url
stringlengths 58
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 72
75
| comments_url
stringlengths 67
70
| events_url
stringlengths 65
68
| html_url
stringlengths 46
51
| id
int64 599M
1.9B
| node_id
stringlengths 18
32
| number
int64 1
6.24k
| title
stringlengths 1
290
| user
dict | labels
listlengths 0
4
| state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
listlengths 0
4
| milestone
dict | comments
sequencelengths 0
30
| created_at
unknown | updated_at
unknown | closed_at
unknown | author_association
stringclasses 3
values | active_lock_reason
float64 | body
stringlengths 0
228k
⌀ | reactions
dict | timeline_url
stringlengths 67
70
| performed_via_github_app
float64 | state_reason
stringclasses 3
values | draft
float64 0
1
⌀ | pull_request
dict | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/6242 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6242/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6242/comments | https://api.github.com/repos/huggingface/datasets/issues/6242/events | https://github.com/huggingface/datasets/issues/6242 | 1,896,899,123 | I_kwDODunzps5xEGIz | 6,242 | Data alteration when loading dataset with unspecified inner sequence length | {
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/qgallouedec",
"id": 45557362,
"login": "qgallouedec",
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"type": "User",
"url": "https://api.github.com/users/qgallouedec"
} | [] | open | false | null | [] | null | [
"While this issue may seem specific, it led to a silent problem in my workflow that took days to diagnose. If this feature is not intended to be supported, an error should be raised when encountering this configuration to prevent such issues.",
"Thanks for reporting! This is a MRE:\r\n\r\n```python\r\nimport pyarrow as pa\r\nfrom datasets.table import cast_array_to_feature\r\nfrom datasets import Sequence, Value\r\ndata = [\r\n [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]],\r\n [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]],\r\n]\r\narr = pa.array(data, pa.list_(pa.list_(pa.float32(), 3)))\r\ncast_array_to_feature(arr, Sequence(Sequence(Value(\"float32\"))))\r\n```\r\n\r\nI've opened a PR with a fix."
] | "2023-09-14T16:12:45" | "2023-09-14T16:15:53" | null | CONTRIBUTOR | null | ### Describe the bug
When a dataset saved with a specified inner sequence length is loaded without specifying that length, the original data is altered and becomes inconsistent.
### Steps to reproduce the bug
```python
from datasets import Dataset, Features, Value, Sequence, load_dataset
# Repository ID
repo_id = "my_repo_id"
# Define features with a specific length of 3 for each inner sequence
specified_features = Features({"key": Sequence(Sequence(Value("float32"), length=3))})
# Create a dataset with the specified features
data = [
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]],
[[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]],
]
dataset = Dataset.from_dict({"key": data}, features=specified_features)
# Push the dataset to the hub
dataset.push_to_hub(repo_id)
# Define features without specifying the length
unspecified_features = Features({"key": Sequence(Sequence(Value("float32")))})
# Load the dataset from the hub with this new feature definition
dataset = load_dataset(f"qgallouedec/{repo_id}", split="train", features=unspecified_features)
# The obtained data is altered
print(dataset.to_dict()) # {'key': [[[1.0], [2.0]], [[3.0], [4.0]]]}
```
### Expected behavior
```python
print(dataset.to_dict()) # {'key': [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]]}
```
### Environment info
- `datasets` version: 2.14.4
- Platform: Linux-6.2.0-32-generic-x86_64-with-glibc2.35
- Python version: 3.9.12
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.3 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6242/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6242/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6241 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6241/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6241/comments | https://api.github.com/repos/huggingface/datasets/issues/6241/events | https://github.com/huggingface/datasets/pull/6241 | 1,896,429,694 | PR_kwDODunzps5aVfl- | 6,241 | Remove unused global variables in `audio.py` | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | open | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006753 / 0.011353 (-0.004600) | 0.004027 / 0.011008 (-0.006982) | 0.084200 / 0.038508 (0.045692) | 0.072233 / 0.023109 (0.049124) | 0.361535 / 0.275898 (0.085637) | 0.386196 / 0.323480 (0.062716) | 0.004047 / 0.007986 (-0.003939) | 0.003416 / 0.004328 (-0.000912) | 0.064724 / 0.004250 (0.060474) | 0.055740 / 0.037052 (0.018688) | 0.360422 / 0.258489 (0.101933) | 0.399230 / 0.293841 (0.105389) | 0.031537 / 0.128546 (-0.097009) | 0.008630 / 0.075646 (-0.067016) | 0.289652 / 0.419271 (-0.129620) | 0.052881 / 0.043533 (0.009348) | 0.359538 / 0.255139 (0.104399) | 0.379410 / 0.283200 (0.096211) | 0.024539 / 0.141683 (-0.117144) | 1.470891 / 1.452155 (0.018736) | 1.578879 / 1.492716 (0.086163) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239200 / 0.018006 (0.221194) | 0.462100 / 0.000490 (0.461610) | 0.009055 / 0.000200 (0.008856) | 0.000406 / 0.000054 (0.000352) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028736 / 0.037411 (-0.008675) | 0.088051 / 0.014526 (0.073525) | 0.098101 / 0.176557 (-0.078456) | 0.152399 / 0.737135 (-0.584737) | 0.098776 / 0.296338 (-0.197563) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401761 / 0.215209 (0.186552) | 4.014143 / 2.077655 (1.936488) | 2.033255 / 1.504120 (0.529135) | 1.855347 / 1.541195 (0.314152) | 1.996144 / 1.468490 (0.527654) | 0.488545 / 4.584777 (-4.096232) | 3.712030 / 3.745712 (-0.033682) | 3.439725 / 5.269862 (-1.830137) | 2.119289 / 4.565676 (-2.446388) | 0.057523 / 0.424275 (-0.366752) | 0.007780 / 0.007607 (0.000173) | 0.479522 / 0.226044 (0.253477) | 4.798218 / 2.268929 (2.529290) | 2.543816 / 55.444624 (-52.900809) | 2.180392 / 6.876477 (-4.696085) | 2.427195 / 2.142072 (0.285122) | 0.602071 / 4.805227 (-4.203156) | 0.133450 / 6.500664 (-6.367214) | 0.061975 / 0.075469 (-0.013494) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.250040 / 1.841788 (-0.591748) | 19.532327 / 8.074308 (11.458019) | 14.200298 / 10.191392 (4.008906) | 0.165165 / 0.680424 (-0.515259) | 0.018326 / 0.534201 (-0.515875) | 0.389788 / 0.579283 (-0.189495) | 0.419301 / 0.434364 (-0.015063) | 0.452645 / 0.540337 (-0.087693) | 0.643409 / 1.386936 (-0.743527) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007040 / 0.011353 (-0.004313) | 0.004157 / 0.011008 (-0.006851) | 0.065439 / 0.038508 (0.026931) | 0.083210 / 0.023109 (0.060101) | 0.406707 / 0.275898 (0.130809) | 0.442759 / 0.323480 (0.119279) | 0.006321 / 0.007986 (-0.001665) | 0.003684 / 0.004328 (-0.000645) | 0.064517 / 0.004250 (0.060266) | 0.060676 / 0.037052 (0.023624) | 0.413395 / 0.258489 (0.154906) | 0.446776 / 0.293841 (0.152935) | 0.032542 / 0.128546 (-0.096004) | 0.008614 / 0.075646 (-0.067033) | 0.071760 / 0.419271 (-0.347511) | 0.049646 / 0.043533 (0.006113) | 0.402409 / 0.255139 (0.147270) | 0.422775 / 0.283200 (0.139575) | 0.024846 / 0.141683 (-0.116836) | 1.522915 / 1.452155 (0.070761) | 1.566518 / 1.492716 (0.073802) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234478 / 0.018006 (0.216472) | 0.461318 / 0.000490 (0.460828) | 0.006304 / 0.000200 (0.006105) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036904 / 0.037411 (-0.000508) | 0.102144 / 0.014526 (0.087619) | 0.108985 / 0.176557 (-0.067572) | 0.162609 / 0.737135 (-0.574526) | 0.110295 / 0.296338 (-0.186044) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438735 / 0.215209 (0.223526) | 4.377602 / 2.077655 (2.299948) | 2.375305 / 1.504120 (0.871185) | 2.215877 / 1.541195 (0.674682) | 2.317468 / 1.468490 (0.848978) | 0.495137 / 4.584777 (-4.089640) | 3.726323 / 3.745712 (-0.019389) | 3.493785 / 5.269862 (-1.776077) | 2.177891 / 4.565676 (-2.387785) | 0.058975 / 0.424275 (-0.365300) | 0.007897 / 0.007607 (0.000290) | 0.514063 / 0.226044 (0.288019) | 5.132714 / 2.268929 (2.863786) | 2.914125 / 55.444624 (-52.530499) | 2.532912 / 6.876477 (-4.343564) | 2.776438 / 2.142072 (0.634365) | 0.624831 / 4.805227 (-4.180396) | 0.135023 / 6.500664 (-6.365641) | 0.062040 / 0.075469 (-0.013429) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.359970 / 1.841788 (-0.481818) | 20.816464 / 8.074308 (12.742156) | 16.103544 / 10.191392 (5.912152) | 0.149120 / 0.680424 (-0.531304) | 0.020279 / 0.534201 (-0.513922) | 0.408727 / 0.579283 (-0.170556) | 0.436191 / 0.434364 (0.001827) | 0.485056 / 0.540337 (-0.055281) | 0.737727 / 1.386936 (-0.649209) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d15280f435b7e27c9350a0cc37a07dbc5e2ea9ca \"CML watermark\")\n",
"CI failures are unrelated",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008102 / 0.011353 (-0.003251) | 0.004886 / 0.011008 (-0.006123) | 0.090482 / 0.038508 (0.051974) | 0.071594 / 0.023109 (0.048485) | 0.428678 / 0.275898 (0.152780) | 0.442179 / 0.323480 (0.118699) | 0.004329 / 0.007986 (-0.003657) | 0.003756 / 0.004328 (-0.000573) | 0.087125 / 0.004250 (0.082874) | 0.055159 / 0.037052 (0.018107) | 0.437646 / 0.258489 (0.179157) | 0.446665 / 0.293841 (0.152824) | 0.046402 / 0.128546 (-0.082145) | 0.014248 / 0.075646 (-0.061398) | 0.331401 / 0.419271 (-0.087871) | 0.062010 / 0.043533 (0.018478) | 0.434774 / 0.255139 (0.179635) | 0.441063 / 0.283200 (0.157863) | 0.037424 / 0.141683 (-0.104258) | 1.720276 / 1.452155 (0.268121) | 1.731491 / 1.492716 (0.238775) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.302935 / 0.018006 (0.284929) | 0.590556 / 0.000490 (0.590067) | 0.014473 / 0.000200 (0.014274) | 0.000712 / 0.000054 (0.000658) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031289 / 0.037411 (-0.006122) | 0.091175 / 0.014526 (0.076649) | 0.112895 / 0.176557 (-0.063661) | 0.199558 / 0.737135 (-0.537577) | 0.113397 / 0.296338 (-0.182942) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.571586 / 0.215209 (0.356377) | 5.706894 / 2.077655 (3.629240) | 2.512701 / 1.504120 (1.008581) | 2.151705 / 1.541195 (0.610510) | 2.252738 / 1.468490 (0.784248) | 0.857524 / 4.584777 (-3.727253) | 5.189027 / 3.745712 (1.443315) | 4.464979 / 5.269862 (-0.804882) | 2.787486 / 4.565676 (-1.778190) | 0.090161 / 0.424275 (-0.334115) | 0.008649 / 0.007607 (0.001042) | 0.703367 / 0.226044 (0.477322) | 7.128971 / 2.268929 (4.860043) | 3.437475 / 55.444624 (-52.007149) | 2.562291 / 6.876477 (-4.314186) | 2.753419 / 2.142072 (0.611346) | 0.981964 / 4.805227 (-3.823263) | 0.194533 / 6.500664 (-6.306131) | 0.069659 / 0.075469 (-0.005810) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.510356 / 1.841788 (-0.331431) | 22.414117 / 8.074308 (14.339809) | 20.325418 / 10.191392 (10.134025) | 0.226823 / 0.680424 (-0.453601) | 0.029123 / 0.534201 (-0.505078) | 0.454656 / 0.579283 (-0.124627) | 0.559588 / 0.434364 (0.125224) | 0.547386 / 0.540337 (0.007048) | 0.770169 / 1.386936 (-0.616767) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010167 / 0.011353 (-0.001186) | 0.005164 / 0.011008 (-0.005844) | 0.094897 / 0.038508 (0.056388) | 0.078027 / 0.023109 (0.054918) | 0.474442 / 0.275898 (0.198544) | 0.503362 / 0.323480 (0.179882) | 0.006988 / 0.007986 (-0.000998) | 0.005369 / 0.004328 (0.001041) | 0.079547 / 0.004250 (0.075297) | 0.059382 / 0.037052 (0.022329) | 0.468759 / 0.258489 (0.210270) | 0.566780 / 0.293841 (0.272939) | 0.050791 / 0.128546 (-0.077755) | 0.013191 / 0.075646 (-0.062455) | 0.086086 / 0.419271 (-0.333186) | 0.060399 / 0.043533 (0.016866) | 0.492985 / 0.255139 (0.237846) | 0.509139 / 0.283200 (0.225940) | 0.034537 / 0.141683 (-0.107146) | 1.699166 / 1.452155 (0.247011) | 1.789781 / 1.492716 (0.297065) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.278776 / 0.018006 (0.260769) | 0.615877 / 0.000490 (0.615387) | 0.009062 / 0.000200 (0.008862) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032931 / 0.037411 (-0.004481) | 0.094796 / 0.014526 (0.080270) | 0.126697 / 0.176557 (-0.049859) | 0.168172 / 0.737135 (-0.568963) | 0.113906 / 0.296338 (-0.182433) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602378 / 0.215209 (0.387169) | 5.987708 / 2.077655 (3.910054) | 2.800339 / 1.504120 (1.296219) | 2.474127 / 1.541195 (0.932932) | 2.502387 / 1.468490 (1.033897) | 0.808147 / 4.584777 (-3.776630) | 5.212691 / 3.745712 (1.466979) | 4.479452 / 5.269862 (-0.790409) | 2.831960 / 4.565676 (-1.733717) | 0.086777 / 0.424275 (-0.337498) | 0.009492 / 0.007607 (0.001885) | 0.716848 / 0.226044 (0.490803) | 7.099904 / 2.268929 (4.830975) | 3.794708 / 55.444624 (-51.649916) | 2.859826 / 6.876477 (-4.016650) | 3.109673 / 2.142072 (0.967600) | 0.936776 / 4.805227 (-3.868451) | 0.195152 / 6.500664 (-6.305512) | 0.074184 / 0.075469 (-0.001285) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.585419 / 1.841788 (-0.256369) | 22.420377 / 8.074308 (14.346068) | 20.761533 / 10.191392 (10.570141) | 0.228480 / 0.680424 (-0.451943) | 0.030944 / 0.534201 (-0.503257) | 0.444717 / 0.579283 (-0.134566) | 0.579632 / 0.434364 (0.145268) | 0.521669 / 0.540337 (-0.018669) | 0.748274 / 1.386936 (-0.638662) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#94e07965a400e6901f12e6f0f25c7090656c828c \"CML watermark\")\n"
] | "2023-09-14T12:06:32" | "2023-09-14T12:15:41" | null | CONTRIBUTOR | null | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6241/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6241/timeline | null | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6241.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6241",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6241.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6241"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6240 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6240/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6240/comments | https://api.github.com/repos/huggingface/datasets/issues/6240/events | https://github.com/huggingface/datasets/issues/6240 | 1,895,723,888 | I_kwDODunzps5w_nNw | 6,240 | Dataloader stuck on multiple GPUs | {
"avatar_url": "https://avatars.githubusercontent.com/u/40049003?v=4",
"events_url": "https://api.github.com/users/kuri54/events{/privacy}",
"followers_url": "https://api.github.com/users/kuri54/followers",
"following_url": "https://api.github.com/users/kuri54/following{/other_user}",
"gists_url": "https://api.github.com/users/kuri54/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kuri54",
"id": 40049003,
"login": "kuri54",
"node_id": "MDQ6VXNlcjQwMDQ5MDAz",
"organizations_url": "https://api.github.com/users/kuri54/orgs",
"received_events_url": "https://api.github.com/users/kuri54/received_events",
"repos_url": "https://api.github.com/users/kuri54/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kuri54/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kuri54/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kuri54"
} | [] | closed | false | null | [] | null | [
"What type of dataset are you using in this script? `torch.utils.data.Dataset` or `datasets.Dataset`? Please share the `datasets` package version if it's the latter. Otherwise, it's better to move this issue to the `accelerate` repo.",
"Very sorry, I thought I had a repo in `accelerate!`\r\nI will close this issue and repo the issue in the appropriate place."
] | "2023-09-14T05:30:30" | "2023-09-14T23:54:42" | "2023-09-14T23:54:42" | NONE | null | ### Describe the bug
I am trying to get CLIP to fine-tuning with my code.
When I tried to run it on multiple GPUs using accelerate, I encountered the following phenomenon.
- Validation dataloader stuck in 2nd epoch only on multi-GPU
Specifically, when the "for inputs in valid_loader:" process is finished, it does not proceed to the next step. train_loader process is completed. Also, both train and valid are working correctly in the first epoch.
The accelerate command at that time is as follows.
`accelerate launch --multi_gpu --num_processes=2 {script_name.py} {--arg1} {--arg2} ...`
- This will not happen when single GPU is used.
`CUDA_VISIBLE_DEVICES="0" accelerate launch {script_name.py} --arg1 --arg2 ...`
- Setting num_workers=0 in dataloader did not change the result.
### Steps to reproduce the bug
1. The codes for fine-tuning the regular CLIP were updated for accelerate.
2. Run the code with the accelerate command as `accelerate launch --multi_gpu --num_processes=2 {script_name.py} {--arg1} {--arg2} ...` and the above problem will occur.
3. CUDA_VISIBLE_DEVICES="0" accelerate launch {script_name.py} --arg1 --arg2 ...` , it works fine.
### Expected behavior
It Should end normally as if it was run on a single GPU.
### Environment info
Since `datasets-cli env` did not work, the environment is described below.
- OS: Ubuntu 22.04 with Docker
- Docker: 24.0.5, build ced0996
- Python: 3.10.12
- torch==2.0.1
- accelerate==0.21.0
- transformers==4.33.1 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6240/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6240/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6239 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6239/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6239/comments | https://api.github.com/repos/huggingface/datasets/issues/6239/events | https://github.com/huggingface/datasets/issues/6239 | 1,895,349,382 | I_kwDODunzps5w-LyG | 6,239 | Load local audio data doesn't work | {
"avatar_url": "https://avatars.githubusercontent.com/u/554032?v=4",
"events_url": "https://api.github.com/users/abodacs/events{/privacy}",
"followers_url": "https://api.github.com/users/abodacs/followers",
"following_url": "https://api.github.com/users/abodacs/following{/other_user}",
"gists_url": "https://api.github.com/users/abodacs/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/abodacs",
"id": 554032,
"login": "abodacs",
"node_id": "MDQ6VXNlcjU1NDAzMg==",
"organizations_url": "https://api.github.com/users/abodacs/orgs",
"received_events_url": "https://api.github.com/users/abodacs/received_events",
"repos_url": "https://api.github.com/users/abodacs/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/abodacs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/abodacs/subscriptions",
"type": "User",
"url": "https://api.github.com/users/abodacs"
} | [] | open | false | null | [] | null | [
"I think this is the same issue as https://github.com/huggingface/datasets/issues/4776. Maybe installing `ffmpeg` can fix it:\r\n```python\r\nadd-apt-repository -y ppa:savoury1/ffmpeg4\r\napt-get -qq install -y ffmpeg\r\n```\r\n\r\nHowever, the best solution is to use a newer version of `datasets`. In the recent releases, we've replaced `torchaudio` with `soundfile`, which is easier to install and faster.",
"@mariosasko \r\nThanks for your help"
] | "2023-09-13T22:30:01" | "2023-09-14T12:04:01" | null | NONE | null | ### Describe the bug
I get a RuntimeError from the following code:
```python
audio_dataset = Dataset.from_dict({"audio": ["/kaggle/input/bengaliai-speech/train_mp3s/000005f3362c.mp3"]}).cast_column("audio", Audio())
audio_dataset[0]
```
### Traceback
<details>
```python
RuntimeError Traceback (most recent call last)
Cell In[33], line 1
----> 1 train_dataset[0]
File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:1764, in Dataset.__getitem__(self, key)
1762 def __getitem__(self, key): # noqa: F811
1763 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools)."""
-> 1764 return self._getitem(
1765 key,
1766 )
File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:1749, in Dataset._getitem(self, key, decoded, **kwargs)
1747 formatter = get_formatter(format_type, features=self.features, decoded=decoded, **format_kwargs)
1748 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)
-> 1749 formatted_output = format_table(
1750 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns
1751 )
1752 return formatted_output
File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:532, in format_table(table, key, formatter, format_columns, output_all_columns)
530 python_formatter = PythonFormatter(features=None)
531 if format_columns is None:
--> 532 return formatter(pa_table, query_type=query_type)
533 elif query_type == "column":
534 if key in format_columns:
File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:281, in Formatter.__call__(self, pa_table, query_type)
279 def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]:
280 if query_type == "row":
--> 281 return self.format_row(pa_table)
282 elif query_type == "column":
283 return self.format_column(pa_table)
File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:312, in PythonFormatter.format_row(self, pa_table)
310 row = self.python_arrow_extractor().extract_row(pa_table)
311 if self.decoded:
--> 312 row = self.python_features_decoder.decode_row(row)
313 return row
File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:221, in PythonFeaturesDecoder.decode_row(self, row)
220 def decode_row(self, row: dict) -> dict:
--> 221 return self.features.decode_example(row) if self.features else row
File /opt/conda/lib/python3.10/site-packages/datasets/features/features.py:1386, in Features.decode_example(self, example)
1376 def decode_example(self, example: dict):
1377 """Decode example with custom feature decoding.
1378
1379 Args:
(...)
1383 :obj:`dict[str, Any]`
1384 """
-> 1386 return {
1387 column_name: decode_nested_example(feature, value)
1388 if self._column_requires_decoding[column_name]
1389 else value
1390 for column_name, (feature, value) in zip_dict(
1391 {key: value for key, value in self.items() if key in example}, example
1392 )
1393 }
File /opt/conda/lib/python3.10/site-packages/datasets/features/features.py:1387, in <dictcomp>(.0)
1376 def decode_example(self, example: dict):
1377 """Decode example with custom feature decoding.
1378
1379 Args:
(...)
