fact
stringlengths
13
15.5k
type
stringclasses
9 values
library
stringclasses
15 values
imports
stringlengths
14
7.64k
βŒ€
filename
stringlengths
12
97
symbolic_name
stringlengths
1
78
index_level
int64
0
38.7k
Lemma isapropisabsorb {X : hSet} (opp1 opp2 : binop X) : isaprop (isabsorb opp1 opp2). Proof. apply impred_isaprop ; intros x. apply impred_isaprop ; intros y. apply (setproperty X). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isapropisabsorb
400
Definition isrigops {X : UU} (opp1 opp2 : binop X) : UU := (βˆ‘ axs : (isabmonoidop opp1) Γ— (ismonoidop opp2), (∏ x : X, opp2 (unel_is (pr1 axs)) x = unel_is (pr1 axs)) Γ— (∏ x : X, opp2 x (unel_is (pr1 axs)) = unel_is (pr1 axs))) Γ— (isdistr opp1 opp2).
Definition
Algebra
null
Algebra\BinaryOperations.v
isrigops
401
Definition make_isrigops {X : UU} {opp1 opp2 : binop X} (H1 : isabmonoidop opp1) (H2 : ismonoidop opp2) (H3 : ∏ x : X, (opp2 (unel_is H1) x) = (unel_is H1)) (H4 : ∏ x : X, (opp2 x (unel_is H1)) = (unel_is H1)) (H5 : isdistr opp1 opp2) : isrigops opp1 opp2 := ((H1 ,, H2) ,, H3 ,, H4) ,, H5.
Definition
Algebra
null
Algebra\BinaryOperations.v
make_isrigops
402
Definition rigop1axs_is {X : UU} {opp1 opp2 : binop X} : isrigops opp1 opp2 β†’ isabmonoidop opp1 := Ξ» is, pr1 (pr1 (pr1 is)).
Definition
Algebra
null
Algebra\BinaryOperations.v
rigop1axs_is
403
Definition rigop2axs_is {X : UU} {opp1 opp2 : binop X} : isrigops opp1 opp2 β†’ ismonoidop opp2 := Ξ» is, pr2 (pr1 (pr1 is)).
Definition
Algebra
null
Algebra\BinaryOperations.v
rigop2axs_is
404
Definition rigdistraxs_is {X : UU} {opp1 opp2 : binop X} : isrigops opp1 opp2 β†’ isdistr opp1 opp2 := Ξ» is, pr2 is.
Definition
Algebra
null
Algebra\BinaryOperations.v
rigdistraxs_is
405
Definition rigldistrax_is {X : UU} {opp1 opp2 : binop X} : isrigops opp1 opp2 β†’ isldistr opp1 opp2 := Ξ» is, pr1 (pr2 is).
Definition
Algebra
null
Algebra\BinaryOperations.v
rigldistrax_is
406
Definition rigrdistrax_is {X : UU} {opp1 opp2 : binop X} : isrigops opp1 opp2 β†’ isrdistr opp1 opp2 := Ξ» is, pr2 (pr2 is).
Definition
Algebra
null
Algebra\BinaryOperations.v
rigrdistrax_is
407
Definition rigunel1_is {X : UU} {opp1 opp2 : binop X} (is : isrigops opp1 opp2) : X := pr1 (pr2 (pr1 (rigop1axs_is is))).
Definition
Algebra
null
Algebra\BinaryOperations.v
rigunel1_is
408
Definition rigunel2_is {X : UU} {opp1 opp2 : binop X} (is : isrigops opp1 opp2) : X := (pr1 (pr2 (rigop2axs_is is))).
Definition
Algebra
null
Algebra\BinaryOperations.v
rigunel2_is
409
Definition rigmult0x_is {X : UU} {opp1 opp2 : binop X} (is : isrigops opp1 opp2) (x : X) : opp2 (rigunel1_is is) x = rigunel1_is is := pr1 (pr2 (pr1 is)) x.
Definition
Algebra
null
Algebra\BinaryOperations.v
rigmult0x_is
410
Definition rigmultx0_is {X : UU} {opp1 opp2 : binop X} (is : isrigops opp1 opp2) (x : X) : opp2 x (rigunel1_is is) = rigunel1_is is := pr2 (pr2 (pr1 is)) x.
Definition
Algebra
null
Algebra\BinaryOperations.v
rigmultx0_is
411
Lemma isapropisrigops {X : hSet} (opp1 opp2 : binop X) : isaprop (isrigops opp1 opp2). Proof. apply (isofhleveldirprod 1). - apply (isofhleveltotal2 1). + apply (isofhleveldirprod 1). * apply isapropisabmonoidop. * apply isapropismonoidop. + intro x. apply (isofhleveldirprod 1). * apply impred. intro x'. apply (setproperty X). * apply impred. intro x'. apply (setproperty X). - apply isapropisdistr. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isapropisrigops
412
Definition isringops {X : UU} (opp1 opp2 : binop X) : UU := (isabgrop opp1 Γ— ismonoidop opp2) Γ— isdistr opp1 opp2.
