description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
---|---|---|
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
a = []
q = 0
for i in range(r):
a.append([0] * c)
for i in range(n):
x, y = map(int, input().split())
a[x - 1][y - 1] = 1
for i in range(r):
for j in range(c):
for m in range(r - i + 1):
for p in range(c - j + 1):
s = 0
for d in range(i, i + m):
for b in range(j, j + p):
s += a[d][b]
if s >= k:
q += 1
print(q) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | w, h, v, n = map(int, input().split())
V = [([False] * h) for _ in range(w)]
for _ in range(v):
x, y = map(int, input().split())
V[x - 1][y - 1] = True
def calc(a, b, c, d):
s = 0
for x in range(a, c + 1):
for y in range(b, d + 1):
s += V[x][y]
if s >= n:
return s
return s
C = 0
for x1 in range(w):
for y1 in range(h):
for x2 in range(x1, w):
for y2 in range(y1, h):
if calc(x1, y1, x2, y2) >= n:
C += 1
print(C) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR IF VAR VAR RETURN VAR RETURN VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
A = [([0] * c) for i in range(r)]
for i in range(n):
a, b = map(int, input().split())
A[a - 1][b - 1] = 1
f = 0
g = 0
ans = 0
for i in range(r):
for j in range(c):
for i2 in range(r - i):
for j2 in range(c - j):
cnt = 0
for i3 in range(i, i + i2 + 1):
for j3 in range(j, j + j2 + 1):
cnt += int(A[i3][j3] == 1)
if cnt >= k:
ans += 1
print(ans) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | import time
a = []
r, c, n, k = (int(i) for i in input().split())
for i in range(n):
a.append([(int(i) - 1) for i in input().split()])
start = time.time()
ans = 0
for x1 in range(r):
for y1 in range(c):
for x0 in range(x1 + 1):
for y0 in range(y1 + 1):
now = 0
for i in range(n):
if (
a[i][0] >= x0
and a[i][0] <= x1
and a[i][1] >= y0
and a[i][1] <= y1
):
now += 1
if now >= k:
ans += 1
print(ans)
finish = time.time() | IMPORT ASSIGN VAR LIST ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
xy = [list(map(int, input().split())) for i in range(n)]
field = [([0] * c) for i in range(r)]
for i in range(n):
field[xy[i][0] - 1][xy[i][1] - 1] = 1
num = 0
for i in range(r):
for j in range(c):
for i2 in range(i, r):
for j2 in range(j, c):
num2 = 0
for i3 in range(i, i2 + 1):
for j3 in range(j, j2 + 1):
if field[i3][j3] == 1:
num2 += 1
if num2 >= k:
num += 1
print(num) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER NUMBER BIN_OP VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | readInts = lambda: list(map(int, input().split()))
pos = []
r, c, n, k = readInts()
for i in range(n):
x, y = readInts()
pos.append([x - 1, y - 1])
ret = 0
for i in range(r):
for j in range(c):
for ii in range(i, r):
for jj in range(j, c):
cnt = 0
for it in range(n):
x, y = pos[it]
if x >= i and x <= ii and y >= j and y <= jj:
cnt += 1
if cnt >= k:
ret += 1
print(ret) | ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR LIST BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
d = [[(0) for j in range(c + 1)] for i in range(r + 1)]
for i in range(n):
x, y = map(int, input().split())
d[x][y] = 1
for i in range(1, r + 1):
for j in range(1, c + 1):
d[i][j] = d[i][j] + d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1]
a = 0
for i in range(1, r + 1):
for j in range(1, c + 1):
for x in range(i, r + 1):
for y in range(j, c + 1):
if d[x][y] - d[x][j - 1] - d[i - 1][y] + d[i - 1][j - 1] >= k:
a += 1
print(a) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | from itertools import combinations
def main():
from itertools import combinations
r, c, n, k = map(int, input().split())
r += 1
c += 1
l = [([0] * c) for _ in range(r)]
for _ in range(n):
y, x = map(int, input().split())
for i in range(y, r):
row = l[i]
for j in range(x, c):
row[j] += 1
print(
sum(
l[y][x] + l[i][j] - l[y][j] - l[i][x] >= k
for i, y in combinations(range(r), 2)
for j, x in combinations(range(c), 2)
)
)
main() | FUNC_DEF ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | tmp = input().split(" ")
r = int(tmp[0])
c = int(tmp[1])
n = int(tmp[2])
k = int(tmp[3])
tab = [[0]]
for j in range(1, c + 1):
tab[0].append(0)
for i in range(1, r + 1):
tab.append([0])
for j in range(1, c + 1):
tab[i].append(0)
for i in range(0, n):
tmp = input().split(" ")
tab[int(tmp[0])][int(tmp[1])] = 1
pre = tab
for i in range(1, r + 1):
for j in range(1, c + 1):
pre[i][j] = pre[i - 1][j] + pre[i][j - 1] - pre[i - 1][j - 1] + tab[i][j]
wynik = 0
for i in range(1, r + 1):
for j in range(1, c + 1):
for ii in range(i, r + 1):
for jj in range(j, c + 1):
if (
tab[ii][jj] - tab[i - 1][jj] - tab[ii][j - 1] + tab[i - 1][j - 1]
>= k
):
wynik = wynik + 1
print(wynik) | ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | def count(a, b, c, d):
return sum([arr[i][j] for i in range(a, c + 1) for j in range(b, d + 1)])
def solve(r, c, n, m):
ans = 0
for i in range(1, r + 1):
for j in range(1, c + 1):
for k in range(i, r + 1):
for l in range(j, c + 1):
x = count(i, j, k, l)
if x >= m:
ans += 1
return ans
r, c, n, k = map(int, input().split())
arr = [[(0) for i in range(20)] for j in range(20)]
for i in range(n):
x, y = map(int, input().split())
arr[x][y] = 1
print(solve(r, c, n, k)) | FUNC_DEF RETURN FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = [int(x) for x in input().split()]
mus = [[(0) for j in range(c)] for i in range(r)]
for t in range(n):
x, y = [(int(s) - 1) for s in input().split()]
mus[x][y] = 1
ans = 0
for i1 in range(r):
for i2 in range(i1, r):
for j1 in range(c):
for j2 in range(j1, c):
S = 0
for x in range(i1, i2 + 1):
for y in range(j1, j2 + 1):
S += mus[x][y]
if S >= k:
ans += 1
print(ans) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | b, a, n, k = map(int, input().split())
data = [[(0) for i in range(a)] for j in range(b)]
for i in range(n):
xi, yi = map(int, input().split())
xi -= 1
yi -= 1
data[xi][yi] = 1
answer = 0
for i in range(b):
for j in range(a):
for x in range(i, b):
for y in range(j, a):
counter = 0
for x1 in range(min(i, x), max(i, x) + 1):
for y1 in range(min(j, y), max(j, y) + 1):
counter += data[x1][y1]
if counter >= k:
answer += 1
print(answer) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, p = map(int, input().split())
resp = 0
m = []
for i in range(r):
aux = []
for j in range(c):
aux.append(False)
m.append(aux[:])
for i in range(n):
x, y = map(int, input().split())
m[x - 1][y - 1] = True
