Datasets:
fact
stringlengths 2
32.6k
| type
stringclasses 10
values | library
stringclasses 5
values | imports
stringclasses 205
values | filename
stringclasses 216
values | symbolic_name
stringlengths 1
67
| index_level
int64 0
10.5k
|
---|---|---|---|---|---|---|
Set := | nAnon | nNamed (_ : ident). | Inductive | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | name | 0 |
Set := Relevant | Irrelevant. | Inductive | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | relevance | 1 |
(A : Type) := mkBindAnn { binder_name : A; binder_relevance : relevance }. | Record | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | binder_annot | 2 |
(A : Type) (e : Classes.EqDec A) : Classes.EqDec (binder_annot A). Proof. ltac:(Equations.Prop.Tactics.eqdec_proof). Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | eqdec_binder_annot | 3 |
{A B} (f : A -> B) (b : binder_annot A) : binder_annot B := {| binder_name := f b.(binder_name); binder_relevance := b.(binder_relevance) |}. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_binder_annot | 4 |
{A B} (b : binder_annot A) (b' : binder_annot B) : Prop := b.(binder_relevance) = b'.(binder_relevance). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | eq_binder_annot | 5 |
binder_annot name. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | aname | 6 |
Classes.EqDec aname := _. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | anqme_eqdec | 7 |
{A} (b b' : binder_annot A) : bool := match Classes.eq_dec b.(binder_relevance) b'.(binder_relevance) with | left _ => true | right _ => false end. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | eqb_binder_annot | 8 |
(na : name) := match na with | nAnon => "_" | nNamed n => n end. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | string_of_name | 9 |
(r : relevance) := match r with | Relevant => "Relevant" | Irrelevant => "Irrelevant" end. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | string_of_relevance | 10 |
Set := | VmCast | NativeCast | Cast. | Inductive | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | cast_kind | 11 |
mk_case_info { ci_ind : inductive; ci_npar : nat; ci_cstr_ndecls : list nat; *) ci_relevance : relevance }. | Record | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | case_info | 12 |
ci := "(" ^ string_of_inductive ci.(ci_ind) ^ "," ^ string_of_nat ci.(ci_npar) ^ "," ^ string_of_relevance ci.(ci_relevance) ^ ")". | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | string_of_case_info | 13 |
| Finite | CoFinite | BiFinite . | Inductive | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | recursivity_kind | 14 |
| Conv | Cumul. | Inductive | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | conv_pb | 15 |
(pb1 pb2 : conv_pb) : bool := match pb1, pb2 with | Cumul, Conv => false | _, _ => true end. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | conv_pb_leqb | 16 |
nat. exact 0. Qed. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fresh_evar_id | 17 |
term := mkdef { dname : aname; dtype : term; dbody : term; rarg : nat }. | Record | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | def | 18 |
{A} : Classes.EqDec A -> Classes.EqDec (def A). Proof. ltac:(Equations.Prop.Tactics.eqdec_proof). Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | def_eq_dec | 19 |
{A} (f : A -> string) (def : def A) := "(" ^ string_of_name (binder_name (dname def)) ^ "," ^ string_of_relevance (binder_relevance (dname def)) ^ "," ^ f (dtype def) ^ "," ^ f (dbody def) ^ "," ^ string_of_nat (rarg def) ^ ")". | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | string_of_def | 20 |
{A} (f : A -> string) (g : A -> string) (def : def A) := string_of_name (binder_name (dname def)) ^ " { struct " ^ string_of_nat (rarg def) ^ " }" ^ " : " ^ f (dtype def) ^ " := " ^ nl ^ g (dbody def). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | print_def | 21 |
{A B} (tyf bodyf : A -> B) (d : def A) := {| dname := d.(dname); dtype := tyf d.(dtype); dbody := bodyf d.(dbody); rarg := d.(rarg) |}. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def | 22 |
{A B} (f : A -> B) (g : A -> B) (d : def A) : f (dtype d) = dtype (map_def f g d). Proof. destruct d; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_dtype | 23 |
