patomp's picture
update refs
bb91524
metadata
dataset_info:
  features:
    - name: image
      dtype: image
    - name: filepath
      dtype: string
    - name: sentids
      list: int32
    - name: filename
      dtype: string
    - name: imgid
      dtype: int32
    - name: split
      dtype: string
    - name: sentences_tokens
      list:
        list: string
    - name: sentences_raw
      list: string
    - name: sentences_sentid
      list: int32
    - name: cocoid
      dtype: int32
    - name: th_sentences_raw
      sequence: string
  splits:
    - name: test
      num_bytes: 819234726
      num_examples: 5000
    - name: validation
      num_bytes: 807387321
      num_examples: 5000
    - name: train
      num_bytes: 18882795327.165
      num_examples: 113287
  download_size: 20158273111
  dataset_size: 20509417374.165

Usage

from datasets import load_dataset
dataset = load_dataset("patomp/thai-mscoco-2014-captions")
dataset

output

DatasetDict({
    train: Dataset({
        features: ['image', 'filepath', 'sentids', 'filename', 'imgid', 'split', 'sentences_tokens', 'sentences_raw', 'sentences_sentid', 'cocoid', 'th_sentences_raw'],
        num_rows: 113287
    })
    validation: Dataset({
        features: ['image', 'filepath', 'sentids', 'filename', 'imgid', 'split', 'sentences_tokens', 'sentences_raw', 'sentences_sentid', 'cocoid', 'th_sentences_raw'],
        num_rows: 5000
    })
    test: Dataset({
        features: ['image', 'filepath', 'sentids', 'filename', 'imgid', 'split', 'sentences_tokens', 'sentences_raw', 'sentences_sentid', 'cocoid', 'th_sentences_raw'],
        num_rows: 5000
    })
})

A sample

dataset["validation"][0]

output

{
   "image":<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x7F6C5A83F430>,
   "filepath":"COCO_val2014_000000184613.jpg",
   "sentids":[474921,479322,479334,481560,483594],
   "filename":"COCO_val2014_000000184613.jpg",
   "imgid":2,
   "split":"val",
   "sentences_tokens":[
      ["a", "child","holding", "a","flowered","umbrella","and","petting","a","yak"],["a","young","man","holding","an","umbrella","next","to","a","herd","of","cattle"],
      ["a","young","boy","barefoot","holding","an","umbrella","touching","the","horn","of","a","cow"],
      ["a","young","boy","with","an","umbrella","who","is","touching","the","horn","of","a","cow"],
      ["a","boy","holding","an","umbrella","while","standing","next","to","livestock"]
   ],
   "sentences_raw":[
      "A child holding a flowered umbrella and petting a yak.",
      "A young man holding an umbrella next to a herd of cattle.",
      "a young boy barefoot holding an umbrella touching the horn of a cow",
      "A young boy with an umbrella who is touching the horn of a cow.",
      "A boy holding an umbrella while standing next to livestock."
   ],
   "sentences_sentid":[474921,479322,479334,481560,483594],
   "cocoid":184613,
   "th_sentences_raw":[
      "เด็กถือร่มที่มีดอกหนึ่งคันและลูบคลูบลํา",
      "ชายหนุ่มคนหนึ่งถือร่มไว้ข้างๆ ฝูงวัว",
      "เด็กหนุ่มคนหนึ่งเท้าเปล่าจับร่มจับแตรของวัว",
      "เด็กชายที่มีร่มสัมผัสแตรของวัว",
      "เด็กชายถือร่มในขณะที่ยืนถัดจากปศุสัตว์"
   ]
}

Dataset Construction

The dataset contructed from translating the captions of MS COCO 2014 dataset [1] to Thai by using NMT provided by VISTEC-depa Thailand Artificial Intelligence Research Institute [2]. The translated of 3 splits (train, validation and test) dataset was published in the Huggingface.

References

[1] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common Objects in Context. In Computer Vision – ECCV 2014, Springer International Publishing, Cham, 740–755.

[2] English-Thai Machine Translation Models. (2020, June 23). VISTEC-depa Thailand Artificial Intelligence Research Institute. https://airesearch.in.th/releases/machine-translation-models/