NURC-SP_ENTOA_TTS / NURC-SP_ENTOA_TTS.py
RodrigoLimaRFL's picture
Update NURC-SP_ENTOA_TTS.py
531c7c5 verified
raw
history blame
8.86 kB
import csv
import datasets
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
_PROSODIC_PROMPTS_URLS = {
"validation": "prosodic/validation.csv",
"train": "prosodic/train.csv",
}
_AUTOMATIC_PROMPTS_URLS = {
"validation": "automatic/validation.csv",
"train": "automatic/train.csv",
}
_ARCHIVES = {
"prosodic": "prosodic/audios.tar.gz",
"automatic": "automatic/audios.tar.gz",
}
_PATH_TO_CLIPS = {
"validation_prosodic": "audios",
"train_prosodic": "audios",
"validation_automatic": "audios/validation",
"train_automatic": "audios/train",
}
def debug_path_matching(csv_path, archive_files):
"""
Debug utility to compare paths between CSV and archive files
"""
import csv
from collections import defaultdict
# Store CSV paths
csv_paths = set()
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
# Store both the full path and filename
path = row.get("path") or row.get("file_path")
csv_paths.add(path)
csv_paths.add(path.split("/")[-1])
# Compare with archive paths
archive_paths = set()
matches = defaultdict(list)
for path, _ in archive_files:
archive_paths.add(path)
archive_paths.add(path.split("/")[-1])
# Check for matches
for csv_path in csv_paths:
if path.endswith(csv_path) or csv_path.endswith(path):
matches[path].append(csv_path)
print("=== Debug Report ===")
print(f"CSV Paths: {len(csv_paths)}")
print(f"Archive Paths: {len(archive_paths)}")
print(f"Matched Paths: {len(matches)}")
print("\nSample CSV paths:")
for path in list(csv_paths)[:5]:
print(f" {path}")
print("\nSample Archive paths:")
for path in list(archive_paths)[:5]:
print(f" {path}")
print("\nSample Matches:")
for archive_path, csv_paths in list(matches.items())[:5]:
print(f" Archive: {archive_path}")
print(f" CSV: {csv_paths}")
print()
return csv_paths, archive_paths, matches
class EntoaConfig(BuilderConfig):
def __init__(self, prompts_type="prosodic", **kwargs):
super().__init__(**kwargs)
self.prompts_type = prompts_type
class EntoaDataset(GeneratorBasedBuilder):
BUILDER_CONFIGS = [
EntoaConfig(name="prosodic", description="Prosodic audio prompts", prompts_type="prosodic"),
EntoaConfig(name="automatic", description="Automatic audio prompts", prompts_type="automatic"),
]
def _info(self):
if self.config.name == "prosodic":
features = datasets.Features(
{
"path": datasets.Value("string"),
"name": datasets.Value("string"),
"speaker": datasets.Value("string"),
"start_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"normalized_text": datasets.Value("string"),
"text": datasets.Value("string"),
"duration": datasets.Value("string"),
"type": datasets.Value("string"),
"year": datasets.Value("string"),
"gender": datasets.Value("string"),
"age_range": datasets.Value("string"),
"total_duration": datasets.Value("string"),
"quality": datasets.Value("string"),
"theme": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
}
)
else: # automatic
features = datasets.Features(
{
"audio_name": datasets.Value("string"),
"file_path": datasets.Value("string"),
"text": datasets.Value("string"),
"start_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"duration": datasets.Value("string"),
"quality": datasets.Value("string"),
"speech_genre": datasets.Value("string"),
"speech_style": datasets.Value("string"),
"variety": datasets.Value("string"),
"accent": datasets.Value("string"),
"sex": datasets.Value("string"),
"age_range": datasets.Value("string"),
"num_speakers": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
}
)
return DatasetInfo(features=features)
def _split_generators(self, dl_manager):
prompts_urls = _PROSODIC_PROMPTS_URLS if self.config.name == "prosodic" else _AUTOMATIC_PROMPTS_URLS
archive = dl_manager.download(_ARCHIVES[self.config.name])
prompts_path = dl_manager.download(prompts_urls)
# Debug prints for downloaded paths
print(f"Downloaded prompts: {prompts_path}")
print(f"Downloaded archive: {archive}")
return [
SplitGenerator(
name=Split.VALIDATION,
gen_kwargs={
"prompts_path": prompts_path["validation"],
"path_to_clips": _PATH_TO_CLIPS[f"validation_{self.config.name}"],
"audio_files": dl_manager.iter_archive(archive),
},
),
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"prompts_path": prompts_path["train"],
"path_to_clips": _PATH_TO_CLIPS[f"train_{self.config.name}"],
"audio_files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
csv_paths, archive_paths, matches = debug_path_matching(prompts_path, audio_files)
examples = {}
with open(prompts_path, "r") as f:
csv_reader = csv.DictReader(f)
for row in csv_reader:
if self.config.name == "prosodic":
examples[row["path"]] = {
"path": row["path"],
"name": row["name"],
"speaker": row["speaker"],
"start_time": row["start_time"],
"end_time": row["end_time"],
"normalized_text": row["normalized_text"],
"text": row["text"],
"duration": row["duration"],
"type": row["type"],
"year": row["year"],
"gender": row["gender"],
"age_range": row["age_range"],
"total_duration": row["total_duration"],
"quality": row["quality"],
"theme": row["theme"],
}
else: # automatic
examples[row["file_path"]] = {
"audio_name": row["audio_name"],
"file_path": row["file_path"],
"text": row["text"],
"start_time": row["start_time"],
"end_time": row["end_time"],
"duration": row["duration"],
"quality": row["quality"],
"speech_genre": row["speech_genre"],
"speech_style": row["speech_style"],
"variety": row["variety"],
"accent": row["accent"],
"sex": row["sex"],
"age_range": row["age_range"],
"num_speakers": row["num_speakers"],
"speaker_id": row["speaker_id"],
}
id_ = 0
inside_clips_dir = False
for path, f in audio_files:
if path.startswith(path_to_clips):
inside_clips_dir = True
if path in examples:
# Debug: Match found
print(f"Match found for: {path}")
audio = {"path": path, "bytes": f.read()}
yield id_, {**examples[path], "audio": audio}
id_ += 1
else:
# Debug: No match for this file
print(f"No match for: {path}")
elif inside_clips_dir:
break
# Debug: Print total examples generated
print(f"Completed generating examples. Total examples: {id_}")