for i in range(r):
for j in range(c):
for a in range(r, i, -1):
for b in range(c, j, -1):
cont = 0
for k in range(i, a):
for l in range(j, b):
if m[k][l]:
cont += 1
if cont >= p:
resp += 1
print(resp) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = [int(x) for x in input().split()]
min_x, min_y, max_x, max_y = r, c, 1, 1
alts = []
for i in range(0, n):
x, y = [int(i) for i in input().split()]
alts.append((x, y))
photo_count = 0
for x in range(1, r + 1):
for y in range(1, c + 1):
for w in range(1, r - (x - 1) + 1):
for h in range(1, c - (y - 1) + 1):
alt_count = 0
for alt in alts:
if x <= alt[0] <= x + w - 1 and y <= alt[1] <= y + h - 1:
alt_count += 1
if alt_count >= k:
photo_count += 1
break
print(photo_count) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | f = lambda: map(int, input().split())
r, c, n, k = f()
t = [([0] * (c + 1)) for i in range(r + 1)]
for j in range(n):
y, x = f()
t[y][x] = 1
for y in range(r):
p = t[y + 1]
for x in range(c):
p[x + 1] += p[x]
t[y + 1] = [(a + b) for a, b in zip(p, t[y])]
s = (c * c + c) * (r * r + r) >> 2
for y in range(r):
for x in range(c):
for a in range(1, c - x + 1):
for b in range(1, r - y + 1):
if t[y + b][x + a] + t[y][x] - t[y + b][x] - t[y][x + a] >= k:
break
s -= 1
print(s) | ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | dhuang = 0
a, b, c, d = map(int, input().split(" "))
huang = [(["*"] * b) for _ in range(a)]
for i in range(c):
x, y = map(int, input().split(" "))
huang[x - 1][y - 1] = "#"
for i in range(a):
for j in range(b):
for k in range(i, a):
for l in range(j, b):
ct = 0
for m in range(i, k + 1):
for n in range(j, l + 1):
if huang[m][n] == "#":
ct += 1
if ct >= d:
dhuang += 1
print(dhuang) | ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST STRING VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER STRING FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR STRING VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | L = lambda: [*map(int, input().split())]
r, c, n, k = L()
A = [L() for _ in range(n)]
print(
sum(
sum(a <= x <= b and f <= y <= g for x, y in A) >= k
for a in range(1, r + 1)
for b in range(a, r + 1)
for f in range(1, c + 1)
for g in range(f, c + 1)
)
) | ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
violas = set([tuple(map(int, input().split())) for i in range(n)])
ans = 0
for i in range(r):
for j in range(c):
for l in range(1, r - i + 1):
for w in range(1, c - j + 1):
ctr = 0
for a in range(i, i + l):
for b in range(j, j + w):
if (a + 1, b + 1) in violas:
ctr += 1
if ctr >= k:
ans += 1
print(ans) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
G = [([0] * c) for i in range(0, r)]
for i in range(0, n):
a, b = map(int, input().split())
a -= 1
b -= 1
G[a][b] = True
ans = 0
for x in range(0, r):
for y in range(0, c):
for y1 in range(y + 1, c + 1):
for x1 in range(x + 1, r + 1):
num = 0
for cl in range(y, y1):
for rw in range(x, x1):
if G[rw][cl]:
num += 1
if num >= k:
ans += 1
print(ans) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | def cnt(x1, y1, x2, y2):
ans = 0
for i in range(y2, y1 + 1):
for j in range(x1, x2 + 1):
if lst[i][j] == 1:
ans += 1
return ans
h, w, n, kk = map(int, input().split())
anss = 0
lst = [([0] * 20) for i in range(20)]
for i in range(n):
x, y = map(int, input().split())
lst[x - 1][y - 1] = 1
for i in range(h):
for j in range(w):
for k in range(h):
for z in range(w):
if cnt(j, i, z, k) >= kk:
anss += 1
print(anss) | FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
a = [[(0) for i in range(0, c)] for j in range(0, r)]
for i in range(0, n):
x, y = map(int, input().split())
x = x - 1
y = y - 1
a[x][y] = 1
ans = 0
for i in range(0, r):
for j in range(0, c):
for u in range(i, r):
for v in range(j, c):
t = 0
for x in range(i, u + 1):
for y in range(j, v + 1):
t += a[x][y]
if t >= k:
ans = ans + 1
print(ans) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
g, v = [([False] * c) for i in range(r)], 0
for i in range(n):
x, y = map(int, input().split())
g[x - 1][y - 1] = True
for a in range(r):
for b in range(c):
for e in range(a, r):
for f in range(b, c):
x = sum(g[i][j] for i in range(a, e + 1) for j in range(b, f + 1))
if x >= k:
v += 1
print(v) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
V = [list(map(int, input().split())) for _ in range(n)]
G = [[(0) for _ in range(c)] for _ in range(r)]
for i in range(n):
G[V[i][0] - 1][V[i][1] - 1] = 1
T = [[(0) for _ in range(c)] for _ in range(r)]
T[0][0] = G[0][0]
for i in range(1, r):
T[i][0] = G[i][0]
for i in range(r):
for j in range(1, c):
T[i][j] = T[i][j - 1] + G[i][j]
for i in range(1, r):
for j in range(c):
T[i][j] += T[i - 1][j]
nb = 0
for x1 in range(c):
for x2 in range(x1, c):
for y1 in range(r):
for y2 in range(y1, r):
s = T[y2][x2]
if x1 > 0:
s -= T[y2][x1 - 1]
if y1 > 0:
s -= T[y1 - 1][x2]
if x1 > 0 and y1 > 0:
s += T[y1 - 1][x1 - 1]
if s >= k:
nb += 1
print(nb) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER NUMBER BIN_OP VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER NUMBER VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR IF VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER VAR NUMBER VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = list(map(int, input().split()))
alt = []
count = 0
for i in range(n):
a, b = list(map(int, input().split()))
alt.append([a - 1, b - 1])
for x1 in range(r):
for x2 in range(x1 + 1):
for y1 in range(c):
for y2 in range(y1 + 1):
d = 0
for i in range(n):
if (
alt[i][0] <= x1
and alt[i][0] >= x2
and alt[i][1] <= y1
and alt[i][1] >= y2
):
d += 1
if d >= k:
count += 1
print(count) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST BIN_OP VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | def read_ints():
return map(int, input().split())
r, c, n, k = read_ints()
s = [([False] * (c + 1)) for _ in range(r + 1)]
for _ in range(n):
x, y = read_ints()
assert x <= r, x
assert y <= c, y
s[x][y] = True
ss = [([0] * (c + 1)) for _ in range(r + 1)]
for y in range(1, r + 1):
for x in range(1, c + 1):
ss[y][x] = ss[y - 1][x] + ss[y][x - 1] - ss[y - 1][x - 1] + int(s[y][x])
def count(lx, ly, rx, ry, ss):
assert 0 < lx <= c, lx
assert 0 < rx <= c, rx
assert 0 < ly <= r, ly
assert 0 < ry <= r, ry
return ss[ry][rx] - ss[ly - 1][rx] - ss[ry][lx - 1] + ss[ly - 1][lx - 1]
ccc = 0
for ly in range(1, r + 1):
