id
stringlengths 2
115
| README
stringlengths 0
977k
|
---|---|
wisesight1000 | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- th
license:
- cc0-1.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- extended|wisesight_sentiment
task_categories:
- token-classification
task_ids: []
pretty_name: wisesight1000
tags:
- word-tokenization
dataset_info:
features:
- name: char
sequence: string
- name: char_type
sequence:
class_label:
names:
'0': b_e
'1': c
'2': d
'3': n
'4': o
'5': p
'6': q
'7': s
'8': s_e
'9': t
'10': v
'11': w
- name: is_beginning
sequence:
class_label:
names:
'0': neg
'1': pos
config_name: wisesight1000
splits:
- name: train
num_bytes: 1735438
num_examples: 993
download_size: 222691
dataset_size: 1735438
---
# Dataset Card for `wisesight1000`
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/PyThaiNLP/wisesight-sentiment
- **Repository:** https://github.com/PyThaiNLP/wisesight-sentiment/blob/master/word-tokenization/
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** https://github.com/PyThaiNLP/
### Dataset Summary
`wisesight1000` contains Thai social media texts randomly drawn from the full `wisesight-sentiment`, tokenized by human annotators.
Out of the labels `neg` (negative), `neu` (neutral), `pos` (positive), `q` (question), 250 samples each. Some texts are removed because they look like spam. Because these samples are representative of real world content, we believe having these annotaed samples will allow the community to robustly evaluate tokenization algorithms.
### Supported Tasks and Leaderboards
word tokenization
### Languages
Thai
## Dataset Structure
### Data Instances
```
{'char': ['E', 'u', 'c', 'e', 'r', 'i', 'n', ' ', 'p', 'r', 'o', ' ', 'a', 'c', 'n', 'e', ' ', 'ค', '่', 'ะ', ' ', 'ใ', 'ช', '้', 'แ', 'ล', '้', 'ว', 'ส', 'ิ', 'ว', 'ข', 'ึ', '้', 'น', 'เ', 'พ', 'ิ', '่', 'ม', 'ท', 'ุ', 'ก', 'ว', 'ั', 'น', ' ', 'ม', 'า', 'ด', 'ู', 'ก', 'ั', 'น', 'น', 'ะ', 'ค', 'ะ', ' ', 'ว', '่', 'า', 'จ', 'ั', 'ด', 'ก', 'า', 'ร', 'ป', 'ั', 'ญ', 'ห', 'า', 'ส', 'ิ', 'ว', 'ใ', 'น', '7', 'ว', 'ั', 'น', 'ไ', 'ด', '้', 'ร', 'ึ', 'ม', 'ั', '่', 'ย', 'ย', 'ย', 'ย', 'ย', 'ย', 'ย', 'ย', ' ', 'ล', '่', 'า', 'ส', 'ุ', 'ด', 'ไ', 'ป', 'ล', '้', 'า', 'ง', 'ห', 'น', '้', '…', '\n'], 'char_type': [0, 8, 8, 8, 8, 8, 8, 5, 8, 8, 8, 5, 8, 8, 8, 8, 5, 1, 9, 10, 5, 11, 1, 9, 11, 1, 9, 1, 1, 10, 1, 1, 10, 9, 1, 11, 1, 10, 9, 1, 1, 10, 1, 1, 4, 1, 5, 1, 10, 1, 10, 1, 4, 1, 1, 10, 1, 10, 5, 1, 9, 10, 1, 4, 1, 1, 10, 1, 1, 4, 1, 3, 10, 1, 10, 1, 11, 1, 2, 1, 4, 1, 11, 1, 9, 1, 10, 1, 4, 9, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 9, 10, 1, 10, 1, 11, 1, 1, 9, 10, 1, 3, 1, 9, 4, 4], 'is_beginning': [1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]}
{'char': ['แ', 'พ', 'ง', 'เ', 'ว', '่', 'อ', 'ร', '์', ' ', 'เ', 'บ', 'ี', 'ย', 'ร', '์', 'ช', '้', 'า', 'ง', 'ต', '้', 'น', 'ท', 'ุ', 'น', 'ข', 'ว', 'ด', 'ล', 'ะ', 'ไ', 'ม', '่', 'ถ', 'ึ', 'ง', ' ', '5', '0', ' ', 'ข', 'า', 'ย', ' ', '1', '2', '0', ' ', '😰', '😰', '😰', '์', '\n'], 'char_type': [11, 1, 1, 11, 1, 9, 1, 1, 7, 5, 11, 1, 10, 1, 1, 7, 1, 9, 10, 1, 1, 9, 1, 1, 10, 1, 1, 1, 1, 1, 10, 11, 1, 9, 1, 10, 1, 5, 2, 2, 5, 1, 10, 1, 5, 2, 2, 2, 5, 4, 4, 4, 7, 4], 'is_beginning': [1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0]}
```
### Data Fields
- `char`: characters
- `char_type`: character types as adopted from []() by [deepcut](https://github.com/rkcosmos/deepcut)
- `is_beginning`: 1 if beginning of word else 0
### Data Splits
No explicit split is given.
## Dataset Creation
### Curation Rationale
The dataset was created from `wisesight-sentiment` to be a word tokenization benchmark that is closer to texts in the wild, since other Thai word tokenization datasets such as [BEST](https://aiforthai.in.th/corpus.php) are mostly texts from news articles, which do not have some real-world features like misspellings.
### Source Data
#### Initial Data Collection and Normalization
The data are sampled from `wisesight-sentiment` which has the following data collection and normalization:
- Style: Informal and conversational. With some news headlines and advertisement.
- Time period: Around 2016 to early 2019. With small amount from other period.
- Domains: Mixed. Majority are consumer products and services (restaurants, cosmetics, drinks, car, hotels), with some current affairs.
- Privacy:
- Only messages that made available to the public on the internet (websites, blogs, social network sites).
- For Facebook, this means the public comments (everyone can see) that made on a public page.
- Private/protected messages and messages in groups, chat, and inbox are not included.
- Usernames and non-public figure names are removed
- Phone numbers are masked (e.g. 088-888-8888, 09-9999-9999, 0-2222-2222)
- If you see any personal data still remain in the set, please tell us - so we can remove them.
- Alternations and modifications:
- Keep in mind that this corpus does not statistically represent anything in the language register.
- Large amount of messages are not in their original form. Personal data are removed or masked.
- Duplicated, leading, and trailing whitespaces are removed. Other punctuations, symbols, and emojis are kept intact.
- (Mis)spellings are kept intact.
- Messages longer than 2,000 characters are removed.
- Long non-Thai messages are removed. Duplicated message (exact match) are removed.
#### Who are the source language producers?
Social media users in Thailand
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
The annotation was done by several people, including Nitchakarn Chantarapratin, [Pattarawat Chormai](https://github.com/heytitle), [Ponrawee Prasertsom](https://github.com/ponrawee), [Jitkapat Sawatphol](https://github.com/jitkapat), [Nozomi Yamada](https://github.com/nozomiyamada), and [Attapol Rutherford](https://attapol.github.io/).
### Personal and Sensitive Information
- The authors tried to exclude any known personally identifiable information from this data set.
- Usernames and non-public figure names are removed
- Phone numbers are masked (e.g. 088-888-8888, 09-9999-9999, 0-2222-2222)
- If you see any personal data still remain in the set, please tell us - so we can remove them.
## Considerations for Using the Data
### Social Impact of Dataset
- word tokenization dataset from texts in the wild
### Discussion of Biases
- no guideline is given by the authors on word tokenization
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Thanks [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp) community, [Kitsuchart Pasupa](http://www.it.kmitl.ac.th/~kitsuchart/) (Faculty of Information Technology, King Mongkut's Institute of Technology Ladkrabang), and [Ekapol Chuangsuwanich](https://www.cp.eng.chula.ac.th/en/about/faculty/ekapolc/) (Faculty of Engineering, Chulalongkorn University) for advice. The original Kaggle competition, using the first version of this corpus, can be found at https://www.kaggle.com/c/wisesight-sentiment/
### Licensing Information
CC0
### Citation Information
Dataset:
```
@software{bact_2019_3457447,
author = {Suriyawongkul, Arthit and
Chuangsuwanich, Ekapol and
Chormai, Pattarawat and
Polpanumas, Charin},
title = {PyThaiNLP/wisesight-sentiment: First release},
month = sep,
year = 2019,
publisher = {Zenodo},
version = {v1.0},
doi = {10.5281/zenodo.3457447},
url = {https://doi.org/10.5281/zenodo.3457447}
}
```
Character type features:
```
@inproceedings{haruechaiyasak2009tlex,
title={TLex: Thai lexeme analyser based on the conditional random fields},
author={Haruechaiyasak, Choochart and Kongyoung, Sarawoot},
booktitle={Proceedings of 8th International Symposium on Natural Language Processing},
year={2009}
}
```
### Contributions
Thanks to [@cstorm125](https://github.com/cstorm125) for adding this dataset. |
wisesight_sentiment | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- th
license:
- cc0-1.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: WisesightSentiment
dataset_info:
features:
- name: texts
dtype: string
- name: category
dtype:
class_label:
names:
'0': pos
'1': neu
'2': neg
'3': q
config_name: wisesight_sentiment
splits:
- name: train
num_bytes: 5328819
num_examples: 21628
- name: validation
num_bytes: 593570
num_examples: 2404
- name: test
num_bytes: 662137
num_examples: 2671
download_size: 2102326
dataset_size: 6584526
train-eval-index:
- config: wisesight_sentiment
task: text-classification
task_id: multi_class_classification
splits:
train_split: train
eval_split: test
col_mapping:
texts: text
category: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
---
# Dataset Card for wisesight_sentiment
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/PyThaiNLP/wisesight-sentiment
- **Repository:** https://github.com/PyThaiNLP/wisesight-sentiment
- **Paper:**
- **Leaderboard:** https://www.kaggle.com/c/wisesight-sentiment/
- **Point of Contact:** https://github.com/PyThaiNLP/
### Dataset Summary
Wisesight Sentiment Corpus: Social media messages in Thai language with sentiment label (positive, neutral, negative, question)
- Released to public domain under Creative Commons Zero v1.0 Universal license.
- Labels: {"pos": 0, "neu": 1, "neg": 2, "q": 3}
- Size: 26,737 messages
- Language: Central Thai
- Style: Informal and conversational. With some news headlines and advertisement.
- Time period: Around 2016 to early 2019. With small amount from other period.
- Domains: Mixed. Majority are consumer products and services (restaurants, cosmetics, drinks, car, hotels), with some current affairs.
- Privacy:
- Only messages that made available to the public on the internet (websites, blogs, social network sites).
- For Facebook, this means the public comments (everyone can see) that made on a public page.
- Private/protected messages and messages in groups, chat, and inbox are not included.
- Alternations and modifications:
- Keep in mind that this corpus does not statistically represent anything in the language register.
- Large amount of messages are not in their original form. Personal data are removed or masked.
- Duplicated, leading, and trailing whitespaces are removed. Other punctuations, symbols, and emojis are kept intact.
(Mis)spellings are kept intact.
- Messages longer than 2,000 characters are removed.
- Long non-Thai messages are removed. Duplicated message (exact match) are removed.
- More characteristics of the data can be explore [this notebook](https://github.com/PyThaiNLP/wisesight-sentiment/blob/master/exploration.ipynb)
### Supported Tasks and Leaderboards
Sentiment analysis / [Kaggle Leaderboard](https://www.kaggle.com/c/wisesight-sentiment/)
### Languages
Thai
## Dataset Structure
### Data Instances
```
{'category': 'pos', 'texts': 'น่าสนนน'}
{'category': 'neu', 'texts': 'ครับ #phithanbkk'}
{'category': 'neg', 'texts': 'ซื้อแต่ผ้าอนามัยแบบเย็นมาค่ะ แบบว่าอีห่ากูนอนไม่ได้'}
{'category': 'q', 'texts': 'มีแอลกอฮอลมั้ยคะ'}
```
### Data Fields
- `texts`: texts
- `category`: sentiment of texts ranging from `pos` (positive; 0), `neu` (neutral; 1), `neg` (negative; 2) and `q` (question; 3)
### Data Splits
| | train | valid | test |
|-----------|-------|-------|-------|
| # samples | 21628 | 2404 | 2671 |
| # neu | 11795 | 1291 | 1453 |
| # neg | 5491 | 637 | 683 |
| # pos | 3866 | 434 | 478 |
| # q | 476 | 42 | 57 |
| avg words | 27.21 | 27.18 | 27.12 |
| avg chars | 89.82 | 89.50 | 90.36 |
## Dataset Creation
### Curation Rationale
Originally, the dataset was conceived for the [In-class Kaggle Competition](https://www.kaggle.com/c/wisesight-sentiment/) at Chulalongkorn university by [Ekapol Chuangsuwanich](https://www.cp.eng.chula.ac.th/en/about/faculty/ekapolc/) (Faculty of Engineering, Chulalongkorn University). It has since become one of the benchmarks for sentiment analysis in Thai.
### Source Data
#### Initial Data Collection and Normalization
- Style: Informal and conversational. With some news headlines and advertisement.
- Time period: Around 2016 to early 2019. With small amount from other period.
- Domains: Mixed. Majority are consumer products and services (restaurants, cosmetics, drinks, car, hotels), with some current affairs.
- Privacy:
- Only messages that made available to the public on the internet (websites, blogs, social network sites).
- For Facebook, this means the public comments (everyone can see) that made on a public page.
- Private/protected messages and messages in groups, chat, and inbox are not included.
- Usernames and non-public figure names are removed
- Phone numbers are masked (e.g. 088-888-8888, 09-9999-9999, 0-2222-2222)
- If you see any personal data still remain in the set, please tell us - so we can remove them.
- Alternations and modifications:
- Keep in mind that this corpus does not statistically represent anything in the language register.
- Large amount of messages are not in their original form. Personal data are removed or masked.
- Duplicated, leading, and trailing whitespaces are removed. Other punctuations, symbols, and emojis are kept intact.
- (Mis)spellings are kept intact.
- Messages longer than 2,000 characters are removed.
- Long non-Thai messages are removed. Duplicated message (exact match) are removed.
#### Who are the source language producers?
Social media users in Thailand
### Annotations
#### Annotation process
- Sentiment values are assigned by human annotators.
- A human annotator put his/her best effort to assign just one label, out of four, to a message.
- Agreement, enjoyment, and satisfaction are positive. Disagreement, sadness, and disappointment are negative.
- Showing interest in a topic or in a product is counted as positive. In this sense, a question about a particular product could has a positive sentiment value, if it shows the interest in the product.
- Saying that other product or service is better is counted as negative.
- General information or news title tend to be counted as neutral.
#### Who are the annotators?
Outsourced annotators hired by [Wisesight (Thailand) Co., Ltd.](https://github.com/wisesight/)
### Personal and Sensitive Information
- The authors tried to exclude any known personally identifiable information from this data set.
- Usernames and non-public figure names are removed
- Phone numbers are masked (e.g. 088-888-8888, 09-9999-9999, 0-2222-2222)
- If you see any personal data still remain in the set, please tell us - so we can remove them.
## Considerations for Using the Data
### Social Impact of Dataset
- `wisesight_sentiment` is the first and one of the few open datasets for sentiment analysis of social media data in Thai
- There are risks of personal information that escape the anonymization process
### Discussion of Biases
- A message can be ambiguous. When possible, the judgement will be based solely on the text itself.
- In some situation, like when the context is missing, the annotator may have to rely on his/her own world knowledge and just guess.
- In some cases, the human annotator may have an access to the message's context, like an image. These additional information are not included as part of this corpus.
### Other Known Limitations
- The labels are imbalanced; over half of the texts are `neu` (neutral) whereas there are very few `q` (question).
- Misspellings in social media texts make word tokenization process for Thai difficult, thus impacting the model performance
## Additional Information
### Dataset Curators
Thanks [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp) community, [Kitsuchart Pasupa](http://www.it.kmitl.ac.th/~kitsuchart/) (Faculty of Information Technology, King Mongkut's Institute of Technology Ladkrabang), and [Ekapol Chuangsuwanich](https://www.cp.eng.chula.ac.th/en/about/faculty/ekapolc/) (Faculty of Engineering, Chulalongkorn University) for advice. The original Kaggle competition, using the first version of this corpus, can be found at https://www.kaggle.com/c/wisesight-sentiment/
### Licensing Information
- If applicable, copyright of each message content belongs to the original poster.
- **Annotation data (labels) are released to public domain.**
- [Wisesight (Thailand) Co., Ltd.](https://github.com/wisesight/) helps facilitate the annotation, but does not necessarily agree upon the labels made by the human annotators. This annotation is for research purpose and does not reflect the professional work that Wisesight has been done for its customers.
- The human annotator does not necessarily agree or disagree with the message. Likewise, the label he/she made to the message does not necessarily reflect his/her personal view towards the message.
### Citation Information
Please cite the following if you make use of the dataset:
Arthit Suriyawongkul, Ekapol Chuangsuwanich, Pattarawat Chormai, and Charin Polpanumas. 2019. **PyThaiNLP/wisesight-sentiment: First release.** September.
BibTeX:
```
@software{bact_2019_3457447,
author = {Suriyawongkul, Arthit and
Chuangsuwanich, Ekapol and
Chormai, Pattarawat and
Polpanumas, Charin},
title = {PyThaiNLP/wisesight-sentiment: First release},
month = sep,
year = 2019,
publisher = {Zenodo},
version = {v1.0},
doi = {10.5281/zenodo.3457447},
url = {https://doi.org/10.5281/zenodo.3457447}
}
```
### Contributions
Thanks to [@cstorm125](https://github.com/cstorm125) for adding this dataset. |
wmt14 | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- cs
- de
- en
- fr
- hi
- ru
license:
- unknown
multilinguality:
- translation
size_categories:
- 10M<n<100M
source_datasets:
- extended|europarl_bilingual
- extended|giga_fren
- extended|news_commentary
- extended|un_multi
- extended|hind_encorp
task_categories:
- translation
task_ids: []
pretty_name: WMT14
paperswithcode_id: wmt-2014
dataset_info:
- config_name: cs-en
features:
- name: translation
dtype:
translation:
languages:
- cs
- en
splits:
- name: train
num_bytes: 280992794
num_examples: 953621
- name: validation
num_bytes: 702473
num_examples: 3000
- name: test
num_bytes: 757817
num_examples: 3003
download_size: 1696003559
dataset_size: 282453084
- config_name: de-en
features:
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 1358410408
num_examples: 4508785
- name: validation
num_bytes: 736415
num_examples: 3000
- name: test
num_bytes: 777334
num_examples: 3003
download_size: 1696003559
dataset_size: 1359924157
- config_name: fr-en
features:
- name: translation
dtype:
translation:
languages:
- fr
- en
splits:
- name: train
num_bytes: 14752554924
num_examples: 40836715
- name: validation
num_bytes: 744447
num_examples: 3000
- name: test
num_bytes: 838857
num_examples: 3003
download_size: 6658118909
dataset_size: 14754138228
- config_name: hi-en
features:
- name: translation
dtype:
translation:
languages:
- hi
- en
splits:
- name: train
num_bytes: 1936035
num_examples: 32863
- name: validation
num_bytes: 181465
num_examples: 520
- name: test
num_bytes: 1075016
num_examples: 2507
download_size: 46879684
dataset_size: 3192516
- config_name: ru-en
features:
- name: translation
dtype:
translation:
languages:
- ru
- en
splits:
- name: train
num_bytes: 433210270
num_examples: 1486965
- name: validation
num_bytes: 977946
num_examples: 3000
- name: test
num_bytes: 1087746
num_examples: 3003
download_size: 1047396736
dataset_size: 435275962
---
# Dataset Card for "wmt14"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [http://www.statmt.org/wmt14/translation-task.html](http://www.statmt.org/wmt14/translation-task.html)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.70 GB
- **Size of the generated dataset:** 282.95 MB
- **Total amount of disk used:** 1.98 GB
### Dataset Summary
<div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400">
<p><b>Warning:</b> There are issues with the Common Crawl corpus data (<a href="https://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz">training-parallel-commoncrawl.tgz</a>):</p>
<ul>
<li>Non-English files contain many English sentences.</li>
<li>Their "parallel" sentences in English are not aligned: they are uncorrelated with their counterpart.</li>
</ul>
<p>We have contacted the WMT organizers.</p>
</div>
Translation dataset based on the data from statmt.org.
Versions exist for different years using a combination of data
sources. The base `wmt` allows you to create a custom dataset by choosing
your own data/language pair. This can be done as follows:
```python
from datasets import inspect_dataset, load_dataset_builder
inspect_dataset("wmt14", "path/to/scripts")
builder = load_dataset_builder(
"path/to/scripts/wmt_utils.py",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
# Standard version
builder.download_and_prepare()
ds = builder.as_dataset()
# Streamable version
ds = builder.as_streaming_dataset()
```
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### cs-en
- **Size of downloaded dataset files:** 1.70 GB
- **Size of the generated dataset:** 282.95 MB
- **Total amount of disk used:** 1.98 GB
An example of 'train' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### cs-en
- `translation`: a multilingual `string` variable, with possible languages including `cs`, `en`.
### Data Splits
|name |train |validation|test|
|-----|-----:|---------:|---:|
|cs-en|953621| 3000|3003|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{bojar-EtAl:2014:W14-33,
author = {Bojar, Ondrej and Buck, Christian and Federmann, Christian and Haddow, Barry and Koehn, Philipp and Leveling, Johannes and Monz, Christof and Pecina, Pavel and Post, Matt and Saint-Amand, Herve and Soricut, Radu and Specia, Lucia and Tamchyna, Ale
{s}},
title = {Findings of the 2014 Workshop on Statistical Machine Translation},
booktitle = {Proceedings of the Ninth Workshop on Statistical Machine Translation},
month = {June},
year = {2014},
address = {Baltimore, Maryland, USA},
publisher = {Association for Computational Linguistics},
pages = {12--58},
url = {http://www.aclweb.org/anthology/W/W14/W14-3302}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
wmt15 | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- cs
- de
- en
- fi
- fr
- ru
license:
- unknown
multilinguality:
- translation
size_categories:
- 10M<n<100M
source_datasets:
- extended|europarl_bilingual
- extended|giga_fren
- extended|news_commentary
- extended|un_multi
task_categories:
- translation
task_ids: []
pretty_name: WMT15
paperswithcode_id: wmt-2015
dataset_info:
- config_name: cs-en
features:
- name: translation
dtype:
translation:
languages:
- cs
- en
splits:
- name: train
num_bytes: 282996942
num_examples: 959768
- name: validation
num_bytes: 757817
num_examples: 3003
- name: test
num_bytes: 572203
num_examples: 2656
download_size: 1740666258
dataset_size: 284326962
- config_name: de-en
features:
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 1364002869
num_examples: 4522998
- name: validation
num_bytes: 777334
num_examples: 3003
- name: test
num_bytes: 522989
num_examples: 2169
download_size: 1740666258
dataset_size: 1365303192
- config_name: fi-en
features:
- name: translation
dtype:
translation:
languages:
- fi
- en
splits:
- name: train
num_bytes: 605146817
num_examples: 2073394
- name: validation
num_bytes: 363941
num_examples: 1500
- name: test
num_bytes: 306335
num_examples: 1370
download_size: 273390220
dataset_size: 605817093
- config_name: fr-en
features:
- name: translation
dtype:
translation:
languages:
- fr
- en
splits:
- name: train
num_bytes: 14758986622
num_examples: 40853137
- name: validation
num_bytes: 1138737
num_examples: 4503
- name: test
num_bytes: 298771
num_examples: 1500
download_size: 6702781608
dataset_size: 14760424130
- config_name: ru-en
features:
- name: translation
dtype:
translation:
languages:
- ru
- en
splits:
- name: train
num_bytes: 437752256
num_examples: 1495081
- name: validation
num_bytes: 1087746
num_examples: 3003
- name: test
num_bytes: 955972
num_examples: 2818
download_size: 1092059435
dataset_size: 439795974
---
# Dataset Card for "wmt15"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [http://www.statmt.org/wmt15/translation-task.html](http://www.statmt.org/wmt15/translation-task.html)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.74 GB
- **Size of the generated dataset:** 284.34 MB
- **Total amount of disk used:** 2.02 GB
### Dataset Summary
<div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400">
<p><b>Warning:</b> There are issues with the Common Crawl corpus data (<a href="https://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz">training-parallel-commoncrawl.tgz</a>):</p>
<ul>
<li>Non-English files contain many English sentences.</li>
<li>Their "parallel" sentences in English are not aligned: they are uncorrelated with their counterpart.</li>
</ul>
<p>We have contacted the WMT organizers.</p>
</div>
Translation dataset based on the data from statmt.org.
Versions exist for different years using a combination of data
sources. The base `wmt` allows you to create a custom dataset by choosing
your own data/language pair. This can be done as follows:
```python
from datasets import inspect_dataset, load_dataset_builder
inspect_dataset("wmt15", "path/to/scripts")
builder = load_dataset_builder(
"path/to/scripts/wmt_utils.py",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
# Standard version
builder.download_and_prepare()
ds = builder.as_dataset()
# Streamable version
ds = builder.as_streaming_dataset()
```
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### cs-en
- **Size of downloaded dataset files:** 1.74 GB
- **Size of the generated dataset:** 284.34 MB
- **Total amount of disk used:** 2.02 GB
An example of 'validation' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### cs-en
- `translation`: a multilingual `string` variable, with possible languages including `cs`, `en`.
### Data Splits
|name |train |validation|test|
|-----|-----:|---------:|---:|
|cs-en|959768| 3003|2656|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{bojar-EtAl:2015:WMT,
author = {Bojar, Ond
{r}ej and Chatterjee, Rajen and Federmann, Christian and Haddow, Barry and Huck, Matthias and Hokamp, Chris and Koehn, Philipp and Logacheva, Varvara and Monz, Christof and Negri, Matteo and Post, Matt and Scarton, Carolina and Specia, Lucia and Turchi, Marco},
title = {Findings of the 2015 Workshop on Statistical Machine Translation},
booktitle = {Proceedings of the Tenth Workshop on Statistical Machine Translation},
month = {September},
year = {2015},
address = {Lisbon, Portugal},
publisher = {Association for Computational Linguistics},
pages = {1--46},
url = {http://aclweb.org/anthology/W15-3001}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
wmt16 | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- cs
- de
- en
- fi
- ro
- ru
- tr
license:
- unknown
multilinguality:
- translation
size_categories:
- 10M<n<100M
source_datasets:
- extended|europarl_bilingual
- extended|news_commentary
- extended|setimes
- extended|un_multi
task_categories:
- translation
task_ids: []
pretty_name: WMT16
paperswithcode_id: wmt-2016
dataset_info:
- config_name: cs-en
features:
- name: translation
dtype:
translation:
languages:
- cs
- en
splits:
- name: train
num_bytes: 296006386
num_examples: 997240
- name: validation
num_bytes: 572203
num_examples: 2656
- name: test
num_bytes: 707870
num_examples: 2999
download_size: 1690726387
dataset_size: 297286459
- config_name: de-en
features:
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 1373123263
num_examples: 4548885
- name: validation
num_bytes: 522989
num_examples: 2169
- name: test
num_bytes: 735516
num_examples: 2999
download_size: 1690726387
dataset_size: 1374381768
- config_name: fi-en
features:
- name: translation
dtype:
translation:
languages:
- fi
- en
splits:
- name: train
num_bytes: 605146827
num_examples: 2073394
- name: validation
num_bytes: 306335
num_examples: 1370
- name: test
num_bytes: 1410515
num_examples: 6000
download_size: 273390220
dataset_size: 606863677
- config_name: ro-en
features:
- name: translation
dtype:
translation:
languages:
- ro
- en
splits:
- name: train
num_bytes: 188288211
num_examples: 610320
- name: validation
num_bytes: 561799
num_examples: 1999
- name: test
num_bytes: 539216
num_examples: 1999
download_size: 287363574
dataset_size: 189389226
- config_name: ru-en
features:
- name: translation
dtype:
translation:
languages:
- ru
- en
splits:
- name: train
num_bytes: 448338585
num_examples: 1516162
- name: validation
num_bytes: 955972
num_examples: 2818
- name: test
num_bytes: 1050677
num_examples: 2998
download_size: 1042119564
dataset_size: 450345234
- config_name: tr-en
features:
- name: translation
dtype:
translation:
languages:
- tr
- en
splits:
- name: train
num_bytes: 60416617
num_examples: 205756
- name: validation
num_bytes: 240650
num_examples: 1001
- name: test
num_bytes: 732436
num_examples: 3000
download_size: 62263061
dataset_size: 61389703
---
# Dataset Card for "wmt16"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [http://www.statmt.org/wmt16/translation-task.html](http://www.statmt.org/wmt16/translation-task.html)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.69 GB
- **Size of the generated dataset:** 297.28 MB
- **Total amount of disk used:** 1.99 GB
### Dataset Summary
<div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400">
<p><b>Warning:</b> There are issues with the Common Crawl corpus data (<a href="https://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz">training-parallel-commoncrawl.tgz</a>):</p>
<ul>
<li>Non-English files contain many English sentences.</li>
<li>Their "parallel" sentences in English are not aligned: they are uncorrelated with their counterpart.</li>
</ul>
<p>We have contacted the WMT organizers.</p>
</div>
Translation dataset based on the data from statmt.org.
Versions exist for different years using a combination of data
sources. The base `wmt` allows you to create a custom dataset by choosing
your own data/language pair. This can be done as follows:
```python
from datasets import inspect_dataset, load_dataset_builder
inspect_dataset("wmt16", "path/to/scripts")
builder = load_dataset_builder(
"path/to/scripts/wmt_utils.py",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
# Standard version
builder.download_and_prepare()
ds = builder.as_dataset()
# Streamable version
ds = builder.as_streaming_dataset()
```
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### cs-en
- **Size of downloaded dataset files:** 1.69 GB
- **Size of the generated dataset:** 297.28 MB
- **Total amount of disk used:** 1.99 GB
An example of 'validation' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### cs-en
- `translation`: a multilingual `string` variable, with possible languages including `cs`, `en`.
### Data Splits
|name |train |validation|test|
|-----|-----:|---------:|---:|
|cs-en|997240| 2656|2999|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{bojar-EtAl:2016:WMT1,
author = {Bojar, Ond
{r}ej and Chatterjee, Rajen and Federmann, Christian and Graham, Yvette and Haddow, Barry and Huck, Matthias and Jimeno Yepes, Antonio and Koehn, Philipp and Logacheva, Varvara and Monz, Christof and Negri, Matteo and Neveol, Aurelie and Neves, Mariana and Popel, Martin and Post, Matt and Rubino, Raphael and Scarton, Carolina and Specia, Lucia and Turchi, Marco and Verspoor, Karin and Zampieri, Marcos},
title = {Findings of the 2016 Conference on Machine Translation},
booktitle = {Proceedings of the First Conference on Machine Translation},
month = {August},
year = {2016},
address = {Berlin, Germany},
publisher = {Association for Computational Linguistics},
pages = {131--198},
url = {http://www.aclweb.org/anthology/W/W16/W16-2301}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
wmt17 | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- cs
- de
- en
- fi
- lv
- ru
- tr
- zh
license:
- unknown
multilinguality:
- translation
size_categories:
- 10M<n<100M
source_datasets:
- extended|europarl_bilingual
- extended|news_commentary
- extended|setimes
- extended|un_multi
task_categories:
- translation
task_ids: []
pretty_name: WMT17
paperswithcode_id: null
dataset_info:
- config_name: cs-en
features:
- name: translation
dtype:
translation:
languages:
- cs
- en
splits:
- name: train
num_bytes: 300698431
num_examples: 1018291
- name: validation
num_bytes: 707870
num_examples: 2999
- name: test
num_bytes: 674430
num_examples: 3005
download_size: 1784240523
dataset_size: 302080731
- config_name: de-en
features:
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 1715537443
num_examples: 5906184
- name: validation
num_bytes: 735516
num_examples: 2999
- name: test
num_bytes: 729519
num_examples: 3004
download_size: 1945382236
dataset_size: 1717002478
- config_name: fi-en
features:
- name: translation
dtype:
translation:
languages:
- fi
- en
splits:
- name: train
num_bytes: 743856525
num_examples: 2656542
- name: validation
num_bytes: 1410515
num_examples: 6000
- name: test
num_bytes: 1388828
num_examples: 6004
download_size: 434531933
dataset_size: 746655868
- config_name: lv-en
features:
- name: translation
dtype:
translation:
languages:
- lv
- en
splits:
- name: train
num_bytes: 517419100
num_examples: 3567528
- name: validation
num_bytes: 544604
num_examples: 2003
- name: test
num_bytes: 530474
num_examples: 2001
download_size: 169634544
dataset_size: 518494178
- config_name: ru-en
features:
- name: translation
dtype:
translation:
languages:
- ru
- en
splits:
- name: train
num_bytes: 11000075522
num_examples: 24782720
- name: validation
num_bytes: 1050677
num_examples: 2998
- name: test
num_bytes: 1040195
num_examples: 3001
download_size: 3582640660
dataset_size: 11002166394
- config_name: tr-en
features:
- name: translation
dtype:
translation:
languages:
- tr
- en
splits:
- name: train
num_bytes: 60416617
num_examples: 205756
- name: validation
num_bytes: 732436
num_examples: 3000
- name: test
num_bytes: 752773
num_examples: 3007
download_size: 62263061
dataset_size: 61901826
- config_name: zh-en
features:
- name: translation
dtype:
translation:
languages:
- zh
- en
splits:
- name: train
num_bytes: 5529286149
num_examples: 25134743
- name: validation
num_bytes: 589591
num_examples: 2002
- name: test
num_bytes: 540347
num_examples: 2001
download_size: 2314906945
dataset_size: 5530416087
---
# Dataset Card for "wmt17"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [http://www.statmt.org/wmt17/translation-task.html](http://www.statmt.org/wmt17/translation-task.html)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.78 GB
- **Size of the generated dataset:** 302.09 MB
- **Total amount of disk used:** 2.09 GB
### Dataset Summary
<div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400">
<p><b>Warning:</b> There are issues with the Common Crawl corpus data (<a href="https://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz">training-parallel-commoncrawl.tgz</a>):</p>
<ul>
<li>Non-English files contain many English sentences.</li>
<li>Their "parallel" sentences in English are not aligned: they are uncorrelated with their counterpart.</li>
</ul>
<p>We have contacted the WMT organizers.</p>
</div>
Translation dataset based on the data from statmt.org.
Versions exist for different years using a combination of data
sources. The base `wmt` allows you to create a custom dataset by choosing
your own data/language pair. This can be done as follows:
```python
from datasets import inspect_dataset, load_dataset_builder
inspect_dataset("wmt17", "path/to/scripts")
builder = load_dataset_builder(
"path/to/scripts/wmt_utils.py",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
# Standard version
builder.download_and_prepare()
ds = builder.as_dataset()
# Streamable version
ds = builder.as_streaming_dataset()
```
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### cs-en
- **Size of downloaded dataset files:** 1.78 GB
- **Size of the generated dataset:** 302.09 MB
- **Total amount of disk used:** 2.09 GB
An example of 'train' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### cs-en
- `translation`: a multilingual `string` variable, with possible languages including `cs`, `en`.
### Data Splits
|name | train |validation|test|
|-----|------:|---------:|---:|
|cs-en|1018291| 2999|3005|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{bojar-EtAl:2017:WMT1,
author = {Bojar, Ond
{r}ej and Chatterjee, Rajen and Federmann, Christian and Graham, Yvette and Haddow, Barry and Huang, Shujian and Huck, Matthias and Koehn, Philipp and Liu, Qun and Logacheva, Varvara and Monz, Christof and Negri, Matteo and Post, Matt and Rubino, Raphael and Specia, Lucia and Turchi, Marco},
title = {Findings of the 2017 Conference on Machine Translation (WMT17)},
booktitle = {Proceedings of the Second Conference on Machine Translation, Volume 2: Shared Task Papers},
month = {September},
year = {2017},
address = {Copenhagen, Denmark},
publisher = {Association for Computational Linguistics},
pages = {169--214},
url = {http://www.aclweb.org/anthology/W17-4717}
}
```
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |
wmt18 | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- cs
- de
- en
- et
- fi
- kk
- ru
- tr
- zh
license:
- unknown
multilinguality:
- translation
size_categories:
- 10M<n<100M
source_datasets:
- extended|europarl_bilingual
- extended|news_commentary
- extended|opus_paracrawl
- extended|setimes
- extended|un_multi
task_categories:
- translation
task_ids: []
pretty_name: WMT18
paperswithcode_id: wmt-2018
dataset_info:
- config_name: cs-en
features:
- name: translation
dtype:
translation:
languages:
- cs
- en
splits:
- name: train
num_bytes: 1461016186
num_examples: 11046024
- name: validation
num_bytes: 674430
num_examples: 3005
- name: test
num_bytes: 696229
num_examples: 2983
download_size: 2030359086
dataset_size: 1462386845
- config_name: de-en
features:
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 8187552108
num_examples: 42271874
- name: validation
num_bytes: 729519
num_examples: 3004
- name: test
num_bytes: 757649
num_examples: 2998
download_size: 3808612335
dataset_size: 8189039276
- config_name: et-en
features:
- name: translation
dtype:
translation:
languages:
- et
- en
splits:
- name: train
num_bytes: 647992667
num_examples: 2175873
- name: validation
num_bytes: 459398
num_examples: 2000
- name: test
num_bytes: 489394
num_examples: 2000
download_size: 524534404
dataset_size: 648941459
- config_name: fi-en
features:
- name: translation
dtype:
translation:
languages:
- fi
- en
splits:
- name: train
num_bytes: 857171881
num_examples: 3280600
- name: validation
num_bytes: 1388828
num_examples: 6004
- name: test
num_bytes: 691841
num_examples: 3000
download_size: 491874780
dataset_size: 859252550
- config_name: kk-en
features:
- name: translation
dtype:
translation:
languages:
- kk
- en
splits:
- name: train
- name: validation
- name: test
download_size: 0
dataset_size: 0
- config_name: ru-en
features:
- name: translation
dtype:
translation:
languages:
- ru
- en
splits:
- name: train
num_bytes: 13665367647
num_examples: 36858512
- name: validation
num_bytes: 1040195
num_examples: 3001
- name: test
num_bytes: 1085596
num_examples: 3000
download_size: 4195144356
dataset_size: 13667493438
- config_name: tr-en
features:
- name: translation
dtype:
translation:
languages:
- tr
- en
splits:
- name: train
num_bytes: 60416617
num_examples: 205756
- name: validation
num_bytes: 752773
num_examples: 3007
- name: test
num_bytes: 770313
num_examples: 3000
download_size: 62263061
dataset_size: 61939703
- config_name: zh-en
features:
- name: translation
dtype:
translation:
languages:
- zh
- en
splits:
- name: train
num_bytes: 5536169801
num_examples: 25160346
- name: validation
num_bytes: 540347
num_examples: 2001
- name: test
num_bytes: 1107522
num_examples: 3981
download_size: 2259428767
dataset_size: 5537817670
---
# Dataset Card for "wmt18"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [http://www.statmt.org/wmt18/translation-task.html](http://www.statmt.org/wmt18/translation-task.html)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 2.03 GB
- **Size of the generated dataset:** 1.46 GB
- **Total amount of disk used:** 3.49 GB
### Dataset Summary
<div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400">
<p><b>Warning:</b> There are issues with the Common Crawl corpus data (<a href="https://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz">training-parallel-commoncrawl.tgz</a>):</p>
<ul>
<li>Non-English files contain many English sentences.</li>
<li>Their "parallel" sentences in English are not aligned: they are uncorrelated with their counterpart.</li>
</ul>
<p>We have contacted the WMT organizers.</p>
</div>
Translation dataset based on the data from statmt.org.
Versions exist for different years using a combination of data
sources. The base `wmt` allows you to create a custom dataset by choosing
your own data/language pair. This can be done as follows:
```python
from datasets import inspect_dataset, load_dataset_builder
inspect_dataset("wmt18", "path/to/scripts")
builder = load_dataset_builder(
"path/to/scripts/wmt_utils.py",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
# Standard version
builder.download_and_prepare()
ds = builder.as_dataset()
# Streamable version
ds = builder.as_streaming_dataset()
```
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### cs-en
- **Size of downloaded dataset files:** 2.03 GB
- **Size of the generated dataset:** 1.46 GB
- **Total amount of disk used:** 3.49 GB
An example of 'validation' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### cs-en
- `translation`: a multilingual `string` variable, with possible languages including `cs`, `en`.
### Data Splits
|name | train |validation|test|
|-----|-------:|---------:|---:|
|cs-en|11046024| 3005|2983|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{bojar-EtAl:2018:WMT1,
author = {Bojar, Ond
{r}ej and Federmann, Christian and Fishel, Mark
and Graham, Yvette and Haddow, Barry and Huck, Matthias and
Koehn, Philipp and Monz, Christof},
title = {Findings of the 2018 Conference on Machine Translation (WMT18)},
booktitle = {Proceedings of the Third Conference on Machine Translation,
Volume 2: Shared Task Papers},
month = {October},
year = {2018},
address = {Belgium, Brussels},
publisher = {Association for Computational Linguistics},
pages = {272--307},
url = {http://www.aclweb.org/anthology/W18-6401}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
wmt19 | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- cs
- de
- en
- fi
- fr
- gu
- kk
- lt
- ru
- zh
license:
- unknown
multilinguality:
- translation
size_categories:
- 10M<n<100M
source_datasets:
- extended|europarl_bilingual
- extended|news_commentary
- extended|opus_paracrawl
- extended|un_multi
task_categories:
- translation
task_ids: []
pretty_name: WMT19
paperswithcode_id: null
dataset_info:
- config_name: cs-en
features:
- name: translation
dtype:
translation:
languages:
- cs
- en
splits:
- name: train
num_bytes: 1314871994
num_examples: 7270695
- name: validation
num_bytes: 696229
num_examples: 2983
download_size: 2018537046
dataset_size: 1315568223
- config_name: de-en
features:
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 8420967590
num_examples: 38690334
- name: validation
num_bytes: 757649
num_examples: 2998
download_size: 10422475109
dataset_size: 8421725239
- config_name: fi-en
features:
- name: translation
dtype:
translation:
languages:
- fi
- en
splits:
- name: train
num_bytes: 1422922267
num_examples: 6587448
- name: validation
num_bytes: 691841
num_examples: 3000
download_size: 1006124909
dataset_size: 1423614108
- config_name: gu-en
features:
- name: translation
dtype:
translation:
languages:
- gu
- en
splits:
- name: train
num_bytes: 590763
num_examples: 11670
- name: validation
num_bytes: 774621
num_examples: 1998
download_size: 38891457
dataset_size: 1365384
- config_name: kk-en
features:
- name: translation
dtype:
translation:
languages:
- kk
- en
splits:
- name: train
num_bytes: 9157438
num_examples: 126583
- name: validation
num_bytes: 846857
num_examples: 2066
download_size: 41558315
dataset_size: 10004295
- config_name: lt-en
features:
- name: translation
dtype:
translation:
languages:
- lt
- en
splits:
- name: train
num_bytes: 513084361
num_examples: 2344893
- name: validation
num_bytes: 541953
num_examples: 2000
download_size: 411309952
dataset_size: 513626314
- config_name: ru-en
features:
- name: translation
dtype:
translation:
languages:
- ru
- en
splits:
- name: train
num_bytes: 13721377178
num_examples: 37492126
- name: validation
num_bytes: 1085596
num_examples: 3000
download_size: 4134147853
dataset_size: 13722462774
- config_name: zh-en
features:
- name: translation
dtype:
translation:
languages:
- zh
- en
splits:
- name: train
num_bytes: 5584359748
num_examples: 25984574
- name: validation
num_bytes: 1107522
num_examples: 3981
download_size: 2195879129
dataset_size: 5585467270
- config_name: fr-de
features:
- name: translation
dtype:
translation:
languages:
- fr
- de
splits:
- name: train
num_bytes: 2358413485
num_examples: 9824476
- name: validation
num_bytes: 441426
num_examples: 1512
download_size: 757345846
dataset_size: 2358854911
---
# Dataset Card for "wmt19"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [http://www.statmt.org/wmt19/translation-task.html](http://www.statmt.org/wmt19/translation-task.html)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 2.02 GB
- **Size of the generated dataset:** 1.32 GB
- **Total amount of disk used:** 3.33 GB
### Dataset Summary
<div class="course-tip course-tip-orange bg-gradient-to-br dark:bg-gradient-to-r before:border-orange-500 dark:before:border-orange-800 from-orange-50 dark:from-gray-900 to-white dark:to-gray-950 border border-orange-50 text-orange-700 dark:text-gray-400">
<p><b>Warning:</b> There are issues with the Common Crawl corpus data (<a href="https://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz">training-parallel-commoncrawl.tgz</a>):</p>
<ul>
<li>Non-English files contain many English sentences.</li>
<li>Their "parallel" sentences in English are not aligned: they are uncorrelated with their counterpart.</li>
</ul>
<p>We have contacted the WMT organizers.</p>
</div>
Translation dataset based on the data from statmt.org.
Versions exist for different years using a combination of data
sources. The base `wmt` allows you to create a custom dataset by choosing
your own data/language pair. This can be done as follows:
```python
from datasets import inspect_dataset, load_dataset_builder
inspect_dataset("wmt19", "path/to/scripts")
builder = load_dataset_builder(
"path/to/scripts/wmt_utils.py",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
# Standard version
builder.download_and_prepare()
ds = builder.as_dataset()
# Streamable version
ds = builder.as_streaming_dataset()
```
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### cs-en
- **Size of downloaded dataset files:** 2.02 GB
- **Size of the generated dataset:** 1.32 GB
- **Total amount of disk used:** 3.33 GB
An example of 'validation' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### cs-en
- `translation`: a multilingual `string` variable, with possible languages including `cs`, `en`.
### Data Splits
|name | train |validation|
|-----|------:|---------:|
|cs-en|7270695| 2983|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@ONLINE {wmt19translate,
author = "Wikimedia Foundation",
title = "ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared Task: Machine Translation of News",
url = "http://www.statmt.org/wmt19/translation-task.html"
}
```
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |
wmt20_mlqe_task1 | ---
pretty_name: WMT20 - MultiLingual Quality Estimation (MLQE) Task1
annotations_creators:
- expert-generated
- machine-generated
language_creators:
- found
language:
- de
- en
- et
- ne
- ro
- ru
- si
- zh
license:
- unknown
multilinguality:
- translation
size_categories:
- 1K<n<10K
source_datasets:
- extended|reddit
- extended|wikipedia
task_categories:
- translation
task_ids: []
paperswithcode_id: null
configs:
- en-de
- en-zh
- et-en
- ne-en
- ro-en
- ru-en
- si-en
dataset_info:
- config_name: en-de
features:
- name: segid
dtype: int32
- name: translation
dtype:
translation:
languages:
- en
- de
- name: scores
sequence: float32
- name: mean
dtype: float32
- name: z_scores
sequence: float32
- name: z_mean
dtype: float32
- name: model_score
dtype: float32
- name: doc_id
dtype: string
- name: nmt_output
dtype: string
- name: word_probas
sequence: float32
splits:
- name: train
num_bytes: 3492361
num_examples: 7000
- name: test
num_bytes: 524159
num_examples: 1000
- name: validation
num_bytes: 522576
num_examples: 1000
download_size: 2343124
dataset_size: 4539096
- config_name: en-zh
features:
- name: segid
dtype: int32
- name: translation
dtype:
translation:
languages:
- en
- zh
- name: scores
sequence: float32
- name: mean
dtype: float32
- name: z_scores
sequence: float32
- name: z_mean
dtype: float32
- name: model_score
dtype: float32
- name: doc_id
dtype: string
- name: nmt_output
dtype: string
- name: word_probas
sequence: float32
splits:
- name: train
num_bytes: 3286433
num_examples: 7000
- name: test
num_bytes: 494994
num_examples: 1000
- name: validation
num_bytes: 488477
num_examples: 1000
download_size: 2557445
dataset_size: 4269904
- config_name: et-en
features:
- name: segid
dtype: int32
- name: translation
dtype:
translation:
languages:
- et
- en
- name: scores
sequence: float32
- name: mean
dtype: float32
- name: z_scores
sequence: float32
- name: z_mean
dtype: float32
- name: model_score
dtype: float32
- name: doc_id
dtype: string
- name: nmt_output
dtype: string
- name: word_probas
sequence: float32
splits:
- name: train
num_bytes: 3483669
num_examples: 7000
- name: test
num_bytes: 527372
num_examples: 1000
- name: validation
num_bytes: 531499
num_examples: 1000
download_size: 2320067
dataset_size: 4542540
- config_name: ne-en
features:
- name: segid
dtype: int32
- name: translation
dtype:
translation:
languages:
- ne
- en
- name: scores
sequence: float32
- name: mean
dtype: float32
- name: z_scores
sequence: float32
- name: z_mean
dtype: float32
- name: model_score
dtype: float32
- name: doc_id
dtype: string
- name: nmt_output
dtype: string
- name: word_probas
sequence: float32
splits:
- name: train
num_bytes: 5313197
num_examples: 7000
- name: test
num_bytes: 767637
num_examples: 1000
- name: validation
num_bytes: 784784
num_examples: 1000
download_size: 2913901
dataset_size: 6865618
- config_name: ro-en
features:
- name: segid
dtype: int32
- name: translation
dtype:
translation:
languages:
- ro
- en
- name: scores
sequence: float32
- name: mean
dtype: float32
- name: z_scores
sequence: float32
- name: z_mean
dtype: float32
- name: model_score
dtype: float32
- name: doc_id
dtype: string
- name: nmt_output
dtype: string
- name: word_probas
sequence: float32
splits:
- name: train
num_bytes: 3360498
num_examples: 7000
- name: test
num_bytes: 500700
num_examples: 1000
- name: validation
num_bytes: 507646
num_examples: 1000
download_size: 2222103
dataset_size: 4368844
- config_name: si-en
features:
- name: segid
dtype: int32
- name: translation
dtype:
translation:
languages:
- si
- en
- name: scores
sequence: float32
- name: mean
dtype: float32
- name: z_scores
sequence: float32
- name: z_mean
dtype: float32
- name: model_score
dtype: float32
- name: doc_id
dtype: string
- name: nmt_output
dtype: string
- name: word_probas
sequence: float32
splits:
- name: train
num_bytes: 5135077
num_examples: 7000
- name: test
num_bytes: 763730
num_examples: 1000
- name: validation
num_bytes: 758271
num_examples: 1000
download_size: 2841894
dataset_size: 6657078
- config_name: ru-en
features:
- name: segid
dtype: int32
- name: translation
dtype:
translation:
languages:
- ru
- en
- name: scores
sequence: float32
- name: mean
dtype: float32
- name: z_scores
sequence: float32
- name: z_mean
dtype: float32
- name: model_score
dtype: float32
- name: doc_id
dtype: string
- name: nmt_output
dtype: string
- name: word_probas
sequence: float32
splits:
- name: train
num_bytes: 3520776
num_examples: 7000
- name: test
num_bytes: 478531
num_examples: 1000
- name: validation
num_bytes: 499601
num_examples: 1000
download_size: 2123684
dataset_size: 4498908
---
# Dataset Card for WMT20 - MultiLingual Quality Estimation (MLQE) Task1
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [WMT20 Quality Estimation Shared Task](http://www.statmt.org/wmt20/quality-estimation-task.html)
- **Repository:** [Github repository](https://github.com/facebookresearch/mlqe/)
- **Paper:** *Not available*
### Dataset Summary
From the homepage:
*This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task.*
*Task 1 uses Wikipedia data for 6 language pairs that includes high-resource English--German (En-De) and English--Chinese (En-Zh), medium-resource Romanian--English (Ro-En) and Estonian--English (Et-En), and low-resource Sinhalese--English (Si-En) and Nepalese--English (Ne-En), as well as a dataset with a combination of Wikipedia articles and Reddit articles for Russian-English (En-Ru). The datasets were collected by translating sentences sampled from source language articles using state-of-the-art NMT models built using the fairseq toolkit and annotated with Direct Assessment (DA) scores by professional translators. Each sentence was annotated following the FLORES setup, which presents a form of DA, where at least three professional translators rate each sentence from 0-100 according to the perceived translation quality. DA scores are standardised using the z-score by rater. Participating systems are required to score sentences according to z-standardised DA scores.*
### Supported Tasks and Leaderboards
From the homepage:
*Sentence-level submissions will be evaluated in terms of the Pearson's correlation metric for the DA prediction agains human DA (z-standardised mean DA score, i.e. z_mean). These are the [official evaluation scripts](https://github.com/sheffieldnlp/qe-eval-scripts). The evaluation will focus on multilingual systems, i.e. systems that are able to provide predictions for all languages in the Wikipedia domain. Therefore, average Pearson correlation across all these languages will be used to rank QE systems. We will also evaluate QE systems on a per-language basis for those interested in particular languages.*
### Languages
Eight languages are represented in this dataset:
- English (`en`)
- German (`de`)
- Romanian (`ro`)
- Estonian (`et`)
- Nepalese (`ne`)
- Sinhala (`si`)
- Russian (`ru`)
## Dataset Structure
### Data Instances
An example looks like this:
```
{
'segid': 123,
'translation': {
'en': 'José Ortega y Gasset visited Husserl at Freiburg in 1934.',
'de': '1934 besuchte José Ortega y Gasset Husserl in Freiburg.',
},
'scores': [100.0, 100.0, 100.0],
'mean': 100.0,
'z_scores': [0.9553316831588745, 1.552362322807312, 0.850531816482544],
'z_mean': 1.1194086074829102,
'model_score': -0.10244649648666382,
'doc_id': 'Edmund Husserl',
'nmt_output': '1934 besuchte José Ort@@ ega y G@@ asset Hus@@ ser@@ l in Freiburg .',
'word_probas': [-0.4458000063896179, -0.2745000123977661, -0.07199999690055847, -0.002300000051036477, -0.005900000222027302, -0.14579999446868896, -0.07500000298023224, -0.012400000356137753, -0.026900000870227814, -0.036400001496076584, -0.05299999937415123, -0.14990000426769257, -0.012400000356137753, -0.1145000010728836, -0.10999999940395355],
}
```
### Data Fields
- `segid`: segment id.
