fact
stringlengths 0
6.66k
| type
stringclasses 10
values | imports
stringclasses 399
values | filename
stringclasses 465
values | symbolic_name
stringlengths 1
75
| index_level
int64 0
7.85k
|
---|---|---|---|---|---|
{R : Ring} (x : R) `{IsInvertible R x} : R := left_inverse_elem x. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | inverse_elem | 1,300 |
{R : Ring} (x : R) `{IsInvertible R x} : inverse_elem x * x = 1. Proof. apply left_inverse_eq. Defined. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | rng_inv_l | 1,301 |
{R : Ring} (x : R) `{IsInvertible R x} : x * inverse_elem x = 1. Proof. rhs_V nrapply (right_inverse_eq x). f_ap. apply path_left_inverse_elem_right_inverse_elem. Defined. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | rng_inv_r | 1,302 |
{R : Ring} (x y : R) `{IsInvertible R x} `{IsInvertible R y} (p : x = y) : inverse_elem x = inverse_elem y. Proof. destruct p. snrapply (path_left_right_inverse x). - apply rng_inv_l. - apply rng_inv_r. Defined. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | isinvertible_unique | 1,303 |
{R : Ring} (x : R) : {inv : R & prod (inv * x = 1) (x * inv = 1)} <~> IsInvertible R x. Proof. equiv_via { i : IsInvertible R x & right_inverse_elem x = left_inverse_elem x }. 1: make_equiv_contr_basedpaths. apply equiv_sigma_contr; intro i. rapply contr_inhabited_hprop. symmetry; apply path_left_inverse_elem_right_inverse_elem. Defined. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | equiv_isinvertible_left_right_inverse | 1,304 |
{R : Ring} {x y : R} `{IsInvertible R x, IsInvertible R y} : x = y <~> inverse_elem x = inverse_elem y. Proof. srapply equiv_iff_hprop. - exact (isinvertible_unique x y). - exact (isinvertible_unique (inverse_elem x) (inverse_elem y)). Defined. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | equiv_path_inverse_elem | 1,305 |
(R : Ring) : Group. Proof. snrapply Build_Group. - exact {x : R & IsInvertible R x}. - intros [x p] [y q]. exists (x * y). exact _. - exists 1. exact _. - intros [x p]. exists (inverse_elem x). exact _. - repeat split. 1: exact _. 1-5: hnf; intros; apply path_sigma_hprop. + rapply simple_associativity. + rapply left_identity. + rapply right_identity. + apply rng_inv_l. + apply rng_inv_r. Defined. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | rng_unit_group | 1,306 |
{R : Ring} {x y z : R} `{IsInvertible R y} : y * x = z <~> x = inverse_elem y * z := equiv_moveL_equiv_V (f := (y *. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | rng_inv_moveL_Vr | 1,307 |
{R : Ring} {x y z : R} `{IsInvertible R y} : x * y = z <~> x = z * inverse_elem y := equiv_moveL_equiv_V (f := (. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | rng_inv_moveL_rV | 1,308 |
{R : Ring} {x y z : R} `{IsInvertible R y} : x = y * z <~> inverse_elem y * x = z := equiv_moveR_equiv_V (f := (y *. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | rng_inv_moveR_Vr | 1,309 |
{R : Ring} {x y z : R} `{IsInvertible R y} : x = z * y <~> x * inverse_elem y = z := equiv_moveR_equiv_V (f := (. | Definition | Require Import WildCat. Require Import Spaces.Nat.Core Spaces.Nat.Arithmetic. Require Import Classes.interfaces.abstract_algebra. Require Import Algebra.Groups.Group Algebra.Groups.Subgroup. Require Import Modalities.ReflectiveSubuniverse. | Algebra\Rings\Ring.v | rng_inv_moveR_rV | 1,310 |
Vector@{i|} (A : Type@{i}) (n : nat) : Type@{i} := { l : list A & length l = n }. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | Vector@ | 1,311 |
(A : Type) (n : nat) (f : forall (i : nat), (i < n)%nat -> A) : Vector A n. Proof. exists (list_map (fun '(i; Hi) => f i Hi) (seq' n)). lhs nrapply length_list_map. apply length_seq'. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | Build_Vector | 1,312 |