Definition
Algebra
null
Algebra\BinaryOperations.v
isringops
413
Definition make_isringops {X : UU} {opp1 opp2 : binop X} (H1 : isabgrop opp1) (H2 : ismonoidop opp2) (H3 : isdistr opp1 opp2) : isringops opp1 opp2 := (H1 ,, H2) ,, H3.
Definition
Algebra
null
Algebra\BinaryOperations.v
make_isringops
414
Definition ringop1axs_is {X : UU} {opp1 opp2 : binop X} : isringops opp1 opp2 β†’ isabgrop opp1 := Ξ» is, pr1 (pr1 is).
Definition
Algebra
null
Algebra\BinaryOperations.v
ringop1axs_is
415
Definition ringop2axs_is {X : UU} {opp1 opp2 : binop X} : isringops opp1 opp2 β†’ ismonoidop opp2 := Ξ» is, pr2 (pr1 is).
Definition
Algebra
null
Algebra\BinaryOperations.v
ringop2axs_is
416
Definition ringdistraxs_is {X : UU} {opp1 opp2 : binop X} : isringops opp1 opp2 β†’ isdistr opp1 opp2 := Ξ» is, pr2 is.
Definition
Algebra
null
Algebra\BinaryOperations.v
ringdistraxs_is
417
Definition ringldistrax_is {X : UU} {opp1 opp2 : binop X} : isringops opp1 opp2 β†’ isldistr opp1 opp2 := Ξ» is, pr1 (pr2 is).
Definition
Algebra
null
Algebra\BinaryOperations.v
ringldistrax_is
418
Definition ringrdistrax_is {X : UU} {opp1 opp2 : binop X} : isringops opp1 opp2 β†’ isrdistr opp1 opp2 := Ξ» is, pr2 (pr2 is).
Definition
Algebra
null
Algebra\BinaryOperations.v
ringrdistrax_is
419
Definition ringunel1_is {X : UU} {opp1 opp2 : binop X} (is : isringops opp1 opp2) : X := unel_is (pr1 (pr1 is)).
Definition
Algebra
null
Algebra\BinaryOperations.v
ringunel1_is
420
Definition ringunel2_is {X : UU} {opp1 opp2 : binop X} (is : isringops opp1 opp2) : X := unel_is (pr2 (pr1 is)).
Definition
Algebra
null
Algebra\BinaryOperations.v
ringunel2_is
421
Lemma isapropisringops {X : hSet} (opp1 opp2 : binop X) : isaprop (isringops opp1 opp2). Proof. apply (isofhleveldirprod 1). - apply (isofhleveldirprod 1). + apply isapropisabgrop. + apply isapropismonoidop. - apply isapropisdistr. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isapropisringops
422
Lemma multx0_is_l {X : UU} {opp1 opp2 : binop X} (is1 : isgrop opp1) (is2 : ismonoidop opp2) (is12 : isdistr opp1 opp2) (x : X) : opp2 x (unel_is (pr1 is1)) = unel_is (pr1 is1). Proof. induction is12 as [ ldistr0 rdistr0 ]. induction is2 as [ assoc2 [ un2 [ lun2 run2 ] ] ]. simpl in *. apply (invmaponpathsweq (make_weq _ (isweqrmultingr_is is1 (opp2 x un2)))). simpl. induction is1 as [ [ assoc1 [ un1 [ lun1 run1 ] ] ] [ inv0 [ linv0 rinv0 ] ] ]. unfold unel_is. simpl in *. rewrite (lun1 (opp2 x un2)). induction (ldistr0 un1 un2 x). rewrite (run2 x). rewrite (lun1 un2). rewrite (run2 x). apply idpath. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
multx0_is_l
423
Lemma mult0x_is_l {X : UU} {opp1 opp2 : binop X} (is1 : isgrop opp1) (is2 : ismonoidop opp2) (is12 : isdistr opp1 opp2) (x : X) : opp2 (unel_is (pr1 is1)) x = unel_is (pr1 is1). Proof. induction is12 as [ ldistr0 rdistr0 ]. induction is2 as [ assoc2 [ un2 [ lun2 run2 ] ] ]. simpl in *. apply (invmaponpathsweq (make_weq _ (isweqrmultingr_is is1 (opp2 un2 x)))). simpl. induction is1 as [ [ assoc1 [ un1 [ lun1 run1 ] ] ] [ inv0 [ linv0 rinv0 ] ] ]. unfold unel_is. simpl in *. rewrite (lun1 (opp2 un2 x)). induction (rdistr0 un1 un2 x). rewrite (lun2 x). rewrite (lun1 un2). rewrite (lun2 x). apply idpath. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
mult0x_is_l
424
Definition minus1_is_l {X : UU} {opp1 opp2 : binop X} (is1 : isgrop opp1) (is2 : ismonoidop opp2) := (grinv_is is1) (unel_is is2).