{A B} (f : A -> B) (g : A -> B) (d : def A) : g (dbody d) = dbody (map_def f g d). Proof. destruct d; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_dbody | 24 |
term := list (def term). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mfixpoint | 25 |
{A} (tyf bodyf : A -> bool) (d : def A) := tyf d.(dtype) && bodyf d.(dbody). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_def | 26 |
{A} (P P' : A -> Type) (m : mfixpoint A) := All (fun x : def A => P x.(dtype) * P' x.(dbody))%type m. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | tFixProp | 27 |
{A B C} (f f' : B -> C) (g g' : A -> B) (d : def A) : map_def f f' (map_def g g' d) = map_def (f ∘ g) (f' ∘ g') d. Proof. destruct d; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def_map_def | 28 |
{A B C} (f f' : B -> C) (g g' : A -> B) : (map_def f f') ∘ (map_def g g') = map_def (f ∘ g) (f' ∘ g'). Proof. reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | compose_map_def | 29 |
{t} x : map_def (@id t) (@id t) x = id x. Proof. now destruct x. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def_id | 30 |
{A B} (P P' : A -> Type) (f f' g g' : A -> B) (x : def A) : P' x.(dbody) -> P x.(dtype) -> (forall x, P x -> f x = g x) -> (forall x, P' x -> f' x = g' x) -> map_def f f' x = map_def g g' x. Proof. intros. destruct x. unfold map_def. simpl. now rewrite !H // !H0. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def_spec | 31 |
{A B} (f : B -> B) (x : A * B) : f (snd x) = snd x <-> on_snd f x = x. Proof. destruct x; simpl; unfold on_snd; simpl. split; congruence. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | on_snd_eq_id_spec | 32 |
{A B} (f f' g g' : A -> B) (x : def A) : f (dtype x) = g (dtype x) -> f' (dbody x) = g' (dbody x) -> map_def f f' x = map_def g g' x. Proof. intros. unfold map_def; f_equal; auto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def_eq_spec | 33 |
{A} (f f' : A -> A) (x : def A) : f (dtype x) = (dtype x) -> f' (dbody x) = (dbody x) -> map_def f f' x = x. Proof. intros. rewrite (map_def_eq_spec _ _ id id); auto. destruct x; auto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def_id_spec | 34 |
{A B} {P P' : A -> Type} {l} {f f' g g' : A -> B} : tFixProp P P' l -> (forall x, P x -> f x = g x) -> (forall x, P' x -> f' x = g' x) -> map (map_def f f') l = map (map_def g g') l. Proof. intros. eapply All_map_eq. red in X. eapply All_impl; eauto. simpl. intros. destruct X0; eapply map_def_spec; eauto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | tfix_map_spec | 35 |
{universe Term} := Judge { j_term : option Term; j_typ : Term; j_univ : option universe; }. | Record | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | judgment_ | 36 |
{univ T A} (f: T -> A) (j : judgment_ univ T) := Judge (option_map f (j_term j)) (f (j_typ j)) (j_univ j) . | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | judgment_map | 37 |
mkdecl { decl_name : aname ; decl_body : option term ; decl_type : term }. | Record | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | context_decl | 38 |
{term term'} (f : term -> term') (d : context_decl term) : context_decl term' := {| decl_name := d.(decl_name); decl_body := option_map f d.(decl_body); decl_type := f d.(decl_type) |}. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl | 39 |
{term term' term''} (g : term -> term') (f : term' -> term'') x : map_decl f (map_decl g x) = map_decl (f ∘ g) x. Proof. destruct x as [? [?|] ?]; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | compose_map_decl | 40 |
{term term'} (f g : term -> term') x : (forall x, f x = g x) -> map_decl f x = map_decl g x. Proof. intros H; destruct x as [? [?|] ?]; rewrite /map_decl /=; f_equal; auto. now rewrite (H t). Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_ext | 41 |
{term term'} : Proper (`=1` ==> Logic.eq ==> Logic.eq) (@map_decl term term'). Proof. intros f g Hfg x y ->. now apply map_decl_ext. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_proper | 42 |
{term term'} : Proper (`=1` ==> `=1`) (@map_decl term term'). Proof. intros f g Hfg x. rewrite /map_decl. destruct x => /=. f_equal. - now rewrite Hfg. - apply Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_pointwise | 43 |