for lx in range(1, c + 1):
for ry in range(ly, r + 1):
for rx in range(lx, c + 1):
if count(lx, ly, rx, ry, ss) >= k:
ccc += 1
print(ccc) | FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR FUNC_DEF NUMBER VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR RETURN BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = list(map(int, input().split()))
A = [2] * n
for i in range(n):
A[i] = list(map(int, input().split()))
answer = 0
for i1 in range(1, r + 1):
for j1 in range(1, c + 1):
for i2 in range(i1, r + 1):
for j2 in range(j1, c + 1):
t = 0
for i in range(n):
if i1 <= A[i][0] <= i2 and j1 <= A[i][1] <= j2:
t += 1
answer += t >= k
print(answer) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | def count(orchestra, x1, y1, x2, y2):
rv = 0
for i in range(x1, x2 + 1):
for j in range(y1, y2 + 1):
if orchestra[i][j] == 1:
rv += 1
return rv
def doit(r, c, n, k, pos):
orchestra = [[(0) for x in range(c)] for x in range(r)]
for i in pos:
orchestra[i[0] - 1][i[1] - 1] = 1
rv = 0
for i1 in range(r):
for i2 in range(c):
for i3 in range(i1, r):
for i4 in range(i2, c):
if count(orchestra, i1, i2, i3, i4) >= k:
rv += 1
return rv
args = list(map(int, input().split()))
r = args[0]
c = args[1]
n = args[2]
k = args[3]
pos = []
for i in range(n):
z = list(map(int, input().split()))
x = z[0]
y = z[1]
pos.append([x, y])
print(doit(r, c, n, k, pos)) | FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | read = lambda: map(int, input().split())
r, c, n, k = read()
a = [([0] * (c + 1)) for i in range(r + 1)]
for i in range(n):
x, y = read()
a[x][y] = 1
d = [([0] * (c + 1)) for i in range(r + 1)]
for i in range(1, r + 1):
for j in range(1, c + 1):
if a[i][j]:
d[i][j] += 1
if i == j == 0:
continue
p1 = d[i - 1][j] if i else 0
p2 = d[i][j - 1] if j else 0
p3 = d[i - 1][j - 1] if i and j else 0
d[i][j] += p1 + p2 - p3
cnt = 0
for x1 in range(r + 1):
for y1 in range(c + 1):
for x2 in range(x1 + 1, r + 1):
for y2 in range(y1 + 1, c + 1):
cur = d[x2][y2] - d[x2][y1] - d[x1][y2] + d[x1][y1]
if cur >= k:
cnt += 1
print(cnt) | ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | s = input()
S = s.split()
x = int(S[0])
y = int(S[1])
n = int(S[2])
k = int(S[3])
a = [["*" for i in range(x)] for j in range(y)]
for i in range(n):
alt = input()
ALT = alt.split()
a[int(ALT[1]) - 1][int(ALT[0]) - 1] = "#"
answer = 0
for x1 in range(x):
for y1 in range(y):
for x2 in range(x1, x):
for y2 in range(y1, y):
count = 0
for i in range(x1, x2 + 1):
for j in range(y1, y2 + 1):
if a[j][i] == "#":
count += 1
if count >= k:
answer += 1
print(answer) | ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR STRING VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR STRING VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = input().split()
r, c, n, k = int(r), int(c), int(n), int(k)
violas = []
for _ in range(n):
x, y = input().split()
x, y = int(x) - 1, int(y) - 1
violas.append((y, x))
def count_violas(x1, y1, x2, y2):
global violas
s = 0
for x, y in violas:
if x >= x1 and x <= x2 and y >= y1 and y <= y2:
s += 1
return s
ans = 0
for x1 in range(c):
for y1 in range(r):
for x2 in range(x1, c):
for y2 in range(y1, r):
if count_violas(x1, y1, x2, y2) >= k:
ans += 1
print(ans) | ASSIGN VAR VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
data = [[(False) for i in range(c)] for j in range(r)]
for i in range(n):
x, y = map(int, input().split())
x -= 1
y -= 1
data[x][y] = True
ans = 0
for a in range(r + 1):
for b in range(c + 1):
for e in range(r):
for d in range(c):
cnt = 0
flag = False
for i in range(a):
for j in range(b):
if 0 <= e + i < r and 0 <= d + j < c:
if data[e + i][d + j]:
cnt += 1
else:
flag = True
break
if flag:
break
if flag:
continue
if cnt >= k:
ans += 1
print(ans) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF NUMBER BIN_OP VAR VAR VAR NUMBER BIN_OP VAR VAR VAR IF VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR IF VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split())
a = [tuple(map(int, input().split())) for _ in range(n)]
ans = 0
for x1 in range(1, r + 1):
for x2 in range(x1, r + 1):
for y1 in range(1, c + 1):
for y2 in range(y1, c + 1):
if len([(1) for x, y in a if x1 <= x <= x2 and y1 <= y <= y2]) >= k:
ans += 1
print(ans) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR NUMBER VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | def count(orchestra, initial, final):
num = 0
for i in range(initial[0], final[0] + 1):
for j in range(initial[1], final[1] + 1):
if orchestra[i][j] == 1:
num += 1
return num
def getNumber(orchestra, initial, minimum):
num = 0
for i in range(initial[0], r):
for j in range(initial[1], c):
final = [i, j]
counter = count(orchestra, initial, final)
if counter >= k:
num += 1
if initial[0] == len(orchestra):
return num
if initial[1] == len(orchestra[0]) - 1:
initial[0] += 1
initial[1] = 0
else:
initial[1] += 1
return num + getNumber(orchestra, initial, minimum)
args = list(map(int, input().split()))
r = args[0]
c = args[1]
n = args[2]
k = args[3]
positions = []
for i in range(n):
x = list(map(int, input().split()))
positions.append([x[0], x[1]])
orchestra = [([0] * c) for i in range(r)]
for i in positions:
orchestra[i[0] - 1][i[1] - 1] = 1
print(getNumber(orchestra, [0, 0], k)) | FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR LIST VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR RETURN VAR IF VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER NUMBER VAR NUMBER NUMBER RETURN BIN_OP VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR LIST NUMBER NUMBER VAR |
Paul is at the orchestra. The string section is arranged in an r × c rectangular grid and is filled with violinists with the exception of n violists. Paul really likes violas, so he would like to take a picture including at least k of them. Paul can take a picture of any axis-parallel rectangle in the orchestra. Count the number of possible pictures that Paul can take.
Two pictures are considered to be different if the coordinates of corresponding rectangles are different.
Input
The first line of input contains four space-separated integers r, c, n, k (1 ≤ r, c, n ≤ 3000, 1 ≤ k ≤ min(n, 10)) — the number of rows and columns of the string section, the total number of violas, and the minimum number of violas Paul would like in his photograph, respectively.