Definition
Algebra
null
Algebra\BinaryOperations.v
minus1_is_l
425
Lemma islinvmultwithminus1_is_l {X : UU} {opp1 opp2 : binop X} (is1 : isgrop opp1) (is2 : ismonoidop opp2) (is12 : isdistr opp1 opp2) (x : X) : opp1 (opp2 (minus1_is_l is1 is2) x) x = unel_is (pr1 is1). Proof. set (xinv := opp2 (minus1_is_l is1 is2) x). rewrite <- (lunax_is is2 x). unfold xinv. rewrite <- (pr2 is12 _ _ x). unfold minus1_is_l. unfold grinv_is. rewrite (grlinvax_is is1 _). apply mult0x_is_l. - apply is2. - apply is12. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
islinvmultwithminus1_is_l
426
Lemma isrinvmultwithminus1_is_l {X : UU} {opp1 opp2 : binop X} (is1 : isgrop opp1) (is2 : ismonoidop opp2) (is12 : isdistr opp1 opp2) (x : X) : opp1 x (opp2 (minus1_is_l is1 is2) x) = unel_is (pr1 is1). Proof. set (xinv := opp2 (minus1_is_l is1 is2) x). rewrite <- (lunax_is is2 x). unfold xinv. rewrite <- (pr2 is12 _ _ x). unfold minus1_is_l. unfold grinv_is. rewrite (grrinvax_is is1 _). apply mult0x_is_l. apply is2. apply is12. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isrinvmultwithminus1_is_l
427
Lemma isminusmultwithminus1_is_l {X : UU} {opp1 opp2 : binop X} (is1 : isgrop opp1) (is2 : ismonoidop opp2) (is12 : isdistr opp1 opp2) (x : X) : opp2 (minus1_is_l is1 is2) x = grinv_is is1 x. Proof. apply (invmaponpathsweq (make_weq _ (isweqrmultingr_is is1 x))). simpl. rewrite (islinvmultwithminus1_is_l is1 is2 is12 x). unfold grinv_is. rewrite (grlinvax_is is1 x). apply idpath. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isminusmultwithminus1_is_l
428
Lemma isringopsif {X : UU} {opp1 opp2 : binop X} (is1 : isgrop opp1) (is2 : ismonoidop opp2) (is12 : isdistr opp1 opp2) : isringops opp1 opp2. Proof. set (assoc1 := pr1 (pr1 is1)). split. - split. + exists is1. intros x y. apply (invmaponpathsweq (make_weq _ (isweqrmultingr_is is1 (opp2 (minus1_is_l is1 is2) (opp1 x y))))). simpl. rewrite (isrinvmultwithminus1_is_l is1 is2 is12 (opp1 x y)). rewrite (pr1 is12 x y _). induction (assoc1 (opp1 y x) (opp2 (minus1_is_l is1 is2) x) (opp2 (minus1_is_l is1 is2) y)). rewrite (assoc1 y x _). induction (!isrinvmultwithminus1_is_l is1 is2 is12 x). unfold unel_is. rewrite (runax_is (pr1 is1) y). rewrite (isrinvmultwithminus1_is_l is1 is2 is12 y). apply idpath. + apply is2. - apply is12. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isringopsif
429
Definition ringmultx0_is {X : UU} {opp1 opp2 : binop X} (is : isringops opp1 opp2) : ∏ (x : X), opp2 x (unel_is (pr1 (ringop1axs_is is))) = unel_is (pr1 (ringop1axs_is is)) := multx0_is_l (ringop1axs_is is) (ringop2axs_is is) (ringdistraxs_is is).
Definition
Algebra
null
Algebra\BinaryOperations.v
ringmultx0_is
430
Definition ringmult0x_is {X : UU} {opp1 opp2 : binop X} (is : isringops opp1 opp2) : ∏ (x : X), opp2 (unel_is (pr1 (ringop1axs_is is))) x = unel_is (pr1 (ringop1axs_is is)) := mult0x_is_l (ringop1axs_is is) (ringop2axs_is is) (ringdistraxs_is is).
Definition
Algebra
null
Algebra\BinaryOperations.v
ringmult0x_is
431
Definition ringminus1_is {X : UU} {opp1 opp2 : binop X} (is : isringops opp1 opp2) : X := minus1_is_l (ringop1axs_is is) (ringop2axs_is is).
