nicolaus625's picture
Add files using upload-large-folder tool
659e74f verified
raw
history blame
11.7 kB
import numpy as np
import json, sys, os
from torch import nn
import torch
from torch.distributions import kl_divergence, Normal
from torch.optim.lr_scheduler import ExponentialLR
import random
import madmom
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = {}
self.avg = {}
self.sum = {}
self.count = {}
def update(self, key, val, n=1):
if not key in self.val:
self.val[key] = val
self.sum[key] = val * n
self.count[key] = n
self.avg[key] = self.sum[key] / self.count[key]
else:
self.val[key] = val
self.sum[key] += val * n
self.count[key] += n
self.avg[key] = self.sum[key] / self.count[key]
def binary_accuracy(beat_pred, beat_gt):
#beat: (B, T)
weight = (1 - torch.as_tensor(beat_gt == -1, dtype=torch.int32))
beat_pred = torch.as_tensor((torch.sigmoid(beat_pred) >= 0.5), dtype=torch.int32)
beat_gt = torch.as_tensor((beat_gt > 0.6), dtype=torch.int32)
positives = torch.as_tensor((beat_pred == beat_gt), dtype=torch.int32)
positives = positives * weight
binary_accuracy = positives.sum() / (weight.sum() + 1e-4)
return binary_accuracy
def beat_accuracy(beat_pred, beat_gt, fps):
#beat_pred: (B, L), estimation result
weight = (1 - torch.as_tensor(beat_gt == -1, dtype=torch.int32))
beat_pred = torch.sigmoid(beat_pred) * weight
beat_pred = torch.as_tensor((beat_pred - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy()
#beat_pred = (beat_pred / fps)
beat_gt = torch.as_tensor((beat_gt - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy()
#beat_gt = (beat_gt / fps)
#print(beat_gt)
batch_score = []
for idx in range(beat_pred.shape[0]):
#if (beat_gt[idx] == 0).all():
# continue
if np.sum(beat_gt[idx]) < 2:
continue
beat_pred_batch = np.nonzero(beat_pred[idx])[0] / fps
beat_gt_batch = np.nonzero(beat_gt[idx])[0] / fps
#print(beat_gt_batch)
score = madmom.evaluation.beats.BeatEvaluation(beat_pred_batch, beat_gt_batch)
batch_score.append(score)
batch_score = madmom.evaluation.beats.BeatMeanEvaluation(batch_score)
return {"fmeasure": batch_score.fmeasure, \
#"cemgil": batch_score.cemgil, \
#"cmlc": batch_score.cmlc, \
"cmlt": batch_score.cmlt, \
#"amlc": batch_score.amlc, \
"amlt": batch_score.amlt}
def infer_beat_with_DBN(beat_pred, beat_gt, dbn_model, fps):
#beat_pred: (B, L), estimation result
weight = (1 - torch.as_tensor(beat_gt == -1, dtype=torch.int32))
beat_pred = (torch.sigmoid(beat_pred) * weight).detach().cpu().numpy()
#beat_pred = (beat_pred / fps)
beat_gt = torch.as_tensor((beat_gt - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy()
batch_score = []
for idx in range(beat_pred.shape[0]):
#if (beat_gt[idx] == 0).all():
# continue
if np.sum(beat_gt[idx]) < 2:
continue
try:
beat_pred_batch = dbn_model(beat_pred[idx])
except:
return {"fmeasure": 0, "cmlt": 0, "amlt": 0}
beat_gt_batch = np.nonzero(beat_gt[idx])[0] / fps
score = madmom.evaluation.beats.BeatEvaluation(beat_pred_batch, beat_gt_batch)
batch_score.append(score)
batch_score = madmom.evaluation.beats.BeatMeanEvaluation(batch_score)
return {"fmeasure": batch_score.fmeasure if not np.isnan(batch_score.fmeasure) else 0, \
#"cemgil": batch_score.cemgil, \
#"cmlc": batch_score.cmlc, \
"cmlt": batch_score.cmlt if not np.isnan(batch_score.cmlt) else 0, \
#"amlc": batch_score.amlc, \
"amlt": batch_score.amlt if not np.isnan(batch_score.amlt) else 0}