- `original`: original sentence.
- `translation`: Dictionary with pairs (source,target).
- src_lg: sequence of text in source language.
- tgt_lg: sequence of text in target language.
- `scores`: list of DA scores by all annotators - the number of annotators may vary. [] if N/A (only for `ru-en/test`).
- `mean`: average of DA scores. -10_000 if N/A (only for `ru-en/test`).
- `z_scores`: list of z-standardized DA scores. [] if N/A (only for `ru-en/test`).
- `z_mean`: average of z-standardized DA scores. -10_000 if N/A (only for `ru-en/test`).
- `model_score`: NMT model score for sentence. -10_000 if N/A (only for `ru-en/test`).
- `doc_id`: the name of the article where each original segment came from.
- `nmt_output`: the actual output of the NMT model before any post-processing, corresponding to the log-probas in `word_probas` (the token is not printed, so the number of log-probabilities equals the number of tokens plus 1).
- `word_probas`: log-probabilities from the NMT model for each decoded token including the token.
### Data Splits
There are 7 configurations in this dataset (one for each available language pair). Each configuration is composed of 7K examples for training, 1K for validation and 1K for test.
## Dataset Creation
### Curation Rationale
The original text is extracted from Wikipedia, Russian Reddit and Russian WikiQuotes. Translations are obtained using state-of-the-art NMT models built using the [fairseq toolkit](https://github.com/pytorch/fairseq) and annotated with Direct Assesment scores by professional translators.
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Unknown
### Citation Information
```
Not available.
```
### Contributions
Thanks to [@VictorSanh](https://github.com/VictorSanh) for adding this dataset. |
wmt20_mlqe_task2 | ---
annotations_creators:
- expert-generated
- machine-generated
language_creators:
- found
language:
- de
- en
- zh
license:
- unknown
multilinguality:
- translation
size_categories:
- 1K<n<10K
source_datasets:
- extended|wikipedia
task_categories:
- translation
- text-classification
task_ids: []
pretty_name: WMT20 - MultiLingual Quality Estimation (MLQE) Task2
configs:
- en-de
- en-zh
tags:
- translation-quality-estimation
dataset_info:
- config_name: en-de
features:
- name: translation
dtype:
translation:
languages:
- en
- de
- name: src_tags
sequence:
class_label:
names:
'0': BAD
'1': OK
- name: mt_tags
sequence:
class_label:
names:
'0': BAD
'1': OK
- name: pe
dtype: string
- name: hter
dtype: float32
- name: alignments
sequence:
sequence: int32
splits:
- name: train
num_bytes: 6463930
num_examples: 7000
- name: test
num_bytes: 425582
num_examples: 1000
- name: validation
num_bytes: 927616
num_examples: 1000
download_size: 1377020
dataset_size: 7817128
- config_name: en-zh
features:
- name: translation
dtype:
translation:
languages:
- en
- zh
- name: src_tags
sequence:
class_label:
names:
'0': BAD
'1': OK
- name: mt_tags
sequence:
class_label:
names:
'0': BAD
'1': OK
- name: pe
dtype: string
- name: hter
dtype: float32
- name: alignments
sequence:
sequence: int32
splits:
- name: train
num_bytes: 6786898
num_examples: 7000
- name: test
num_bytes: 443740
num_examples: 1000
- name: validation
num_bytes: 954710
num_examples: 1000
download_size: 1564953
dataset_size: 8185348
---
# Dataset Card for WMT20 - MultiLingual Quality Estimation (MLQE) Task2
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [WMT20 Quality Estimation Shared Task](http://www.statmt.org/wmt20/quality-estimation-task.html)
- **Repository**: [Github repository](https://github.com/deep-spin/deep-spin.github.io/tree/master/docs/data/wmt2020_qe)
- **Paper:** *Not available*
### Dataset Summary
From the homepage:
*This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task.*
*Task 1 evaluates the application of QE for post-editing purposes. It consists of predicting:*
- ***Word-level tags.*** *This is done both on source side (to detect which words caused errors) and target side (to detect mistranslated or missing words).*
- ***Target.*** *Each token is tagged as either `OK` or `BAD`. Additionally, each gap between two words is tagged as `BAD` if one or more missing words should have been there, and `OK` otherwise. Note that number of tags for each target sentence is 2*N+1, where N is the number of tokens in the sentence.*
- ***Source.*** *Tokens are tagged as `OK` if they were correctly translated, and `BAD` otherwise. Gaps are not tagged.*
- ***Sentence-level HTER scores.*** *HTER (Human Translation Error Rate) is the ratio between the number of edits (insertions/deletions/replacements) needed and the reference translation length.*
### Supported Tasks and Leaderboards
From the homepage:
*For sentence-level QE, submissions are evaluated in terms of the Pearson's correlation metric for the sentence-level HTER prediction. For word-level QE, they will be evaluated in terms of MCC ([Matthews correlation coefficient](https://en.wikipedia.org/wiki/Matthews_correlation_coefficient)). These are the [official evaluation scripts](https://github.com/sheffieldnlp/qe-eval-scripts).*
### Languages
There are two language pairs in this dataset:
- English - German (`en` - `de`)
- German - Chinese (`en` - `zh`)
## Dataset Structure
### Data Instances
An example looks like this:
```
{
'translation': {
'en': 'favorite fish include cod , salmon , winter flounder , haddock , striped bass , pollock , hake , bluefish , and , in southern New England , Tautog .',
'de': 'zu den Lieblingsfischen gehören Kabeljau , Lachs , Winterflounder , Schellfisch , gestreifter Bass , Pollock , Seehecht , Rotbarsch und in Südengland Tautog .',
}
'src_tags': [1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1],
'mt_tags': [1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1],
'pe': 'zu den Lieblingsfischen zählen Kabeljau , Lachs , Winterflunder , Schellfisch , Wolfsbarsch , Pollock , Seehecht , Bluefish und im Süden Neuenglands Tautog .',
'hter': 0.3199999928474426,
'alignments': [[2, 0], [2, 1], [2, 3], [3, 2], [3, 4], [4, 5], [5, 6], [6, 5], [7, 6], [8, 6], [9, 7], [10, 8], [10, 10], [11, 9], [12, 12], [13, 13], [14, 11], [15, 12], [15, 15], [16, 14], [17, 17], [19, 16], [20, 16], [21, 20], [22, 18], [23, 19], [23, 21], [24, 22], [25, 21], [26, 22], [27, 22], [28, 23], [29, 24]],
}
```
### Data Fields
- `translation`: Dictionary with pairs (source,target).
- src_lg: sequence of text in source language.
- tgt_lg: sequence of text in target language.
- `src_tags`: source word-level tags. `0`=`BAD`, `1`=`OK`. `[]` if N/A (only for test).
- `mt_tags`: target word-level tags. `0`=`BAD`, `1`=`OK`. `[]` if N/A (only for test).
- `pe`: post-edited version of NMT output. `""` if N/A (only for test).
- `hter`: human translation error rate. `-10_000` if N/A (only for test).
- `alignments`: Word aligments. List of pairs of integers.
### Data Splits
There are 2 configurations in this dataset (one for each available language pair). Each configuration is composed of 7K examples for training, 1K for validation and 1K for (blind) test.
## Dataset Creation
### Curation Rationale
The original text is extracted from Wikipedia.
From the homepage:
*Word-level labels have been obtained by using the alignments provided by the [TER](http://www.cs.umd.edu/~snover/tercom/) tool (settings: tokenised, case insensitive, exact matching only, disabling shifts by using the `-d 0` option) between machine translations and their post-edited versions. Shifts (word order errors) were not annotated as such (but rather as deletions + insertions) to avoid introducing noise in the annotation.*
*HTER values are obtained deterministically from word-level tags. However, when computing HTER, we allow shifts in TER.*
*The baseline system is a neural predictor-estimator approach implemented in [OpenKiwi](https://github.com/Unbabel/OpenKiwi) ([Kepler at al., 2019](https://arxiv.org/abs/1902.08646)), where the predictor model will be trained on the parallel data used to train the NMT model.*
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Unknown
### Citation Information
```
Not available.
```
### Contributions
Thanks to [@VictorSanh](https://github.com/VictorSanh) for adding this dataset. |
wmt20_mlqe_task3 | ---
annotations_creators:
- expert-generated
- machine-generated
language_creators:
- found
language:
- en
- fr
license:
- unknown
multilinguality:
- translation
size_categories:
- 1K<n<10K
source_datasets:
- extended|amazon_us_reviews
task_categories:
- translation
task_ids: []
pretty_name: WMT20 - MultiLingual Quality Estimation (MLQE) Task3
dataset_info:
features:
- name: document_id
dtype: string
- name: source_segments
sequence: string
- name: source_tokenized
sequence: string
- name: mt_segments
sequence: string
- name: mt_tokenized
sequence: string
- name: annotations
sequence:
- name: segment_id
sequence: int32
- name: annotation_start
sequence: int32
- name: annotation_length
sequence: int32
- name: severity
dtype:
class_label:
names:
'0': minor
'1': major
'2': critical
- name: severity_weight
dtype: float32
- name: category
dtype:
class_label:
names:
'0': Addition
'1': Agreement
'2': Ambiguous Translation
'3': Capitalization
'4': Character Encoding
'5': Company Terminology
'6': Date/Time
'7': Diacritics
'8': Duplication
'9': False Friend
'10': Grammatical Register
'11': Hyphenation
'12': Inconsistency
'13': Lexical Register
'14': Lexical Selection
'15': Named Entity
'16': Number
'17': Omitted Auxiliary Verb
'18': Omitted Conjunction
'19': Omitted Determiner
'20': Omitted Preposition
'21': Omitted Pronoun
'22': Orthography
'23': Other POS Omitted
'24': Over-translation
'25': Overly Literal
'26': POS
'27': Punctuation
'28': Shouldn't Have Been Translated
'29': Shouldn't have been translated
'30': Spelling
'31': Tense/Mood/Aspect
'32': Under-translation
'33': Unidiomatic
'34': Unintelligible
'35': Unit Conversion
'36': Untranslated
'37': Whitespace
'38': Word Order
'39': Wrong Auxiliary Verb
'40': Wrong Conjunction
'41': Wrong Determiner
'42': Wrong Language Variety
'43': Wrong Preposition
'44': Wrong Pronoun
- name: token_annotations
sequence:
- name: segment_id
sequence: int32
- name: first_token
sequence: int32
- name: last_token
sequence: int32
- name: token_after_gap
sequence: int32
- name: severity
dtype:
class_label:
names:
'0': minor
'1': major
'2': critical
- name: category
dtype:
class_label:
names:
'0': Addition
'1': Agreement
'2': Ambiguous Translation
'3': Capitalization
'4': Character Encoding
'5': Company Terminology
'6': Date/Time
'7': Diacritics
'8': Duplication
'9': False Friend
'10': Grammatical Register
'11': Hyphenation
'12': Inconsistency
'13': Lexical Register
'14': Lexical Selection
'15': Named Entity
'16': Number
'17': Omitted Auxiliary Verb
'18': Omitted Conjunction
'19': Omitted Determiner
'20': Omitted Preposition
'21': Omitted Pronoun
'22': Orthography
'23': Other POS Omitted
'24': Over-translation
'25': Overly Literal
'26': POS
'27': Punctuation
'28': Shouldn't Have Been Translated
'29': Shouldn't have been translated
'30': Spelling
'31': Tense/Mood/Aspect
'32': Under-translation
'33': Unidiomatic
'34': Unintelligible
'35': Unit Conversion
'36': Untranslated
'37': Whitespace
'38': Word Order
'39': Wrong Auxiliary Verb
'40': Wrong Conjunction
'41': Wrong Determiner
'42': Wrong Language Variety
'43': Wrong Preposition
'44': Wrong Pronoun
- name: token_index
sequence:
sequence:
sequence: int32
- name: total_words
dtype: int32
config_name: plain_text
splits:
- name: train
num_bytes: 10762355
num_examples: 1448
- name: test
num_bytes: 745260
num_examples: 180
- name: validation
num_bytes: 1646596
num_examples: 200
download_size: 3534634
dataset_size: 13154211
---
# Dataset Card for WMT20 - MultiLingual Quality Estimation (MLQE) Task3
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [WMT20 Quality Estimation Shared Task](http://www.statmt.org/wmt20/quality-estimation-task.html)
- **Repository**: [Github repository](https://github.com/deep-spin/deep-spin.github.io/tree/master/docs/data/wmt2020_qe)
- **Paper:** *Not available*
### Dataset Summary
From the homepage:
*This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task.*
*The goal of this task 3 is to predict document-level quality scores as well as fine-grained annotations.*
*Each document has a product title and its description, and is annotated for translation errors according to the MQM framework. Each error annotation has:*
- ***Word span(s).*** *Errors may consist of one or more words, not necessarily contiguous.*
- ***Severity.*** *An error can be minor (if it doesn't lead to a loss of meaning and it doesn't confuse or mislead the user), major (if it changes the meaning) or critical (if it changes the meaning and carry any type of implication, or could be seen as offensive).*
- ***Type.*** *A label specifying the error type, such as wrong word order, missing words, agreement, etc. They may provide additional information, but systems don't need to predict them.*
### Supported Tasks and Leaderboards
From the homepage:
*Submissions will be evaluated as in Task 1, in terms of Pearson's correlation between the true and predicted MQM document-level scores. Additionally, the predicted annotations will be evaluated in terms of their F1 scores with respect to the gold annotations. The [official evaluation scripts](https://github.com/sheffieldnlp/qe-eval-scripts) are available.*
### Languages
There is a single language pair in the dataset: English (`en`) - French (`fr`).
## Dataset Structure
### Data Instances
An example looks like this:
```
{
'document_id': 'B0000568SY',
'source_segments': ['Razor Scooter Replacement Wheels Set with Bearings', 'Scooter Wheels w/Bearings-Blue'],
'source_tokenized': ['Razor Scooter Replacement Wheels Set with Bearings', 'Scooter Wheels w / Bearings-Blue'],
'mt_segments': ['Roues de rechange Razor Scooter sertie de roulements', 'Roues de scooter w/roulements-bleu'],
'mt_tokenized': ['Roues de rechange Razor Scooter sertie de roulements', 'Roues de scooter w / roulements-bleu'],
'annotations': {
'segment_id': [[0], [1], [1], [0, 0], [0], [1], [1]],
'annotation_start': [[42], [19], [9], [0, 32], [9], [17], [30]],
'annotation_length': [[10], [10], [7], [5, 6], [8], [1], [4]],
'severity': [0, 0, 0, 0, 0, 1, 0],
'severity_weight': [1.0, 1.0, 1.0, 1.0, 1.0, 5.0, 1.0]
'category': [3, 3, 3, 1, 3, 36, 3],
},
'token_annotations': {
'category': [3, 3, 3, 1, 3, 36, 3],
'first_token': [[7], [5], [2], [0, 5], [2], [3], [5]],
'last_token': [[7], [5], [2], [0, 5], [2], [3], [5]],
'segment_id': [[0], [1], [1], [0, 0], [0], [1], [1]],
'severity': [0, 0, 0, 0, 0, 1, 0],
'token_after_gap': [[-1], [-1], [-1], [-1, -1], [-1], [-1], [-1]]
},
'token_index': [[[0, 5], [6, 2], [9, 8], [18, 5], [24, 7], [32, 6], [39, 2], [42, 10]], [[0, 5], [6, 2], [9, 7], [17, 1], [18, 1], [19, 15]]],
'total_words': 16
}
```
### Data Fields
- `document_id`: the document id (name of the folder).
- `source_segments`: the original source text, one sentence per line (i.e. per element of the list).
- `source_tokenized`: a tokenized version of `source_segments`.
- `mt_segments`: the original machine-translated text, one sentence per line (i.e. per element of the list).
- `mt_tokenized`: a tokenized version of `mt_segments`. Default value is `[]` when this information is not available (it happens 3 times in the train set: `B0001BW0PQ`, `B0001GS19U` and `B000A6SMJ0`).
- `annotations`: error annotations for the document. Each item of the list corresponds to an error annotation, which in turn may contain one or more error spans. Error fields are encoded in a dictionary. In the case of a multi-span error, multiple starting positions and lengths are encoded in the list. Note that these positions points to `mt.segments`, not `mt_tokenized`.
- `segment_id`: List of list of integers. Id of each error.
- `annotation_start`: List of list of integers. Start of each error.
- `annotation_length`: List of list of intergers. Length of each error.
- `severity`: List of one hot. Severity category of each error.
- `severity_weight`: List of floats. Severity weight of each error.
- `category`: List of one hot. Category of each error. See the 45 categories in `_ANNOTATION_CATEGORIES_MAPPING`.
- `token_annotations`: tokenized version of `annotations`. Each error span that contains one or more tokens has a "first token" and "last token". Again, multi-span errors have their first and last tokens encoded in a list. When a span is over a gap between two tokens, the "first" and "last" positions are `-1` (encoded as `-` in the original data), and instead the `token_after_gap` column points to the token immediately after the gap. In case of a gap occurring at the end of the sentence, this value will be equal to the number of tokens.
- `segment_id`: List of list of integers. Id of each error.
- `first_token`: List of list of integers. Start of each error.
- `last_token`: List of list of intergers. End of each error.
- `token_after_gap`: List of list of integers. Token after gap of each error.
- `severity`: List of one hot. Severity category of each error.
- `category`: List of one hot. Category of each error. See the 45 categories in `_ANNOTATION_CATEGORIES_MAPPING`.
- `token_index`: a mapping of tokens to their start and ending positions in `mt_segments`. For each token, a start and end value are encoded in a list of length 2, and all tokens represent one item in the list.
- `total_words`: total number of words in the document
```
_ANNOTATION_CATEGORIES_MAPPING = {
0: 'Addition',
1: 'Agreement',
2: 'Ambiguous Translation',
3: 'Capitalization',
4: 'Character Encoding',
5: 'Company Terminology',
6: 'Date/Time',
7: 'Diacritics',
8: 'Duplication',
9: 'False Friend',
10: 'Grammatical Register',
11: 'Hyphenation',
12: 'Inconsistency',
13: 'Lexical Register',
14: 'Lexical Selection',
15: 'Named Entity',
16: 'Number',
17: 'Omitted Auxiliary Verb',
18: 'Omitted Conjunction',
19: 'Omitted Determiner',
20: 'Omitted Preposition',
21: 'Omitted Pronoun',
22: 'Orthography',
23: 'Other POS Omitted',
24: 'Over-translation',
25: 'Overly Literal',
26: 'POS',
27: 'Punctuation',
28: "Shouldn't Have Been Translated",
29: "Shouldn't have been translated",
30: 'Spelling',
31: 'Tense/Mood/Aspect',
32: 'Under-translation',
33: 'Unidiomatic',
34: 'Unintelligible',
35: 'Unit Conversion',
36: 'Untranslated',
37: 'Whitespace',
38: 'Word Order',
39: 'Wrong Auxiliary Verb',
40: 'Wrong Conjunction',
41: 'Wrong Determiner',
42: 'Wrong Language Variety',
43: 'Wrong Preposition',
44: 'Wrong Pronoun'
}
```
### Data Splits
The dataset contains 1,448 documents for training, 200 documents for validation and 180 for (blind) test (all English-French).
## Dataset Creation
### Curation Rationale
The data is dervied from the [Amazon Product Reviews dataset](http://jmcauley.ucsd.edu/data/amazon/).
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Unknown
### Citation Information
```
Not available.
```
### Contributions
Thanks to [@VictorSanh](https://github.com/VictorSanh) for adding this dataset. |
wmt_t2t | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- de
- en
license:
- unknown
multilinguality:
- translation
size_categories:
- 10M<n<100M
source_datasets:
- extended|europarl_bilingual
- extended|news_commentary
- extended|opus_paracrawl
- extended|un_multi
task_categories:
- translation
task_ids: []
pretty_name: WMT T2T
paperswithcode_id: null
dataset_info:
features:
- name: translation
dtype:
translation:
languages:
- de
- en
config_name: de-en
splits:
- name: train
num_bytes: 1385110179
num_examples: 4592289
- name: validation
num_bytes: 736415
num_examples: 3000
- name: test
num_bytes: 777334
num_examples: 3003
download_size: 1728762345
dataset_size: 1386623928
---
# Dataset Card for "wmt_t2t"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/translate_ende.py](https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/translate_ende.py)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.73 GB
- **Size of the generated dataset:** 1.39 GB
- **Total amount of disk used:** 3.11 GB
### Dataset Summary
The WMT EnDe Translate dataset used by the Tensor2Tensor library.
Translation dataset based on the data from statmt.org.
Versions exist for different years using a combination of data
sources. The base `wmt` allows you to create a custom dataset by choosing
your own data/language pair. This can be done as follows:
```python
from datasets import inspect_dataset, load_dataset_builder
inspect_dataset("wmt_t2t", "path/to/scripts")
builder = load_dataset_builder(
"path/to/scripts/wmt_utils.py",
language_pair=("fr", "de"),
subsets={
datasets.Split.TRAIN: ["commoncrawl_frde"],
datasets.Split.VALIDATION: ["euelections_dev2019"],
},
)
# Standard version
builder.download_and_prepare()
ds = builder.as_dataset()
# Streamable version
ds = builder.as_streaming_dataset()
```
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### de-en
- **Size of downloaded dataset files:** 1.73 GB
- **Size of the generated dataset:** 1.39 GB
- **Total amount of disk used:** 3.11 GB
An example of 'validation' looks as follows.
```
{
"translation": {
"de": "Just a test sentence.",
"en": "Just a test sentence."
}
}
```
### Data Fields
The data fields are the same among all splits.
#### de-en
- `translation`: a multilingual `string` variable, with possible languages including `de`, `en`.
### Data Splits
|name | train |validation|test|
|-----|------:|---------:|---:|
|de-en|4592289| 3000|3003|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{bojar-EtAl:2014:W14-33,
author = {Bojar, Ondrej and Buck, Christian and Federmann, Christian and Haddow, Barry and Koehn, Philipp and Leveling, Johannes and Monz, Christof and Pecina, Pavel and Post, Matt and Saint-Amand, Herve and Soricut, Radu and Specia, Lucia and Tamchyna, Ale
{s}},
title = {Findings of the 2014 Workshop on Statistical Machine Translation},
booktitle = {Proceedings of the Ninth Workshop on Statistical Machine Translation},
month = {June},
year = {2014},
address = {Baltimore, Maryland, USA},
publisher = {Association for Computational Linguistics},
pages = {12--58},
url = {http://www.aclweb.org/anthology/W/W14/W14-3302}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
wnut_17 | ---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: wnut-2017-emerging-and-rare-entity
pretty_name: WNUT 17
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-corporation
'2': I-corporation
'3': B-creative-work
'4': I-creative-work
'5': B-group
'6': I-group
'7': B-location
'8': I-location
'9': B-person
'10': I-person
'11': B-product
'12': I-product
config_name: wnut_17
splits:
- name: train
num_bytes: 1078379
num_examples: 3394
- name: validation
num_bytes: 259383
num_examples: 1009
- name: test
num_bytes: 405536
num_examples: 1287
download_size: 800955
dataset_size: 1743298
---
# Dataset Card for "wnut_17"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [http://noisy-text.github.io/2017/emerging-rare-entities.html](http://noisy-text.github.io/2017/emerging-rare-entities.html)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 0.80 MB
- **Size of the generated dataset:** 1.74 MB
- **Total amount of disk used:** 2.55 MB
### Dataset Summary
WNUT 17: Emerging and Rare entity recognition
This shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions.
Named entities form the basis of many modern approaches to other tasks (like event clustering and summarisation),
but recall on them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms.
Take for example the tweet “so.. kktny in 30 mins?” - even human experts find entity kktny hard to detect and resolve.
This task will evaluate the ability to detect and classify novel, emerging, singleton named entities in noisy text.
The goal of this task is to provide a definition of emerging and of rare entities, and based on that, also datasets for detecting these entities.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
- **Size of downloaded dataset files:** 0.80 MB
- **Size of the generated dataset:** 1.74 MB
- **Total amount of disk used:** 2.55 MB
An example of 'train' looks as follows.
```
{
"id": "0",
"ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
"tokens": ["@paulwalk", "It", "'s", "the", "view", "from", "where", "I", "'m", "living", "for", "two", "weeks", ".", "Empire", "State", "Building", "=", "ESB", ".", "Pretty", "bad", "storm", "here", "last", "evening", "."]
}
```
### Data Fields
The data fields are the same among all splits:
- `id` (`string`): ID of the example.
- `tokens` (`list` of `string`): Tokens of the example text.
- `ner_tags` (`list` of class labels): NER tags of the tokens (using IOB2 format), with possible values:
- 0: `O`
- 1: `B-corporation`
- 2: `I-corporation`
- 3: `B-creative-work`
- 4: `I-creative-work`
- 5: `B-group`
- 6: `I-group`
- 7: `B-location`
- 8: `I-location`
- 9: `B-person`
- 10: `I-person`
- 11: `B-product`
- 12: `I-product`
### Data Splits
|train|validation|test|
|----:|---------:|---:|
| 3394| 1009|1287|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@inproceedings{derczynski-etal-2017-results,
title = "Results of the {WNUT}2017 Shared Task on Novel and Emerging Entity Recognition",
author = "Derczynski, Leon and
Nichols, Eric and
van Erp, Marieke and
Limsopatham, Nut",
booktitle = "Proceedings of the 3rd Workshop on Noisy User-generated Text",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W17-4418",
doi = "10.18653/v1/W17-4418",
pages = "140--147",
abstract = "This shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions.
Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization),
but recall on them is a real problem in noisy text - even among annotators.
This drop tends to be due to novel entities and surface forms.
Take for example the tweet {``}so.. kktny in 30 mins?!{''} {--} even human experts find the entity {`}kktny{'}
hard to detect and resolve. The goal of this task is to provide a definition of emerging and of rare entities,
and based on that, also datasets for detecting these entities. The task as described in this paper evaluated the
ability of participating entries to detect and classify novel and emerging named entities in noisy text.",
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@stefan-it](https://github.com/stefan-it), [@lewtun](https://github.com/lewtun), [@jplu](https://github.com/jplu) for adding this dataset. |
wongnai_reviews | ---
annotations_creators:
- found
language_creators:
- found
language:
- th
license:
- lgpl-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: WongnaiReviews
dataset_info:
features:
- name: review_body
dtype: string
- name: star_rating
dtype:
class_label:
names:
'0': '1'
'1': '2'
'2': '3'
'3': '4'
'4': '5'
splits:
- name: train
num_bytes: 60691428
num_examples: 40000
- name: test
num_bytes: 9913686
num_examples: 6203
download_size: 16556587
dataset_size: 70605114
---
# Dataset Card for Wongnai_Reviews
## Dataset Description
- **Repository:** https://github.com/wongnai/wongnai-corpus
### Dataset Summary
The Wongnai Review dataset contains restaurant reviews and ratings, almost entirely in Thai language.
The reviews are in 5 classes ranging from 1 to 5 stars.
This dataset was featured in a Kaggle challenge https://www.kaggle.com/c/wongnai-challenge-review-rating-prediction/overview
### Languages
Thai
## Dataset Structure
### Data Fields
- review_body - text of review
- star_rating - an integer star rating (1-5) or -1 (for test)
### Data Splits
Designated train (40,000 reviews) and test (6,204) sets.
### Source Data
#### Initial Data Collection and Normalization
Data was collected by Wongnai from business reviews on their website,
and shared on GitHub and Kaggle.
### Annotations
The reviews are users' own star ratings, so no additional annotation was needed.
## Additional Information
### Dataset Curators
Contributors to original GitHub repo:
- Ekkalak Thongthanomkul
- Tanapol Nearunchorn
- Yuwat Chuesathuchon
### Licensing Information
LGPL-3.0
### Citation Information
See https://github.com/wongnai/wongnai-corpus
### Contributions
Thanks to [@mapmeld](https://github.com/mapmeld), [@cstorm125](https://github.com/cstorm125) for adding this dataset. |
woz_dialogue | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- de
- en
- it
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- token-classification
- text-classification
task_ids:
- dialogue-modeling
- multi-class-classification
- parsing
paperswithcode_id: wizard-of-oz
pretty_name: Wizard-of-Oz
configs:
- de
- de_en
- en
- it
- it_en
dataset_info:
- config_name: en
features:
- name: dialogue_idx
dtype: int32
- name: dialogue
list:
- name: turn_label
sequence:
sequence: string
- name: asr
sequence:
sequence: string
- name: system_transcript
dtype: string
- name: turn_idx
dtype: int32
- name: belief_state
list:
- name: slots
sequence:
sequence: string
- name: act
dtype: string
- name: transcript
dtype: string
- name: system_acts
sequence:
sequence: string
splits:
- name: train
num_bytes: 827189
num_examples: 600
- name: validation
num_bytes: 265684
num_examples: 200
- name: test
num_bytes: 537557
num_examples: 400
download_size: 7529221
dataset_size: 1630430
- config_name: de
features:
- name: dialogue_idx
dtype: int32
- name: dialogue
list:
- name: turn_label
sequence:
sequence: string
- name: asr
sequence:
sequence: string
- name: system_transcript
dtype: string
- name: turn_idx
dtype: int32
- name: belief_state
list:
- name: slots
sequence:
sequence: string
- name: act
dtype: string
- name: transcript
dtype: string
- name: system_acts
sequence:
sequence: string
splits:
- name: train
num_bytes: 881478
num_examples: 600
- name: validation
num_bytes: 276758
num_examples: 200
- name: test
num_bytes: 569703
num_examples: 400
download_size: 7626734
dataset_size: 1727939
- config_name: de_en
features:
- name: dialogue_idx
dtype: int32
- name: dialogue
list:
- name: turn_label
sequence:
sequence: string
- name: asr
sequence:
sequence: string
- name: system_transcript
dtype: string
- name: turn_idx
dtype: int32
- name: belief_state
list:
- name: slots
sequence:
sequence: string
- name: act
dtype: string
- name: transcript
dtype: string
- name: system_acts
sequence:
sequence: string
splits:
- name: train
num_bytes: 860151
num_examples: 600
- name: validation
num_bytes: 269966
num_examples: 200
- name: test
num_bytes: 555841
num_examples: 400
download_size: 7584753
dataset_size: 1685958
- config_name: it
features:
- name: dialogue_idx
dtype: int32
- name: dialogue
list:
- name: turn_label
sequence:
sequence: string
- name: asr
sequence:
sequence: string
- name: system_transcript
dtype: string
- name: turn_idx
dtype: int32
- name: belief_state
list:
- name: slots
sequence:
sequence: string
- name: act
dtype: string
- name: transcript
dtype: string
- name: system_acts
sequence:
sequence: string
splits:
- name: train
num_bytes: 842799
num_examples: 600
- name: validation
num_bytes: 270258
num_examples: 200
- name: test
num_bytes: 547759
num_examples: 400
download_size: 7559615
dataset_size: 1660816
- config_name: it_en
features:
- name: dialogue_idx
dtype: int32
- name: dialogue
list:
- name: turn_label
sequence:
sequence: string
- name: asr
sequence:
sequence: string
- name: system_transcript
dtype: string
- name: turn_idx
dtype: int32
- name: belief_state
list:
- name: slots
sequence:
sequence: string
- name: act
dtype: string
- name: transcript
dtype: string
- name: system_acts
sequence:
sequence: string
splits:
- name: train
num_bytes: 845095
num_examples: 600
- name: validation
num_bytes: 270942
num_examples: 200
- name: test
num_bytes: 548979
num_examples: 400
download_size: 7563815
dataset_size: 1665016
---
# Dataset Card for Wizard-of-Oz
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [More info needed]
- **Repository:** [GitHub](https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz)
- **Paper:** [A Network-based End-to-End Trainable Task-oriented Dialogue System](https://arxiv.org/abs/1604.04562)
- **Leaderboard:** [More info needed]
- **Point of Contact:** [More info needed]
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |
wrbsc | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- pl
license:
- cc-by-sa-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
pretty_name: wrbsc
dataset_info:
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: relationship
dtype:
class_label:
names:
'0': Krzyżowanie_się
'1': Tło_historyczne
'2': Źródło
'3': Dalsze_informacje
'4': Zawieranie
'5': Opis
'6': Uszczegółowienie
'7': Parafraza
'8': Spełnienie
'9': Mowa_zależna
'10': Zmiana_poglądu
'11': Streszczenie
'12': Tożsamość
'13': Sprzeczność
'14': Modalność
'15': Cytowanie
splits:
- name: train
num_bytes: 779881
num_examples: 2827
download_size: 1273815
dataset_size: 779881
---
# Dataset Card for wrbsc
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://clarin-pl.eu/dspace/handle/11321/305
- **Repository:** https://clarin-pl.eu/dspace/handle/11321/305
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
WUT Relations Between Sentences Corpus contains 2827 pairs of related sentences. Relationships are derived from Cross-document Structure Theory (CST), which enables multi-document summarization through identification of cross-document rhetorical relationships within a cluster of related documents. Every relation was marked by at least 3 annotators.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
Polish
## Dataset Structure
### Data Instances
An example contains two related sentences and a class representing the type of relationship between those sentences.
```
{'relationship': 0,
'sentence1': 'Znajdujące się w Biurze Bezpieczeństwa Narodowego akta Komisji Weryfikacyjnej WSI zostały przewiezione do siedziby Służby Kontrwywiadu Wojskowego.',
'sentence2': '2008-07-03: Wywiezienie akt dotyczących WSI – sprawa dla prokuratury?'}
```
### Data Fields
- `sentence1`: the first sentence being compared (`string`)
- `sentence2`: the second sentence being compared (`string`)
- `relationship`: the type of relationship between those sentences. Can be one of 16 classes listed below:
- `Krzyżowanie_się`: crossing
- `Tło_historyczne`: historical background
- `Źródło`: source
- `Dalsze_informacje`: additional information
- `Zawieranie`: inclusion
- `Opis`: description
- `Uszczegółowienie`: further detail
- `Parafraza`: paraphrase
- `Spełnienie`: fulfillment
- `Mowa_zależna`: passive voice
- `Zmiana_poglądu`: change of opinion
- `Streszczenie`: summarization
- `Tożsamość`: identity
- `Sprzeczność`: conflict
- `Modalność`: modality
- `Cytowanie`: quotation
### Data Splits
Single train split
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
### Citation Information
```
@misc{11321/305,
title = {{WUT} Relations Between Sentences Corpus},
author = {Oleksy, Marcin and Fikus, Dominika and Wolski, Micha{\l} and Podbielska, Ma{\l}gorzata and Turek, Agnieszka and Kędzia, Pawe{\l}},
url = {http://hdl.handle.net/11321/305},
note = {{CLARIN}-{PL} digital repository},
copyright = {Attribution-{ShareAlike} 3.0 Unported ({CC} {BY}-{SA} 3.0)},
year = {2016}
}
```
### Contributions
Thanks to [@kldarek](https://github.com/kldarek) for adding this dataset. |
x_stance | ---
annotations_creators:
- machine-generated
language:
- de
- en
- fr
- it
language_creators:
- found
license:
- cc-by-nc-4.0
multilinguality:
- multilingual
pretty_name: x-stance
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: x-stance
tags:
- stance-detection
dataset_info:
features:
- name: question
dtype: string
- name: id
dtype: int32
- name: question_id
dtype: int32
- name: language
dtype: string
- name: comment
dtype: string
- name: label
dtype: string
- name: numerical_label
dtype: int32
- name: author
dtype: string
- name: topic
dtype: string
splits:
- name: train
num_bytes: 17619123
num_examples: 45640
- name: test
num_bytes: 6607134
num_examples: 17705
- name: validation
num_bytes: 1505979
num_examples: 3926
download_size: 6410801
dataset_size: 25732236
---
# Dataset Card for "x_stance"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:** https://github.com/ZurichNLP/xstance
- **Paper:** [X-Stance: A Multilingual Multi-Target Dataset for Stance Detection](https://arxiv.org/abs/2003.08385)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 6.41 MB
- **Size of the generated dataset:** 25.73 MB
- **Total amount of disk used:** 32.14 MB
### Dataset Summary
The x-stance dataset contains more than 150 political questions, and 67k comments written by candidates on those questions.
It can be used to train and evaluate stance detection systems.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
The comments are partly German, partly French and Italian. The questions are available in all the three languages plus English.
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 6.41 MB
- **Size of the generated dataset:** 25.73 MB
- **Total amount of disk used:** 32.14 MB
An example of 'train' looks as follows.
```
{
"author": "f27b54a137b4",
"comment": "Das Arbeitsgesetz regelt die Arbeitszeiten und schützt den Arbeitnehmer. Es macht doch Sinn, dass wenn eine Nachfrage besteht, die Läden öffnen dürfen und wenn es keine Nachfrage gibt, diese geschlossen bleiben.",
"id": 10045,
"label": "FAVOR",
"language": "de",
"numerical_label": 100,
"question": "Sind Sie für eine vollständige Liberalisierung der Geschäftsöffnungszeiten (Geschäfte können die Öffnungszeiten nach freiem Ermessen festlegen)?",
"question_id": 739,
"topic": "Economy"
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `question`: a `string` feature.
- `id`: a `int32` feature.
- `question_id`: a `int32` feature.
- `language`: a `string` feature.
- `comment`: a `string` feature.
- `label`: a `string` feature.
- `numerical_label`: a `int32` feature.
- `author`: a `string` feature.
- `topic`: a `string` feature.
### Data Splits
| name |train|validation|test |
|-------|----:|---------:|----:|
|default|45640| 3926|17705|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
The data have been extracted from the Swiss voting advice platform Smartvote.ch.
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
The dataset is licensed under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/).
### Citation Information
```
@inproceedings{vamvas2020xstance,
author = "Vamvas, Jannis and Sennrich, Rico",
title = "{X-Stance}: A Multilingual Multi-Target Dataset for Stance Detection",
booktitle = "Proceedings of the 5th Swiss Text Analytics Conference (SwissText) \& 16th Conference on Natural Language Processing (KONVENS)",
address = "Zurich, Switzerland",
year = "2020",
month = "jun",
url = "http://ceur-ws.org/Vol-2624/paper9.pdf"
}
```
### Contributions
Thanks to [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@jvamvas](https://github.com/jvamvas) for adding this dataset. |
xcopa | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- et
- ht
- id
- it
- qu
- sw
- ta
- th
- tr
- vi
- zh
license:
- cc-by-4.0
multilinguality:
- multilingual
pretty_name: XCOPA
size_categories:
- unknown
source_datasets:
- extended|copa
task_categories:
- question-answering
task_ids:
- multiple-choice-qa
paperswithcode_id: xcopa
dataset_info:
- config_name: et
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 11711
num_examples: 100
- name: test
num_bytes: 56613
num_examples: 500
download_size: 116432
dataset_size: 68324
- config_name: ht
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 11999
num_examples: 100
- name: test
num_bytes: 58579
num_examples: 500
download_size: 118677
dataset_size: 70578
- config_name: it
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 13366
num_examples: 100
- name: test
num_bytes: 65051
num_examples: 500
download_size: 126520
dataset_size: 78417
- config_name: id
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 13897
num_examples: 100
- name: test
num_bytes: 63331
num_examples: 500
download_size: 125347
dataset_size: 77228
- config_name: qu
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 13983
num_examples: 100
- name: test
num_bytes: 68711
num_examples: 500
download_size: 130786
dataset_size: 82694
- config_name: sw
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 12708
num_examples: 100
- name: test
num_bytes: 60675
num_examples: 500
download_size: 121497
dataset_size: 73383
- config_name: zh
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 11646
num_examples: 100
- name: test
num_bytes: 55276
num_examples: 500
download_size: 115021
dataset_size: 66922
- config_name: ta
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 37037
num_examples: 100
- name: test
num_bytes: 176254
num_examples: 500
download_size: 261404
dataset_size: 213291
- config_name: th
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 21859
num_examples: 100
- name: test
num_bytes: 104165
num_examples: 500
download_size: 174134
dataset_size: 126024
- config_name: tr
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 11941
num_examples: 100
- name: test
num_bytes: 57741
num_examples: 500
download_size: 117781
dataset_size: 69682
- config_name: vi
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 15135
num_examples: 100
- name: test
num_bytes: 70311
num_examples: 500
download_size: 133555
dataset_size: 85446
- config_name: translation-et
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 11923
num_examples: 100
- name: test
num_bytes: 57469
num_examples: 500
download_size: 116900
dataset_size: 69392
- config_name: translation-ht
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 12172
num_examples: 100
- name: test
num_bytes: 58161
num_examples: 500
download_size: 117847
dataset_size: 70333
- config_name: translation-it
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 12424
num_examples: 100
- name: test
num_bytes: 59078
num_examples: 500
download_size: 119605
dataset_size: 71502
- config_name: translation-id
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 12499
num_examples: 100
- name: test
num_bytes: 58548
num_examples: 500
download_size: 118566
dataset_size: 71047
- config_name: translation-sw
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 12222
num_examples: 100
- name: test
num_bytes: 58749
num_examples: 500
download_size: 118485
dataset_size: 70971
- config_name: translation-zh
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 12043
num_examples: 100
- name: test
num_bytes: 58037
num_examples: 500
download_size: 117582
dataset_size: 70080
- config_name: translation-ta
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 12414
num_examples: 100
- name: test
num_bytes: 59584
num_examples: 500
download_size: 119511
dataset_size: 71998
- config_name: translation-th
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 11389
num_examples: 100
- name: test
num_bytes: 54900
num_examples: 500
download_size: 113799
dataset_size: 66289
- config_name: translation-tr
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 11921
num_examples: 100
- name: test
num_bytes: 57741
num_examples: 500
download_size: 117161
dataset_size: 69662
- config_name: translation-vi
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: label
dtype: int32
- name: idx
dtype: int32
- name: changed
dtype: bool
splits:
- name: validation
num_bytes: 11646
num_examples: 100
- name: test
num_bytes: 55939
num_examples: 500
download_size: 115094
dataset_size: 67585
---
# Dataset Card for "xcopa"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/cambridgeltl/xcopa](https://github.com/cambridgeltl/xcopa)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 4.08 MB
- **Size of the generated dataset:** 1.02 MB
- **Total amount of disk used:** 5.10 MB
### Dataset Summary
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
The Cross-lingual Choice of Plausible Alternatives dataset is a benchmark to evaluate the ability of machine learning models to transfer commonsense reasoning across
languages. The dataset is the translation and reannotation of the English COPA (Roemmele et al. 2011) and covers 11 languages from 11 families and several areas around
the globe. The dataset is challenging as it requires both the command of world knowledge and the ability to generalise to new languages. All the details about the
creation of XCOPA and the implementation of the baselines are available in the paper.
Xcopa language et
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
- et
- ht
- id
- it
- qu
- sw
- ta
- th
- tr
- vi
- zh
## Dataset Structure
### Data Instances
#### et
- **Size of downloaded dataset files:** 0.37 MB
- **Size of the generated dataset:** 0.07 MB
- **Total amount of disk used:** 0.44 MB
An example of 'validation' looks as follows.
```
{
"changed": false,
"choice1": "Ta kallas piima kaussi.",
"choice2": "Ta kaotas oma isu.",
"idx": 1,
"label": 1,
"premise": "Tüdruk leidis oma helveste seest putuka.",
"question": "effect"
}
```
#### ht
- **Size of downloaded dataset files:** 0.37 MB
- **Size of the generated dataset:** 0.07 MB
- **Total amount of disk used:** 0.44 MB
An example of 'validation' looks as follows.
```
{
"changed": false,
"choice1": "Ta kallas piima kaussi.",
"choice2": "Ta kaotas oma isu.",
"idx": 1,
"label": 1,
"premise": "Tüdruk leidis oma helveste seest putuka.",
"question": "effect"
}
```
#### id
- **Size of downloaded dataset files:** 0.37 MB
- **Size of the generated dataset:** 0.07 MB
- **Total amount of disk used:** 0.45 MB
An example of 'validation' looks as follows.
```
{
"changed": false,
"choice1": "Ta kallas piima kaussi.",
"choice2": "Ta kaotas oma isu.",
"idx": 1,
"label": 1,
"premise": "Tüdruk leidis oma helveste seest putuka.",
"question": "effect"
}
```
#### it
- **Size of downloaded dataset files:** 0.37 MB
- **Size of the generated dataset:** 0.08 MB
- **Total amount of disk used:** 0.45 MB
An example of 'validation' looks as follows.
```
{
"changed": false,
"choice1": "Ta kallas piima kaussi.",
"choice2": "Ta kaotas oma isu.",
"idx": 1,
"label": 1,
"premise": "Tüdruk leidis oma helveste seest putuka.",
"question": "effect"
}
```
#### qu
- **Size of downloaded dataset files:** 0.37 MB
- **Size of the generated dataset:** 0.08 MB
- **Total amount of disk used:** 0.45 MB
An example of 'validation' looks as follows.
```
{
"changed": false,
"choice1": "Ta kallas piima kaussi.",
"choice2": "Ta kaotas oma isu.",
"idx": 1,
"label": 1,
"premise": "Tüdruk leidis oma helveste seest putuka.",
"question": "effect"
}
```
### Data Fields
The data fields are the same among all splits.
#### et
- `premise`: a `string` feature.
- `choice1`: a `string` feature.
- `choice2`: a `string` feature.
- `question`: a `string` feature.
- `label`: a `int32` feature.
- `idx`: a `int32` feature.
- `changed`: a `bool` feature.
#### ht
- `premise`: a `string` feature.
- `choice1`: a `string` feature.
- `choice2`: a `string` feature.
- `question`: a `string` feature.
- `label`: a `int32` feature.
- `idx`: a `int32` feature.
- `changed`: a `bool` feature.
#### id
- `premise`: a `string` feature.
- `choice1`: a `string` feature.
- `choice2`: a `string` feature.
- `question`: a `string` feature.
- `label`: a `int32` feature.
- `idx`: a `int32` feature.
- `changed`: a `bool` feature.
#### it
- `premise`: a `string` feature.
- `choice1`: a `string` feature.
- `choice2`: a `string` feature.
- `question`: a `string` feature.
- `label`: a `int32` feature.
- `idx`: a `int32` feature.
- `changed`: a `bool` feature.
#### qu
- `premise`: a `string` feature.
- `choice1`: a `string` feature.
- `choice2`: a `string` feature.
- `question`: a `string` feature.
- `label`: a `int32` feature.
- `idx`: a `int32` feature.
- `changed`: a `bool` feature.
### Data Splits
|name|validation|test|
|----|---------:|---:|
|et | 100| 500|
|ht | 100| 500|
|id | 100| 500|
|it | 100| 500|
|qu | 100| 500|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/).
### Citation Information
```
@article{ponti2020xcopa,
title={{XCOPA: A} Multilingual Dataset for Causal Commonsense Reasoning},
author={Edoardo M. Ponti, Goran Glava
{s}, Olga Majewska, Qianchu Liu, Ivan Vuli'{c} and Anna Korhonen},
journal={arXiv preprint},
year={2020},
url={https://ducdauge.github.io/files/xcopa.pdf}
}
@inproceedings{roemmele2011choice,
title={Choice of plausible alternatives: An evaluation of commonsense causal reasoning},
author={Roemmele, Melissa and Bejan, Cosmin Adrian and Gordon, Andrew S},
booktitle={2011 AAAI Spring Symposium Series},
year={2011},
url={https://people.ict.usc.edu/~gordon/publications/AAAI-SPRING11A.PDF},
}
```
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |
xcsr | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
- machine-generated
language:
- ar
- de
- en
- es
- fr
- hi
- it
- ja
- nl
- pl
- pt
- ru
- sw
- ur
- vi
- zh
license:
- mit
multilinguality:
- multilingual
pretty_name: X-CSR
size_categories:
- 1K<n<10K
source_datasets:
- extended|codah
- extended|commonsense_qa
task_categories:
- question-answering
task_ids:
- multiple-choice-qa
dataset_info:
- config_name: X-CSQA-en
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 215919
num_examples: 1074
- name: validation
num_bytes: 205361
num_examples: 1000
download_size: 7519903
dataset_size: 421280
- config_name: X-CSQA-zh
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 197746
num_examples: 1074
- name: validation
num_bytes: 188555
num_examples: 1000
download_size: 7519903
dataset_size: 386301
- config_name: X-CSQA-de
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 234472
num_examples: 1074
- name: validation
num_bytes: 223122
num_examples: 1000
download_size: 7519903
dataset_size: 457594
- config_name: X-CSQA-es
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 237119
num_examples: 1074
- name: validation
num_bytes: 224779
num_examples: 1000
download_size: 7519903
dataset_size: 461898
- config_name: X-CSQA-fr
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 244254
num_examples: 1074
- name: validation
num_bytes: 231678
num_examples: 1000
download_size: 7519903
dataset_size: 475932
- config_name: X-CSQA-it
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 232906
num_examples: 1074
- name: validation
num_bytes: 221184
num_examples: 1000
download_size: 7519903
dataset_size: 454090
- config_name: X-CSQA-jap
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 251148
num_examples: 1074
- name: validation
num_bytes: 240686
num_examples: 1000
download_size: 7519903
dataset_size: 491834
- config_name: X-CSQA-nl
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 227251
num_examples: 1074
- name: validation
num_bytes: 216476
num_examples: 1000
download_size: 7519903
dataset_size: 443727
- config_name: X-CSQA-pl
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 231781
num_examples: 1074
- name: validation
num_bytes: 220096
num_examples: 1000
download_size: 7519903
dataset_size: 451877
- config_name: X-CSQA-pt
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 235771
num_examples: 1074
- name: validation
num_bytes: 223067
num_examples: 1000
download_size: 7519903
dataset_size: 458838
- config_name: X-CSQA-ru
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 342051
num_examples: 1074
- name: validation
num_bytes: 324006
num_examples: 1000
download_size: 7519903
dataset_size: 666057
- config_name: X-CSQA-ar
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 288947
num_examples: 1074
- name: validation
num_bytes: 273862
num_examples: 1000
download_size: 7519903
dataset_size: 562809
- config_name: X-CSQA-vi
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 265512
num_examples: 1074
- name: validation
num_bytes: 253784
num_examples: 1000
download_size: 7519903
dataset_size: 519296
- config_name: X-CSQA-hi
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 415313
num_examples: 1074
- name: validation
num_bytes: 396600
num_examples: 1000
download_size: 7519903
dataset_size: 811913
- config_name: X-CSQA-sw
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 222517
num_examples: 1074
- name: validation
num_bytes: 211708
num_examples: 1000
download_size: 7519903
dataset_size: 434225
- config_name: X-CSQA-ur
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 306431
num_examples: 1074
- name: validation
num_bytes: 292283
num_examples: 1000
download_size: 7519903
dataset_size: 598714
- config_name: X-CODAH-en
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 417286
num_examples: 1000
- name: validation
num_bytes: 121923
num_examples: 300
download_size: 7519903
dataset_size: 539209
- config_name: X-CODAH-zh
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 394946
num_examples: 1000
- name: validation
num_bytes: 115137
num_examples: 300
download_size: 7519903
dataset_size: 510083
- config_name: X-CODAH-de
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 476373
num_examples: 1000
- name: validation
num_bytes: 138876
num_examples: 300
download_size: 7519903
dataset_size: 615249
- config_name: X-CODAH-es
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 451240
num_examples: 1000
- name: validation
num_bytes: 130790
num_examples: 300
download_size: 7519903
dataset_size: 582030
- config_name: X-CODAH-fr
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 477811
num_examples: 1000
- name: validation
num_bytes: 138001
num_examples: 300
download_size: 7519903
dataset_size: 615812
- config_name: X-CODAH-it
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 457341
num_examples: 1000
- name: validation
num_bytes: 133616
num_examples: 300
download_size: 7519903
dataset_size: 590957
- config_name: X-CODAH-jap
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 538701
num_examples: 1000
- name: validation
num_bytes: 157504
num_examples: 300
download_size: 7519903
dataset_size: 696205
- config_name: X-CODAH-nl
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 449014
num_examples: 1000
- name: validation
num_bytes: 130130
num_examples: 300
download_size: 7519903
dataset_size: 579144
- config_name: X-CODAH-pl
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 438824
num_examples: 1000
- name: validation
num_bytes: 127862
num_examples: 300
download_size: 7519903
dataset_size: 566686
- config_name: X-CODAH-pt
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 455869
num_examples: 1000
- name: validation
num_bytes: 132045
num_examples: 300
download_size: 7519903
dataset_size: 587914
- config_name: X-CODAH-ru
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 674853
num_examples: 1000
- name: validation
num_bytes: 193825
num_examples: 300
download_size: 7519903
dataset_size: 868678
- config_name: X-CODAH-ar
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 568312
num_examples: 1000
- name: validation
num_bytes: 165134
num_examples: 300
download_size: 7519903
dataset_size: 733446
- config_name: X-CODAH-vi
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 543375
num_examples: 1000
- name: validation
num_bytes: 157000
num_examples: 300
download_size: 7519903
dataset_size: 700375
- config_name: X-CODAH-hi
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 974019
num_examples: 1000
- name: validation
num_bytes: 283116
num_examples: 300
download_size: 7519903
dataset_size: 1257135
- config_name: X-CODAH-sw
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 423707
num_examples: 1000
- name: validation
num_bytes: 124882
num_examples: 300
download_size: 7519903
dataset_size: 548589
- config_name: X-CODAH-ur
features:
- name: id
dtype: string
- name: lang
dtype: string
- name: question_tag
dtype: string
- name: question
struct:
- name: stem
dtype: string
- name: choices
sequence:
- name: label
dtype: string
- name: text
dtype: string
- name: answerKey
dtype: string
splits:
- name: test
num_bytes: 687409
num_examples: 1000
- name: validation
num_bytes: 199849
num_examples: 300
download_size: 7519903
dataset_size: 887258
---
# Dataset Card for X-CSR
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://inklab.usc.edu//XCSR/
- **Repository:** https://github.com/INK-USC/XCSR
- **Paper:** https://arxiv.org/abs/2106.06937
- **Leaderboard:** https://inklab.usc.edu//XCSR/leaderboard
- **Point of Contact:** https://yuchenlin.xyz/
### Dataset Summary
To evaluate multi-lingual language models (ML-LMs) for commonsense reasoning in a cross-lingual zero-shot transfer setting (X-CSR), i.e., training in English and test in other languages, we create two benchmark datasets, namely X-CSQA and X-CODAH. Specifically, we automatically translate the original CSQA and CODAH datasets, which only have English versions, to 15 other languages, forming development and test sets for studying X-CSR. As our goal is to evaluate different ML-LMs in a unified evaluation protocol for X-CSR, we argue that such translated examples, although might contain noise, can serve as a starting benchmark for us to obtain meaningful analysis, before more human-translated datasets will be available in the future.