{A : Type} {n : nat} (v : Vector A n) i {Hi : (i < n)%nat} : A := nth' (pr1 v) i ((pr2 v)^ # Hi). | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | entry | 1,313 |
{A : Type} {n} (f : forall (i : nat), (i < n)%nat -> A) i {Hi : (i < n)%nat} : entry (Build_Vector A n f) i = f i Hi. Proof. snrefine (nth'_list_map _ _ _ (_^ # Hi) _ @ _). 1: nrapply length_seq'. snrapply ap011D. 1: nrapply nth'_seq'. rapply path_ishprop. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | entry_Build_Vector | 1,314 |
path_vector@{i} (A : Type@{i}) {n : nat} (v1 v2 : Vector@{i} A n) (H : forall i (H : (i < n)%nat), entry v1 i = entry v2 i) : v1 = v2. Proof. rapply path_sigma_hprop@{i i i}. snrapply path_list_nth'. 1: exact (pr2 v1 @ (pr2 v2)^). intros i Hi. snrefine (_ @ H i (pr2 v1 # Hi) @ _). 1, 2: apply nth'_nth'. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | path_vector@ | 1,315 |
{A : Type} {n : nat} (v : Vector A n) (i j : nat) (Hi : (i < n)%nat) (Hj : (j < n)%nat) (p : i = j) : entry v i = entry v j. Proof. destruct p. apply nth'_nth'. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | path_entry_vector | 1,316 |
{A B : Type} {n} (f : A -> B) : Vector A n -> Vector B n := fun v => Build_Vector B n (fun i _ => f (entry v i)). | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | vector_map | 1,317 |
{A B C : Type} {n} (f : A -> B -> C) : Vector A n -> Vector B n -> Vector C n := fun v1 v2 => Build_Vector C n (fun i _ => f (entry v1 i) (entry v2 i)). | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | vector_map2 | 1,318 |
Plus (Vector A n) := vector_map2 (+). | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | vector_plus | 1,319 |
Zero (Vector A n) := Build_Vector A n (fun _ _ => 0). | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | vector_zero | 1,320 |
Negate (Vector A n) := vector_map (-). | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | vector_neg | 1,321 |
Associative vector_plus. Proof. intros v1 v2 v3; apply path_vector; intros i Hi. rewrite 4 entry_Build_Vector. apply associativity. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | associative_vector_plus | 1,322 |
Commutative vector_plus. Proof. intros v1 v2; apply path_vector; intros i Hi. rewrite 2 entry_Build_Vector. apply commutativity. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | commutative_vector_plus | 1,323 |
LeftIdentity vector_plus vector_zero. Proof. intros v; apply path_vector; intros i Hi. rewrite 2 entry_Build_Vector. apply left_identity. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | left_identity_vector_plus | 1,324 |
RightIdentity vector_plus vector_zero. Proof. intros v; apply path_vector; intros i Hi. rewrite 2 entry_Build_Vector. apply right_identity. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | right_identity_vector_plus | 1,325 |
LeftInverse vector_plus vector_neg vector_zero. Proof. intros v; apply path_vector; intros i Hi. rewrite 3 entry_Build_Vector. apply left_inverse. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | left_inverse_vector_plus | 1,326 |
RightInverse vector_plus vector_neg vector_zero. Proof. intros v; apply path_vector; intros i Hi. rewrite 3 entry_Build_Vector. apply right_inverse. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | right_inverse_vector_plus | 1,327 |
AbGroup. Proof. snrapply Build_AbGroup. 1: snrapply Build_Group. 5: repeat split. - exact (Vector A n). - exact vector_plus. - exact vector_zero. - exact vector_neg. - exact _. - exact associative_vector_plus. - exact left_identity_vector_plus. - exact right_identity_vector_plus. - exact left_inverse_vector_plus. - exact right_inverse_vector_plus. - exact commutative_vector_plus. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | abgroup_vector | 1,328 |