def infer_downbeat_with_DBN(beat_pred, downbeat_pred, downbeat_gt, dbn_model, fps):
#beat_pred: (B, L), estimation result
beat_pred = torch.sigmoid(beat_pred).detach().cpu()
downbeat_pred = torch.sigmoid(downbeat_pred).detach().cpu()
combined_act = torch.cat((torch.maximum(beat_pred - downbeat_pred, torch.zeros(beat_pred.shape)).unsqueeze(-1), downbeat_pred.unsqueeze(-1)), dim=-1)
#beat_pred = (beat_pred / fps)
weight = (1 - torch.as_tensor(downbeat_gt == -1, dtype=torch.int32)).unsqueeze(-1).detach().cpu()
combined_act = (combined_act * weight).numpy()
beat_gt = torch.as_tensor((downbeat_gt - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy()
batch_score = []
for idx in range(beat_pred.shape[0]):
#if (beat_gt[idx] == 0).all():
# continue
if np.sum(beat_gt[idx]) < 2:
continue
try:
beat_pred_batch = dbn_model(combined_act[idx])
beat_pred_batch = beat_pred_batch[beat_pred_batch[:, 1]==1][:, 0]
except:
return {"fmeasure": 0, "cmlt": 0, "amlt": 0}
beat_gt_batch = np.nonzero(beat_gt[idx])[0] / fps
score = madmom.evaluation.beats.BeatEvaluation(beat_pred_batch, beat_gt_batch)
batch_score.append(score)
batch_score = madmom.evaluation.beats.BeatMeanEvaluation(batch_score)
return {"fmeasure": batch_score.fmeasure if not np.isnan(batch_score.fmeasure) else 0, \
#"cemgil": batch_score.cemgil, \
#"cmlc": batch_score.cmlc, \
"cmlt": batch_score.cmlt if not np.isnan(batch_score.cmlt) else 0, \
#"amlc": batch_score.amlc, \
"amlt": batch_score.amlt if not np.isnan(batch_score.amlt) else 0}
def load_dataset_path(fn='model_config.json'):
with open(fn) as f:
paths = json.load(f)['dataset_path']
train_val_path = paths['hpc_data_path']
return train_val_path
def load_params_dict(key, fn='model_config.json'):
with open(fn) as f:
dict = json.load(f)[key]
return dict
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def init_weights(m):
for name, param in m.named_parameters():
if 'weight' in name:
nn.init.normal_(param.data, mean=0, std=0.01)
else:
nn.init.constant_(param.data, 0)
def standard_normal(shape):
N = Normal(torch.zeros(shape), torch.ones(shape))
if torch.cuda.is_available():
N.loc = N.loc.cuda()
N.scale = N.scale.cuda()
return N
def loss_function_vae(recon_pitch, pitch, dist, pitch_criterion, normal,
weights=(1, .1)):
# bs = dist.mean.size(0)
#print(recon_pitch.shape, pitch.shape, recon_rhythm.shape, rhythm.shape)
pitch_loss = pitch_criterion(recon_pitch, pitch)
kl_div = kl_divergence(dist, normal).mean()
loss = weights[0] * pitch_loss + weights[1] * kl_div
return loss, pitch_loss, kl_div
def loss_function_discr(recon_mask, mask_gt, dist, mask_criterion, normal,
weights=(1, .1)):
# bs = dist.mean.size(0)
#print(recon_pitch.shape, pitch.shape, recon_rhythm.shape, rhythm.shape)
mask_loss = mask_criterion(recon_mask, mask_gt)
kl_div = kl_divergence(dist, normal).mean()
loss = weights[0] * mask_loss + weights[1] * kl_div
return loss, mask_loss, kl_div
def get_complement(mask_gt):
#mask_gt: (BT, 128)
complement = torch.zeros(mask_gt.shape).long().cuda()
for i in range(mask_gt.shape[0]):
if random.random() < 0.5:
low = max(mask_gt[i].max(0)[-1].item() - 5, 0)
high = min(mask_gt[i].max(0)[-1].item() + 6, 127)
else:
low = max(mask_gt[i].max(0)[-1].item() - 6, 0)
high = min(mask_gt[i].max(0)[-1].item() + 5, 127)
#print(low, high)
complement[i, low: high+1] = 1.