### Supported Tasks and Leaderboards
https://inklab.usc.edu//XCSR/leaderboard
### Languages
The total 16 languages for X-CSR: {en, zh, de, es, fr, it, jap, nl, pl, pt, ru, ar, vi, hi, sw, ur}.
## Dataset Structure
### Data Instances
An example of the X-CSQA dataset:
```
{
"id": "be1920f7ba5454ad", # an id shared by all languages
"lang": "en", # one of the 16 language codes.
"question": {
"stem": "What will happen to your knowledge with more learning?", # question text
"choices": [
{"label": "A", "text": "headaches" },
{"label": "B", "text": "bigger brain" },
{"label": "C", "text": "education" },
{"label": "D", "text": "growth" },
{"label": "E", "text": "knowing more" }
] },
"answerKey": "D" # hidden for test data.
}
```
An example of the X-CODAH dataset:
```
{
"id": "b8eeef4a823fcd4b", # an id shared by all languages
"lang": "en", # one of the 16 language codes.
"question_tag": "o", # one of 6 question types
"question": {
"stem": " ", # always a blank as a dummy question
"choices": [
{"label": "A",
"text": "Jennifer loves her school very much, she plans to drop every courses."},
{"label": "B",
"text": "Jennifer loves her school very much, she is never absent even when she's sick."},
{"label": "C",
"text": "Jennifer loves her school very much, she wants to get a part-time job."},
{"label": "D",
"text": "Jennifer loves her school very much, she quits school happily."}
]
},
"answerKey": "B" # hidden for test data.
}
```
### Data Fields
- id: an id shared by all languages
- lang: one of the 16 language codes.
- question_tag: one of 6 question types
- stem: always a blank as a dummy question
- choices: a list of answers, each answer has:
- label: a string answer identifier for each answer
- text: the answer text
### Data Splits
- X-CSQA: There are 8,888 examples for training in English, 1,000 for development in each language, and 1,074 examples for testing in each language.
- X-CODAH: There are 8,476 examples for training in English, 300 for development in each language, and 1,000 examples for testing in each language.
## Dataset Creation
### Curation Rationale
To evaluate multi-lingual language models (ML-LMs) for commonsense reasoning in a cross-lingual zero-shot transfer setting (X-CSR), i.e., training in English and test in other languages, we create two benchmark datasets, namely X-CSQA and X-CODAH.
The details of the dataset construction, especially the translation procedures, can be found in section A of the appendix of the [paper](https://inklab.usc.edu//XCSR/XCSR_paper.pdf).
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
```
# X-CSR
@inproceedings{lin-etal-2021-common,
title = "Common Sense Beyond {E}nglish: Evaluating and Improving Multilingual Language Models for Commonsense Reasoning",
author = "Lin, Bill Yuchen and
Lee, Seyeon and
Qiao, Xiaoyang and
Ren, Xiang",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.102",
doi = "10.18653/v1/2021.acl-long.102",
pages = "1274--1287",
abstract = "Commonsense reasoning research has so far been limited to English. We aim to evaluate and improve popular multilingual language models (ML-LMs) to help advance commonsense reasoning (CSR) beyond English. We collect the Mickey corpus, consisting of 561k sentences in 11 different languages, which can be used for analyzing and improving ML-LMs. We propose Mickey Probe, a language-general probing task for fairly evaluating the common sense of popular ML-LMs across different languages. In addition, we also create two new datasets, X-CSQA and X-CODAH, by translating their English versions to 14 other languages, so that we can evaluate popular ML-LMs for cross-lingual commonsense reasoning. To improve the performance beyond English, we propose a simple yet effective method {---} multilingual contrastive pretraining (MCP). It significantly enhances sentence representations, yielding a large performance gain on both benchmarks (e.g., +2.7{\%} accuracy for X-CSQA over XLM-R{\_}L).",
}
# CSQA
@inproceedings{Talmor2019commonsenseqaaq,
address = {Minneapolis, Minnesota},
author = {Talmor, Alon and Herzig, Jonathan and Lourie, Nicholas and Berant, Jonathan},
booktitle = {Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)},
doi = {10.18653/v1/N19-1421},
pages = {4149--4158},
publisher = {Association for Computational Linguistics},
title = {CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge},
url = {https://www.aclweb.org/anthology/N19-1421},
year = {2019}
}
# CODAH
@inproceedings{Chen2019CODAHAA,
address = {Minneapolis, USA},
author = {Chen, Michael and D{'}Arcy, Mike and Liu, Alisa and Fernandez, Jared and Downey, Doug},
booktitle = {Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for {NLP}},
doi = {10.18653/v1/W19-2008},
pages = {63--69},
publisher = {Association for Computational Linguistics},
title = {CODAH: An Adversarially-Authored Question Answering Dataset for Common Sense},
url = {https://www.aclweb.org/anthology/W19-2008},
year = {2019}
}
```
### Contributions
Thanks to [Bill Yuchen Lin](https://yuchenlin.xyz/), [Seyeon Lee](https://seyeon-lee.github.io/), [Xiaoyang Qiao](https://www.linkedin.com/in/xiaoyang-qiao/), [Xiang Ren](http://www-bcf.usc.edu/~xiangren/) for adding this dataset. |
xed_en_fi | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
- fi
license:
- cc-by-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
- 1K<n<10K
source_datasets:
- extended|other-OpenSubtitles2016
task_categories:
- text-classification
task_ids:
- intent-classification
- multi-class-classification
- multi-label-classification
- sentiment-classification
paperswithcode_id: xed
pretty_name: XedEnglishFinnish
configs:
- en_annotated
- en_neutral
- fi_annotated
- fi_neutral
dataset_info:
- config_name: en_annotated
features:
- name: sentence
dtype: string
- name: labels
sequence:
class_label:
names:
'0': neutral
'1': anger
'2': anticipation
'3': disgust
'4': fear
'5': joy
'6': sadness
'7': surprise
'8': trust
splits:
- name: train
num_bytes: 1018485
num_examples: 17528
download_size: 2421235
dataset_size: 1018485
- config_name: en_neutral
features:
- name: sentence
dtype: string
- name: labels
dtype:
class_label:
names:
'0': neutral
'1': anger
'2': anticipation
'3': disgust
'4': fear
'5': joy
'6': sadness
'7': surprise
'8': trust
splits:
- name: train
num_bytes: 401129
num_examples: 9675
download_size: 2421235
dataset_size: 401129
- config_name: fi_annotated
features:
- name: sentence
dtype: string
- name: labels
sequence:
class_label:
names:
'0': neutral
'1': anger
'2': anticipation
'3': disgust
'4': fear
'5': joy
'6': sadness
'7': surprise
'8': trust
splits:
- name: train
num_bytes: 756224
num_examples: 14449
download_size: 2421235
dataset_size: 756224
- config_name: fi_neutral
features:
- name: sentence
dtype: string
- name: labels
dtype:
class_label:
names:
'0': neutral
'1': anger
'2': anticipation
'3': disgust
'4': fear
'5': joy
'6': sadness
'7': surprise
'8': trust
splits:
- name: train
num_bytes: 427499
num_examples: 10794
download_size: 2421235
dataset_size: 427499
---
# Dataset Card for xed_english_finnish
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:** [Github](https://github.com/Helsinki-NLP/XED)
- **Paper:** [Arxiv](https://arxiv.org/abs/2011.01612)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This is the XED dataset. The dataset consists of emotion annotated movie subtitles from OPUS. We use Plutchik's 8 core emotions to annotate. The data is multilabel. The original annotations have been sourced for mainly English and Finnish.
For the English data we used Stanford NER (named entity recognition) (Finkel et al., 2005) to replace names and locations with the tags: [PERSON] and [LOCATION] respectively.
For the Finnish data, we replaced names and locations using the Turku NER corpus (Luoma et al., 2020).
### Supported Tasks and Leaderboards
Sentiment Classification, Multilabel Classification, Multilabel Classification, Intent Classification
### Languages
English, Finnish
## Dataset Structure
### Data Instances
```
{ "sentence": "A confession that you hired [PERSON] ... and are responsible for my father's murder."
"labels": [1, 6] # anger, sadness
}
```
### Data Fields
- sentence: a line from the dataset
- labels: labels corresponding to the emotion as an integer
Where the number indicates the emotion in ascending alphabetical order: anger:1, anticipation:2, disgust:3, fear:4, joy:5, sadness:6, surprise:7, trust:8, with neutral:0 where applicable.
### Data Splits
For English:
Number of unique data points: 17528 ('en_annotated' config) + 9675 ('en_neutral' config)
Number of emotions: 8 (+neutral)
For Finnish:
Number of unique data points: 14449 ('fi_annotated' config) + 10794 ('fi_neutral' config)
Number of emotions: 8 (+neutral)
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
License: Creative Commons Attribution 4.0 International License (CC-BY)
### Citation Information
@inproceedings{ohman2020xed,
title={XED: A Multilingual Dataset for Sentiment Analysis and Emotion Detection},
author={{\"O}hman, Emily and P{\`a}mies, Marc and Kajava, Kaisla and Tiedemann, J{\"o}rg},
booktitle={The 28th International Conference on Computational Linguistics (COLING 2020)},
year={2020}
}
### Contributions
Thanks to [@lhoestq](https://github.com/lhoestq), [@harshalmittal4](https://github.com/harshalmittal4) for adding this dataset. |
xglue | ---
annotations_creators:
- crowdsourced
- expert-generated
- found
- machine-generated
language_creators:
- crowdsourced
- expert-generated
- found
- machine-generated
language:
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- it
- nl
- pl
- pt
- ru
- sw
- th
- tr
- ur
- vi
- zh
license:
- cc-by-nc-4.0
- cc-by-sa-4.0
- other
multilinguality:
- multilingual
- translation
size_categories:
- 100K<n<1M
- 10K<n<100K
source_datasets:
- extended|conll2003
- extended|squad
- extended|xnli
- original
task_categories:
- question-answering
- summarization
- text-classification
- text2text-generation
- token-classification
task_ids:
- acceptability-classification
- extractive-qa
- named-entity-recognition
- natural-language-inference
- news-articles-headline-generation
- open-domain-qa
- parsing
- topic-classification
pretty_name: XGLUE
configs:
- mlqa
- nc
- ner
- ntg
- paws-x
- pos
- qadsm
- qam
- qg
- wpr
- xnli
license_details: Licence Universal Dependencies v2.5
tags:
- paraphrase-identification
- question-answering
dataset_info:
- config_name: ner
features:
- name: words
sequence: string
- name: ner
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-MISC
'8': I-MISC
splits:
- name: train
num_bytes: 3445854
num_examples: 14042
- name: validation.en
num_bytes: 866569
num_examples: 3252
- name: validation.de
num_bytes: 917967
num_examples: 2874
- name: validation.es
num_bytes: 888551
num_examples: 1923
- name: validation.nl
num_bytes: 659144
num_examples: 2895
- name: test.en
num_bytes: 784976
num_examples: 3454
- name: test.de
num_bytes: 922741
num_examples: 3007
- name: test.es
num_bytes: 864804
num_examples: 1523
- name: test.nl
num_bytes: 1196660
num_examples: 5202
download_size: 875905871
dataset_size: 10547266
- config_name: pos
features:
- name: words
sequence: string
- name: pos
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: train
num_bytes: 7279459
num_examples: 25376
- name: validation.en
num_bytes: 421410
num_examples: 2001
- name: validation.de
num_bytes: 219328
num_examples: 798
- name: validation.es
num_bytes: 620491
num_examples: 1399
- name: validation.nl
num_bytes: 198003
num_examples: 717
- name: validation.bg
num_bytes: 346802
num_examples: 1114
- name: validation.el
num_bytes: 229447
num_examples: 402
- name: validation.fr
num_bytes: 600964
num_examples: 1475
- name: validation.pl
num_bytes: 620694
num_examples: 2214
- name: validation.tr
num_bytes: 186196
num_examples: 987
- name: validation.vi
num_bytes: 203669
num_examples: 799
- name: validation.zh
num_bytes: 212579
num_examples: 499
- name: validation.ur
num_bytes: 284016
num_examples: 551
- name: validation.hi
num_bytes: 838700
num_examples: 1658
- name: validation.it
num_bytes: 198608
num_examples: 563
- name: validation.ar
num_bytes: 592943
num_examples: 908
- name: validation.ru
num_bytes: 261563
num_examples: 578
- name: validation.th
num_bytes: 272834
num_examples: 497
- name: test.en
num_bytes: 420613
num_examples: 2076
- name: test.de
num_bytes: 291759
num_examples: 976
- name: test.es
num_bytes: 200003
num_examples: 425
- name: test.nl
num_bytes: 193337
num_examples: 595
- name: test.bg
num_bytes: 339460
num_examples: 1115
- name: test.el
num_bytes: 235137
num_examples: 455
- name: test.fr
num_bytes: 166865
num_examples: 415
- name: test.pl
num_bytes: 600534
num_examples: 2214
- name: test.tr
num_bytes: 186519
num_examples: 982
- name: test.vi
num_bytes: 211408
num_examples: 799
- name: test.zh
num_bytes: 202055
num_examples: 499
- name: test.ur
num_bytes: 288189
num_examples: 534
- name: test.hi
num_bytes: 839659
num_examples: 1683
- name: test.it
num_bytes: 173861
num_examples: 481
- name: test.ar
num_bytes: 561709
num_examples: 679
- name: test.ru
num_bytes: 255393
num_examples: 600
- name: test.th
num_bytes: 272834
num_examples: 497
download_size: 875905871
dataset_size: 19027041
- config_name: mlqa
features:
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 75307933
num_examples: 87599
- name: validation.en
num_bytes: 1255587
num_examples: 1148
- name: validation.de
num_bytes: 454258
num_examples: 512
- name: validation.ar
num_bytes: 785493
num_examples: 517
- name: validation.es
num_bytes: 388625
num_examples: 500
- name: validation.hi
num_bytes: 1092167
num_examples: 507
- name: validation.vi
num_bytes: 692227
num_examples: 511
- name: validation.zh
num_bytes: 411213
num_examples: 504
- name: test.en
num_bytes: 13264513
num_examples: 11590
- name: test.de
num_bytes: 4070659
num_examples: 4517
- name: test.ar
num_bytes: 7976090
num_examples: 5335
- name: test.es
num_bytes: 4044224
num_examples: 5253
- name: test.hi
num_bytes: 11385051
num_examples: 4918
- name: test.vi
num_bytes: 7559078
num_examples: 5495
- name: test.zh
num_bytes: 4092921
num_examples: 5137
download_size: 875905871
dataset_size: 132780039
- config_name: nc
features:
- name: news_title
dtype: string
- name: news_body
dtype: string
- name: news_category
dtype:
class_label:
names:
'0': foodanddrink
'1': sports
'2': travel
'3': finance
'4': lifestyle
'5': news
'6': entertainment
'7': health
'8': video
'9': autos
splits:
- name: train
num_bytes: 280615806
num_examples: 100000
- name: validation.en
num_bytes: 33389140
num_examples: 10000
- name: validation.de
num_bytes: 26757254
num_examples: 10000
- name: validation.es
num_bytes: 31781308
num_examples: 10000
- name: validation.fr
num_bytes: 27154099
num_examples: 10000
- name: validation.ru
num_bytes: 46053007
num_examples: 10000
- name: test.en
num_bytes: 34437987
num_examples: 10000
- name: test.de
num_bytes: 26632007
num_examples: 10000
- name: test.es
num_bytes: 31350078
num_examples: 10000
- name: test.fr
num_bytes: 27589545
num_examples: 10000
- name: test.ru
num_bytes: 46183830
num_examples: 10000
download_size: 875905871
dataset_size: 611944061
- config_name: xnli
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 74444346
num_examples: 392702
- name: validation.en
num_bytes: 433471
num_examples: 2490
- name: validation.ar
num_bytes: 633009
num_examples: 2490
- name: validation.bg
num_bytes: 774069
num_examples: 2490
- name: validation.de
num_bytes: 494612
num_examples: 2490
- name: validation.el
num_bytes: 841234
num_examples: 2490
- name: validation.es
num_bytes: 478430
num_examples: 2490
- name: validation.fr
num_bytes: 510112
num_examples: 2490
- name: validation.hi
num_bytes: 1023923
num_examples: 2490
- name: validation.ru
num_bytes: 786450
num_examples: 2490
- name: validation.sw
num_bytes: 429858
num_examples: 2490
- name: validation.th
num_bytes: 1061168
num_examples: 2490
- name: validation.tr
num_bytes: 459316
num_examples: 2490
- name: validation.ur
num_bytes: 699960
num_examples: 2490
- name: validation.vi
num_bytes: 590688
num_examples: 2490
- name: validation.zh
num_bytes: 384859
num_examples: 2490
- name: test.en
num_bytes: 875142
num_examples: 5010
- name: test.ar
num_bytes: 1294561
num_examples: 5010
- name: test.bg
num_bytes: 1573042
num_examples: 5010
- name: test.de
num_bytes: 996487
num_examples: 5010
- name: test.el
num_bytes: 1704793
num_examples: 5010
- name: test.es
num_bytes: 969821
num_examples: 5010
- name: test.fr
num_bytes: 1029247
num_examples: 5010
- name: test.hi
num_bytes: 2073081
num_examples: 5010
- name: test.ru
num_bytes: 1603474
num_examples: 5010
- name: test.sw
num_bytes: 871659
num_examples: 5010
- name: test.th
num_bytes: 2147023
num_examples: 5010
- name: test.tr
num_bytes: 934942
num_examples: 5010
- name: test.ur
num_bytes: 1416246
num_examples: 5010
- name: test.vi
num_bytes: 1190225
num_examples: 5010
- name: test.zh
num_bytes: 777937
num_examples: 5010
download_size: 875905871
dataset_size: 103503185
- config_name: paws-x
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
'0': different
'1': same
splits:
- name: train
num_bytes: 12018349
num_examples: 49401
- name: validation.en
num_bytes: 484287
num_examples: 2000
- name: validation.de
num_bytes: 506009
num_examples: 2000
- name: validation.es
num_bytes: 505888
num_examples: 2000
- name: validation.fr
num_bytes: 525031
num_examples: 2000
- name: test.en
num_bytes: 486734
num_examples: 2000
- name: test.de
num_bytes: 516214
num_examples: 2000
- name: test.es
num_bytes: 511111
num_examples: 2000
- name: test.fr
num_bytes: 527101
num_examples: 2000
download_size: 875905871
dataset_size: 16080724
- config_name: qadsm
features:
- name: query
dtype: string
- name: ad_title
dtype: string
- name: ad_description
dtype: string
- name: relevance_label
dtype:
class_label:
names:
'0': Bad
'1': Good
splits:
- name: train
num_bytes: 12528141
num_examples: 100000
- name: validation.en
num_bytes: 1248839
num_examples: 10000
- name: validation.de
num_bytes: 1566011
num_examples: 10000
- name: validation.fr
num_bytes: 1651804
num_examples: 10000
- name: test.en
num_bytes: 1236997
num_examples: 10000
- name: test.de
num_bytes: 1563985
num_examples: 10000
- name: test.fr
num_bytes: 1594118
num_examples: 10000
download_size: 875905871
dataset_size: 21389895
- config_name: wpr
features:
- name: query
dtype: string
- name: web_page_title
dtype: string
- name: web_page_snippet
dtype: string
- name: relavance_label
dtype:
class_label:
names:
'0': Bad
'1': Fair
'2': Good
'3': Excellent
'4': Perfect
splits:
- name: train
num_bytes: 33885931
num_examples: 99997
- name: validation.en
num_bytes: 3417760
num_examples: 10008
- name: validation.de
num_bytes: 2929029
num_examples: 10004
- name: validation.es
num_bytes: 2451026
num_examples: 10004
- name: validation.fr
num_bytes: 3055899
num_examples: 10005
- name: validation.it
num_bytes: 2416388
num_examples: 10003
- name: validation.pt
num_bytes: 2449797
num_examples: 10001
- name: validation.zh
num_bytes: 3118577
num_examples: 10002
- name: test.en
num_bytes: 3402487
num_examples: 10004
- name: test.de
num_bytes: 2923577
num_examples: 9997
- name: test.es
num_bytes: 2422895
num_examples: 10006
- name: test.fr
num_bytes: 3059392
num_examples: 10020
- name: test.it
num_bytes: 2403736
num_examples: 10001
- name: test.pt
num_bytes: 2462350
num_examples: 10015
- name: test.zh
num_bytes: 3141598
num_examples: 9999
download_size: 875905871
dataset_size: 73540442
- config_name: qam
features:
- name: question
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
splits:
- name: train
num_bytes: 28357964
num_examples: 100000
- name: validation.en
num_bytes: 3085501
num_examples: 10000
- name: validation.de
num_bytes: 3304031
num_examples: 10000
- name: validation.fr
num_bytes: 3142833
num_examples: 10000
- name: test.en
num_bytes: 3082297
num_examples: 10000
- name: test.de
num_bytes: 3309496
num_examples: 10000
- name: test.fr
num_bytes: 3140213
num_examples: 10000
download_size: 875905871
dataset_size: 47422335
- config_name: qg
features:
- name: answer_passage
dtype: string
- name: question
dtype: string
splits:
- name: train
num_bytes: 27464034
num_examples: 100000
- name: validation.en
num_bytes: 3047040
num_examples: 10000
- name: validation.de
num_bytes: 3270877
num_examples: 10000
- name: validation.es
num_bytes: 3341775
num_examples: 10000
- name: validation.fr
num_bytes: 3175615
num_examples: 10000
- name: validation.it
num_bytes: 3191193
num_examples: 10000
- name: validation.pt
num_bytes: 3328434
num_examples: 10000
- name: test.en
num_bytes: 3043813
num_examples: 10000
- name: test.de
num_bytes: 3270190
num_examples: 10000
- name: test.es
num_bytes: 3353522
num_examples: 10000
- name: test.fr
num_bytes: 3178352
num_examples: 10000
- name: test.it
num_bytes: 3195684
num_examples: 10000
- name: test.pt
num_bytes: 3340296
num_examples: 10000
download_size: 875905871
dataset_size: 66200825
- config_name: ntg
features:
- name: news_body
dtype: string
- name: news_title
dtype: string
splits:
- name: train
num_bytes: 890709581
num_examples: 300000
- name: validation.en
num_bytes: 34317076
num_examples: 10000
- name: validation.de
num_bytes: 27404379
num_examples: 10000
- name: validation.es
num_bytes: 30896109
num_examples: 10000
- name: validation.fr
num_bytes: 27261523
num_examples: 10000
- name: validation.ru
num_bytes: 43247386
num_examples: 10000
- name: test.en
num_bytes: 33697284
num_examples: 10000
- name: test.de
num_bytes: 26738202
num_examples: 10000
- name: test.es
num_bytes: 31111489
num_examples: 10000
- name: test.fr
num_bytes: 26997447
num_examples: 10000
- name: test.ru
num_bytes: 44050350
num_examples: 10000
download_size: 875905871
dataset_size: 1216430826
---
# Dataset Card for XGLUE
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [XGLUE homepage](https://microsoft.github.io/XGLUE/)
- **Paper:** [XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation](https://arxiv.org/abs/2004.01401)
### Dataset Summary
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained models with respect to cross-lingual natural language understanding and generation.
The training data of each task is in English while the validation and test data is present in multiple different languages.
The following table shows which languages are present as validation and test data for each config.

Therefore, for each config, a cross-lingual pre-trained model should be fine-tuned on the English training data, and evaluated on for all languages.
### Supported Tasks and Leaderboards
The XGLUE leaderboard can be found on the [homepage](https://microsoft.github.io/XGLUE/) and
consits of a XGLUE-Understanding Score (the average of the tasks `ner`, `pos`, `mlqa`, `nc`, `xnli`, `paws-x`, `qadsm`, `wpr`, `qam`) and a XGLUE-Generation Score (the average of the tasks `qg`, `ntg`).
### Languages
For all tasks (configurations), the "train" split is in English (`en`).
For each task, the "validation" and "test" splits are present in these languages:
- ner: `en`, `de`, `es`, `nl`
- pos: `en`, `de`, `es`, `nl`, `bg`, `el`, `fr`, `pl`, `tr`, `vi`, `zh`, `ur`, `hi`, `it`, `ar`, `ru`, `th`
- mlqa: `en`, `de`, `ar`, `es`, `hi`, `vi`, `zh`
- nc: `en`, `de`, `es`, `fr`, `ru`
- xnli: `en`, `ar`, `bg`, `de`, `el`, `es`, `fr`, `hi`, `ru`, `sw`, `th`, `tr`, `ur`, `vi`, `zh`
- paws-x: `en`, `de`, `es`, `fr`
- qadsm: `en`, `de`, `fr`
- wpr: `en`, `de`, `es`, `fr`, `it`, `pt`, `zh`
- qam: `en`, `de`, `fr`
- qg: `en`, `de`, `es`, `fr`, `it`, `pt`
- ntg: `en`, `de`, `es`, `fr`, `ru`
## Dataset Structure
### Data Instances
#### ner
An example of 'test.nl' looks as follows.
```
{
"ner": [
"O",
"O",
"O",
"B-LOC",
"O",
"B-LOC",
"O",
"B-LOC",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-PER",
"I-PER",
"O",
"O",
"B-LOC",
"O",
"O"
],
"words": [
"Dat",
"is",
"in",
"Itali\u00eb",
",",
"Spanje",
"of",
"Engeland",
"misschien",
"geen",
"probleem",
",",
"maar",
"volgens",
"'",
"Der",
"Kaiser",
"'",
"in",
"Duitsland",
"wel",
"."
]
}
```
#### pos
An example of 'test.fr' looks as follows.
```
{
"pos": [
"PRON",
"VERB",
"SCONJ",
"ADP",
"PRON",
"CCONJ",
"DET",
"NOUN",
"ADP",
"NOUN",
"CCONJ",
"NOUN",
"ADJ",
"PRON",
"PRON",
"AUX",
"ADV",
"VERB",
"PUNCT",
"PRON",
"VERB",
"VERB",
"DET",
"ADJ",
"NOUN",
"ADP",
"DET",
"NOUN",
"PUNCT"
],
"words": [
"Je",
"sens",
"qu'",
"entre",
"\u00e7a",
"et",
"les",
"films",
"de",
"m\u00e9decins",
"et",
"scientifiques",
"fous",
"que",
"nous",
"avons",
"d\u00e9j\u00e0",
"vus",
",",
"nous",
"pourrions",
"emprunter",
"un",
"autre",
"chemin",
"pour",
"l'",
"origine",
"."
]
}
```
#### mlqa
An example of 'test.hi' looks as follows.
```
{
"answers": {
"answer_start": [
378
],
"text": [
"\u0909\u0924\u094d\u0924\u0930 \u092a\u0942\u0930\u094d\u0935"
]
},
"context": "\u0909\u0938\u0940 \"\u090f\u0930\u093f\u092f\u093e XX \" \u0928\u093e\u092e\u0915\u0930\u0923 \u092a\u094d\u0930\u0923\u093e\u0932\u0940 \u0915\u093e \u092a\u094d\u0930\u092f\u094b\u0917 \u0928\u0947\u0935\u093e\u0926\u093e \u092a\u0930\u0940\u0915\u094d\u0937\u0923 \u0938\u094d\u0925\u0932 \u0915\u0947 \u0905\u0928\u094d\u092f \u092d\u093e\u0917\u094b\u0902 \u0915\u0947 \u0932\u093f\u090f \u0915\u093f\u092f\u093e \u0917\u092f\u093e \u0939\u0948\u0964\u092e\u0942\u0932 \u0930\u0942\u092a \u092e\u0947\u0902 6 \u092c\u091f\u0947 10 \u092e\u0940\u0932 \u0915\u093e \u092f\u0939 \u0906\u092f\u0924\u093e\u0915\u093e\u0930 \u0905\u0921\u094d\u0921\u093e \u0905\u092c \u0924\u0925\u093e\u0915\u0925\u093f\u0924 '\u0917\u094d\u0930\u0942\u092e \u092c\u0949\u0915\u094d\u0938 \" \u0915\u093e \u090f\u0915 \u092d\u093e\u0917 \u0939\u0948, \u091c\u094b \u0915\u093f 23 \u092c\u091f\u0947 25.3 \u092e\u0940\u0932 \u0915\u093e \u090f\u0915 \u092a\u094d\u0930\u0924\u093f\u092c\u0902\u0927\u093f\u0924 \u0939\u0935\u093e\u0908 \u0915\u094d\u0937\u0947\u0924\u094d\u0930 \u0939\u0948\u0964 \u092f\u0939 \u0915\u094d\u0937\u0947\u0924\u094d\u0930 NTS \u0915\u0947 \u0906\u0902\u0924\u0930\u093f\u0915 \u0938\u0921\u093c\u0915 \u092a\u094d\u0930\u092c\u0902\u0927\u0928 \u0938\u0947 \u091c\u0941\u0921\u093c\u093e \u0939\u0948, \u091c\u093f\u0938\u0915\u0940 \u092a\u0915\u094d\u0915\u0940 \u0938\u0921\u093c\u0915\u0947\u0902 \u0926\u0915\u094d\u0937\u093f\u0923 \u092e\u0947\u0902 \u092e\u0930\u0915\u0930\u0940 \u0915\u0940 \u0913\u0930 \u0914\u0930 \u092a\u0936\u094d\u091a\u093f\u092e \u092e\u0947\u0902 \u092f\u0941\u0915\u094d\u0915\u093e \u092b\u094d\u0932\u0948\u091f \u0915\u0940 \u0913\u0930 \u091c\u093e\u0924\u0940 \u0939\u0948\u0902\u0964 \u091d\u0940\u0932 \u0938\u0947 \u0909\u0924\u094d\u0924\u0930 \u092a\u0942\u0930\u094d\u0935 \u0915\u0940 \u0913\u0930 \u092c\u0922\u093c\u0924\u0947 \u0939\u0941\u090f \u0935\u094d\u092f\u093e\u092a\u0915 \u0914\u0930 \u0914\u0930 \u0938\u0941\u0935\u094d\u092f\u0935\u0938\u094d\u0925\u093f\u0924 \u0917\u094d\u0930\u0942\u092e \u091d\u0940\u0932 \u0915\u0940 \u0938\u0921\u093c\u0915\u0947\u0902 \u090f\u0915 \u0926\u0930\u094d\u0930\u0947 \u0915\u0947 \u091c\u0930\u093f\u092f\u0947 \u092a\u0947\u091a\u0940\u0926\u093e \u092a\u0939\u093e\u0921\u093c\u093f\u092f\u094b\u0902 \u0938\u0947 \u0939\u094b\u0915\u0930 \u0917\u0941\u091c\u0930\u0924\u0940 \u0939\u0948\u0902\u0964 \u092a\u0939\u0932\u0947 \u0938\u0921\u093c\u0915\u0947\u0902 \u0917\u094d\u0930\u0942\u092e \u0918\u093e\u091f\u0940",
"question": "\u091d\u0940\u0932 \u0915\u0947 \u0938\u093e\u092a\u0947\u0915\u094d\u0937 \u0917\u094d\u0930\u0942\u092e \u0932\u0947\u0915 \u0930\u094b\u0921 \u0915\u0939\u093e\u0901 \u091c\u093e\u0924\u0940 \u0925\u0940?"
}
```
#### nc
An example of 'test.es' looks as follows.
```
{
"news_body": "El bizcocho es seguramente el producto m\u00e1s b\u00e1sico y sencillo de toda la reposter\u00eda : consiste en poco m\u00e1s que mezclar unos cuantos ingredientes, meterlos al horno y esperar a que se hagan. Por obra y gracia del impulsor qu\u00edmico, tambi\u00e9n conocido como \"levadura de tipo Royal\", despu\u00e9s de un rato de calorcito esta combinaci\u00f3n de harina, az\u00facar, huevo, grasa -aceite o mantequilla- y l\u00e1cteo se transforma en uno de los productos m\u00e1s deliciosos que existen para desayunar o merendar . Por muy manazas que seas, es m\u00e1s que probable que tu bizcocho casero supere en calidad a cualquier infamia industrial envasada. Para lograr un bizcocho digno de admiraci\u00f3n s\u00f3lo tienes que respetar unas pocas normas que afectan a los ingredientes, proporciones, mezclado, horneado y desmoldado. Todas las tienes resumidas en unos dos minutos el v\u00eddeo de arriba, en el que adem \u00e1s aprender\u00e1s alg\u00fan truquillo para que tu bizcochaco quede m\u00e1s fino, jugoso, esponjoso y amoroso. M\u00e1s en MSN:",
"news_category": "foodanddrink",
"news_title": "Cocina para lerdos: las leyes del bizcocho"
}
```
#### xnli
An example of 'validation.th' looks as follows.
```
{
"hypothesis": "\u0e40\u0e02\u0e32\u0e42\u0e17\u0e23\u0e2b\u0e32\u0e40\u0e40\u0e21\u0e48\u0e02\u0e2d\u0e07\u0e40\u0e02\u0e32\u0e2d\u0e22\u0e48\u0e32\u0e07\u0e23\u0e27\u0e14\u0e40\u0e23\u0e47\u0e27\u0e2b\u0e25\u0e31\u0e07\u0e08\u0e32\u0e01\u0e17\u0e35\u0e48\u0e23\u0e16\u0e42\u0e23\u0e07\u0e40\u0e23\u0e35\u0e22\u0e19\u0e2a\u0e48\u0e07\u0e40\u0e02\u0e32\u0e40\u0e40\u0e25\u0e49\u0e27",
"label": 1,
"premise": "\u0e41\u0e25\u0e30\u0e40\u0e02\u0e32\u0e1e\u0e39\u0e14\u0e27\u0e48\u0e32, \u0e21\u0e48\u0e32\u0e21\u0e4a\u0e32 \u0e1c\u0e21\u0e2d\u0e22\u0e39\u0e48\u0e1a\u0e49\u0e32\u0e19"
}
```
#### paws-x
An example of 'test.es' looks as follows.
```
{
"label": 1,
"sentence1": "La excepci\u00f3n fue entre fines de 2005 y 2009 cuando jug\u00f3 en Suecia con Carlstad United BK, Serbia con FK Borac \u010ca\u010dak y el FC Terek Grozny de Rusia.",
"sentence2": "La excepci\u00f3n se dio entre fines del 2005 y 2009, cuando jug\u00f3 con Suecia en el Carlstad United BK, Serbia con el FK Borac \u010ca\u010dak y el FC Terek Grozny de Rusia."
}
```
#### qadsm
An example of 'train' looks as follows.
```
{
"ad_description": "Your New England Cruise Awaits! Holland America Line Official Site.",
"ad_title": "New England Cruises",
"query": "cruise portland maine",
"relevance_label": 1
}
```
#### wpr
An example of 'test.zh' looks as follows.
```
{
"query": "maxpro\u5b98\u7f51",
"relavance_label": 0,
"web_page_snippet": "\u5728\u7ebf\u8d2d\u4e70\uff0c\u552e\u540e\u670d\u52a1\u3002vivo\u667a\u80fd\u624b\u673a\u5f53\u5b63\u660e\u661f\u673a\u578b\u6709NEX\uff0cvivo X21\uff0cvivo X20\uff0c\uff0cvivo X23\u7b49\uff0c\u5728vivo\u5b98\u7f51\u8d2d\u4e70\u624b\u673a\u53ef\u4ee5\u4eab\u53d712 \u671f\u514d\u606f\u4ed8\u6b3e\u3002 \u54c1\u724c Funtouch OS \u4f53\u9a8c\u5e97 | ...",
"wed_page_title": "vivo\u667a\u80fd\u624b\u673a\u5b98\u65b9\u7f51\u7ad9-AI\u975e\u51e1\u6444\u5f71X23"
}
```
#### qam
An example of 'validation.en' looks as follows.
```
{
"annswer": "Erikson has stated that after the last novel of the Malazan Book of the Fallen was finished, he and Esslemont would write a comprehensive guide tentatively named The Encyclopaedia Malazica.",
"label": 0,
"question": "main character of malazan book of the fallen"
}
```
#### qg
An example of 'test.de' looks as follows.
```
{
"answer_passage": "Medien bei WhatsApp automatisch speichern. Tippen Sie oben rechts unter WhatsApp auf die drei Punkte oder auf die Men\u00fc-Taste Ihres Smartphones. Dort wechseln Sie in die \"Einstellungen\" und von hier aus weiter zu den \"Chat-Einstellungen\". Unter dem Punkt \"Medien Auto-Download\" k\u00f6nnen Sie festlegen, wann die WhatsApp-Bilder heruntergeladen werden sollen.",
"question": "speichenn von whats app bilder unterbinden"
}
```
#### ntg
An example of 'test.en' looks as follows.
```
{
"news_body": "Check out this vintage Willys Pickup! As they say, the devil is in the details, and it's not every day you see such attention paid to every last area of a restoration like with this 1961 Willys Pickup . Already the Pickup has a unique look that shares some styling with the Jeep, plus some original touches you don't get anywhere else. It's a classy way to show up to any event, all thanks to Hollywood Motors . A burgundy paint job contrasts with white lower panels and the roof. Plenty of tasteful chrome details grace the exterior, including the bumpers, headlight bezels, crossmembers on the grille, hood latches, taillight bezels, exhaust finisher, tailgate hinges, etc. Steel wheels painted white and chrome hubs are a tasteful addition. Beautiful oak side steps and bed strips add a touch of craftsmanship to this ride. This truck is of real showroom quality, thanks to the astoundingly detailed restoration work performed on it, making this Willys Pickup a fierce contender for best of show. Under that beautiful hood is a 225 Buick V6 engine mated to a three-speed manual transmission, so you enjoy an ideal level of control. Four wheel drive is functional, making it that much more utilitarian and downright cool. The tires are new, so you can enjoy a lot of life out of them, while the wheels and hubs are in great condition. Just in case, a fifth wheel with a tire and a side mount are included. Just as important, this Pickup runs smoothly, so you can go cruising or even hit the open road if you're interested in participating in some classic rallies. You might associate Willys with the famous Jeep CJ, but the automaker did produce a fair amount of trucks. The Pickup is quite the unique example, thanks to distinct styling that really turns heads, making it a favorite at quite a few shows. Source: Hollywood Motors Check These Rides Out Too: Fear No Trails With These Off-Roaders 1965 Pontiac GTO: American Icon For Sale In Canada Low-Mileage 1955 Chevy 3100 Represents Turn In Pickup Market",
"news_title": "This 1961 Willys Pickup Will Let You Cruise In Style"
}
```
### Data Fields
#### ner
In the following each data field in ner is explained. The data fields are the same among all splits.
- `words`: a list of words composing the sentence.
- `ner`: a list of entitity classes corresponding to each word respectively.
#### pos
In the following each data field in pos is explained. The data fields are the same among all splits.
- `words`: a list of words composing the sentence.
- `pos`: a list of "part-of-speech" classes corresponding to each word respectively.
#### mlqa
In the following each data field in mlqa is explained. The data fields are the same among all splits.
- `context`: a string, the context containing the answer.
- `question`: a string, the question to be answered.
- `answers`: a string, the answer to `question`.
#### nc
In the following each data field in nc is explained. The data fields are the same among all splits.
- `news_title`: a string, to the title of the news report.
- `news_body`: a string, to the actual news report.
- `news_category`: a string, the category of the news report, *e.g.* `foodanddrink`
#### xnli
In the following each data field in xnli is explained. The data fields are the same among all splits.
- `premise`: a string, the context/premise, *i.e.* the first sentence for natural language inference.
- `hypothesis`: a string, a sentence whereas its relation to `premise` is to be classified, *i.e.* the second sentence for natural language inference.
- `label`: a class catory (int), natural language inference relation class between `hypothesis` and `premise`. One of 0: entailment, 1: contradiction, 2: neutral.
#### paws-x
In the following each data field in paws-x is explained. The data fields are the same among all splits.
- `sentence1`: a string, a sentence.
- `sentence2`: a string, a sentence whereas the sentence is either a paraphrase of `sentence1` or not.
- `label`: a class label (int), whether `sentence2` is a paraphrase of `sentence1` One of 0: different, 1: same.
#### qadsm
In the following each data field in qadsm is explained. The data fields are the same among all splits.
- `query`: a string, the search query one would insert into a search engine.
- `ad_title`: a string, the title of the advertisement.
- `ad_description`: a string, the content of the advertisement, *i.e.* the main body.
- `relevance_label`: a class label (int), how relevant the advertisement `ad_title` + `ad_description` is to the search query `query`. One of 0: Bad, 1: Good.
#### wpr
In the following each data field in wpr is explained. The data fields are the same among all splits.
- `query`: a string, the search query one would insert into a search engine.
- `web_page_title`: a string, the title of a web page.
- `web_page_snippet`: a string, the content of a web page, *i.e.* the main body.
- `relavance_label`: a class label (int), how relevant the web page `web_page_snippet` + `web_page_snippet` is to the search query `query`. One of 0: Bad, 1: Fair, 2: Good, 3: Excellent, 4: Perfect.
#### qam
In the following each data field in qam is explained. The data fields are the same among all splits.
- `question`: a string, a question.
- `answer`: a string, a possible answer to `question`.
- `label`: a class label (int), whether the `answer` is relevant to the `question`. One of 0: False, 1: True.
#### qg
In the following each data field in qg is explained. The data fields are the same among all splits.
- `answer_passage`: a string, a detailed answer to the `question`.
- `question`: a string, a question.
#### ntg
In the following each data field in ntg is explained. The data fields are the same among all splits.
- `news_body`: a string, the content of a news article.
- `news_title`: a string, the title corresponding to the news article `news_body`.
### Data Splits
#### ner
The following table shows the number of data samples/number of rows for each split in ner.
| |train|validation.en|validation.de|validation.es|validation.nl|test.en|test.de|test.es|test.nl|
|---|----:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|
|ner|14042| 3252| 2874| 1923| 2895| 3454| 3007| 1523| 5202|
#### pos
The following table shows the number of data samples/number of rows for each split in pos.
| |train|validation.en|validation.de|validation.es|validation.nl|validation.bg|validation.el|validation.fr|validation.pl|validation.tr|validation.vi|validation.zh|validation.ur|validation.hi|validation.it|validation.ar|validation.ru|validation.th|test.en|test.de|test.es|test.nl|test.bg|test.el|test.fr|test.pl|test.tr|test.vi|test.zh|test.ur|test.hi|test.it|test.ar|test.ru|test.th|
|---|----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|
|pos|25376| 2001| 798| 1399| 717| 1114| 402| 1475| 2214| 987| 799| 499| 551| 1658| 563| 908| 578| 497| 2076| 976| 425| 595| 1115| 455| 415| 2214| 982| 799| 499| 534| 1683| 481| 679| 600| 497|
#### mlqa
The following table shows the number of data samples/number of rows for each split in mlqa.
| |train|validation.en|validation.de|validation.ar|validation.es|validation.hi|validation.vi|validation.zh|test.en|test.de|test.ar|test.es|test.hi|test.vi|test.zh|
|----|----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|
|mlqa|87599| 1148| 512| 517| 500| 507| 511| 504| 11590| 4517| 5335| 5253| 4918| 5495| 5137|
#### nc
The following table shows the number of data samples/number of rows for each split in nc.
| |train |validation.en|validation.de|validation.es|validation.fr|validation.ru|test.en|test.de|test.es|test.fr|test.ru|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|
|nc |100000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000|
#### xnli
The following table shows the number of data samples/number of rows for each split in xnli.
| |train |validation.en|validation.ar|validation.bg|validation.de|validation.el|validation.es|validation.fr|validation.hi|validation.ru|validation.sw|validation.th|validation.tr|validation.ur|validation.vi|validation.zh|test.en|test.ar|test.bg|test.de|test.el|test.es|test.fr|test.hi|test.ru|test.sw|test.th|test.tr|test.ur|test.vi|test.zh|
|----|-----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|
|xnli|392702| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010|
#### nc
The following table shows the number of data samples/number of rows for each split in nc.
| |train |validation.en|validation.de|validation.es|validation.fr|validation.ru|test.en|test.de|test.es|test.fr|test.ru|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|
|nc |100000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000|
#### xnli
The following table shows the number of data samples/number of rows for each split in xnli.
| |train |validation.en|validation.ar|validation.bg|validation.de|validation.el|validation.es|validation.fr|validation.hi|validation.ru|validation.sw|validation.th|validation.tr|validation.ur|validation.vi|validation.zh|test.en|test.ar|test.bg|test.de|test.el|test.es|test.fr|test.hi|test.ru|test.sw|test.th|test.tr|test.ur|test.vi|test.zh|
|----|-----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|
|xnli|392702| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010|
#### paws-x
The following table shows the number of data samples/number of rows for each split in paws-x.
| |train|validation.en|validation.de|validation.es|validation.fr|test.en|test.de|test.es|test.fr|
|------|----:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|
|paws-x|49401| 2000| 2000| 2000| 2000| 2000| 2000| 2000| 2000|
#### qadsm
The following table shows the number of data samples/number of rows for each split in qadsm.
| |train |validation.en|validation.de|validation.fr|test.en|test.de|test.fr|
|-----|-----:|------------:|------------:|------------:|------:|------:|------:|
|qadsm|100000| 10000| 10000| 10000| 10000| 10000| 10000|
#### wpr
The following table shows the number of data samples/number of rows for each split in wpr.
| |train|validation.en|validation.de|validation.es|validation.fr|validation.it|validation.pt|validation.zh|test.en|test.de|test.es|test.fr|test.it|test.pt|test.zh|
|---|----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|
|wpr|99997| 10008| 10004| 10004| 10005| 10003| 10001| 10002| 10004| 9997| 10006| 10020| 10001| 10015| 9999|
#### qam
The following table shows the number of data samples/number of rows for each split in qam.
| |train |validation.en|validation.de|validation.fr|test.en|test.de|test.fr|
|---|-----:|------------:|------------:|------------:|------:|------:|------:|
|qam|100000| 10000| 10000| 10000| 10000| 10000| 10000|
#### qg
The following table shows the number of data samples/number of rows for each split in qg.
| |train |validation.en|validation.de|validation.es|validation.fr|validation.it|validation.pt|test.en|test.de|test.es|test.fr|test.it|test.pt|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|
|qg |100000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000|
#### ntg
The following table shows the number of data samples/number of rows for each split in ntg.
| |train |validation.en|validation.de|validation.es|validation.fr|validation.ru|test.en|test.de|test.es|test.fr|test.ru|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|
|ntg|300000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset is maintained mainly by Yaobo Liang, Yeyun Gong, Nan Duan, Ming Gong, Linjun Shou, and Daniel Campos from Microsoft Research.
### Licensing Information
The licensing status of the dataset hinges on the legal status of [XGLUE](https://microsoft.github.io/XGLUE/) hich is unclear.