The next n lines each contain two integers xi and yi (1 ≤ xi ≤ r, 1 ≤ yi ≤ c): the position of the i-th viola. It is guaranteed that no location appears more than once in the input.
Output
Print a single integer — the number of photographs Paul can take which include at least k violas.
Examples
Input
2 2 1 1
1 2
Output
4
Input
3 2 3 3
1 1
3 1
2 2
Output
1
Input
3 2 3 2
1 1
3 1
2 2
Output
4
Note
We will use '*' to denote violinists and '#' to denote violists.
In the first sample, the orchestra looks as follows:
*#
**
Paul can take a photograph of just the viola, the 1 × 2 column containing the viola, the 2 × 1 row containing the viola, or the entire string section, for 4 pictures total.
In the second sample, the orchestra looks as follows:
#*
*#
#*
Paul must take a photograph of the entire section.
In the third sample, the orchestra looks the same as in the second sample. | r, c, n, k = map(int, input().split(" "))
p = []
def findIn(z, x, y, s):
global n
ret = 0
for i in range(n):
if z <= p[i][0] and y >= p[i][0] and x <= p[i][1] and s >= p[i][1]:
ret = ret + 1
return ret
for i in range(n):
x, y = map(int, input().split(" "))
p.append((x, y))
ans = 0
for z in range(1, r + 1):
for x in range(1, c + 1):
for y in range(z, r + 1):
for s in range(x, c + 1):
if findIn(z, x, y, s) >= k:
ans = ans + 1
print(ans) | ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = map(int, input().split())
ar = list(map(int, input().split()))
ar = [((i**4 - k * i + p**4) % p) for i in ar]
d = dict()
for i in ar:
if i in d:
d[i] += 1
else:
d[i] = 1
ans = 0
for key in d:
ans += d[key] * (d[key] - 1) // 2
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = [int(i) for i in input().split()]
data = [int(i) for i in input().split()]
dic = {}
for d in data:
val = (pow(d, 4, p) - d * k) % p
if val in dic:
dic[val] += 1
else:
dic[val] = 1
ans = 0
for am in dic.values():
ans += am * (am - 1) // 2
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | import sys
n, p, k = list(map(int, sys.stdin.readline().strip().split()))
a = list(map(int, sys.stdin.readline().strip().split()))
for i in range(0, n):
a[i] = (a[i] ** 4 - k * a[i]) % p
a[i] = a[i] + 2 * p
a[i] = a[i] % p
a.sort()
c = 1
x = a[0]
ans = 0
for i in range(1, n):
if a[i] == x:
c = c + 1
else:
ans = ans + c * (c - 1) // 2
c = 1
x = a[i]
ans = ans + c * (c - 1) // 2
print(ans) | IMPORT ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | cond = [int(x) for x in input().split()]
n = cond[0]
p = cond[1]
k = cond[2]
a = [int(x) for x in input().split()]
b = [((x**4 - k * x) % p) for x in a]
d = {}
r = 0
for x in b:
if x not in d:
d[x] = 0
r += d[x]
d[x] += 1
print(r) | ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = map(int, input().split())
d = dict()
a = list(map(int, input().split()))
for i in a:
tmp = (i**4 - k * i) % p
if tmp not in d:
d[tmp] = 1
else:
d[tmp] += 1
ans = 0
for i in d:
ans += d[i] * (d[i] - 1) // 2
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | def tianjia(dic, z):
if z in dic:
dic[z] += 1
else:
dic[z] = 1
n, p, k = map(int, input().split())
z = 0
l = list(map(int, input().split()))
dic = {}
for i in l:
z = (i**4 - i * k) % p
tianjia(dic, z)
print(sum([(dic[i] * (dic[i] - 1) // 2) for i in dic])) | FUNC_DEF IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = [int(i) for i in input().split()]
l = [int(i) for i in input().split()]
di = {}
ans = 0
for i in l:
x = (i * i * i * i - k * i) % p
if x in di:
ans += di[x]
di[x] += 1
else:
di[x] = 1
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = map(int, input().split())
a = list(map(int, input().split()))
cnt = {}
b = []
ans = 0
for i in a:
b.append((i**4 - k * i) % p)
for i in b:
if i in cnt:
cnt[i] += 1
ans += cnt[i] - 1
else:
cnt[i] = 1
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR FOR VAR VAR IF VAR VAR VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | def Sum(n):
return n * (n - 1) // 2
def Solver(p, k, a):
aux = []
for i in a:
aux.append((i**4 - i * k) % p)
dic = {}
for i in aux:
if i in dic:
dic[i] += 1
else:
dic[i] = 1
val = list(dic.values())
sol = 0
for i in val:
if i > 1:
sol += Sum(i)
return sol
def Main():
n, p, k = map(int, input().split())
a = list(map(int, input().split()))
sol = Solver(p, k, a)
print(sol)
Main() | FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FUNC_DEF ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR ASSIGN VAR DICT FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = map(int, input().split())
a = list(map(int, input().split()))
a = [((i**4 - i * k) % p) for i in a]
c = {i: (0) for i in a}
for i in a:
c[i] += 1
s = 0
for i in c:
i = c[i]
s += i * (i - 1) // 2
print(s) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER VAR VAR FOR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = map(int, input().split())
arr = list(map(int, input().split()))
cnt = dict()
def f(a):
return ((pow(a, 4, p) - k * a) % p + p) % p
def g(a):
return a * (a - 1) // 2
res = 0
for a in arr:
v = f(a)
if v in cnt:
cnt[v] += 1
else:
cnt[v] = 1
for a in arr:
v = f(a)
res += g(cnt[v])
cnt[v] = 0
print(res) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = map(int, input().split())
c = 0
cnt = {}
for i in map(int, input().split()):
t = (i**4 - k * i) % p
if t in cnt:
c += cnt[t]
cnt[t] += 1
else:
cnt[t] = 1
print(c) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | from sys import stdin
n, p, k = list(map(int, stdin.readline().strip().split()))
s = list(map(int, stdin.readline().strip().split()))
st = set()
d = dict()
for i in s:
x = (i**4 - i * k) % p
if x in st:
d[x] += 1
else:
st.add(x)
d[x] = 1
s.sort()
ans = 0
for i in s:
x = (i**4 - i * k) % p
if x in st:
ans += (d[x] - 1) * d[x] // 2
d[x] = 0
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | import sys
input = sys.stdin.readline
n, p, k = map(int, input().split())
a = list(map(int, input().split()))
MOD = p
memo = {}
for i in range(n):
num = (a[i] ** 4 - a[i] * k) % MOD
if num not in memo:
memo[num] = 1
else:
memo[num] += 1
ans = 0
for i in memo:
ans += memo[i] * (memo[i] - 1) // 2
print(ans) | IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | ln = [int(i) for i in input().split(" ")]
n = ln[0]
p = ln[1]
k = ln[2]
a = [int(i) for i in input().split(" ")]
cts = {}
ctsc = {}
ans = []
nm = 0
for i in range(0, len(a)):
an = (a[i] ** 4 - k * a[i]) % p
if an in ctsc:
nm += ctsc[an]
ctsc[an] += 1
else:
ctsc[an] = 1
print(nm) | ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | def expmod(a, n, m):
if n == 0:
return 1
elif n == 1:
return a % m
