|
import numpy as np |
|
import json, sys, os |
|
from torch import nn |
|
import torch |
|
from torch.distributions import kl_divergence, Normal |
|
from torch.optim.lr_scheduler import ExponentialLR |
|
import random |
|
import madmom |
|
|
|
class AverageMeter(object): |
|
"""Computes and stores the average and current value""" |
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = {} |
|
self.avg = {} |
|
self.sum = {} |
|
self.count = {} |
|
|
|
def update(self, key, val, n=1): |
|
if not key in self.val: |
|
self.val[key] = val |
|
self.sum[key] = val * n |
|
self.count[key] = n |
|
self.avg[key] = self.sum[key] / self.count[key] |
|
else: |
|
self.val[key] = val |
|
self.sum[key] += val * n |
|
self.count[key] += n |
|
self.avg[key] = self.sum[key] / self.count[key] |
|
|
|
def binary_accuracy(beat_pred, beat_gt): |
|
|
|
weight = (1 - torch.as_tensor(beat_gt == -1, dtype=torch.int32)) |
|
beat_pred = torch.as_tensor((torch.sigmoid(beat_pred) >= 0.5), dtype=torch.int32) |
|
beat_gt = torch.as_tensor((beat_gt > 0.6), dtype=torch.int32) |
|
positives = torch.as_tensor((beat_pred == beat_gt), dtype=torch.int32) |
|
positives = positives * weight |
|
binary_accuracy = positives.sum() / (weight.sum() + 1e-4) |
|
return binary_accuracy |
|
|
|
def beat_accuracy(beat_pred, beat_gt, fps): |
|
|
|
weight = (1 - torch.as_tensor(beat_gt == -1, dtype=torch.int32)) |
|
beat_pred = torch.sigmoid(beat_pred) * weight |
|
beat_pred = torch.as_tensor((beat_pred - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy() |
|
|
|
beat_gt = torch.as_tensor((beat_gt - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy() |
|
|
|
|
|
batch_score = [] |
|
for idx in range(beat_pred.shape[0]): |
|
|
|
|
|
if np.sum(beat_gt[idx]) < 2: |
|
continue |
|
beat_pred_batch = np.nonzero(beat_pred[idx])[0] / fps |
|
beat_gt_batch = np.nonzero(beat_gt[idx])[0] / fps |
|
|
|
score = madmom.evaluation.beats.BeatEvaluation(beat_pred_batch, beat_gt_batch) |
|
batch_score.append(score) |
|
batch_score = madmom.evaluation.beats.BeatMeanEvaluation(batch_score) |
|
return {"fmeasure": batch_score.fmeasure, \ |
|
|
|
|
|
"cmlt": batch_score.cmlt, \ |
|
|
|
"amlt": batch_score.amlt} |
|
|
|
|
|
def infer_beat_with_DBN(beat_pred, beat_gt, dbn_model, fps): |
|
|
|
weight = (1 - torch.as_tensor(beat_gt == -1, dtype=torch.int32)) |
|
beat_pred = (torch.sigmoid(beat_pred) * weight).detach().cpu().numpy() |
|
|
|
beat_gt = torch.as_tensor((beat_gt - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy() |
|
batch_score = [] |
|
for idx in range(beat_pred.shape[0]): |
|
|
|
|
|
if np.sum(beat_gt[idx]) < 2: |
|
continue |
|
try: |
|
beat_pred_batch = dbn_model(beat_pred[idx]) |
|
except: |
|
return {"fmeasure": 0, "cmlt": 0, "amlt": 0} |
|
beat_gt_batch = np.nonzero(beat_gt[idx])[0] / fps |
|
score = madmom.evaluation.beats.BeatEvaluation(beat_pred_batch, beat_gt_batch) |
|
batch_score.append(score) |
|
batch_score = madmom.evaluation.beats.BeatMeanEvaluation(batch_score) |
|
return {"fmeasure": batch_score.fmeasure if not np.isnan(batch_score.fmeasure) else 0, \ |
|
|
|
|
|
"cmlt": batch_score.cmlt if not np.isnan(batch_score.cmlt) else 0, \ |
|
|
|
"amlt": batch_score.amlt if not np.isnan(batch_score.amlt) else 0} |