Definition
Algebra
null
Algebra\BinaryOperations.v
ringminus1_is
432
Definition ringmultwithminus1_is {X : UU} {opp1 opp2 : binop X} (is : isringops opp1 opp2) : ∏ (x : X), opp2 (minus1_is_l (ringop1axs_is is) (ringop2axs_is is)) x = grinv_is (ringop1axs_is is) x := isminusmultwithminus1_is_l (ringop1axs_is is) (ringop2axs_is is) (ringdistraxs_is is).
Definition
Algebra
null
Algebra\BinaryOperations.v
ringmultwithminus1_is
433
Definition isringopstoisrigops (X : UU) (opp1 opp2 : binop X) (is : isringops opp1 opp2) : isrigops opp1 opp2. Proof. split. - exists (isabgroptoisabmonoidop _ _ (ringop1axs_is is) ,, ringop2axs_is is). split. + simpl. apply (ringmult0x_is). + simpl. apply (ringmultx0_is). - apply (ringdistraxs_is is). Defined.
Definition
Algebra
null
Algebra\BinaryOperations.v
isringopstoisrigops
434
Definition iscommrigops {X : UU} (opp1 opp2 : binop X) : UU := (isrigops opp1 opp2) Γ— (iscomm opp2).
Definition
Algebra
null
Algebra\BinaryOperations.v
iscommrigops
435
Definition pr1iscommrigops (X : UU) (opp1 opp2 : binop X) : iscommrigops opp1 opp2 β†’ isrigops opp1 opp2 := @pr1 _ _.
Definition
Algebra
null
Algebra\BinaryOperations.v
pr1iscommrigops
436
Definition rigiscommop2_is {X : UU} {opp1 opp2 : binop X} (is : iscommrigops opp1 opp2) : iscomm opp2 := pr2 is.
Definition
Algebra
null
Algebra\BinaryOperations.v
rigiscommop2_is
437
Lemma isapropiscommrig {X : hSet} (opp1 opp2 : binop X) : isaprop (iscommrigops opp1 opp2). Proof. apply (isofhleveldirprod 1). - apply isapropisrigops. - apply isapropiscomm. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isapropiscommrig
438
Definition iscommringops {X : UU} (opp1 opp2 : binop X) : UU := (isringops opp1 opp2) Γ— (iscomm opp2).
Definition
Algebra
null
Algebra\BinaryOperations.v
iscommringops
439
Definition pr1iscommringops (X : UU) (opp1 opp2 : binop X) : iscommringops opp1 opp2 β†’ isringops opp1 opp2 := @pr1 _ _.
Definition
Algebra
null
Algebra\BinaryOperations.v
pr1iscommringops
440
Definition ringiscommop2_is {X : UU} {opp1 opp2 : binop X} (is : iscommringops opp1 opp2) : iscomm opp2 := pr2 is.
Definition
Algebra
null
Algebra\BinaryOperations.v
ringiscommop2_is
441
Lemma isapropiscommring {X : hSet} (opp1 opp2 : binop X) : isaprop (iscommringops opp1 opp2). Proof. apply (isofhleveldirprod 1). - apply isapropisringops. - apply isapropiscomm. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isapropiscommring
442
Definition iscommringopstoiscommrigops (X : UU) (opp1 opp2 : binop X) (is : iscommringops opp1 opp2) : iscommrigops opp1 opp2 := isringopstoisrigops _ _ _ (pr1 is) ,, pr2 is.