(r : R) : Vector M n -> Vector M n := vector_map (lact r). | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | vector_lact | 1,329 |
LeftHeteroDistribute vector_lact vector_plus vector_plus. Proof. intros r v1 v2; apply path_vector; intros i Hi. rewrite 5 entry_Build_Vector. apply distribute_l. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | left_heterodistribute_vector_lact_plus | 1,330 |
RightHeteroDistribute vector_lact (+) vector_plus. Proof. intros r1 r2 v; apply path_vector; intros i Hi. rewrite 4 entry_Build_Vector. apply distribute_r. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | right_heterodistribute_vector_lact_plus | 1,331 |
HeteroAssociative vector_lact vector_lact vector_lact (.*.). Proof. intros r s v; apply path_vector; intros i Hi. rewrite 3 entry_Build_Vector. apply associativity. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | heteroassociative_vector_lact_plus | 1,332 |
LeftIdentity vector_lact 1. Proof. intros v; apply path_vector; intros i Hi. rewrite entry_Build_Vector. apply left_identity. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | left_identity_vector_lact | 1,333 |
IsLeftModule R (abgroup_vector M n). Proof. snrapply Build_IsLeftModule. - exact vector_lact. - exact left_heterodistribute_vector_lact_plus. - exact right_heterodistribute_vector_lact_plus. - exact heteroassociative_vector_lact_plus. - exact left_identity_vector_lact. Defined. | Definition | Require Import Basics.Overture Basics.Trunc Basics.Tactics Basics.PathGroupoids. Require Import Types.Sigma. Require Import Algebra.AbGroups.AbelianGroup Algebra.Rings.Ring Algebra.Rings.Module. Require Import Spaces.Nat.Core. Require Import Spaces.List.Core Spaces.List.Theory Spaces.List.Paths. Require Import abstract_algebra. | Algebra\Rings\Vector.v | isleftmodule_isleftmodule_vector | 1,334 |
CRing. Proof. snrapply Build_CRing'. - exact abgroup_Z. - exact 1%int. - exact int_mul. - exact int_mul_comm. - exact int_mul_assoc. - exact int_dist_l. - exact int_mul_1_l. Defined. | Definition | Require Import Classes.interfaces.canonical_names. Require Import Algebra.AbGroups. Require Import Algebra.Rings.CRing. Require Import Spaces.Int Spaces.Pos. Require Import WildCat.Core. | Algebra\Rings\Z.v | cring_Z | 1,335 |
(R : Ring) := grp_pow_homo : R -> Int -> R. | Definition | Require Import Classes.interfaces.canonical_names. Require Import Algebra.AbGroups. Require Import Algebra.Rings.CRing. Require Import Spaces.Int Spaces.Pos. Require Import WildCat.Core. | Algebra\Rings\Z.v | rng_int_mult | 1,336 |
{R : Ring} (r : R) (n : cring_Z) : rng_int_mult R r n = (rng_int_mult R 1 n) * r. Proof. cbn. rhs nrapply (grp_pow_natural (grp_homo_rng_right_mult r)); cbn. by rewrite rng_mult_one_l. Defined. | Definition | Require Import Classes.interfaces.canonical_names. Require Import Algebra.AbGroups. Require Import Algebra.Rings.CRing. Require Import Spaces.Int Spaces.Pos. Require Import WildCat.Core. | Algebra\Rings\Z.v | rng_int_mult_dist_r | 1,337 |
{R : Ring} (r : R) (n : cring_Z) : rng_int_mult R r n = r * (rng_int_mult R 1 n). Proof. cbn. rhs nrapply (grp_pow_natural (grp_homo_rng_left_mult r)); cbn. by rewrite rng_mult_one_r. Defined. | Definition | Require Import Classes.interfaces.canonical_names. Require Import Algebra.AbGroups. Require Import Algebra.Rings.CRing. Require Import Spaces.Int Spaces.Pos. Require Import WildCat.Core. | Algebra\Rings\Z.v | rng_int_mult_dist_l | 1,338 |
(R : Ring) : (cring_Z : Ring) $-> R. Proof. snrapply Build_RingHomomorphism. 1: exact (rng_int_mult R 1). repeat split. 1,2: exact _. apply rng_plus_zero_r. Defined. | Definition | Require Import Classes.interfaces.canonical_names. Require Import Algebra.AbGroups. Require Import Algebra.Rings.CRing. Require Import Spaces.Int Spaces.Pos. Require Import WildCat.Core. | Algebra\Rings\Z.v | rng_homo_int | 1,339 |
