File size: 7,417 Bytes
96fd80c
 
 
44482b3
96fd80c
2dd6126
4323869
 
96fd80c
 
2dd6126
 
 
96fd80c
 
2dd6126
49fb33a
 
96fd80c
 
2dd6126
 
 
 
 
96fd80c
4323869
 
96fd80c
 
09857e0
2dd6126
96fd80c
 
 
09857e0
96fd80c
2dd6126
 
96fd80c
 
 
2dd6126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f082111
2dd6126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f082111
2dd6126
 
96fd80c
 
 
2dd6126
 
 
 
 
 
 
 
5e3b83b
560a88d
2dd6126
bbea063
96fd80c
 
560a88d
96fd80c
560a88d
 
 
e525c10
09857e0
96fd80c
 
560a88d
96fd80c
560a88d
 
 
e525c10
09857e0
96fd80c
 
 
e525c10
96fd80c
778b351
5e3b83b
a530080
96fd80c
2dd6126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6488229
 
2dd6126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdfc317
5e3b83b
09857e0
560a88d
44482b3
5e3b83b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import csv
import datasets
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
from pathlib import Path

_PROMPTS_PROSODIC_URLS = {
    "dev": "prosodic/validation.csv",
    "train": "prosodic/train.csv",
}

_PROMPTS_AUTOMATIC_URLS = {
    "dev": "automatic/validation.csv",
    "train": "automatic/train.csv",
}

_ARCHIVES_PROSODIC = {
    "dev": "prosodic/audios.tar.gz",
    "train": "prosodic/audios.tar.gz",
}

_ARCHIVES_AUTOMATIC = {
    "dev": "automatic/audios.tar.gz",
    "train": "automatic/audios.tar.gz",
}

_PATH_TO_CLIPS = {
    "dev": "",
    "train": "",
}

class NurcSPConfig(BuilderConfig):
    def __init__(self, prompts_type, **kwargs):
        super().__init__(**kwargs)
        self.prompts_type = prompts_type

class NurcSPDataset(GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        NurcSPConfig(name="automatic", description="Automatic audio prompts", prompts_type="automatic"),
        NurcSPConfig(name="prosodic", description="Prosodic audio prompts", prompts_type="prosodic"),
    ]

    def _info(self):
        if self.config.name == "prosodic":
            return DatasetInfo(
                features=datasets.Features(
                    {
                        "path": datasets.Value("string"),
                        "name": datasets.Value("string"),
                        "speaker": datasets.Value("string"),
                        "start_time": datasets.Value("string"),
                        "end_time": datasets.Value("string"),
                        "normalized_text": datasets.Value("string"),
                        "text": datasets.Value("string"),
                        "duration": datasets.Value("string"),
                        "type": datasets.Value("string"),
                        "year": datasets.Value("string"),
                        "gender": datasets.Value("string"),
                        "age_range": datasets.Value("string"),
                        "total_duration": datasets.Value("string"),
                        "quality": datasets.Value("string"),
                        "theme": datasets.Value("string"),
                        "audio": datasets.Audio(sampling_rate=16_000, mono=True),
                    }
                )
            )
        elif self.config.name == "automatic":
            return DatasetInfo(
                features=datasets.Features(
                    {
                        "audio_name": datasets.Value("string"),
                        "file_path": datasets.Value("string"),
                        "text": datasets.Value("string"),
                        "start_time": datasets.Value("string"),
                        "end_time": datasets.Value("string"),
                        "duration": datasets.Value("string"),
                        "quality": datasets.Value("string"),
                        "speech_genre": datasets.Value("string"),
                        "speech_style": datasets.Value("string"),
                        "variety": datasets.Value("string"),
                        "accent": datasets.Value("string"),
                        "sex": datasets.Value("string"),
                        "age_range": datasets.Value("string"),
                        "num_speakers": datasets.Value("string"),
                        "speaker_id": datasets.Value("string"),
                        "audio": datasets.Audio(sampling_rate=16_000, mono=True),
                    }
                )
            )

    def _split_generators(self, dl_manager):
        if self.config.prompts_type == "prosodic":
            prompts_urls = _PROMPTS_PROSODIC_URLS
            archive_link = _ARCHIVES_PROSODIC
        elif self.config.prompts_type == "automatic":
            prompts_urls = _PROMPTS_AUTOMATIC_URLS
            archive_link = _ARCHIVES_AUTOMATIC
        else:
            return

        prompts_path = dl_manager.download(prompts_urls)
        archive = dl_manager.download(archive_link)

        return [
            SplitGenerator(
                name=Split.VALIDATION,
                gen_kwargs={
                    "prompts_path": prompts_path["dev"],
                    "path_to_clips": _PATH_TO_CLIPS["dev"],
                    "audio_files": dl_manager.iter_archive(archive["dev"]),
                    "split_name": "validation"
                }
            ),
            SplitGenerator(
                name=Split.TRAIN,
                gen_kwargs={
                    "prompts_path": prompts_path["train"],
                    "path_to_clips": _PATH_TO_CLIPS["train"],
                    "audio_files": dl_manager.iter_archive(archive["train"]),
                    "split_name": "train"
                }
            ),
        ]

    def _generate_examples(self, prompts_path, path_to_clips, audio_files, split_name):
        examples = {}
        csv_paths = []

        with open(prompts_path, "r", encoding="utf-8") as f:
            csv_reader = csv.DictReader(f)
            if self.config.prompts_type == "prosodic":
                for row in csv_reader:
                    file_path = Path(row['path']).as_posix()
                    examples[file_path] = {
                        "path": row['path'],
                        "name": row['name'],
                        "speaker": row['speaker'],
                        "start_time": row['start_time'],
                        "end_time": row['end_time'],
                        "normalized_text": row['normalized_text'],
                        "text": row['text'],
                        "duration": row['duration'],
                        "type": row['type'],
                        "year": row['year'],
                        "gender": row['gender'],
                        "age_range": row['age_range'],
                        "total_duration": row['total_duration'],
                        "quality": row['quality'],
                        "theme": row['theme'],
                    }
                    csv_paths.append(file_path)
            elif self.config.prompts_type == "automatic":
                for row in csv_reader:
                    file_path = Path(row['file_path']).as_posix()
                    examples[file_path] = {
                        "audio_name": row['audio_name'],
                        "file_path": row['file_path'],
                        "text": row['text'],
                        "start_time": row['start_time'],
                        "end_time": row['end_time'],
                        "duration": row['duration'],
                        "quality": row['quality'],
                        "speech_genre": row['speech_genre'],
                        "speech_style": row['speech_style'],
                        "variety": row['variety'],
                        "accent": row['accent'],
                        "sex": row['sex'],
                        "age_range": row['age_range'],
                        "num_speakers": row['num_speakers'],
                        "speaker_id": row['speaker_id'],
                    }
                    csv_paths.append(file_path)

        id_ = 0
        for path, f in audio_files:
            path = Path(path).as_posix()
            if path.startswith(path_to_clips) and path in examples:
                audio = {"path": path, "bytes": f.read()}
                yield id_, {**examples[path], "audio": audio}
                id_ += 1