Definition
Algebra
null
Algebra\BinaryOperations.v
iscommringopstoiscommrigops
443
Lemma isassoc_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) : isassoc opp β†’ isassoc (binop_weq_fwd H opp). Proof. intros is x y z. apply (maponpaths H). refine (_ @ is _ _ _ @ _). - apply (maponpaths (Ξ» x, opp x _)). apply homotinvweqweq. - apply maponpaths. apply homotinvweqweq0. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isassoc_weq_fwd
444
Lemma islunit_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) (x0 : X) : islunit opp x0 β†’ islunit (binop_weq_fwd H opp) (H x0). Proof. intros is y. unfold binop_weq_fwd. refine (maponpaths _ _ @ _). - refine (maponpaths (Ξ» x, opp x _) _ @ _). + apply homotinvweqweq. + apply is. - apply homotweqinvweq. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
islunit_weq_fwd
445
Lemma isrunit_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) (x0 : X) : isrunit opp x0 β†’ isrunit (binop_weq_fwd H opp) (H x0). Proof. intros is y. unfold binop_weq_fwd. refine (maponpaths _ _ @ _). - refine (maponpaths (opp _) _ @ _). + apply homotinvweqweq. + apply is. - apply homotweqinvweq. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isrunit_weq_fwd
446
Lemma isunit_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) (x0 : X) : isunit opp x0 β†’ isunit (binop_weq_fwd H opp) (H x0). Proof. intro is. split. apply islunit_weq_fwd, (pr1 is). apply isrunit_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isunit_weq_fwd
447
Lemma isunital_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) : isunital opp β†’ isunital (binop_weq_fwd H opp). Proof. intro is. exists (H (pr1 is)). apply isunit_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isunital_weq_fwd
448
Lemma ismonoidop_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) : ismonoidop opp β†’ ismonoidop (binop_weq_fwd H opp). Proof. intro is. split. apply isassoc_weq_fwd, (pr1 is). apply isunital_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
ismonoidop_weq_fwd
449
Lemma islinv_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) (x0 : X) (inv : X β†’ X) : islinv opp x0 inv β†’ islinv (binop_weq_fwd H opp) (H x0) (Ξ» y : Y, H (inv (invmap H y))). Proof. intros is y. unfold binop_weq_fwd. apply maponpaths. refine (_ @ is _). apply (maponpaths (Ξ» x, opp x _)). apply homotinvweqweq. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
islinv_weq_fwd
450
Lemma isrinv_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) (x0 : X) (inv : X β†’ X) : isrinv opp x0 inv β†’ isrinv (binop_weq_fwd H opp) (H x0) (Ξ» y : Y, H (inv (invmap H y))). Proof. intros is y. unfold binop_weq_fwd. apply maponpaths. refine (_ @ is _). apply (maponpaths (opp _)). apply homotinvweqweq. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isrinv_weq_fwd
451
Lemma isinv_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) (x0 : X) (inv : X β†’ X) : isinv opp x0 inv β†’ isinv (binop_weq_fwd H opp) (H x0) (Ξ» y : Y, H (inv (invmap H y))). Proof. intro is. split. apply islinv_weq_fwd, (pr1 is). apply isrinv_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isinv_weq_fwd
452
Lemma invstruct_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) (is : ismonoidop opp) : invstruct opp is β†’ invstruct (binop_weq_fwd H opp) (ismonoidop_weq_fwd H opp is). Proof. intro inv. exists (Ξ» y : Y, H (pr1 inv (invmap H y))). apply isinv_weq_fwd, (pr2 inv). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
invstruct_weq_fwd
453
Lemma isgrop_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) : isgrop opp β†’ isgrop (binop_weq_fwd H opp). Proof. intro is. use tpair. - apply ismonoidop_weq_fwd, (pr1 is). - apply invstruct_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isgrop_weq_fwd
454
Lemma iscomm_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) : iscomm opp β†’ iscomm (binop_weq_fwd H opp). Proof. intros is x y. unfold binop_weq_fwd. apply maponpaths, is. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
iscomm_weq_fwd
455
Lemma isabmonoidop_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) : isabmonoidop opp β†’ isabmonoidop (binop_weq_fwd H opp). Proof. intro is. split. apply ismonoidop_weq_fwd, (pr1 is). apply iscomm_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isabmonoidop_weq_fwd
456