{A B} : subrelation (`=1`) (@Logic.eq A ==> @Logic.eq B)%signature. Proof. intros f g Hfg x y ->. now rewrite Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | pointwise_subrelation | 44 |
{A B} : subrelation (@Logic.eq A ==> @Logic.eq B)%signature (`=1`). Proof. intros f g Hfg x. now specialize (Hfg x x eq_refl). Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | pointwise_subrelation_inv | 45 |
{term term'} (f : term -> term') (c : list (context_decl term)) := List.map (map_decl f) c. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_context | 46 |
{term term'} : Proper (`=1` ==> Logic.eq ==> Logic.eq) (@map_context term term'). Proof. intros f g Hfg x y ->. now rewrite /map_context Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_context_proper | 47 |
{term term'} (f : term -> term') l : #|map_context f l| = #|l|. Proof. now unfold map_context; rewrite length_map. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_context_length | 48 |
{term} (f : term -> bool) (d : context_decl term) : bool := option_default f d.(decl_body) true && f d.(decl_type). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_decl | 49 |
{term} : Proper (`=1` ==> Logic.eq ==> Logic.eq) (@test_decl term). Proof. intros f g Hfg [na [b|] ty] ? <- => /=; rewrite /test_decl /=; now rewrite Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_decl_proper | 50 |
{A} (Γ : list A) (d : A) := d :: Γ. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | snoc | 51 |
{A} (Γ Γ': list A) := Γ' ++ Γ. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context | 52 |
{T} Γ : [] ,,, Γ = Γ :> list T. Proof. unfold app_context. rewrite app_nil_r. reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context_nil_l | 53 |
{T} Γ Γ' Γ'' : Γ ,,, (Γ' ,,, Γ'') = Γ ,,, Γ' ,,, Γ'' :> list T. Proof. unfold app_context; now rewrite app_assoc. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context_assoc | 54 |
{T} Γ Γ' A : Γ ,,, (Γ' ,, A) = (Γ ,,, Γ') ,, A :> list T. Proof. exact (app_context_assoc _ _ [A]). Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context_cons | 55 |
{T} Γ Δ Δ' d : (Γ ,,, Δ ,,, Δ') ,, d = (Γ ,,, Δ ,,, (Δ' ,, d)) :> list T. Proof using Type. reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context_push | 56 |
{T Γ Δ d} : (Γ ,,, (d :: Δ)) = (Γ ,,, Δ) ,,, [d] :> list T. Proof using Type. reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | snoc_app_context | 57 |
{T} (Γ Γ' : list T) : #|Γ ,,, Γ'| = #|Γ'| + #|Γ|. Proof. unfold app_context. now rewrite length_app. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context_length | 58 |
{T} v Γ Γ' : #|Γ'| <= v -> nth_error (Γ ,,, Γ') v = nth_error Γ (v - #|Γ'|) :> option T. Proof. apply nth_error_app_ge. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | nth_error_app_context_ge | 59 |
{T} v Γ Γ' : v < #|Γ'| -> nth_error (Γ ,,, Γ') v = nth_error Γ' v :> option T. Proof. apply nth_error_app_lt. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | nth_error_app_context_lt | 60 |
{A} (P : A -> Type) (d : context_decl A) := option_default P d.(decl_body) unit × P d.(decl_type). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | ondecl | 61 |
(c : list (context_decl term)) : list (context_decl term') := match c with | d :: Γ => map_decl (f #|Γ|) d :: mapi_context Γ | [] => [] end. | Fixpoint | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context | 62 |
{term term'} : Proper (`=2` ==> Logic.eq ==> Logic.eq) (@mapi_context term term'). Proof. intros f g Hfg Γ ? <-. induction Γ as [|[na [b|] ty] Γ]; simpl; auto; f_equal; auto; now rewrite Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context_proper | 63 |
{term} (f : nat -> term -> term) l : #|mapi_context f l| = #|l|. Proof. induction l; simpl; auto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context_length | 64 |
(c : list (context_decl term)) : bool := match c with | d :: Γ => test_context Γ && test_decl f d | [] => true end. | Fixpoint | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_context | 65 |
