|
|
|
import os |
|
import sys |
|
import shutil |
|
import argparse |
|
|
|
|
|
from tqdm import tqdm |
|
import random |
|
import pandas as pd |
|
from sklearn.metrics import accuracy_score, precision_recall_fscore_support |
|
|
|
import torch |
|
from torch import nn |
|
from torch.utils.data import DataLoader |
|
|
|
from datasets import Dataset |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, T5Tokenizer,T5ForConditionalGeneration |
|
from transformers import AdamW, get_linear_schedule_with_warmup |
|
|
|
|
|
from config import Config |
|
from dataset import CSV2Dataset, batch_sampling |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--config_file', type=str, help='Config file name') |
|
parser.add_argument('--model', type=str, default=None, help='Model name') |
|
parser.add_argument('--checkpoint_filename', type=str, default=None) |
|
parser.add_argument('--best_filename', type=str, default=None) |
|
|
|
parser.add_argument('--train_data', type=str, default=None) |
|
parser.add_argument('--val_data', type=str, default=None, |
|
help='Train Label column name') |
|
parser.add_argument('--test_data', type=str, default=None, |
|
help='Train Label column name') |
|
parser.add_argument('--test_res', type=str, default=None, |
|
help='Train Label column name') |
|
|
|
parser.add_argument('--sent_col', type=str, ) |
|
parser.add_argument('--label_col', type=str, default=None, |
|
help='Train Label column name') |
|
parser.add_argument('--num_labels', type=str, default=None) |
|
|
|
parser.add_argument('--test_res_col', type=str, default=None, |
|
help='Test result column name') |
|
parser.add_argument('--test_col', type=str,) |
|
|
|
parser.add_argument('--train', type=str, default=None, |
|
help='Train Label column name') |
|
parser.add_argument('--evaluate', type=str, default=None, |
|
help='Train Label column name') |
|
parser.add_argument('--test', type=str, default=None, |
|
help='Train Label column name') |
|
|
|
parser.add_argument('--resume', type=str, default=None, |
|
help='Train Label column name') |
|
parser.add_argument('--resume_model', type=str, default=None, |
|
help='Train Label column name') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
def save_checkpoint(state, is_best, filename, best_filename): |
|
if is_best: |
|
print('Best F1 Updated -- Saving Best Checkpoint') |
|
torch.save(state, best_filename) |
|
|
|
def train(train_loader, model, optimizer, scheduler, epoch, epochs): |
|
model.train() |
|
|
|
total_loss, total_accuracy = 0, 0 |
|
print("-"*30) |
|
|
|
loop = tqdm(train_loader, leave=True) |
|
for (input_ids,attention_mask),labels in loop: |
|
optimizer.zero_grad() |
|
|
|
input_ids = input_ids.to(device) |
|
attention_mask = attention_mask.to(device) |
|
|
|
|
|
if 't5' in cfg.model: |
|
lm_label = labels[0].to(device) |
|
label_mask = labels[1].to(device) |
|
outputs = model(input_ids, attention_mask=attention_mask, |
|
labels=lm_label, decoder_attention_mask = label_mask) |
|
else: |
|
labels = labels.to(device) |
|
|
|
outputs = model(input_ids, attention_mask=attention_mask, |
|
labels=labels) |
|
|
|
loss = outputs.loss.mean() |
|
total_loss += loss.item() |
|
|
|
outputs.loss.mean().backward() |
|
|
|
|
|
|
|
loop.set_description(f'Epoch {epoch}') |
|
loop.set_postfix(loss=loss.item()) |
|
|
|
optimizer.step() |
|
scheduler.step() |
|
|
|
avg_loss = total_loss / len(train_loader) |
|
print(f" {epoch+1} Epoch Average train loss : {avg_loss}") |
|
|
|
def validate(valid_loader, model, tokenizer): |
|
model.eval() |
|
|
|
total_true = [] |
|
total_pred = [] |
|
real_total_true = [] |
|
real_total_pred = [] |
|
|
|
loop = tqdm(valid_loader, leave=True) |
|
for (input_ids,attention_mask),labels in loop: |
|
input_ids = input_ids.to(device) |