Lemma isabgrop_weq_fwd {X Y : UU} (H : X ≃ Y) (opp : binop X) : isabgrop opp β†’ isabgrop (binop_weq_fwd H opp). Proof. intro is. split. apply isgrop_weq_fwd, (pr1 is). apply iscomm_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isabgrop_weq_fwd
457
Lemma isldistr_weq_fwd {X Y : UU} (H : X ≃ Y) (op1 op2 : binop X) : isldistr op1 op2 β†’ isldistr (binop_weq_fwd H op1) (binop_weq_fwd H op2). Proof. intros is x y z. unfold binop_weq_fwd. apply maponpaths. refine (_ @ is _ _ _ @ _). - apply maponpaths. apply homotinvweqweq. - apply map_on_two_paths ; apply homotinvweqweq0. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isldistr_weq_fwd
458
Lemma isrdistr_weq_fwd {X Y : UU} (H : X ≃ Y) (op1 op2 : binop X) : isrdistr op1 op2 β†’ isrdistr (binop_weq_fwd H op1) (binop_weq_fwd H op2). Proof. intros is x y z. unfold binop_weq_fwd. apply maponpaths. refine (_ @ is _ _ _ @ _). - apply (maponpaths (Ξ» x, op2 x _)). apply homotinvweqweq. - apply map_on_two_paths ; apply homotinvweqweq0. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isrdistr_weq_fwd
459
Lemma isdistr_weq_fwd {X Y : UU} (H : X ≃ Y) (op1 op2 : binop X) : isdistr op1 op2 β†’ isdistr (binop_weq_fwd H op1) (binop_weq_fwd H op2). Proof. intro is. split. apply isldistr_weq_fwd, (pr1 is). apply isrdistr_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isdistr_weq_fwd
460
Lemma isabsorb_weq_fwd {X Y : UU} (H : X ≃ Y) (op1 op2 : binop X) : isabsorb op1 op2 β†’ isabsorb (binop_weq_fwd H op1) (binop_weq_fwd H op2). Proof. intros is x y. unfold binop_weq_fwd. refine (_ @ homotweqinvweq H _). apply maponpaths. refine (_ @ is _ _). apply maponpaths. apply (homotinvweqweq H). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isabsorb_weq_fwd
461
Lemma isrigops_weq_fwd {X Y : UU} (H : X ≃ Y) (op1 op2 : binop X) : isrigops op1 op2 β†’ isrigops (binop_weq_fwd H op1) (binop_weq_fwd H op2). Proof. intro is. split. - use tpair. + split. apply isabmonoidop_weq_fwd, (pr1 (pr1 (pr1 is))). apply ismonoidop_weq_fwd, (pr2 (pr1 (pr1 is))). + split ; simpl. * intros x. apply (maponpaths H). refine (_ @ pr1 (pr2 (pr1 is)) _). apply (maponpaths (Ξ» x, op2 x _)). apply homotinvweqweq. * intros x. apply (maponpaths H). refine (_ @ pr2 (pr2 (pr1 is)) _). apply (maponpaths (op2 _)). apply homotinvweqweq. - apply isdistr_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isrigops_weq_fwd
462
Lemma isringops_weq_fwd {X Y : UU} (H : X ≃ Y) (op1 op2 : binop X) : isringops op1 op2 β†’ isringops (binop_weq_fwd H op1) (binop_weq_fwd H op2). Proof. intro is. split. - split. + apply isabgrop_weq_fwd, (pr1 (pr1 is)). + apply ismonoidop_weq_fwd, (pr2 (pr1 is)). - apply isdistr_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isringops_weq_fwd
463
Lemma iscommrigops_weq_fwd {X Y : UU} (H : X ≃ Y) (op1 op2 : binop X) : iscommrigops op1 op2 β†’ iscommrigops (binop_weq_fwd H op1) (binop_weq_fwd H op2). Proof. intro is. split. - apply isrigops_weq_fwd, (pr1 is). - apply iscomm_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
iscommrigops_weq_fwd
464
Lemma iscommringops_weq_fwd {X Y : UU} (H : X ≃ Y) (op1 op2 : binop X) : iscommringops op1 op2 β†’ iscommringops (binop_weq_fwd H op1) (binop_weq_fwd H op2). Proof. intro is. split. - apply isringops_weq_fwd, (pr1 is). - apply iscomm_weq_fwd, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
iscommringops_weq_fwd
465
Lemma isassoc_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) : isassoc opp β†’ isassoc (binop_weq_bck H opp). Proof. intros is x y z. apply (maponpaths (invmap H)). refine (_ @ is _ _ _ @ _). - apply (maponpaths (Ξ» x, opp x _)). apply homotweqinvweq. - apply maponpaths. symmetry. apply homotweqinvweq. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isassoc_weq_bck
466
Lemma islunit_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) (x0 : Y) : islunit opp x0 β†’ islunit (binop_weq_bck H opp) (invmap H x0). Proof. intros is y. unfold binop_weq_bck. refine (maponpaths _ _ @ _). - refine (maponpaths (Ξ» x, opp x _) _ @ _). + apply homotweqinvweq. + apply is. - apply homotinvweqweq. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
islunit_weq_bck
467
Lemma isrunit_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) (x0 : Y) : isrunit opp x0 β†’ isrunit (binop_weq_bck H opp) (invmap H x0). Proof. intros is y. unfold binop_weq_bck. refine (maponpaths _ _ @ _). - refine (maponpaths (opp _) _ @ _). + apply homotweqinvweq. + apply is. - apply homotinvweqweq. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isrunit_weq_bck