### Citation Information
```
@article{Liang2020XGLUEAN,
title={XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation},
author={Yaobo Liang and Nan Duan and Yeyun Gong and Ning Wu and Fenfei Guo and Weizhen Qi and Ming Gong and Linjun Shou and Daxin Jiang and Guihong Cao and Xiaodong Fan and Ruofei Zhang and Rahul Agrawal and Edward Cui and Sining Wei and Taroon Bharti and Ying Qiao and Jiun-Hung Chen and Winnie Wu and Shuguang Liu and Fan Yang and Daniel Campos and Rangan Majumder and Ming Zhou},
journal={arXiv},
year={2020},
volume={abs/2004.01401}
}
```
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
xnli | ---
language:
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- ru
- sw
- th
- tr
- ur
- vi
- zh
paperswithcode_id: xnli
pretty_name: Cross-lingual Natural Language Inference
dataset_info:
- config_name: ar
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 107399934
num_examples: 392702
- name: test
num_bytes: 1294561
num_examples: 5010
- name: validation
num_bytes: 633009
num_examples: 2490
download_size: 483963712
dataset_size: 109327504
- config_name: bg
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 125973545
num_examples: 392702
- name: test
num_bytes: 1573042
num_examples: 5010
- name: validation
num_bytes: 774069
num_examples: 2490
download_size: 483963712
dataset_size: 128320656
- config_name: de
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 84684460
num_examples: 392702
- name: test
num_bytes: 996496
num_examples: 5010
- name: validation
num_bytes: 494612
num_examples: 2490
download_size: 483963712
dataset_size: 86175568
- config_name: el
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 139753678
num_examples: 392702
- name: test
num_bytes: 1704793
num_examples: 5010
- name: validation
num_bytes: 841234
num_examples: 2490
download_size: 483963712
dataset_size: 142299705
- config_name: en
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 74444346
num_examples: 392702
- name: test
num_bytes: 875142
num_examples: 5010
- name: validation
num_bytes: 433471
num_examples: 2490
download_size: 483963712
dataset_size: 75752959
- config_name: es
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 81383604
num_examples: 392702
- name: test
num_bytes: 969821
num_examples: 5010
- name: validation
num_bytes: 478430
num_examples: 2490
download_size: 483963712
dataset_size: 82831855
- config_name: fr
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 85809099
num_examples: 392702
- name: test
num_bytes: 1029247
num_examples: 5010
- name: validation
num_bytes: 510112
num_examples: 2490
download_size: 483963712
dataset_size: 87348458
- config_name: hi
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 170594284
num_examples: 392702
- name: test
num_bytes: 2073081
num_examples: 5010
- name: validation
num_bytes: 1023923
num_examples: 2490
download_size: 483963712
dataset_size: 173691288
- config_name: ru
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 129859935
num_examples: 392702
- name: test
num_bytes: 1603474
num_examples: 5010
- name: validation
num_bytes: 786450
num_examples: 2490
download_size: 483963712
dataset_size: 132249859
- config_name: sw
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 69286045
num_examples: 392702
- name: test
num_bytes: 871659
num_examples: 5010
- name: validation
num_bytes: 429858
num_examples: 2490
download_size: 483963712
dataset_size: 70587562
- config_name: th
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 176063212
num_examples: 392702
- name: test
num_bytes: 2147023
num_examples: 5010
- name: validation
num_bytes: 1061168
num_examples: 2490
download_size: 483963712
dataset_size: 179271403
- config_name: tr
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 71637460
num_examples: 392702
- name: test
num_bytes: 934942
num_examples: 5010
- name: validation
num_bytes: 459316
num_examples: 2490
download_size: 483963712
dataset_size: 73031718
- config_name: ur
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 96441806
num_examples: 392702
- name: test
num_bytes: 1416249
num_examples: 5010
- name: validation
num_bytes: 699960
num_examples: 2490
download_size: 483963712
dataset_size: 98558015
- config_name: vi
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 101417750
num_examples: 392702
- name: test
num_bytes: 1190225
num_examples: 5010
- name: validation
num_bytes: 590688
num_examples: 2490
download_size: 483963712
dataset_size: 103198663
- config_name: zh
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 72225161
num_examples: 392702
- name: test
num_bytes: 777937
num_examples: 5010
- name: validation
num_bytes: 384859
num_examples: 2490
download_size: 483963712
dataset_size: 73387957
- config_name: all_languages
features:
- name: premise
dtype:
translation:
languages:
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- ru
- sw
- th
- tr
- ur
- vi
- zh
- name: hypothesis
dtype:
translation_variable_languages:
languages:
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- ru
- sw
- th
- tr
- ur
- vi
- zh
num_languages: 15
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 1581474731
num_examples: 392702
- name: test
num_bytes: 19387508
num_examples: 5010
- name: validation
num_bytes: 9566255
num_examples: 2490
download_size: 483963712
dataset_size: 1610428494
---
# Dataset Card for "xnli"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://www.nyu.edu/projects/bowman/xnli/](https://www.nyu.edu/projects/bowman/xnli/)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 7.74 GB
- **Size of the generated dataset:** 3.23 GB
- **Total amount of disk used:** 10.97 GB
### Dataset Summary
XNLI is a subset of a few thousand examples from MNLI which has been translated
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
to predict textual entailment (does sentence A imply/contradict/neither sentence
B) and is a classification task (given two sentences, predict one of three
labels).
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### all_languages
- **Size of downloaded dataset files:** 483.96 MB
- **Size of the generated dataset:** 1.61 GB
- **Total amount of disk used:** 2.09 GB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
"hypothesis": "{\"language\": [\"ar\", \"bg\", \"de\", \"el\", \"en\", \"es\", \"fr\", \"hi\", \"ru\", \"sw\", \"th\", \"tr\", \"ur\", \"vi\", \"zh\"], \"translation\": [\"احد اع...",
"label": 0,
"premise": "{\"ar\": \"واحدة من رقابنا ستقوم بتنفيذ تعليماتك كلها بكل دقة\", \"bg\": \"един от нашите номера ще ви даде инструкции .\", \"de\": \"Eine ..."
}
```
#### ar
- **Size of downloaded dataset files:** 483.96 MB
- **Size of the generated dataset:** 109.32 MB
- **Total amount of disk used:** 593.29 MB
An example of 'validation' looks as follows.
```
{
"hypothesis": "اتصل بأمه حالما أوصلته حافلة المدرسية.",
"label": 1,
"premise": "وقال، ماما، لقد عدت للمنزل."
}
```
#### bg
- **Size of downloaded dataset files:** 483.96 MB
- **Size of the generated dataset:** 128.32 MB
- **Total amount of disk used:** 612.28 MB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
"hypothesis": "\"губиш нещата на следното ниво , ако хората си припомнят .\"...",
"label": 0,
"premise": "\"по време на сезона и предполагам , че на твоето ниво ще ги загубиш на следващото ниво , ако те решат да си припомнят отбора на ..."
}
```
#### de
- **Size of downloaded dataset files:** 483.96 MB
- **Size of the generated dataset:** 86.17 MB
- **Total amount of disk used:** 570.14 MB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
"hypothesis": "Man verliert die Dinge auf die folgende Ebene , wenn sich die Leute erinnern .",
"label": 0,
"premise": "\"Du weißt , während der Saison und ich schätze , auf deiner Ebene verlierst du sie auf die nächste Ebene , wenn sie sich entschl..."
}
```
#### el
- **Size of downloaded dataset files:** 483.96 MB
- **Size of the generated dataset:** 142.30 MB
- **Total amount of disk used:** 626.26 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"hypothesis": "\"Τηλεφώνησε στη μαμά του μόλις το σχολικό λεωφορείο τον άφησε.\"...",
"label": 1,
"premise": "Και είπε, Μαμά, έφτασα στο σπίτι."
}
```
### Data Fields
The data fields are the same among all splits.
#### all_languages
- `premise`: a multilingual `string` variable, with possible languages including `ar`, `bg`, `de`, `el`, `en`.
- `hypothesis`: a multilingual `string` variable, with possible languages including `ar`, `bg`, `de`, `el`, `en`.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
#### ar
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
#### bg
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
#### de
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
#### el
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
### Data Splits
| name |train |validation|test|
|-------------|-----:|---------:|---:|
|all_languages|392702| 2490|5010|
|ar |392702| 2490|5010|
|bg |392702| 2490|5010|
|de |392702| 2490|5010|
|el |392702| 2490|5010|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{conneau2018xnli,
author = {Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin},
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing},
year = {2018},
publisher = {Association for Computational Linguistics},
location = {Brussels, Belgium},
}
```
### Contributions
Thanks to [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
xor_tydi_qa | ---
annotations_creators:
- crowdsourced
language_creators:
- expert-generated
- found
language:
- ar
- bn
- fi
- ja
- ko
- ru
- te
license:
- mit
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
- extended|tydiqa
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: xor-tydi-qa
pretty_name: XOR QA
dataset_info:
- config_name: xor-retrieve
features:
- name: question
dtype: string
- name: lang
dtype:
class_label:
names:
'0': ar
'1': bn
'2': fi
'3': ja
'4': ko
'5': ru
'6': te
- name: answers
dtype: string
splits:
- name: train
num_bytes: 1698662
num_examples: 15250
- name: validation
num_bytes: 259533
num_examples: 2110
- name: test
num_bytes: 219046
num_examples: 2499
download_size: 3702288
dataset_size: 2177241
- config_name: xor-full
features:
- name: question
dtype: string
- name: lang
dtype:
class_label:
names:
'0': ar
'1': bn
'2': fi
'3': ja
'4': ko
'5': ru
'6': te
- name: answers
dtype: string
splits:
- name: train
num_bytes: 7250913
num_examples: 61360
- name: validation
num_bytes: 444672
num_examples: 3473
- name: test
num_bytes: 706664
num_examples: 8176
download_size: 14018298
dataset_size: 8402249
---
# Dataset Card for XOR QA
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [XOR QA Homepage](https://nlp.cs.washington.edu/xorqa/)
- **Repository:** [XOR QA Repository](https://github.com/AkariAsai/XORQA)
- **Paper:** [XOR QA Paper](https://arxiv.org/abs/2010.11856)
- **Leaderboard:** [XOR QA Leaderboard](https://nlp.cs.washington.edu/xorqa/)
- **Point of Contact:** [Akari Asai](akari@cs.washington.edu)
### Dataset Summary
XOR-TyDi QA brings together for the first time information-seeking questions, open-retrieval QA, and multilingual QA to create a multilingual open-retrieval QA dataset that enables cross-lingual answer retrieval. It consists of questions written by information-seeking native speakers in 7 typologically diverse languages and answer annotations that are retrieved from multilingual document collections.
### Supported Tasks and Leaderboards
There are three sub-tasks: XOR-Retrieve, XOR-EnglishSpan, and XOR-Full.
- `XOR-retrieve`: XOR-Retrieve is a cross-lingual retrieval task where a question is written in a target language (e.g., Japanese) and a system is required to retrieve English paragraphs that answer the question. The dataset can be used to train a model for cross-lingual retrieval. Success on this task is typically measured by R@5kt, R@2kt (the recall by computing the fraction of the questions for which the minimal answer is contained in the top 5,000 / 2,000 tokens selected). This task has an active leaderboard which can be found at [leaderboard url](https://nlp.cs.washington.edu/xorqa/)
- `XOR-English Span`: XOR-English Span is a cross-lingual retrieval task where a question is written in a target language (e.g., Japanese) and a system is required to output a short answer in English. The dataset can be used to train a model for cross-lingual retrieval. Success on this task is typically measured by F1, EM. This task has an active leaderboard which can be found at [leaderboard url](https://nlp.cs.washington.edu/xorqa/)
- `XOR-Full`: XOR-Full is a cross-lingual retrieval task where a question is written in the target language (e.g., Japanese) and a system is required to output a short answer in a target language. Success on this task is typically measured by F1, EM, BLEU This task has an active leaderboard which can be found at [leaderboard url](https://nlp.cs.washington.edu/xorqa/)
### Languages
The text in the dataset is available in 7 languages: Arabic `ar`, Bengali `bn`, Finnish `fi`, Japanese `ja`, Korean `ko`, Russian `ru`, Telugu `te`
## Dataset Structure
### Data Instances
A typical data point comprises a `question`, it's `answer` the `language` of the question text and the split to which it belongs.
```
{
"id": "-3979399588609321314",
"question": "Сколько детей было у Наполео́на I Бонапа́рта?",
"answers": ["сын"],
"lang": "ru",
"split": "train"
}
```
### Data Fields
- `id`: An identifier for each example in the dataset
- `question`: Open domain question
- `answers`: The corresponding answer to the question posed
- `lang`: BCP-47 language tag
- `split`: identifier to differentiate train, validation and test splits
### Data Splits
The data is split into a training, validation and test set for each of the two configurations.
| | train | validation | test |
|--------------|------:|-----------:|-----:|
| XOR Retrieve | 15250 | 2113 | 2501 |
| XOR Full | 61360 | 3179 | 8177 |
## Dataset Creation
### Curation Rationale
This task framework reflects well real-world scenarios where a QA system uses multilingual document collections and answers questions asked by users with diverse linguistic and cultural backgrounds. Despite the common assumption that we can find answers in the target language, web re- sources in non-English languages are largely lim- ited compared to English (information scarcity), or the contents are biased towards their own cul- tures (information asymmetry). To solve these issues, XOR-TYDI QA (Asai et al., 2020) provides a benchmark for developing a multilingual QA system that finds answers in multiple languages.
### Source Data
annotation pipeline consists of four steps: 1) collection of realistic questions that require cross-lingual ref- erences by annotating questions from TYDI QA without a same-language answer; 2) question translation from a target language to the pivot language of English where the missing informa- tion may exist; 3) answer span selection in the pivot language given a set of candidate documents; 4) answer verification and translation from the pivot language back to the original language.
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
The Dataset is created by extending TyDiQA dataset and translating the questions into other languages. The answers are obtained by crowdsourcing the questions to Mechanical Turk workders
### Annotations
#### Annotation process
The English questions from TyDiQA are translated into other languages. The languages are chosen based on the availability of wikipedia data and the availability of tranlators.
#### Who are the annotators?
The translations are carried out using the professionla tranlation service (Gengo)[https://gengo.com] and the answers are annotated by MechanicalTurk workers
### Personal and Sensitive Information
The dataset is created from wikipedia content and the QA task requires preserving the named entities, there by all the Wikipedia Named Entities are preserved in the data. Not much information has been provided about masking sensitive information.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The people associated with the creation of the dataset are Akari Asai, Jungo Kasai, Jonathan H. Clark, Kenton Lee, Eunsol Choi, Hannaneh Hajishirzi
### Licensing Information
XOR-TyDi QA is distributed under the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode) license
### Citation Information
```
@article{xorqa,
title = {XOR QA: Cross-lingual Open-Retrieval Question Answering},
author = {Akari Asai and Jungo Kasai and Jonathan H. Clark and Kenton Lee and Eunsol Choi and Hannaneh Hajishirzi}
year = {2020}
}
```
### Contributions
Thanks to [@sumanthd17](https://github.com/sumanthd17) for adding this dataset. |
xquad | ---
pretty_name: XQuAD
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- ar
- de
- el
- en
- es
- hi
- ro
- ru
- th
- tr
- vi
- zh
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- unknown
source_datasets:
- extended|squad
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: xquad
dataset_info:
- config_name: xquad.ar
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1722799
num_examples: 1190
download_size: 13962158
dataset_size: 1722799
- config_name: xquad.de
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1283301
num_examples: 1190
download_size: 13962158
dataset_size: 1283301
- config_name: xquad.zh
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 984241
num_examples: 1190
download_size: 13962158
dataset_size: 984241
- config_name: xquad.vi
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1477239
num_examples: 1190
download_size: 13962158
dataset_size: 1477239
- config_name: xquad.en
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1116123
num_examples: 1190
download_size: 13962158
dataset_size: 1116123
- config_name: xquad.es
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1273499
num_examples: 1190
download_size: 13962158
dataset_size: 1273499
- config_name: xquad.hi
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 2682975
num_examples: 1190
download_size: 13962158
dataset_size: 2682975
- config_name: xquad.el
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 2206690
num_examples: 1190
download_size: 13962158
dataset_size: 2206690
- config_name: xquad.th
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 2854959
num_examples: 1190
download_size: 13962158
dataset_size: 2854959
- config_name: xquad.tr
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1210763
num_examples: 1190
download_size: 13962158
dataset_size: 1210763
- config_name: xquad.ru
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 2136990
num_examples: 1190
download_size: 13962158
dataset_size: 2136990
- config_name: xquad.ro
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1299450
num_examples: 1190
download_size: 13962158
dataset_size: 1299450
---
# Dataset Card for "xquad"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/deepmind/xquad](https://github.com/deepmind/xquad)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 146.31 MB
- **Size of the generated dataset:** 18.97 MB
- **Total amount of disk used:** 165.28 MB
### Dataset Summary
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering
performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set
of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into ten languages: Spanish, German,
Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently, the dataset is entirely parallel
across 11 languages.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### xquad.ar
- **Size of downloaded dataset files:** 13.30 MB
- **Size of the generated dataset:** 1.72 MB
- **Total amount of disk used:** 15.03 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"answers": {
"answer_start": [527],
"text": ["136"]
},
"context": "\"Die Verteidigung der Panthers gab nur 308 Punkte ab und belegte den sechsten Platz in der Liga, während sie die NFL mit 24 Inte...",
"id": "56beb4343aeaaa14008c925c",
"question": "Wie viele Sacks erzielte Jared Allen in seiner Karriere?"
}
```
#### xquad.de
- **Size of downloaded dataset files:** 13.30 MB
- **Size of the generated dataset:** 1.29 MB
- **Total amount of disk used:** 14.59 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"answers": {
"answer_start": [527],
"text": ["136"]
},
"context": "\"Die Verteidigung der Panthers gab nur 308 Punkte ab und belegte den sechsten Platz in der Liga, während sie die NFL mit 24 Inte...",
"id": "56beb4343aeaaa14008c925c",
"question": "Wie viele Sacks erzielte Jared Allen in seiner Karriere?"
}
```
#### xquad.el
- **Size of downloaded dataset files:** 13.30 MB
- **Size of the generated dataset:** 2.21 MB
- **Total amount of disk used:** 15.51 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"answers": {
"answer_start": [527],
"text": ["136"]
},
"context": "\"Die Verteidigung der Panthers gab nur 308 Punkte ab und belegte den sechsten Platz in der Liga, während sie die NFL mit 24 Inte...",
"id": "56beb4343aeaaa14008c925c",
"question": "Wie viele Sacks erzielte Jared Allen in seiner Karriere?"
}
```
#### xquad.en
- **Size of downloaded dataset files:** 13.30 MB
- **Size of the generated dataset:** 1.12 MB
- **Total amount of disk used:** 14.42 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"answers": {
"answer_start": [527],
"text": ["136"]
},
"context": "\"Die Verteidigung der Panthers gab nur 308 Punkte ab und belegte den sechsten Platz in der Liga, während sie die NFL mit 24 Inte...",
"id": "56beb4343aeaaa14008c925c",
"question": "Wie viele Sacks erzielte Jared Allen in seiner Karriere?"
}
```
#### xquad.es
- **Size of downloaded dataset files:** 13.30 MB
- **Size of the generated dataset:** 1.28 MB
- **Total amount of disk used:** 14.58 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"answers": {
"answer_start": [527],
"text": ["136"]
},
"context": "\"Die Verteidigung der Panthers gab nur 308 Punkte ab und belegte den sechsten Platz in der Liga, während sie die NFL mit 24 Inte...",
"id": "56beb4343aeaaa14008c925c",
"question": "Wie viele Sacks erzielte Jared Allen in seiner Karriere?"
}
```
### Data Fields
The data fields are the same among all splits.
#### xquad.ar
- `id`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `text`: a `string` feature.
- `answer_start`: a `int32` feature.
#### xquad.de
- `id`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `text`: a `string` feature.
- `answer_start`: a `int32` feature.
#### xquad.el
- `id`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `text`: a `string` feature.
- `answer_start`: a `int32` feature.
#### xquad.en
- `id`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `text`: a `string` feature.
- `answer_start`: a `int32` feature.
#### xquad.es
- `id`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `text`: a `string` feature.
- `answer_start`: a `int32` feature.
### Data Splits
| name | validation |
| -------- | ---------: |
| xquad.ar | 1190 |
| xquad.de | 1190 |
| xquad.el | 1190 |
| xquad.en | 1190 |
| xquad.es | 1190 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{Artetxe:etal:2019,
author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama},
title = {On the cross-lingual transferability of monolingual representations},
journal = {CoRR},
volume = {abs/1910.11856},
year = {2019},
archivePrefix = {arXiv},
eprint = {1910.11856}
}
```
### Contributions
Thanks to [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |
xquad_r | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- ar
- de
- el
- en
- es
- hi
- ru
- th
- tr
- vi
- zh
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|squad
- extended|xquad
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: xquad-r
pretty_name: LAReQA
configs:
- ar
- de
- el
- en
- es
- hi
- ru
- th
- tr
- vi
- zh
dataset_info:
- config_name: ar
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1722799
num_examples: 1190
download_size: 17863417
dataset_size: 1722799
- config_name: de
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1283301
num_examples: 1190
download_size: 17863417
dataset_size: 1283301
- config_name: zh
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 984241
num_examples: 1190
download_size: 17863417
dataset_size: 984241
- config_name: vi
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1477239
num_examples: 1190
download_size: 17863417
dataset_size: 1477239
- config_name: en
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1116123
num_examples: 1190
download_size: 17863417
dataset_size: 1116123
- config_name: es
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1273499
num_examples: 1190
download_size: 17863417
dataset_size: 1273499
- config_name: hi
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 2682975
num_examples: 1190
download_size: 17863417
dataset_size: 2682975
- config_name: el
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 2206690
num_examples: 1190
download_size: 17863417
dataset_size: 2206690
- config_name: th
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 2854959
num_examples: 1190
download_size: 17863417
dataset_size: 2854959
- config_name: tr
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 1210763
num_examples: 1190
download_size: 17863417
dataset_size: 1210763
- config_name: ru
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: validation
num_bytes: 2136990
num_examples: 1190
download_size: 17863417
dataset_size: 2136990
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [LAReQA](https://github.com/google-research-datasets/lareqa)
- **Repository:** [XQuAD-R](https://github.com/google-research-datasets/lareqa)
- **Paper:** [LAReQA: Language-agnostic answer retrieval from a multilingual pool](https://arxiv.org/pdf/2004.05484.pdf)
- **Point of Contact:** [Noah Constant](mailto:nconstant@google.com)
### Dataset Summary
XQuAD-R is a retrieval version of the XQuAD dataset (a cross-lingual extractive
QA dataset). Like XQuAD, XQUAD-R is an 11-way parallel dataset, where each
question appears in 11 different languages and has 11 parallel correct answers
across the languages.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset can be found with the following languages:
* Arabic: `xquad-r/ar.json`
* German: `xquad-r/de.json`
* Greek: `xquad-r/el.json`
* English: `xquad-r/en.json`
* Spanish: `xquad-r/es.json`
* Hindi: `xquad-r/hi.json`
* Russian: `xquad-r/ru.json`
* Thai: `xquad-r/th.json`
* Turkish: `xquad-r/tr.json`
* Vietnamese: `xquad-r/vi.json`
* Chinese: `xquad-r/zh.json`
## Dataset Structure
[More Information Needed]
### Data Instances
An example from `en` config:
```
{'id': '56beb4343aeaaa14008c925b',
'context': "The Panthers defense gave up just 308 points, ranking sixth in the league, while also leading the NFL in interceptions with 24 and boasting four Pro Bowl selections. Pro Bowl defensive tackle Kawann Short led the team in sacks with 11, while also forcing three fumbles and recovering two. Fellow lineman Mario Addison added 6½ sacks. The Panthers line also featured veteran defensive end Jared Allen, a 5-time pro bowler who was the NFL's active career sack leader with 136, along with defensive end Kony Ealy, who had 5 sacks in just 9 starts. Behind them, two of the Panthers three starting linebackers were also selected to play in the Pro Bowl: Thomas Davis and Luke Kuechly. Davis compiled 5½ sacks, four forced fumbles, and four interceptions, while Kuechly led the team in tackles (118) forced two fumbles, and intercepted four passes of his own. Carolina's secondary featured Pro Bowl safety Kurt Coleman, who led the team with a career high seven interceptions, while also racking up 88 tackles and Pro Bowl cornerback Josh Norman, who developed into a shutdown corner during the season and had four interceptions, two of which were returned for touchdowns.",
'question': 'How many points did the Panthers defense surrender?',
'answers': {'text': ['308'], 'answer_start': [34]}}
```
### Data Fields
- `id` (`str`): Unique ID for the context-question pair.
- `context` (`str`): Context for the question.
- `question` (`str`): Question.
- `answers` (`dict`): Answers with the following keys:
- `text` (`list` of `str`): Texts of the answers.
- `answer_start` (`list` of `int`): Start positions for every answer text.
### Data Splits
The number of questions and candidate sentences for each language for XQuAD-R is shown in the table below:
| | XQuAD-R | |
|-----|-----------|------------|
| | questions | candidates |
| ar | 1190 | 1222 |
| de | 1190 | 1276 |
| el | 1190 | 1234 |
| en | 1190 | 1180 |
| es | 1190 | 1215 |
| hi | 1190 | 1244 |
| ru | 1190 | 1219 |
| th | 1190 | 852 |
| tr | 1190 | 1167 |
| vi | 1190 | 1209 |
| zh | 1190 | 1196 |
## Dataset Creation
[More Information Needed]
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
[More Information Needed]
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
[More Information Needed]
### Dataset Curators
The dataset was initially created by Uma Roy, Noah Constant, Rami Al-Rfou, Aditya Barua, Aaron Phillips and Yinfei Yang, during work done at Google Research.
### Licensing Information
XQuAD-R is distributed under the [CC BY-SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/legalcode).
### Citation Information
```
@article{roy2020lareqa,
title={LAReQA: Language-agnostic answer retrieval from a multilingual pool},
author={Roy, Uma and Constant, Noah and Al-Rfou, Rami and Barua, Aditya and Phillips, Aaron and Yang, Yinfei},
journal={arXiv preprint arXiv:2004.05484},
year={2020}
}
```
### Contributions
Thanks to [@manandey](https://github.com/manandey) for adding this dataset. |
xsum | ---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
pretty_name: Extreme Summarization (XSum)
paperswithcode_id: xsum
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- summarization
task_ids:
- news-articles-summarization
train-eval-index:
- config: default
task: summarization
task_id: summarization
splits:
train_split: train
eval_split: test
col_mapping:
document: text
summary: target
metrics:
- type: rouge
name: Rouge
dataset_info:
features:
- name: document
dtype: string
- name: summary
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 479206608
num_examples: 204045
- name: validation
num_bytes: 26292901
num_examples: 11332
- name: test
num_bytes: 26756165
num_examples: 11334
download_size: 257302866
dataset_size: 532255674
---
# Dataset Card for "xsum"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:** https://github.com/EdinburghNLP/XSum
- **Paper:** [Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization](https://arxiv.org/abs/1808.08745)
- **Point of Contact:** [Shashi Narayan](mailto:shashi.narayan@ed.ac.uk)
- **Size of downloaded dataset files:** 257.30 MB
- **Size of the generated dataset:** 532.26 MB
- **Total amount of disk used:** 789.56 MB
### Dataset Summary
Extreme Summarization (XSum) Dataset.
There are three features:
- document: Input news article.
- summary: One sentence summary of the article.
- id: BBC ID of the article.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 257.30 MB
- **Size of the generated dataset:** 532.26 MB
- **Total amount of disk used:** 789.56 MB
An example of 'validation' looks as follows.
```
{
"document": "some-body",
"id": "29750031",
"summary": "some-sentence"
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `document`: a `string` feature.
- `summary`: a `string` feature.
- `id`: a `string` feature.
### Data Splits
| name |train |validation|test |
|-------|-----:|---------:|----:|
|default|204045| 11332|11334|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{Narayan2018DontGM,
title={Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization},
author={Shashi Narayan and Shay B. Cohen and Mirella Lapata},
journal={ArXiv},
year={2018},
volume={abs/1808.08745}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@jbragg](https://github.com/jbragg), [@lhoestq](https://github.com/lhoestq), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |
xsum_factuality | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-xsum
task_categories:
- summarization
task_ids: []
pretty_name: XSum Hallucination Annotations
tags:
- hallucinations
dataset_info:
- config_name: xsum_factuality
features:
- name: bbcid
dtype: int32
- name: system
dtype: string
- name: summary
dtype: string
- name: is_factual
dtype:
class_label:
names:
'0': 'no'
'1': 'yes'
- name: worker_id
dtype: string
splits:
- name: train
num_bytes: 800027
num_examples: 5597
download_size: 2864759
dataset_size: 800027
- config_name: xsum_faithfulness
features:
- name: bbcid
dtype: int32
- name: system
dtype: string
- name: summary
dtype: string
- name: hallucination_type
dtype:
class_label:
names:
'0': intrinsic
'1': extrinsic
- name: hallucinated_span_start
dtype: int32
- name: hallucinated_span_end
dtype: int32
- name: worker_id
dtype: string
splits:
- name: train
num_bytes: 1750325
num_examples: 11185
download_size: 2864759
dataset_size: 1750325
---
# Dataset Card for XSum Hallucination Annotations
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [XSUM Hallucination Annotations Homepage](https://research.google/tools/datasets/xsum-hallucination-annotations/)
- **Repository:** [XSUM Hallucination Annotations Homepage](https://github.com/google-research-datasets/xsum_hallucination_annotations)
- **Paper:** [ACL Web](https://www.aclweb.org/anthology/2020.acl-main.173.pdf)
- **Point of Contact:** [xsum-hallucinations-acl20@google.com](mailto:xsum-hallucinations-acl20@google.com)
### Dataset Summary
Neural abstractive summarization models are highly prone to hallucinate content that is unfaithful to the input document. The popular metric such as ROUGE fails to show the severity of the problem. This dataset contains a large scale human evaluation of several neural abstractive summarization systems to better understand the types of hallucinations they produce. The dataset consists of faithfulness and factuality annotations of abstractive summaries for the XSum dataset. The dataset has crowdsourced 3 judgements for each of 500 x 5 document-system pairs. This will be a valuable resource to the abstractive summarization community.
### Supported Tasks and Leaderboards
* `summarization`: : The dataset can be used to train a model for Summarization,, which consists in summarizing a given document. Success on this task is typically measured by achieving a *high/low* [ROUGE Score](https://huggingface.co/metrics/rouge).
### Languages
The text in the dataset is in English which are abstractive summaries for the [XSum dataset](https://www.aclweb.org/anthology/D18-1206.pdf). The associated BCP-47 code is `en`.
## Dataset Structure
### Data Instances
##### Faithfulness annotations dataset
A typical data point consists of an ID referring to the news article(complete document), summary, and the hallucination span information.
An example from the XSum Faithfulness dataset looks as follows:
```
{
'bbcid': 34687720,
'hallucinated_span_end': 114,
'hallucinated_span_start': 1,
'hallucination_type': 1,
'summary': 'rory mcilroy will take a one-shot lead into the final round of the wgc-hsbc champions after carding a three-under',
'system': 'BERTS2S',
'worker_id': 'wid_0'
}
```
##### Factuality annotations dataset
A typical data point consists of an ID referring to the news article(complete document), summary, and whether the summary is factual or not.
An example from the XSum Factuality dataset looks as follows:
```
{
'bbcid': 29911712,
'is_factual': 0,
'summary': 'more than 50 pupils at a bristol academy have been sent home from school because of a lack of uniform.',
'system': 'BERTS2S',
'worker_id': 'wid_0'
}
```
### Data Fields
##### Faithfulness annotations dataset
Raters are shown the news article and the system summary, and are tasked with identifying and annotating the spans that aren't supported by the input article. The file contains the following columns:
- `bbcid`: Document id in the XSum corpus.
- `system`: Name of neural summarizer.
- `summary`: Summary generated by ‘system’.
- `hallucination_type`: Type of hallucination: intrinsic (0) or extrinsic (1)
- `hallucinated_span`: Hallucinated span in the ‘summary’.
- `hallucinated_span_start`: Index of the start of the hallucinated span.
- `hallucinated_span_end`: Index of the end of the hallucinated span.
- `worker_id`: Worker ID (one of 'wid_0', 'wid_1', 'wid_2')
The `hallucination_type` column has NULL value for some entries which have been replaced iwth `-1`.
##### Factuality annotations dataset
Raters are shown the news article and the hallucinated system summary, and are tasked with assessing the summary whether it is factual or not. The file contains the following columns:
- `bbcid1: Document id in the XSum corpus.
- `system`: Name of neural summarizer.
- `summary`: Summary generated by ‘system’.
- `is_factual`: Yes (1) or No (0)
- `worker_id`: Worker ID (one of 'wid_0', 'wid_1', 'wid_2')
The `is_factual` column has NULL value for some entries which have been replaced iwth `-1`.
### Data Splits
There is only a single split for both the Faithfulness annotations dataset and Factuality annotations dataset.
| | train |
|--------------------------|------:|
| Faithfulness annotations | 11185 |
| Factuality annotations | 5597 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/legalcode)
### Citation Information
```
@InProceedings{maynez_acl20,
author = "Joshua Maynez and Shashi Narayan and Bernd Bohnet and Ryan Thomas Mcdonald",
title = "On Faithfulness and Factuality in Abstractive Summarization",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
year = "2020",
pages = "1906--1919",
address = "Online",
}
```
### Contributions
Thanks to [@vineeths96](https://github.com/vineeths96) for adding this dataset. |
xtreme | ---
annotations_creators:
- found
language_creators:
- found
language:
- af
- ar
- bg
- bn
- de
- el
- en
- es
- et
- eu
- fa
- fi
- fr
- he
- hi
- hu
- id
- it
- ja
- jv
- ka
- kk
- ko
- ml
- mr
- ms
- my
- nl
- pt
- ru
- sw
- ta
- te
- th
- tl
- tr
- ur
- vi
- yo
- zh
license:
- apache-2.0
- cc-by-4.0
- cc-by-2.0
- cc-by-sa-4.0
- other
- cc-by-nc-4.0
multilinguality:
- multilingual
- translation
size_categories:
- n<1K
- 1K<n<10K
- 10K<n<100K
- 100K<n<1M
source_datasets:
- extended|xnli
- extended|paws-x
- extended|wikiann
- extended|xquad
- extended|mlqa
- extended|tydiqa
- extended|tatoeba
- extended|squad
task_categories:
- multiple-choice
- question-answering
- token-classification
- text-classification
- text-retrieval
- token-classification
task_ids:
- multiple-choice-qa
- extractive-qa
- open-domain-qa
- natural-language-inference
- named-entity-recognition
- part-of-speech
paperswithcode_id: xtreme
pretty_name: XTREME
configs:
- MLQA.ar.ar
- MLQA.ar.de
- MLQA.ar.en
- MLQA.ar.es
- MLQA.ar.hi
- MLQA.ar.vi
- MLQA.ar.zh
- MLQA.de.ar
- MLQA.de.de
- MLQA.de.en
- MLQA.de.es
- MLQA.de.hi
- MLQA.de.vi
- MLQA.de.zh
- MLQA.en.ar
- MLQA.en.de
- MLQA.en.en
- MLQA.en.es
- MLQA.en.hi
- MLQA.en.vi
- MLQA.en.zh
- MLQA.es.ar
- MLQA.es.de
- MLQA.es.en
- MLQA.es.es
- MLQA.es.hi
- MLQA.es.vi
- MLQA.es.zh
- MLQA.hi.ar
- MLQA.hi.de
- MLQA.hi.en
- MLQA.hi.es
- MLQA.hi.hi
- MLQA.hi.vi
- MLQA.hi.zh
- MLQA.vi.ar
- MLQA.vi.de
- MLQA.vi.en
- MLQA.vi.es
- MLQA.vi.hi
- MLQA.vi.vi
- MLQA.vi.zh
- MLQA.zh.ar
- MLQA.zh.de
- MLQA.zh.en
- MLQA.zh.es
- MLQA.zh.hi
- MLQA.zh.vi
- MLQA.zh.zh
- PAN-X.af
- PAN-X.ar
- PAN-X.bg
- PAN-X.bn
- PAN-X.de
- PAN-X.el
- PAN-X.en
- PAN-X.es
- PAN-X.et
- PAN-X.eu
- PAN-X.fa
- PAN-X.fi
- PAN-X.fr
- PAN-X.he
- PAN-X.hi
- PAN-X.hu
- PAN-X.id
- PAN-X.it
- PAN-X.ja
- PAN-X.jv
- PAN-X.ka
- PAN-X.kk
- PAN-X.ko
- PAN-X.ml
- PAN-X.mr
- PAN-X.ms
- PAN-X.my
- PAN-X.nl
- PAN-X.pt
- PAN-X.ru
- PAN-X.sw
- PAN-X.ta
- PAN-X.te
- PAN-X.th
- PAN-X.tl
- PAN-X.tr
- PAN-X.ur
- PAN-X.vi
- PAN-X.yo
- PAN-X.zh
- PAWS-X.de
- PAWS-X.en
- PAWS-X.es
- PAWS-X.fr
- PAWS-X.ja
- PAWS-X.ko
- PAWS-X.zh
- SQuAD
- XNLI
- XQuAD
- bucc18.de
- bucc18.fr
- bucc18.ru
- bucc18.zh
- tatoeba.afr
- tatoeba.ara
- tatoeba.ben
- tatoeba.bul
- tatoeba.cmn
- tatoeba.deu
- tatoeba.ell
- tatoeba.est
- tatoeba.eus
- tatoeba.fin
- tatoeba.fra
- tatoeba.heb
- tatoeba.hin
- tatoeba.hun
- tatoeba.ind
- tatoeba.ita
- tatoeba.jav
- tatoeba.jpn
- tatoeba.kat
- tatoeba.kaz
- tatoeba.kor
- tatoeba.mal
- tatoeba.mar
- tatoeba.nld
- tatoeba.pes
- tatoeba.por
- tatoeba.rus
- tatoeba.spa
- tatoeba.swh
- tatoeba.tam
- tatoeba.tel
- tatoeba.tgl
- tatoeba.tha
- tatoeba.tur
- tatoeba.urd
- tatoeba.vie
- tydiqa
- udpos.Afrikans
- udpos.Arabic
- udpos.Basque
- udpos.Bulgarian
- udpos.Chinese
- udpos.Dutch
- udpos.English
- udpos.Estonian
- udpos.Finnish
- udpos.French
- udpos.German
- udpos.Greek
- udpos.Hebrew
- udpos.Hindi
- udpos.Hungarian
- udpos.Indonesian
- udpos.Italian
- udpos.Japanese
- udpos.Kazakh
- udpos.Korean
- udpos.Marathi
- udpos.Persian
- udpos.Portuguese
- udpos.Russian
- udpos.Spanish
- udpos.Tagalog
- udpos.Tamil
- udpos.Telugu
- udpos.Thai
- udpos.Turkish
- udpos.Urdu
- udpos.Vietnamese
- udpos.Yoruba
language_bcp47:
- fa-IR
license_details: Licence Universal Dependencies v2.5
tags:
- parallel-sentence-retrieval
- paraphrase-identification
dataset_info:
- config_name: XNLI
features:
- name: language
dtype: string
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: gold_label
dtype: string
splits:
- name: test
num_bytes: 20359500
num_examples: 75150
- name: validation
num_bytes: 10049303
num_examples: 37350
download_size: 17865352
dataset_size: 30408803
- config_name: tydiqa
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 52948607
num_examples: 49881
- name: validation
num_bytes: 5006461
num_examples: 5077
download_size: 63621485
dataset_size: 57955068
- config_name: SQuAD
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 79317110
num_examples: 87599
- name: validation
num_bytes: 10472653
num_examples: 10570
download_size: 35142551
dataset_size: 89789763
- config_name: PAN-X.af
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 259709
num_examples: 1000
- name: test
num_bytes: 257204
num_examples: 1000
- name: train
num_bytes: 1321396
num_examples: 5000
download_size: 234008884
dataset_size: 1838309
- config_name: PAN-X.ar
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 1808303
num_examples: 10000
- name: test
num_bytes: 1811983
num_examples: 10000
- name: train
num_bytes: 3634136
num_examples: 20000
download_size: 234008884
dataset_size: 7254422
- config_name: PAN-X.bg
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2310314
num_examples: 10000
- name: test
num_bytes: 2306158
num_examples: 10000
- name: train
num_bytes: 4600773
num_examples: 20000
download_size: 234008884
dataset_size: 9217245
- config_name: PAN-X.bn
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 159088
num_examples: 1000
- name: test
num_bytes: 159282
num_examples: 1000
- name: train
num_bytes: 1568845
num_examples: 10000
download_size: 234008884
dataset_size: 1887215
- config_name: PAN-X.de
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2381565
num_examples: 10000
- name: test
num_bytes: 2377639
num_examples: 10000
- name: train
num_bytes: 4762352
num_examples: 20000
download_size: 234008884
dataset_size: 9521556
- config_name: PAN-X.el
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2533806
num_examples: 10000
- name: test
num_bytes: 2547594
num_examples: 10000
- name: train
num_bytes: 5063176
num_examples: 20000
download_size: 234008884
dataset_size: 10144576
- config_name: PAN-X.en
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 1920069
num_examples: 10000
- name: test
num_bytes: 1916220
num_examples: 10000
- name: train
num_bytes: 3823474
num_examples: 20000
download_size: 234008884
dataset_size: 7659763
- config_name: PAN-X.es
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 1592525
num_examples: 10000
- name: test
num_bytes: 1602291
num_examples: 10000
- name: train
num_bytes: 3199161
num_examples: 20000
download_size: 234008884
dataset_size: 6393977
- config_name: PAN-X.et
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2030160
num_examples: 10000
- name: test
num_bytes: 2021409
num_examples: 10000
- name: train
num_bytes: 3023211
num_examples: 15000
download_size: 234008884
dataset_size: 7074780
- config_name: PAN-X.eu
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2296335
num_examples: 10000
- name: test
num_bytes: 2249835
num_examples: 10000
- name: train
num_bytes: 2292327
num_examples: 10000
download_size: 234008884
dataset_size: 6838497
- config_name: PAN-X.fa
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 1782306
num_examples: 10000
- name: test
num_bytes: 1770284
num_examples: 10000
- name: train
num_bytes: 3529354
num_examples: 20000
download_size: 234008884
dataset_size: 7081944
- config_name: PAN-X.fi
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2131769
num_examples: 10000
- name: test
num_bytes: 2130665
num_examples: 10000
- name: train
num_bytes: 4273793
num_examples: 20000
download_size: 234008884
dataset_size: 8536227
- config_name: PAN-X.fr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 1664190
num_examples: 10000
- name: test
num_bytes: 1675785
num_examples: 10000
- name: train
num_bytes: 3335424
num_examples: 20000
download_size: 234008884
dataset_size: 6675399
- config_name: PAN-X.he
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2332760
num_examples: 10000
- name: test
num_bytes: 2318756
num_examples: 10000
- name: train
num_bytes: 4667100
num_examples: 20000
download_size: 234008884
dataset_size: 9318616
- config_name: PAN-X.hi
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 190671
num_examples: 1000
- name: test
num_bytes: 196190
num_examples: 1000
- name: train
num_bytes: 964212
num_examples: 5000
download_size: 234008884
dataset_size: 1351073
- config_name: PAN-X.hu
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2211851
num_examples: 10000
- name: test
num_bytes: 2249779
num_examples: 10000
- name: train
num_bytes: 4499914
num_examples: 20000
download_size: 234008884
dataset_size: 8961544
- config_name: PAN-X.id
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 1537979
num_examples: 10000
- name: test
num_bytes: 1536879
num_examples: 10000
- name: train
num_bytes: 3084007
num_examples: 20000
download_size: 234008884
dataset_size: 6158865
- config_name: PAN-X.it
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 1908529
num_examples: 10000
- name: test
num_bytes: 1928408
num_examples: 10000
- name: train
num_bytes: 3874663
num_examples: 20000
download_size: 234008884
dataset_size: 7711600
- config_name: PAN-X.ja
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 6323003
num_examples: 10000
- name: test
num_bytes: 6448960
num_examples: 10000
- name: train
num_bytes: 12670401
num_examples: 20000
download_size: 234008884
dataset_size: 25442364
- config_name: PAN-X.jv
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 14600
num_examples: 100
- name: test
num_bytes: 16917
num_examples: 100
- name: train
num_bytes: 16106
num_examples: 100
download_size: 234008884
dataset_size: 47623
- config_name: PAN-X.ka
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2806901
num_examples: 10000
- name: test
num_bytes: 2824641
num_examples: 10000
- name: train
num_bytes: 2777362
num_examples: 10000
download_size: 234008884
dataset_size: 8408904
- config_name: PAN-X.kk
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 238109
num_examples: 1000
- name: test
num_bytes: 236724
num_examples: 1000
- name: train
num_bytes: 240276
num_examples: 1000
download_size: 234008884
dataset_size: 715109
- config_name: PAN-X.ko
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2138167
num_examples: 10000
- name: test
num_bytes: 2138294
num_examples: 10000
- name: train
num_bytes: 4284733
num_examples: 20000
download_size: 234008884
dataset_size: 8561194
- config_name: PAN-X.ml
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 290755
num_examples: 1000
- name: test
num_bytes: 276926
num_examples: 1000
- name: train
num_bytes: 2865204
num_examples: 10000
download_size: 234008884
dataset_size: 3432885
- config_name: PAN-X.mr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 245358
num_examples: 1000
- name: test
num_bytes: 255904
num_examples: 1000
- name: train
num_bytes: 1248259
num_examples: 5000
download_size: 234008884
dataset_size: 1749521
- config_name: PAN-X.ms
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 147515
num_examples: 1000
- name: test
num_bytes: 147168
num_examples: 1000
- name: train
num_bytes: 2965048
num_examples: 20000
download_size: 234008884
dataset_size: 3259731
- config_name: PAN-X.my
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 40428
num_examples: 100
- name: test
num_bytes: 37366
num_examples: 100
- name: train
num_bytes: 32735
num_examples: 100
download_size: 234008884
dataset_size: 110529
- config_name: PAN-X.nl
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2016856
num_examples: 10000
- name: test
num_bytes: 2038638
num_examples: 10000
- name: train
num_bytes: 4062189
num_examples: 20000
download_size: 234008884
dataset_size: 8117683
- config_name: PAN-X.pt
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 1575141
num_examples: 10000
- name: test
num_bytes: 1562625
num_examples: 10000
- name: train
num_bytes: 3149283
num_examples: 20000
download_size: 234008884
dataset_size: 6287049
- config_name: PAN-X.ru
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 2053169
num_examples: 10000
- name: test
num_bytes: 2074145
num_examples: 10000
- name: train
num_bytes: 4121791
num_examples: 20000
download_size: 234008884
dataset_size: 8249105
- config_name: PAN-X.sw
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 136368
num_examples: 1000
- name: test
num_bytes: 140231
num_examples: 1000
- name: train
num_bytes: 135911
num_examples: 1000
download_size: 234008884
dataset_size: 412510
- config_name: PAN-X.ta
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 277625
num_examples: 1000
- name: test
num_bytes: 278114
num_examples: 1000
- name: train
num_bytes: 4122130
num_examples: 15000
download_size: 234008884
dataset_size: 4677869
- config_name: PAN-X.te
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 293281
num_examples: 1000
- name: test
num_bytes: 296963
num_examples: 1000
- name: train
num_bytes: 295410
num_examples: 1000
download_size: 234008884
dataset_size: 885654
- config_name: PAN-X.th
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 13262737
num_examples: 10000
- name: test
num_bytes: 13586928
num_examples: 10000
- name: train
num_bytes: 27133029
num_examples: 20000
download_size: 234008884
dataset_size: 53982694
- config_name: PAN-X.tl
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 114156
num_examples: 1000
- name: test
num_bytes: 117904
num_examples: 1000
- name: train
num_bytes: 1168717
num_examples: 10000
download_size: 234008884
dataset_size: 1400777
- config_name: PAN-X.tr
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 1915352
num_examples: 10000
- name: test
num_bytes: 1911503
num_examples: 10000
- name: train
num_bytes: 3779170
num_examples: 20000
download_size: 234008884
dataset_size: 7606025
- config_name: PAN-X.ur
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 152148
num_examples: 1000
- name: test
num_bytes: 151922
num_examples: 1000
- name: train
num_bytes: 3072276
num_examples: 20000
download_size: 234008884
dataset_size: 3376346
- config_name: PAN-X.vi
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 1565143
num_examples: 10000
- name: test
num_bytes: 1580216
num_examples: 10000
- name: train
num_bytes: 3153227
num_examples: 20000
download_size: 234008884
dataset_size: 6298586
- config_name: PAN-X.yo
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 13245
num_examples: 100
- name: test
num_bytes: 13533
num_examples: 100
- name: train
num_bytes: 14709
num_examples: 100
download_size: 234008884
dataset_size: 41487
- config_name: PAN-X.zh
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: langs
sequence: string
splits:
- name: validation
num_bytes: 4491325
num_examples: 10000
- name: test
num_bytes: 4363172
num_examples: 10000
- name: train
num_bytes: 8832051
num_examples: 20000
download_size: 234008884
dataset_size: 17686548
- config_name: MLQA.ar.ar
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 8368114
num_examples: 5335
- name: validation
num_bytes: 824108
num_examples: 517
download_size: 75719050
dataset_size: 9192222
- config_name: MLQA.ar.de
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 2183942
num_examples: 1649
- name: validation
num_bytes: 364837
num_examples: 207
download_size: 75719050
dataset_size: 2548779
- config_name: MLQA.ar.vi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 3290629
num_examples: 2047
- name: validation
num_bytes: 288446
num_examples: 163
download_size: 75719050
dataset_size: 3579075
- config_name: MLQA.ar.zh
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 3229872
num_examples: 1912
- name: validation
num_bytes: 340049
num_examples: 188
download_size: 75719050
dataset_size: 3569921
- config_name: MLQA.ar.en
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 8225662
num_examples: 5335
- name: validation
num_bytes: 810089
num_examples: 517
download_size: 75719050
dataset_size: 9035751
- config_name: MLQA.ar.es
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 3041378
num_examples: 1978
- name: validation
num_bytes: 228180
num_examples: 161
download_size: 75719050
dataset_size: 3269558
- config_name: MLQA.ar.hi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 3039396
num_examples: 1831
- name: validation
num_bytes: 281770
num_examples: 186
download_size: 75719050
dataset_size: 3321166
- config_name: MLQA.de.ar
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1620006
num_examples: 1649
- name: validation
num_bytes: 200174
num_examples: 207
download_size: 75719050
dataset_size: 1820180
- config_name: MLQA.de.de
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 4366102
num_examples: 4517
- name: validation
num_bytes: 488367
num_examples: 512
download_size: 75719050
dataset_size: 4854469
- config_name: MLQA.de.vi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1688483
num_examples: 1675
- name: validation
num_bytes: 216075
num_examples: 182
download_size: 75719050
dataset_size: 1904558
- config_name: MLQA.de.zh
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1679180
num_examples: 1621
- name: validation
num_bytes: 184318
num_examples: 190
download_size: 75719050
dataset_size: 1863498
- config_name: MLQA.de.en
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 4343144
num_examples: 4517
- name: validation
num_bytes: 485894
num_examples: 512
download_size: 75719050
dataset_size: 4829038
- config_name: MLQA.de.es
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1716615
num_examples: 1776
- name: validation
num_bytes: 170582
num_examples: 196
download_size: 75719050
dataset_size: 1887197
- config_name: MLQA.de.hi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1371074
num_examples: 1430
- name: validation
num_bytes: 153871
num_examples: 163
download_size: 75719050
dataset_size: 1524945
- config_name: MLQA.vi.ar
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 3205185
num_examples: 2047
- name: validation
num_bytes: 230335
num_examples: 163
download_size: 75719050
dataset_size: 3435520
- config_name: MLQA.vi.de
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 2227033
num_examples: 1675
- name: validation
num_bytes: 277185
num_examples: 182
download_size: 75719050
dataset_size: 2504218
- config_name: MLQA.vi.vi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 7922085
num_examples: 5495
- name: validation
num_bytes: 726518
num_examples: 511
download_size: 75719050
dataset_size: 8648603
- config_name: MLQA.vi.zh
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 2989660
num_examples: 1943
- name: validation
num_bytes: 269389
num_examples: 184
download_size: 75719050
dataset_size: 3259049
- config_name: MLQA.vi.en
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 7843431
num_examples: 5495
- name: validation
num_bytes: 719273
num_examples: 511
download_size: 75719050
dataset_size: 8562704
- config_name: MLQA.vi.es
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 2866597
num_examples: 2018
- name: validation
num_bytes: 283461
num_examples: 189
download_size: 75719050
dataset_size: 3150058
- config_name: MLQA.vi.hi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 2776664
num_examples: 1947
- name: validation
num_bytes: 255007
num_examples: 177
download_size: 75719050
dataset_size: 3031671
- config_name: MLQA.zh.ar
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1731483
num_examples: 1912
- name: validation
num_bytes: 175349
num_examples: 188
download_size: 75719050
dataset_size: 1906832
- config_name: MLQA.zh.de
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1390018
num_examples: 1621
- name: validation
num_bytes: 174605
num_examples: 190
download_size: 75719050
dataset_size: 1564623
- config_name: MLQA.zh.vi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1806186
num_examples: 1943
- name: validation
num_bytes: 172934
num_examples: 184
download_size: 75719050
dataset_size: 1979120
- config_name: MLQA.zh.zh
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 4422350
num_examples: 5137
- name: validation
num_bytes: 443810
num_examples: 504
download_size: 75719050
dataset_size: 4866160
- config_name: MLQA.zh.en
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 4450985
num_examples: 5137
- name: validation
num_bytes: 446868
num_examples: 504
download_size: 75719050
dataset_size: 4897853
- config_name: MLQA.zh.es
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1736283
num_examples: 1947
- name: validation
num_bytes: 138073
num_examples: 161
download_size: 75719050
dataset_size: 1874356
- config_name: MLQA.zh.hi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1578219
num_examples: 1767
- name: validation
num_bytes: 184401
num_examples: 189
download_size: 75719050
dataset_size: 1762620
- config_name: MLQA.en.ar
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 6739219
num_examples: 5335
- name: validation
num_bytes: 630843
num_examples: 517
download_size: 75719050
dataset_size: 7370062
- config_name: MLQA.en.de
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 5056722
num_examples: 4517
- name: validation
num_bytes: 594936
num_examples: 512
download_size: 75719050
dataset_size: 5651658
- config_name: MLQA.en.vi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 7056698
num_examples: 5495
- name: validation
num_bytes: 640646
num_examples: 511
download_size: 75719050
dataset_size: 7697344
- config_name: MLQA.en.zh
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 6539307
num_examples: 5137
- name: validation
num_bytes: 608444
num_examples: 504
download_size: 75719050
dataset_size: 7147751
- config_name: MLQA.en.en
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 14004648
num_examples: 11590
- name: validation
num_bytes: 1329112
num_examples: 1148
download_size: 75719050
dataset_size: 15333760
- config_name: MLQA.en.es
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 6179249
num_examples: 5253
- name: validation
num_bytes: 555462
num_examples: 500
download_size: 75719050
dataset_size: 6734711
- config_name: MLQA.en.hi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 6378866
num_examples: 4918
- name: validation
num_bytes: 623171
num_examples: 507
download_size: 75719050
dataset_size: 7002037
- config_name: MLQA.es.ar
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1740282
num_examples: 1978
- name: validation
num_bytes: 148649
num_examples: 161
download_size: 75719050
dataset_size: 1888931
- config_name: MLQA.es.de
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1404025
num_examples: 1776
- name: validation
num_bytes: 144186
num_examples: 196
download_size: 75719050
dataset_size: 1548211
- config_name: MLQA.es.vi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1747969
num_examples: 2018
- name: validation
num_bytes: 176841
num_examples: 189
download_size: 75719050
dataset_size: 1924810
- config_name: MLQA.es.zh