1383 :obj:`dict[str, Any]`
1384 """
1386 return {
-> 1387 column_name: decode_nested_example(feature, value)
1388 if self._column_requires_decoding[column_name]
1389 else value
1390 for column_name, (feature, value) in zip_dict(
1391 {key: value for key, value in self.items() if key in example}, example
1392 )
1393 }
File /opt/conda/lib/python3.10/site-packages/datasets/features/features.py:1087, in decode_nested_example(schema, obj)
1085 # Object with special decoding:
1086 elif isinstance(schema, (Audio, Image)):
-> 1087 return schema.decode_example(obj) if obj is not None else None
1088 return obj
File /opt/conda/lib/python3.10/site-packages/datasets/features/audio.py:103, in Audio.decode_example(self, value)
101 raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.")
102 elif path is not None and path.endswith("mp3"):
--> 103 array, sampling_rate = self._decode_mp3(file if file else path)
104 elif path is not None and path.endswith("opus"):
105 if file:
File /opt/conda/lib/python3.10/site-packages/datasets/features/audio.py:241, in Audio._decode_mp3(self, path_or_file)
238 except RuntimeError as err:
239 raise ImportError("To support decoding 'mp3' audio files, please install 'sox'.") from err
--> 241 array, sampling_rate = torchaudio.load(path_or_file, format="mp3")
242 if self.sampling_rate and self.sampling_rate != sampling_rate:
243 if not hasattr(self, "_resampler") or self._resampler.orig_freq != sampling_rate:
File /opt/conda/lib/python3.10/site-packages/torchaudio/backend/sox_io_backend.py:256, in load(filepath, frame_offset, num_frames, normalize, channels_first, format)
254 if ret is not None:
255 return ret
--> 256 return _fallback_load(filepath, frame_offset, num_frames, normalize, channels_first, format)
File /opt/conda/lib/python3.10/site-packages/torchaudio/backend/sox_io_backend.py:30, in _fail_load(filepath, frame_offset, num_frames, normalize, channels_first, format)
22 def _fail_load(
23 filepath: str,
24 frame_offset: int = 0,
(...)
28 format: Optional[str] = None,
29 ) -> Tuple[torch.Tensor, int]:
---> 30 raise RuntimeError("Failed to load audio from {}".format(filepath))
RuntimeError: Failed to load audio from /kaggle/input/bengaliai-speech/train_mp3s/000005f3362c.mp3
```
</details>
### Steps to reproduce the bug
1. - Create a custom dataset using Local files of type mp3.
3. - Try to read the first audio item.
### Expected behavior
Expected output
```python
audio_dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': 'path/to/audio_1',
'sampling_rate': 16000}
```
### Environment info
N/A | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6239/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6239/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6238 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6238/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6238/comments | https://api.github.com/repos/huggingface/datasets/issues/6238/events | https://github.com/huggingface/datasets/issues/6238 | 1,895,207,828 | I_kwDODunzps5w9pOU | 6,238 | `dataset.filter` ALWAYS removes the first item from the dataset when using batched=True | {
"avatar_url": "https://avatars.githubusercontent.com/u/1330693?v=4",
"events_url": "https://api.github.com/users/Taytay/events{/privacy}",
"followers_url": "https://api.github.com/users/Taytay/followers",
"following_url": "https://api.github.com/users/Taytay/following{/other_user}",
"gists_url": "https://api.github.com/users/Taytay/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Taytay",
"id": 1330693,
"login": "Taytay",
"node_id": "MDQ6VXNlcjEzMzA2OTM=",
"organizations_url": "https://api.github.com/users/Taytay/orgs",
"received_events_url": "https://api.github.com/users/Taytay/received_events",
"repos_url": "https://api.github.com/users/Taytay/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Taytay/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Taytay/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Taytay"
} | [] | open | false | null | [] | null | [
"`filter` treats the function's output as a (selection) mask - `True` keeps the sample, and `False` drops it. In your case, `bool(0)` evaluates to `False`, so dropping the first sample is the correct behavior.",
"Oh gosh! 🤦 I totally misunderstood the API! My apologies!"
] | "2023-09-13T20:20:37" | "2023-09-14T11:59:16" | null | NONE | null | ### Describe the bug
If you call batched=True when calling `filter`, the first item is _always_ filtered out, regardless of the filter condition.
### Steps to reproduce the bug
Here's a minimal example:
```python
def filter_batch_always_true(batch, indices):
print("First index being passed into this filter function: ", indices[0])
return indices # Keep all indices
data = {"value": list(range(10))}
dataset = Dataset.from_dict(data)
filtered_dataset = dataset.filter(filter_batch_always_true, with_indices=True, batched=True)
print("Length of original dataset: ", len(dataset))
print("Length of filtered_dataset: ", len(filtered_dataset))
print("Is equal to original? ", len(filtered_dataset) == len(dataset))
print("First item of filtered dataset: ", filtered_dataset[0])
print("Last item of filtered dataset: ", filtered_dataset[-1])
```
prints:
```
First index being passed into this filter function: 0
Length of original dataset: 10
Length of filtered_dataset: 9
Is equal to original? False
First item of filtered dataset: {'value': 1}
Last item of filtered dataset: {'value': 9}
```
### Expected behavior
Filter should respect the filter condition.
### Environment info
- `datasets` version: 2.14.4
- Platform: macOS-13.5-arm64-arm-64bit
- Python version: 3.9.18
- Huggingface_hub version: 0.17.1
- PyArrow version: 10.0.1
- Pandas version: 2.0.2
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6238/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6238/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6237 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6237/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6237/comments | https://api.github.com/repos/huggingface/datasets/issues/6237/events | https://github.com/huggingface/datasets/issues/6237 | 1,893,822,321 | I_kwDODunzps5w4W9x | 6,237 | Tokenization with multiple workers is too slow | {
"avatar_url": "https://avatars.githubusercontent.com/u/25720695?v=4",
"events_url": "https://api.github.com/users/macabdul9/events{/privacy}",
"followers_url": "https://api.github.com/users/macabdul9/followers",
"following_url": "https://api.github.com/users/macabdul9/following{/other_user}",
"gists_url": "https://api.github.com/users/macabdul9/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/macabdul9",
"id": 25720695,
"login": "macabdul9",
"node_id": "MDQ6VXNlcjI1NzIwNjk1",
"organizations_url": "https://api.github.com/users/macabdul9/orgs",
"received_events_url": "https://api.github.com/users/macabdul9/received_events",
"repos_url": "https://api.github.com/users/macabdul9/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/macabdul9/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/macabdul9/subscriptions",
"type": "User",
"url": "https://api.github.com/users/macabdul9"
} | [] | open | false | null | [] | null | [
"[This](https://huggingface.co/docs/datasets/nlp_process#map) is the most performant way to tokenize a dataset (`batched=True, num_proc=None, return_tensors=\"np\"`) \r\n\r\nIf`tokenizer.is_fast` returns `True`, `num_proc` must be `None/1` to benefit from the fast tokenizers' parallelism (the fast tokenizers are implemented in Rust, and Rust multi-threading doesn't work well with Python multi-processing)"
] | "2023-09-13T06:18:34" | "2023-09-13T18:04:47" | null | NONE | null | I am trying to tokenize a few million documents with multiple workers but the tokenization process is taking forever.
Code snippet:
```
raw_datasets.map(
encode_function,
batched=False,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
remove_columns=[name for name in raw_datasets["train"].column_names if name not in ["input_ids", "labels", "attention_mask"]],
desc="Tokenizing data",
)
```
Details:
```
transformers==4.28.0.dev0
datasets==4.28.0.dev0
preprocessing_num_workers==48
```
tokenizer == decapoda-research/llama-7b-hf
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6237/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6237/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6236 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6236/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6236/comments | https://api.github.com/repos/huggingface/datasets/issues/6236/events | https://github.com/huggingface/datasets/issues/6236 | 1,893,648,480 | I_kwDODunzps5w3shg | 6,236 | Support buffer shuffle for to_tf_dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/7635551?v=4",
"events_url": "https://api.github.com/users/EthanRock/events{/privacy}",
"followers_url": "https://api.github.com/users/EthanRock/followers",
"following_url": "https://api.github.com/users/EthanRock/following{/other_user}",
"gists_url": "https://api.github.com/users/EthanRock/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/EthanRock",
"id": 7635551,
"login": "EthanRock",
"node_id": "MDQ6VXNlcjc2MzU1NTE=",
"organizations_url": "https://api.github.com/users/EthanRock/orgs",
"received_events_url": "https://api.github.com/users/EthanRock/received_events",
"repos_url": "https://api.github.com/users/EthanRock/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/EthanRock/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/EthanRock/subscriptions",
"type": "User",
"url": "https://api.github.com/users/EthanRock"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | open | false | null | [] | null | [
"cc @Rocketknight1 ",
"Hey! You can implement this yourself, just:\r\n\r\n1) Create the dataset with `to_tf_dataset()` with `shuffle=False`\r\n2) Add an `unbatch()` at the end (or use batch_size=1)\r\n3) Add a `shuffle()` to the resulting dataset with your desired buffer size\r\n4) Add a `batch()` at the end again to re-batch your dataset.\r\n\r\nNote that the way we construct datasets in `to_tf_dataset()`, we don't actually shuffle the entire dataset in-memory, using `tf.data.Dataset.shuffle()`! Instead, we shuffle an index array and then load from the dataset with that. This means that shuffling with `tf.data.Dataset.shuffle()` will probably be slower and use more memory than our approach - I don't think adding the option for smaller shuffle buffers will actually save you memory on this!",
"Thanks for your reply! @Rocketknight1 \r\n\"We don't actually shuffle the entire dataset in-memory, using tf.data.Dataset.shuffle()! Instead, we shuffle an index array and then load from the dataset with that.\"\r\nIn such case, there will be random access to dataset data during shuffling. When the dataset is large, the performance can be X10 times slow. I have tried many ways with to_tf_dataset() trying to achieve comparable performance with tf.data.Dataset().shuffle(buffer_size).batch(). But the performance with to_tf_dataset() is still slow. \r\n"
] | "2023-09-13T03:19:44" | "2023-09-14T17:14:01" | null | NONE | null | ### Feature request
I'm using to_tf_dataset to convert a large dataset to tf.data.Dataset and use Keras fit to train model.
Currently, to_tf_dataset only supports full size shuffle, which can be very slow on large dataset.
tf.data.Dataset support buffer shuffle by default.
shuffle(
buffer_size, seed=None, reshuffle_each_iteration=None, name=None
)
### Motivation
I'm very frustrated to find the loading with shuffling large dataset is very slow. It seems impossible to shuffle before training Keras with big dataset.