468
Lemma isunit_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) (x0 : Y) : isunit opp x0 β†’ isunit (binop_weq_bck H opp) (invmap H x0). Proof. intro is. split. apply islunit_weq_bck, (pr1 is). apply isrunit_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isunit_weq_bck
469
Lemma isunital_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) : isunital opp β†’ isunital (binop_weq_bck H opp). Proof. intro is. exists (invmap H (pr1 is)). apply isunit_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isunital_weq_bck
470
Lemma ismonoidop_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) : ismonoidop opp β†’ ismonoidop (binop_weq_bck H opp). Proof. intro is. split. apply isassoc_weq_bck, (pr1 is). apply isunital_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
ismonoidop_weq_bck
471
Lemma islinv_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) (x0 : Y) (inv : Y β†’ Y) : islinv opp x0 inv β†’ islinv (binop_weq_bck H opp) (invmap H x0) (Ξ» y : X, invmap H (inv (H y))). Proof. intros is y. unfold binop_weq_bck. apply maponpaths. refine (_ @ is _). apply (maponpaths (Ξ» x, opp x _)). apply homotweqinvweq. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
islinv_weq_bck
472
Lemma isrinv_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) (x0 : Y) (inv : Y β†’ Y) : isrinv opp x0 inv β†’ isrinv (binop_weq_bck H opp) (invmap H x0) (Ξ» y : X, invmap H (inv (H y))). Proof. intros is y. unfold binop_weq_bck. apply maponpaths. refine (_ @ is _). apply (maponpaths (opp _)). apply homotweqinvweq. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isrinv_weq_bck
473
Lemma isinv_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) (x0 : Y) (inv : Y β†’ Y) : isinv opp x0 inv β†’ isinv (binop_weq_bck H opp) (invmap H x0) (Ξ» y : X, invmap H (inv (H y))). Proof. intro is. split. apply islinv_weq_bck, (pr1 is). apply isrinv_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isinv_weq_bck
474
Lemma invstruct_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) (is : ismonoidop opp) : invstruct opp is β†’ invstruct (binop_weq_bck H opp) (ismonoidop_weq_bck H opp is). Proof. intro inv. exists (Ξ» y : X, invmap H (pr1 inv (H y))). apply isinv_weq_bck, (pr2 inv). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
invstruct_weq_bck
475
Lemma isgrop_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) : isgrop opp β†’ isgrop (binop_weq_bck H opp). Proof. intro is. use tpair. apply ismonoidop_weq_bck, (pr1 is). apply invstruct_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isgrop_weq_bck
476
Lemma iscomm_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) : iscomm opp β†’ iscomm (binop_weq_bck H opp). Proof. intros is x y. unfold binop_weq_bck. apply maponpaths, is. Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
iscomm_weq_bck
477
Lemma isabmonoidop_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) : isabmonoidop opp β†’ isabmonoidop (binop_weq_bck H opp). Proof. intro is. split. apply ismonoidop_weq_bck, (pr1 is). apply iscomm_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isabmonoidop_weq_bck
478
Lemma isabgrop_weq_bck {X Y : UU} (H : X ≃ Y) (opp : binop Y) : isabgrop opp β†’ isabgrop (binop_weq_bck H opp). Proof. intro is. split. apply isgrop_weq_bck, (pr1 is). apply iscomm_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isabgrop_weq_bck
479
Lemma isldistr_weq_bck {X Y : UU} (H : X ≃ Y) (op1 op2 : binop Y) : isldistr op1 op2 β†’ isldistr (binop_weq_bck H op1) (binop_weq_bck H op2). Proof. intros is x y z. unfold binop_weq_bck. apply maponpaths. refine (_ @ is _ _ _ @ _). - apply maponpaths. apply homotweqinvweq. - apply map_on_two_paths; exact (!homotweqinvweq _ _). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isldistr_weq_bck
480
Lemma isrdistr_weq_bck {X Y : UU} (H : X ≃ Y) (op1 op2 : binop Y) : isrdistr op1 op2 β†’ isrdistr (binop_weq_bck H op1) (binop_weq_bck H op2). Proof. intros is x y z. unfold binop_weq_bck. apply maponpaths. refine (_ @ is _ _ _ @ _). - apply (maponpaths (Ξ» x, op2 x _)). apply homotweqinvweq. - apply map_on_two_paths; exact (!homotweqinvweq _ _). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isrdistr_weq_bck
481