|
|
|
|
|
def infer_downbeat_with_DBN(beat_pred, downbeat_pred, downbeat_gt, dbn_model, fps): |
|
|
|
beat_pred = torch.sigmoid(beat_pred).detach().cpu() |
|
downbeat_pred = torch.sigmoid(downbeat_pred).detach().cpu() |
|
combined_act = torch.cat((torch.maximum(beat_pred - downbeat_pred, torch.zeros(beat_pred.shape)).unsqueeze(-1), downbeat_pred.unsqueeze(-1)), dim=-1) |
|
|
|
weight = (1 - torch.as_tensor(downbeat_gt == -1, dtype=torch.int32)).unsqueeze(-1).detach().cpu() |
|
combined_act = (combined_act * weight).numpy() |
|
|
|
beat_gt = torch.as_tensor((downbeat_gt - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy() |
|
batch_score = [] |
|
for idx in range(beat_pred.shape[0]): |
|
|
|
|
|
if np.sum(beat_gt[idx]) < 2: |
|
continue |
|
try: |
|
beat_pred_batch = dbn_model(combined_act[idx]) |
|
beat_pred_batch = beat_pred_batch[beat_pred_batch[:, 1]==1][:, 0] |
|
except: |
|
return {"fmeasure": 0, "cmlt": 0, "amlt": 0} |
|
beat_gt_batch = np.nonzero(beat_gt[idx])[0] / fps |
|
score = madmom.evaluation.beats.BeatEvaluation(beat_pred_batch, beat_gt_batch) |
|
batch_score.append(score) |
|
batch_score = madmom.evaluation.beats.BeatMeanEvaluation(batch_score) |
|
return {"fmeasure": batch_score.fmeasure if not np.isnan(batch_score.fmeasure) else 0, \ |
|
|
|
|
|
"cmlt": batch_score.cmlt if not np.isnan(batch_score.cmlt) else 0, \ |
|
|
|
"amlt": batch_score.amlt if not np.isnan(batch_score.amlt) else 0} |
|
|
|
|
|
|
|
def load_dataset_path(fn='model_config.json'): |
|
with open(fn) as f: |
|
paths = json.load(f)['dataset_path'] |
|
|
|
train_val_path = paths['hpc_data_path'] |
|
return train_val_path |
|
|
|
def load_params_dict(key, fn='model_config.json'): |
|
with open(fn) as f: |
|
dict = json.load(f)[key] |
|
return dict |
|
|
|
|
|
def count_parameters(model): |
|
return sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
|
|
def init_weights(m): |
|
for name, param in m.named_parameters(): |
|
if 'weight' in name: |
|
nn.init.normal_(param.data, mean=0, std=0.01) |
|
else: |
|
nn.init.constant_(param.data, 0) |
|
|
|
def standard_normal(shape): |
|
N = Normal(torch.zeros(shape), torch.ones(shape)) |
|
if torch.cuda.is_available(): |
|
N.loc = N.loc.cuda() |
|
N.scale = N.scale.cuda() |
|
return N |
|
|
|
|
|
def loss_function_vae(recon_pitch, pitch, dist, pitch_criterion, normal, |
|
weights=(1, .1)): |
|
|
|
|
|
pitch_loss = pitch_criterion(recon_pitch, pitch) |
|
kl_div = kl_divergence(dist, normal).mean() |
|
loss = weights[0] * pitch_loss + weights[1] * kl_div |
|
return loss, pitch_loss, kl_div |
|
|
|
def loss_function_discr(recon_mask, mask_gt, dist, mask_criterion, normal, |
|
weights=(1, .1)): |
|
|
|
|
|
mask_loss = mask_criterion(recon_mask, mask_gt) |
|
kl_div = kl_divergence(dist, normal).mean() |
|
loss = weights[0] * mask_loss + weights[1] * kl_div |
|
return loss, mask_loss, kl_div |
|
|
|
def get_complement(mask_gt): |
|
|
|
complement = torch.zeros(mask_gt.shape).long().cuda() |
|
for i in range(mask_gt.shape[0]): |
|
if random.random() < 0.5: |
|
low = max(mask_gt[i].max(0)[-1].item() - 5, 0) |
|
high = min(mask_gt[i].max(0)[-1].item() + 6, 127) |
|
else: |
|
low = max(mask_gt[i].max(0)[-1].item() - 6, 0) |