res = n / 2
rem = n % 2
temp = expmod(a, res, m)
if rem == 1:
return temp * temp * a % m
else:
return temp * temp % m
n, p, k = map(int, input().split())
a = list(map(int, input().split()))
holes = {}
res = 0
for i in range(0, n):
temp = ((expmod(a[i], 4, p) - k * a[i]) % p + p) % p
if temp in holes:
res += holes[temp]
holes[temp] += 1
else:
holes[temp] = 1
print(int(res)) | FUNC_DEF IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR RETURN BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | def solve(dic, elem):
if elem in dic:
dic[elem] += 1
else:
dic[elem] = 1
n, p, k = map(int, input().split(" "))
a = list(map(int, input().split(" ")))
b = {}
res = 0
for i in range(n):
val = (a[i] ** 4 - k * a[i]) % p
solve(b, val)
for key in b:
t = b[key]
res += t * (t - 1) // 2
print(res) | FUNC_DEF IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR FOR VAR VAR ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = map(int, input().split())
arr = list(map(int, input().split()))
d = {}
for i in arr:
x = i * i % p * i % p * i % p
y = i * k % p
cc = (x - y + p) % p
if cc in d:
d[cc] += 1
else:
d[cc] = 1
ans = 0
for key, value in d.items():
cc = value * (value - 1) // 2
ans += cc
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, q, k = map(int, input().split())
a = [int(x) for x in input().split()]
mp = dict()
for i in range(n):
mp[(a[i] ** 4 - k * a[i]) % q] = 0
for i in range(n):
mp[(a[i] ** 4 - k * a[i]) % q] += 1
ans = 0
for key in mp:
d = mp[key]
ans += d * (d - 1) // 2
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = [int(i) for i in input().split(" ")]
a = [int(i) for i in input().split(" ")]
b = []
for i in range(n):
b.append((pow(a[i], 4, p) - k * a[i]) % p)
mydic = {}
for i in b:
mydic[i] = 0
for i in b:
mydic[i] += 1
ans = 0
for t in mydic:
ans += mydic[t] * (mydic[t] - 1) // 2
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | line = input()
line = line.split()
line = list(map(lambda x: int(x), line))
n = line[0]
p = line[1]
k = line[2]
inputs = input()
inputs = inputs.split()
inputs = list(map(lambda x: int(x), inputs))
dict = {}
counter = 0
for i in range(n):
exped = ((inputs[i] ** 2) ** 2 - k * inputs[i]) % p
if dict.get(exped, None) is None:
dict[exped] = 0
counter = counter + dict[exped]
dict[exped] = dict[exped] + 1
print(counter) | ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER BIN_OP VAR VAR VAR VAR IF FUNC_CALL VAR VAR NONE NONE ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = list(map(int, input().split()))
a = list(map(int, input().split()))
d = dict()
for i in range(n):
now = a[i] * a[i] * a[i] * a[i] - k * a[i]
now %= p
if now in d:
d[now] += 1
else:
d[now] = 1
ans = 0
for i in range(n):
now = a[i] * a[i] * a[i] * a[i] - k * a[i]
now %= p
ans += d[now] - 1
ans //= 2
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = list(map(int, input().strip().split()))
a = list(map(int, input().strip().split()))
d = dict()
for el in a:
r = 1
r *= el
r %= p
r *= el
r %= p
r *= el
r %= p
r *= el
r %= p
s = k * el % p
r -= s
r %= p
try:
d[r] += 1
except:
d[r] = 1
c = 0
for k in d.keys():
c += d[k] * (d[k] - 1) // 2
print(c) | ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR NUMBER VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | iarr = list(map(int, input().split()))
n = iarr[0]
p = iarr[1]
k = iarr[2]
arr = list(map(int, input().split()))
for i in range(n):
arr[i] = (pow(arr[i], 4, p) - k % p * (arr[i] % p) % p) % p
dic = {}
for i in range(n):
try:
dic[arr[i]] += 1
except:
dic[arr[i]] = 1
ans = 0
for i in dic:
ans += dic[i] * (dic[i] - 1) // 2
print(ans) | ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = map(int, input().split())
d = {}
ans = 0
b = list(map(int, input().split()))
for i in range(n):
a = b[i]
val = (a**4 - k * a) % p
if d.get(val) == None:
d[val] = 1
else:
ans += d[val]
d[val] += 1
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR NONE ASSIGN VAR VAR NUMBER VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | def main():
n, p, k = map(int, input().split())
ans = list(map(int, input().split()))
for i in range(n):
temp = ans[i]
ans[i] = (temp**4 - temp * k) % p
mp = {}
for i in ans:
mp.setdefault(i, 0)
mp[i] = mp[i] + 1
temp = 0
for i in mp.values():
temp = i * (i - 1) // 2 + temp
print(temp)
main() | FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR ASSIGN VAR DICT FOR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = map(int, input().split())
l = list(map(int, input().split()))
d = dict()
for y in range(n):
x = pow(l[y], 4) - l[y] * k
if x % p not in d:
d[x % p] = 1
else:
d[x % p] += 1
ct = 0
for k, v in d.items():
ct += v * (v - 1) // 2
print(ct) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | def check(num1, num2, p, k):
v = num1 + num2
v *= num1 * num1 + num2 * num2
v %= p
v += p
v %= p
return v == k % p
n, p, k = (int(x) for x in input().split())
idx___number = [int(x) for x in input().split()]
idx___precount = [(((pow(x, 4, p) - k * x) % p + p) % p) for x in idx___number]
met_precount___vals = {}
ans = 0
for number, precount in zip(idx___number[::-1], idx___precount[::-1]):
if precount not in met_precount___vals:
met_precount___vals[precount] = []
else:
for val in met_precount___vals[precount]:
if check(number, val, p, k):
ans += 1
met_precount___vals[precount].append(number)
print(ans) | FUNC_DEF ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR RETURN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR LIST FOR VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | n, p, k = map(int, input().split())
a = list(map(int, input().split()))
a = list((i**4 - k * i) % p for i in a)
cnt = set(a)
cnt = dict(zip(cnt, [0] * len(cnt)))
ans = 0
for i in a:
ans += cnt[i]
cnt[i] += 1
print(ans) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR |
You are given a prime number $p$, $n$ integers $a_1, a_2, \ldots, a_n$, and an integer $k$.
Find the number of pairs of indexes $(i, j)$ ($1 \le i < j \le n$) for which $(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p$.
-----Input-----
The first line contains integers $n, p, k$ ($2 \le n \le 3 \cdot 10^5$, $2 \le p \le 10^9$, $0 \le k \le p-1$). $p$ is guaranteed to be prime.
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i \le p-1$). It is guaranteed that all elements are different.
-----Output-----
Output a single integer — answer to the problem.
-----Examples-----
Input
3 3 0
0 1 2
Output
1
Input
6 7 2
1 2 3 4 5 6
Output
3
-----Note-----
In the first example:
$(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3$.
