Datasets:
annotations_creators:
- found
language_creators:
- found
language:
- ca
license:
- cc-by-nc-nd-4.0
multilinguality:
- monolingual
pretty_name: GuiaCat
size_categories:
- 'null': null
task_categories:
- text-classification
task_ids:
- sentiment-classification
- sentiment-scoring
Dataset Card for GuiaCat
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Point of Contact: blanca.calvo@bsc.es
Dataset Summary
GuiaCat is a dataset consisting of 5.750 restaurant reviews in Catalan, with 5 associated scores and a label of sentiment. The data was provided by GuiaCat and curated by the BSC.
Supported Tasks and Leaderboards
This corpus is mainly intended for sentiment analysis.
Languages
The dataset is in Catalan (ca-CA
).
Dataset Structure
The dataset consists of restaurant reviews labelled with 5 scores: service, food, price-quality, environment, and average. Reviews also have a sentiment label, derived from the average score, all stored as a csv file.
Data Instances
7,7,7,7,7.0,"Aquest restaurant té una llarga història. Ara han tornat a canviar d'amos i aquest canvi s'ha vist molt repercutit en la carta, preus, servei, etc. Hi ha molta varietat de menjar, i tot boníssim, amb especialitats molt ben trobades. El servei molt càlid i agradable, dóna gust que et serveixin així. I la decoració molt agradable també, bastant curiosa. En fi, pel meu gust, un bon restaurant i bé de preu.",bo
8,9,8,7,8.0,"Molt recomanable en tots els sentits. El servei és molt atent, pulcre i gens agobiant; alhora els plats també presenten un aspecte acurat, cosa que fa, juntament amb l'ambient, que t'oblidis de que, malauradament, està situat pròxim a l'autopista.Com deia, l'ambient és molt acollidor, té un menjador principal molt elegant, perfecte per quedar bé amb tothom!Tot i això, destacar la bona calitat / preu, ja que aquest restaurant té una carta molt extensa en totes les branques i completa, tant de menjar com de vins. Pel qui entengui de vins, podriem dir que tot i tenir una carta molt rica, es recolza una mica en els clàssics.",molt bo
Data Fields
- service: a score from 0 to 10 grading the service
- food: a score from 0 to 10 grading the food
- price-quality: a score from 0 to 10 grading the relation between price and quality
- environment: a score from 0 to 10 grading the environment
- avg: average of all the scores
- text: the review
- label: it can be "molt bo", "bo", "regular", "dolent", "molt dolent"
Data Splits
- dev.csv: 500 examples
- test.csv: 500 examples
- train.csv: 4,750 examples
Dataset Creation
Curation Rationale
We created this corpus to contribute to the development of language models in Catalan, a low-resource language.
Source Data
The data of this dataset has been provided by GuiaCat.
Initial Data Collection and Normalization
[N/A]
Who are the source language producers?
The language producers were the users from GuiaCat.
Annotations
The annotations are automatically derived from the scores that the users provided while reviewing the restaurants.
Annotation process
The mapping between average scores and labels is:
- Higher than 8: molt bo
- Between 8 and 6: bo
- Between 6 and 4: regular
- Between 4 and 2: dolent
- Less than 2: molt dolent
Who are the annotators?
Users
Personal and Sensitive Information
No personal information included, although it could contain hate or abusive language.
Considerations for Using the Data
Social Impact of Dataset
We hope this corpus contributes to the development of language models in Catalan, a low-resource language.
Discussion of Biases
We are aware that this data might contain biases. We have not applied any steps to reduce their impact.
Other Known Limitations
[N/A]
Additional Information
Dataset Curators
Blanca Calvo Figueras, Barcelona Supercomputing Center (blanca.calvo@bsc.es)
Licensing Information
Creative Commons Attribution Non-commercial No-Derivatives 4.0 International.
Citation Information
Contributions
We want to thank GuiaCat for providing this data.
Funding
This work was funded by the Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya within the framework of Projecte AINA.