{term} : Proper (`=1` ==> Logic.eq ==> Logic.eq) (@test_context term). Proof. intros f g Hfg Γ ? <-. induction Γ as [|[na [b|] ty] Γ]; simpl; auto; f_equal; auto; now rewrite Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_context_proper | 66 |
(c : list (context_decl term)) : bool := match c with | d :: Γ => test_context_k Γ && test_decl (f (#|Γ| + k)) d | [] => true end. | Fixpoint | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_context_k | 67 |
{term} : Proper (`=1` ==> Logic.eq ==> Logic.eq ==> Logic.eq) (@test_context_k term). Proof. intros f g Hfg k ? <- Γ ? <-. induction Γ as [|[na [b|] ty] Γ]; simpl; auto; f_equal; auto; now rewrite Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_context_k_proper | 68 |
(f g : term -> bool) x : (forall x, f x -> g x) -> test_decl f x -> test_decl g x. Proof using Type. intros Hf; rewrite /test_decl. move/andb_and=> [Hd Hb]. apply/andb_and; split; eauto. destruct (decl_body x); simpl in *; eauto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_decl_impl | 69 |
(P : nat -> term -> Type) k (ctx : context term) := Alli (fun i d => ondecl (P (Nat.pred #|ctx| - i + k)) d) 0 ctx. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | onctx_k | 70 |
{P : term -> Type} {p : term -> bool} {d : context_decl term} : (forall x, reflectT (P x) (p x)) -> reflectT (ondecl P d) (test_decl p d). Proof using Type. intros hr. rewrite /ondecl /test_decl; destruct d as [decl_name decl_body decl_type]; cbn. destruct (hr decl_type) => //; destruct (reflect_option_default hr decl_body) => /= //; now constructor. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | ondeclP | 71 |
{p : term -> bool} {ctx : context term} : reflectT (onctx p ctx) (test_context p ctx). Proof using Type. eapply equiv_reflectT. - induction 1; simpl; auto. rewrite IHX /= //. now move/(ondeclP reflectT_pred): p0. - induction ctx. * constructor. * move => /= /andb_and [Hctx Hd]; constructor; eauto. now move/(ondeclP reflectT_pred): Hd. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | onctxP | 72 |
(f : term -> term') decl : f (decl_type decl) = decl_type (map_decl f decl). Proof using Type. destruct decl; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_type | 73 |
(f : term -> term') decl : option_map f (decl_body decl) = decl_body (map_decl f decl). Proof using Type. destruct decl; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_body | 74 |
@map_decl term term id =1 id. Proof using Type. intros d; now destruct d as [? [] ?]. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_id | 75 |
(f : term -> term') x : option_map decl_body (option_map (map_decl f) x) = option_map (option_map f) (option_map decl_body x). Proof using Type. destruct x; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | option_map_decl_body_map_decl | 76 |
(f : term -> term') x : option_map decl_type (option_map (map_decl f) x) = option_map f (option_map decl_type x). Proof using Type. destruct x; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | option_map_decl_type_map_decl | 77 |
(f : nat -> term -> term') Γ := List.rev (mapi (fun k' decl => map_decl (f k') decl) (List.rev Γ)). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k | 78 |
f Γ : fold_context_k f Γ = mapi (fun k' d => map_decl (f (Nat.pred (length Γ) - k')) d) Γ. Proof using Type. unfold fold_context_k. rewrite rev_mapi. rewrite List.rev_involutive. apply mapi_ext. intros. f_equal. now rewrite List.length_rev. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_alt | 79 |
f Γ : mapi_context f Γ = fold_context_k f Γ. Proof using Type. setoid_replace f with (fun k => f (k - 0)) using relation (pointwise_relation nat (pointwise_relation term (@Logic.eq term')))%signature at 1. rewrite fold_context_k_alt. unfold mapi. generalize 0. induction Γ as [|d Γ]; intros n; simpl; auto. f_equal. rewrite IHΓ. rewrite mapi_rec_Sk. apply mapi_rec_ext => k x. intros. apply map_decl_ext => t. lia_f_equal. intros k. now rewrite Nat.sub_0_r. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context_fold | 80 |
f d : fold_context_k f [d] = [map_decl (f 0) d]. Proof using Type. reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_tip | 81 |