|
attention_mask = attention_mask.to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
if 't5' in cfg.model: |
|
lm_label = labels[0].to(device) |
|
label_mask = labels[1].to(device) |
|
outputs = model.module.generate(input_ids, attention_mask=attention_mask,max_length=3) |
|
pred = [tokenizer.decode(label) for label in outputs] |
|
pred = [l.replace('<pad>','').replace(' ','')[0] for l in pred] |
|
try: |
|
_pred = [int(l) for l in pred] |
|
pred = _pred |
|
except: |
|
_pred = [] |
|
for l in pred: |
|
if l == '0' or l == '1': |
|
_pred.append(int(l)) |
|
else: |
|
_pred.append(l) |
|
pred = _pred |
|
|
|
|
|
lm_label[lm_label[:, :] == -100] = tokenizer.pad_token_id |
|
true = [tokenizer.decode(label) for label in lm_label] |
|
true = [int(l[0]) for l in true] |
|
|
|
_pred = [] |
|
_true = [] |
|
|
|
for i in range(len(true)): |
|
if type(pred[i]) is int: |
|
_pred.append(pred[i]) |
|
_true.append(true[i]) |
|
|
|
|
|
else: |
|
labels = labels.to(device) |
|
|
|
outputs = model(input_ids, attention_mask=attention_mask, |
|
labels=labels) |
|
|
|
pred = [torch.argmax(logit).cpu().detach().item() for logit in outputs.logits] |
|
|
|
|
|
true = [label for label in labels.cpu().numpy()] |
|
|
|
|
|
total_true += true |
|
total_pred += pred |
|
|
|
if 't5' in cfg.model: |
|
real_total_true += _true |
|
real_total_pred += _pred |
|
|
|
try: |
|
precision, recall, f1, _ = precision_recall_fscore_support(total_true, total_pred, average='macro') |
|
accuracy = accuracy_score(total_true, total_pred) |
|
|
|
print(f"validation accuracy : {accuracy: .4f}") |
|
print(f"validation Precision : {precision: .4f}") |
|
print(f"validation Recall : {recall: .4f}") |
|
print(f"validation F1 : {f1: .4f}") |
|
except: |
|
precision, recall, f1, _ = precision_recall_fscore_support(real_total_true, real_total_pred, average='macro') |
|
accuracy = accuracy_score(real_total_true, real_total_pred) |
|
|
|
print(f"No. of int type output: {len(real_total_true)}/{len(total_true)}") |
|
print(f"validation accuracy : {accuracy: .4f}") |
|
print(f"validation Precision : {precision: .4f}") |
|
print(f"validation Recall : {recall: .4f}") |
|
print(f"validation F1 : {f1: .4f}") |
|
|
|
return f1 |
|
|
|
def test(test_loader,model,tokenizer): |
|
model.eval() |
|
|
|
final_preds = [] |
|
idss = [] |
|
|
|
loop = tqdm(test_loader, leave=True) |
|
for input_ids,attention_mask in loop: |
|
|
|
input_ids = input_ids.to(device) |
|
attention_mask = attention_mask.to(device) |
|
with torch.no_grad(): |
|
outputs = model(input_ids, attention_mask=attention_mask) |
|
|
|
argmax = [torch.argmax(logit).cpu().detach().item() for logit in outputs.logits] |
|
print(argmax) |
|
final_preds += argmax |
|
idss += input_ids.cpu() |
|
|
|
print(len(idss)) |
|
sents = [tokenizer.decode(ids) for ids in idss] |
|
print(len(sents)) |
|
|
|
print(len(final_preds)) |
|
|
|
return (sents,final_preds) |
|
|
|
|
|
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
|
cfg = Config(args.config_file) |
|
|
|
for key, value in vars(args).items(): |
|
if value != None: |
|
exec("cfg.%s = '%s'" % (key,value)) |
|
|
|
|
|
print(cfg.model, cfg.sent_col, cfg.label_col) |
|
|
|
cfg.num_workers = torch.cuda.device_count() |
|
print(cfg.test_res_col) |
|
|
|
print(cfg.checkpoint_filename) |
|
|
|
if not os.path.exists('./checkpoints'): |
|
os.mkdir('./checkpoints') |
|
|
|
print('Train:',cfg.train) |
|
print('Evaluate:',cfg.evaluate) |
|
print('Test:',cfg.test) |
|
|
|
if 't5' in cfg.model: |
|
model = T5ForConditionalGeneration.from_pretrained(cfg.model,resume_download=True) |
|
else: |
|
model = AutoModelForSequenceClassification.from_pretrained(cfg.model,resume_download=True) |
|
|
|
|
|
optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8) |