{Sort : Type} := Build_SymbolTypeOf | Record | Require Import | Algebra\Universal\Algebra.v | SymbolTypeOf | 1,340 |
Build_Signature | Record | Require Import | Algebra\Universal\Algebra.v | Signature | 1,341 |
{σ} (A : Carriers σ) (w : SymbolType σ) : Type := DomOperation A w -> A (sort_cod w). | Definition | Require Import | Algebra\Universal\Algebra.v | Operation | 1,342 |
{σ : Signature} : Type := Build_Algebra | Record | Require Import | Algebra\Universal\Algebra.v | Algebra | 1,343 |
(σ : Signature) : Type := {c : Carriers σ | { _ : forall (u : Symbol σ), Operation c (σ u) | forall (s : Sort σ), IsHSet (c s) } }. | Definition | Require Import | Algebra\Universal\Algebra.v | SigAlgebra | 1,344 |
(σ : Signature) : SigAlgebra σ <~> Algebra σ. Proof. issig. Defined. | Lemma | Require Import | Algebra\Universal\Algebra.v | issig_algebra | 1,345 |
`{Funext} {σ : Signature} (A B : Algebra σ) (p : carriers A = carriers B) (q : transport (fun i => forall u, Operation i (σ u)) p (operations A) = operations B) : A = B. Proof. apply (ap (issig_algebra σ)^-1)^-1; cbn. apply (path_sigma' _ p). refine (transport_sigma p _ @ _). apply path_sigma_hprop. exact q. Defined. | Lemma | Require Import | Algebra\Universal\Algebra.v | path_algebra | 1,346 |
`{Funext} {σ} (A B : Algebra σ) (p : carriers A = carriers B) (q : transport (fun i => forall u, Operation i (σ u)) p (operations A) = operations B) : ap carriers (path_algebra A B p q) = p. Proof. destruct A as [A a ha], B as [B b hb]; cbn in p, q. destruct p, q. unfold path_algebra, path_sigma_hprop, path_sigma_uncurried. cbn -[center]. by destruct (center (ha = hb)). Defined. | Lemma | Require Import | Algebra\Universal\Algebra.v | path_ap_carriers_path_algebra | 1,347 |
{σ : Signature} {A B : Algebra σ} (p q : A = B) (r : ap (issig_algebra σ)^-1 p = ap (issig_algebra σ)^-1 q) : p = q. Proof. set (e := (equiv_ap (issig_algebra σ)^-1 A B)). by apply (@equiv_inv _ _ (ap e) (Equivalences.isequiv_ap _ _)). Defined. | Lemma | Require Import | Algebra\Universal\Algebra.v | path_path_algebra_issig | 1,348 |
`{Funext} {σ} {A B : Algebra σ} (p q : A = B) (r : ap carriers p = ap carriers q) : p = q. Proof. apply path_path_algebra_issig. unshelve eapply path_path_sigma. - transitivity (ap carriers p); [by destruct p |]. transitivity (ap carriers q); [exact r | by destruct q]. - apply path_ishprop. Defined. | Lemma | Require Import | Algebra\Universal\Algebra.v | path_path_algebra | 1,349 |
{w : SymbolType σ} (f : Operation A w) : Type := forall (a b : DomOperation A w), (forall i : Arity w, Φ (sorts_dom w i) (a i) (b i)) -> Φ (sort_cod w) (f a) (f b). Class OpsCompatible : Type := ops_compatible : forall (u : Symbol σ), u.#A. Global Instance trunc_ops_compatible `{Funext} {n : trunc_index} `{!forall s x y, IsTrunc n (Φ s x y)} : IsTrunc n OpsCompatible. Proof. apply istrunc_forall. Defined. | Definition | Require Import | Algebra\Universal\Congruence.v | OpCompatible | 1,350 |
{σ : Signature} {A B : Algebra σ} (Φ : forall s, Relation (A s)) `{!IsCongruence A Φ} (f : forall s, A s -> B s) `{!IsHomomorphism f} : Type := forall s (x y : A s), Φ s x y -> f s x = f s y. | Definition | Require Import | Algebra\Universal\Congruence.v | HomCompatible | 1,351 |
{w : SymbolType σ} (α : Operation A w) (β : Operation B w) : Type := forall a : DomOperation A w, f (sort_cod w) (α a) = β (fun i => f (sorts_dom w i) (a i)). Global Instance hprop_oppreserving `{Funext} {w : SymbolType σ} (α : Operation A w) (β : Operation B w) : IsHProp ( α β). Proof. apply istrunc_forall. Qed. | Definition | Require Import | Algebra\Universal\Homomorphism.v | OpPreserving | 1,352 |
