Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
hc4 / README.md
Sean MacAvaney
update README.md
b032c48
|
raw
history blame
1.92 kB
---
annotations_creators:
- no-annotation
language:
- fa
- ru
- zh
language_creators:
- found
license:
- odc-by
multilinguality:
- multilingual
pretty_name: HC4
size_categories:
- 1M<n<10M
source_datasets:
- extended|c4
tags: []
task_categories:
- text-retrieval
task_ids:
- document-retrieval
---
# Dataset Card for HC4
## Dataset Description
- **Repository:** https://github.com/hltcoe/HC4
- **Paper:** https://arxiv.org/abs/2201.09992
### Dataset Summary
HC4 is a suite of test collections for ad hoc Cross-Language Information Retrieval (CLIR), with Common Crawl News documents in Chinese, Persian, and Russian. The documents
are Web pages from Common Crawl in Chinese, Persian, and Russian.
### Languages
- Chinese
- Persian
- Russian
## Dataset Structure
### Data Instances
| Split | Documents |
|-----------------|----------:|
| `fas` (Persian) | 486K |
| `rus` (Russian) | 4.7M |
| `zho` (Chinese) | 646K |
### Data Fields
- `id`: unique identifier for this document
- `cc_file`: source file from connon crawl
- `time`: extracted date/time from article
- `title`: title extracted from article
- `text`: extracted article body
- `url`: source URL
## Dataset Usage
Using 🤗 Datasets:
```python
from datasets import load_dataset
dataset = load_dataset('neuclir/hc4')
dataset['fas'] # Persian documents
dataset['rus'] # Russian documents
dataset['zho'] # Chinese documents
```
## Citation Information
```
@article{Lawrie2022HC4,
author = {Dawn Lawrie and James Mayfield and Douglas W. Oard and Eugene Yang},
title = {HC4: A New Suite of Test Collections for Ad Hoc CLIR},
booktitle = {{Advances in Information Retrieval. 44th European Conference on IR Research (ECIR 2022)},
year = {2022},
month = apr,
publisher = {Springer},
series = {Lecture Notes in Computer Science},
site = {Stavanger, Norway},
url = {https://arxiv.org/abs/2201.09992}
}
```