$(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3$.
$(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3$.
So only $1$ pair satisfies the condition.
In the second example, there are $3$ such pairs: $(1, 5)$, $(2, 3)$, $(4, 6)$. | l1 = input().split()
n = int(l1[0])
p = int(l1[1])
k = int(l1[2])
l = input().split()
A = {}
count = 0
e = []
for i in range(n):
b = int(l[i])
t = b * b % p * (b * b % p) - k * b % p
t = t % p
if t in A:
A[t] += 1
else:
A[t] = 1
for x in A:
count += int(A[x] * (A[x] - 1) / 2)
print(count) | ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR |
Compare two version numbers version1 and version2.
If version1 > version2 return 1; if version1 < version2 return -1;otherwise return 0.
You may assume that the version strings are non-empty and contain only digits and the . character.
The . character does not represent a decimal point and is used to separate number sequences.
For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision.
Example 1:
Input: version1 = "0.1", version2 = "1.1"
Output: -1
Example 2:
Input: version1 = "1.0.1", version2 = "1"
Output: 1
Example 3:
Input: version1 = "7.5.2.4", version2 = "7.5.3"
Output: -1 | class Solution:
def compareVersion(self, version1, version2):
a, b = [int(i) for i in version1.split(".")], [
int(i) for i in version2.split(".")
]
for i in range(max(len(a), len(b))):
if i == len(a):
a.append(0)
if i == len(b):
b.append(0)
if a[i] > b[i]:
return 1
elif a[i] < b[i]:
return -1
return 0 | CLASS_DEF FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR RETURN NUMBER IF VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER |
Compare two version numbers version1 and version2.
If version1 > version2 return 1; if version1 < version2 return -1;otherwise return 0.
You may assume that the version strings are non-empty and contain only digits and the . character.
The . character does not represent a decimal point and is used to separate number sequences.
For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision.
Example 1:
Input: version1 = "0.1", version2 = "1.1"
Output: -1
Example 2:
Input: version1 = "1.0.1", version2 = "1"
Output: 1
Example 3:
Input: version1 = "7.5.2.4", version2 = "7.5.3"
Output: -1 | class Solution:
def compareVersion(self, version1, version2):
v1 = version1.split(".")
v2 = version2.split(".")
len1 = len(v1)
len2 = len(v2)
for i in range(min(len1, len2)):
if int(v1[i]) != int(v2[i]):
return 1 if int(v1[i]) > int(v2[i]) else -1
v, t = (v1, 1) if len1 > len2 else (v2, -1)
for j in v[min(len1, len2) :]:
if int(j) > 0:
return t
return 0 | CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN VAR RETURN NUMBER |
Compare two version numbers version1 and version2.
If version1 > version2 return 1; if version1 < version2 return -1;otherwise return 0.
You may assume that the version strings are non-empty and contain only digits and the . character.
The . character does not represent a decimal point and is used to separate number sequences.
For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision.
Example 1:
Input: version1 = "0.1", version2 = "1.1"
Output: -1
Example 2:
Input: version1 = "1.0.1", version2 = "1"
Output: 1
Example 3:
Input: version1 = "7.5.2.4", version2 = "7.5.3"
Output: -1 | class Solution:
def compareVersion(self, version1, version2):
v1, v2 = [int(i) for i in version1.split(".")], [
int(i) for i in version2.split(".")
]
if len(v1) > len(v2):
v2 += [0] * (len(v1) - len(v2))
if len(v1) < len(v2):
v1 += [0] * (len(v2) - len(v1))
for i in range(len(v1)):
if v1[i] > v2[i]:
return 1
if v1[i] < v2[i]:
return -1
return 0 | CLASS_DEF FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR RETURN NUMBER IF VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER |
Compare two version numbers version1 and version2.
If version1 > version2 return 1; if version1 < version2 return -1;otherwise return 0.
You may assume that the version strings are non-empty and contain only digits and the . character.
The . character does not represent a decimal point and is used to separate number sequences.
For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision.
Example 1:
Input: version1 = "0.1", version2 = "1.1"
Output: -1
Example 2:
Input: version1 = "1.0.1", version2 = "1"
Output: 1
Example 3:
Input: version1 = "7.5.2.4", version2 = "7.5.3"
Output: -1 | class Solution:
def compareVersion(self, version1, version2):
v1 = [int(n) for n in version1.split(".")]
v2 = [int(n) for n in version2.split(".")]
for i in range(max(len(v1), len(v2))):
x1 = v1[i] if i < len(v1) else 0
x2 = v2[i] if i < len(v2) else 0
if x1 > x2:
return 1
if x1 < x2:
return -1
return 0 | CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER |
Compare two version numbers version1 and version2.
If version1 > version2 return 1; if version1 < version2 return -1;otherwise return 0.
You may assume that the version strings are non-empty and contain only digits and the . character.
The . character does not represent a decimal point and is used to separate number sequences.
For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision.
Example 1:
Input: version1 = "0.1", version2 = "1.1"
Output: -1
Example 2:
Input: version1 = "1.0.1", version2 = "1"
Output: 1
Example 3:
Input: version1 = "7.5.2.4", version2 = "7.5.3"
Output: -1 | class Solution:
def compareVersion(self, version1, version2):
while version1 and version2:
result1 = version1.split(".", 1)
if len(result1) == 2:
digit1, version1 = result1[0], result1[1]
else:
digit1 = result1[0]
version1 = ""
result2 = version2.split(".", 1)
if len(result2) == 2:
digit2, version2 = result2[0], result2[1]
else:
digit2 = result2[0]
version2 = ""
if int(digit1) > int(digit2):
return 1
elif int(digit1) < int(digit2):
return -1
if version1 and sum(map(lambda x: int(x), version1.split("."))) != 0:
return 1
if version2 and sum(map(lambda x: int(x), version2.split("."))) != 0:
return -1
return 0 | CLASS_DEF FUNC_DEF WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR STRING NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR STRING NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER IF VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR STRING NUMBER RETURN NUMBER IF VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR STRING NUMBER RETURN NUMBER RETURN NUMBER |
Compare two version numbers version1 and version2.
If version1 > version2 return 1; if version1 < version2 return -1;otherwise return 0.
You may assume that the version strings are non-empty and contain only digits and the . character.
The . character does not represent a decimal point and is used to separate number sequences.
For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision.
Example 1:
Input: version1 = "0.1", version2 = "1.1"
Output: -1
Example 2:
Input: version1 = "1.0.1", version2 = "1"
Output: 1
Example 3:
Input: version1 = "7.5.2.4", version2 = "7.5.3"
Output: -1 | class Solution:
def compareVersion(self, version1, version2):
v1 = version1.split(".")
v2 = version2.split(".")
for i in range(max(len(v1), len(v2))):
a = int(v1[i]) if len(v1) > i else 0
b = int(v2[i]) if len(v2) > i else 0
if a > b:
return 1
elif a < b:
return -1
return 0 | CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER |
Compare two version numbers version1 and version2.