### Your contribution
NA | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6236/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6236/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6235 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6235/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6235/comments | https://api.github.com/repos/huggingface/datasets/issues/6235/events | https://github.com/huggingface/datasets/issues/6235 | 1,893,337,083 | I_kwDODunzps5w2gf7 | 6,235 | Support multiprocessing for download/extract nestedly | {
"avatar_url": "https://avatars.githubusercontent.com/u/22725729?v=4",
"events_url": "https://api.github.com/users/hgt312/events{/privacy}",
"followers_url": "https://api.github.com/users/hgt312/followers",
"following_url": "https://api.github.com/users/hgt312/following{/other_user}",
"gists_url": "https://api.github.com/users/hgt312/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/hgt312",
"id": 22725729,
"login": "hgt312",
"node_id": "MDQ6VXNlcjIyNzI1NzI5",
"organizations_url": "https://api.github.com/users/hgt312/orgs",
"received_events_url": "https://api.github.com/users/hgt312/received_events",
"repos_url": "https://api.github.com/users/hgt312/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/hgt312/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hgt312/subscriptions",
"type": "User",
"url": "https://api.github.com/users/hgt312"
} | [
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] | open | false | null | [] | null | [] | "2023-09-12T21:51:08" | "2023-09-12T21:51:08" | null | NONE | null | ### Feature request
Current multiprocessing for download/extract is not done nestedly. For example, when processing SlimPajama, there is only 3 processes (for train/test/val), while there are many files inside these 3 folders
```
Downloading data files #0: 0%| | 0/1 [00:00<?, ?obj/s]
Downloading data files #1: 0%| | 0/1 [00:00<?, ?obj/s]
Downloading data files #2: 0%| | 0/1 [00:00<?, ?obj/s]
Extracting data files #0: 0%| | 0/1 [00:00<?, ?obj/s]
Extracting data files #1: 0%| | 0/1 [00:00<?, ?obj/s][A
Extracting data files #2: 0%| | 0/1 [00:00<?, ?obj/s][A[A
```
### Motivation
speedup dataset loading
### Your contribution
I can help test the feature | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6235/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6235/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6233 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6233/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6233/comments | https://api.github.com/repos/huggingface/datasets/issues/6233/events | https://github.com/huggingface/datasets/pull/6233 | 1,891,804,286 | PR_kwDODunzps5aF3kd | 6,233 | Update README.md | {
"avatar_url": "https://avatars.githubusercontent.com/u/95188570?v=4",
"events_url": "https://api.github.com/users/NinoRisteski/events{/privacy}",
"followers_url": "https://api.github.com/users/NinoRisteski/followers",
"following_url": "https://api.github.com/users/NinoRisteski/following{/other_user}",
"gists_url": "https://api.github.com/users/NinoRisteski/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/NinoRisteski",
"id": 95188570,
"login": "NinoRisteski",
"node_id": "U_kgDOBax2Wg",
"organizations_url": "https://api.github.com/users/NinoRisteski/orgs",
"received_events_url": "https://api.github.com/users/NinoRisteski/received_events",
"repos_url": "https://api.github.com/users/NinoRisteski/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/NinoRisteski/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NinoRisteski/subscriptions",
"type": "User",
"url": "https://api.github.com/users/NinoRisteski"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008370 / 0.011353 (-0.002983) | 0.004674 / 0.011008 (-0.006334) | 0.103912 / 0.038508 (0.065404) | 0.101668 / 0.023109 (0.078559) | 0.417945 / 0.275898 (0.142047) | 0.454805 / 0.323480 (0.131325) | 0.004763 / 0.007986 (-0.003223) | 0.003934 / 0.004328 (-0.000394) | 0.078446 / 0.004250 (0.074196) | 0.068383 / 0.037052 (0.031331) | 0.415100 / 0.258489 (0.156611) | 0.475272 / 0.293841 (0.181431) | 0.036884 / 0.128546 (-0.091662) | 0.010097 / 0.075646 (-0.065549) | 0.354962 / 0.419271 (-0.064309) | 0.062688 / 0.043533 (0.019155) | 0.420643 / 0.255139 (0.165504) | 0.446504 / 0.283200 (0.163304) | 0.029075 / 0.141683 (-0.112608) | 1.791517 / 1.452155 (0.339363) | 1.859820 / 1.492716 (0.367104) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246929 / 0.018006 (0.228923) | 0.519593 / 0.000490 (0.519103) | 0.006848 / 0.000200 (0.006648) | 0.000168 / 0.000054 (0.000114) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035179 / 0.037411 (-0.002232) | 0.115582 / 0.014526 (0.101057) | 0.128235 / 0.176557 (-0.048321) | 0.187123 / 0.737135 (-0.550012) | 0.120862 / 0.296338 (-0.175477) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463406 / 0.215209 (0.248197) | 4.615517 / 2.077655 (2.537863) | 2.250513 / 1.504120 (0.746393) | 2.061226 / 1.541195 (0.520032) | 2.189938 / 1.468490 (0.721448) | 0.582984 / 4.584777 (-4.001793) | 4.299464 / 3.745712 (0.553751) | 4.037274 / 5.269862 (-1.232588) | 2.608967 / 4.565676 (-1.956710) | 0.068944 / 0.424275 (-0.355331) | 0.009501 / 0.007607 (0.001894) | 0.567436 / 0.226044 (0.341392) | 5.662738 / 2.268929 (3.393809) | 2.849094 / 55.444624 (-52.595530) | 2.461013 / 6.876477 (-4.415464) | 2.663245 / 2.142072 (0.521172) | 0.704528 / 4.805227 (-4.100699) | 0.163583 / 6.500664 (-6.337081) | 0.075719 / 0.075469 (0.000250) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.604743 / 1.841788 (-0.237044) | 24.512054 / 8.074308 (16.437746) | 17.870939 / 10.191392 (7.679547) | 0.199188 / 0.680424 (-0.481236) | 0.023820 / 0.534201 (-0.510381) | 0.487520 / 0.579283 (-0.091763) | 0.512543 / 0.434364 (0.078179) | 0.575138 / 0.540337 (0.034801) | 0.759863 / 1.386936 (-0.627073) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010516 / 0.011353 (-0.000837) | 0.004779 / 0.011008 (-0.006229) | 0.078482 / 0.038508 (0.039974) | 0.108533 / 0.023109 (0.085424) | 0.498692 / 0.275898 (0.222794) | 0.534698 / 0.323480 (0.211218) | 0.007624 / 0.007986 (-0.000362) | 0.003938 / 0.004328 (-0.000391) | 0.077317 / 0.004250 (0.073067) | 0.078056 / 0.037052 (0.041004) | 0.493648 / 0.258489 (0.235159) | 0.540891 / 0.293841 (0.247050) | 0.040377 / 0.128546 (-0.088169) | 0.010155 / 0.075646 (-0.065491) | 0.084384 / 0.419271 (-0.334888) | 0.061419 / 0.043533 (0.017886) | 0.494474 / 0.255139 (0.239335) | 0.524656 / 0.283200 (0.241456) | 0.029052 / 0.141683 (-0.112631) | 1.794584 / 1.452155 (0.342429) | 1.939987 / 1.492716 (0.447270) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.377404 / 0.018006 (0.359398) | 0.516562 / 0.000490 (0.516072) | 0.109555 / 0.000200 (0.109356) | 0.001126 / 0.000054 (0.001071) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039793 / 0.037411 (0.002382) | 0.123001 / 0.014526 (0.108475) | 0.127536 / 0.176557 (-0.049021) | 0.191681 / 0.737135 (-0.545455) | 0.128590 / 0.296338 (-0.167748) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.513689 / 0.215209 (0.298480) | 5.135114 / 2.077655 (3.057459) | 2.797885 / 1.504120 (1.293765) | 2.715332 / 1.541195 (1.174137) | 2.746437 / 1.468490 (1.277947) | 0.596480 / 4.584777 (-3.988297) | 4.382013 / 3.745712 (0.636301) | 3.965956 / 5.269862 (-1.303906) | 2.545206 / 4.565676 (-2.020471) | 0.069620 / 0.424275 (-0.354655) | 0.009321 / 0.007607 (0.001714) | 0.612424 / 0.226044 (0.386379) | 6.107037 / 2.268929 (3.838109) | 3.447246 / 55.444624 (-51.997379) | 3.073262 / 6.876477 (-3.803215) | 3.280185 / 2.142072 (1.138113) | 0.704776 / 4.805227 (-4.100451) | 0.160488 / 6.500664 (-6.340176) | 0.075730 / 0.075469 (0.000261) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.697035 / 1.841788 (-0.144753) | 24.766118 / 8.074308 (16.691809) | 18.476699 / 10.191392 (8.285307) | 0.176594 / 0.680424 (-0.503830) | 0.024249 / 0.534201 (-0.509952) | 0.478743 / 0.579283 (-0.100541) | 0.518774 / 0.434364 (0.084410) | 0.581498 / 0.540337 (0.041161) | 0.797784 / 1.386936 (-0.589152) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#722cea0f4929ff4ffcdbb7ca6b72cba229b9701a \"CML watermark\")\n"
] | "2023-09-12T06:53:06" | "2023-09-13T18:20:50" | "2023-09-13T18:10:04" | CONTRIBUTOR | null | fixed a typo | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6233/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6233/timeline | null | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6233.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6233",
"merged_at": "2023-09-13T18:10:04Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6233.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6233"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6232 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6232/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6232/comments | https://api.github.com/repos/huggingface/datasets/issues/6232/events | https://github.com/huggingface/datasets/pull/6232 | 1,891,109,762 | PR_kwDODunzps5aDhhK | 6,232 | Improve error message for missing function parameters | {
"avatar_url": "https://avatars.githubusercontent.com/u/4016832?v=4",
"events_url": "https://api.github.com/users/suavemint/events{/privacy}",
"followers_url": "https://api.github.com/users/suavemint/followers",
"following_url": "https://api.github.com/users/suavemint/following{/other_user}",
"gists_url": "https://api.github.com/users/suavemint/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/suavemint",
"id": 4016832,
"login": "suavemint",
"node_id": "MDQ6VXNlcjQwMTY4MzI=",
"organizations_url": "https://api.github.com/users/suavemint/orgs",
"received_events_url": "https://api.github.com/users/suavemint/received_events",
"repos_url": "https://api.github.com/users/suavemint/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/suavemint/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/suavemint/subscriptions",
"type": "User",
"url": "https://api.github.com/users/suavemint"