f Γ : length (fold_context_k f Γ) = length Γ. Proof using Type. unfold fold_context_k. now rewrite !List.length_rev mapi_length List.length_rev. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_length | 82 |
f Γ d : fold_context_k f (d :: Γ) = fold_context_k f Γ ,, map_decl (f (length Γ)) d. Proof using Type. unfold fold_context_k. rewrite !rev_mapi !rev_involutive. unfold mapi; rewrite mapi_rec_eqn. unfold snoc. f_equal. now rewrite Nat.sub_0_r List.length_rev. rewrite mapi_rec_Sk. simpl. apply mapi_rec_ext. intros. rewrite length_app !List.length_rev. simpl. f_equal. f_equal. lia. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_snoc0 | 83 |
f Γ Δ : fold_context_k f (Δ ++ Γ) = fold_context_k (fun k => f (length Γ + k)) Δ ++ fold_context_k f Γ. Proof using Type. unfold fold_context_k. rewrite List.rev_app_distr. rewrite mapi_app. rewrite <- List.rev_app_distr. f_equal. f_equal. apply mapi_ext. intros. f_equal. rewrite List.length_rev. f_equal. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_app | 84 |
(f : nat -> term -> term) (ctx : context term) : mapi_context_In ctx (fun n (x : context_decl term) (_ : In x ctx) => map_decl (f n) x) = mapi_context f ctx. Proof using Type. remember (fun n (x : context_decl term) (_ : In x ctx) => map_decl (f n) x) as g. funelim (mapi_context_In ctx g) => //=; rewrite (H f0) ; trivial. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context_In_spec | 85 |
f Γ : #|fold_context f Γ| = #|Γ|. Proof using Type. now apply_funelim (fold_context f Γ); intros; simpl; auto; f_equal. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_length | 86 |
(f : context term -> context_decl term -> context_decl term) (ctx : context term) : fold_context_In ctx (fun n (x : context_decl term) (_ : In x ctx) => f n x) = fold_context f ctx. Proof using Type. remember (fun n (x : context_decl term) (_ : In x ctx) => f n x) as g. funelim (fold_context_In ctx g) => //=; rewrite (H f0); trivial. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_In_spec | 87 |
Proper (`=2` ==> `=1`) fold_context. Proof using Type. intros f f' Hff' x. funelim (fold_context f x); simpl; auto. simp fold_context. now rewrite (H f' Hff'). Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_Proper | 88 |
(c : list (BasicAst.context_decl term)) : list aname := map decl_name c. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | forget_types | 89 |
(x : context term) : fold_context_k (fun i x => x) x = x. Proof using Type. rewrite fold_context_k_alt. rewrite /mapi. generalize 0. induction x; simpl; auto. intros n. f_equal; auto. now rewrite map_decl_id. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_id | 90 |
(f : nat -> term' -> term) (g : nat -> term'' -> term') Γ : fold_context_k f (fold_context_k g Γ) = fold_context_k (fun i => f i ∘ g i) Γ. Proof using Type. rewrite !fold_context_k_alt mapi_mapi. apply mapi_ext => i d. rewrite compose_map_decl. apply map_decl_ext => t. now len. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_compose | 91 |
(f g : nat -> term' -> term) Γ : f =2 g -> fold_context_k f Γ = fold_context_k g Γ. Proof using Type. intros hfg. induction Γ; simpl; auto; rewrite !fold_context_k_snoc0. simpl. rewrite IHΓ. f_equal. apply map_decl_ext. intros. now apply hfg. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_ext | 92 |
Proper (pointwise_relation nat (pointwise_relation _ Logic.eq) ==> Logic.eq ==> Logic.eq) (@fold_context_k term' term). Proof using Type. intros f g Hfg x y <-. now apply fold_context_k_ext. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_proper | 93 |
(f : nat -> context_decl term -> bool) (g : nat -> term' -> term) ctx : alli f 0 (fold_context_k g ctx) = alli (fun i x => f i (map_decl (g (Nat.pred #|ctx| - i)) x)) 0 ctx. Proof using Type. now rewrite fold_context_k_alt /mapi alli_mapi. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | alli_fold_context_k_prop | 94 |
f g x : (@test_decl term) f (map_decl g x) = @test_decl term (f ∘ g) x. Proof using Type. rewrite /test_decl /map_decl /=. f_equal. rewrite /option_default. destruct (decl_body x) => //. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_decl_map_decl | 95 |