|
|
|
if cfg.train: |
|
train_dataset = CSV2Dataset(cfg,cfg.train_data,'train') |
|
valid_dataset = CSV2Dataset(cfg,cfg.val_data,'valid') |
|
train_dataloader = DataLoader(train_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(train_dataset))) |
|
valid_dataloader = DataLoader(valid_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(valid_dataset))) |
|
if cfg.evaluate: |
|
test_dataset = CSV2Dataset(cfg,cfg.test_data,'valid') |
|
test_dataloader = DataLoader(test_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(test_dataset))) |
|
scheduler = get_linear_schedule_with_warmup(optimizer,num_warmup_steps=0, |
|
num_training_steps=len(train_dataloader)*cfg.epochs) |
|
tokenizer = valid_dataset.get_tokenizer() |
|
|
|
elif cfg.test: |
|
test_dataset = CSV2Dataset(cfg,cfg.test_data,'test') |
|
test_dataloader = DataLoader(test_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(test_dataset),is_test=True)) |
|
tokenizer = test_dataset.get_tokenizer() |
|
|
|
if cfg.evaluate and not cfg.train: |
|
valid_dataset = CSV2Dataset(cfg,cfg.val_data,'valid') |
|
valid_dataloader = DataLoader(valid_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(valid_dataset))) |
|
tokenizer = valid_dataset.get_tokenizer() |
|
|
|
|
|
|
|
|
|
model.resize_token_embeddings(len(tokenizer)) |
|
best_prec1 = 0 |
|
|
|
if cfg.evaluate or cfg.test or cfg.resume: |
|
torch.cuda.empty_cache() |
|
model = model.to(device) |
|
def resume(): |
|
if os.path.isfile(cfg.resume_model): |
|
print("=> loading checkpoint '{}'".format(cfg.resume_model)) |
|
checkpoint = torch.load(cfg.resume_model) |
|
cfg.start_epoch = checkpoint['epoch']+1 |
|
global best_prec1 |
|
if 'TL' in cfg.best_filename: |
|
best_prec1=0 |
|
cfg.epochs = cfg.start_epoch + cfg.epochs |
|
else: |
|
best_prec1 = checkpoint['best_prec1'] |
|
model.load_state_dict(checkpoint['state_dict']) |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
print("=> loaded checkpoint '{}' (epoch {})" |
|
.format(cfg.resume_model, checkpoint['epoch'])) |
|
else: |
|
print("=> no checkpoint found at '{}'".format(cfg.resume_model)) |
|
resume() |
|
|
|
if cfg.train: |
|
model = nn.DataParallel(model, device_ids = list(range(torch.cuda.device_count()))).to(device) |
|
for epoch in range(cfg.start_epoch, cfg.epochs): |
|
|
|
train(train_dataloader, model, optimizer, scheduler, epoch, cfg.epochs) |
|
|
|
|
|
prec1 = validate(valid_dataloader, model, tokenizer) |
|
|
|
|
|
is_best = prec1 > best_prec1 |
|
best_prec1 = max(prec1, best_prec1) |
|
best_model = model |
|
print(f"Best F1 :{best_prec1}") |
|
|
|
save_checkpoint({ |
|
'epoch': epoch, |
|
'state_dict': best_model.module.state_dict(), |
|
'best_prec1': best_prec1, |
|
'optimizer' : optimizer.state_dict(), |
|
}, is_best,filename=cfg.checkpoint_filename,best_filename=cfg.best_filename) |
|
|
|
|
|
|
|
if cfg.evaluate: |
|
if cfg.train: |
|
print(f'***On Test Set-{cfg.label_col}***') |
|
validate(test_dataloader,model,tokenizer) |
|
else: |
|
model = nn.DataParallel(model, device_ids = list(range(torch.cuda.device_count()))).to(device) |
|
validate(valid_dataloader, model, tokenizer) |
|
|
|
|
|
if cfg.test: |
|
if cfg.train: |
|
model = best_model |
|
if cfg.evaluate: |
|
test_dataset = CSV2Dataset(cfg,cfg.test_data,'test') |
|
test_dataloader = DataLoader(test_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(test_dataset),is_test=True)) |
|
|
|
tokenizer = test_dataset.get_tokenizer() |
|
sents, preds = test(test_dataloader,model,tokenizer) |
|
|
|
|
|
df = pd.read_csv(cfg.test_data) |
|
if len(df) != len(preds): |
|
preds += [''] * (len(df)-len(preds)) |
|
df['decoded_text'] = sents |
|
df[cfg.test_res_col] = preds |
|
df.to_csv(cfg.test_res,encoding='utf-8',index=False) |
|
|
|
|