If version1 > version2 return 1; if version1 < version2 return -1;otherwise return 0.
You may assume that the version strings are non-empty and contain only digits and the . character.
The . character does not represent a decimal point and is used to separate number sequences.
For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision.
Example 1:
Input: version1 = "0.1", version2 = "1.1"
Output: -1
Example 2:
Input: version1 = "1.0.1", version2 = "1"
Output: 1
Example 3:
Input: version1 = "7.5.2.4", version2 = "7.5.3"
Output: -1 | class Solution:
def compareVersion(self, version1, version2):
if version1 == version2:
return 0
else:
version1_nums = version1.split(".")
version2_nums = version2.split(".")
len1, len2 = len(version1_nums), len(version2_nums)
end = max(len1, len2)
version1_nums.extend([0] * (end - len1))
version2_nums.extend([0] * (end - len2))
for i in range(end):
if int(version1_nums[i]) < int(version2_nums[i]):
return -1
elif int(version1_nums[i]) > int(version2_nums[i]):
return 1
return 0 | CLASS_DEF FUNC_DEF IF VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP LIST NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP LIST NUMBER BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN NUMBER RETURN NUMBER |
Compare two version numbers version1 and version2.
If version1 > version2 return 1; if version1 < version2 return -1;otherwise return 0.
You may assume that the version strings are non-empty and contain only digits and the . character.
The . character does not represent a decimal point and is used to separate number sequences.
For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision.
Example 1:
Input: version1 = "0.1", version2 = "1.1"
Output: -1
Example 2:
Input: version1 = "1.0.1", version2 = "1"
Output: 1
Example 3:
Input: version1 = "7.5.2.4", version2 = "7.5.3"
Output: -1 | class Solution:
def compareVersion(self, version1, version2):
l1 = [int(x) for x in version1.split(".")]
l2 = [int(x) for x in version2.split(".")]
max_len = max(len(l1), len(l2))
l1 += [0] * (max_len - len(l1))
l2 += [0] * (max_len - len(l2))
for i in range(0, max_len):
if l1[i] > l2[i]:
return 1
elif l1[i] < l2[i]:
return -1
return 0 | CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR BIN_OP LIST NUMBER BIN_OP VAR FUNC_CALL VAR VAR VAR BIN_OP LIST NUMBER BIN_OP VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR VAR VAR RETURN NUMBER IF VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER |
Recently, Tokitsukaze found an interesting game. Tokitsukaze had $n$ items at the beginning of this game. However, she thought there were too many items, so now she wants to discard $m$ ($1 \le m \le n$) special items of them.
These $n$ items are marked with indices from $1$ to $n$. In the beginning, the item with index $i$ is placed on the $i$-th position. Items are divided into several pages orderly, such that each page contains exactly $k$ positions and the last positions on the last page may be left empty.
Tokitsukaze would do the following operation: focus on the first special page that contains at least one special item, and at one time, Tokitsukaze would discard all special items on this page. After an item is discarded or moved, its old position would be empty, and then the item below it, if exists, would move up to this empty position. The movement may bring many items forward and even into previous pages, so Tokitsukaze would keep waiting until all the items stop moving, and then do the operation (i.e. check the special page and discard the special items) repeatedly until there is no item need to be discarded.
[Image] Consider the first example from the statement: $n=10$, $m=4$, $k=5$, $p=[3, 5, 7, 10]$. The are two pages. Initially, the first page is special (since it is the first page containing a special item). So Tokitsukaze discards the special items with indices $3$ and $5$. After, the first page remains to be special. It contains $[1, 2, 4, 6, 7]$, Tokitsukaze discards the special item with index $7$. After, the second page is special (since it is the first page containing a special item). It contains $[9, 10]$, Tokitsukaze discards the special item with index $10$.
Tokitsukaze wants to know the number of operations she would do in total.
-----Input-----
The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^{18}$, $1 \le m \le 10^5$, $1 \le m, k \le n$) — the number of items, the number of special items to be discarded and the number of positions in each page.
The second line contains $m$ distinct integers $p_1, p_2, \ldots, p_m$ ($1 \le p_1 < p_2 < \ldots < p_m \le n$) — the indices of special items which should be discarded.
-----Output-----
Print a single integer — the number of operations that Tokitsukaze would do in total.
-----Examples-----
Input
10 4 5
3 5 7 10
Output
3
Input
13 4 5
7 8 9 10
Output
1
-----Note-----
For the first example:
In the first operation, Tokitsukaze would focus on the first page $[1, 2, 3, 4, 5]$ and discard items with indices $3$ and $5$; In the second operation, Tokitsukaze would focus on the first page $[1, 2, 4, 6, 7]$ and discard item with index $7$; In the third operation, Tokitsukaze would focus on the second page $[9, 10]$ and discard item with index $10$.
For the second example, Tokitsukaze would focus on the second page $[6, 7, 8, 9, 10]$ and discard all special items at once. | n, m, k = map(int, input().split())
l = list(map(int, input().split()))
beg = 1
cnt = 0
i = 0
j = 0
ele = 0
while i < m:
end = ((l[i] - ele - 1) // k + 1) * k + ele
while i < m and l[i] <= end:
i += 1
ele += 1
cnt += 1
print(cnt) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR NUMBER VAR VAR WHILE VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR |
Recently, Tokitsukaze found an interesting game. Tokitsukaze had $n$ items at the beginning of this game. However, she thought there were too many items, so now she wants to discard $m$ ($1 \le m \le n$) special items of them.
These $n$ items are marked with indices from $1$ to $n$. In the beginning, the item with index $i$ is placed on the $i$-th position. Items are divided into several pages orderly, such that each page contains exactly $k$ positions and the last positions on the last page may be left empty.
Tokitsukaze would do the following operation: focus on the first special page that contains at least one special item, and at one time, Tokitsukaze would discard all special items on this page. After an item is discarded or moved, its old position would be empty, and then the item below it, if exists, would move up to this empty position. The movement may bring many items forward and even into previous pages, so Tokitsukaze would keep waiting until all the items stop moving, and then do the operation (i.e. check the special page and discard the special items) repeatedly until there is no item need to be discarded.
[Image] Consider the first example from the statement: $n=10$, $m=4$, $k=5$, $p=[3, 5, 7, 10]$. The are two pages. Initially, the first page is special (since it is the first page containing a special item). So Tokitsukaze discards the special items with indices $3$ and $5$. After, the first page remains to be special. It contains $[1, 2, 4, 6, 7]$, Tokitsukaze discards the special item with index $7$. After, the second page is special (since it is the first page containing a special item). It contains $[9, 10]$, Tokitsukaze discards the special item with index $10$.
Tokitsukaze wants to know the number of operations she would do in total.
-----Input-----
The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^{18}$, $1 \le m \le 10^5$, $1 \le m, k \le n$) — the number of items, the number of special items to be discarded and the number of positions in each page.
The second line contains $m$ distinct integers $p_1, p_2, \ldots, p_m$ ($1 \le p_1 < p_2 < \ldots < p_m \le n$) — the indices of special items which should be discarded.
-----Output-----
Print a single integer — the number of operations that Tokitsukaze would do in total.