{σ} {A B : Algebra σ} : Type := Build_Homomorphism | Record | Require Import | Algebra\Universal\Homomorphism.v | Homomorphism | 1,353 |
{σ} {A B : Algebra σ} {f g : A $-> B} : f = g -> forall s, f s == g s. Proof. intro p. by destruct p. Defined. | Lemma | Require Import | Algebra\Universal\Homomorphism.v | apD10_homomorphism | 1,354 |
{σ} (A B : Algebra σ) : Type := { def_hom : forall s, A s -> B s | IsHomomorphism def_hom }. | Definition | Require Import | Algebra\Universal\Homomorphism.v | SigHomomorphism | 1,355 |
{σ} (A B : Algebra σ) : SigHomomorphism A B <~> (A $-> B). Proof. issig. Defined. | Lemma | Require Import | Algebra\Universal\Homomorphism.v | issig_homomorphism | 1,356 |
`{Funext} {σ} {A B : Algebra σ} (f g : A $-> B) (p : def_homomorphism f = def_homomorphism g) : f = g. Proof. apply (ap (issig_homomorphism A B)^-1)^-1. unfold issig_homomorphism; cbn. apply path_sigma_hprop. exact p. Defined. | Lemma | Require Import | Algebra\Universal\Homomorphism.v | path_homomorphism | 1,357 |
A $-> A := Build_Homomorphism (fun s (x : A s) => x). End . Arguments {σ} A%_Algebra_scope , {σ} {A}. Section homomorphism_compose. Context {σ} {A B C : Algebra σ}. Global Instance is_homomorphism_compose (g : forall s, B s -> C s) `{!IsHomomorphism g} (f : forall s, A s -> B s) `{!IsHomomorphism f} : IsHomomorphism (fun s => g s o f s). Proof. intros u a. by rewrite <- (oppreserving_hom g), (oppreserving_hom f). Qed. | Definition | Require Import | Algebra\Universal\Homomorphism.v | homomorphism_id | 1,358 |
(g : B $-> C) (f : A $-> B) : A $-> C := Build_Homomorphism (fun s => g s o f s). | Definition | Require Import | Algebra\Universal\Homomorphism.v | homomorphism_compose | 1,359 |
`{Funext} {σ} {A B C D : Algebra σ} (h : C $-> D) (g : B $-> C) (f : A $-> B) : (h $o g) $o f = h $o (g $o f). Proof. by apply path_homomorphism. Defined. | Lemma | Require Import | Algebra\Universal\Homomorphism.v | assoc_homomorphism_compose | 1,360 |
`{Funext} {σ} {A B : Algebra σ} (f : A $-> B) : Id B $o f = f. Proof. by apply path_homomorphism. Defined. | Lemma | Require Import | Algebra\Universal\Homomorphism.v | left_id_homomorphism_compose | 1,361 |
`{Funext} {σ} {A B : Algebra σ} (f : A $-> B) : f $o Id A = f. Proof. by apply path_homomorphism. Defined. | Lemma | Require Import | Algebra\Universal\Homomorphism.v | right_id_homomorphism_compose | 1,362 |
{σ} (A : Carriers σ) {n : nat} (ss : FinSeq n. | Definition | Require Import | Algebra\Universal\Operation.v | cons_dom | 1,363 |
{σ} (A : Carriers σ) (ss : FinSeq 0 (Sort σ)) : forall i : Fin 0, A (ss i) := Empty_ind (A o ss). | Definition | Require Import | Algebra\Universal\Operation.v | nil_dom | 1,364 |
{σ : Signature} (A : Carriers σ) {n : nat} (ss : FinSeq n (Sort σ)) (t : Sort σ) : Type := Operation A {| Arity := Fin n; sorts_dom := ss; sort_cod := t |}. | Definition | Require Import | Algebra\Universal\Operation.v | FiniteOperation | 1,365 |
{σ} (A : Carriers σ) {n : nat} : (FinSeq n (Sort σ)) -> Sort σ -> Type := match n with | 0 => fun ss t => A t | n'. | Fixpoint | Require Import | Algebra\Universal\Operation.v | CurriedOperation | 1,366 |
{σ} (A : Carriers σ) {n : nat} : forall (ss : FinSeq n (Sort σ)) (t : Sort σ), CurriedOperation A ss t -> FiniteOperation A ss t := match n with | 0 => fun ss t op _ => op | n'.+1 => fun ss t op a => A (fstail ss) t (op (a fin_zero)) (a o fsucc) end. Local Example computation_example_operation_uncurry : forall (σ : Signature) (A : Carriers σ) (n : nat) (s1 s2 t : Sort σ) (ss := (fscons s1 (fscons s2 fsnil))) (op : CurriedOperation A ss t) (a : forall i, A (ss i)), A ss t op = fun a => op (a fin_zero) (a (fsucc fin_zero)). Proof. reflexivity. Qed. | Fixpoint | Require Import | Algebra\Universal\Operation.v | operation_uncurry | 1,367 |