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1678451
num_examples: 1947
- name: validation
num_bytes: 126646
num_examples: 161
download_size: 75719050
dataset_size: 1805097
- config_name: MLQA.es.en
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 4362737
num_examples: 5253
- name: validation
num_bytes: 419068
num_examples: 500
download_size: 75719050
dataset_size: 4781805
- config_name: MLQA.es.es
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 4394333
num_examples: 5253
- name: validation
num_bytes: 422071
num_examples: 500
download_size: 75719050
dataset_size: 4816404
- config_name: MLQA.es.hi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 1523523
num_examples: 1723
- name: validation
num_bytes: 181834
num_examples: 187
download_size: 75719050
dataset_size: 1705357
- config_name: MLQA.hi.ar
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 4445589
num_examples: 1831
- name: validation
num_bytes: 410424
num_examples: 186
download_size: 75719050
dataset_size: 4856013
- config_name: MLQA.hi.de
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 3022864
num_examples: 1430
- name: validation
num_bytes: 301713
num_examples: 163
download_size: 75719050
dataset_size: 3324577
- config_name: MLQA.hi.vi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 4743484
num_examples: 1947
- name: validation
num_bytes: 419106
num_examples: 177
download_size: 75719050
dataset_size: 5162590
- config_name: MLQA.hi.zh
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 4354875
num_examples: 1767
- name: validation
num_bytes: 424246
num_examples: 189
download_size: 75719050
dataset_size: 4779121
- config_name: MLQA.hi.en
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 11449261
num_examples: 4918
- name: validation
num_bytes: 1097857
num_examples: 507
download_size: 75719050
dataset_size: 12547118
- config_name: MLQA.hi.es
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 3862229
num_examples: 1723
- name: validation
num_bytes: 420402
num_examples: 187
download_size: 75719050
dataset_size: 4282631
- config_name: MLQA.hi.hi
features:
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: test
num_bytes: 11810475
num_examples: 4918
- name: validation
num_bytes: 1136784
num_examples: 507
download_size: 75719050
dataset_size: 12947259
- config_name: XQuAD.ar
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 1722799
num_examples: 1190
download_size: 1582988
dataset_size: 1722799
- config_name: XQuAD.de
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 1283301
num_examples: 1190
download_size: 669810
dataset_size: 1283301
- config_name: XQuAD.vi
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 1477239
num_examples: 1190
download_size: 911401
dataset_size: 1477239
- config_name: XQuAD.zh
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 984241
num_examples: 1190
download_size: 808652
dataset_size: 984241
- config_name: XQuAD.en
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 1116123
num_examples: 1190
download_size: 609383
dataset_size: 1116123
- config_name: XQuAD.es
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 1273499
num_examples: 1190
download_size: 684322
dataset_size: 1273499
- config_name: XQuAD.hi
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 2682975
num_examples: 1190
download_size: 1680538
dataset_size: 2682975
- config_name: XQuAD.el
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 2206690
num_examples: 1190
download_size: 1918889
dataset_size: 2206690
- config_name: XQuAD.ru
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 2136990
num_examples: 1190
download_size: 1896368
dataset_size: 2136990
- config_name: XQuAD.th
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 2854959
num_examples: 1190
download_size: 1809143
dataset_size: 2854959
- config_name: XQuAD.tr
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: validation
num_bytes: 1210763
num_examples: 1190
download_size: 729506
dataset_size: 1210763
- config_name: bucc18.de
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 248707
num_examples: 1038
- name: test
num_bytes: 2325701
num_examples: 9580
download_size: 30719200
dataset_size: 2574408
- config_name: bucc18.fr
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 212513
num_examples: 929
- name: test
num_bytes: 2082419
num_examples: 9086
download_size: 22706544
dataset_size: 2294932
- config_name: bucc18.zh
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 55739
num_examples: 257
- name: test
num_bytes: 415925
num_examples: 1899
download_size: 7114794
dataset_size: 471664
- config_name: bucc18.ru
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 761347
num_examples: 2374
- name: test
num_bytes: 4641678
num_examples: 14435
download_size: 41354312
dataset_size: 5403025
- config_name: PAWS-X.de
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: string
splits:
- name: validation
num_bytes: 500009
num_examples: 2000
- name: test
num_bytes: 510194
num_examples: 2000
- name: train
num_bytes: 12451883
num_examples: 49380
download_size: 30282057
dataset_size: 13462086
- config_name: PAWS-X.en
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: string
splits:
- name: validation
num_bytes: 478291
num_examples: 2000
- name: test
num_bytes: 480738
num_examples: 2000
- name: train
num_bytes: 11827719
num_examples: 49175
download_size: 30282057
dataset_size: 12786748
- config_name: PAWS-X.es
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: string
splits:
- name: validation
num_bytes: 494069
num_examples: 1961
- name: test
num_bytes: 505047
num_examples: 2000
- name: train
num_bytes: 12462107
num_examples: 49401
download_size: 30282057
dataset_size: 13461223
- config_name: PAWS-X.fr
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: string
splits:
- name: validation
num_bytes: 516111
num_examples: 1988
- name: test
num_bytes: 521031
num_examples: 2000
- name: train
num_bytes: 12948512
num_examples: 49399
download_size: 30282057
dataset_size: 13985654
- config_name: PAWS-X.ja
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: string
splits:
- name: validation
num_bytes: 647774
num_examples: 2000
- name: test
num_bytes: 654640
num_examples: 2000
- name: train
num_bytes: 14695653
num_examples: 49401
download_size: 30282057
dataset_size: 15998067
- config_name: PAWS-X.ko
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: string
splits:
- name: validation
num_bytes: 540787
num_examples: 2000
- name: test
num_bytes: 547978
num_examples: 1999
- name: train
num_bytes: 13542657
num_examples: 49164
download_size: 30282057
dataset_size: 14631422
- config_name: PAWS-X.zh
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype: string
splits:
- name: validation
num_bytes: 459120
num_examples: 2000
- name: test
num_bytes: 460638
num_examples: 2000
- name: train
num_bytes: 10469712
num_examples: 49401
download_size: 30282057
dataset_size: 11389470
- config_name: tatoeba.afr
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 179651
num_examples: 1000
download_size: 59635
dataset_size: 179651
- config_name: tatoeba.ara
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 192666
num_examples: 1000
download_size: 72650
dataset_size: 192666
- config_name: tatoeba.ben
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 211719
num_examples: 1000
download_size: 91703
dataset_size: 211719
- config_name: tatoeba.bul
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 222295
num_examples: 1000
download_size: 102279
dataset_size: 222295
- config_name: tatoeba.deu
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 225583
num_examples: 1000
download_size: 105567
dataset_size: 225583
- config_name: tatoeba.cmn
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 188947
num_examples: 1000
download_size: 68931
dataset_size: 188947
- config_name: tatoeba.ell
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 198977
num_examples: 1000
download_size: 78961
dataset_size: 198977
- config_name: tatoeba.est
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 179744
num_examples: 1000
download_size: 59728
dataset_size: 179744
- config_name: tatoeba.eus
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 186084
num_examples: 1000
download_size: 66068
dataset_size: 186084
- config_name: tatoeba.fin
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 195685
num_examples: 1000
download_size: 75669
dataset_size: 195685
- config_name: tatoeba.fra
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 200034
num_examples: 1000
download_size: 80018
dataset_size: 200034
- config_name: tatoeba.heb
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 203516
num_examples: 1000
download_size: 83500
dataset_size: 203516
- config_name: tatoeba.hin
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 242574
num_examples: 1000
download_size: 122558
dataset_size: 242574
- config_name: tatoeba.hun
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 188905
num_examples: 1000
download_size: 68889
dataset_size: 188905
- config_name: tatoeba.ind
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 194860
num_examples: 1000
download_size: 74844
dataset_size: 194860
- config_name: tatoeba.ita
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 185849
num_examples: 1000
download_size: 65833
dataset_size: 185849
- config_name: tatoeba.jav
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 38529
num_examples: 205
download_size: 13913
dataset_size: 38529
- config_name: tatoeba.jpn
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 213099
num_examples: 1000
download_size: 93083
dataset_size: 213099
- config_name: tatoeba.kat
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 161696
num_examples: 746
download_size: 72160
dataset_size: 161696
- config_name: tatoeba.kaz
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 116194
num_examples: 575
download_size: 47178
dataset_size: 116194
- config_name: tatoeba.kor
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 199155
num_examples: 1000
download_size: 79139
dataset_size: 199155
- config_name: tatoeba.mal
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 177173
num_examples: 687
download_size: 94717
dataset_size: 177173
- config_name: tatoeba.mar
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 220558
num_examples: 1000
download_size: 100542
dataset_size: 220558
- config_name: tatoeba.nld
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 193279
num_examples: 1000
download_size: 73263
dataset_size: 193279
- config_name: tatoeba.pes
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 213735
num_examples: 1000
download_size: 93719
dataset_size: 213735
- config_name: tatoeba.por
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 195201
num_examples: 1000
download_size: 75185
dataset_size: 195201
- config_name: tatoeba.rus
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 212488
num_examples: 1000
download_size: 92472
dataset_size: 212488
- config_name: tatoeba.spa
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 192282
num_examples: 1000
download_size: 72266
dataset_size: 192282
- config_name: tatoeba.swh
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 67283
num_examples: 390
download_size: 20467
dataset_size: 67283
- config_name: tatoeba.tam
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 76297
num_examples: 307
download_size: 39441
dataset_size: 76297
- config_name: tatoeba.tel
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 53239
num_examples: 234
download_size: 25143
dataset_size: 53239
- config_name: tatoeba.tgl
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 188154
num_examples: 1000
download_size: 68138
dataset_size: 188154
- config_name: tatoeba.tha
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 128974
num_examples: 548
download_size: 63198
dataset_size: 128974
- config_name: tatoeba.tur
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 191901
num_examples: 1000
download_size: 71885
dataset_size: 191901
- config_name: tatoeba.urd
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 208728
num_examples: 1000
download_size: 88712
dataset_size: 208728
- config_name: tatoeba.vie
features:
- name: source_sentence
dtype: string
- name: target_sentence
dtype: string
- name: source_lang
dtype: string
- name: target_lang
dtype: string
splits:
- name: validation
num_bytes: 211423
num_examples: 1000
download_size: 91407
dataset_size: 211423
- config_name: udpos.Afrikaans
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 91302
num_examples: 194
- name: test
num_bytes: 174256
num_examples: 425
- name: train
num_bytes: 586382
num_examples: 1315
download_size: 355216681
dataset_size: 851940
- config_name: udpos.Arabic
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 593662
num_examples: 909
- name: test
num_bytes: 973834
num_examples: 1680
- name: train
num_bytes: 4453694
num_examples: 6075
download_size: 355216681
dataset_size: 6021190
- config_name: udpos.Basque
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 438683
num_examples: 1798
- name: test
num_bytes: 444656
num_examples: 1799
- name: train
num_bytes: 1327725
num_examples: 5396
download_size: 355216681
dataset_size: 2211064
- config_name: udpos.Bulgarian
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 347129
num_examples: 1115
- name: test
num_bytes: 339959
num_examples: 1116
- name: train
num_bytes: 2689779
num_examples: 8907
download_size: 355216681
dataset_size: 3376867
- config_name: udpos.Dutch
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 393604
num_examples: 1394
- name: test
num_bytes: 397916
num_examples: 1471
- name: train
num_bytes: 4518018
num_examples: 18051
download_size: 355216681
dataset_size: 5309538
- config_name: udpos.English
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 1042052
num_examples: 3974
- name: test
num_bytes: 1421160
num_examples: 5440
- name: train
num_bytes: 6225545
num_examples: 21253
download_size: 355216681
dataset_size: 8688757
- config_name: udpos.Estonian
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 814183
num_examples: 3125
- name: test
num_bytes: 1065713
num_examples: 3760
- name: train
num_bytes: 6614929
num_examples: 25749
download_size: 355216681
dataset_size: 8494825
- config_name: udpos.Finnish
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 656658
num_examples: 3239
- name: test
num_bytes: 1025738
num_examples: 4422
- name: train
num_bytes: 5613742
num_examples: 27198
download_size: 355216681
dataset_size: 7296138
- config_name: udpos.French
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 1294108
num_examples: 5979
- name: test
num_bytes: 1731061
num_examples: 9465
- name: train
num_bytes: 10118993
num_examples: 47308
download_size: 355216681
dataset_size: 13144162
- config_name: udpos.German
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 6044862
num_examples: 19233
- name: test
num_bytes: 7345899
num_examples: 22458
- name: train
num_bytes: 54773981
num_examples: 166849
download_size: 355216681
dataset_size: 68164742
- config_name: udpos.Greek
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 1062459
num_examples: 2559
- name: test
num_bytes: 1028677
num_examples: 2809
- name: train
num_bytes: 8932140
num_examples: 28152
download_size: 355216681
dataset_size: 11023276
- config_name: udpos.Hebrew
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 210025
num_examples: 484
- name: test
num_bytes: 223877
num_examples: 491
- name: train
num_bytes: 2505703
num_examples: 5241
download_size: 355216681
dataset_size: 2939605
- config_name: udpos.Hindi
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 839714
num_examples: 1659
- name: test
num_bytes: 1400237
num_examples: 2684
- name: train
num_bytes: 6690274
num_examples: 13304
download_size: 355216681
dataset_size: 8930225
- config_name: udpos.Hungarian
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 215891
num_examples: 441
- name: test
num_bytes: 193740
num_examples: 449
- name: train
num_bytes: 372238
num_examples: 910
download_size: 355216681
dataset_size: 781869
- config_name: udpos.Indonesian
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 220875
num_examples: 559
- name: test
num_bytes: 557113
num_examples: 1557
- name: train
num_bytes: 1710690
num_examples: 4477
download_size: 355216681
dataset_size: 2488678
- config_name: udpos.Italian
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 989008
num_examples: 2278
- name: test
num_bytes: 1337881
num_examples: 3518
- name: train
num_bytes: 11299329
num_examples: 29685
download_size: 355216681
dataset_size: 13626218
- config_name: udpos.Japanese
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 200368
num_examples: 511
- name: test
num_bytes: 928914
num_examples: 2372
- name: train
num_bytes: 2792963
num_examples: 7125
download_size: 355216681
dataset_size: 3922245
- config_name: udpos.Kazakh
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: test
num_bytes: 228936
num_examples: 1047
- name: train
num_bytes: 11450
num_examples: 31
download_size: 355216681
dataset_size: 240386
- config_name: udpos.Korean
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 782599
num_examples: 3016
- name: test
num_bytes: 1162551
num_examples: 4276
- name: train
num_bytes: 7341303
num_examples: 27410
download_size: 355216681
dataset_size: 9286453
- config_name: udpos.Chinese
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 594460
num_examples: 3038
- name: test
num_bytes: 1236063
num_examples: 5528
- name: train
num_bytes: 4218915
num_examples: 18998
download_size: 355216681
dataset_size: 6049438
- config_name: udpos.Marathi
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 8509
num_examples: 46
- name: test
num_bytes: 7883
num_examples: 47
- name: train
num_bytes: 59035
num_examples: 373
download_size: 355216681
dataset_size: 75427
- config_name: udpos.Persian
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 317065
num_examples: 599
- name: test
num_bytes: 320695
num_examples: 600
- name: train
num_bytes: 2400788
num_examples: 4798
download_size: 355216681
dataset_size: 3038548
- config_name: udpos.Portuguese
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 712409
num_examples: 1770
- name: test
num_bytes: 1082594
num_examples: 2681
- name: train
num_bytes: 7669580
num_examples: 17992
download_size: 355216681
dataset_size: 9464583
- config_name: udpos.Russian
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 3457043
num_examples: 9960
- name: test
num_bytes: 4236717
num_examples: 11336
- name: train
num_bytes: 24230182
num_examples: 67435
download_size: 355216681
dataset_size: 31923942
- config_name: udpos.Spanish
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 1498777
num_examples: 3054
- name: test
num_bytes: 1476512
num_examples: 3147
- name: train
num_bytes: 13858442
num_examples: 28492
download_size: 355216681
dataset_size: 16833731
- config_name: udpos.Tagalog
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: test
num_bytes: 5165
num_examples: 55
download_size: 355216681
dataset_size: 5165
- config_name: udpos.Tamil
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 40043
num_examples: 80
- name: test
num_bytes: 62378
num_examples: 120
- name: train
num_bytes: 202608
num_examples: 400
download_size: 355216681
dataset_size: 305029
- config_name: udpos.Telugu
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 18002
num_examples: 131
- name: test
num_bytes: 19587
num_examples: 146
- name: train
num_bytes: 138061
num_examples: 1051
download_size: 355216681
dataset_size: 175650
- config_name: udpos.Thai
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: test
num_bytes: 561348
num_examples: 1000
download_size: 355216681
dataset_size: 561348
- config_name: udpos.Turkish
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 186467
num_examples: 988
- name: test
num_bytes: 827394
num_examples: 4785
- name: train
num_bytes: 704417
num_examples: 3664
download_size: 355216681
dataset_size: 1718278
- config_name: udpos.Urdu
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 284273
num_examples: 552
- name: test
num_bytes: 288565
num_examples: 535
- name: train
num_bytes: 2107374
num_examples: 4043
download_size: 355216681
dataset_size: 2680212
- config_name: udpos.Vietnamese
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: validation
num_bytes: 206200
num_examples: 800
- name: test
num_bytes: 214075
num_examples: 800
- name: train
num_bytes: 367347
num_examples: 1400
download_size: 355216681
dataset_size: 787622
- config_name: udpos.Yoruba
features:
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: test
num_bytes: 44668
num_examples: 100
download_size: 355216681
dataset_size: 44668
---
# Dataset Card for "xtreme"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/google-research/xtreme](https://github.com/google-research/xtreme)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 15.88 GB
- **Size of the generated dataset:** 1.08 GB
- **Total amount of disk used:** 16.96 GB
### Dataset Summary
The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and
2,500 dev pairs for the MultiNLI corpus. The pairs are annotated with textual entailment and translated into
14 languages: French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili and Urdu. This results in 112.5k annotated pairs. Each premise can be associated with the
corresponding hypothesis in the 15 languages, summing up to more than 1.5M combinations. The corpus is made to
evaluate how to perform inference in any language (including low-resources ones like Swahili or Urdu) when only
English NLI data is available at training time. One solution is cross-lingual sentence encoding, for which XNLI
is an evaluation benchmark.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### MLQA.ar.ar
- **Size of downloaded dataset files:** 75.72 MB
- **Size of the generated dataset:** 9.20 MB
- **Total amount of disk used:** 84.91 MB
An example of 'validation' looks as follows.
```
```
#### MLQA.ar.de
- **Size of downloaded dataset files:** 75.72 MB
- **Size of the generated dataset:** 2.55 MB
- **Total amount of disk used:** 78.27 MB
An example of 'validation' looks as follows.
```
```
#### MLQA.ar.en
- **Size of downloaded dataset files:** 75.72 MB
- **Size of the generated dataset:** 9.04 MB
- **Total amount of disk used:** 84.76 MB
An example of 'validation' looks as follows.
```
```
#### MLQA.ar.es
- **Size of downloaded dataset files:** 75.72 MB
- **Size of the generated dataset:** 3.27 MB
- **Total amount of disk used:** 78.99 MB
An example of 'validation' looks as follows.
```
```
#### MLQA.ar.hi
- **Size of downloaded dataset files:** 75.72 MB
- **Size of the generated dataset:** 3.32 MB
- **Total amount of disk used:** 79.04 MB
An example of 'validation' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### MLQA.ar.ar
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `answer_start`: a `int32` feature.
- `text`: a `string` feature.
#### MLQA.ar.de
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `answer_start`: a `int32` feature.
- `text`: a `string` feature.
#### MLQA.ar.en
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `answer_start`: a `int32` feature.
- `text`: a `string` feature.
#### MLQA.ar.es
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `answer_start`: a `int32` feature.
- `text`: a `string` feature.
#### MLQA.ar.hi
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `answer_start`: a `int32` feature.
- `text`: a `string` feature.
### Data Splits
| name |validation|test|
|----------|---------:|---:|
|MLQA.ar.ar| 517|5335|
|MLQA.ar.de| 207|1649|
|MLQA.ar.en| 517|5335|
|MLQA.ar.es| 161|1978|
|MLQA.ar.hi| 186|1831|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{conneau2018xnli,
author = {Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin},
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing},
year = {2018},
publisher = {Association for Computational Linguistics},
location = {Brussels, Belgium},
}
@article{hu2020xtreme,
author = {Junjie Hu and Sebastian Ruder and Aditya Siddhant and Graham Neubig and Orhan Firat and Melvin Johnson},
title = {XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization},
journal = {CoRR},
volume = {abs/2003.11080},
year = {2020},
archivePrefix = {arXiv},
eprint = {2003.11080}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@jplu](https://github.com/jplu), [@lewtun](https://github.com/lewtun), [@lvwerra](https://github.com/lvwerra), [@lhoestq](https://github.com/lhoestq), [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset. |
yahoo_answers_qa | ---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-yahoo-webscope-l6
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: null
pretty_name: YahooAnswersQa
dataset_info:
features:
- name: id
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
- name: nbestanswers
sequence: string
- name: main_category
dtype: string
config_name: yahoo_answers_qa
splits:
- name: train
num_bytes: 138540510
num_examples: 87362
download_size: 49411220
dataset_size: 138540510
---
# Dataset Card for YahooAnswersQa
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Add homepage URL here if available (unless it's a GitHub repository)]()
- **Repository:** [If the dataset is hosted on github or has a github homepage, add URL here]()
- **Paper:** [If the dataset was introduced by a paper or there was a paper written describing the dataset, add URL here (landing page for Arxiv paper preferred)]()
- **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
- **Point of Contact:** [If known, name and email of at least one person the reader can contact for questions about the dataset.]()
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |
yahoo_answers_topics | ---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- extended|other-yahoo-answers-corpus
task_categories:
- text-classification
task_ids:
- topic-classification
pretty_name: YahooAnswersTopics
dataset_info:
features:
- name: id
dtype: int32
- name: topic
dtype:
class_label:
names:
'0': Society & Culture
'1': Science & Mathematics
'2': Health
'3': Education & Reference
'4': Computers & Internet
'5': Sports
'6': Business & Finance
'7': Entertainment & Music
'8': Family & Relationships
'9': Politics & Government
- name: question_title
dtype: string
- name: question_content
dtype: string
- name: best_answer
dtype: string
config_name: yahoo_answers_topics
splits:
- name: train
num_bytes: 760460695
num_examples: 1400000
- name: test
num_bytes: 32661362
num_examples: 60000
download_size: 319476345
dataset_size: 793122057
train-eval-index:
- config: yahoo_answers_topics
task: text-classification
task_id: multi_class_classification
splits:
train_split: train
eval_split: test
col_mapping:
question_content: text
topic: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
---
# Dataset Card for "Yahoo Answers Topics"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Add homepage URL here if available (unless it's a GitHub repository)]()
- **Repository:** https://github.com/LC-John/Yahoo-Answers-Topic-Classification-Dataset
- **Paper:** [If the dataset was introduced by a paper or there was a paper written describing the dataset, add URL here (landing page for Arxiv paper preferred)]()
- **Leaderboard:** [If the dataset supports an active leaderboard, add link here]()
- **Point of Contact:** [If known, name and email of at least one person the reader can contact for questions about the dataset.]()
### Dataset Summary
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset. |
yelp_polarity | ---
language:
- en
pretty_name: YelpPolarity
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': '1'
'1': '2'
config_name: plain_text
splits:
- name: train
num_bytes: 413558837
num_examples: 560000
- name: test
num_bytes: 27962097
num_examples: 38000
download_size: 166373201
dataset_size: 441520934
train-eval-index:
- config: plain_text
task: text-classification
task_id: binary_classification
splits:
train_split: train
eval_split: test
col_mapping:
text: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 binary
args:
average: binary
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
---
# Dataset Card for "yelp_polarity"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://course.fast.ai/datasets](https://course.fast.ai/datasets)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 166.38 MB
- **Size of the generated dataset:** 441.74 MB
- **Total amount of disk used:** 608.12 MB
### Dataset Summary
Large Yelp Review Dataset.
This is a dataset for binary sentiment classification. We provide a set of 560,000 highly polar yelp reviews for training, and 38,000 for testing.
ORIGIN
The Yelp reviews dataset consists of reviews from Yelp. It is extracted
from the Yelp Dataset Challenge 2015 data. For more information, please
refer to http://www.yelp.com/dataset_challenge
The Yelp reviews polarity dataset is constructed by
Xiang Zhang (xiang.zhang@nyu.edu) from the above dataset.
It is first used as a text classification benchmark in the following paper:
Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks
for Text Classification. Advances in Neural Information Processing Systems 28
(NIPS 2015).
DESCRIPTION
The Yelp reviews polarity dataset is constructed by considering stars 1 and 2
negative, and 3 and 4 positive. For each polarity 280,000 training samples and
19,000 testing samples are take randomly. In total there are 560,000 trainig
samples and 38,000 testing samples. Negative polarity is class 1,
and positive class 2.
The files train.csv and test.csv contain all the training samples as
comma-sparated values. There are 2 columns in them, corresponding to class
index (1 and 2) and review text. The review texts are escaped using double
quotes ("), and any internal double quote is escaped by 2 double quotes ("").
New lines are escaped by a backslash followed with an "n" character,
that is "
".
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### plain_text
- **Size of downloaded dataset files:** 166.38 MB
- **Size of the generated dataset:** 441.74 MB
- **Total amount of disk used:** 608.12 MB
An example of 'train' looks as follows.
```
This example was too long and was cropped:
{
"label": 0,
"text": "\"Unfortunately, the frustration of being Dr. Goldberg's patient is a repeat of the experience I've had with so many other doctor..."
}
```
### Data Fields
The data fields are the same among all splits.
#### plain_text
- `text`: a `string` feature.
- `label`: a classification label, with possible values including `1` (0), `2` (1).
### Data Splits
| name |train |test |
|----------|-----:|----:|
|plain_text|560000|38000|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@article{zhangCharacterlevelConvolutionalNetworks2015,
archivePrefix = {arXiv},
eprinttype = {arxiv},
eprint = {1509.01626},
primaryClass = {cs},
title = {Character-Level {{Convolutional Networks}} for {{Text Classification}}},
abstract = {This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.},
journal = {arXiv:1509.01626 [cs]},
author = {Zhang, Xiang and Zhao, Junbo and LeCun, Yann},
month = sep,
year = {2015},
}
```
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@julien-c](https://github.com/julien-c) for adding this dataset. |
yelp_review_full | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: YelpReviewFull
license_details: yelp-licence
dataset_info:
features:
- name: label
dtype:
class_label:
names:
'0': 1 star
'1': 2 star
'2': 3 stars
'3': 4 stars
'4': 5 stars
- name: text
dtype: string
config_name: yelp_review_full
splits:
- name: train
num_bytes: 483811554
num_examples: 650000
- name: test
num_bytes: 37271188
num_examples: 50000
download_size: 196146755
dataset_size: 521082742
train-eval-index:
- config: yelp_review_full
task: text-classification
task_id: multi_class_classification
splits:
train_split: train
eval_split: test
col_mapping:
text: text
label: target
metrics:
- type: accuracy
name: Accuracy
- type: f1
name: F1 macro
args:
average: macro
- type: f1
name: F1 micro
args:
average: micro
- type: f1
name: F1 weighted
args:
average: weighted
- type: precision
name: Precision macro
args:
average: macro
- type: precision
name: Precision micro
args:
average: micro
- type: precision
name: Precision weighted
args:
average: weighted
- type: recall
name: Recall macro
args:
average: macro
- type: recall
name: Recall micro
args:
average: micro
- type: recall
name: Recall weighted
args:
average: weighted
---
---
# Dataset Card for YelpReviewFull
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Yelp](https://www.yelp.com/dataset)
- **Repository:** [Crepe](https://github.com/zhangxiangxiao/Crepe)
- **Paper:** [Character-level Convolutional Networks for Text Classification](https://arxiv.org/abs/1509.01626)
- **Point of Contact:** [Xiang Zhang](mailto:xiang.zhang@nyu.edu)
### Dataset Summary
The Yelp reviews dataset consists of reviews from Yelp.
It is extracted from the Yelp Dataset Challenge 2015 data.
### Supported Tasks and Leaderboards
- `text-classification`, `sentiment-classification`: The dataset is mainly used for text classification: given the text, predict the sentiment.
### Languages
The reviews were mainly written in english.
## Dataset Structure
### Data Instances
A typical data point, comprises of a text and the corresponding label.
An example from the YelpReviewFull test set looks as follows:
```
{
'label': 0,
'text': 'I got \'new\' tires from them and within two weeks got a flat. I took my car to a local mechanic to see if i could get the hole patched, but they said the reason I had a flat was because the previous patch had blown - WAIT, WHAT? I just got the tire and never needed to have it patched? This was supposed to be a new tire. \\nI took the tire over to Flynn\'s and they told me that someone punctured my tire, then tried to patch it. So there are resentful tire slashers? I find that very unlikely. After arguing with the guy and telling him that his logic was far fetched he said he\'d give me a new tire \\"this time\\". \\nI will never go back to Flynn\'s b/c of the way this guy treated me and the simple fact that they gave me a used tire!'
}
```
### Data Fields
- 'text': The review texts are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
- 'label': Corresponds to the score associated with the review (between 1 and 5).
### Data Splits
The Yelp reviews full star dataset is constructed by randomly taking 130,000 training samples and 10,000 testing samples for each review star from 1 to 5.
In total there are 650,000 trainig samples and 50,000 testing samples.
## Dataset Creation
### Curation Rationale
The Yelp reviews full star dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the Yelp Dataset Challenge 2015. It is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
You can check the official [yelp-dataset-agreement](https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf).
### Citation Information
Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).
### Contributions
Thanks to [@hfawaz](https://github.com/hfawaz) for adding this dataset. |
yoruba_bbc_topics | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- yo
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- topic-classification
pretty_name: Yoruba Bbc News Topic Classification Dataset (YorubaBbcTopics)
dataset_info:
features:
- name: news_title
dtype: string
- name: label
dtype:
class_label:
names:
'0': africa
'1': entertainment
'2': health
'3': nigeria
'4': politics
'5': sport
'6': world
- name: date
dtype: string
- name: bbc_url_id
dtype: string
splits:
- name: train
num_bytes: 197117
num_examples: 1340
- name: validation
num_bytes: 27771
num_examples: 189
- name: test
num_bytes: 55652
num_examples: 379
download_size: 265480
dataset_size: 280540
---
# Dataset Card for Yoruba BBC News Topic Classification dataset (yoruba_bbc_topics)
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** -
- **Repository:** https://github.com/uds-lsv/transfer-distant-transformer-african
- **Paper:** https://www.aclweb.org/anthology/2020.emnlp-main.204/
- **Leaderboard:** -
- **Point of Contact:** Michael A. Hedderich and David Adelani
{mhedderich, didelani} (at) lsv.uni-saarland.de
### Dataset Summary
A news headline topic classification dataset, similar to AG-news, for Yorùbá. The news headlines were collected from [BBC Yoruba](https://www.bbc.com/yoruba).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Yorùbá (ISO 639-1: yo)
## Dataset Structure
### Data Instances
An instance consists of a news title sentence and the corresponding topic label as well as publishing information (date and website id).
### Data Fields
- `news_title`: A news title.
- `label`: The label describing the topic of the news title. Can be one of the following classes: africa, entertainment, health, nigeria, politics, sport or world.
- `date`: The publication date (in Yorùbá).
- `bbc_url_id`: The identifier of the article in the BBC URL.
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@michael-aloys](https://github.com/michael-aloys) for adding this dataset. |
yoruba_gv_ner | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- yo
license:
- cc-by-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: Yoruba GV NER Corpus
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-DATE
'8': I-DATE
config_name: yoruba_gv_ner
splits:
- name: train
num_bytes: 358885
num_examples: 817
- name: validation
num_bytes: 50161
num_examples: 117
- name: test
num_bytes: 96518
num_examples: 237
download_size: 254347
dataset_size: 505564
---
# Dataset Card for Yoruba GV NER Corpus
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:** [Yoruba GV NER](https://github.com/ajesujoba/YorubaTwi-Embedding/tree/master/Yoruba/Yoruba-NER)
- **Paper:** https://www.aclweb.org/anthology/2020.lrec-1.335/
- **Leaderboard:**
- **Point of Contact:** [David Adelani](mailto:didelani@lsv.uni-saarland.de)
### Dataset Summary
The Yoruba GV NER is a named entity recognition (NER) dataset for Yorùbá language based on the [Global Voices news](https://yo.globalvoices.org/) corpus. Global Voices (GV) is a multilingual news platform with articles contributed by journalists, translators, bloggers, and human rights activists from around the world with a coverage of over 50 languages. Most of the texts used in creating the Yoruba GV NER are translations from other languages to Yorùbá.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The language supported is Yorùbá.
## Dataset Structure
### Data Instances
A data point consists of sentences seperated by empty line and tab-seperated tokens and tags.
{'id': '0',
'ner_tags': [B-LOC, 0, 0, 0, 0],
'tokens': ['Tanzania', 'fi', 'Ajìjàgbara', 'Ọmọ', 'Orílẹ̀-èdèe']
}
### Data Fields
- `id`: id of the sample
- `tokens`: the tokens of the example text
- `ner_tags`: the NER tags of each token
The NER tags correspond to this list:
```
"O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-DATE", "I-DATE",
```
The NER tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any non-initial word. There are four types of phrases: person names (PER), organizations (ORG), locations (LOC) and dates & times (DATE). (O) is used for tokens not considered part of any named entity.
### Data Splits
Training (19,421 tokens), validation (2,695 tokens) and test split (5,235 tokens)
## Dataset Creation
### Curation Rationale
The data was created to help introduce resources to new language - Yorùbá.
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The dataset is based on the news domain and was crawled from [Global Voices Yorùbá news](https://yo.globalvoices.org/).
[More Information Needed]
#### Who are the source language producers?
The dataset contributed by journalists, translators, bloggers, and human rights activists from around the world. Most of the texts used in creating the Yoruba GV NER are translations from other languages to Yorùbá
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
The data was annotated by Jesujoba Alabi and David Adelani for the paper:
[Massive vs. Curated Embeddings for Low-Resourced Languages: the case of Yorùbá and Twi](https://www.aclweb.org/anthology/2020.lrec-1.335/).
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The annotated data sets were developed by students of Saarland University, Saarbrücken, Germany .
### Licensing Information
The data is under the [Creative Commons Attribution 3.0 ](https://creativecommons.org/licenses/by/3.0/)
### Citation Information
```
@inproceedings{alabi-etal-2020-massive,
title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\`u}b{\'a} and {T}wi",
author = "Alabi, Jesujoba and
Amponsah-Kaakyire, Kwabena and
Adelani, David and
Espa{\~n}a-Bonet, Cristina",
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
pages = "2754--2762",
language = "English",
ISBN = "979-10-95546-34-4",
}
```
### Contributions
Thanks to [@dadelani](https://github.com/dadelani) for adding this dataset. |
yoruba_text_c3 | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- yo
license:
- cc-by-nc-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: null
pretty_name: Yorùbá Text C3
dataset_info:
- config_name: plain_text
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 77094396
num_examples: 562238
download_size: 75407454
dataset_size: 77094396
- config_name: yoruba_text_c3
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 77094396
num_examples: 562238
download_size: 75407454
dataset_size: 77094396
---
# Dataset Card for Yorùbá Text C3
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.aclweb.org/anthology/2020.lrec-1.335
- **Repository:** https://github.com/ajesujoba/YorubaTwi-Embedding/
- **Paper:** https://www.aclweb.org/anthology/2020.lrec-1.335
- **Leaderboard:**
- **Point of Contact:** [Jesujoba Alabi](mailto:alabijesujoba@gmail.com)
### Dataset Summary
Yorùbá Text C3 was collected from various sources from the web (Bible, JW300, books, news articles, wikipedia, etc)
to compare pre-trained word embeddings (Fasttext and BERT) and embeddings and embeddings trained on curated Yorùbá Texts.
The dataset consists of clean texts (i.e texts with proper Yorùbá diacritics) like the Bible & JW300 and noisy texts (
with incorrect or absent diacritics)
from other online sources like Wikipedia, BBC Yorùbá, and VON Yorùbá
### Supported Tasks and Leaderboards
For training word embeddings and language models on Yoruba texts.
### Languages
The language supported is Yorùbá.
## Dataset Structure
### Data Instances
A data point is a sentence in each line.
{
'text': 'lílo àkàbà — ǹjẹ́ o máa ń ṣe àyẹ̀wò wọ̀nyí tó lè dáàbò bò ẹ́'
}
### Data Fields
- `text`: a `string` feature.
a sentence text per line
### Data Splits
Contains only the training split.
## Dataset Creation
### Curation Rationale
The data was created to help introduce resources to new language - Yorùbá.
### Source Data
#### Initial Data Collection and Normalization
The dataset comes from various sources of the web like Bible, JW300, books, news articles, wikipedia, etc.
See Table 1 in the [paper](https://www.aclweb.org/anthology/2020.lrec-1.335/) for the summary of the dataset and statistics
#### Who are the source language producers?
[Jehovah Witness](https://www.jw.org/yo/) (JW300)
[Yorùbá Bible](http://www.bible.com/)
[Yorùbá Wikipedia](dumps.wikimedia.org/yowiki)
[BBC Yorùbá](bbc.com/yoruba)
[VON Yorùbá](https://von.gov.ng/)
[Global Voices Yorùbá]( yo.globalvoices.org)
And other sources, see https://www.aclweb.org/anthology/2020.lrec-1.335/
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
The dataset is biased to the religion domain (Christianity) because of the inclusion of JW300 and the Bible.
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The data sets were curated by Jesujoba Alabi and David Adelani, students of Saarland University, Saarbrücken, Germany .
### Licensing Information
The data is under the [Creative Commons Attribution-NonCommercial 4.0 ](https://creativecommons.org/licenses/by-nc/4.0/legalcode)
### Citation Information
```
@inproceedings{alabi-etal-2020-massive,
title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Y}or{\`u}b{\'a} and {T}wi",
author = "Alabi, Jesujoba and
Amponsah-Kaakyire, Kwabena and
Adelani, David and
Espa{\~n}a-Bonet, Cristina",
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://www.aclweb.org/anthology/2020.lrec-1.335",
pages = "2754--2762",
abstract = "The success of several architectures to learn semantic representations from unannotated text and the availability of these kind of texts in online multilingual resources such as Wikipedia has facilitated the massive and automatic creation of resources for multiple languages. The evaluation of such resources is usually done for the high-resourced languages, where one has a smorgasbord of tasks and test sets to evaluate on. For low-resourced languages, the evaluation is more difficult and normally ignored, with the hope that the impressive capability of deep learning architectures to learn (multilingual) representations in the high-resourced setting holds in the low-resourced setting too. In this paper we focus on two African languages, Yor{\`u}b{\'a} and Twi, and compare the word embeddings obtained in this way, with word embeddings obtained from curated corpora and a language-dependent processing. We analyse the noise in the publicly available corpora, collect high quality and noisy data for the two languages and quantify the improvements that depend not only on the amount of data but on the quality too. We also use different architectures that learn word representations both from surface forms and characters to further exploit all the available information which showed to be important for these languages. For the evaluation, we manually translate the wordsim-353 word pairs dataset from English into Yor{\`u}b{\'a} and Twi. We extend the analysis to contextual word embeddings and evaluate multilingual BERT on a named entity recognition task. For this, we annotate with named entities the Global Voices corpus for Yor{\`u}b{\'a}. As output of the work, we provide corpora, embeddings and the test suits for both languages.",
language = "English",
ISBN = "979-10-95546-34-4",
}
```
### Contributions
Thanks to [@dadelani](https://github.com/dadelani) for adding this dataset. |
yoruba_wordsim353 | ---
annotations_creators:
- crowdsourced
language_creators:
- expert-generated
language:
- en
- yo
license:
- unknown
multilinguality:
- multilingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- text-scoring
- semantic-similarity-scoring
paperswithcode_id: null
pretty_name: Wordsim-353 In Yorùbá (YorubaWordsim353)
dataset_info:
features:
- name: english1
dtype: string
- name: english2
dtype: string
- name: yoruba1
dtype: string
- name: yoruba2
dtype: string
- name: similarity
dtype: float32
splits:
- name: test
num_bytes: 19299
num_examples: 353
download_size: 17039
dataset_size: 19299
---
# Dataset Card for wordsim-353 in Yorùbá (yoruba_wordsim353)
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** -
- **Repository:** https://github.com/ajesujoba/YorubaTwi-Embedding
- **Paper:** https://www.aclweb.org/anthology/2020.lrec-1.335/
- **Leaderboard:** -
- **Point of Contact:** Jesujoba Alabi ( jesujobaoluwadara.alabi (at) dfki.de ) and David Adelani ( didelani (at) lsv.uni-saarland.de )
### Dataset Summary
A translation of the word pair similarity dataset wordsim-353 to Yorùbá.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
Yorùbá (ISO 639-1: yo)
## Dataset Structure
### Data Instances
An instance consists of a pair of words as well as their similarity. The dataset contains both the original English words (from wordsim-353) as well as their translation to Yorùbá.
### Data Fields
- `english1`: the first word of the pair; the original English word
- `english2`: the second word of the pair; the original English word
- `yoruba1`: the first word of the pair; translation to Yorùbá
- `yoruba2`: the second word of the pair; translation to Yorùbá
- `similarity`: similarity rating according to the English dataset
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@michael-aloys](https://github.com/michael-aloys) for adding this dataset. |
youtube_caption_corrections | ---
annotations_creators:
- expert-generated
- machine-generated
language_creators:
- machine-generated
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- other
- text-generation
- fill-mask
task_ids:
- slot-filling
pretty_name: YouTube Caption Corrections
tags:
- token-classification-of-text-errors
dataset_info:
features:
- name: video_ids
dtype: string
- name: default_seq
sequence: string
- name: correction_seq
sequence: string
- name: diff_type
sequence:
class_label:
names:
'0': NO_DIFF
'1': CASE_DIFF
'2': PUNCUATION_DIFF
'3': CASE_AND_PUNCUATION_DIFF
'4': STEM_BASED_DIFF
'5': DIGIT_DIFF
'6': INTRAWORD_PUNC_DIFF
'7': UNKNOWN_TYPE_DIFF
'8': RESERVED_DIFF
splits:
- name: train
num_bytes: 355978939
num_examples: 10769
download_size: 222479455
dataset_size: 355978939
---
# Dataset Card for YouTube Caption Corrections
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/2dot71mily/youtube_captions_corrections
- **Repository:** https://github.com/2dot71mily/youtube_captions_corrections
- **Paper:** [N/A]
- **Leaderboard:** [N/A]
- **Point of Contact:** Emily McMilin
### Dataset Summary
This dataset is built from pairs of YouTube captions where both an auto-generated and a manually-corrected caption are available for a single specified language. It currently only in English, but scripts at repo support other languages. The motivation for creating it was from viewing errors in auto-generated captions at a recent virtual conference, with the hope that there could be some way to help correct those errors.
The dataset in the repo at https://github.com/2dot71mily/youtube_captions_corrections records in a non-destructive manner all the differences between an auto-generated and a manually-corrected caption for thousands of videos. The dataset here focuses on the subset of those differences which are mutual and have the same size in token length difference, which means it excludes token insertion or deletion differences between the two captions. Therefore dataset here remains a non-destructive representation of the original auto-generated captions, but excludes some of the differences that are found in the manually-corrected captions.
### Supported Tasks and Leaderboards
- `token-classification`: The tokens in `default_seq` are from the auto-generated YouTube captions. If `diff_type` is labeled greater than `0` at a given index, then the associated token in same index in the `default_seq` was found to be different to the token in the manually-corrected YouTube caption, and therefore we assume it is an error. A model can be trained to learn when there are errors in the auto-generated captions.
- `slot-filling`: The `correction_seq` is sparsely populated with tokens from the manually-corrected YouTube captions in the locations where there was found to be a difference to the token in the auto-generated YouTube captions. These 'incorrect' tokens in the `default_seq` can be masked in the locations where `diff_type` is labeled greater than `0`, so that a model can be trained to hopefully find a better word to fill in, rather than the 'incorrect' one.
End to end, the models could maybe first identify and then replace (with suitable alternatives) errors in YouTube and other auto-generated captions that are lacking manual corrections
### Languages
English
## Dataset Structure
### Data Instances
If `diff_type` is labeled greater than `0` at a given index, then the associated token in same index in the `default_seq` was found to have a difference to the token in the manually-corrected YouTube caption. The `correction_seq` is sparsely populated with tokens from the manually-corrected YouTube captions at those locations of differences.
`diff_type` labels for tokens are as follows:
0: No difference
1: Case based difference, e.g. `hello` vs `Hello`
2: Punctuation difference, e.g. `hello` vs `hello`
3: Case and punctuation difference, e.g. `hello` vs `Hello,`
4: Word difference with same stem, e.g. `thank` vs `thanked`
5: Digit difference, e.g. `2` vs `two`
6: Intra-word punctuation difference, e.g. `autogenerated` vs `auto-generated`
7: Unknown type of difference, e.g. `laughter` vs `draft`
8: Reserved for unspecified difference
{
'video_titles': '_QUEXsHfsA0',
'default_seq': ['you', 'see', "it's", 'a', 'laughter', 'but', 'by', 'the', 'time', 'you', 'see', 'this', 'it', "won't", 'be', 'so', 'we', 'have', 'a', 'big']
'correction_seq': ['', 'see,', '', '', 'draft,', '', '', '', '', '', 'read', 'this,', '', '', 'be.', 'So', '', '', '', '']
'diff_type': [0, 2, 0, 0, 7, 0, 0, 0, 0, 0, 7, 2, 0, 0, 2, 1, 0, 0, 0, 0]
}
### Data Fields
- 'video_ids': Unique ID used by YouTube for each video. Can paste into `https://www.youtube.com/watch?v=<{video_ids}` to see video
- 'default_seq': Tokenized auto-generated YouTube captions for the video
- 'correction_seq': Tokenized manually-corrected YouTube captions only at those locations, where there is a difference between the auto-generated and manually-corrected captions
- 'diff_type': A value greater than `0` at every token where there is a difference between the auto-generated and manually-corrected captions
### Data Splits
No data splits
## Dataset Creation
### Curation Rationale
It was created after viewing errors in auto-generated captions at a recent virtual conference, with the hope that there could be some way to help correct those errors.
### Source Data
#### Initial Data Collection and Normalization
All captions are requested via `googleapiclient` and `youtube_transcript_api` at the `channel_id` and language granularity, using scripts written at https://github.com/2dot71mily/youtube_captions_corrections.
The captions are tokenized on spaces and the manually-corrected sequence has here been reduced to only include differences between it and the auto-generated sequence.
#### Who are the source language producers?
Auto-generated scripts are from YouTube and the manually-corrected scripts are from creators, and any support they may have (e.g. community or software support)
### Annotations
#### Annotation process
Scripts at repo, https://github.com/2dot71mily/youtube_captions_corrections take a diff of the two captions and use this to create annotations.
#### Who are the annotators?
YouTube creators, and any support they may have (e.g. community or software support)
### Personal and Sensitive Information
All content publicly available on YouTube
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Emily McMilin
### Licensing Information
MIT License
### Citation Information
https://github.com/2dot71mily/youtube_captions_corrections
### Contributions
Thanks to [@2dot71mily](https://github.com/2dot71mily) for adding this dataset. |
zest | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
- token-classification
task_ids:
- closed-domain-qa
- extractive-qa
paperswithcode_id: zest
pretty_name: ZEST
tags:
- output-structure
- yes-no-qa
dataset_info:
features:
- name: task_id
dtype: string
- name: question
dtype: string
- name: generalization_type
dtype: string
- name: derives_from
sequence: string
- name: domain
dtype: string
- name: context
dtype: string
- name: answer
sequence: string
- name: all_answers
sequence: string
splits:
- name: train
num_bytes: 9588987
num_examples: 10766
- name: validation
num_bytes: 2056804
num_examples: 2280
- name: test
num_bytes: 9280845
num_examples: 11980
download_size: 5796188
dataset_size: 20926636
---
# Dataset Card for "ZEST: ZEroShot learning from Task descriptions"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://allenai.org/data/zest
- **Repository:** https://github.com/allenai/zest
- **Paper:** https://arxiv.org/abs/2011.08115
- **Leaderboard:** https://leaderboard.allenai.org/zest/submissions/public
- **Point of Contact:**
### Dataset Summary
ZEST tests whether NLP systems can perform unseen tasks in a zero-shot way, given a natural language description of
the task. It is an instantiation of our proposed framework "learning from task descriptions". The tasks include
classification, typed entity extraction and relationship extraction, and each task is paired with 20 different
annotated (input, output) examples. ZEST's structure allows us to systematically test whether models can generalize
in five different ways.
### Supported Tasks and Leaderboards
A [leaderboard](https://leaderboard.allenai.org/zest/submissions/public) is included with accepatbility metrics for
each of the four generalization types outlined in the paper. The metrics are novel acceptability metrics also
proposed by the authors.
### Languages
The dataset is in English.
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
To evaluate the ability of a model to generalize to unseen tasks based only on a task description in a zero-shot
manner.
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
Mechanical Turk crowdsource workers.
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
Mechanical Turk crowdsource workers.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
The dataset emphasizes a model's ability to generalize to unseen tasks with only a natural language description of
the task. The long-term vision of this type of evaluation is to facilitate the creation of models which can perform
arbitrary tasks with only a prompt from a non-technical user. This could broaden the frontier of what a user can
ask something like a chatbot to do for them, but it is unclear how restrictions would be put in place to prevent
users from prompting a system to perform unethical tasks.
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
This dataset is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).
### Citation Information
```
@inproceedings{weller-etal-2020-learning,
title = "Learning from Task Descriptions",
author = "Weller, Orion and
Lourie, Nicholas and
Gardner, Matt and
Peters, Matthew",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.105",
pages = "1361--1375",
abstract = "Typically, machine learning systems solve new tasks by training on thousands of examples. In contrast, humans can solve new tasks by reading some instructions, with perhaps an example or two. To take a step toward closing this gap, we introduce a framework for developing NLP systems that solve new tasks after reading their descriptions, synthesizing prior work in this area. We instantiate this frame- work with a new English language dataset, ZEST, structured for task-oriented evaluation on unseen tasks. Formulating task descriptions as questions, we ensure each is general enough to apply to many possible inputs, thus comprehensively evaluating a model{'}s ability to solve each task. Moreover, the dataset{'}s structure tests specific types of systematic generalization. We find that the state-of-the-art T5 model achieves a score of 12% on ZEST, leaving a significant challenge for NLP researchers.",
}
```
### Contributions
Thanks to [@joeddav](https://github.com/joeddav) for adding this dataset. |
AI-Sweden/SuperLim | ---
language:
- sv
multilinguality:
- monolingual
pretty_name: SuperLim
task_categories:
- question-answering
- text-classification
- sequence-modeling
- other
---
# Dataset Card for SuperLim
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Structure/Creation/Use/Additional Information](#dataset-structurecreationuseadditional-information)
- [Dalaj](#dalaj)
- [SweAna](#sweana)
- [SweDiag](#swediag)
- [SweFaq](#swefaq)
- [SweFracas](#swefracas)
- [SwePar](#swepar)
- [SweSat](#swesat)
- [SweSim](#swesim)
- [SweWgr](#swewgr)
- [SweWic](#swewic)
- [SweWsc](#swewsc)
## Dataset Description
- **Homepage:** [Språkbanken](https://spraakbanken.gu.se/en/resources/superlim)
- **Repository:** /
- **Paper:** /
- **Leaderboard:** /
- **Point of Contact:** [Contact Us](mailto:severine.verlinden@ai.se)
### Dataset Summary
A standardized suite for evaluation and analysis of Swedish natural language understanding systems.