} | [] | open | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"CI errors are unrelated",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006681 / 0.011353 (-0.004672) | 0.004132 / 0.011008 (-0.006876) | 0.085045 / 0.038508 (0.046536) | 0.077680 / 0.023109 (0.054571) | 0.382042 / 0.275898 (0.106144) | 0.412932 / 0.323480 (0.089452) | 0.005339 / 0.007986 (-0.002646) | 0.003408 / 0.004328 (-0.000921) | 0.065280 / 0.004250 (0.061030) | 0.055732 / 0.037052 (0.018680) | 0.400231 / 0.258489 (0.141742) | 0.432497 / 0.293841 (0.138656) | 0.031532 / 0.128546 (-0.097014) | 0.008721 / 0.075646 (-0.066925) | 0.289612 / 0.419271 (-0.129660) | 0.053089 / 0.043533 (0.009556) | 0.383300 / 0.255139 (0.128161) | 0.401204 / 0.283200 (0.118004) | 0.023582 / 0.141683 (-0.118100) | 1.493854 / 1.452155 (0.041699) | 1.583497 / 1.492716 (0.090781) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239163 / 0.018006 (0.221157) | 0.469555 / 0.000490 (0.469065) | 0.008325 / 0.000200 (0.008125) | 0.000113 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028975 / 0.037411 (-0.008436) | 0.084195 / 0.014526 (0.069669) | 0.189394 / 0.176557 (0.012837) | 0.158010 / 0.737135 (-0.579125) | 0.097502 / 0.296338 (-0.198837) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383085 / 0.215209 (0.167876) | 3.827030 / 2.077655 (1.749375) | 1.872279 / 1.504120 (0.368159) | 1.705808 / 1.541195 (0.164613) | 1.833706 / 1.468490 (0.365216) | 0.484744 / 4.584777 (-4.100033) | 3.658221 / 3.745712 (-0.087491) | 3.398462 / 5.269862 (-1.871399) | 2.064974 / 4.565676 (-2.500703) | 0.057740 / 0.424275 (-0.366535) | 0.007926 / 0.007607 (0.000319) | 0.465358 / 0.226044 (0.239314) | 4.652951 / 2.268929 (2.384022) | 2.328390 / 55.444624 (-53.116235) | 2.000606 / 6.876477 (-4.875870) | 2.268391 / 2.142072 (0.126318) | 0.586537 / 4.805227 (-4.218690) | 0.134749 / 6.500664 (-6.365915) | 0.061276 / 0.075469 (-0.014193) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.337913 / 1.841788 (-0.503875) | 20.232122 / 8.074308 (12.157814) | 14.478579 / 10.191392 (4.287187) | 0.167545 / 0.680424 (-0.512878) | 0.018745 / 0.534201 (-0.515456) | 0.401209 / 0.579283 (-0.178074) | 0.425748 / 0.434364 (-0.008616) | 0.462539 / 0.540337 (-0.077798) | 0.652446 / 1.386936 (-0.734490) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007159 / 0.011353 (-0.004194) | 0.004091 / 0.011008 (-0.006917) | 0.066202 / 0.038508 (0.027694) | 0.083096 / 0.023109 (0.059987) | 0.402160 / 0.275898 (0.126261) | 0.440565 / 0.323480 (0.117085) | 0.005757 / 0.007986 (-0.002228) | 0.003445 / 0.004328 (-0.000884) | 0.065498 / 0.004250 (0.061248) | 0.059787 / 0.037052 (0.022735) | 0.407017 / 0.258489 (0.148528) | 0.448270 / 0.293841 (0.154429) | 0.033606 / 0.128546 (-0.094941) | 0.008744 / 0.075646 (-0.066902) | 0.072902 / 0.419271 (-0.346369) | 0.050144 / 0.043533 (0.006611) | 0.401069 / 0.255139 (0.145930) | 0.426389 / 0.283200 (0.143189) | 0.023297 / 0.141683 (-0.118386) | 1.506152 / 1.452155 (0.053998) | 1.570211 / 1.492716 (0.077495) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235759 / 0.018006 (0.217753) | 0.488410 / 0.000490 (0.487921) | 0.004587 / 0.000200 (0.004387) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034123 / 0.037411 (-0.003289) | 0.102163 / 0.014526 (0.087638) | 0.110892 / 0.176557 (-0.065664) | 0.166000 / 0.737135 (-0.571135) | 0.110845 / 0.296338 (-0.185494) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431397 / 0.215209 (0.216188) | 4.291540 / 2.077655 (2.213885) | 2.298248 / 1.504120 (0.794128) | 2.134752 / 1.541195 (0.593557) | 2.207913 / 1.468490 (0.739423) | 0.490607 / 4.584777 (-4.094170) | 3.683078 / 3.745712 (-0.062635) | 3.314266 / 5.269862 (-1.955596) | 2.059488 / 4.565676 (-2.506188) | 0.057876 / 0.424275 (-0.366399) | 0.007696 / 0.007607 (0.000089) | 0.512186 / 0.226044 (0.286142) | 5.124071 / 2.268929 (2.855142) | 2.803913 / 55.444624 (-52.640711) | 2.428558 / 6.876477 (-4.447919) | 2.655207 / 2.142072 (0.513135) | 0.584589 / 4.805227 (-4.220638) | 0.133518 / 6.500664 (-6.367146) | 0.060729 / 0.075469 (-0.014740) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.352916 / 1.841788 (-0.488872) | 20.249632 / 8.074308 (12.175323) | 15.283079 / 10.191392 (5.091686) | 0.157601 / 0.680424 (-0.522823) | 0.019650 / 0.534201 (-0.514551) | 0.396398 / 0.579283 (-0.182885) | 0.430111 / 0.434364 (-0.004252) | 0.480627 / 0.540337 (-0.059710) | 0.642165 / 1.386936 (-0.744771) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9b21e181b642bd55b3ef68c1948bfbcd388136d6 \"CML watermark\")\n"
] | "2023-09-11T19:11:58" | "2023-09-13T22:17:39" | null | NONE | null | The error message in the fingerprint module was missing the f-string 'f' symbol, so the error message returned by fingerprint.py, line 469 was literally "function {func} is missing parameters {fingerprint_names} in signature."
This has been fixed. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6232/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6232/timeline | null | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6232.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6232",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6232.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6232"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6231 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6231/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6231/comments | https://api.github.com/repos/huggingface/datasets/issues/6231/events | https://github.com/huggingface/datasets/pull/6231 | 1,890,863,249 | PR_kwDODunzps5aCr8_ | 6,231 | Overwrite legacy default config name in `dataset_infos.json` in packaged datasets | {
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna"
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6231). All of your documentation changes will be reflected on that endpoint."
] | "2023-09-11T16:27:09" | "2023-09-12T15:23:15" | null | CONTRIBUTOR | null | Currently if we push data as default config with `.push_to_hub` to a repo that has a legacy `dataset_infos.json` file containing a legacy default config name like `{username}--{dataset_name}`, new key `"default"` is added to `dataset_infos.json` along with the legacy one. I think the legacy one should be dropped in this case.
Also, in `load.py` I suggest to check if a legacy config name is indeed a legacy config name because after this fix it might not be the case (this check was first introduced in https://github.com/huggingface/datasets/pull/6218) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6231/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6231/timeline | null | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6231.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6231",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6231.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6231"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6230 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6230/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6230/comments | https://api.github.com/repos/huggingface/datasets/issues/6230/events | https://github.com/huggingface/datasets/pull/6230 | 1,890,521,006 | PR_kwDODunzps5aBh6L | 6,230 | Don't skip hidden files in `dl_manager.iter_files` when they are given as input | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005894 / 0.011353 (-0.005459) | 0.003621 / 0.011008 (-0.007387) | 0.080446 / 0.038508 (0.041938) | 0.056800 / 0.023109 (0.033691) | 0.326485 / 0.275898 (0.050587) | 0.376207 / 0.323480 (0.052727) | 0.004640 / 0.007986 (-0.003346) | 0.002795 / 0.004328 (-0.001533) | 0.062815 / 0.004250 (0.058565) | 0.045761 / 0.037052 (0.008709) | 0.341417 / 0.258489 (0.082928) | 0.373129 / 0.293841 (0.079288) | 0.027226 / 0.128546 (-0.101321) | 0.007873 / 0.075646 (-0.067774) | 0.261737 / 0.419271 (-0.157535) | 0.044648 / 0.043533 (0.001115) | 0.320195 / 0.255139 (0.065056) | 0.381892 / 0.283200 (0.098692) | 0.020431 / 0.141683 (-0.121252) | 1.405332 / 1.452155 (-0.046823) | 1.455592 / 1.492716 (-0.037125) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191539 / 0.018006 (0.173533) | 0.423655 / 0.000490 (0.423165) | 0.002741 / 0.000200 (0.002541) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023952 / 0.037411 (-0.013459) | 0.073387 / 0.014526 (0.058861) | 0.083746 / 0.176557 (-0.092810) | 0.144977 / 0.737135 (-0.592159) | 0.083808 / 0.296338 (-0.212530) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436228 / 0.215209 (0.221019) | 4.370510 / 2.077655 (2.292855) | 2.340426 / 1.504120 (0.836306) | 2.202215 / 1.541195 (0.661021) | 2.258528 / 1.468490 (0.790037) | 0.503455 / 4.584777 (-4.081322) | 3.043695 / 3.745712 (-0.702017) | 2.784033 / 5.269862 (-2.485829) | 1.847956 / 4.565676 (-2.717721) | 0.057702 / 0.424275 (-0.366573) | 0.006703 / 0.007607 (-0.000904) | 0.510628 / 0.226044 (0.284583) | 5.101890 / 2.268929 (2.832961) | 2.816469 / 55.444624 (-52.628155) | 2.474220 / 6.876477 (-4.402257) | 2.617851 / 2.142072 (0.475779) | 0.593585 / 4.805227 (-4.211642) | 0.125895 / 6.500664 (-6.374769) | 0.062170 / 0.075469 (-0.013299) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.238792 / 1.841788 (-0.602996) | 18.096417 / 8.074308 (10.022108) | 13.548778 / 10.191392 (3.357386) | 0.144878 / 0.680424 (-0.535546) | 0.016644 / 0.534201 (-0.517557) | 0.334556 / 0.579283 (-0.244728) | 0.343680 / 0.434364 (-0.090684) | 0.383093 / 0.540337 (-0.157244) | 0.525075 / 1.386936 (-0.861861) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006125 / 0.011353 (-0.005228) | 0.003668 / 0.011008 (-0.007340) | 0.062650 / 0.038508 (0.024142) | 0.058882 / 0.023109 (0.035772) | 0.454643 / 0.275898 (0.178745) | 0.486659 / 0.323480 (0.163179) | 0.005558 / 0.007986 (-0.002427) | 0.002858 / 0.004328 (-0.001471) | 0.062603 / 0.004250 (0.058353) | 0.049701 / 0.037052 (0.012649) | 0.455903 / 0.258489 (0.197413) | 0.491544 / 0.293841 (0.197703) | 0.028581 / 0.128546 (-0.099965) | 0.008040 / 0.075646 (-0.067607) | 0.068314 / 0.419271 (-0.350957) | 0.040637 / 0.043533 (-0.002896) | 0.450288 / 0.255139 (0.195149) | 0.476330 / 0.283200 (0.193131) | 0.018989 / 0.141683 (-0.122693) | 1.455122 / 1.452155 (0.002967) | 1.496941 / 1.492716 (0.004225) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227382 / 0.018006 (0.209376) | 0.432637 / 0.000490 (0.432147) | 0.002727 / 0.000200 (0.002527) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026125 / 0.037411 (-0.011286) | 0.081342 / 0.014526 (0.066817) | 0.091227 / 0.176557 (-0.085329) | 0.145175 / 0.737135 (-0.591960) | 0.091988 / 0.296338 (-0.204351) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.454293 / 0.215209 (0.239083) | 4.537912 / 2.077655 (2.460257) | 2.489146 / 1.504120 (0.985026) | 2.307166 / 1.541195 (0.765971) | 2.380866 / 1.468490 (0.912376) | 0.509015 / 4.584777 (-4.075762) | 3.111069 / 3.745712 (-0.634644) | 2.839181 / 5.269862 (-2.430681) | 1.874630 / 4.565676 (-2.691047) | 0.058540 / 0.424275 (-0.365735) | 0.006693 / 0.007607 (-0.000914) | 0.528408 / 0.226044 (0.302363) | 5.285802 / 2.268929 (3.016874) | 2.952090 / 55.444624 (-52.492534) | 2.591496 / 6.876477 (-4.284980) | 2.741080 / 2.142072 (0.599007) | 0.595610 / 4.805227 (-4.209617) | 0.124387 / 6.500664 (-6.376277) | 0.061032 / 0.075469 (-0.014437) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.365816 / 1.841788 (-0.475972) | 18.684534 / 8.074308 (10.610226) | 14.540438 / 10.191392 (4.349046) | 0.146793 / 0.680424 (-0.533631) | 0.018165 / 0.534201 (-0.516036) | 0.333794 / 0.579283 (-0.245489) | 0.345533 / 0.434364 (-0.088830) | 0.384453 / 0.540337 (-0.155885) | 0.529104 / 1.386936 (-0.857832) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6c884967dd5f4e8aa3d1f3c2e3a414ae53afe261 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006121 / 0.011353 (-0.005232) | 0.003683 / 0.011008 (-0.007325) | 0.083329 / 0.038508 (0.044821) | 0.063350 / 0.023109 (0.040241) | 0.329959 / 0.275898 (0.054061) | 0.396111 / 0.323480 (0.072631) | 0.003554 / 0.007986 (-0.004432) | 0.002907 / 0.004328 (-0.001421) | 0.064152 / 0.004250 (0.059902) | 0.049182 / 0.037052 (0.012130) | 0.343862 / 0.258489 (0.085373) | 0.414568 / 0.293841 (0.120727) | 0.027157 / 0.128546 (-0.101389) | 0.007957 / 0.075646 (-0.067689) | 0.261868 / 0.419271 (-0.157404) | 0.044938 / 0.043533 (0.001405) | 0.318470 / 0.255139 (0.063331) | 0.393319 / 0.283200 (0.110119) | 0.022848 / 0.141683 (-0.118835) | 1.419916 / 1.452155 (-0.032238) | 1.508783 / 1.492716 (0.016067) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200530 / 0.018006 (0.182523) | 0.433586 / 0.000490 (0.433097) | 0.002063 / 0.000200 (0.001863) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024803 / 0.037411 (-0.012609) | 0.075894 / 0.014526 (0.061368) | 0.086488 / 0.176557 (-0.090069) | 0.149058 / 0.737135 (-0.588077) | 0.087046 / 0.296338 (-0.209292) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390771 / 0.215209 (0.175562) | 3.886178 / 2.077655 (1.808523) | 1.868626 / 1.504120 (0.364506) | 1.708532 / 1.541195 (0.167338) | 1.788491 / 1.468490 (0.320001) | 0.505706 / 4.584777 (-4.079071) | 3.062094 / 3.745712 (-0.683618) | 2.898559 / 5.269862 (-2.371302) | 1.901225 / 4.565676 (-2.664452) | 0.058366 / 0.424275 (-0.365909) | 0.006851 / 0.007607 (-0.000756) | 0.465382 / 0.226044 (0.239337) | 4.650187 / 2.268929 (2.381258) | 2.316152 / 55.444624 (-53.128472) | 1.989597 / 6.876477 (-4.886879) | 2.169266 / 2.142072 (0.027194) | 0.593257 / 4.805227 (-4.211970) | 0.126440 / 6.500664 (-6.374224) | 0.062227 / 0.075469 (-0.013242) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283591 / 1.841788 (-0.558197) | 18.384667 / 8.074308 (10.310358) | 14.079611 / 10.191392 (3.888219) | 0.150453 / 0.680424 (-0.529971) | 0.017100 / 0.534201 (-0.517101) | 0.330503 / 0.579283 (-0.248780) | 0.348134 / 0.434364 (-0.086230) | 0.385726 / 0.540337 (-0.154612) | 0.529147 / 1.386936 (-0.857789) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006168 / 0.011353 (-0.005185) | 0.003801 / 0.011008 (-0.007208) | 0.063168 / 0.038508 (0.024660) | 0.062331 / 0.023109 (0.039221) | 0.448321 / 0.275898 (0.172423) | 0.484416 / 0.323480 (0.160937) | 0.004827 / 0.007986 (-0.003159) | 0.002848 / 0.004328 (-0.001480) | 0.062736 / 0.004250 (0.058486) | 0.049128 / 0.037052 (0.012075) | 0.449276 / 0.258489 (0.190787) | 0.499035 / 0.293841 (0.205194) | 0.028577 / 0.128546 (-0.099969) | 0.008114 / 0.075646 (-0.067532) | 0.068297 / 0.419271 (-0.350974) | 0.040835 / 0.043533 (-0.002698) | 0.453556 / 0.255139 (0.198417) | 0.475420 / 0.283200 (0.192220) | 0.020292 / 0.141683 (-0.121390) | 1.472226 / 1.452155 (0.020071) | 1.523809 / 1.492716 (0.031093) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230662 / 0.018006 (0.212655) | 0.439697 / 0.000490 (0.439207) | 0.009899 / 0.000200 (0.009699) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026418 / 0.037411 (-0.010993) | 0.082188 / 0.014526 (0.067662) | 0.091039 / 0.176557 (-0.085518) | 0.146646 / 0.737135 (-0.590489) | 0.091693 / 0.296338 (-0.204645) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.462086 / 0.215209 (0.246877) | 4.620925 / 2.077655 (2.543271) | 2.539234 / 1.504120 (1.035114) | 2.371178 / 1.541195 (0.829983) | 2.440538 / 1.468490 (0.972048) | 0.511047 / 4.584777 (-4.073730) | 3.082088 / 3.745712 (-0.663624) | 2.918162 / 5.269862 (-2.351700) | 1.899651 / 4.565676 (-2.666025) | 0.059003 / 0.424275 (-0.365272) | 0.006746 / 0.007607 (-0.000861) | 0.537863 / 0.226044 (0.311819) | 5.382355 / 2.268929 (3.113426) | 3.060091 / 55.444624 (-52.384534) | 2.754969 / 6.876477 (-4.121507) | 2.863156 / 2.142072 (0.721084) | 0.606888 / 4.805227 (-4.198339) | 0.127448 / 6.500664 (-6.373216) | 0.062975 / 0.075469 (-0.012494) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.336065 / 1.841788 (-0.505722) | 19.019902 / 8.074308 (10.945594) | 15.057979 / 10.191392 (4.866587) | 0.160646 / 0.680424 (-0.519778) | 0.018340 / 0.534201 (-0.515861) | 0.341664 / 0.579283 (-0.237619) | 0.356536 / 0.434364 (-0.077828) | 0.393974 / 0.540337 (-0.146363) | 0.546036 / 1.386936 (-0.840900) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fd04e445bd36d7eb4af4d5a6b8519ab8e306ecf5 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007220 / 0.011353 (-0.004132) | 0.004537 / 0.011008 (-0.006471) | 0.087333 / 0.038508 (0.048825) | 0.095637 / 0.023109 (0.072528) | 0.323819 / 0.275898 (0.047921) | 0.358838 / 0.323480 (0.035358) | 0.005910 / 0.007986 (-0.002076) | 0.003781 / 0.004328 (-0.000548) | 0.064565 / 0.004250 (0.060315) | 0.062818 / 0.037052 (0.025766) | 0.322595 / 0.258489 (0.064106) | 0.371865 / 0.293841 (0.078024) | 0.031667 / 0.128546 (-0.096880) | 0.009068 / 0.075646 (-0.066579) | 0.290574 / 0.419271 (-0.128697) | 0.054618 / 0.043533 (0.011085) | 0.314708 / 0.255139 (0.059569) | 0.336647 / 0.283200 (0.053447) | 0.027070 / 0.141683 (-0.114613) | 1.500640 / 1.452155 (0.048485) | 1.586775 / 1.492716 (0.094059) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.294461 / 0.018006 (0.276455) | 0.580125 / 0.000490 (0.579635) | 0.008165 / 0.000200 (0.007965) | 0.000320 / 0.000054 (0.000266) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032352 / 0.037411 (-0.005059) | 0.092187 / 0.014526 (0.077661) | 0.104993 / 0.176557 (-0.071564) | 0.162738 / 0.737135 (-0.574397) | 0.103242 / 0.296338 (-0.193096) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396732 / 0.215209 (0.181523) | 3.955049 / 2.077655 (1.877394) | 1.876762 / 1.504120 (0.372642) | 1.698477 / 1.541195 (0.157282) | 1.847086 / 1.468490 (0.378596) | 0.488306 / 4.584777 (-4.096471) | 3.658922 / 3.745712 (-0.086790) | 3.559050 / 5.269862 (-1.710812) | 2.187363 / 4.565676 (-2.378313) | 0.059795 / 0.424275 (-0.364480) | 0.008966 / 0.007607 (0.001359) | 0.474212 / 0.226044 (0.248168) | 4.732540 / 2.268929 (2.463611) | 2.466370 / 55.444624 (-52.978254) | 2.112105 / 6.876477 (-4.764372) | 2.414624 / 2.142072 (0.272552) | 0.595447 / 4.805227 (-4.209780) | 0.136705 / 6.500664 (-6.363959) | 0.062267 / 0.075469 (-0.013202) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266518 / 1.841788 (-0.575270) | 21.009975 / 8.074308 (12.935666) | 14.823960 / 10.191392 (4.632568) | 0.165630 / 0.680424 (-0.514793) | 0.018499 / 0.534201 (-0.515702) | 0.396720 / 0.579283 (-0.182563) | 0.424807 / 0.434364 (-0.009557) | 0.463326 / 0.540337 (-0.077011) | 0.653132 / 1.386936 (-0.733804) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007789 / 0.011353 (-0.003564) | 0.004720 / 0.011008 (-0.006288) | 0.066656 / 0.038508 (0.028148) | 0.094219 / 0.023109 (0.071109) | 0.414965 / 0.275898 (0.139067) | 0.454808 / 0.323480 (0.131328) | 0.006088 / 0.007986 (-0.001898) | 0.003980 / 0.004328 (-0.000349) | 0.066048 / 0.004250 (0.061797) | 0.065875 / 0.037052 (0.028823) | 0.419994 / 0.258489 (0.161505) | 0.462001 / 0.293841 (0.168160) | 0.033534 / 0.128546 (-0.095013) | 0.009010 / 0.075646 (-0.066636) | 0.072778 / 0.419271 (-0.346493) | 0.049834 / 0.043533 (0.006301) | 0.411003 / 0.255139 (0.155864) | 0.430918 / 0.283200 (0.147718) | 0.025664 / 0.141683 (-0.116019) | 1.526771 / 1.452155 (0.074616) | 1.634767 / 1.492716 (0.142051) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271180 / 0.018006 (0.253174) | 0.576704 / 0.000490 (0.576214) | 0.004362 / 0.000200 (0.004162) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035648 / 0.037411 (-0.001763) | 0.102407 / 0.014526 (0.087881) | 0.111613 / 0.176557 (-0.064944) | 0.166173 / 0.737135 (-0.570962) | 0.113371 / 0.296338 (-0.182967) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436031 / 0.215209 (0.220822) | 4.347071 / 2.077655 (2.269416) | 2.366937 / 1.504120 (0.862817) | 2.216356 / 1.541195 (0.675161) | 2.335933 / 1.468490 (0.867443) | 0.490484 / 4.584777 (-4.094293) | 3.730656 / 3.745712 (-0.015056) | 3.497248 / 5.269862 (-1.772613) | 2.215729 / 4.565676 (-2.349947) | 0.057905 / 0.424275 (-0.366370) | 0.007983 / 0.007607 (0.000376) | 0.510413 / 0.226044 (0.284369) | 5.114502 / 2.268929 (2.845574) | 2.871599 / 55.444624 (-52.573026) | 2.537514 / 6.876477 (-4.338962) | 2.819135 / 2.142072 (0.677063) | 0.588397 / 4.805227 (-4.216830) | 0.134665 / 6.500664 (-6.365999) | 0.063349 / 0.075469 (-0.012120) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.352962 / 1.841788 (-0.488826) | 21.628664 / 8.074308 (13.554356) | 15.962105 / 10.191392 (5.770713) | 0.167781 / 0.680424 (-0.512643) | 0.020965 / 0.534201 (-0.513236) | 0.402809 / 0.579283 (-0.176474) | 0.435153 / 0.434364 (0.000789) | 0.481394 / 0.540337 (-0.058944) | 0.658068 / 1.386936 (-0.728868) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#12adf38b90fde8e2a4e46fcbb023ee23b5c4e98c \"CML watermark\")\n"