{σ} (A : Carriers σ) {n : nat} : forall (ss : FinSeq n (Sort σ)) (t : Sort σ), FiniteOperation A ss t -> CurriedOperation A ss t := match n with | 0 => fun ss t op => op (Empty_ind _) | n'.+1 => fun ss t op x => A (fstail ss) t (op o cons_dom A ss x) end. Local Example computation_example_operation_curry : forall (σ : Signature) (A : Carriers σ) (n : nat) (s1 s2 t : Sort σ) (ss := (fscons s1 (fscons s2 fsnil))) (op : FiniteOperation A ss t) (x1 : A s1) (x2 : A s2), A ss t op = fun x1 x2 => op (cons_dom A ss x1 (cons_dom A _ x2 (nil_dom A _))). Proof. reflexivity. Qed. | Fixpoint | Require Import | Algebra\Universal\Operation.v | operation_curry | 1,368 |
expand_cons_dom' {σ} (A : Carriers σ) (n : nat) : forall (i : Fin n) (ss : FinSeq n (Sort σ)) (N : n > 0) (a : forall i, A (ss i)), cons_dom' A i ss N (head_dom' A n N ss a) (tail_dom' A n ss a) = a i. Proof. intro i. induction i using fin_ind; intros ss N a. - unfold cons_dom'. rewrite fin_ind_beta_zero. reflexivity. - unfold cons_dom'. by rewrite fin_ind_beta_fsucc. Qed. | Lemma | Require Import | Algebra\Universal\Operation.v | expand_cons_dom' | 1,369 |
`{Funext} {σ} (A : Carriers σ) {n : nat} (ss : FinSeq n.+1 (Sort σ)) (a : forall i, A (ss i)) : cons_dom A ss (head_dom A ss a) (tail_dom A ss a) = a. Proof. funext i. apply '. Defined. | Lemma | Require Import | Algebra\Universal\Operation.v | expand_cons_dom | 1,370 |
`{Funext} {σ} (A : Carriers σ) {n : nat} (ss : FinSeq n (Sort σ)) (t : Sort σ) : operation_uncurry A ss t o operation_curry A ss t == idmap. Proof. intro a. induction n as [| n IHn]. - funext d. refine (ap a _). apply path_contr. - funext a'. refine (ap (fun x => x _) (IHn _ _) @ _). refine (ap a _). apply expand_cons_dom. Qed. | Lemma | Require Import | Algebra\Universal\Operation.v | path_operation_curry_to_cunurry | 1,371 |
`{Funext} {σ} (A : Carriers σ) {n : nat} (ss : FinSeq n (Sort σ)) (t : Sort σ) : operation_curry A ss t o operation_uncurry A ss t == idmap. Proof. intro a. induction n; [reflexivity|]. funext x. refine (_ @ IHn (fstail ss) (a x)). refine (ap (operation_curry A (fstail ss) t) _). funext a'. simpl. unfold cons_dom, cons_dom'. rewrite fin_ind_beta_zero. refine (ap (operation_uncurry A (fstail ss) t (a x)) _). funext i'. by rewrite fin_ind_beta_fsucc. Qed. | Lemma | Require Import | Algebra\Universal\Operation.v | path_operation_uncurry_to_curry | 1,372 |
`{Funext} {σ} (A : Carriers σ) {n : nat} (ss : FinSeq n (Sort σ)) (t : Sort σ) : FiniteOperation A ss t <~> CurriedOperation A ss t := Build_Equiv _ _ (operation_curry A ss t) _. | Definition | Require Import | Algebra\Universal\Operation.v | equiv_operation_curry | 1,373 |
{σ} (C : Carriers σ) : Carriers σ := | var_term_algebra : forall s, C s -> C s | ops_term_algebra : forall (u : Symbol σ), DomOperation ( C) (σ u) -> C (sort_cod (σ u)). | Inductive | Require Import | Algebra\Universal\TermAlgebra.v | CarriersTermAlgebra | 1,374 |
{σ} := @CarriersTermAlgebra_ind σ. | Definition | Require Import | Algebra\Universal\TermAlgebra.v | CarriersTermAlgebra_rect | 1,375 |
{σ : Signature} (C : Carriers σ) (P : Sort σ -> Type) (vs : forall (s : Sort σ), C s -> P s) (os : forall (u : Symbol σ) (c : DomOperation (CarriersTermAlgebra C) (σ u)), (forall i : Arity (σ u), P (sorts_dom (σ u) i)) -> P (sort_cod (σ u))) (s : Sort σ) (T : CarriersTermAlgebra C s) : P s := CarriersTermAlgebra_ind C (fun s _ => P s) vs os s T. | Definition | Require Import | Algebra\Universal\TermAlgebra.v | CarriersTermAlgebra_rec | 1,376 |