### Supported Tasks and Leaderboards
Work in progress
### Languages
Swedish
## Dataset Structure/Creation/Use/Additional Information
### Dalaj
[dataset documentation](https://svn.spraakdata.gu.se/sb-arkiv/pub/dalaj/dalaj_documentation.tsv)
### SweAna
[dataset documentation](https://svn.spraakdata.gu.se/sb-arkiv/pub/swedish_analogy/analogy_documentation_sheet.tsv)
#### SweDiag
work in progress
### SweFaq
[dataset documentation](https://svn.spraakdata.gu.se/sb-arkiv/pub/faq/faq_documentation_sheet.tsv)
### SweFracas
[dataset documentation](https://svn.spraakdata.gu.se/sb-arkiv/pub/swefracas/swefracas_documentation_sheet.tsv)
### SwePar
[dataset documentation](https://svn.spraakdata.gu.se/sb-arkiv/pub/sweparaphrase/sweparaphrase_documentation.tsv)
### SweSat
[dataset documentation](https://svn.spraakdata.gu.se/sb-arkiv/pub/swesat/swesat-synonyms_documentation_sheet.tsv)
### SweSim
[dataset documentation](https://demo.spraakbanken.gu.se/gerlof/SuperSim/supersim-superlim_documentation_sheet.txt)
### SweWgr
[dataset documentation](https://demo.spraakbanken.gu.se/gerlof/SweWinogender/swewinogender_documentation_sheet.txt)
### SweWic
[dataset documentation](https://demo.spraakbanken.gu.se/gerlof/SweWiC/swewic_documentation_sheet.txt)
### SweWsc
[dataset documentation](https://demo.spraakbanken.gu.se/gerlof/SweWinograd/swewinograd_documentation_sheet.txt)
|
ARTeLab/fanpage | ---
language:
- it
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100k
source_datasets:
- original
task_categories:
- summarization
---
# Dataset Card for fanpage
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** [Needs More Information]
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
Fanpage dataset, containing news articles taken from Fanpage.
There are two features:
- source: Input news article.
- target: Summary of the article.
### Supported Tasks and Leaderboards
- `abstractive-summarization`, `summarization`
### Languages
The text in the dataset is in Italian
## Dataset Structure
### Data Instances
[Needs More Information]
### Data Fields
[Needs More Information]
### Data Splits
[Needs More Information]
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228)
```
@Article{info13050228,
AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo},
TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization},
JOURNAL = {Information},
VOLUME = {13},
YEAR = {2022},
NUMBER = {5},
ARTICLE-NUMBER = {228},
URL = {https://www.mdpi.com/2078-2489/13/5/228},
ISSN = {2078-2489},
ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.},
DOI = {10.3390/info13050228}
}
``` |
ARTeLab/ilpost | ---
language:
- it
multilinguality:
- monolingual
size_categories:
- 10K<n<100k
task_categories:
- summarization
---
# Dataset Card for ilpost
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** [Needs More Information]
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
IlPost dataset, containing news articles taken from IlPost.
There are two features:
- source: Input news article.
- target: Summary of the article.
### Supported Tasks and Leaderboards
- `abstractive-summarization`, `summarization`
### Languages
The text in the dataset is in Italian
## Dataset Structure
### Data Instances
[Needs More Information]
### Data Fields
[Needs More Information]
### Data Splits
[Needs More Information]
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228)
```
@Article{info13050228,
AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo},
TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization},
JOURNAL = {Information},
VOLUME = {13},
YEAR = {2022},
NUMBER = {5},
ARTICLE-NUMBER = {228},
URL = {https://www.mdpi.com/2078-2489/13/5/228},
ISSN = {2078-2489},
ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.},
DOI = {10.3390/info13050228}
}
``` |
ARTeLab/mlsum-it | ---
language:
- it
multilinguality:
- monolingual
size_categories:
- 10K<n<100k
task_categories:
- summarization
---
# Dataset Card for mlsum-it
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [https://huggingface.co/datasets/mlsum]
- **Repository:** [Needs More Information]
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
The MLSum-it dataset is the translated version (Helsinki-NLP/opus-mt-es-it) of the spanish portion of MLSum, containing news articles taken from BBC/mundo.
More informations on the official dataset page [HuggingFace page](https://huggingface.co/datasets/mlsum).
There are two features:
- source: Input news article.
- target: Summary of the article.
### Supported Tasks and Leaderboards
- `abstractive-summarization`, `summarization`
### Languages
The text in the dataset is in Italian
## Dataset Structure
### Data Instances
[Needs More Information]
### Data Fields
[Needs More Information]
### Data Splits
[Needs More Information]
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
More details and results in [published work](https://www.mdpi.com/2078-2489/13/5/228)
```
@Article{info13050228,
AUTHOR = {Landro, Nicola and Gallo, Ignazio and La Grassa, Riccardo and Federici, Edoardo},
TITLE = {Two New Datasets for Italian-Language Abstractive Text Summarization},
JOURNAL = {Information},
VOLUME = {13},
YEAR = {2022},
NUMBER = {5},
ARTICLE-NUMBER = {228},
URL = {https://www.mdpi.com/2078-2489/13/5/228},
ISSN = {2078-2489},
ABSTRACT = {Text summarization aims to produce a short summary containing relevant parts from a given text. Due to the lack of data for abstractive summarization on low-resource languages such as Italian, we propose two new original datasets collected from two Italian news websites with multi-sentence summaries and corresponding articles, and from a dataset obtained by machine translation of a Spanish summarization dataset. These two datasets are currently the only two available in Italian for this task. To evaluate the quality of these two datasets, we used them to train a T5-base model and an mBART model, obtaining good results with both. To better evaluate the results obtained, we also compared the same models trained on automatically translated datasets, and the resulting summaries in the same training language, with the automatically translated summaries, which demonstrated the superiority of the models obtained from the proposed datasets.},
DOI = {10.3390/info13050228}
}
``` |
ASCCCCCCCC/amazon_zh | ---
license: apache-2.0
---
this is a datasets about amazon reviews |
ASCCCCCCCC/amazon_zh_simple | ---
license: apache-2.0
---
|
Abdo1Kamr/Arabic_Hadith | # Hadith-Data-Sets
There are two files of Hadith, the first one for all `hadith With Tashkil and Without Tashkel` from the Nine Books that are 62,169 Hadith.
The second one it `Hadith pre-processing` data, which is applyed normalization and removeing stop words and lemmatization on it
<!-- ## `All Hadith Books`: All Hadith With Tashkil and Without Tashkel from the Nine Books that are 62,169 Hadith.
## `All Hadith Books_preprocessing`: All Hadith Without Tashkil which is applyed normalization and removeing stop words and lemmatization on it
-->
## Number of hadiths in whole books : 62,169
|Book Name |Number Of Hadiiths|
| ----------------------- |------------------|
|Sahih Bukhari: | 7008|
|Sahih Muslim: | 5362|
|Sunan al Tirmidhi: | 3891|
|Sunan al-Nasai: | 5662|
|Sunan Abu Dawud: | 4590|
|Sunan Ibn Maja: | 4332|
|Musnad Ahmad ibn Hanbal: | 26363|
|Maliks Muwatta: | 1594|
|Sunan al Darami: | 3367|
|
Abirate/english_quotes | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
- crowdsourced
language:
- en
multilinguality:
- monolingual
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-label-classification
---
# ****Dataset Card for English quotes****
# **I-Dataset Summary**
english_quotes is a dataset of all the quotes retrieved from [goodreads quotes](https://www.goodreads.com/quotes). This dataset can be used for multi-label text classification and text generation. The content of each quote is in English and concerns the domain of datasets for NLP and beyond.
# **II-Supported Tasks and Leaderboards**
- Multi-label text classification : The dataset can be used to train a model for text-classification, which consists of classifying quotes by author as well as by topic (using tags). Success on this task is typically measured by achieving a high or low accuracy.
- Text-generation : The dataset can be used to train a model to generate quotes by fine-tuning an existing pretrained model on the corpus composed of all quotes (or quotes by author).
# **III-Languages**
The texts in the dataset are in English (en).
# **IV-Dataset Structure**
#### Data Instances
A JSON-formatted example of a typical instance in the dataset:
```python
{'author': 'Ralph Waldo Emerson',
'quote': '“To be yourself in a world that is constantly trying to make you something else is the greatest accomplishment.”',
'tags': ['accomplishment', 'be-yourself', 'conformity', 'individuality']}
```
#### Data Fields
- **author** : The author of the quote.
- **quote** : The text of the quote.
- **tags**: The tags could be characterized as topics around the quote.
#### Data Splits
I kept the dataset as one block (train), so it can be shuffled and split by users later using methods of the hugging face dataset library like the (.train_test_split()) method.
# **V-Dataset Creation**
#### Curation Rationale
I want to share my datasets (created by web scraping and additional cleaning treatments) with the HuggingFace community so that they can use them in NLP tasks to advance artificial intelligence.
#### Source Data
The source of Data is [goodreads](https://www.goodreads.com/?ref=nav_home) site: from [goodreads quotes](https://www.goodreads.com/quotes)
#### Initial Data Collection and Normalization
The data collection process is web scraping using BeautifulSoup and Requests libraries.
The data is slightly modified after the web scraping: removing all quotes with "None" tags, and the tag "attributed-no-source" is removed from all tags, because it has not added value to the topic of the quote.
#### Who are the source Data producers ?
The data is machine-generated (using web scraping) and subjected to human additional treatment.
below, I provide the script I created to scrape the data (as well as my additional treatment):
```python
import requests
from bs4 import BeautifulSoup
import pandas as pd
import json
from collections import OrderedDict
page = requests.get('https://www.goodreads.com/quotes')
if page.status_code == 200:
pageParsed = BeautifulSoup(page.content, 'html5lib')
# Define a function that retrieves information about each HTML quote code in a dictionary form.
def extract_data_quote(quote_html):
quote = quote_html.find('div',{'class':'quoteText'}).get_text().strip().split('\n')[0]
author = quote_html.find('span',{'class':'authorOrTitle'}).get_text().strip()
if quote_html.find('div',{'class':'greyText smallText left'}) is not None:
tags_list = [tag.get_text() for tag in quote_html.find('div',{'class':'greyText smallText left'}).find_all('a')]
tags = list(OrderedDict.fromkeys(tags_list))
if 'attributed-no-source' in tags:
tags.remove('attributed-no-source')
else:
tags = None
data = {'quote':quote, 'author':author, 'tags':tags}
return data
# Define a function that retrieves all the quotes on a single page.
def get_quotes_data(page_url):
page = requests.get(page_url)
if page.status_code == 200:
pageParsed = BeautifulSoup(page.content, 'html5lib')
quotes_html_page = pageParsed.find_all('div',{'class':'quoteDetails'})
return [extract_data_quote(quote_html) for quote_html in quotes_html_page]
# Retrieve data from the first page.
data = get_quotes_data('https://www.goodreads.com/quotes')
# Retrieve data from all pages.
for i in range(2,101):
print(i)
url = f'https://www.goodreads.com/quotes?page={i}'
data_current_page = get_quotes_data(url)
if data_current_page is None:
continue
data = data + data_current_page
data_df = pd.DataFrame.from_dict(data)
for i, row in data_df.iterrows():
if row['tags'] is None:
data_df = data_df.drop(i)
# Produce the data in a JSON format.
data_df.to_json('C:/Users/Abir/Desktop/quotes.jsonl',orient="records", lines =True,force_ascii=False)
# Then I used the familiar process to push it to the Hugging Face hub.
```
#### Annotations
Annotations are part of the initial data collection (see the script above).
# **VI-Additional Informations**
#### Dataset Curators
Abir ELTAIEF
#### Licensing Information
This work is licensed under a Creative Commons Attribution 4.0 International License (all software and libraries used for web scraping are made available under this Creative Commons Attribution license).
#### Contributions
Thanks to [@Abirate](https://huggingface.co/Abirate)
for adding this dataset. |
Abirate/french_book_reviews | ---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
- crowdsourced
language:
- fr
multilinguality:
- monolingual
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-label-classification
---
# ****Dataset Card for French book reviews****
# **I-Dataset Summary**
The majority of review datasets are in English. There are datasets in other languages, but not many. Through this work, I would like to enrich the datasets in the French language(my mother tongue with Arabic).
The data was retrieved from two French websites: [Babelio](https://www.babelio.com/) and [Critiques Libres](http://www.critiqueslibres.com/)
Like Wikipedia, these two French sites are made possible by the contributions of volunteers who use the Internet to share their knowledge and reading experiences.
The French book reviews is a dataset of a huge number of reader reviews on French books that ill be constantly updated over time.
# **II-Supported Tasks and Leaderboards**
- Multi-label text classification : The dataset can be used to train a model for text-classification, which consists of classifying reviews by label value. Success on this task is typically measured by achieving a high or low accuracy.
# **III-Languages**
The texts in the dataset are in French (fr).
# **IV-Dataset Structure**
#### Data Instances
A JSON-formatted example of a typical instance in the dataset:
```python
{
"book_title": "La belle histoire des maths",
"author": "Michel Rousselet",
"reader_review": "C’est un livre impressionnant, qui inspire le respect
par la qualité de sa reliure et son contenu. Je le feuillette et je découvre
à chaque tour de page un thème distinct magnifiquement illustré. Très beau livre !",
"rating": 4.0,
"label": 1
}
```
#### Data Fields
- **book_title**: The title of the book that received the reader's review,
- **author** : The author of the book that received the reader's review,
- **reader_review** : The text of the reader's review,
- **rating**: A five-star rating system is used to rate the book read,
- **label** : A post-processed field indicating if the review is positive (1), neutral(0), or negative(-1) based on the rating field. For more details, see the [Notebook of the Dataset creation](https://github.com/Abirate/Dataset_Creation_Scrapy_Project_French_book_reviews/blob/master/scrapyproject_a_to_z_dataset_book_reviews.ipynb)
#### Data Splits
I kept the dataset as one block (train), so it can be shuffled and split by users later using methods of the hugging face dataset library like the (.train_test_split()) method.
# **V-Dataset Creation**
#### Curation Rationale
The majority of review datasets are in English. There are datasets in other languages, but not many. Through this work, I would like to enrich the datasets in the French language (French is my mother tongue with Arabic) and slightly contribute to advancing data science and AI, not only for English NLP tasks but for other languages around the world.
French is an international language and it is gaining ground. In addition, it is the language of love. The richness of the French language, so appreciated around the world, is largely related to the richness of its culture. The most telling example is French literature, which has many world-famous writers, such as [Gustave Flaubert](https://en.wikipedia.org/wiki/Gustave_Flaubert), [Albert Camus](https://iep.utm.edu/camus/), [Victor Hugo](https://en.wikipedia.org/wiki/Victor_Hugo), [Molière](https://en.wikipedia.org/wiki/Moli%C3%A8re), [Simone de Beauvoir](https://iep.utm.edu/beauvoir/), [Antoine de Saint-Exupéry](https://en.wikipedia.org/wiki/Antoine_de_Saint-Exup%C3%A9ry): the author of "Le Petit Prince" (The Little Prince), which is still among the most translated books in literary history. And one of the world-famous quotes from this book is: "Voici mon secret. Il est très simple: on ne voit bien qu'avec le coeur. L'essentiel est invisible pour les yeux." etc.
#### Source Data
The source of Data is: two French websites: [Babelio](https://www.babelio.com/) and [Critiques Libres](http://www.critiqueslibres.com/)
#### Initial Data Collection and Normalization
The data was collected using web scraping (with Scrapy Framework) and subjected to additional data processing. For more details, see this notebook, which details the dataset creation process. [Notebook of the Dataset creation](https://github.com/Abirate/Dataset_Creation_Scrapy_Project_French_book_reviews/blob/master/scrapyproject_a_to_z_dataset_book_reviews.ipynb)
**Note**: This dataset will be constantly updated to include the most recent reviews on French books by aggregating the old datasets with the updated ones in order to have a huge dataset over time.
#### Who are the source Data producers ?
I created the Dataset using web scraping, by building a spider and a crawler to scrape the two french web sites [Babelio](https://www.babelio.com/) and [Critiques Libres](http://www.critiqueslibres.com/)
#### Annotations
Annotations are part of the initial data collection (see the script above).
# **VI-Additional Informations**
#### Dataset Curators
Abir ELTAIEF
#### Licensing Information
This work is licensed under [CC0: Public Domain](https://creativecommons.org/publicdomain/zero/1.0/)
#### Contributions
Thanks to [@Abirate](https://huggingface.co/Abirate) for creating and adding this dataset.
|
AhmedSSoliman/CoNaLa | ---
task_categories:
- Code Generation
- Translation
- Text2Text generation
---
# CoNaLa Dataset for Code Generation
## Table of content
- [Dataset Description](#dataset-description)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
## Dataset Descritpion
This dataset has been processed for Code Generation. CMU CoNaLa, the Code/Natural Language Challenge is a joint project of the Carnegie Mellon University NeuLab and STRUDEL Lab. This dataset was designed to test systems for generating program snippets from natural language. It is avilable at https://conala-corpus.github.io/ , and this is about 13k records from the full corpus of about 600k examples.
### Languages
English
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"intent": "convert a list to a dictionary in python",
"snippet": "b = dict(zip(a[0::2], a[1::2]))"
},
{
"intent": "python - sort a list of nested lists",
"snippet": "l.sort(key=sum_nested)"
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"intent": "Value(dtype='string', id=None)",
"snippet": "Value(dtype='string', id=None)"
}
```
### Dataset Splits
This dataset is split into a train, validation and test split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 11125 |
| valid | 1237 |
| test | 500 |
|
Aisha/BAAD16 | ---
annotations_creators:
- found
- crowdsourced
- expert-generated
language_creators:
- found
- crowdsourced
language:
- bn
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: 'BAAD16: Bangla Authorship Attribution Dataset (16 Authors)'
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-class-classification
---
## Description
**BAAD16** is an **Authorship Attribution dataset for Bengali Literature**. It was collected and analyzed by the authors of [this paper](https://arxiv.org/abs/2001.05316). It was created by scraping text from an online Bangla e-library using custom web crawler and contains literary works of various famous Bangla writers. It contains novels, stories, series, and other works of 16 authors. Each sample document is created with 750 words. The dataset is imbalanced and resembles real-world scenarios more closely, where not all the authors will have a large number of sample texts. The following table gives more details about the dataset.
| Author Name | Number of Samples | Word Count | Unique Word
| --- | --- | --- | --- |
| zahir rayhan | 185 | 138k | 20k
|nazrul | 223 | 167k | 33k
|manik bandhopaddhay | 469 | 351k | 44k
|nihar ronjon gupta | 476 | 357k | 43k
|bongkim | 562 | 421k | 62k
|tarashonkor | 775 | 581k | 84k
|shottojit roy | 849 | 636k | 67k
|shordindu | 888 | 666k | 84k
|toslima nasrin | 931 | 698k | 76k
|shirshendu | 1048 | 786k | 69k
|zafar iqbal | 1100 | 825k | 53k
|robindronath | 1259 | 944k | 89k
|shorotchandra | 1312 | 984k | 78k
|shomresh | 1408 | 1056k|69k
|shunil gongopaddhay | 1963 | 1472k|109k
|humayun ahmed | 4518 | 3388k |161k
**Total**| 17,966|13,474,500 | 590,660
**Average**|1,122.875|842,156.25| 71,822.25
## Citation
If you use this dataset, please cite the paper [Authorship Attribution in Bangla literature using Character-level CNN](https://ieeexplore.ieee.org/abstract/document/9038560/). [Archive link](https://arxiv.org/abs/2001.05316).
```
@inproceedings{BAAD16Dataset,
title={Authorship Attribution in Bangla literature using Character-level CNN},
author={Khatun, Aisha and Rahman, Anisur and Islam, Md Saiful and others},
booktitle={2019 22nd International Conference on Computer and Information Technology (ICCIT)},
pages={1--5},
year={2019},
organization={IEEE}
doi={10.1109/ICCIT48885.2019.9038560}
}
```
This dataset is also available in Mendeley: [BAAD16 dataset](https://data.mendeley.com/datasets/6d9jrkgtvv/4). Always make sure to use the latest version of the dataset. Cite the dataset directly by:
```
@misc{BAAD6Dataset,
author = {Khatun, Aisha and Rahman, Anisur and Islam, Md. Saiful},
title = {BAAD16: Bangla Authorship Attribution Dataset},
year={2019},
doi = {10.17632/6d9jrkgtvv.4},
howpublished= {\url{https://data.mendeley.com/datasets/6d9jrkgtvv/4}}
}
``` |
Aisha/BAAD6 | ---
annotations_creators:
- found
- crowdsourced
- expert-generated
language_creators:
- found
- crowdsourced
language:
- bn
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: 'BAAD6: Bangla Authorship Attribution Dataset (6 Authors)'
size_categories:
- unknown
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-class-classification
---
## Description
**BAAD6** is an **Authorship Attribution dataset for Bengali Literature**. It was collected and analyzed by Hemayet et al [[1]](https://ieeexplore.ieee.org/document/8631977). The data was obtained from different online posts and blogs. This dataset is balanced among the 6 Authors with 350 sample texts per author. This is a relatively small dataset but is noisy given the sources it was collected from and its cleaning procedure. Nonetheless, it may help evaluate authorship attribution systems as it resembles texts often available on the Internet. Details about the dataset are given in the table below.
| Author | Samples | Word count | Unique word |
| ------ | ------ | ------ | ------ |
|fe|350|357k|53k|
| ij | 350 | 391k | 72k
| mk | 350 | 377k | 47k
| rn | 350 | 231k | 50k
| hm | 350 | 555k | 72k
| rg | 350 | 391k | 58k
**Total** | 2,100 | 2,304,338 | 230,075
**Average** | 350 | 384,056.33 | 59,006.67
## Citation
If you use this dataset, please cite the paper [A Comparative Analysis of Word Embedding Representations in Authorship Attribution of Bengali Literature](https://ieeexplore.ieee.org/document/8631977).
```
@INPROCEEDINGS{BAAD6Dataset,
author={Ahmed Chowdhury, Hemayet and Haque Imon, Md. Azizul and Islam, Md. Saiful},
booktitle={2018 21st International Conference of Computer and Information Technology (ICCIT)},
title={A Comparative Analysis of Word Embedding Representations in Authorship Attribution of Bengali Literature},
year={2018},
volume={},
number={},
pages={1-6},
doi={10.1109/ICCITECHN.2018.8631977}
}
```
This dataset is also available in Mendeley: [BAAD6 dataset](https://data.mendeley.com/datasets/w9wkd7g43f/5). Always make sure to use the latest version of the dataset. Cite the dataset directly by:
```
@misc{BAAD6Dataset,
author = {Ahmed Chowdhury, Hemayet and Haque Imon, Md. Azizul and Khatun, Aisha and Islam, Md. Saiful},
title = {BAAD6: Bangla Authorship Attribution Dataset},
year={2018},
doi = {10.17632/w9wkd7g43f.5},
howpublished= {\url{https://data.mendeley.com/datasets/w9wkd7g43f/5}}
}
``` |
Akila/ForgottenRealmsWikiDataset | ## Citing this work
@inproceedings{peiris2022synthesis,
title={{Synthesis and Evaluation of a Domain-specific Large Data Set for Dungeons \& Dragons}},
author={Akila Peiris and Nisansa de Silva},
booktitle={Proceedings of the 36th Pacific Asia Conference on Language, Information and Computation},
pages={to appear},
year={2022}
} |
Akshith/test | |
adorkin/extended_tweet_emojis | ---
task_categories:
- text-classification
language:
- en
size_categories:
- 10K<n<100K
---
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset is comprised of `emoji` and `emotion` subsets of [tweet_eval](https://huggingface.co/datasets/tweet_eval). The motivation
is that the original `emoji` subset essentially contains only positive/neutral emojis, while `emotion` subset contains a varied array
of emotions. So, the idea was to replace emotion labels with corresponding emojis (sad, angry) in the `emotion` subset and mix it together
with the `emoji` subset.
### Supported Tasks and Leaderboards
Similar to tweet eval the expected usage is text classification.
### Languages
Only English is present in the dataset.
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
Refer to [tweet_eval](https://huggingface.co/datasets/tweet_eval). No additional data was added.
#### Annotation process
Same as tweet eval.
#### Who are the annotators?
Same as tweet eval.
### Personal and Sensitive Information
Same as tweet eval.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed] |
AlexZapolskii/zapolskii-amazon | dataset from kaggle https://www.kaggle.com/c/amazon-pet-product-reviews-classification |
AlgoveraAI/CryptoPunks | # Dataset Card for CIFAR-10
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Dataset Structure](#dataset-structure)
- [Data Fields](#data-fields)
- [Additional Information](#additional-information)
- [Ocean Protocol](#ocean-protocol)
- [Algovera](#algovera)
## Dataset Description
- **Homepage:** https://market.oceanprotocol.com/asset/did:op:C9D0568838fa670baEe7195Ea443b32EfCAc2281
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
<img src="punks.png" width="100%">
### Dataset Summary
CryptoPunks is a non-fungible token (NFT) collection on the Ethereum blockchain. The dataset contains 10,000 CryptoPunk images, most of humans but also of three special types: Zombie (88), Ape (24) and Alien (9). They are provided with both clear backgrounds and teal backgrounds.
## Dataset Structure
### Data Fields
- img: 24x24x3 image
## Additional Information
### Ocean Protocol
We are working on a Proof of Concept for using HuggingFace with datasets and algorithms on the [Ocean Marketplace](https://market.oceanprotocol.com/). Ocean is an open source infrastructure for monetizing private datasets and training using private AI technologies such as Compute-to-Data.
### Algovera
Algovera is a community working to facilitate and accelerate the development of decentralised AI applications and research.
* Join our community on [Discord](https://discord.com/invite/e65RuHSDS5).
* Contribute to our [GitHub](https://github.com/AlgoveraAI).
* Check out our [Website](https://www.algovera.ai/).
* Find more resources on our [Notion](https://algovera.notion.site/).
* Subscribe to our [Calendar](https://calendar.google.com/calendar/embed?src=c_4qajdfj4imie9cpnkbvkrc7ri4%40group.calendar.google.com). |
Alvenir/nst-da-16khz | # NST Danish 16kHz dataset from Sprakbanken
Data is from sprakbanken and can be accessed using following [link](https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-19/).
|
Arnold/hausa_common_voice | This dataset is from the common voice corpus 7.0 using the Hausa dataset |
AryanLala/autonlp-data-Scientific_Title_Generator | ---
task_categories:
- conditional-text-generation
---
# AutoNLP Dataset for project: Scientific_Title_Generator
## Table of content
- [Dataset Description](#dataset-description)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
## Dataset Descritpion
This dataset has been automatically processed by AutoNLP for project Scientific_Title_Generator.
### Languages
The BCP-47 code for the dataset's language is unk.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"target": "Unification of Fusion Theories, Rules, Filters, Image Fusion and Target\n Tracking Methods (UFT)",
"text": " The author has pledged in various papers, conference or seminar\npresentations, and scientific grant applications (between 2004-2015) for the\nunification of fusion theories, combinations of fusion rules, image fusion\nprocedures, filter algorithms, and target tracking methods for more accurate\napplications to our real world problems - since neither fusion theory nor\nfusion rule fully satisfy all needed applications. For each particular\napplication, one selects the most appropriate fusion space and fusion model,\nthen the fusion rules, and the algorithms of implementation. He has worked in\nthe Unification of the Fusion Theories (UFT), which looks like a cooking\nrecipe, better one could say like a logical chart for a computer programmer,\nbut one does not see another method to comprise/unify all things. The\nunification scenario presented herein, which is now in an incipient form,\nshould periodically be updated incorporating new discoveries from the fusion\nand engineering research.\n"
},
{
"target": "Investigation of Variances in Belief Networks",
"text": " The belief network is a well-known graphical structure for representing\nindependences in a joint probability distribution. The methods, which perform\nprobabilistic inference in belief networks, often treat the conditional\nprobabilities which are stored in the network as certain values. However, if\none takes either a subjectivistic or a limiting frequency approach to\nprobability, one can never be certain of probability values. An algorithm\nshould not only be capable of reporting the probabilities of the alternatives\nof remaining nodes when other nodes are instantiated; it should also be capable\nof reporting the uncertainty in these probabilities relative to the uncertainty\nin the probabilities which are stored in the network. In this paper a method\nfor determining the variances in inferred probabilities is obtained under the\nassumption that a posterior distribution on the uncertainty variables can be\napproximated by the prior distribution. It is shown that this assumption is\nplausible if their is a reasonable amount of confidence in the probabilities\nwhich are stored in the network. Furthermore in this paper, a surprising upper\nbound for the prior variances in the probabilities of the alternatives of all\nnodes is obtained in the case where the probability distributions of the\nprobabilities of the alternatives are beta distributions. It is shown that the\nprior variance in the probability at an alternative of a node is bounded above\nby the largest variance in an element of the conditional probability\ndistribution for that node.\n"
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"target": "Value(dtype='string', id=None)",
"text": "Value(dtype='string', id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 5784 |
| valid | 1446 |
|
Atsushi/fungi_diagnostic_chars_comparison_japanese | ---
annotations_creators:
- other
language:
- ja
license:
- cc-by-4.0
multilinguality:
- monolingual
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-class-classification
size_categories:
- 100K<n<1M
---
fungi_diagnostic_chars_comparison_japanese
大菌輪「識別形質まとめ」データセット
最終更新日:2023/3/20(R3-10431まで)
====
### Languages
Japanese
This dataset is available in Japanese only.
# 概要
Atsushi Nakajima(中島淳志)が個人で運営しているWebサイト[大菌輪](http://mycoscouter.coolblog.jp/daikinrin/) では、数千件以上の菌類分類学論文を「論文3行まとめ」という形で要約および索引付け(インデキシング)した情報を提供しています。
その一環として、ある菌と別の菌の「共通する」あるいは「異なる」識別形質 (diagnostic characters) に関する記述を人手で抽出しています。
本データセットは、抽出された識別形質の一覧に、「色/color」、「形状/shape」などのカテゴリを半自動的に付与して集積したものです。
「論文3行まとめ」は毎日更新していますが、本データセットの更新はおおむね1ヶ月に一度とする予定です。
## 関連データセット
「論文3行まとめ」
[Atsushi/fungi_indexed_mycological_papers_japanese](https://huggingface.co/datasets/Atsushi/fungi_indexed_mycological_papers_japanese)
「Trait Circusデータセット」(統制形質)
[Atsushi/fungi_trait_circus_database](https://huggingface.co/datasets/Atsushi/fungi_trait_circus_database)
## 各カラムの説明
* R3ID … 大菌輪「論文3行まとめ」のIDです。
* No … 各識別文を一意のIDで区別するために、各R3IDにおいてナンバリングしたものです。
* comparison_source … 比較元の分類群(学名)です。
* comparison_target … 比較先の分類群(学名)です。
* sentence … 識別文です。全て日本語です。
* label …半自動的に付与されたカテゴリです(人手で修正していますが、ダブルチェックは行っていないので誤分類もあると思います)。以下の25のカテゴリが存在します。
* サイズ/size
* 分子系統解析/molecular_phylogenetic_analysis
* 形状/shape
* 色/color
* 地理的分布/geographical_distribution
* 生息環境/habitat
* 表面性状/surface_characteristics
* 構造/structure
* 有無/presence
* 形態全般/general_morphology
* 位置/position
* 二次代謝産物/secondary_metabolite
* 呈色反応/chemical_reaction
* 数量/amount
* 発達/development
* 生理学的形質/physiological_characters
* 分類/classification
* 資化・発酵能/assimilation_and_fermentation
* 質感/texture
* 味・臭い/taste_and_smell
* 病害・病原性関連/disease_and_pathogenecity
* 全般/general_characters
* 耐性・感受性/resistance_and_susceptibility
* 栄養摂取様式/nutrition_style
* 未分類/unclassified
* common_or_different … 共通する形質は「1」、異なる形質は「0」です。
* data_source … 各情報の 出典(文献)のURLです。 |
Atsushi/fungi_indexed_mycological_papers_japanese | ---
annotations_creators:
- other
language:
- ja
license:
- cc-by-4.0
multilinguality:
- monolingual
source_datasets:
- original
size_categories:
- 1K<n<10K
---
fungi_indexed_mycological_papers_japanese
大菌輪「論文3行まとめ」データセット
最終更新日:2023/3/20(R3-10431まで)
====
### Languages
Japanese
This dataset is available in Japanese only.
# 概要
Atsushi Nakajima(中島淳志)が個人で運営しているWebサイト[大菌輪](http://mycoscouter.coolblog.jp/daikinrin/) では、数千件以上の菌類分類学論文を「論文3行まとめ」という形で要約および索引付け(インデキシング)した情報を提供しています。
本データセットは、「論文3行まとめ」のコンテンツに含まれる各論文の3行抄録、タグ(索引)、掲載種一覧、比較種一覧をまとめたものです。
「論文3行まとめ」は毎日更新していますが、本データセットの更新はおおむね1ヶ月に一度とする予定です。
また、本データセットを可視化したWebアプリを[Observableで公開](https://tinyurl.com/2tvryz8u)しています。
## 関連データセット
「識別形質まとめ」
[Atsushi/fungi_diagnostic_chars_comparison_japanese](https://huggingface.co/datasets/Atsushi/fungi_diagnostic_chars_comparison_japanese)
「Trait Circusデータセット」(統制形質)
[Atsushi/fungi_trait_circus_database](https://huggingface.co/datasets/Atsushi/fungi_trait_circus_database)
## 各カラムの説明
* R3ID … 大菌輪「論文3行まとめ」のIDです。
* ja_title_provisional_translate(仮訳和文題名) … 作成者が翻訳したタイトルです。一部、日本語の原題があるものはそれをそのまま使用しています。
* original_title(原文題名)
* published_year(出版年)
* journal_title(雑誌名)
* source(文献リンク) … 各情報の 出典(文献)のURLです。
* daikinrin_url … 大菌輪「論文3行まとめ」のURLです。
* tags … 作成者が論文を全文読んだ上で独自に付与した索引です。カンマ+半角空白区切りです。形態形質、宿主/基質、実験器具/実験手法/試薬、地理的分布、生理/生化学などを幅広く索引しています。
* R3summary_1 … 3行抄録の「1行目」です。
* R3summary_2 … 3行抄録の「2行目」です。
* R3summary_3 … 3行抄録の「3行目」です。
* species_reported(報告種一覧) … 当該論文内で掲載された種の一覧です。「半角空白+半角スラッシュ+半角空白」区切りです。記号の意味は以下の通りです。
* ★=新種(新亜種・新品種・新変種)
* ■= 新産種
* ▲=新組み合わせ
* ◆=新学名
* ●=新階級
* (無印)=その他
* species_compared(比較種一覧) … いずれかの報告種と論文中で何らかの比較がなされた種の一覧です。「半角空白+半角スラッシュ+半角空白」区切りです。詳細は「識別形質まとめ」データセット([Atsushi/fungi_diagnostic_chars_comparison_japanese](https://huggingface.co/datasets/Atsushi/fungi_diagnostic_chars_comparison_japanese))を参照してください。
* taxon_reported(分類群一覧) … 報告種に対応する上位分類群をまとめたものです。カンマ+半角空白区切りです。MycoBankの情報を基に付与していますが、最新でない可能性があります。 |
Atsushi/fungi_trait_circus_database | ---
annotations_creators:
- other
language:
- en
- ja
multilinguality:
- multilingual
license:
- cc-by-4.0
source_datasets:
- original
size_categories:
- 100K<n<1M
---
fungi_trait_circus_database
大菌輪「Trait Circus」データセット(統制形質)
最終更新日:2022/12/26
====
### Languages
Japanese and English
Please do not use this dataset for academic purposes for the time being. (casual use only)
当面の間仮公開とします。学術目的での使用はご遠慮ください。
# 概要
Atsushi Nakajima(中島淳志)が個人で運営しているWebサイト[大菌輪](http://mycoscouter.coolblog.jp/daikinrin/) では、菌類の記載文を自然言語処理の手法を利用して半自動的に処理し、菌類の形態、生態などに関する様々な「形質 (traits)」データを抽出して、集計や解析の便宜を図るために、あらかじめ設定された「統制語 (controlled term)」の形でまとめています。
抽出手法については「ニッチェ・ライフ」誌の[こちらの記事](https://media.niche-life.com/series/008/Niche008_06.pdf)(査読なし)で報告しています。
自動抽出という性質上、ある程度の誤りが含まれる可能性があることをご承知おきください。
統制語は「要素 (element)」「属性(attribute)」「値(value)」の3つ組からなります。
例えば「傘_色_黒」はそれぞれ「傘」「色」「黒」の要素/属性/値を持っています。一部の統制語では要素と属性が同一となっています(「生息環境」など)
参考までに、データ数上位3件は「要素」で「子実体」「傘」「胞子」、「属性」で「色」「形状」「表面性状」、「値」で「褐」「平滑」「黄」です。
また、菌類分類学の学習および同定支援の目的で、そのデータを基にしたインタラクティブな可視化Webアプリ「[Trait Circus](https://tinyurl.com/nrhcfksu)」を提供しています。
本データセットは、そのWebアプリの生データに相当し、容量の都合等でWebアプリに反映されていない情報も含まれています。
## 関連データセット
「論文3行まとめ」
[Atsushi/fungi_indexed_mycological_papers_japanese](https://huggingface.co/datasets/Atsushi/fungi_indexed_mycological_papers_japanese)
「識別形質まとめ」
[Atsushi/fungi_diagnostic_chars_comparison_japanese](https://huggingface.co/datasets/Atsushi/fungi_diagnostic_chars_comparison_japanese)
## 各カラムの説明
* source … 各情報の出典のURLです。多くは学術文献またはMycoBankの記載文データベースを参照しています。
* hit_term … 抽出された形質の出典中における表現です。
* current_name … その形質を有する菌の現行学名です。MycoBankを参照していますが、最新の情報ではない可能性があります。
* element_j … 「要素」の日本語表記です。
* attribute_j … 「属性」の日本語表記です。
* value_j … 「値」の日本語表記です。
* element … 「要素」の英語表記です。
* attribute … 「属性」の英語表記です。
* value … 「値」の英語表記です。 |
BSC-LT/SQAC | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- es
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: Spanish Question Answering Corpus (SQAC)
size_categories:
- unknown
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
---
**⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/datasets/PlanTL-GOB-ES/SQAC
# SQAC (Spanish Question-Answering Corpus): An extractive QA dataset for the Spanish language
## BibTeX citation
```bibtex
@article{DBLP:journals/corr/abs-2107-07253,
author = {Asier Guti{\'{e}}rrez{-}Fandi{\~{n}}o and
Jordi Armengol{-}Estap{\'{e}} and
Marc P{\`{a}}mies and
Joan Llop{-}Palao and
Joaqu{\'{\i}}n Silveira{-}Ocampo and
Casimiro Pio Carrino and
Aitor Gonzalez{-}Agirre and
Carme Armentano{-}Oller and
Carlos Rodr{\'{\i}}guez Penagos and
Marta Villegas},
title = {Spanish Language Models},
journal = {CoRR},
volume = {abs/2107.07253},
year = {2021},
url = {https://arxiv.org/abs/2107.07253},
archivePrefix = {arXiv},
eprint = {2107.07253},
timestamp = {Wed, 21 Jul 2021 15:55:35 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2107-07253.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
See the pre-print version of our paper for further details: https://arxiv.org/abs/2107.07253
<!-- ## Digital Object Identifier (DOI) and access to dataset files -->
## Introduction
This dataset contains 6,247 contexts and 18,817 questions with their answers, 1 to 5 for each fragment.
The sources of the contexts are:
* Encyclopedic articles from [Wikipedia in Spanish](https://es.wikipedia.org/), used under [CC-by-sa licence](https://creativecommons.org/licenses/by-sa/3.0/legalcode).
* News from [Wikinews in Spanish](https://es.wikinews.org/), used under [CC-by licence](https://creativecommons.org/licenses/by/2.5/).
* Text from the Spanish corpus [AnCora](http://clic.ub.edu/corpus/en), which is a mix from diferent newswire and literature sources, used under [CC-by licence](https://creativecommons.org/licenses/by/4.0/legalcode).
This dataset can be used to build extractive-QA.
### Supported Tasks and Leaderboards
Extractive-QA
### Languages
ES - Spanish
### Directory structure
* README.md
* dev.json
* test.json
* train.json
* sqac.py
## Dataset Structure
### Data Instances
JSON files
### Data Fields
Follows (Rajpurkar, Pranav et al., 2016) for squad v1 datasets. (see below for full reference).
We added a field "source" with the source of the context.
### Example
<pre>
{
"data": [
{
"paragraphs": [
{
"context": "Al cogote, y fumando como una cafetera. Ah!, no era él, éramos todos nosotros. Luego llegó Billie Holiday. Bajo el epígrafe Arte, la noche temática, pasaron la vida de la única cantante del universo que no es su voz, sino su alma lo que se escucha cuando interpreta. Gata golpeada por el mundo, pateada, violada, enganchada a todos los paraísos artificiales del planeta, jamás encontró el Edén. El Edén lo encontramos nosotros cuando, al concluir la sesión de la tele, pusimos en la doméstica cadena de sonido el mítico Last Recording, su última grabación (marzo de 1959), con la orquesta de Ray Ellis y el piano de Hank Jones. Se estaba muriendo Lady Day, y no obstante, mientras moría, su alma cantaba, Baby, won't you please come home. O sea, niño, criatura, amor, vuelve, a casa por favor.",
"qas": [
{
"question": "¿Quién se incorporó a la reunión más adelante?",
"id": "c5429572-64b8-4c5d-9553-826f867b07be",
"answers": [
{
"answer_start": 91,
"text": "Billie Holiday"
}
]
},
...
]
}
],
"title": "P_129_20010702_&_P_154_20010102_&_P_108_20000301_c_&_P_108_20000601_d",
"source": "ancora"
},
...
]
}
</pre>
### Data Splits
- train
- development
- test
## Content analysis
### Number of articles, paragraphs and questions
* Number of articles: 3,834
* Number of contexts: 6,247
* Number of questions: 18,817
* Questions/context: 3.01
* Number of sentences: 48,026
* Sentences/context: 7.70
### Number of tokens
* Total tokens in context: 1,561,616
* Tokens/context 250.30
* Total tokens in questions: 203,235
* Tokens in questions/questions: 10.80
* Tokens in questions/tokens in context: 0.13
* Total tokens in answers: 90,307
* Tokens in answers/answers: 4.80
* Tokens in answers/tokens in context: 0.06
### Lexical variation
46.38 of the words in the Question can be found in the Context.
### Question type
| Question | Count | % |
|----------|-------:|---:|
| qué | 6,381 | 33.91 % |
| quién/es | 2,952 | 15.69 % |
| cuál/es | 2,034 | 10.81 % |
| cómo | 1,949 | 10.36 % |
| dónde | 1,856 | 9.86 % |
| cuándo | 1,639 | 8.71 % |
| cuánto | 1,311 | 6.97 % |
| cuántos | 495 |2.63 % |
| adónde | 100 | 0.53 % |
| cuánta | 49 | 0.26 % |
| no question mark | 43 | 0.23 % |
| cuántas | 19 | 0.10 % |
## Dataset Creation
### Methodology
6,247 contexts were randomly chosen from the three corpus described below. We commisioned the creation of between 1 and 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)](http://arxiv.org/abs/1606.05250). In total, 18,817 pairs of a question and an extracted fragment that contains the answer were created.
### Curation Rationale
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines. We also created another QA dataset with Wikipedia to ensure thematic and stylistic variety.
### Source Data
- Spanish Wikipedia: https://es.wikipedia.org
- Spanish Wikinews: https://es.wikinews.org/
- AnCora corpus: http://clic.ub.edu/corpus/en
#### Initial Data Collection and Normalization
The source data are scraped articles from the Spanish Wikipedia site, Wikinews site and from AnCora corpus.
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
We commissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)](http://arxiv.org/abs/1606.05250).
#### Who are the annotators?
Native language speakers.
### Dataset Curators
Carlos Rodríguez and Carme Armentano, from BSC-CNS.
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Contact
Carlos Rodríguez-Penagos or Carme Armentano-Oller (bsc-temu@bsc.es)
## Funding
This work was partially funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.
## License
<a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/"><img alt="Attribution-ShareAlike 4.0 International License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>.
|
BSC-LT/ancora-ca-ner | ---
language:
- ca
---
# Named Entites from Ancora Corpus
## BibTeX citation
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
## Digital Object Identifier (DOI) and access to dataset files
https://doi.org/10.5281/zenodo.4529299
## Introduction
This is a dataset for Named Entity Recognition (NER) from <a href="http://clic.ub.edu/corpus/">Ancora corpus</a> adapted for Machine Learning and Language Model evaluation purposes.
Since multiwords (including Named Entities) in the original Ancora corpus are aggregated as a single lexical item using underscores (e.g. "Ajuntament_de_Barcelona") we splitted them to align with word-per-line format, and added conventional <a href="https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)">Begin-Inside-Outside (IOB) tags</a> to mark and classify Named Entities. We did not filter out the different categories of NEs from Ancora (weak and strong). We did 6 minor edits by hand.
AnCora corpus is used under [CC-by] (https://creativecommons.org/licenses/by/4.0/) licence.
This dataset was developed by BSC TeMU as part of the AINA project, and to enrich the Catalan Language Understanding Benchmark (CLUB).
### Supported Tasks and Leaderboards
Named Entities Recognition, Language Model
### Languages
CA- Catalan
### Directory structure
* dev.txt
* test.txt
* train.txt
## Dataset Structure
### Data Instances
three two-column files, one for each split.
### Data Fields
Every file has two columns, with the word form or punctuation symbol in the first one and the corresponding IOB tag in the second one.
### Example:
<pre>
Fundació B-ORG
Privada I-ORG
Fira I-ORG
de I-ORG
Manresa I-ORG
ha O
fet O
un O
balanç O
de O
l' O
activitat O
del O
Palau B-LOC
Firal I-LOC
</pre>
### Data Splits
One for each sub-dataset for train, evaluation and test.
## Dataset Creation
### Methodology
We adapted the NER labels from Ancora corpus to a word-per-line format.
Since multiwords in the original Ancora corpus are aggregated as a single lexical item using underscores (e.g. "Ajuntament_de_Barcelona") we splitted them to align with this format, and added conventional <a href="https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)">Begin-Inside-Outside (IOB) tags</a> to mark and classify Named Entities. We did not filter out the different categories of NEs from Ancora (weak and strong). We did 6 minor edits by hand.
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
AnCora consists of a Catalan corpus (AnCora-CA) and a Spanish corpus (AnCora-ES), each of them of 500,000 tokens (some multi-word). The corpora are annotated for linguistic phenomena at different levels.
AnCora corpus is mainly based on newswire texts. For more information, refer to Taulé, M., M.A. Martí, M. Recasens (2009). “AnCora: Multilevel Annotated Corpora for Catalan and Spanish”, Proceedings of 6th International Conference on language Resources and Evaluation. http://www.lrec-conf.org/proceedings/lrec2008/pdf/35_paper.pdf
#### Who are the source language producers?
Catalan Ancora corpus is compiled from articles from the following news outlets: <a href="https://www.efe.com">EFE</a>, <a href="https://www.acn.cat">ACN</a>, <a href="https://www.elperiodico.cat/ca/">El Periodico</a>.
### Annotations
#### Annotation process
We adapted the NER labels from Ancora corpus to a token-per-line, multi-column format.
#### Who are the annotators?
Original annotators from Ancora corpus.
### Dataset Curators
Carlos Rodríguez and Carme Armentano, from BSC-CNS, did the conversion and curation.
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Contact
Carlos Rodríguez-Penagos or Carme Armentano-Oller (bsc-temu@bsc.es)
## License
<a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Attribution 4.0 International License" style="border-width:0" src="https://chriszabriskie.com/img/cc-by.png" width="100"/></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Attribution 4.0 International License</a>.
|
BSC-LT/sts-ca | ---
language:
- ca
---
# Semantic Textual Similarity in Catalan
## BibTeX citation
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
## Digital Object Identifier (DOI) and access to dataset files
https://doi.org/10.5281/zenodo.4529184
## Introduction
STS corpus is a benchmark for evaluating Semantic Text Similarity in Catalan.
It consists of more than 3000 sentence pairs, annotated with the semantic similarity between them, using a scale from 0 (no similarity at all) to 5 (semantic equivalence). It is done manually by 4 different annotators following our guidelines based on previous work from the SemEval challenges (https://www.aclweb.org/anthology/S13-1004.pdf).
The source data are scraped sentences from the Catalan Textual Corpus (https://doi.org/10.5281/zenodo.4519349), used under CC-by-SA-4.0 licence (https://creativecommons.org/licenses/by-sa/4.0/). The dataset is released under the same licence.
This dataset was developed by BSC TeMU as part of the AINA project, to enrich the Catalan Language Understanding Benchmark (CLUB).
This is the version 1.0.1 of the dataset with the complete human and automatic annotations, as well as the QA analysis scripts. It also has a more accurate license.
This dataset can be used to build and score semantic similarity models.
### Supported Tasks and Leaderboards
Semantic textual similiarity, Language Model
### Languages
CA - Catalan
### Directory structure
* dev.tsv
* sts-ca.py
* test.tsv
* train.tsv
* README
## Dataset Structure
### Data Instances
Follows SemEval challenges (https://www.aclweb.org/anthology/S13-1004.pdf).
### Data Fields
SemEval challenges formats and conventions (https://www.aclweb.org/anthology/S13-1004.pdf).
### Example:
| index | id | sentence 1 | sentence 2 | avg |
| ------- | ---- | ------------ | ------------ | ----- |
| 19 | ACN2_131 | Els manifestants ocupen l'Imperial Tarraco durant una hora fent jocs de taula | Els manifestants ocupen l'Imperial Tarraco i fan jocs de taula | 4 |
| 21 | TE2_80 | El festival comptarà amb cinc escenaris i se celebrarà entre el 7 i el 9 de juliol al Parc del Fòrum. | El festival se celebrarà el 7 i 8 de juliol al Parc del Fòrum de Barcelona | 3 |
| 23 | Oscar2_609 | Aleshores hi posarem un got de vi i continuarem amb la cocció fins que s'hagi evaporat el vi i ho salpebrarem. | Mentre, hi posarem el vi al sofregit i deixarem coure uns 7/8′, fins que el vi s'evapori. | 3 |
| 25 | Viqui2_48 | L'arboç grec (Arbutus andrachne) és un arbust o un petit arbre dins la família ericàcia. | El ginjoler ("Ziziphus jujuba") és un arbust o arbre petit de la família de les "Rhamnaceae". | 2.75 |
| 27 | ACN2_1072 | Mentre han estat davant la comandància, els manifestants han cridat consignes a favor de la independència i han cantat cançons com 'L'estaca'. | Entre les consignes que han cridat s'ha pogut escoltar càntics com 'els carrers seran sempre nostres' i contínues consignes en favor de la independència. | 3 |
| 28 | Viqui2_587 | Els cinc municipis ocupen una superfície de poc més de 100 km2 i conjuntament sumen una població total aproximada de 3.691 habitants (any 2019). | Té una població d'1.811.177 habitants (2005) repartits en 104 municipis d'una superfície total de 14.001 km2. | 2.67 |
### Data Splits
* sts_cat_dev_v1.tsv (493 annotated pairs)
* sts_cat_train_v1.tsv (492 annotated pairs)
* sts_cat_test_v1.tsv (2043 annotated pairs)
## Dataset Creation
### Methodology
Random sentences were extracted from 3 Catalan corpus: ACN, Oscar and Wikipedia, and we generated candidate pairs using a combination of metrics from Doc2Vec, Jaccard and a BERT-like model (“distiluse-base-multilingual-cased-v2”, [link](https://huggingface.co/distilbert-base-multilingual-cased)). Finally, we manually reviewed the generated pairs to reject non-relevant pairs (identical or ungrammatical sentences, etc.) before providing them to the annotation team.
The average of the four annotations was selected as a “ground truth” for each sentence pair, except when an annotator diverged in more than one unit from the average. In these cases, we discarded the divergent annotation and recalculated the average without it. We also discarded 45 sentence pairs because the annotators disagreed too much.
### Curation Rationale
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
### Source Data
#### Initial Data Collection and Normalization
The source data are scraped sentences from the Catalan Textual Corpus.