return complement - mask_gt
# Useful function for how long epochs take
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
class MinExponentialLR(ExponentialLR):
def __init__(self, optimizer, gamma, minimum, last_epoch=-1):
self.min = minimum
super(MinExponentialLR, self).__init__(optimizer, gamma, last_epoch=-1)
def get_lr(self):
return [
max(base_lr * self.gamma ** self.last_epoch, self.min)
for base_lr in self.base_lrs
]
def scheduled_sampling(i, high=0.7, low=0.05):
x = 10 * (i - 0.5)
z = 1 / (1 + np.exp(x))
y = (high - low) * z + low
return y
def piano_roll_to_target(pr):
# pr: (32, 128, 3), dtype=bool
# Assume that "not (first_layer or second layer) = third_layer"
pr[:, :, 1] = np.logical_not(np.logical_or(pr[:, :, 0], pr[:, :, 2]))
# To int dtype can make addition work
pr = pr.astype(int)
# Initialize a matrix to store the duration of a note on the (32, 128) grid
pr_matrix = np.zeros((32, 128))
for i in range(31, -1, -1):
# At each iteration
# 1. Assure that the second layer accumulates the note duration
# 2. collect the onset notes in time step i, and mark it on the matrix.
# collect
onset_idx = np.where(pr[i, :, 0] == 1)[0]
pr_matrix[i, onset_idx] = pr[i, onset_idx, 1] + 1
if i == 0:
break
# Accumulate
# pr[i - 1, :, 1] += pr[i, :, 1]
# pr[i - 1, onset_idx, 1] = 0 # the onset note should be set 0.
pr[i, onset_idx, 1] = 0 # the onset note should be set 0.
pr[i - 1, :, 1] += pr[i, :, 1]
return pr_matrix
def target_to_3dtarget(pr_mat, max_note_count=11, max_pitch=107, min_pitch=22,
pitch_pad_ind=88, dur_pad_ind=2,
pitch_sos_ind=86, pitch_eos_ind=87):
"""
:param pr_mat: (32, 128) matrix. pr_mat[t, p] indicates a note of pitch p,
started at time step t, has a duration of pr_mat[t, p] time steps.
:param max_note_count: the maximum number of notes in a time step,
including <sos> and <eos> tokens.
:param max_pitch: the highest pitch in the dataset.
:param min_pitch: the lowest pitch in the dataset.
:param pitch_pad_ind: see return value.
:param dur_pad_ind: see return value.
:param pitch_sos_ind: sos token.
:param pitch_eos_ind: eos token.
:return: pr_mat3d is a (32, max_note_count, 6) matrix. In the last dim,
the 0th column is for pitch, 1: 6 is for duration in binary repr. Output is
padded with <sos> and <eos> tokens in the pitch column, but with pad token
for dur columns.
"""
pitch_range = max_pitch - min_pitch + 1 # including pad
pr_mat3d = np.ones((32, max_note_count, 6), dtype=int) * dur_pad_ind
pr_mat3d[:, :, 0] = pitch_pad_ind
pr_mat3d[:, 0, 0] = pitch_sos_ind
cur_idx = np.ones(32, dtype=int)
for t, p in zip(*np.where(pr_mat != 0)):
pr_mat3d[t, cur_idx[t], 0] = p - min_pitch
binary = np.binary_repr(int(pr_mat[t, p]) - 1, width=5)
pr_mat3d[t, cur_idx[t], 1: 6] = \
np.fromstring(' '.join(list(binary)), dtype=int, sep=' ')
cur_idx[t] += 1
pr_mat3d[np.arange(0, 32), cur_idx, 0] = pitch_eos_ind
return pr_mat3d
def get_low_high_dur_count(pr_mat):
# pr_mat (32, 128)
# return the maximum duration
# return the pitch range
# return the number of notes at each column
pitch_range = np.where(pr_mat != 0)[1]
low_pitch = pitch_range.min()
high_pitch = pitch_range.max()
pitch_dur = pr_mat.max()
num_notes = np.count_nonzero(pr_mat, axis=-1)
return low_pitch, high_pitch, pitch_dur, num_notes