{σ : Signature} {C : Carriers σ} (R : forall s, Relation (C s)) {s1 s2 : Sort σ} (S : CarriersTermAlgebra C s1) (T : CarriersTermAlgebra C s2) : Type := match S, T with | var_term_algebra s1 x, var_term_algebra s2 y => {p : s1 = s2 | R s2 (p # x) y} | ops_term_algebra u1 a, ops_term_algebra u2 b => { p : u1 = u2 | forall i : Arity (σ u1), R (a i) (b (transport (fun v => Arity (σ v)) p i))} | _, _ => Empty end. | Fixpoint | Require Import | Algebra\Universal\TermAlgebra.v | ExtendDRelTermAlgebra | 1,377 |
{σ : Signature} {C : Carriers σ} (R : forall s, Relation (C s)) {s : Sort σ} : CarriersTermAlgebra C s -> CarriersTermAlgebra C s -> Type := ExtendDRelTermAlgebra R. Section extend_rel_term_algebra. Context `{Funext} {σ : Signature} {C : Carriers σ} (R : forall s, Relation (C s)) `{!forall s, is_mere_relation (C s) (R s)}. Global Instance hprop_extend_drel_term_algebra {s1 s2 : Sort σ} (S : CarriersTermAlgebra C s1) (T : CarriersTermAlgebra C s2) : IsHProp (ExtendDRelTermAlgebra R S T). Proof. generalize dependent s2. induction S; intros s2 T; destruct T; exact _. Qed. | Definition | Require Import | Algebra\Universal\TermAlgebra.v | ExtendRelTermAlgebra | 1,378 |
`{!forall s, Symmetric (R s)} {s1 s2 : Sort σ} (S : CarriersTermAlgebra C s1) (T : CarriersTermAlgebra C s2) (h : ExtendDRelTermAlgebra R S T) : ExtendDRelTermAlgebra R T S. Proof. generalize dependent s2. induction S as [| u c h]; intros s2 [] p. - destruct p as [p1 p2]. induction p1. exists idpath. by symmetry. - elim p. - elim p. - destruct p as [p f]. induction p. exists idpath. intro i. apply h. apply f. Qed. | Lemma | Require Import | Algebra\Universal\TermAlgebra.v | symmetric_extend_drel_term_algebra | 1,379 |
`{!forall s, Transitive (R s)} {s1 s2 s3 : Sort σ} (S : CarriersTermAlgebra C s1) (T : CarriersTermAlgebra C s2) (U : CarriersTermAlgebra C s3) (h1 : ExtendDRelTermAlgebra R S T) (h2 : ExtendDRelTermAlgebra R T U) : ExtendDRelTermAlgebra R S U. Proof. generalize dependent s3. generalize dependent s2. induction S as [| u c h]; intros s2 [? d | ? d] h2 s3 [] h3; destruct h2 as [p2 P2], h3 as [p3 P3] || by (elim h2 || elim h3). - exists (p2 @ p3). rewrite transport_pp. induction p2, p3. by transitivity d. - exists (p2 @ p3). intro i. induction p2. apply (h i _ (d i)). + apply P2. + rewrite concat_1p. apply P3. Qed. | Lemma | Require Import | Algebra\Universal\TermAlgebra.v | transitive_extend_drel_term_algebra | 1,380 |
{s : Sort σ} (S : CarriersTermAlgebra C s) (T : CarriersTermAlgebra C s) : Type := ExtendRelTermAlgebra (fun s => paths) S T. Global Instance reflexive_extend_path_term_algebra : forall s : Sort σ, Reflexive (@ s). Proof. by apply reflexive_extend_rel_term_algebra. Defined. | Definition | Require Import | Algebra\Universal\TermAlgebra.v | ExtendPathTermAlgebra | 1,381 |
{s : Sort σ} {S T : CarriersTermAlgebra C s} (p : S = T) : ExtendPathTermAlgebra S T. Proof. induction p. apply reflexive_extend_path_term_algebra. Defined. | Lemma | Require Import | Algebra\Universal\TermAlgebra.v | reflexive_extend_path_term_algebra_path | 1,382 |
{s1 s2 : Sort σ} (S : CarriersTermAlgebra C s1) (T : CarriersTermAlgebra C s2) (e : ExtendDRelTermAlgebra (fun s => paths) S T) : {p : s1 = s2 | p # S = T}. Proof. generalize dependent s2. induction S as [| u c h]; intros s2 [? d | ? d] e; solve [elim e] || destruct e as [p e]. - exists p. by induction p, e. - induction p. exists idpath. cbn. f_ap. funext a. destruct (h a _ (d a) (e a)) as [p q]. by induction (hset_path2 idpath p). Defined. | Lemma | Require Import | Algebra\Universal\TermAlgebra.v | dependent_path_extend_path_term_algebra | 1,383 |
{s : Sort σ} (S T : CarriersTermAlgebra C s) (e : ExtendPathTermAlgebra S T) : S = T. Proof. destruct (dependent_path_extend_path_term_algebra S T e) as [p q]. by induction (hset_path2 idpath p). Defined. | Lemma | Require Import | Algebra\Universal\TermAlgebra.v | path_extend_path_term_algebra | 1,384 |