-----Examples-----
Input
10 4 5
3 5 7 10
Output
3
Input
13 4 5
7 8 9 10
Output
1
-----Note-----
For the first example:
In the first operation, Tokitsukaze would focus on the first page $[1, 2, 3, 4, 5]$ and discard items with indices $3$ and $5$; In the second operation, Tokitsukaze would focus on the first page $[1, 2, 4, 6, 7]$ and discard item with index $7$; In the third operation, Tokitsukaze would focus on the second page $[9, 10]$ and discard item with index $10$.
For the second example, Tokitsukaze would focus on the second page $[6, 7, 8, 9, 10]$ and discard all special items at once. | n, m, k = list(map(int, input().split(" ")))
p = tuple(map(int, input().split(" ")))
d = 0
part = (p[0] - 1) // k
moves = 0
skip = 0
for pi in p:
if (pi - 1 - d) // k == part:
skip += 1
continue
d += skip
part = (pi - 1 - d) // k
skip = 1
moves += 1
print(moves + 1) | ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER |
Recently, Tokitsukaze found an interesting game. Tokitsukaze had $n$ items at the beginning of this game. However, she thought there were too many items, so now she wants to discard $m$ ($1 \le m \le n$) special items of them.
These $n$ items are marked with indices from $1$ to $n$. In the beginning, the item with index $i$ is placed on the $i$-th position. Items are divided into several pages orderly, such that each page contains exactly $k$ positions and the last positions on the last page may be left empty.
Tokitsukaze would do the following operation: focus on the first special page that contains at least one special item, and at one time, Tokitsukaze would discard all special items on this page. After an item is discarded or moved, its old position would be empty, and then the item below it, if exists, would move up to this empty position. The movement may bring many items forward and even into previous pages, so Tokitsukaze would keep waiting until all the items stop moving, and then do the operation (i.e. check the special page and discard the special items) repeatedly until there is no item need to be discarded.
[Image] Consider the first example from the statement: $n=10$, $m=4$, $k=5$, $p=[3, 5, 7, 10]$. The are two pages. Initially, the first page is special (since it is the first page containing a special item). So Tokitsukaze discards the special items with indices $3$ and $5$. After, the first page remains to be special. It contains $[1, 2, 4, 6, 7]$, Tokitsukaze discards the special item with index $7$. After, the second page is special (since it is the first page containing a special item). It contains $[9, 10]$, Tokitsukaze discards the special item with index $10$.
Tokitsukaze wants to know the number of operations she would do in total.
-----Input-----
The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^{18}$, $1 \le m \le 10^5$, $1 \le m, k \le n$) — the number of items, the number of special items to be discarded and the number of positions in each page.
The second line contains $m$ distinct integers $p_1, p_2, \ldots, p_m$ ($1 \le p_1 < p_2 < \ldots < p_m \le n$) — the indices of special items which should be discarded.
-----Output-----
Print a single integer — the number of operations that Tokitsukaze would do in total.
-----Examples-----
Input
10 4 5
3 5 7 10
Output
3
Input
13 4 5
7 8 9 10
Output
1
-----Note-----
For the first example:
In the first operation, Tokitsukaze would focus on the first page $[1, 2, 3, 4, 5]$ and discard items with indices $3$ and $5$; In the second operation, Tokitsukaze would focus on the first page $[1, 2, 4, 6, 7]$ and discard item with index $7$; In the third operation, Tokitsukaze would focus on the second page $[9, 10]$ and discard item with index $10$.
For the second example, Tokitsukaze would focus on the second page $[6, 7, 8, 9, 10]$ and discard all special items at once. | n, m, k = [int(p) for p in input().split()]
arr = [int(p) for p in input().split()]
for i in range(len(arr)):
arr[i] -= 1
cnt = 0
steps = 0
i = 0
gcnt = 0
while i < m:
pg = (arr[i] - gcnt) // k
j = i
loop = True
while j < m:
if (arr[j] - gcnt) // k == pg:
cnt += 1
j += 1
else:
break
if loop:
steps += 1
loop = False
i = j
gcnt = cnt
print(steps) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR |
Recently, Tokitsukaze found an interesting game. Tokitsukaze had $n$ items at the beginning of this game. However, she thought there were too many items, so now she wants to discard $m$ ($1 \le m \le n$) special items of them.
These $n$ items are marked with indices from $1$ to $n$. In the beginning, the item with index $i$ is placed on the $i$-th position. Items are divided into several pages orderly, such that each page contains exactly $k$ positions and the last positions on the last page may be left empty.
Tokitsukaze would do the following operation: focus on the first special page that contains at least one special item, and at one time, Tokitsukaze would discard all special items on this page. After an item is discarded or moved, its old position would be empty, and then the item below it, if exists, would move up to this empty position. The movement may bring many items forward and even into previous pages, so Tokitsukaze would keep waiting until all the items stop moving, and then do the operation (i.e. check the special page and discard the special items) repeatedly until there is no item need to be discarded.
[Image] Consider the first example from the statement: $n=10$, $m=4$, $k=5$, $p=[3, 5, 7, 10]$. The are two pages. Initially, the first page is special (since it is the first page containing a special item). So Tokitsukaze discards the special items with indices $3$ and $5$. After, the first page remains to be special. It contains $[1, 2, 4, 6, 7]$, Tokitsukaze discards the special item with index $7$. After, the second page is special (since it is the first page containing a special item). It contains $[9, 10]$, Tokitsukaze discards the special item with index $10$.
Tokitsukaze wants to know the number of operations she would do in total.
-----Input-----
The first line contains three integers $n$, $m$ and $k$ ($1 \le n \le 10^{18}$, $1 \le m \le 10^5$, $1 \le m, k \le n$) — the number of items, the number of special items to be discarded and the number of positions in each page.
The second line contains $m$ distinct integers $p_1, p_2, \ldots, p_m$ ($1 \le p_1 < p_2 < \ldots < p_m \le n$) — the indices of special items which should be discarded.
-----Output-----
Print a single integer — the number of operations that Tokitsukaze would do in total.
-----Examples-----
Input
10 4 5
3 5 7 10
Output
3
Input
13 4 5
7 8 9 10
Output
1
-----Note-----
For the first example:
In the first operation, Tokitsukaze would focus on the first page $[1, 2, 3, 4, 5]$ and discard items with indices $3$ and $5$; In the second operation, Tokitsukaze would focus on the first page $[1, 2, 4, 6, 7]$ and discard item with index $7$; In the third operation, Tokitsukaze would focus on the second page $[9, 10]$ and discard item with index $10$.
For the second example, Tokitsukaze would focus on the second page $[6, 7, 8, 9, 10]$ and discard all special items at once. | n, m, k = map(int, input().split())
l = list(map(int, input().split()))
i = 0
operations = 0
while i < m:
j = i
cu = (l[i] - 1 - j) // k
while i < m and (l[i] - 1 - j) // k == cu:
i += 1
operations += 1
print(operations) | ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR WHILE VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
Use the Edit dataset card button to edit it.
- Downloads last month
- 65