|
high = min(mask_gt[i].max(0)[-1].item() + 5, 127) |
|
|
|
complement[i, low: high+1] = 1. |
|
return complement - mask_gt |
|
|
|
|
|
|
|
def epoch_time(start_time, end_time): |
|
elapsed_time = end_time - start_time |
|
elapsed_mins = int(elapsed_time / 60) |
|
elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) |
|
return elapsed_mins, elapsed_secs |
|
|
|
|
|
class MinExponentialLR(ExponentialLR): |
|
def __init__(self, optimizer, gamma, minimum, last_epoch=-1): |
|
self.min = minimum |
|
super(MinExponentialLR, self).__init__(optimizer, gamma, last_epoch=-1) |
|
|
|
def get_lr(self): |
|
return [ |
|
max(base_lr * self.gamma ** self.last_epoch, self.min) |
|
for base_lr in self.base_lrs |
|
] |
|
|
|
|
|
def scheduled_sampling(i, high=0.7, low=0.05): |
|
x = 10 * (i - 0.5) |
|
z = 1 / (1 + np.exp(x)) |
|
y = (high - low) * z + low |
|
return y |
|
|
|
|
|
|
|
def piano_roll_to_target(pr): |
|
|
|
|
|
|
|
pr[:, :, 1] = np.logical_not(np.logical_or(pr[:, :, 0], pr[:, :, 2])) |
|
|
|
pr = pr.astype(int) |
|
|
|
pr_matrix = np.zeros((32, 128)) |
|
|
|
for i in range(31, -1, -1): |
|
|
|
|
|
|
|
|
|
|
|
onset_idx = np.where(pr[i, :, 0] == 1)[0] |
|
pr_matrix[i, onset_idx] = pr[i, onset_idx, 1] + 1 |
|
if i == 0: |
|
break |
|
|
|
|
|
|
|
pr[i, onset_idx, 1] = 0 |
|
pr[i - 1, :, 1] += pr[i, :, 1] |
|
|
|
return pr_matrix |
|
|
|
|
|
def target_to_3dtarget(pr_mat, max_note_count=11, max_pitch=107, min_pitch=22, |
|
pitch_pad_ind=88, dur_pad_ind=2, |
|
pitch_sos_ind=86, pitch_eos_ind=87): |
|
""" |
|
:param pr_mat: (32, 128) matrix. pr_mat[t, p] indicates a note of pitch p, |
|
started at time step t, has a duration of pr_mat[t, p] time steps. |
|
:param max_note_count: the maximum number of notes in a time step, |
|
including <sos> and <eos> tokens. |
|
:param max_pitch: the highest pitch in the dataset. |
|
:param min_pitch: the lowest pitch in the dataset. |
|
:param pitch_pad_ind: see return value. |
|
:param dur_pad_ind: see return value. |
|
:param pitch_sos_ind: sos token. |
|
:param pitch_eos_ind: eos token. |
|
:return: pr_mat3d is a (32, max_note_count, 6) matrix. In the last dim, |
|
the 0th column is for pitch, 1: 6 is for duration in binary repr. Output is |
|
padded with <sos> and <eos> tokens in the pitch column, but with pad token |
|
for dur columns. |
|
""" |
|
pitch_range = max_pitch - min_pitch + 1 |
|
pr_mat3d = np.ones((32, max_note_count, 6), dtype=int) * dur_pad_ind |
|
pr_mat3d[:, :, 0] = pitch_pad_ind |
|
pr_mat3d[:, 0, 0] = pitch_sos_ind |
|
cur_idx = np.ones(32, dtype=int) |
|
for t, p in zip(*np.where(pr_mat != 0)): |
|
pr_mat3d[t, cur_idx[t], 0] = p - min_pitch |
|
binary = np.binary_repr(int(pr_mat[t, p]) - 1, width=5) |
|
pr_mat3d[t, cur_idx[t], 1: 6] = \ |
|
np.fromstring(' '.join(list(binary)), dtype=int, sep=' ') |
|
cur_idx[t] += 1 |
|
pr_mat3d[np.arange(0, 32), cur_idx, 0] = pitch_eos_ind |
|
return pr_mat3d |
|
|
|
|
|
def get_low_high_dur_count(pr_mat): |
|
|
|
|
|
|
|
|
|
|
|
pitch_range = np.where(pr_mat != 0)[1] |
|
low_pitch = pitch_range.min() |
|
high_pitch = pitch_range.max() |
|
pitch_dur = pr_mat.max() |
|
num_notes = np.count_nonzero(pr_mat, axis=-1) |
|
return low_pitch, high_pitch, pitch_dur, num_notes |
|
|