{s : Sort σ} (S T : CarriersTermAlgebra C s) : ExtendPathTermAlgebra S T <~> (S = T) := equiv_iff_hprop (path_extend_path_term_algebra S T) reflexive_extend_path_term_algebra_path. | Definition | Require Import | Algebra\Universal\TermAlgebra.v | equiv_path_extend_path_term_algebra | 1,385 |
`{Funext} {σ : Signature} (C : Carriers σ) `{!forall s, IsHSet (C s)} : Algebra σ := Build_Algebra (CarriersTermAlgebra C) (@ops_term_algebra _ C). | Definition | Require Import | Algebra\Universal\TermAlgebra.v | TermAlgebra | 1,386 |
{σ} (C : Carriers σ) (s : Sort σ) (x y : C s) : var_term_algebra C s x = var_term_algebra C s y -> x = y. Proof. intro p. apply reflexive_extend_path_term_algebra_path in p. destruct p as [p1 p2]. by destruct (hset_path2 p1 idpath)^. Qed. | Lemma | Require Import | Algebra\Universal\TermAlgebra.v | isinj_var_term_algebra | 1,387 |
`{Funext} {σ} (C : Carriers σ) (u : Symbol σ) (a b : DomOperation (CarriersTermAlgebra C) (σ u)) : ops_term_algebra C u a = ops_term_algebra C u b -> a = b. Proof. intro p. apply reflexive_extend_path_term_algebra_path in p. destruct p as [p1 p2]. destruct (hset_path2 p1 idpath)^. funext i. apply path_extend_path_term_algebra. apply p2. Qed. | Lemma | Require Import | Algebra\Universal\TermAlgebra.v | isinj_ops_term_algebra | 1,388 |
{σ} {C : Carriers σ} (A : Algebra σ) (f : forall s, C s -> A s) (s : Sort σ) (T : CarriersTermAlgebra C s) : A s := CarriersTermAlgebra_rec C A f (fun u _ r => u.#A r) s T. Global Instance is_homomorphism_map_term_algebra : @IsHomomorphism σ (TermAlgebra C) A ( A f). Proof. intros u a. by refine (ap u.#A _). Qed. | Definition | Require Import | Algebra\Universal\TermAlgebra.v | map_term_algebra | 1,389 |
TermAlgebra C $-> A := @Build_Homomorphism σ (TermAlgebra C) A (map_term_algebra A f) _. | Definition | Require Import | Algebra\Universal\TermAlgebra.v | hom_term_algebra | 1,390 |
(f : TermAlgebra C $-> A) : forall s, C s -> A s := fun s x => f s (var_term_algebra C s x). | Definition | Require Import | Algebra\Universal\TermAlgebra.v | precomp_var_term_algebra | 1,391 |
forall (f : TermAlgebra C $-> A), hom_term_algebra A (precomp_var_term_algebra f) = f. Proof. intro f. apply path_homomorphism. funext s T. induction T as [|u c h]. - reflexivity. - refine (_ @ (is_homomorphism f u c)^). refine (ap u.#A _). funext i. apply h. Defined. | Lemma | Require Import | Algebra\Universal\TermAlgebra.v | path_precomp_var_term_algebra_to_hom_term_algebra | 1,392 |
forall (f : forall s, C s -> A s), precomp_var_term_algebra (hom_term_algebra A f) = f. Proof. intro f. by funext s a. Defined. | Lemma | Require Import | Algebra\Universal\TermAlgebra.v | path_hom_term_algebra_to_precomp_var_term_algebra | 1,393 |
(TermAlgebra C $-> A) <~> (forall s, C s -> A s). Proof. exact (Build_Equiv _ _ precomp_var_term_algebra _). Defined. | Theorem | Require Import | Algebra\Universal\TermAlgebra.v | ump_term_algebra | 1,394 |
Cast Q F := rationals_to_field Q F. | Instance | Require Import | Analysis\Locator.v | qinc | 1,395 |
(x : F) := forall q r : Q, q < r -> (' q < x) + (x < ' r). | Definition | Require Import | Analysis\Locator.v | locator | 1,396 |
locator' (x : F) := | Record | Require Import | Analysis\Locator.v | locator' | 1,397 |
{x : F} (l : locator' x) {q r : Q} : q < r -> DHProp := fun nu => Build_DHProp (Build_HProp (~ (locates_right l nu))) _. | Definition | Require Import | Analysis\Locator.v | locates_left | 1,398 |
(x : F) : locator x. Proof. intros q r ltqr. case (LEM (' q < x)). - apply _. - exact inl. - intros notlt. apply inr. assert (ltqr' : ' q < ' r) by auto. exact (nlt_lt_trans notlt ltqr'). Qed. | Lemma | Require Import | Analysis\Locator.v | all_reals_locators | 1,399 |