] | "2023-09-11T13:29:19" | "2023-09-13T18:21:28" | "2023-09-13T18:12:09" | CONTRIBUTOR | null | Required for `load_dataset(<format>, data_files=["path/to/.hidden_file"])` to work as expected | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6230/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6230/timeline | null | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6230.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6230",
"merged_at": "2023-09-13T18:12:09Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6230.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6230"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6229 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6229/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6229/comments | https://api.github.com/repos/huggingface/datasets/issues/6229/events | https://github.com/huggingface/datasets/issues/6229 | 1,889,050,954 | I_kwDODunzps5wmKFK | 6,229 | Apply inference on all images in the dataset | {
"avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4",
"events_url": "https://api.github.com/users/andysingal/events{/privacy}",
"followers_url": "https://api.github.com/users/andysingal/followers",
"following_url": "https://api.github.com/users/andysingal/following{/other_user}",
"gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/andysingal",
"id": 20493493,
"login": "andysingal",
"node_id": "MDQ6VXNlcjIwNDkzNDkz",
"organizations_url": "https://api.github.com/users/andysingal/orgs",
"received_events_url": "https://api.github.com/users/andysingal/received_events",
"repos_url": "https://api.github.com/users/andysingal/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/andysingal/subscriptions",
"type": "User",
"url": "https://api.github.com/users/andysingal"
} | [] | open | false | null | [] | null | [
"From what I see, `MMSegInferencer` supports NumPy arrays, so replace the line `image_path = example['image']` with `image_path = np.array(example['image'])` to fix the issue (`example[\"image\"]` is a `PIL.Image` object). ",
"> From what I see, `MMSegInferencer` supports NumPy arrays, so replace the line `image_path = example['image']` with `image_path = np.array(example['image'])` to fix the issue (`example[\"image\"]` is a `PIL.Image` object).\r\n\r\nThanks @mariosasko for your reply...\r\ni tried :\r\n```\r\n# Define a function to apply the code to each image in the dataset\r\ndef process_image(image_path):\r\n print(\"Processing image:\", image_path)\r\n result = inferencer(image_path)['predictions']\r\n mask = np.where(result == 12, 255, 0).astype('uint8')\r\n return Image.fromarray(mask)\r\n\r\n# Process and save masks for each image in the dataset\r\nfor idx, example in enumerate(dataset['train']):\r\n image_path = np.array(example['image'])\r\n mask_image = process_image(image_path)\r\n mask_image.save(f\"mask_{idx}.png\")\r\n```\r\nand got\r\n```\r\nProcessing image: [[[202 165 87]\r\n [203 166 88]\r\n [207 168 91]\r\n ...\r\n [243 205 122]\r\n [244 202 120]\r\n [242 200 118]]\r\n\r\n [[202 165 87]\r\n [203 166 88]\r\n [207 168 91]\r\n ...\r\n [244 206 123]\r\n [245 203 121]\r\n [243 201 119]]\r\n\r\n [[203 164 87]\r\n [204 165 88]\r\n [207 168 91]\r\n ...\r\n [245 207 126]\r\n [246 204 122]\r\n [245 203 121]]\r\n\r\n ...\r\n\r\n [[154 123 56]\r\n [155 124 57]\r\n [158 125 56]\r\n ...\r\n [ 3 3 1]\r\n [ 3 3 1]\r\n [ 3 3 1]]\r\n\r\n [[154 123 56]\r\n [154 123 56]\r\n [155 124 57]\r\n ...\r\n [ 2 2 0]\r\n [ 2 2 0]\r\n [ 2 2 0]]\r\n\r\n [[152 121 54]\r\n [152 121 54]\r\n [153 122 55]\r\n ...\r\n [ 2 2 0]\r\n [ 2 2 0]\r\n [ 2 2 0]]]\r\nInference ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \r\nProcessing image: [[[ 39 44 40]\r\n [ 39 44 40]\r\n [ 39 43 44]\r\n ...\r\n [187 185 164]\r\n [208 204 175]\r\n [203 198 166]]\r\n\r\n [[ 42 47 43]\r\n [ 40 45 41]\r\n [ 40 44 45]\r\n ...\r\n [188 186 165]\r\n [202 198 169]\r\n [201 196 164]]\r\n\r\n [[ 41 46 42]\r\n [ 39 44 40]\r\n [ 40 44 45]\r\n ...\r\n [187 184 165]\r\n [197 193 166]\r\n [201 196 166]]\r\n\r\n ...\r\n\r\n [[ 29 27 30]\r\n [ 28 26 29]\r\n [ 25 23 26]\r\n ...\r\n [ 48 33 28]\r\n [ 44 31 25]\r\n [ 39 26 20]]\r\n\r\n [[ 34 29 33]\r\n [ 32 27 31]\r\n [ 29 24 28]\r\n ...\r\n [ 30 17 11]\r\n [ 36 23 15]\r\n [ 41 28 20]]\r\n\r\n [[ 35 30 34]\r\n [ 33 28 32]\r\n [ 28 23 27]\r\n ...\r\n [ 28 15 9]\r\n [ 41 28 20]\r\n [ 46 33 25]]]\r\nInference ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \r\nProcessing image: [[[ 65 53 55]\r\n [ 65 53 55]\r\n [ 51 39 41]\r\n ...\r\n [133 127 111]\r\n [150 141 124]\r\n [133 124 107]]\r\n\r\n [[ 58 45 52]\r\n [ 61 48 55]\r\n [ 51 38 45]\r\n ...\r\n [148 141 123]\r\n [178 169 152]\r\n [144 135 118]]\r\n\r\n [[ 79 66 83]\r\n [ 73 60 77]\r\n [ 65 51 66]\r\n ...\r\n [140 131 114]\r\n [142 133 116]\r\n [147 136 118]]\r\n\r\n ...\r\n\r\n [[132 122 133]\r\n [ 95 85 94]\r\n [ 61 51 60]\r\n ...\r\n [ 39 28 42]\r\n [ 46 36 45]\r\n [ 25 16 21]]\r\n\r\n [[150 143 151]\r\n [114 107 115]\r\n [ 64 54 63]\r\n ...\r\n [ 47 35 47]\r\n [ 38 27 35]\r\n [140 129 133]]\r\n\r\n [[145 138 146]\r\n [115 108 116]\r\n [ 69 59 67]\r\n ...\r\n [ 31 19 31]\r\n [128 117 123]\r\n [196 185 189]]]\r\nInference ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ \r\nProcessing image: [[[159 151 140]\r\n [171 163 152]\r\n [161 148 142]\r\n ...\r\n [198 184 171]\r\n [189 175 162]\r\n [183 169 156]]\r\n\r\n [[128 118 106]\r\n [138 128 116]\r\n [138 125 116]\r\n ...\r\n [200 186 173]\r\n [190 176 163]\r\n [187 173 160]]\r\n\r\n [[165 153 137]\r\n [170 158 142]\r\n [174 162 148]\r\n ...\r\n [200 187 171]\r\n [188 175 159]\r\n [182 169 153]]\r\n```\r\nHowever , when trying to add to:\r\n```\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('Andyrasika/cat_kingdom')\r\ndataset\r\n```\r\ni did \r\n```\r\nnew_column = [\"mask\"] * len(dataset[\"train\"])\r\nnew_column\r\ndataset = dataset.add_column(\"/workspace/data\", new_column)\r\n\r\nprint(dataset)\r\n```\r\ngot error:\r\n```\r\n---------------------------------------------------------------------------\r\nAttributeError Traceback (most recent call last)\r\nCell In[11], line 3\r\n 1 new_column = [\"mask\"] * len(dataset[\"train\"])\r\n 2 new_column\r\n----> 3 dataset = dataset.add_column(\"/workspace/data\", new_column)\r\n 5 print(dataset)\r\n\r\nAttributeError: 'DatasetDict' object has no attribute 'add_column'\r\n```",
"https://github.com/huggingface/datasets/issues/6246 resolved the `add_column` error, so I'm closing this issue :) "
] | "2023-09-10T08:36:12" | "2023-09-13T06:05:20" | null | NONE | null | ### Describe the bug
```
---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
Cell In[14], line 11
9 for idx, example in enumerate(dataset['train']):
10 image_path = example['image']
---> 11 mask_image = process_image(image_path)
12 mask_image.save(f"mask_{idx}.png")
Cell In[14], line 4, in process_image(image_path)
2 def process_image(image_path):
3 print("Processing image:", image_path)
----> 4 result = inferencer(image_path)['predictions']
5 mask = np.where(result == 12, 255, 0).astype('uint8')
6 return Image.fromarray(mask)
File /usr/local/lib/python3.10/dist-packages/mmseg/apis/mmseg_inferencer.py:183, in MMSegInferencer.__call__(self, inputs, return_datasamples, batch_size, show, wait_time, out_dir, img_out_dir, pred_out_dir, **kwargs)
180 pred_out_dir = ''
181 img_out_dir = ''
--> 183 return super().__call__(
184 inputs=inputs,
185 return_datasamples=return_datasamples,
186 batch_size=batch_size,
187 show=show,
188 wait_time=wait_time,
189 img_out_dir=img_out_dir,
190 pred_out_dir=pred_out_dir,
191 **kwargs)
File /usr/local/lib/python3.10/dist-packages/mmengine/infer/infer.py:221, in BaseInferencer.__call__(self, inputs, return_datasamples, batch_size, **kwargs)
218 inputs = self.preprocess(
219 ori_inputs, batch_size=batch_size, **preprocess_kwargs)
220 preds = []
--> 221 for data in (track(inputs, description='Inference')
222 if self.show_progress else inputs):
223 preds.extend(self.forward(data, **forward_kwargs))
224 visualization = self.visualize(
225 ori_inputs, preds,
226 **visualize_kwargs) # type: ignore # noqa: E501
File /usr/local/lib/python3.10/dist-packages/rich/progress.py:168, in track(sequence, description, total, auto_refresh, console, transient, get_time, refresh_per_second, style, complete_style, finished_style, pulse_style, update_period, disable, show_speed)
157 progress = Progress(
158 *columns,
159 auto_refresh=auto_refresh,
(...)
164 disable=disable,
165 )
167 with progress:
--> 168 yield from progress.track(
169 sequence, total=total, description=description, update_period=update_period
170 )
File /usr/local/lib/python3.10/dist-packages/rich/progress.py:1210, in Progress.track(self, sequence, total, task_id, description, update_period)
1208 if self.live.auto_refresh:
1209 with _TrackThread(self, task_id, update_period) as track_thread:
-> 1210 for value in sequence:
1211 yield value
1212 track_thread.completed += 1
File /usr/local/lib/python3.10/dist-packages/mmengine/infer/infer.py:291, in BaseInferencer.preprocess(self, inputs, batch_size, **kwargs)
266 """Process the inputs into a model-feedable format.
267
268 Customize your preprocess by overriding this method. Preprocess should
(...)
287 Any: Data processed by the ``pipeline`` and ``collate_fn``.
288 """
289 chunked_data = self._get_chunk_data(
290 map(self.pipeline, inputs), batch_size)
--> 291 yield from map(self.collate_fn, chunked_data)
File /usr/local/lib/python3.10/dist-packages/mmengine/infer/infer.py:588, in BaseInferencer._get_chunk_data(self, inputs, chunk_size)
586 chunk_data = []
587 for _ in range(chunk_size):
--> 588 processed_data = next(inputs_iter)
589 chunk_data.append(processed_data)
590 yield chunk_data
File /usr/local/lib/python3.10/dist-packages/mmcv/transforms/base.py:12, in BaseTransform.__call__(self, results)
9 def __call__(self,
10 results: Dict) -> Optional[Union[Dict, Tuple[List, List]]]:
---> 12 return self.transform(results)
File /usr/local/lib/python3.10/dist-packages/mmcv/transforms/wrappers.py:88, in Compose.transform(self, results)
79 """Call function to apply transforms sequentially.
80
81 Args:
(...)
85 dict or None: Transformed results.
