parquet
- split: test.clean
path: data/test.clean/test.clean*.parquet
- split: train.clean.100
path: data/train.clean.100/train.clean.100*.parquet
- split: train.clean.360
path: data/train.clean.360/train.clean.360*.parquet
- config_name: other
data_files:
- split: dev.other
path: data/dev.other/dev.other*.parquet
- split: test.other
path: data/test.other/test.other*.parquet
- split: train.other.500
path: data/train.other.500/train.other.500*.parquet
- config_name: all
data_files:
- split: dev.clean
path: data/dev.clean/dev.clean*.parquet
- split: dev.other
path: data/dev.other/dev.other*.parquet
- split: test.clean
path: data/test.clean/test.clean*.parquet
- split: test.other
path: data/test.other/test.other*.parquet
- split: train.clean.100
path: data/train.clean.100/train.clean.100*.parquet
- split: train.clean.360
path: data/train.clean.360/train.clean.360*.parquet
- split: train.other.500
path: data/train.other.500/train.other.500*.parquet
Dataset Card for LibriTTS
LibriTTS is a multi-speaker English corpus of approximately 585 hours of read English speech at 24kHz sampling rate, prepared by Heiga Zen with the assistance of Google Speech and Google Brain team members. The LibriTTS corpus is designed for TTS research. It is derived from the original materials (mp3 audio files from LibriVox and text files from Project Gutenberg) of the LibriSpeech corpus.
Overview
This is the LibriTTS dataset, adapted for the datasets
library.
Usage
Splits
There are 7 splits (dots replace dashes from the original dataset, to comply with hf naming requirements):
- dev.clean
- dev.other
- test.clean
- test.other
- train.clean.100
- train.clean.360
- train.other.500
Configurations
There are 3 configurations, each which limits the splits the load_dataset()
function will download.
The default configuration is "all".
- "dev": only the "dev.clean" split (good for testing the dataset quickly)
- "clean": contains only "clean" splits
- "other": contains only "other" splits
- "all": contains only "all" splits
Example
Loading the clean
config with only the train.clean.360
split.
load_dataset("blabble-io/libritts", "clean", split="train.clean.100")
Streaming is also supported.
load_dataset("blabble-io/libritts", streaming=True)
Columns
{
"audio": datasets.Audio(sampling_rate=24_000),
"text_normalized": datasets.Value("string"),
"text_original": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"chapter_id": datasets.Value("string"),
"id": datasets.Value("string"),
}
Example Row
{
'audio': {
'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS/dev-clean/3081/166546/3081_166546_000028_000002.wav',
'array': ...,
'sampling_rate': 24000
},
'text_normalized': 'How quickly he disappeared!"',
'text_original': 'How quickly he disappeared!"',
'speaker_id': '3081',
'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS/dev-clean/3081/166546/3081_166546_000028_000002.wav',
'chapter_id': '166546',
'id': '3081_166546_000028_000002'
}
Dataset Details
Dataset Description
- License: CC BY 4.0
Dataset Sources [optional]
- Homepage: https://www.openslr.org/60/
- Paper: https://arxiv.org/abs/1904.02882
Citation
@ARTICLE{Zen2019-kz,
title = "{LibriTTS}: A corpus derived from {LibriSpeech} for
text-to-speech",
author = "Zen, Heiga and Dang, Viet and Clark, Rob and Zhang, Yu and
Weiss, Ron J and Jia, Ye and Chen, Zhifeng and Wu, Yonghui",
abstract = "This paper introduces a new speech corpus called
``LibriTTS'' designed for text-to-speech use. It is derived
from the original audio and text materials of the
LibriSpeech corpus, which has been used for training and
evaluating automatic speech recognition systems. The new
corpus inherits desired properties of the LibriSpeech corpus
while addressing a number of issues which make LibriSpeech
less than ideal for text-to-speech work. The released corpus
consists of 585 hours of speech data at 24kHz sampling rate
from 2,456 speakers and the corresponding texts.
Experimental results show that neural end-to-end TTS models
trained from the LibriTTS corpus achieved above 4.0 in mean
opinion scores in naturalness in five out of six evaluation
speakers. The corpus is freely available for download from
http://www.openslr.org/60/.",
month = apr,
year = 2019,
copyright = "http://arxiv.org/licenses/nonexclusive-distrib/1.0/",
archivePrefix = "arXiv",
primaryClass = "cs.SD",
eprint = "1904.02882"
}