Lemma isdistr_weq_bck {X Y : UU} (H : X ≃ Y) (op1 op2 : binop Y) : isdistr op1 op2 β†’ isdistr (binop_weq_bck H op1) (binop_weq_bck H op2). Proof. intro is. split. apply isldistr_weq_bck, (pr1 is). apply isrdistr_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isdistr_weq_bck
482
Lemma isabsorb_weq_bck {X Y : UU} (H : X ≃ Y) (op1 op2 : binop Y) : isabsorb op1 op2 β†’ isabsorb (binop_weq_bck H op1) (binop_weq_bck H op2). Proof. intros is x y. unfold binop_weq_bck. refine (_ @ homotinvweqweq H _). apply maponpaths. refine (_ @ is _ _). apply maponpaths. apply (homotweqinvweq H). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isabsorb_weq_bck
483
Lemma isrigops_weq_bck {X Y : UU} (H : X ≃ Y) (op1 op2 : binop Y) : isrigops op1 op2 β†’ isrigops (binop_weq_bck H op1) (binop_weq_bck H op2). Proof. intro is. split. - use tpair. + split. apply isabmonoidop_weq_bck, (pr1 (pr1 (pr1 is))). apply ismonoidop_weq_bck, (pr2 (pr1 (pr1 is))). + split ; simpl. * intros x. apply (maponpaths (invmap H)). refine (_ @ pr1 (pr2 (pr1 is)) _). apply (maponpaths (Ξ» x, op2 x _)). apply homotweqinvweq. * intros x. apply (maponpaths (invmap H)). refine (_ @ pr2 (pr2 (pr1 is)) _). apply (maponpaths (op2 _)). apply homotweqinvweq. - apply isdistr_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isrigops_weq_bck
484
Lemma isringops_weq_bck {X Y : UU} (H : X ≃ Y) (op1 op2 : binop Y) : isringops op1 op2 β†’ isringops (binop_weq_bck H op1) (binop_weq_bck H op2). Proof. intro is. split. - split. + apply isabgrop_weq_bck, (pr1 (pr1 is)). + apply ismonoidop_weq_bck, (pr2 (pr1 is)). - apply isdistr_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isringops_weq_bck
485
Lemma iscommrigops_weq_bck {X Y : UU} (H : X ≃ Y) (op1 op2 : binop Y) : iscommrigops op1 op2 β†’ iscommrigops (binop_weq_bck H op1) (binop_weq_bck H op2). Proof. intro is. split. - apply isrigops_weq_bck, (pr1 is). - apply iscomm_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
iscommrigops_weq_bck
486
Lemma iscommringops_weq_bck {X Y : UU} (H : X ≃ Y) (op1 op2 : binop Y) : iscommringops op1 op2 β†’ iscommringops (binop_weq_bck H op1) (binop_weq_bck H op2). Proof. intro is. split. - apply isringops_weq_bck, (pr1 is). - apply iscomm_weq_bck, (pr2 is). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
iscommringops_weq_bck
487
Definition setwithbinop : UU := βˆ‘ (X : hSet), binop X.
Definition
Algebra
null
Algebra\BinaryOperations.v
setwithbinop
488
Definition make_setwithbinop (X : hSet) (opp : binop X) : setwithbinop := X ,, opp.
Definition
Algebra
null
Algebra\BinaryOperations.v
make_setwithbinop
489
Definition pr1setwithbinop : setwithbinop β†’ hSet := @pr1 _ (Ξ» X : hSet, binop X).
Definition
Algebra
null
Algebra\BinaryOperations.v
pr1setwithbinop
490
Definition op {X : setwithbinop} : binop X := pr2 X.
Definition
Algebra
null
Algebra\BinaryOperations.v
op
491
Definition isasetbinoponhSet (X : hSet) : isaset (@binop X).
Definition
Algebra
null
Algebra\BinaryOperations.v
isasetbinoponhSet
492
Definition setwithbinop_rev (X : setwithbinop) : setwithbinop := make_setwithbinop X (Ξ» x y, op y x).
Definition
Algebra
null
Algebra\BinaryOperations.v
setwithbinop_rev
493
Definition isbinopfun {X Y : setwithbinop} (f : X β†’ Y) : UU := ∏ x x' : X, f (op x x') = op (f x) (f x').
Definition
Algebra
null
Algebra\BinaryOperations.v
isbinopfun
494
Definition make_isbinopfun {X Y : setwithbinop} {f : X β†’ Y} (H : ∏ x x' : X, f (op x x') = op (f x) (f x')) : isbinopfun f := H.
Definition
Algebra
null
Algebra\BinaryOperations.v
make_isbinopfun
495
Lemma isapropisbinopfun {X Y : setwithbinop} (f : X β†’ Y) : isaprop (isbinopfun f). Proof. apply impred. intro x. apply impred. intro x'. apply (setproperty Y). Defined.
Lemma
Algebra
null
Algebra\BinaryOperations.v
isapropisbinopfun
496
Definition isbinopfun_twooutof3b {A B C : setwithbinop} (f : A β†’ B) (g : B β†’ C) (H : issurjective f) : isbinopfun (g ∘ f)%functions β†’ isbinopfun f β†’ isbinopfun g.
Definition
Algebra
null
Algebra\BinaryOperations.v
isbinopfun_twooutof3b
497
Definition binopfun (X Y : setwithbinop) : UU := βˆ‘ (f : X β†’ Y), isbinopfun f.
Definition
Algebra
null
Algebra\BinaryOperations.v
binopfun
498
Definition make_binopfun {X Y : setwithbinop} (f : X β†’ Y) (is : isbinopfun f) : binopfun X Y := f ,, is.
Definition
Algebra
null
Algebra\BinaryOperations.v
make_binopfun
499