#### Who are the source language producers?
The Catalan Textual Corpus is a 1760-million-token web corpus of Catalan built from several sources: existing corpus such as DOGC, CaWac (non-dedup version), Oscar (unshuffled version), Open Subtitles, Catalan Wikipedia; and three brand new crawlings: the Catalan General Crawling, obtained by crawling the 500 most popular .cat and .ad domains; the Catalan Government Crawling, obtained by crawling the .gencat domain and subdomains, belonging to the Catalan Government; and the ACN corpus with 220k news items from March 2015 until October 2020, crawled from the Catalan News Agency.
### Annotations
#### Annotation process
We comissioned the manual annotation of the similiarity between the sentences of each pair, following the provided guidelines.
#### Who are the annotators?
A team of native language speakers from 2 different companies, working independently.
### Dataset Curators
Carlos Rodríguez and Carme Armentano, from BSC-CNS
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Contact
Carlos Rodríguez-Penagos or Carme Armentano-Oller (bsc-temu@bsc.es)
## License
<a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/"><img alt="Attribution-ShareAlike 4.0 International License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>. |
BSC-LT/tecla | ---
language:
- ca
---
# TeCla (Text Classification) Catalan dataset
## BibTeX citation
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
## Digital Object Identifier (DOI) and access to dataset files
https://doi.org/10.5281/zenodo.4627198
## Introduction
TeCla is a Catalan News corpus for thematic Text Classification tasks. It contains 153.265 articles classified under 30 different categories.
The source data is crawled from the ACN (Catalan News Agency) site: [http://www.acn.cat], and used under CC-BY-NC-ND 4.0 licence. The dataset is released under the same licence, and is intended exclusively for training Machine Learning models.
This dataset was developed by BSC TeMU as part of the AINA project, and intended as part of CLUB (Catalan Language Understanding Benchmark). It is part of the Catalan Language Understanding Benchmark (CLUB) as presented in:
Armengol-Estapé J., Carrino CP., Rodriguez-Penagos C., de Gibert Bonet O., Armentano-Oller C., Gonzalez-Agirre A., Melero M. and Villegas M.,Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan". Findings of ACL 2021 (ACL-IJCNLP 2021).
### Supported Tasks and Leaderboards
Text classification, Language Model
### Languages
CA- Catalan
### Directory structure
* **.gitattributes**
* **README.md**
* **dev.json** - json-formatted file with the dev split of the dataset
* **tecla.py**
* **test.json** - json-formatted file with the test split of the dataset
* **train.json** - json-formatted file with the train split of the dataset
## Dataset Structure
### Data Instances
Three json files, one for each split.
### Data Fields
We used a simple model with the article text and associated labels, without further metadata.
### Example:
<pre>
{"version": "1.0",
"data":
[
{
'sentence': 'L\\\\'editorial valenciana Media Vaca, Premi Nacional a la Millor Tasca Editorial Cultural del 2018. El jurat en destaca la cura "exquisida" del catàleg, la qualitat dels llibres i el "respecte" pels lectors. ACN Madrid.-L\\\\'editorial valenciana Media Vaca ha obtingut el Premi Nacional a la Millor Labor Editorial Cultural corresponent a l\\\\'any 2018 que atorga el Ministeri de Cultura i Esports. El guardó pretén distingir la tasca editorial d\\\\'una persona física o jurídica que hagi destacat per l\\\\'aportació a la vida cultural espanyola. El premi és de caràcter honorífic i no té dotació econòmica. En el cas de Media Vaca, fundada pel valencià Vicente Ferrer i la bilbaïna Begoña Lobo, el jurat n\\\\'ha destacat la cura "exquisida" del catàleg, la qualitat dels llibres i el "respecte" pels lectors i per la resta d\\\\'agents de la cadena del llibre. Media Vaca va publicar els primers llibres el desembre del 1998. El catàleg actual el componen 64 títols dividits en sis col·leccions, que barregen ficció i no ficció. Des del Ministeri de Cultura es destaca que la il·lustració té un pes "fonamental" als productes de l\\\\'editorial i que la majoria de projectes solen partir de propostes literàries i textos preexistents. L\\\\'editorial ha rebut quatre vegades el Bologna Ragazzi Award. És l\\\\'única editorial estatal que ha aconseguit el guardó que atorga la Fira del Llibre per a Nens de Bolonya, la més important del sector.',
'label': 'Lletres'
},
.
.
.
]
}
</pre>
### Data Splits
* train.json: 122587 article-label pairs
* dev.json: 15339 article-label pairs
* test.json: 15339 article-label pairs
### Labels
'Societat', 'Política', 'Turisme', 'Salut', 'Economia', 'Successos', 'Partits', 'Educació', 'Policial', 'Medi ambient', 'Parlament', 'Empresa', 'Judicial', 'Unió Europea', 'Comerç', 'Cultura', 'Cinema', 'Govern', 'Lletres', 'Infraestructures', 'Música', 'Festa i cultura popular', 'Teatre', 'Mobilitat', 'Govern espanyol', 'Equipaments i patrimoni', 'Meteorologia', 'Treball', 'Trànsit', 'Món'
### Labels in the dataset by frequency
train.json: 122587 articles
| Label | Num art |% art |
|:-----------------------|--------------:|------: |
| Societat | 24975 | 20.37% |
| Política | 18344 | 14.96% |
| Partits | 10056 | 8.2% |
| Successos | 7874 | 6.42% |
| Judicial | 5788 | 4.72% |
| Policial | 5557 | 4.53% |
| Salut | 5430 | 4.43% |
| Economia | 5032 | 4.1% |
| Parlament | 4176 | 3.41% |
| Medi_ambient | 3027 | 2.47% |
| Música | 2872 | 2.34% |
| Educació | 2757 | 2.25% |
| Empresa | 2698 | 2.2% |
| Cultura | 2495 | 2.04% |
| Unió_Europea | 2064 | 1.68% |
| Govern | 2039 | 1.66% |
| Infraestructures | 1740 | 1.42% |
| Treball | 1655 | 1.35% |
| Mobilitat | 1624 | 1.32% |
| Cinema | 1560 | 1.27% |
| Teatre | 1492 | 1.22% |
| Turisme | 1232 | 1.01% |
| Equipaments_i_patrimoni | 1229 | 1.0% |
| Lletres | 1180 | 0.96% |
| Meteorologia | 1080 | 0.88% |
| Comerç | 984 | 0.8% |
| Govern_espanyol | 983 | 0.8% |
| Món | 893 | 0.73% |
| Festa_i_cultura_popular | 888 | 0.72% |
| Trànsit | 863 | 0.7% |
dev.json and test.json: 153265 articles each split
| Label | Num art |% art |
|:----------------------- | --------------:| ------: |
| Societat | 3122 | 20.35% |
| Política | 2294 | 14.96% |
| Partits | 1257 | 8.19% |
| Successos | 985 | 6.42% |
| Judicial | 724 | 4.72% |
| Policial | 695 | 4.53% |
| Salut | 679 | 4.43% |
| Economia | 630 | 4.11% |
| Parlament | 523 | 3.41% |
| Medi_ambient | 379 | 2.47% |
| Música | 359 | 2.34% |
| Educació | 345 | 2.25% |
| Empresa | 338 | 2.2% |
| Cultura | 312 | 2.03% |
| Unió_Europea | 258 | 1.68% |
| Govern | 256 | 1.67% |
| Infraestructures | 218 | 1.42% |
| Treball | 208 | 1.36% |
| Mobilitat | 204 | 1.33% |
| Cinema | 195 | 1.27% |
| Teatre | 187 | 1.22% |
| Turisme | 154 | 1.0% |
| Equipaments_i_patrimoni | 154 | 1.0% |
| Lletres | 148 | 0.96% |
| Meteorologia | 135 | 0.88% |
| Govern_espanyol | 124 | 0.81% |
| Comerç | 123 | 0.8% |
| Festa_i_cultura_popular | 112 | 0.73% |
| Món | 112 | 0.73% |
| Trànsit | 109 | 0.71% |
## Dataset Creation
### Methodology
We crawled 219.586 articles from the Catalan News Agency (www.acn.cat) newswire archive, the latest from October 11, 2020.
We used the "subsection" category as a classification label, after excluding territorial labels (see territorial_labels.txt file) and labels with less than 2000 occurrences. With this criteria compiled a total of 153.265 articles for this text classification dataset.
### Curation Rationale
We used the "subsection" category as a classification label, after excluding territorial labels (see territorial_labels.txt file) and labels with less than 2000 occurrences.
### Source Data
#### Initial Data Collection and Normalization
The source data are crawled articles from ACN (Catalan News Agency) site: www.acn.cat
#### Who are the source language producers?
The Catalan News Agency (CNA, in Catalan: Agència Catalana de Notícies (ACN)) is a news agency owned by the Catalan government via the public corporation Intracatalònia, SA. It is one of the first digital news agencies created in Europe and has been operating since 1999 (source: [https://en.wikipedia.org/wiki/Catalan_News_Agency])
### Annotations
#### Annotation process
We used the "subsection" category as a classification label, after excluding territorial labels (see territorial_labels.txt file) and labels with less than 2000 occurrences.
#### Who are the annotators?
Editorial staff classified the articles under the different thematic sections, and we extracted these from metadata.
### Dataset Curators
Casimiro Pio Carrino, Carlos Rodríguez and Carme Armentano, from BSC-CNS
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Contact
Carlos Rodríguez-Penagos or Carme Armentano-Oller (bsc-temu@bsc.es)
## License
<a rel="license" href="https://creativecommons.org/licenses/by-nc-nd/4.0/"><img alt="Attribution-NonCommercial-NoDerivatives 4.0 International License" style="border-width:0" src="http://d2klr1ixr44jla.cloudfront.net/306/125/0.5-0.5/assets/images/55132bfeb13b7b027c000041.png" width="100"/></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-nc-nd/4.0/">Attribution-NonCommercial-NoDerivatives 4.0 International License</a>.
|
BSC-LT/viquiquad | ---
language:
- ca
---
# ViquiQuAD, An extractive QA dataset for catalan, from the Wikipedia
## BibTeX citation
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
# Digital Object Identifier (DOI) and access to dataset files
https://doi.org/10.5281/zenodo.4562345
## Introduction
This dataset contains 3111 contexts extracted from a set of 597 high quality original (no translations) articles in the Catalan Wikipedia "Viquipèdia" (ca.wikipedia.org), and 1 to 5 questions with their answer for each fragment.
Viquipedia articles are used under [CC-by-sa] (https://creativecommons.org/licenses/by-sa/3.0/legalcode) licence.
This dataset can be used to fine-tune and evaluate extractive-QA and Language Models. It is part of the Catalan Language Understanding Benchmark (CLUB) as presented in:
Armengol-Estapé J., Carrino CP., Rodriguez-Penagos C., de Gibert Bonet O., Armentano-Oller C., Gonzalez-Agirre A., Melero M. and Villegas M.,Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan". Findings of ACL 2021 (ACL-IJCNLP 2021).
### Supported Tasks and Leaderboards
Extractive-QA, Language Model
### Languages
CA- Catalan
### Directory structure
* README
* dev.json
* test.json
* train.json
* viquiquad.py
## Dataset Structure
### Data Instances
json files
### Data Fields
Follows ((Rajpurkar, Pranav et al., 2016) for squad v1 datasets. (see below for full reference)
### Example:
<pre>
{
"data": [
{
"title": "Frederick W. Mote",
"paragraphs": [
{
"context": "L'historiador Frederick W. Mote va escriure que l'ús del terme \\\\\\\\\\\\\\\\"classes socials\\\\\\\\\\\\\\\\" per a aquest sistema era enganyós i que la posició de les persones dins del sistema de quatre classes no era una indicació del seu poder social i riquesa reals, sinó que només implicava \\\\\\\\\\\\\\\\"graus de privilegi\\\\\\\\\\\\\\\\" als quals tenien dret institucionalment i legalment, de manera que la posició d'una persona dins de les classes no era una garantia de la seva posició, ja que hi havia xinesos rics i amb bona reputació social, però alhora hi havia menys mongols i semu rics que mongols i semu que vivien en la pobresa i eren maltractats.",
"qas": [
{
"answers": [
{
"text": "Frederick W. Mote",
"answer_start": 14
}
],
"id": "5728848cff5b5019007da298",
"question": "Qui creia que el sistema de classes socials de Yuan no s’hauria d’anomenar classes socials?"
},
...
]
}
]
},
...
]
}
</pre>
### Data Splits
train.development,test
## Content analysis
### Number of articles, paragraphs and questions
* Number of articles: 597
* Number of contexts: 3111
* Number of questions: 15153
* Questions/context: 4.87
* Number of sentences in contexts: 15100
* Sentences/context: 4.85
### Number of tokens
* tokens in context: 469335
* tokens/context 150.86
* tokens in questions: 145249
* tokens/questions: 9.58
* tokens in answers: 63246
* tokens/answers: 4.17
### Lexical variation
After filtering (tokenization, stopwords, punctuation, case), 83,88% of the words in the question can be found in the Context
### Question type
| Question | Count | % |
|--------|-----|------|
| què | 4220 | 27.85 % |
| qui | 2239 | 14.78 % |
| com | 1964 | 12.96 % |
| quan | 1133 | 7.48 % |
| on | 1580 | 10.43 % |
| quant | 925 | 6.1 % |
| quin | 3399 | 22.43 % |
| no question mark | 21 | 0.14 % |
### Question-answer relationships
From 100 randomly selected samples:
* Lexical variation: 33.0%
* World knowledge: 16.0%
* Syntactic variation: 35.0%
* Multiple sentence: 17.0%
## Dataset Creation
### Methodology
From a set of high quality, non-translation, articles in the Catalan Wikipedia (ca.wikipedia.org), 597 were randomly chosen, and from them 3111, 5-8 sentence contexts were extracted. We commissioned creation of between 1 and 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)], (http://arxiv.org/abs/1606.05250). In total, 15153 pairs of a question and an extracted fragment that contains the answer were created.
### Curation Rationale
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
### Source Data
- https://ca.wikipedia.org
#### Initial Data Collection and Normalization
The source data are scraped articles from the Catalan wikipedia site (https://ca.wikipedia.org).
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
We commissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)), http://arxiv.org/abs/1606.05250.
#### Who are the annotators?
Native language speakers.
### Dataset Curators
Carlos Rodríguez and Carme Armentano, from BSC-CNS
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Contact
Carlos Rodríguez-Penagos or Carme Armentano-Oller (bsc-temu@bsc.es)
## License
<a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/"><img alt="Attribution-ShareAlike 4.0 International License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>.
|
BSC-LT/xquad-ca | ---
language:
- ca
---
# XQuAD-Ca
## BibTeX citation
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
## Digital Object Identifier (DOI) and access to dataset files
https://doi.org/10.5281/zenodo.4526224
## Introduction
Professional translation into Catalan of XQuAD dataset (https://github.com/deepmind/xquad).
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Rumanian was added later. We added the 13th language to the corpus using also professional native catalan translators.
XQuAD and XQuAD-Ca datasets are released under [CC-by-sa] (https://creativecommons.org/licenses/by-sa/3.0/legalcode) licence.
### Supported Tasks and Leaderboards
Cross-lingual-QA, Extractive-QA, Language Model
### Languages
CA- Catalan
### Directory structure
* README.md
* .gitattributes
* test.json - json-formatted file with the dataset
* xquad-ca.py
## Dataset Structure
### Data Instances
One json file
### Data Fields
Follows ((Rajpurkar, Pranav et al., 2016) for SQuAD v1 datasets. (see below for full reference)
### Example:
<pre>
{
"data": [
{
"context": "Al llarg de la seva existència, Varsòvia ha estat una ciutat multicultural. Segons el cens del 1901, de 711.988 habitants, el 56,2 % eren catòlics, el 35,7 % jueus, el 5 % cristians ortodoxos grecs i el 2,8 % protestants. Vuit anys després, el 1909, hi havia 281.754 jueus (36,9 %), 18.189 protestants (2,4 %) i 2.818 mariavites (0,4 %). Això va provocar que es construïssin centenars de llocs de culte religiós a totes les parts de la ciutat. La majoria d’ells es van destruir després de la insurrecció de Varsòvia del 1944. Després de la guerra, les noves autoritats comunistes de Polònia van apocar la construcció d’esglésies i només se’n va construir un petit nombre.",
"qas": [
{
"answers": [
{
"text": "711.988",
"answer_start": 104
}
],
"id": "57338007d058e614000b5bdb",
"question": "Quina era la població de Varsòvia l’any 1901?"
},
{
"answers": [
{
"text": "56,2 %",
"answer_start": 126
}
],
"id": "57338007d058e614000b5bdc",
"question": "Dels habitants de Varsòvia l’any 1901, quin percentatge era catòlic?"
},
...
]
}
]
},
...
]
}
</pre>
### Data Splits
One
## Dataset Creation
### Methodology
For more information on how XQuAD was created, refer to the paper, On the Cross-lingual Transferability of Monolingual Representations (https://arxiv.org/abs/1910.11856), or visit the webpage https://github.com/deepmind/xquad
Translation into Catalan was commissioned by BSC TeMU within the AINA project.
### Curation Rationale
For compatibility with similar datasets in other languages, and to allow inter-lingual comparisons.
### Source Data
- https://github.com/deepmind/xquad
#### Initial Data Collection and Normalization
Professional translation of XQuAD into Catalan
#### Who are the source language producers?
For more information on how XQuAD was created, refer to the paper, On the Cross-lingual Transferability of Monolingual Representations (https://arxiv.org/abs/1910.11856), or visit the webpage https://github.com/deepmind/xquad
### Annotations
#### Annotation process
None
#### Who are the annotators?
Translation whas commisioned to a professional translation company.
### Dataset Curators
Carlos Rodríguez and Carme Armentano, from BSC-CNS
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Contact
Carlos Rodríguez-Penagos or Carme Armentano-Oller (bsc-temu@bsc.es)
## License
<a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/"><img alt="Attribution-ShareAlike 4.0 International License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>. |
Babelscape/rebel-dataset | ---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- en
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- unknown
source_datasets:
- original
task_categories:
- text-retrieval
- text-generation
task_ids: []
pretty_name: rebel-dataset
tags:
- relation-extraction
- conditional-text-generation
---
# Dataset Card for REBEL dataset
## Table of Contents
- [Dataset Card for REBEL dataset](#dataset-card-for-rebel)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [https://github.com/Babelscape/rebel](https://github.com/Babelscape/rebel)
- **Paper:** [https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf)
- **Point of Contact:** [huguetcabot@babelscape.com](huguetcabot@babelscape.com)
### Dataset Summary
Dataset created for [REBEL](https://huggingface.co/Babelscape/rebel-large) dataset from interlinking Wikidata and Wikipedia for Relation Extraction, filtered using NLI.
### Supported Tasks and Leaderboards
- `text-retrieval-other-relation-extraction`: The dataset can be used to train a model for Relation Extraction, which consists in extracting triplets from raw text, made of subject, object and relation type. Success on this task is typically measured by achieving a *high* [F1](https://huggingface.co/metrics/F1). The [BART](https://huggingface.co/transformers/model_doc/bart.html)) model currently achieves the following score: 74 Micro F1 and 51 Macro F1 for the 220 most frequent relation types.
### Languages
The dataset is in English, from the English Wikipedia.
## Dataset Structure
### Data Instances
REBEL
- `Size of downloaded dataset files`: 1490.02 MB
- `Size of the generated dataset`: 1199.27 MB
- `Total amount of disk used`: 2689.29 MB
```
{
'id': 'Q82442-1',
'title': 'Arsène Lupin, Gentleman Burglar',
'context': 'Arsène Lupin , Gentleman Burglar is the first collection of stories by Maurice Leblanc recounting the adventures of Arsène Lupin , released on 10 June 1907 .',
'triplets': '<triplet> Arsène Lupin, Gentleman Burglar <subj> Maurice Leblanc <obj> author <triplet> Arsène Lupin <subj> Maurice Leblanc <obj> creator'
}
```
The original data is in jsonl format and contains much more information. It is divided by Wikipedia articles instead of by sentence, and contains metadata about Wikidata entities, their boundaries in the text, how it was annotated, etc. For more information check the [paper repository](https://huggingface.co/Babelscape/rebel-large) and how it was generated using the Relation Extraction dataset pipeline, [cRocoDiLe](https://github.com/Babelscape/crocodile).
### Data Fields
List and describe the fields present in the dataset. Mention their data type, and whether they are used as input or output in any of the tasks the dataset currently supports. If the data has span indices, describe their attributes, such as whether they are at the character level or word level, whether they are contiguous or not, etc. If the datasets contains example IDs, state whether they have an inherent meaning, such as a mapping to other datasets or pointing to relationships between data points.
- `id`: ID of the instance. It contains a unique id matching to a Wikipedia page and a number separated by a hyphen indicating which sentence of the Wikipedia article it is.
- `title`: Title of the Wikipedia page the sentence comes from.
- `context`: Text from Wikipedia articles that serves as context for the Relation Extraction task.
- `triplets`: Linearized version of the triplets present in the text, split by the use of special tokens. For more info on this linearization check the [paper](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf).
### Data Splits
Test and Validation splits are each 5% of the original data.
Provide the sizes of each split. As appropriate, provide any descriptive statistics for the features, such as average length. For example:
| | Tain | Valid | Test |
| ----- | ------ | ----- | ---- |
| Input Sentences | 3,120,296 | 172,860 | 173,601 |
| Input Sentences (top 220 relation types as used in original paper) | 784,202 | 43,341 | 43,506 |
| Number of Triplets (top 220 relation types as used in original paper) | 878,555 | 48,514 | 48,852 |
## Dataset Creation
### Curation Rationale
This dataset was created to enable the training of a BART based model as pre-training phase for Relation Extraction as seen in the paper [REBEL: Relation Extraction By End-to-end Language generation](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf).
### Source Data
Data comes from Wikipedia text before the table of contents, as well as Wikidata for the triplets annotation.
#### Initial Data Collection and Normalization
For the data collection, the dataset extraction pipeline [cRocoDiLe: Automati**c** **R**elati**o**n Extra**c**ti**o**n **D**ataset w**i**th N**L**I filt**e**ring](https://github.com/Babelscape/crocodile) insipired by [T-REx Pipeline](https://github.com/hadyelsahar/RE-NLG-Dataset) more details found at: [T-REx Website](https://hadyelsahar.github.io/t-rex/). The starting point is a Wikipedia dump as well as a Wikidata one.
After the triplets are extracted, an NLI system was used to filter out those not entailed by the text.
#### Who are the source language producers?
Any Wikipedia and Wikidata contributor.
### Annotations
#### Annotation process
The dataset extraction pipeline [cRocoDiLe: Automati**c** **R**elati**o**n Extra**c**ti**o**n **D**ataset w**i**th N**L**I filt**e**ring](https://github.com/Babelscape/crocodile).
#### Who are the annotators?
Automatic annottations
### Personal and Sensitive Information
All text is from Wikipedia, any Personal or Sensitive Information there may be present in this dataset.
## Considerations for Using the Data
### Social Impact of Dataset
The dataset serves as a pre-training step for Relation Extraction models. It is distantly annotated, hence it should only be used as such. A model trained solely on this dataset may produce allucinations coming from the silver nature of the dataset.
### Discussion of Biases
Since the dataset was automatically created from Wikipedia and Wikidata, it may reflect the biases withing those sources.
For Wikipedia text, see for example [Dinan et al 2020 on biases in Wikipedia (esp. Table 1)](https://arxiv.org/abs/2005.00614), or [Blodgett et al 2020](https://www.aclweb.org/anthology/2020.acl-main.485/) for a more general discussion of the topic.
For Wikidata, there are class imbalances, also resulting from Wikipedia.
### Other Known Limitations
Not for now
## Additional Information
### Dataset Curators
Pere-Lluis Huguet Cabot - Babelscape and Sapienza University of Rome, Italy
Roberto Navigli - Sapienza University of Rome, Italy
### Licensing Information
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
### Citation Information
Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
```
@inproceedings{huguet-cabot-navigli-2021-rebel,
title = "REBEL: Relation Extraction By End-to-end Language generation",
author = "Huguet Cabot, Pere-Llu{\'\i}s and
Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Online and in the Barceló Bávaro Convention Centre, Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf",
}
```
### Contributions
Thanks to [@littlepea13](https://github.com/LittlePea13) for adding this dataset.
|
Babelscape/wikineural | ---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
license:
- cc-by-nc-sa-4.0
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: wikineural-dataset
tags:
- structure-prediction
---
## Table of Contents
- [Description](#description)
- [Dataset Structure](#dataset-structure)
- [Additional Information](#additional-information)
## Dataset Card for WikiNEuRal dataset
## Dataset Description
- **Summary:** Training data for NER in 9 languages.
- **Repository:** [https://github.com/Babelscape/wikineural](https://github.com/Babelscape/wikineural)
- **Paper:** [https://aclanthology.org/wikineural](https://aclanthology.org/2021.findings-emnlp.215/)
- **Point of Contact:** [tedeschi@babelscape.com](tedeschi@babelscape.com)
## Description
- **Summary:** In a nutshell, WikiNEuRal consists in a novel technique which builds upon a multilingual lexical knowledge base (i.e., [BabelNet](https://babelnet.org/)) and transformer-based architectures (i.e., [BERT](https://arxiv.org/abs/1810.04805)) to produce high-quality annotations for multilingual NER. It shows consistent improvements of up to 6 span-based F1-score points against state-of-the-art alternative data production methods on common benchmarks for NER. We used this methodology to automatically generate training data for NER in 9 languages.
- **Repository:** [https://github.com/Babelscape/wikineural](https://github.com/Babelscape/wikineural)
- **Paper:** [https://aclanthology.org/wikineural](https://aclanthology.org/2021.findings-emnlp.215/)
- **Point of Contact:** [tedeschi@babelscape.com](tedeschi@babelscape.com)
## Dataset Structure
The data fields are the same among all splits.
- `tokens`: a `list` of `string` features.
- `ner_tags`: a `list` of classification labels (`int`). Full tagset with indices:
```python
{'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6, 'B-MISC': 7, 'I-MISC': 8}
```
- `lang`: a `string` feature. Full list of language: Dutch (nl), English (en), French (fr), German (de), Italian (it), Polish (pl), Portugues (pt), Russian (ru), Spanish (es).
## Dataset Statistics
The table below shows the number of sentences, number of tokens and number of instances per class, for each of the 9 languages.
| Dataset Version | Sentences | Tokens | PER | ORG | LOC | MISC | OTHER |
| :------------- | -------------: | -------------: | -------------: | -------------: | -------------: | -------------: | -------------: |
| WikiNEuRal EN | 116k | 2.73M | 51k | 31k | 67k | 45k | 2.40M |
| WikiNEuRal ES | 95k | 2.33M | 43k | 17k | 68k | 25k | 2.04M |
| WikiNEuRal NL | 107k | 1.91M | 46k | 22k | 61k | 24k | 1.64M |
| WikiNEuRal DE | 124k | 2.19M | 60k | 32k | 59k | 25k | 1.87M |
| WikiNEuRal RU | 123k | 2.39M | 40k | 26k | 89k | 25k | 2.13M |
| WikiNEuRal IT | 111k | 2.99M | 67k | 22k | 97k | 26k | 2.62M |
| WikiNEuRal FR | 127k | 3.24M | 76k | 25k | 101k | 29k | 2.83M |
| WikiNEuRal PL | 141k | 2.29M | 59k | 34k | 118k | 22k | 1.91M |
| WikiNEuRal PT | 106k | 2.53M | 44k | 17k | 112k | 25k | 2.20M |
## Additional Information
- **Licensing Information**: Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
- **Citation Information**: Please consider citing our work if you use data and/or code from this repository.
```bibtex
@inproceedings{tedeschi-etal-2021-wikineural-combined,
title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
author = "Tedeschi, Simone and
Maiorca, Valentino and
Campolungo, Niccol{\`o} and
Cecconi, Francesco and
Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.215",
pages = "2521--2533",
abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
}
```
- **Contributions**: Thanks to [@sted97](https://github.com/sted97) for adding this dataset.
|
Baybars/parla_text_corpus | ---
annotations_creators:
- no-annotation
language_creators:
- various
language:
- ca
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: ParlaTextCorpus
size_categories:
- 100k<n<1M
source_datasets:
- found
task_categories:
- sequence-modeling
task_ids:
- language-modeling
tags:
- robust-speech-event
---
# ParlaTextCorpus
Spoken text corpus for Catalan. Derived and cleaned from three sources. OpenSubtitles, Tv3Parla and Festcat. |
BeIR/beir-corpus | ---
annotations_creators: []
language_creators: []
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
paperswithcode_id: beir
pretty_name: BEIR Benchmark
size_categories:
msmarco:
- 1M<n<10M
trec-covid:
- 100k<n<1M
nfcorpus:
- 1K<n<10K
nq:
- 1M<n<10M
hotpotqa:
- 1M<n<10M
fiqa:
- 10K<n<100K
arguana:
- 1K<n<10K
touche-2020:
- 100K<n<1M
cqadupstack:
- 100K<n<1M
quora:
- 100K<n<1M
dbpedia:
- 1M<n<10M
scidocs:
- 10K<n<100K
fever:
- 1M<n<10M
climate-fever:
- 1M<n<10M
scifact:
- 1K<n<10K
source_datasets: []
task_categories:
- text-retrieval
- zero-shot-retrieval
- information-retrieval
- zero-shot-information-retrieval
task_ids:
- passage-retrieval
- entity-linking-retrieval
- fact-checking-retrieval
- tweet-retrieval
- citation-prediction-retrieval
- duplication-question-retrieval
- argument-retrieval
- news-retrieval
- biomedical-information-retrieval
- question-answering-retrieval
---
# Dataset Card for BEIR Benchmark
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/UKPLab/beir
- **Repository:** https://github.com/UKPLab/beir
- **Paper:** https://openreview.net/forum?id=wCu6T5xFjeJ
- **Leaderboard:** https://docs.google.com/spreadsheets/d/1L8aACyPaXrL8iEelJLGqlMqXKPX2oSP_R10pZoy77Ns
- **Point of Contact:** nandan.thakur@uwaterloo.ca
### Dataset Summary
BEIR is a heterogeneous benchmark that has been built from 18 diverse datasets representing 9 information retrieval tasks:
- Fact-checking: [FEVER](http://fever.ai), [Climate-FEVER](http://climatefever.ai), [SciFact](https://github.com/allenai/scifact)
- Question-Answering: [NQ](https://ai.google.com/research/NaturalQuestions), [HotpotQA](https://hotpotqa.github.io), [FiQA-2018](https://sites.google.com/view/fiqa/)
- Bio-Medical IR: [TREC-COVID](https://ir.nist.gov/covidSubmit/index.html), [BioASQ](http://bioasq.org), [NFCorpus](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/)
- News Retrieval: [TREC-NEWS](https://trec.nist.gov/data/news2019.html), [Robust04](https://trec.nist.gov/data/robust/04.guidelines.html)
- Argument Retrieval: [Touche-2020](https://webis.de/events/touche-20/shared-task-1.html), [ArguAna](tp://argumentation.bplaced.net/arguana/data)
- Duplicate Question Retrieval: [Quora](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs), [CqaDupstack](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/)
- Citation-Prediction: [SCIDOCS](https://allenai.org/data/scidocs)
- Tweet Retrieval: [Signal-1M](https://research.signal-ai.com/datasets/signal1m-tweetir.html)
- Entity Retrieval: [DBPedia](https://github.com/iai-group/DBpedia-Entity/)
All these datasets have been preprocessed and can be used for your experiments.
```python
```
### Supported Tasks and Leaderboards
The dataset supports a leaderboard that evaluates models against task-specific metrics such as F1 or EM, as well as their ability to retrieve supporting information from Wikipedia.
The current best performing models can be found [here](https://eval.ai/web/challenges/challenge-page/689/leaderboard/).
### Languages
All tasks are in English (`en`).
## Dataset Structure
All BEIR datasets must contain a corpus, queries and qrels (relevance judgments file). They must be in the following format:
- `corpus` file: a `.jsonl` file (jsonlines) that contains a list of dictionaries, each with three fields `_id` with unique document identifier, `title` with document title (optional) and `text` with document paragraph or passage. For example: `{"_id": "doc1", "title": "Albert Einstein", "text": "Albert Einstein was a German-born...."}`
- `queries` file: a `.jsonl` file (jsonlines) that contains a list of dictionaries, each with two fields `_id` with unique query identifier and `text` with query text. For example: `{"_id": "q1", "text": "Who developed the mass-energy equivalence formula?"}`
- `qrels` file: a `.tsv` file (tab-seperated) that contains three columns, i.e. the `query-id`, `corpus-id` and `score` in this order. Keep 1st row as header. For example: `q1 doc1 1`
### Data Instances
A high level example of any beir dataset:
```python
corpus = {
"doc1" : {
"title": "Albert Einstein",
"text": "Albert Einstein was a German-born theoretical physicist. who developed the theory of relativity, \
one of the two pillars of modern physics (alongside quantum mechanics). His work is also known for \
its influence on the philosophy of science. He is best known to the general public for his mass–energy \
equivalence formula E = mc2, which has been dubbed 'the world's most famous equation'. He received the 1921 \
Nobel Prize in Physics 'for his services to theoretical physics, and especially for his discovery of the law \
of the photoelectric effect', a pivotal step in the development of quantum theory."
},
"doc2" : {
"title": "", # Keep title an empty string if not present
"text": "Wheat beer is a top-fermented beer which is brewed with a large proportion of wheat relative to the amount of \
malted barley. The two main varieties are German Weißbier and Belgian witbier; other types include Lambic (made\
with wild yeast), Berliner Weisse (a cloudy, sour beer), and Gose (a sour, salty beer)."
},
}
queries = {
"q1" : "Who developed the mass-energy equivalence formula?",
"q2" : "Which beer is brewed with a large proportion of wheat?"
}
qrels = {
"q1" : {"doc1": 1},
"q2" : {"doc2": 1},
}
```
### Data Fields
Examples from all configurations have the following features:
### Corpus
- `corpus`: a `dict` feature representing the document title and passage text, made up of:
- `_id`: a `string` feature representing the unique document id
- `title`: a `string` feature, denoting the title of the document.
- `text`: a `string` feature, denoting the text of the document.
### Queries
- `queries`: a `dict` feature representing the query, made up of:
- `_id`: a `string` feature representing the unique query id
- `text`: a `string` feature, denoting the text of the query.
### Qrels
- `qrels`: a `dict` feature representing the query document relevance judgements, made up of:
- `_id`: a `string` feature representing the query id
- `_id`: a `string` feature, denoting the document id.
- `score`: a `int32` feature, denoting the relevance judgement between query and document.
### Data Splits
| Dataset | Website| BEIR-Name | Type | Queries | Corpus | Rel D/Q | Down-load | md5 |
| -------- | -----| ---------| --------- | ----------- | ---------| ---------| :----------: | :------:|
| MSMARCO | [Homepage](https://microsoft.github.io/msmarco/)| ``msmarco`` | ``train``<br>``dev``<br>``test``| 6,980 | 8.84M | 1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/msmarco.zip) | ``444067daf65d982533ea17ebd59501e4`` |
| TREC-COVID | [Homepage](https://ir.nist.gov/covidSubmit/index.html)| ``trec-covid``| ``test``| 50| 171K| 493.5 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/trec-covid.zip) | ``ce62140cb23feb9becf6270d0d1fe6d1`` |
| NFCorpus | [Homepage](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/) | ``nfcorpus`` | ``train``<br>``dev``<br>``test``| 323 | 3.6K | 38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nfcorpus.zip) | ``a89dba18a62ef92f7d323ec890a0d38d`` |
| BioASQ | [Homepage](http://bioasq.org) | ``bioasq``| ``train``<br>``test`` | 500 | 14.91M | 8.05 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#2-bioasq) |
| NQ | [Homepage](https://ai.google.com/research/NaturalQuestions) | ``nq``| ``train``<br>``test``| 3,452 | 2.68M | 1.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nq.zip) | ``d4d3d2e48787a744b6f6e691ff534307`` |
| HotpotQA | [Homepage](https://hotpotqa.github.io) | ``hotpotqa``| ``train``<br>``dev``<br>``test``| 7,405 | 5.23M | 2.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/hotpotqa.zip) | ``f412724f78b0d91183a0e86805e16114`` |
| FiQA-2018 | [Homepage](https://sites.google.com/view/fiqa/) | ``fiqa`` | ``train``<br>``dev``<br>``test``| 648 | 57K | 2.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fiqa.zip) | ``17918ed23cd04fb15047f73e6c3bd9d9`` |
| Signal-1M(RT) | [Homepage](https://research.signal-ai.com/datasets/signal1m-tweetir.html)| ``signal1m`` | ``test``| 97 | 2.86M | 19.6 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#4-signal-1m) |
| TREC-NEWS | [Homepage](https://trec.nist.gov/data/news2019.html) | ``trec-news`` | ``test``| 57 | 595K | 19.6 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#1-trec-news) |
| ArguAna | [Homepage](http://argumentation.bplaced.net/arguana/data) | ``arguana``| ``test`` | 1,406 | 8.67K | 1.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/arguana.zip) | ``8ad3e3c2a5867cdced806d6503f29b99`` |
| Touche-2020| [Homepage](https://webis.de/events/touche-20/shared-task-1.html) | ``webis-touche2020``| ``test``| 49 | 382K | 19.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/webis-touche2020.zip) | ``46f650ba5a527fc69e0a6521c5a23563`` |
| CQADupstack| [Homepage](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/) | ``cqadupstack``| ``test``| 13,145 | 457K | 1.4 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/cqadupstack.zip) | ``4e41456d7df8ee7760a7f866133bda78`` |
| Quora| [Homepage](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) | ``quora``| ``dev``<br>``test``| 10,000 | 523K | 1.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/quora.zip) | ``18fb154900ba42a600f84b839c173167`` |
| DBPedia | [Homepage](https://github.com/iai-group/DBpedia-Entity/) | ``dbpedia-entity``| ``dev``<br>``test``| 400 | 4.63M | 38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/dbpedia-entity.zip) | ``c2a39eb420a3164af735795df012ac2c`` |
| SCIDOCS| [Homepage](https://allenai.org/data/scidocs) | ``scidocs``| ``test``| 1,000 | 25K | 4.9 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scidocs.zip) | ``38121350fc3a4d2f48850f6aff52e4a9`` |
| FEVER | [Homepage](http://fever.ai) | ``fever``| ``train``<br>``dev``<br>``test``| 6,666 | 5.42M | 1.2| [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fever.zip) | ``5a818580227bfb4b35bb6fa46d9b6c03`` |
| Climate-FEVER| [Homepage](http://climatefever.ai) | ``climate-fever``|``test``| 1,535 | 5.42M | 3.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/climate-fever.zip) | ``8b66f0a9126c521bae2bde127b4dc99d`` |
| SciFact| [Homepage](https://github.com/allenai/scifact) | ``scifact``| ``train``<br>``test``| 300 | 5K | 1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scifact.zip) | ``5f7d1de60b170fc8027bb7898e2efca1`` |
| Robust04 | [Homepage](https://trec.nist.gov/data/robust/04.guidelines.html) | ``robust04``| ``test``| 249 | 528K | 69.9 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#3-robust04) |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
Cite as:
```
@inproceedings{
thakur2021beir,
title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models},
author={Nandan Thakur and Nils Reimers and Andreas R{\"u}ckl{\'e} and Abhishek Srivastava and Iryna Gurevych},
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
year={2021},
url={https://openreview.net/forum?id=wCu6T5xFjeJ}
}
```
### Contributions
Thanks to [@Nthakur20](https://github.com/Nthakur20) for adding this dataset. |
BeIR/beir | ---
annotations_creators: []
language_creators: []
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
paperswithcode_id: beir
pretty_name: BEIR Benchmark
size_categories:
msmarco:
- 1M<n<10M
trec-covid:
- 100k<n<1M
nfcorpus:
- 1K<n<10K
nq:
- 1M<n<10M
hotpotqa:
- 1M<n<10M
fiqa:
- 10K<n<100K
arguana:
- 1K<n<10K
touche-2020:
- 100K<n<1M
cqadupstack:
- 100K<n<1M
quora:
- 100K<n<1M
dbpedia:
- 1M<n<10M
scidocs:
- 10K<n<100K
fever:
- 1M<n<10M
climate-fever:
- 1M<n<10M
scifact:
- 1K<n<10K
source_datasets: []
task_categories:
- text-retrieval
- zero-shot-retrieval
- information-retrieval
- zero-shot-information-retrieval
task_ids:
- passage-retrieval
- entity-linking-retrieval
- fact-checking-retrieval
- tweet-retrieval
- citation-prediction-retrieval
- duplication-question-retrieval
- argument-retrieval
- news-retrieval
- biomedical-information-retrieval
- question-answering-retrieval
---
# Dataset Card for BEIR Benchmark
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/UKPLab/beir
- **Repository:** https://github.com/UKPLab/beir
- **Paper:** https://openreview.net/forum?id=wCu6T5xFjeJ
- **Leaderboard:** https://docs.google.com/spreadsheets/d/1L8aACyPaXrL8iEelJLGqlMqXKPX2oSP_R10pZoy77Ns
- **Point of Contact:** nandan.thakur@uwaterloo.ca
### Dataset Summary
BEIR is a heterogeneous benchmark that has been built from 18 diverse datasets representing 9 information retrieval tasks:
- Fact-checking: [FEVER](http://fever.ai), [Climate-FEVER](http://climatefever.ai), [SciFact](https://github.com/allenai/scifact)
- Question-Answering: [NQ](https://ai.google.com/research/NaturalQuestions), [HotpotQA](https://hotpotqa.github.io), [FiQA-2018](https://sites.google.com/view/fiqa/)
- Bio-Medical IR: [TREC-COVID](https://ir.nist.gov/covidSubmit/index.html), [BioASQ](http://bioasq.org), [NFCorpus](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/)
- News Retrieval: [TREC-NEWS](https://trec.nist.gov/data/news2019.html), [Robust04](https://trec.nist.gov/data/robust/04.guidelines.html)
- Argument Retrieval: [Touche-2020](https://webis.de/events/touche-20/shared-task-1.html), [ArguAna](tp://argumentation.bplaced.net/arguana/data)
- Duplicate Question Retrieval: [Quora](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs), [CqaDupstack](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/)
- Citation-Prediction: [SCIDOCS](https://allenai.org/data/scidocs)
- Tweet Retrieval: [Signal-1M](https://research.signal-ai.com/datasets/signal1m-tweetir.html)
- Entity Retrieval: [DBPedia](https://github.com/iai-group/DBpedia-Entity/)
All these datasets have been preprocessed and can be used for your experiments.
```python
```
### Supported Tasks and Leaderboards
The dataset supports a leaderboard that evaluates models against task-specific metrics such as F1 or EM, as well as their ability to retrieve supporting information from Wikipedia.
The current best performing models can be found [here](https://eval.ai/web/challenges/challenge-page/689/leaderboard/).
### Languages
All tasks are in English (`en`).
## Dataset Structure
All BEIR datasets must contain a corpus, queries and qrels (relevance judgments file). They must be in the following format:
- `corpus` file: a `.jsonl` file (jsonlines) that contains a list of dictionaries, each with three fields `_id` with unique document identifier, `title` with document title (optional) and `text` with document paragraph or passage. For example: `{"_id": "doc1", "title": "Albert Einstein", "text": "Albert Einstein was a German-born...."}`
- `queries` file: a `.jsonl` file (jsonlines) that contains a list of dictionaries, each with two fields `_id` with unique query identifier and `text` with query text. For example: `{"_id": "q1", "text": "Who developed the mass-energy equivalence formula?"}`
- `qrels` file: a `.tsv` file (tab-seperated) that contains three columns, i.e. the `query-id`, `corpus-id` and `score` in this order. Keep 1st row as header. For example: `q1 doc1 1`
### Data Instances
A high level example of any beir dataset:
```python
corpus = {
"doc1" : {
"title": "Albert Einstein",
"text": "Albert Einstein was a German-born theoretical physicist. who developed the theory of relativity, \
one of the two pillars of modern physics (alongside quantum mechanics). His work is also known for \
its influence on the philosophy of science. He is best known to the general public for his mass–energy \
equivalence formula E = mc2, which has been dubbed 'the world's most famous equation'. He received the 1921 \
Nobel Prize in Physics 'for his services to theoretical physics, and especially for his discovery of the law \
of the photoelectric effect', a pivotal step in the development of quantum theory."
},
"doc2" : {
"title": "", # Keep title an empty string if not present
"text": "Wheat beer is a top-fermented beer which is brewed with a large proportion of wheat relative to the amount of \
malted barley. The two main varieties are German Weißbier and Belgian witbier; other types include Lambic (made\
with wild yeast), Berliner Weisse (a cloudy, sour beer), and Gose (a sour, salty beer)."
},
}
queries = {
"q1" : "Who developed the mass-energy equivalence formula?",
"q2" : "Which beer is brewed with a large proportion of wheat?"
}
qrels = {
"q1" : {"doc1": 1},
"q2" : {"doc2": 1},
}
```
### Data Fields
Examples from all configurations have the following features:
### Corpus
- `corpus`: a `dict` feature representing the document title and passage text, made up of:
- `_id`: a `string` feature representing the unique document id
- `title`: a `string` feature, denoting the title of the document.
- `text`: a `string` feature, denoting the text of the document.
### Queries
- `queries`: a `dict` feature representing the query, made up of:
- `_id`: a `string` feature representing the unique query id
- `text`: a `string` feature, denoting the text of the query.
### Qrels
- `qrels`: a `dict` feature representing the query document relevance judgements, made up of:
- `_id`: a `string` feature representing the query id
- `_id`: a `string` feature, denoting the document id.
- `score`: a `int32` feature, denoting the relevance judgement between query and document.
### Data Splits
| Dataset | Website| BEIR-Name | Type | Queries | Corpus | Rel D/Q | Down-load | md5 |
| -------- | -----| ---------| --------- | ----------- | ---------| ---------| :----------: | :------:|
| MSMARCO | [Homepage](https://microsoft.github.io/msmarco/)| ``msmarco`` | ``train``<br>``dev``<br>``test``| 6,980 | 8.84M | 1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/msmarco.zip) | ``444067daf65d982533ea17ebd59501e4`` |
| TREC-COVID | [Homepage](https://ir.nist.gov/covidSubmit/index.html)| ``trec-covid``| ``test``| 50| 171K| 493.5 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/trec-covid.zip) | ``ce62140cb23feb9becf6270d0d1fe6d1`` |
| NFCorpus | [Homepage](https://www.cl.uni-heidelberg.de/statnlpgroup/nfcorpus/) | ``nfcorpus`` | ``train``<br>``dev``<br>``test``| 323 | 3.6K | 38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nfcorpus.zip) | ``a89dba18a62ef92f7d323ec890a0d38d`` |
| BioASQ | [Homepage](http://bioasq.org) | ``bioasq``| ``train``<br>``test`` | 500 | 14.91M | 8.05 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#2-bioasq) |
| NQ | [Homepage](https://ai.google.com/research/NaturalQuestions) | ``nq``| ``train``<br>``test``| 3,452 | 2.68M | 1.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/nq.zip) | ``d4d3d2e48787a744b6f6e691ff534307`` |
| HotpotQA | [Homepage](https://hotpotqa.github.io) | ``hotpotqa``| ``train``<br>``dev``<br>``test``| 7,405 | 5.23M | 2.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/hotpotqa.zip) | ``f412724f78b0d91183a0e86805e16114`` |
| FiQA-2018 | [Homepage](https://sites.google.com/view/fiqa/) | ``fiqa`` | ``train``<br>``dev``<br>``test``| 648 | 57K | 2.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fiqa.zip) | ``17918ed23cd04fb15047f73e6c3bd9d9`` |
| Signal-1M(RT) | [Homepage](https://research.signal-ai.com/datasets/signal1m-tweetir.html)| ``signal1m`` | ``test``| 97 | 2.86M | 19.6 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#4-signal-1m) |
| TREC-NEWS | [Homepage](https://trec.nist.gov/data/news2019.html) | ``trec-news`` | ``test``| 57 | 595K | 19.6 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#1-trec-news) |
| ArguAna | [Homepage](http://argumentation.bplaced.net/arguana/data) | ``arguana``| ``test`` | 1,406 | 8.67K | 1.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/arguana.zip) | ``8ad3e3c2a5867cdced806d6503f29b99`` |
| Touche-2020| [Homepage](https://webis.de/events/touche-20/shared-task-1.html) | ``webis-touche2020``| ``test``| 49 | 382K | 19.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/webis-touche2020.zip) | ``46f650ba5a527fc69e0a6521c5a23563`` |
| CQADupstack| [Homepage](http://nlp.cis.unimelb.edu.au/resources/cqadupstack/) | ``cqadupstack``| ``test``| 13,145 | 457K | 1.4 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/cqadupstack.zip) | ``4e41456d7df8ee7760a7f866133bda78`` |
| Quora| [Homepage](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) | ``quora``| ``dev``<br>``test``| 10,000 | 523K | 1.6 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/quora.zip) | ``18fb154900ba42a600f84b839c173167`` |
| DBPedia | [Homepage](https://github.com/iai-group/DBpedia-Entity/) | ``dbpedia-entity``| ``dev``<br>``test``| 400 | 4.63M | 38.2 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/dbpedia-entity.zip) | ``c2a39eb420a3164af735795df012ac2c`` |
| SCIDOCS| [Homepage](https://allenai.org/data/scidocs) | ``scidocs``| ``test``| 1,000 | 25K | 4.9 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scidocs.zip) | ``38121350fc3a4d2f48850f6aff52e4a9`` |
| FEVER | [Homepage](http://fever.ai) | ``fever``| ``train``<br>``dev``<br>``test``| 6,666 | 5.42M | 1.2| [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/fever.zip) | ``5a818580227bfb4b35bb6fa46d9b6c03`` |
| Climate-FEVER| [Homepage](http://climatefever.ai) | ``climate-fever``|``test``| 1,535 | 5.42M | 3.0 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/climate-fever.zip) | ``8b66f0a9126c521bae2bde127b4dc99d`` |
| SciFact| [Homepage](https://github.com/allenai/scifact) | ``scifact``| ``train``<br>``test``| 300 | 5K | 1.1 | [Link](https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/scifact.zip) | ``5f7d1de60b170fc8027bb7898e2efca1`` |
| Robust04 | [Homepage](https://trec.nist.gov/data/robust/04.guidelines.html) | ``robust04``| ``test``| 249 | 528K | 69.9 | No | [How to Reproduce?](https://github.com/UKPLab/beir/blob/main/examples/dataset#3-robust04) |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
Cite as:
```
@inproceedings{
thakur2021beir,
title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models},
author={Nandan Thakur and Nils Reimers and Andreas R{\"u}ckl{\'e} and Abhishek Srivastava and Iryna Gurevych},
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
year={2021},
url={https://openreview.net/forum?id=wCu6T5xFjeJ}
}
```
### Contributions
Thanks to [@Nthakur20](https://github.com/Nthakur20) for adding this dataset. |
Lacito/pangloss | ---
pretty_name: Pangloss
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- jya
- nru
language_bcp47:
- x-japh1234
- x-yong1288
language_details: jya consists of japh1234 (Glottolog code); nru consists of yong1288 (Glottolog code)
license: cc-by-nc-sa-4.0
multilinguality:
- multilingual
- translation
size_categories:
yong1288:
- 10K<n<100K
japh1234:
- 10K<n<100K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids:
- speech-recognition
---
# Dataset Card for [Needs More Information]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Web interface of the Pangloss Collection, which hosts the data sets](https://pangloss.cnrs.fr/)
- **Repository:** [GithHub repository of the Pangloss Collection, which hosts the data sets](https://github.com/CNRS-LACITO/Pangloss/)
- **Paper:** [A paper about the Pangloss Collection, including a presentation of the Document Type Definition](https://halshs.archives-ouvertes.fr/halshs-01003734)
[A paper in French about the deposit in Zenodo](https://halshs.archives-ouvertes.fr/halshs-03475436)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Benjamin Galliot](mailto:b.g01lyon@gmail.com)
### Dataset Summary
Two audio corpora of minority languages of China (Japhug and Na), with transcriptions, proposed as reference data sets for experiments in Natural Language Processing. The data, collected and transcribed in the course of immersion fieldwork, amount to a total of about 1,900 minutes in Japhug and 200 minutes in Na. By making them available in an easily accessible and usable form, we hope to facilitate the development and deployment of state-of-the-art NLP tools for the full range of human languages. There is an associated tool for assembling datasets from the Pangloss Collection (an open archive) in a way that ensures full reproducibility of experiments conducted on these data.