(f : term' -> term) (g : nat -> term'' -> term') ctx : map (map_decl f) (fold_context_k g ctx) = fold_context_k (fun i => f ∘ g i) ctx. Proof using Type. rewrite !fold_context_k_alt map_mapi. apply mapi_ext => i d. now rewrite compose_map_decl. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_fold_context_k | 96 |
(f : term' -> term) (g : nat -> term'' -> term') (ctx : list (BasicAst.context_decl term'')) : map_context f (mapi_context g ctx) = mapi_context (fun i => f ∘ g i) ctx. Proof using Type. rewrite !mapi_context_fold. now unfold map_context; rewrite map_fold_context_k. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_context_mapi_context | 97 |
(f : nat -> term' -> term) (g : context_decl term'' -> context_decl term') ctx : mapi_context f (map g ctx) = mapi (fun i => map_decl (f (Nat.pred #|ctx| - i)) ∘ g) ctx. Proof using Type. rewrite mapi_context_fold fold_context_k_alt mapi_map. now len. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context_map | 98 |
(f : term' -> term) (g : context_decl term'' -> context_decl term') ctx : map_context f (map g ctx) = map (map_decl f ∘ g) ctx. Proof using Type. induction ctx; simpl; f_equal; auto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_context_map | 99 |
MetaCoq Dataset
Dataset Description
The MetaCoq Dataset is derived from the MetaCoq repository, focusing on the formalization of Coq's meta-theory in the Coq proof assistant. This dataset processes .v files from the core theory directories to extract mathematical content in a structured format. This work builds upon the format established by Andreas Florath (@florath) in his Coq Facts, Propositions and Proofs dataset, providing a specialized view of the MetaCoq library with particular focus on meta-programming constructs.
Dataset Structure
The dataset includes the following fields:
- fact: The mathematical statement body without type prefixes
- type: The statement type (Definition/Lemma/Theorem/etc., including MetaCoq-specific types like Quote Definition)
- library: The originating library (common/template-coq/pcuic/etc.)
- imports: The Require Import statements from the source file
- filename: The source file path within MetaCoq
- symbolic_name: The identifier of the mathematical object
- index_level: Sequential index for the dataset
Example Row
fact: "forall {elt elt' : term}, red1 elt elt' -> red elt elt'" type: "Lemma" library: "pcuic" imports: "From MetaCoq.PCUIC Require Import PCUICAst PCUICAstUtils PCUICInduction PCUICLiftSubst PCUICUnivSubst PCUICTyping PCUICReduction." filename: "pcuic/theories/PCUICRedTypeIrrelevance.v" symbolic_name: "red1_red" index_level: 42
Source Code
The dataset was generated using a custom Python script that processes core MetaCoq libraries. The extraction focuses on mathematical content while preserving the structure and relationships between definitions, lemmas, and their source files. Special handling is implemented for MetaCoq-specific constructs like Quote Definition and MetaCoq Run, as well as proper preservation of full proofs and statements.
Coverage
The dataset includes content from the following MetaCoq directories:
- common/theories (Common utilities and definitions)
- template-coq/theories (Template-Coq implementation)
- pcuic/theories (Predicative Calculus of Inductive Constructions)
- safechecker/theories (Safe type-checker implementation)
- erasure/theories (Erasure translation)
Usage
This dataset is designed for:
- Meta-theoretical Research: Analyzing formal proofs and definitions in Coq's meta-theory
- Machine Learning Applications: Training models for proof automation and tactic prediction
- Meta-programming Studies: Understanding patterns in quote/unquote operations and template programming
- Certified Programming: Studying certified meta-programming and proof checking
- Educational Purposes: Providing structured examples of meta-theoretical formalizations
License
This dataset is distributed under the MIT license, aligning with the license of the original MetaCoq repository.
Acknowledgments
- Original repository: MetaCoq (https://github.com/MetaCoq/metacoq)
- Inspiration: Hugging Face user Andreas Florath (@florath) and his comprehensive Coq dataset
- Related datasets: UniMath Dataset and Coq-HoTT Dataset
- Downloads last month
- 41