The Document Type Definition for the XML files is available here:
http://cocoon.huma-num.fr/schemas/Archive.dtd
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
Japhug (ISO 639-3 code: jya, Glottolog language code: japh1234) and Yongning Na (ISO 639-3 code: nru, Glottolog language code: yong1288) are two minority languages of China. The documents in the dataset have a transcription in the endangered language. Some of the documents have translations into French, English, and Chinese.
## Dataset Structure
### Data Instances
A typical data row includes the path, audio, sentence, document type and several translations (depending on the sub-corpus).
`
{
"path": "cocoon-db3cf0e1-30bb-3225-b012-019252bb4f4d_C1/Tone_BodyPartsOfAnimals_12_F4_2008_withEGG_069.wav",
"audio": "{'path': 'na/cocoon-db3cf0e1-30bb-3225-b012-019252bb4f4d_C1/Tone_BodyPartsOfAnimals_12_F4_2008_withEGG_069.wav', 'array': array([0.00018311, 0.00015259, 0.00021362, ..., 0.00030518, 0.00030518, 0.00054932], dtype=float32), 'sampling_rate': 16000}",
"sentence": "ʈʂʰɯ˧ | ɖɤ˧mi˧-ɬi˧pi˩ ɲi˩",
"doctype": "WORDLIST",
"translation:zh": "狐狸的耳朵",
"translation:fr": "oreilles de renard",
"translation:en": "fox's ears",
}
`
### Data Fields
path: the path to the audio file;;
audio: a dictionary containing the path to the audio file, the audio array and the sampling rate;
sentence: the sentence the native has pronunced;
doctype: the document type (a text or a word list);
translation:XX: the translation of the sentence in the language XX.
### Data Splits
The train, test and validation splits have all been reviewed and were splitted randomly (ratio 8:1:1) at sentence level (after the extraction from various files).
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
The dataset was collected in immersion fieldwork for language documentation. It contributes to the documentation and study of the world's languages by providing documents of connected, spontaneous speech recorded in their cultural context and transcribed in consultation with native speakers. The impacts concern research, and society at large: a guiding principle of the Pangloss Collection, which hosts the data sets, is that a close association between documentation and research is highly profitable to both. A range of possibilities for uses exist, for the scientific and speaker communities and for the general public.
### Discussion of Biases
The corpora are single-speaker and hence clearly do not reflect the sociolinguistic and dialectal diversity of the languages. No claim is made that the language variety described constitutes a 'standard'.
### Other Known Limitations
The translations are entirely hand-made by experts working on these languages; the amount and type of translations available varies from document to document, as not all documents have translations and not all translated documents have the same translation languages (Chinese, French, English...).
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
[Needs More Information]
|
BritishLibraryLabs/EThOS-PhD-metadata | ---
annotations_creators: []
language:
- en
language_creators: []
license: []
multilinguality:
- monolingual
pretty_name: EThOS PhD metadata
size_categories: []
source_datasets: []
tags: []
task_categories:
- text-classification
- fill-mask
task_ids:
- multi-label-classification
- masked-language-modeling
---
# Dataset Card for EThOS PhD metadata
## Table of Contents
- [Dataset Card for blbooksgenre](#dataset-card-for-EThOS PhD metadata)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Supervised tasks](#supervised-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**: https://bl.iro.bl.uk/concern/datasets/c815b271-09be-4123-8156-405094429198?locale=en
- **Repository:** https://doi.org/10.23636/ybpt-nh33
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The data in this collection comprises the bibliographic metadata for all UK doctoral theses listed in EThOS, the UK's national thesis service. We estimate the data covers around 98% of all PhDs ever awarded by UK Higher Education institutions, dating back to 1787. Thesis metadata from every PhD-awarding university in the UK is included. You can investigate and re-use this unique collection of UK universities' PhD thesis data to analyse trends in postgraduate research, make connections between researchers, apply large data analysis, improve citation of theses and many more applications.
[More Information Needed]
### Supported Tasks and Leaderboards
[More Information Needed]
#### Supervised tasks
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
[More Information Needed]
### Data Instances
An example data instance:
```python
{'Abstract': ' ',
'Author': 'Loizou, Panos A.',
'Author ISNI': 'https://isni.org/isni/0000000136122593',
'DOI': ' ',
'Date': datetime.datetime(1989, 1, 1, 0, 0),
'EThOS URL': 'https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.232781',
'Funder(s)': ' ',
'IR URL': ' ',
'Institution': 'University of Manchester',
'Institution ISNI': 'https://isni.org/isni/0000000121662407',
'ORCID': ' ',
'Qualification': 'Thesis (Ph.D.)',
'Subject Discipline': 0,
'Supervisor(s)': ' ',
'Title': 'Computation and measurement of turbulent flow through idealized turbine blade passages'}
```
### Data Fields
[More Information Needed]
### Data Splits
This dataset contains a single split `train`.
## Dataset Creation
[More Information Needed]
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
[More Information Needed]
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The books are licensed under the [CC BY 4.0 Attribution](https://creativecommons.org/licenses/by/4.0/) license.
### Citation Information
|
CAGER/rick | welcoe to cager data set |
CALM/arwiki | ---
pretty_name: Wikipedia Arabic dumps dataset.
language:
- ar
license:
- unknown
multilinguality:
- monolingual
---
# Arabic Wiki Dataset
## Dataset Summary
This dataset is extracted using [`wikiextractor`](https://github.com/attardi/wikiextractor) tool, from [Wikipedia Arabic pages](https://dumps.wikimedia.org/arwiki/).
## Supported Tasks and Leaderboards
Intended to train **Arabic** language models on MSA (Modern Standard Arabic).
## Dataset Structure
The dataset is structured into 2 folders:
- `arwiki_20211213_txt`: dataset is divided into subfolders each of which contains no more than 100 documents.
- `arwiki_20211213_txt_single`: all documents merged together in a single txt file.
## Dataset Statistics
#### Extracts from **December 13, 2021**:
| documents | vocabulary | words |
| --- | --- | --- |
| 1,136,455 | 5,446,560 | 175,566,016 |
## Usage
Load all dataset from the single txt file:
```python
load_dataset('CALM/arwiki',
data_files='arwiki_2021_txt_single/arwiki_20211213.txt')
# OR with stream
load_dataset('CALM/arwiki',
data_files='arwiki_2021_txt_single/arwiki_20211213.txt',
streaming=True)
```
Load a smaller subset from the individual txt files:
```python
load_dataset('CALM/arwiki',
data_files='arwiki_2021_txt/AA/arwiki_20211213_1208.txt')
# OR with stream
load_dataset('CALM/arwiki',
data_files='arwiki_2021_txt/AA/arwiki_20211213_1208.txt',
streaming=True)
``` |
CAiRE/ASCEND | ---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
- zh
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
pretty_name: 'ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in
Multi-turn Conversation'
tags:
- speech-recognition
- code-switching
---
# Dataset Card for ASCEND
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Usage](#usage)
- [Dataset Structure](#dataset-structure)
- [Data Splits](#data-instances)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** [Needs More Information]
- **Paper:** https://arxiv.org/abs/2112.06223
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.
### Supported Tasks and Leaderboards
Code-switching
### Languages
Chinese and English
## Usage
To obtain the full dataset (complete with train, validation, and test set), simply run this:
```
import datasets
dataset = datasets.load_dataset("CAiRE/ASCEND")
```
## Dataset Structure
A typical data point comprises the path to the audio file, the loaded audio array, and its transcription. Additional fields include datapoint id, duration, language, speaker id, session id, and topic.
```
{
'id': '00644',
'path': '.cache/huggingface/datasets/downloads/extracted/f0b33b5266cd9452ee310eef3577cf7adb7f29aa54dbff74b9a8ee406a55d614/waves/ses2_spk3_L13101_189.900_5.490.wav',
'audio': {
'path': '.cache/huggingface/datasets/downloads/extracted/f0b33b5266cd9452ee310eef3577cf7adb7f29aa54dbff74b9a8ee406a55d614/waves/ses2_spk3_L13101_189.900_5.490.wav',
'array': array([-6.1035156e-05, -1.8310547e-04, 3.0517578e-05, ...,
0.0000000e+00, -3.0517578e-05, 0.0000000e+00
], dtype = float32),
'sampling_rate': 16000
},
'transcription': '因为你不可能邀你的female friends去说走我们去play basketball',
'duration': 5.489999771118164,
'language': 'mixed',
'original_speaker_id': 3,
'session_id': 2,
'topic': 'sports'
}
```
### Data Splits
Number of utterances: 9,869 train, 1,130 validation, and 1,315 test.
## Additional Information
For comprehensive explanations, please check [our paper](https://arxiv.org/pdf/2112.06223.pdf).
### Licensing Information
Creative Common Attribution Share-Alike 4.0 International (CC-BY-SA 4.0)
### Citation Information
If you use our dataset, please cite us:
```
@inproceedings{lovenia2022ascend,
title={ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
author={Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
booktitle={Proceedings of the 13th Language Resources and Evaluation Conference (LREC)},
year={2022}
``` |
CShorten/KerasBERT | <h1>KerasBERT</h1>
<ul>
<li>All Data</li>
<li>Keras API Docs</li>
<li>Keras Developer Guides</li>
<li>Keras Code Examples</li>
</ul>
Please cite KerasBERT: Modeling the Keras Language, Connor Shorten and Taghi M. Khoshgoftaar. https://ieeexplore.ieee.org/abstract/document/9679980. |
Champion/vpc2020_clear_anon_speech | Repo to share original and anonymized speech of vpc2020
|
Cheranga/test | ---
license: afl-3.0
---
|
Chun/dataset | A translation dataset between english and traditional chinese
train : 101497 rows
val : 1000 rows
test : 1000 rows
|
CodedotAI/code_clippy | ---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- code
license:
- gpl-3.0
multilinguality:
- multilingual
size_categories:
- unknown
source_datasets:
- original
task_categories:
- text-generation
task_ids:
- language-modeling
pretty_name: Code Clippy
---
# Dataset Card for Code Clippy Data
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://the-eye.eu/public/AI/training_data/code_clippy_data/
- **Repository:** https://github.com/ncoop57/gpt-code-clippy
- **Paper:** [Not yet :)]
- **Leaderboard:** [Not yet :)]
- **Point of Contact:** [Nathan Cooper](mailto@nacooper01@email.wm.edu)
### Dataset Summary
This dataset was generated by selecting GitHub repositories from a large collection of repositories. These repositories were collected from https://seart-ghs.si.usi.ch/ and Github portion of [The Pile](https://github.com/EleutherAI/github-downloader) (performed on July 7th, 2021). The goal of this dataset is to provide a training set for pretraining large language models on code data for helping software engineering researchers better understand their impacts on software related tasks such as autocompletion of code. The dataset is split into train, validation, and test splits. There is a version containing duplicates (209GBs compressed) and ones where exact duplicates (132GBs compressed) are removed. Contains mostly JavaScript and Python code, but other programming languages are included as well to various degrees.
### Supported Tasks and Leaderboards
- `language-modeling`: The dataset can be used to train a model for language modeling for modeling programming languages, which consists of pretraining/finetuning a model to predict missing tokens, either causally or masked, given some context. Success on this task is typically measured by achieving a *low* perplexity score.
### Languages
Multiple programming languages are included in the dataset.
## Dataset Structure
### Data Instances
```
{
"id": datasets.Value("int64"),
"text": datasets.Value("string"),
"repo_name": datasets.Value("string"),
"stars": datasets.Value("string"),
"repo_language": datasets.Value("string"),
"file_name": datasets.Value("string"),
"mime_type": datasets.Value("string")
}
```
### Data Fields
- `id`: A unique identifier for the data instance.
- `text`: The text of the code.
- `repo_name`: The name of the repository.
- `stars`: The number of stars the repository has.
- `repo_language`: The programming language of the repository.
- `file_name`: The name of the file.
- `mime_type`: The MIME type of the file.
### Data Splits
| Size in GBs | Tain | Valid | Test |
| ----- | ------ | ----- | ---- |
| Duplicate | 194 | 9 | 6.3 |
| Deduplicate | 126 | 3.3 | 3.1 |
## Dataset Creation
### Curation Rationale
To have a code dataset that is large enough to properly train a large language model on.
### Source Data
#### Initial Data Collection and Normalization
- [The Pile](https://github.com/EleutherAI/github-downloader)
- [Seart-GHS](https://seart-ghs.si.usi.ch/)
Repositories were collected from both sources and the helper script from https://github.com/EleutherAI/github-downloader was used to download the repositories. Files were scrapped from the downloaded repositories, but ignored files that had certain extensions associated with binary or other non-textual/autogenerated content, and the output was converted into the [LM_Dataformat](https://pypi.org/project/lm-dataformat/) format.
#### Who are the source language producers?
Software developers.
### Annotations
#### Annotation process
No annotation was performed.
#### Who are the annotators?
N/A
### Personal and Sensitive Information
Since this data was collected from public repositories, there exists potential for personal and sensitive information to be included in the data through developers accidentally or on purpose uploading their secret keys, passwords, API keys, emails, etc.
## Considerations for Using the Data
### Social Impact of Dataset
The paper ["Evaluating Large Language Models Trained on Code"](https://arxiv.org/abs/2107.03374) from OpenAI has a good discussion on what the impact of a large language model trained on code could be. Therefore, some parts of their discuss are highlighted here as it pertains to this dataset and models that may be trained from it. **As well as some differences in views from the paper, particularly around legal implications**.
1. **Over-reliance:** A language model trained on large datasets such as this one for the task of autogenerating code may generate plausible solutions that may appear correct, but are not necessarily the correct solution. Not properly evaluating the generated code may cause have negative consequences such as the introduction of bugs, or the introduction of security vulnerabilities. Therefore, it is important that users are aware of the limitations and potential negative consequences of using a language model trained on this dataset.
2. **Economic and labor market impacts:** Large language models trained on large code datasets such as this one that are capable of generating high-quality code have the potential to automate part of the software development process. This may negatively impact software developers. However, as discussed in the paper, as shown in the Summary Report of software developers from [O*NET OnLine](https://www.onetonline.org/link/summary/15-1252.00), developers don't just write software.
3. **Security implications:** No filtering or checking of vulnerabilities or buggy code was performed. This means that the dataset may contain code that may be malicious or contain vulnerabilities. Therefore, any model trained on this dataset may generate vulnerable, buggy, or malicious code. In safety critical software, this could lead to software that may work improperly and could result in serious consequences depending on the software. Additionally, a model trained on this dataset may be used to generate malicious code on purpose in order to perform ransomware or other such attacks.
4. **Legal implications:** No filtering was performed on licensed code. This means that the dataset may contain restrictive licensed code. As discussed in the paper, public Github repositories may fall under "fair use." However, there has been little to no previous cases of such usages of licensed publicly available code. Therefore, any model trained on this dataset may be required to obey license terms that align with the software it was trained on such as GPL-3.0, which is why we purposefully put this dataset under the GPL-3.0 license. It is unclear the legal ramifications of using a language model trained on this dataset.
### Discussion of Biases
The programming languages most represented in this dataset are those of Javascript and Python. Therefore, other, still popular languages such as C and C++, are less represented and therefore model performance for these languages will be less comparatively. Additionally, this dataset only contains public repositories and so may not be representative of code written by private developers. No filtering was performed for potential racist, offensive, or otherwise inappropriate content. Therefore there may be such content in the dataset that will be reflected in models trained on it.
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Nathan Coooper, Artashes Arutiunian, Santiago Hincapié-Potes, Ben Trevett, Arun Raja, Erfan Hossami, Mrinal Mathur, and contributors!
### Licensing Information
This repository is under the GPL-3.0 license.
### Citation Information
```
@misc{cooper-2021-code-clippy-data,
author = {Nathan Coooper, Artashes Arutiunian, Santiago Hincapié-Potes, Ben Trevett, Arun Raja, Erfan Hossami, Mrinal Mathur, and contributors},
title = {{Code Clippy Data: A large dataset of code data from Github for research into code language models}},
month = jul,
year = 2021,
version = {1.0},
publisher = {GitHub},
url = {https://github.com/ncoop57/gpt-code-clippy}
}
```
### Contributions
Thanks to [@ncoop57](https://github.com/ncoop57), [@arampacha](https://github.com/arampacha), [@shpotes](https://github.com/shpotes), [@bentrevett](https://github.com/bentrevett), [@arunraja-hub](https://github.com/arunraja-hub), [@taisazero](https://github.com/taisazero), [@Mrinal18](https://github.com/Mrinal18), and contributors for adding this dataset.
|
CodedotAI/code_clippy_github | ---
annotations_creators: []
language_creators:
- crowdsourced
- expert-generated
language: ["code"]
license:
- mit
multilinguality:
- multilingual
pretty_name: code-clippy-github-code
size_categories:
- unknown
source_datasets: []
task_categories:
- sequence-modeling
task_ids:
- language-modeling
---
# Code Clippy Github Dataset
## Dataset Description
The Code Clippy dataset consists of various public codebases from GitHub in 22 programming languages with 23 extensions totaling about 16 TB of data when uncompressed. The dataset was created from the public GitHub dataset on Google BigQuery.
### How to use it
This dataset is pretty large please use the streaming parameter from the `datasets` library as seen below:
```python
from datasets import load_dataset
ds = load_dataset("CodedotAI/code_clippy_github", streaming=True)
```
## Data Structure
### Data Instances
```python
{
'code_text': " a = mc^2",
'repo_name': 'NotEinstein',
'file_path': 'root/users/einstein.py',
'language': 'Python',
'license': 'isc',
'size': 2
}
```
### Data Fields
|Field|Type|Description|
|---|---|---|
|code_text|string|string of the source code contained in the code file|
|repo_name|string|name of the GitHub repository|
|file_path|string|path of the code file within the repository |
|language|string|programming language used in the file inferred by the file extension|
|license|string|license of GitHub repository|
|size|int|size of source file in bytes|
### Data Splits
Only a train split is provided in this dataset.
## Languages
The dataset contains 22 programming languages with over 23 extensions:
```python
{
"C": [".c"],
"C#": [".cs"],
"C++": [".cpp"],
"CSS": [".css"],
"Dart" : [".dart"],
"GO": [".go"],
"HTML":[".html"],
"Java": [".java"],
"JavaScript": [".js"],
"Jupyter Notebooks (Python)": [".ipynb"],
"Kotlin" : [".kt"],
"Lisp" : [".lisp"],
"Matlab" : [".m"],
"PHP": [".php"],
"Perl": [".pl"],
"Python": [".py"],
"R" : [".r"],
"Ruby": [".rb"],
"Rust": [".rs"],
"SQL": [".sql"],
"Shell": [".sh"],
"Swift" : [".swift"],
"TypeScript": [".ts"],
}
```
## Licenses
Each example is also annotated with the license of the associated repository. There are in total 15 licenses:
```python
[
'mit',
'apache-2.0',
'gpl-2.0',
'gpl-3.0',
'bsd-3-clause',
'bsd-2-clause',
'unlicense',
'apacheagpl-3.0',
'lgpl-3.0',
'cc0-1.0',
'epl-1.0',
'lgpl-2.1',
'mpl-2.0',
'isc',
'artistic-2.0'
]
```
## Dataset Statistics
The dataset is about ~ 18 TB uncompressed. We are currently working on processing it and applying further filtering.
## Dataset Creation
The dataset was created in two steps:
1. Files with the extensions given in the list above were retrieved from the GitHub dataset on BigQuery using the following query:
```sql
SELECT
f.id, f.repo_name, f.path, content.copies, content.size, content.content, lic.license
FROM
`bigquery-public-data.github_repos.files` AS f
JOIN
`bigquery-public-data.github_repos.contents` as content
ON
f.id = content.id
JOIN
`bigquery-public-data.github_repos.licenses` AS lic
ON
f.repo_name = lic.repo_name
WHERE
NOT content.binary
AND (
(f.path LIKE '%.py') OR (f.path LIKE '%.java') OR (f.path LIKE '%.js')
OR (f.path LIKE '%.html') OR (f.path LIKE '%.lisp') OR (f.path LIKE '%.sh')
OR (f.path LIKE '%.r') OR (f.path LIKE '%.pl') OR (f.path LIKE '%.css')
OR (f.path LIKE '%.sql') OR (f.path LIKE '%.c') OR (f.path LIKE '%.cpp')
OR (f.path LIKE '%.ts') OR (f.path LIKE '%.cs') OR (f.path LIKE '%.go')
OR (f.path LIKE '%.rs') OR (f.path LIKE '%.swift') OR (f.path LIKE '%.php')
OR (f.path LIKE '%.dart') OR (f.path LIKE '%.kt') OR (f.path LIKE '%.m')
OR (f.path LIKE '%.rb') OR (f.path LIKE '%.ipynb')
)
-- make sure we dont go above 1 megabyte
AND (content.size BETWEEN 1024 AND 1000000)
```
2. Currently, our CodedotAI team is working on adding additional filters and cleaning this dataset.
### Personal and Sensitive Information
Since this data was collected from public repositories, there exists potential for personal and sensitive information to be included in the data through developers accidentally or on purpose uploading their secret keys, passwords, API keys, emails, etc.
## Considerations for Using the Data
### Social Impact of Dataset
The paper ["Evaluating Large Language Models Trained on Code"](https://arxiv.org/abs/2107.03374) from OpenAI has a good discussion on what the impact of a large language model trained on code could be. Therefore, some parts of their discussion are highlighted here as it pertains to this dataset and models that may be trained from it. **As well as some differences in views from the paper, particularly around legal implications**.
1. **Over-reliance:** A language model trained on large datasets such as this one for the task of autogenerating code may generate plausible solutions that may appear correct, but are not necessarily the correct solution. Not properly evaluating the generated code may cause have negative consequences such as the introduction of bugs, or the introduction of security vulnerabilities. Therefore, it is important that users are aware of the limitations and potential negative consequences of using a language model trained on this dataset.
2. **Economic and labor market impacts:** Large language models trained on large code datasets such as this one that are capable of generating high-quality code have the potential to automate part of the software development process. This may negatively impact software developers. However, as discussed in the paper, as shown in the Summary Report of software developers from [O*NET OnLine](https://www.onetonline.org/link/summary/15-1252.00), developers don't just write software.
3. **Security implications:** No filtering or checking of vulnerabilities or buggy code was performed. This means that the dataset may contain code that may be malicious or contain vulnerabilities. Therefore, any model trained on this dataset may generate vulnerable, buggy, or malicious code. In safety-critical software, this could lead to software that may work improperly and could result in serious consequences depending on the software. Additionally, a model trained on this dataset may be used to generate malicious code on purpose in order to perform ransomware or other such attacks.
4. **Legal implications:** No filtering was performed on licensed code. This means that the dataset may contain restrictive licensed code. As discussed in the paper, public Github repositories may fall under "fair use." However, there have been little to no previous cases of such usages of licensed publicly available code. Therefore, any model trained on this dataset may be required to obey license terms that align with the software it was trained on such as GPL-3.0, which is why we purposefully put this dataset under the GPL-3.0 license. It is unclear the legal ramifications of using a language model trained on this dataset.
### v1.0
- The query was executed on _February 1, 2022, 12:15:59 AM EST_
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/about/). We would also like to thank [Dr. Razvan Bunescu](https://webpages.charlotte.edu/rbunescu/) and [The College of Computing and Informatics at UNC Charlotte](https://cci.charlotte.edu/) for their generous contributions to this project, specifically in funding the BigQuery and Google Cloud Storage costs. We would also like to thank the [codeparrot team at Hugging face](https://huggingface.co/codeparrot) for open sourcing their documentation on [github-code](https://huggingface.co/datasets/codeparrot/github-code) which we used for the readme in this dataset. For another similar dataset to this please check github-code! |
Cropinky/flatearther | ## Wow fishing bobber object detection dataset
Hello, here you will find a link to a csv i scraped using the scraper found at the same link. it contains paragraphs of text found on a flat earth conspiracy website
#TODO: turn it into an actualy huggingface dataset) |
Cropinky/rap_lyrics_english | ## Rap lyrics dataset
this is the repo containing the dataset we made for the hugging face community week, in order to download more songs you need to request and get(it's very simple and fast) your genius API key which ou put in the genius.py file<br/>
#TODO: turn it into an actual huggingface dataset |
Cropinky/wow_fishing_bobber | ## Wow fishing bobber object detection dataset
Hello, in this zip you will find 160 annotated images each containing 1 fishing bobber from World of warcraft.
I think this is an easy object detection datset, my yolov3 network was trained on it for 2000 iterations, it achieved
a loss of 0.05. It was working flawlessly as it classified the newly generated images (also from wailing caverns zone)
I haven't even tested it how it would work outside or on other fishing locations in the game, pozz.
|
Cyberfish/pos_tagger | 词性标注训练集 |
Cyberfish/text_error_correction | 文本纠错的相关数据 |
CyranoB/polarity | ---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: Amazon Review Polarity
---
# Dataset Card for Amazon Review Polarity
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://registry.opendata.aws/
- **Repository:** https://github.com/zhangxiangxiao/Crepe
- **Paper:** https://arxiv.org/abs/1509.01626
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Xiang Zhang](mailto:xiang.zhang@nyu.edu)
### Dataset Summary
The Amazon reviews dataset consists of reviews from amazon.
The data span a period of 18 years, including ~35 million reviews up to March 2013.
Reviews include product and user information, ratings, and a plaintext review.
### Supported Tasks and Leaderboards
- `text-classification`, `sentiment-classification`: The dataset is mainly used for text classification: given the content and the title, predict the correct star rating.
### Languages
Mainly English.
## Dataset Structure
### Data Instances
A typical data point, comprises of a title, a content and the corresponding label.
An example from the AmazonPolarity test set looks as follows:
```
{
'title':'Great CD',
'content':"My lovely Pat has one of the GREAT voices of her generation. I have listened to this CD for YEARS and I still LOVE IT. When I'm in a good mood it makes me feel better. A bad mood just evaporates like sugar in the rain. This CD just oozes LIFE. Vocals are jusat STUUNNING and lyrics just kill. One of life's hidden gems. This is a desert isle CD in my book. Why she never made it big is just beyond me. Everytime I play this, no matter black, white, young, old, male, female EVERYBODY says one thing ""Who was that singing ?""",
'label':1
}
```
### Data Fields
- 'title': a string containing the title of the review - escaped using double quotes (") and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
- 'content': a string containing the body of the document - escaped using double quotes (") and any internal double quote is escaped by 2 double quotes (""). New lines are escaped by a backslash followed with an "n" character, that is "\n".
- 'label': either 1 (positive) or 0 (negative) rating.
### Data Splits
The Amazon reviews polarity dataset is constructed by taking review score 1 and 2 as negative, and 4 and 5 as positive. Samples of score 3 is ignored. Each class has 1,800,000 training samples and 200,000 testing samples.
## Dataset Creation
### Curation Rationale
The Amazon reviews polarity dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu). It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015).
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
Apache License 2.0
### Citation Information
McAuley, Julian, and Jure Leskovec. "Hidden factors and hidden topics: understanding rating dimensions with review text." In Proceedings of the 7th ACM conference on Recommender systems, pp. 165-172. 2013.
Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015)
### Contributions
Thanks to [@hfawaz](https://github.com/hfawaz) for adding this dataset. |
DDSC/angry-tweets | ---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- da
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: AngryTweets
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
---
# Dataset Card for DKHate
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Paper:** https://aclanthology.org/2021.nodalida-main.53/
- **Direct Download**: https://danlp-downloads.alexandra.dk/datasets/game_tweets.zip
### Dataset Summary
This dataset consists of anonymised Danish Twitter data that has been annotated for sentiment analysis through crowd-sourcing. All credits go to the authors of the following paper, who created the dataset:
[Pauli, Amalie Brogaard, et al. "DaNLP: An open-source toolkit for Danish Natural Language Processing." Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa). 2021](https://aclanthology.org/2021.nodalida-main.53/)
### Supported Tasks and Leaderboards
This dataset is suitable for sentiment analysis.
### Languages
This dataset is in Danish.
## Dataset Structure
### Data Instances
Every entry in the dataset has a tweet and an associated label.
### Data Fields
An entry in the dataset consists of the following fields:
- `text` (`str`): The tweet content.
- `label` (`str`): The label of the `text`. Can be "positiv", "neutral" or "negativ" for positive, neutral and negative sentiment, respectively.
### Data Splits
A `train` and `test` split is available, with the test split being 30% of the dataset, randomly sampled in a stratified fashion. There are 2,437 tweets in the training split and 1,047 in the test split.
## Additional Information
### Dataset Curators
The collection and annotation of the dataset is solely due to the authors of [the original paper](https://aclanthology.org/2021.nodalida-main.53/): Amalie Brogaard Pauli, Maria Barrett, Ophélie Lacroix and Rasmus Hvingelby. The tweets have been anonymised by [@saattrupdan](https://github.com/saattrupdan).
### Licensing Information
The dataset is released under the CC BY 4.0 license.
### Citation Information
```
@inproceedings{pauli2021danlp,
title={DaNLP: An open-source toolkit for Danish Natural Language Processing},
author={Pauli, Amalie Brogaard and Barrett, Maria and Lacroix, Oph{\'e}lie and Hvingelby, Rasmus},
booktitle={Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
pages={460--466},
year={2021}
}
```
### Contributions
Thanks to [@saattrupdan](https://github.com/saattrupdan) for adding this dataset to the Hugging Face Hub. |
DDSC/europarl | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- da
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: TwitterSent
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
---
# Dataset Card for DKHate
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Direct Download**: http://danlp-downloads.alexandra.dk/datasets/europarl.sentiment2.zip
### Dataset Summary
This dataset consists of Danish data from the European Parliament that has been annotated for sentiment analysis by the [Alexandra Institute](https://github.com/alexandrainst) - all credits go to them.
### Supported Tasks and Leaderboards
This dataset is suitable for sentiment analysis.
### Languages
This dataset is in Danish.
## Dataset Structure
### Data Instances
Every entry in the dataset has a document and an associated label.
### Data Fields
An entry in the dataset consists of the following fields:
- `text` (`str`): The text content.
- `label` (`str`): The label of the `text`. Can be "positiv", "neutral" or "negativ" for positive, neutral and negative sentiment, respectively.
### Data Splits
A `train` and `test` split is available, with the test split being 30% of the dataset, randomly sampled in a stratified fashion. There are 669 documents in the training split and 288 in the test split.
## Additional Information
### Dataset Curators
The collection and annotation of the dataset is solely due to the [Alexandra Institute](https://github.com/alexandrainst).
### Licensing Information
The dataset is released under the CC BY 4.0 license.
### Citation Information
```
@misc{europarl,
title={EuroParl},
author={Alexandra Institute},
year={2020},
note={\url{https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#europarl-sentiment2}}
}
```
### Contributions
Thanks to [@saattrupdan](https://github.com/saattrupdan) for adding this dataset to the Hugging Face Hub. |
DDSC/lcc | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- da
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: TwitterSent
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
---
# Dataset Card for DKHate
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository**: https://github.com/fnielsen/lcc-sentiment
- **Direct Download part 1**: https://raw.githubusercontent.com/fnielsen/lcc-sentiment/master/dan_mixed_2014_10K-sentences.csv
- **Direct Download part 2**: https://raw.githubusercontent.com/fnielsen/lcc-sentiment/master/dan_newscrawl_2011_10K-sentences.csv
### Dataset Summary
This dataset consists of Danish data from [the Leipzig Collection](https://www.aclweb.org/anthology/L06-1396/) that has been annotated for sentiment analysis by Finn Årup Nielsen.
### Supported Tasks and Leaderboards
This dataset is suitable for sentiment analysis.
### Languages
This dataset is in Danish.
## Dataset Structure
### Data Instances
Every entry in the dataset has a document and an associated label.
### Data Fields
An entry in the dataset consists of the following fields:
- `text` (`str`): The text content.
- `label` (`str`): The label of the `text`. Can be "positiv", "neutral" or "negativ" for positive, neutral and negative sentiment, respectively.
### Data Splits
A `train` and `test` split is available, with the test split being 30% of the dataset, randomly sampled in a stratified fashion. There are 349 documents in the training split and 150 in the test split.
## Additional Information
### Dataset Curators
The collection and annotation of the dataset is solely due to the Finn Årup Nielsen. It was originally annotated as a score between -5 and +5, but the labels in this version have been converted to a negative, neutral and positive label.
### Licensing Information
The dataset is released under the CC BY 4.0 license.
### Citation Information
```
@misc{lcc,
title={LCC},
author={Finn Årup Nielsen},
year={2016},
note={\url{https://github.com/fnielsen/lcc-sentiment}}
}
```
### Contributions
Thanks to [@saattrupdan](https://github.com/saattrupdan) for adding this dataset to the Hugging Face Hub. |
DDSC/partial-danish-gigaword-no-twitter | ---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- da
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- unknown
source_datasets:
- original
task_categories:
- text-generation
task_ids:
- language-modeling
pretty_name: Danish Gigaword Corpus (no Twitter)
language_bcp47:
- da
- da-bornholm
- da-synnejyl
---
# Dataset Card for [Danish Gigaword (no Twitter)]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
https://gigaword.dk
- **Paper:**
http://www.derczynski.com/papers/dagw.pdf
### Dataset Summary
The Danish Gigaword Corpus contains text spanning several domains and forms. This version does *not* include the sections containing Tweets.
### Supported Tasks and Leaderboards
Pre-training of language models.
### Language
Danish
## Dataset Structure
The dataset contains text from 23 different sources which are thoroughly defined in [Source Data](#source-data). See the [homepage](https://gigaword.dk) or [paper](http://www.derczynski.com/papers/dagw.pdf) for more information.
### Data Instances
Each entry in the dataset consists of a single text with associated metadata
### Data Fields
An entry in the dataset consists of the following fields:
- `text`(`str`): The content of the document.
- `source` (`str`): The source of the document (see [Source Data](#source-data)).
- `doc_id` (`str`): An unique identifer for each document.
- `LICENSE` (`str`): The license of the document. The licenses vary according to the source.
- `uri` (`str`): The uri of the document. Not available for all sources.
- `data_built`(`str`): Date the document was built. Not avaialable for all sources.
### Data Splits
The entire corpus is provided in the `train` split.
## Dataset Creation
### Source Data
Below follows a brief overview of the sources in the corpus along with their individual license.
| Source | License |
| ----------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| adl | Creative Commons Legal Code 1.0 Universal |
| botxt | Creative Commons Legal Code 1.0 Universal |
| cc | Creative Commons Legal Code 1.0 Universal |
| danavis | Creative Commons Legal Code 1.0 Universal |
| dannet | [dannet license](https://cst.ku.dk/projekter/dannet/license.txt) |
| depbank | Attribution-ShareAlike 4.0 International |
| ep | Creative Commons Legal Code 1.0 Universal |
| ft | Creative Commons Legal Code 1.0 Universal |
| gutenberg | [gutenberg license](https://www.gutenberg.org/policy/license.html) |
| hest | Creative Commons Legal Code 1.0 Universal |
| jvj | Attribution-ShareAlike 4.0 International |
| naat | Creative Commons Legal Code 1.0 Universal |
| opensub | The data set comes with the same license as the original sources. Please, check the information about the source that is given on http://opus.nlpl.eu/OpenSubtitles-v2018.php |
| relig | Creative Commons Legal Code 1.0 Universal |
| retsinformationdk | Danish Copyright law at https://www.retsinformation.dk/forms/r0710.aspx?id=164796 states "§ 9. Love, administrative forskrifter, retsafgørelser og lignende offentlige aktstykker er ikke genstand for ophavsret. Stk. 2. Bestemmelsen i stk. 1 gælder ikke for værker, der fremtræder som selvstændige bidrag i de i stk. 1 nævnte aktstykker. Sådanne værker må dog gengives i forbindelse med aktstykket. Retten til videre udnyttelse afhænger af de i øvrigt gældende regler." |
| retspraksis | Creative Commons Legal Code 1.0 Universal |
| skat | Creative Commons Legal Code 1.0 Universal |
| spont | Creative Commons Legal Code 1.0 Universal |
| synne | Creative Commons Legal Code 1.0 Universal |
| tv2r | The owner of this content is TV2 Regionerne, Denmark. Creative Commons Attribution 4.0 International |
| wiki | Creative Commons Legal Code 1.0 Universal |
| wikibooks | Creative Commons Legal Code 1.0 Universal |
| wikisource | Creative Commons Legal Code 1.0 Universal |
These sources corresponds to the following top-level domains in the dataset:
```python
# mapping from domain to top-level domain
domain_mapping_dict = {
"retsinformationdk": "Legal",
"skat": "Legal",
"retspraksis": "Legal",
"hest": "Social Media",
"cc": "Web",
"adl": "Wiki & Books",
"botxt": "Other",
"danavis": "News",
"dannet": "dannet",
"depbank": "Other",
"ep": "Conversation",
"ft": "Conversation",
"gutenberg": "Wiki & Books",
"jvj": "Wiki & Books",
"naat": "Conversation",
"opensub": "Conversation",
"relig": "Wiki & Books",
"spont": "Conversation",
"synne": "Other",
"tv2r": "News",
"wiki": "Wiki & Books",
"wikibooks": "Wiki & Books",
"wikisource": "Wiki & Books",
"twfv19": "Social Media", # not present in this version of the dataset
}
```
And the following mapping translates between the short form and the long form of the source name
```python
# mapping from domain to its long name format
longname_mapping_dict = {
"retsinformationdk": "retsinformation.dk (Danish legal information)",
"skat": "Skat (Danish tax authority)",
"retspraksis": "retspraksis (Danish legal information)",
"hest": "Hestenettet (Danish debate forum)",
"cc": "Common Crawl",
"adl": " Archive for Danish Literature",
"botxt": "Bornholmsk (Danish dialect)",
"danavis": "Danish daily newspapers",
"dannet": "DanNet (Danish WordNet)",
"depbank": "Danish Dependency Treebank",
"ep": "European Parliament",
"ft": "Folketinget (Danish Parliament)",
"gutenberg": "Gutenberg",
"jvj": "Johannes V. Jensen (Danish poet)",
"naat": "NAAT",
"opensub": "Open Subtitles",
"relig": "Religious texts",
"spont": "Spontaneous speech",
"synne": "Synderjysk (Danish dialect)",
"tv2r": "TV 2 Radio (Danish news)",
"wiki": "Wikipedia",
"wikibooks": "Wikibooks",
"wikisource": "Wikisource",
"twfv19": "Twitter Folketingsvalget 2019 (Danish election tweets)", # not present in this version of the dataset
}
```
## Additional Information
### Licensing Information
If you use the data, you MUST acknowledge it. The license is CC-BY 4.0, Creative Commons with Attribution.
### Citation Information
Sample attributions:
In a press release:
> Modellen er præ-trænet på et datasæt fra The Danish Gigaword Project (https://gigaword.dk), der er udviklet af forskere fra IT-Universitetet i København
> The model is pre-trained using the Danish Gigaword Corpus (https://gigaword.dk), developed at the IT University of Copenhagen
In academic writing:
```
Derczynski, L., Ciosici, M. R., et al. (2021). The Danish Gigaword Corpus. In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021).
@inproceedings{dagw,
title = {{The Danish Gigaword Corpus}},
author = {Leon Derczynski and Manuel R. Ciosici and Rebekah Baglini and Morten H. Christiansen and Jacob Aarup Dalsgaard and Riccardo Fusaroli and Peter Juel Henrichsen and Rasmus Hvingelby and Andreas Kirkedal and Alex Speed Kjeldsen and Claus Ladefoged and Finn Årup Nielsen and Jens Madsen and Malte Lau Petersen and Jonathan Hvithamar Rystrøm and Daniel Varab},
year = 2021,
booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics},
publisher = {NEALT}
}
```
In a software product, tool, or service:
> Danish Gigaword Corpus: license - homepage
> Denne service er lavet med data fra The Danish Gigaword Corpus
### Contributions
Dataset created by Derczynski et al. (2021)
Derczynski, L., Ciosici, M. R., et al. (2021). The Danish Gigaword Corpus. In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021).
Thanks to [@HLasse](https://github.com/HLasse) for adding this dataset to the Hugging Face Hub. |
DDSC/reddit-da | ---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- da
license:
- mit
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-generation
task_ids:
- language-modeling
pretty_name: Reddit-da
---
# Dataset Card for SQuAD-da
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Contributions](#contributions)
### Dataset Summary
This dataset consists of 1,908,887 Danish posts from Reddit. These are from [this Reddit dump](https://files.pushshift.io/reddit/) and have been filtered using [this script](https://github.com/NBAiLab/notram/blob/master/corpus_generation_scripts/lang_detect_reddit.py), which uses FastText to detect the Danish posts.
### Supported Tasks and Leaderboards
This dataset is suitable for language modelling.
### Languages
This dataset is in Danish.
## Dataset Structure
### Data Instances
Every entry in the dataset contains short Reddit comments in Danish, along with a unique ID.
### Data Fields
An entry in the dataset consists of the following fields:
- `id` (`str`): A unique identifier.
- `text` (`str`): A short Reddit comment.
## Additional Information
### Licensing Information
The dataset is released under the MIT license.
### Contributions
Thanks to [@saattrupdan](https://github.com/saattrupdan) for adding this dataset to the Hugging Face Hub. |
DDSC/twitter-sent | ---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- da
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: TwitterSent
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
---
# Dataset Card for DKHate
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Direct Download**: https://danlp.alexandra.dk/304bd159d5de/datasets/twitter.sentiment.zip
### Dataset Summary
This dataset consists of anonymised Danish Twitter data that has been annotated for sentiment analysis by the [Alexandra Institute](https://github.com/alexandrainst) - all credits go to them.
### Supported Tasks and Leaderboards
This dataset is suitable for sentiment analysis.
### Languages
This dataset is in Danish.
## Dataset Structure
### Data Instances
Every entry in the dataset has a tweet and an associated label.
### Data Fields
An entry in the dataset consists of the following fields:
- `text` (`str`): The tweet content.
- `label` (`str`): The label of the `text`. Can be "positiv", "neutral" or "negativ" for positive, neutral and negative sentiment, respectively.
### Data Splits
A `train` and `test` split is available, being identical to the original splits. There are 1,007 tweets in the training split and 431 in the test split.
## Additional Information
### Dataset Curators
The collection and annotation of the dataset is solely due to the [Alexandra Institute](https://github.com/alexandrainst). The tweets have been anonymised by [@saattrupdan](https://github.com/saattrupdan).
### Licensing Information
The dataset is released under the CC BY 4.0 license.
### Citation Information
```
@misc{twittersent,
title={TwitterSent},
author={Alexandra Institute},
year={2020},
note={\url{https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#twitsent}}
}
```
### Contributions
Thanks to [@saattrupdan](https://github.com/saattrupdan) for adding this dataset to the Hugging Face Hub. |
DanL/scientific-challenges-and-directions-dataset | ---
YAML tags:
annotations_creators:
- expert-generated
language_creators: []
language:
- en
license: []
multilinguality:
- monolingual
pretty_name: DanL/scientific-challenges-and-directions-dataset
source_datasets:
- CORD-19
task_categories:
- text-classification
task_ids:
- multi-label-classification
---
# Dataset Card for scientific-challenges-and-directions
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository: [repo](https://github.com/Dan-La/scientific-challenges-and-directions)**
- **Paper: [A Search Engine for Discovery of Scientific Challenges and Directions](https://arxiv.org/abs/2108.13751)**
- **Point of Contact: lahav@mail.tau.ac.il,tomh@allenai.org**
### Dataset Summary
The scientific challenges and directions dataset is a collection of 2894 sentences and their surrounding contexts, from 1786 full-text papers in the [CORD-19](https://arxiv.org/abs/2004.10706) corpus, labeled for classification of _challenges_ and _directions_ by expert annotators with biomedical and bioNLP backgrounds.
At a high level, our labels are defined as follows:
* **Challenge**: A sentence mentioning a problem, difficulty, flaw, limitation, failure, lack of clarity, or knowledge gap.
* **Research direction**: A sentence mentioning suggestions or needs for further research, hypotheses, speculations, indications or hints that an issue is worthy of exploration.
The dataset was developed to help scientists and medical professionals discover challenges and potential directions across scientific literature.
### Languages
The language in the dataset is English as written by authors of the scientific papers in the CORD-19 corpus.
## Dataset Structure
### Data Instances
For each instance, there is a unique id, a string for the text sentence, a string for the previous sentence, a string for the next sentence, and a list for the challenge and direction labels.
```
{'id': 'PMC7152165_152',
'label': [0.0, 0.0],
'next_sent': 'The railways brought a new technology and vast engineering and architectural structures into Britain’s rural and urban landscapes.',
'prev_sent': 'In Britain, improvements in coaching technologies and roads helped to increase stage coach speeds in the late eighteenth and early nineteenth centuries, while the railway construction boom of the 1830s and 1840s led to a massive reduction in journey times, and the emergence of distinctly new experiences and geographies.',
'text': 'Britain’s railway companies were among the nation’s largest employers in the nineteenth century, and they facilitated the mobility of passengers and important commodities.'}
```
### Data Fields
* id: A string as a unique id for the instance. The id is composed of the unique PMC id of the paper, an underscore, and the index of the sentence within the paper.
* next_sent_: A string of a sentence that is following the _text_ of the instance. If the text is the first in its paragraph the string is saved as '|'.
* prev_sent_: A string of a sentence that is preceding the _text_ of the instance. If the text is the first in its paragraph the string is saved as '|'.
* text: A string of the sentence we seek to classify.
* label: A list of 2 values - the first is the label for _challenge_ and the last of _direction_. Each value may be either 0, indicating that the _text_ is **not** _challenge_ or _direction_, or 1, indicating that the the _text_ is _challenge_ or _direction_. Each instance can be a _challenge_, a _direction_, both, or neither.
### Data Splits
The scientific-challenges-and-directions dataset has 3 splits: _train_, _dev_, and _test_. Each instances shows up in only one split. The splits are stratified with no overlap in papers.
| Labels | Train | Dev | Test | All |
|:----------------------------:|:------:|:-----:|:----:|:----:|
| Not Challenge, Not Direction | 602 | 146 | 745 | 1493 |
| Not Challenge, Direction | 106 | 25 | 122 | 253 |
| Challenge, Not Direction | 288 | 73 | 382 | 743 |
| Challenge, Direction | 155 | 40 | 210 | 405 |
## Dataset Creation
### Curation Rationale
The resource was developed to help scientists and medical professionals discover challenges and potential directions across scientific literature, focusing on a broad corpus pertaining to the COVID-19 pandemic and related historical research.
### Source Data
#### Initial Data Collection and Normalization
See section 3.1 in our [paper](https://arxiv.org/abs/2108.13751).
#### Who are the source language producers?
The authors of the subset of full-text papers in the [CORD-19 dataset](https://arxiv.org/abs/2004.10706), which at the time of creating our dataset included roughly 180K documents.
### Annotations
#### Annotation process
See section 3.1 in our [paper](https://arxiv.org/abs/2108.13751).
#### Who are the annotators?
Four expert annotators with biomedical and bioNLP backgrounds. For more details see section 3.1 in our [paper](https://arxiv.org/abs/2108.13751).
### Personal and Sensitive Information
The dataset does not contain any personal information about the authors or annotators.
## Considerations for Using the Data
### Social Impact of Dataset
As mentioned, the dataset was developed to help scientists and medical professionals discover challenges and potential directions across scientific literature, focusing on a broad corpus pertaining to the COVID-19 pandemic and related historical research.
Studies were conducted to evaluate the utility of the dataset for researchers and medical professionals, in which a prototype based on the dataset was found to outperform other biomedical search tools. For more details see section 4 in our [paper](https://arxiv.org/abs/2108.13751).
This dataset was also developed for evaluating representational systems for scientific text classification and can be used as such.
### Discussion of Biases
The source of the dataset is the full-text papers in the [CORD-19 dataset](https://arxiv.org/abs/2004.10706), so biases in CORD-19 may be replicated to our dataset.
### Other Known Limitations
N/A
## Additional Information
### Dataset Curators
The dataset was developed by Dan Lahav, Jon Saad Falcon, Bailey Kuehl, Sophie Johnson, Sravanthi Parasa, Noam Shomron, Duen Horng Chau, Diyi Yang, Eric Horvitz, Daniel S. Weld and Tom Hope as part of _Tel Aviv University_, the _Allen Institute for AI_, _University of Washington_, _Georgia Institute of Technology_, _Microsoft_ and _Swedish Medical Group_.
It was supported by the Edmond J. Safra Center for Bioinformatics at Tel-Aviv University, ONR grant N00014-18-1-2193, NSF RAPID grant 2040196, the WR-F/Cable Professorship, and AI2.
### Licensing Information
[More Information Needed]
### Citation Information
If using our dataset and models, please cite:
```
@misc{lahav2021search,
title={A Search Engine for Discovery of Scientific Challenges and Directions},
author={Dan Lahav and Jon Saad Falcon and Bailey Kuehl and Sophie Johnson and Sravanthi Parasa and Noam Shomron and Duen Horng Chau and Diyi Yang and Eric Horvitz and Daniel S. Weld and Tom Hope},
year={2021},
eprint={2108.13751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@Dan-La](https://github.com/Dan-La) and [@tomhoper](https://github.com/tomhoper) for adding this dataset.
|
Daniele/dante-corpus | ---
YAML tags:
- copy-paste the tags obtained with the online tagging app: https://huggingface.co/spaces/huggingface/datasets-tagging
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Additional Information](#additional-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
All literary production of great poet Dante Alighieri.
### Supported Tasks and Leaderboards
Fill Mask task.
### Languages
(Ancient) Italian.
### Contributions
Thanks to [@danielekp](https://github.com/danielekp) for adding this dataset.
|
Datatang/accented_english | ---
YAML tags:
- copy-paste the tags obtained with the tagging app: https://github.com/huggingface/datasets-tagging
---
# Dataset Card for accented-english
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** www.datatang.ai
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The dataset contains 20,000 hours of accented English speech data. It's collected from local English speakers in more than 20 countries, such as USA, China, UK, Germany, Japan, India, France, Spain, Russia, Latin America, covering a variety of pronunciation habits and characteristics, accent severity, and the distribution of speakers. The format is 16kHz, 16bit, uncompressed wav, mono channel. The sentence accuracy is over 95%.
For more details, please refer to the link: https://bit.ly/39UzIwI
### Supported Tasks and Leaderboards
automatic-speech-recognition, audio-speaker-identification: The dataset can be used to train a model for Automatic Speech Recognition (ASR).
### Languages
English
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Commerical License: https://drive.google.com/file/d/1saDCPm74D4UWfBL17VbkTsZLGfpOQj1J/view?usp=sharing
### Citation Information
[More Information Needed]
### Contributions
|
Datatang/accented_mandarin | ---
YAML tags:
- copy-paste the tags obtained with the tagging app: https://github.com/huggingface/datasets-tagging
---
# Dataset Card for accented_mandarin
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** www.datatang.ai
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The dataset contains 2,000 hours of Mandarin Chinese speech data. The data is collected from local speakers in 26 provinces like Henan, Shanxi, Sichuan, Hunan, Fujian, etc.The content covers generic catagory,human machine interaction, smart home command and control, in-car,numbers etc. The format is 16kHz, 16bit, uncompressed wav, mono channel. The sentence accuracy is over 97%.
For more details, please refer to the link: https://bit.ly/39UzIwI
### Supported Tasks and Leaderboards
automatic-speech-recognition, audio-speaker-identification: The dataset can be used to train a model for Automatic Speech Recognition (ASR).
### Languages
Accented Mandarin
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Commerical License: https://drive.google.com/file/d/1saDCPm74D4UWfBL17VbkTsZLGfpOQj1J/view?usp=sharing
### Citation Information
[More Information Needed]
### Contributions
|
Datatang/chinese_dialect | ---
YAML tags:
- copy-paste the tags obtained with the tagging app: https://github.com/huggingface/datasets-tagging
---
# Dataset Card for chinese_dialect
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** www.datatang.ai
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The dataset contains 25,000 hours of Chinese Dialect speech data. It's collected from local dialect speakers in multiple dialect regions, covering Hokkien, Cantonese, Sichuan Dialect, Henan Dialects,Northeastern Dialect, Shanghai Dialect,Uyghur and Tibetan etc. The format is 16kHz, 16bit, uncompressed wav, mono channel. The sentence accuracy is over 95%.
For more details, please refer to the link: https://bit.ly/39UzIwI
### Supported Tasks and Leaderboards
automatic-speech-recognition, audio-speaker-identification: The dataset can be used to train a model for Automatic Speech Recognition (ASR).
### Languages
Chinese Dialect
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Commerical License: https://drive.google.com/file/d/1saDCPm74D4UWfBL17VbkTsZLGfpOQj1J/view?usp=sharing
### Citation Information
[More Information Needed]
### Contributions
|
Subsets and Splits