86 """
87 for t in self.transforms:
---> 88 results = t(results) # type: ignore
89 if results is None:
90 return None
File /usr/local/lib/python3.10/dist-packages/mmcv/transforms/base.py:12, in BaseTransform.__call__(self, results)
9 def __call__(self,
10 results: Dict) -> Optional[Union[Dict, Tuple[List, List]]]:
---> 12 return self.transform(results)
File /usr/local/lib/python3.10/dist-packages/mmseg/datasets/transforms/loading.py:496, in InferencerLoader.transform(self, single_input)
494 inputs = single_input
495 else:
--> 496 raise NotImplementedError
498 if 'img' in inputs:
499 return self.from_ndarray(inputs)
NotImplementedError:
````
### Steps to reproduce the bug
```
from datasets import load_dataset
dataset = load_dataset('Andyrasika/cat_kingdom')
dataset
from mmseg.apis import MMSegInferencer
checkpoint_name = 'segformer_mit-b5_8xb2-160k_ade20k-640x640'
inferencer = MMSegInferencer(model=checkpoint_name)
# Define a function to apply the code to each image in the dataset
def process_image(image_path):
print("Processing image:", image_path)
result = inferencer(image_path)['predictions']
mask = np.where(result == 12, 255, 0).astype('uint8')
return Image.fromarray(mask)
# Process and save masks for each image in the dataset
for idx, example in enumerate(dataset['train']):
image_path = example['image']
mask_image = process_image(image_path)
mask_image.save(f"mask_{idx}.png")
```
### Expected behavior
create a separate column with masks in the dataset and further shows as a separate column in hub
### Environment info
jupyter notebook RTX 3090 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6229/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6229/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6228 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6228/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6228/comments | https://api.github.com/repos/huggingface/datasets/issues/6228/events | https://github.com/huggingface/datasets/pull/6228 | 1,887,959,311 | PR_kwDODunzps5Z5HZi | 6,228 | Remove RGB -> BGR image conversion in Object Detection tutorial | {
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009443 / 0.011353 (-0.001910) | 0.005274 / 0.011008 (-0.005734) | 0.105950 / 0.038508 (0.067441) | 0.079947 / 0.023109 (0.056837) | 0.414248 / 0.275898 (0.138350) | 0.440611 / 0.323480 (0.117131) | 0.006779 / 0.007986 (-0.001206) | 0.004301 / 0.004328 (-0.000028) | 0.080616 / 0.004250 (0.076366) | 0.061425 / 0.037052 (0.024372) | 0.418460 / 0.258489 (0.159971) | 0.468108 / 0.293841 (0.174267) | 0.051090 / 0.128546 (-0.077456) | 0.014133 / 0.075646 (-0.061513) | 0.376121 / 0.419271 (-0.043151) | 0.070715 / 0.043533 (0.027182) | 0.415435 / 0.255139 (0.160296) | 0.457925 / 0.283200 (0.174725) | 0.053653 / 0.141683 (-0.088030) | 1.872681 / 1.452155 (0.420527) | 1.961187 / 1.492716 (0.468470) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255829 / 0.018006 (0.237823) | 0.574224 / 0.000490 (0.573735) | 0.007597 / 0.000200 (0.007397) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032562 / 0.037411 (-0.004849) | 0.097528 / 0.014526 (0.083003) | 0.113487 / 0.176557 (-0.063070) | 0.185670 / 0.737135 (-0.551465) | 0.118909 / 0.296338 (-0.177430) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.611441 / 0.215209 (0.396232) | 5.908576 / 2.077655 (3.830921) | 2.586758 / 1.504120 (1.082638) | 2.310199 / 1.541195 (0.769004) | 2.333396 / 1.468490 (0.864906) | 0.900884 / 4.584777 (-3.683893) | 5.438304 / 3.745712 (1.692591) | 4.806611 / 5.269862 (-0.463250) | 2.970631 / 4.565676 (-1.595046) | 0.097861 / 0.424275 (-0.326414) | 0.009873 / 0.007607 (0.002266) | 0.739553 / 0.226044 (0.513509) | 7.104953 / 2.268929 (4.836024) | 3.150128 / 55.444624 (-52.294497) | 2.469552 / 6.876477 (-4.406924) | 2.709206 / 2.142072 (0.567133) | 0.983081 / 4.805227 (-3.822147) | 0.205150 / 6.500664 (-6.295514) | 0.075947 / 0.075469 (0.000478) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.631255 / 1.841788 (-0.210532) | 24.213679 / 8.074308 (16.139370) | 21.514481 / 10.191392 (11.323089) | 0.220360 / 0.680424 (-0.460063) | 0.031663 / 0.534201 (-0.502538) | 0.516029 / 0.579283 (-0.063254) | 0.591461 / 0.434364 (0.157097) | 0.612398 / 0.540337 (0.072061) | 0.807609 / 1.386936 (-0.579328) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009443 / 0.011353 (-0.001910) | 0.005510 / 0.011008 (-0.005498) | 0.085722 / 0.038508 (0.047214) | 0.076256 / 0.023109 (0.053146) | 0.604248 / 0.275898 (0.328349) | 0.596222 / 0.323480 (0.272742) | 0.006786 / 0.007986 (-0.001200) | 0.004135 / 0.004328 (-0.000193) | 0.085934 / 0.004250 (0.081683) | 0.065890 / 0.037052 (0.028838) | 0.592080 / 0.258489 (0.333591) | 0.624560 / 0.293841 (0.330719) | 0.048200 / 0.128546 (-0.080346) | 0.015477 / 0.075646 (-0.060169) | 0.097042 / 0.419271 (-0.322230) | 0.060513 / 0.043533 (0.016981) | 0.557171 / 0.255139 (0.302032) | 0.582057 / 0.283200 (0.298858) | 0.035678 / 0.141683 (-0.106005) | 1.894947 / 1.452155 (0.442792) | 1.956652 / 1.492716 (0.463936) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268927 / 0.018006 (0.250921) | 0.566086 / 0.000490 (0.565597) | 0.007190 / 0.000200 (0.006990) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.042090 / 0.037411 (0.004679) | 0.109618 / 0.014526 (0.095092) | 0.126588 / 0.176557 (-0.049968) | 0.200426 / 0.737135 (-0.536709) | 0.127032 / 0.296338 (-0.169306) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.669773 / 0.215209 (0.454564) | 6.453417 / 2.077655 (4.375763) | 3.119147 / 1.504120 (1.615027) | 2.818632 / 1.541195 (1.277437) | 2.930880 / 1.468490 (1.462390) | 0.922164 / 4.584777 (-3.662612) | 5.769564 / 3.745712 (2.023852) | 4.885108 / 5.269862 (-0.384754) | 3.041640 / 4.565676 (-1.524037) | 0.100186 / 0.424275 (-0.324090) | 0.009417 / 0.007607 (0.001810) | 0.783138 / 0.226044 (0.557094) | 8.113361 / 2.268929 (5.844432) | 4.018630 / 55.444624 (-51.425995) | 3.246772 / 6.876477 (-3.629704) | 3.520690 / 2.142072 (1.378618) | 1.063686 / 4.805227 (-3.741541) | 0.218667 / 6.500664 (-6.281997) | 0.084169 / 0.075469 (0.008700) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.791949 / 1.841788 (-0.049839) | 23.148341 / 8.074308 (15.074033) | 23.321125 / 10.191392 (13.129733) | 0.245391 / 0.680424 (-0.435032) | 0.031911 / 0.534201 (-0.502290) | 0.470707 / 0.579283 (-0.108576) | 0.608195 / 0.434364 (0.173832) | 0.559590 / 0.540337 (0.019253) | 0.786007 / 1.386936 (-0.600929) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8e071f565cc0801f73f7f34fba92dc30a43946a9 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008428 / 0.011353 (-0.002925) | 0.004064 / 0.011008 (-0.006944) | 0.088421 / 0.038508 (0.049913) | 0.078042 / 0.023109 (0.054933) | 0.306356 / 0.275898 (0.030458) | 0.349766 / 0.323480 (0.026286) | 0.004086 / 0.007986 (-0.003900) | 0.003900 / 0.004328 (-0.000428) | 0.068379 / 0.004250 (0.064129) | 0.056214 / 0.037052 (0.019161) | 0.310211 / 0.258489 (0.051722) | 0.363692 / 0.293841 (0.069851) | 0.050421 / 0.128546 (-0.078125) | 0.011661 / 0.075646 (-0.063985) | 0.298400 / 0.419271 (-0.120871) | 0.063503 / 0.043533 (0.019970) | 0.339799 / 0.255139 (0.084660) | 0.359479 / 0.283200 (0.076279) | 0.039265 / 0.141683 (-0.102418) | 1.390578 / 1.452155 (-0.061576) | 1.573333 / 1.492716 (0.080617) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260442 / 0.018006 (0.242436) | 0.560390 / 0.000490 (0.559900) | 0.003926 / 0.000200 (0.003726) | 0.000083 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025809 / 0.037411 (-0.011602) | 0.081902 / 0.014526 (0.067376) | 0.093655 / 0.176557 (-0.082901) | 0.149432 / 0.737135 (-0.587703) | 0.099059 / 0.296338 (-0.197279) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.505644 / 0.215209 (0.290435) | 5.108292 / 2.077655 (3.030638) | 2.121689 / 1.504120 (0.617569) | 1.846576 / 1.541195 (0.305381) | 1.836587 / 1.468490 (0.368097) | 0.708088 / 4.584777 (-3.876689) | 4.562630 / 3.745712 (0.816918) | 3.934747 / 5.269862 (-1.335115) | 2.453409 / 4.565676 (-2.112267) | 0.081908 / 0.424275 (-0.342367) | 0.012996 / 0.007607 (0.005389) | 0.636588 / 0.226044 (0.410544) | 6.361086 / 2.268929 (4.092157) | 2.911681 / 55.444624 (-52.532943) | 2.271809 / 6.876477 (-4.604667) | 2.670327 / 2.142072 (0.528254) | 0.943688 / 4.805227 (-3.861539) | 0.191677 / 6.500664 (-6.308988) | 0.066008 / 0.075469 (-0.009461) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.400139 / 1.841788 (-0.441648) | 21.896198 / 8.074308 (13.821890) | 17.853604 / 10.191392 (7.662212) | 0.226603 / 0.680424 (-0.453821) | 0.026682 / 0.534201 (-0.507518) | 0.460131 / 0.579283 (-0.119152) | 0.536790 / 0.434364 (0.102427) | 0.492913 / 0.540337 (-0.047424) | 0.724290 / 1.386936 (-0.662646) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007795 / 0.011353 (-0.003557) | 0.009045 / 0.011008 (-0.001963) | 0.085480 / 0.038508 (0.046972) | 0.071881 / 0.023109 (0.048772) | 0.514520 / 0.275898 (0.238622) | 0.569762 / 0.323480 (0.246282) | 0.006126 / 0.007986 (-0.001859) | 0.004153 / 0.004328 (-0.000175) | 0.072150 / 0.004250 (0.067900) | 0.056511 / 0.037052 (0.019458) | 0.484097 / 0.258489 (0.225607) | 0.532673 / 0.293841 (0.238832) | 0.040974 / 0.128546 (-0.087572) | 0.012071 / 0.075646 (-0.063575) | 0.102608 / 0.419271 (-0.316663) | 0.052893 / 0.043533 (0.009360) | 0.485832 / 0.255139 (0.230693) | 0.530479 / 0.283200 (0.247280) | 0.031556 / 0.141683 (-0.110127) | 1.737508 / 1.452155 (0.285354) | 1.834637 / 1.492716 (0.341921) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.423314 / 0.018006 (0.405308) | 0.614163 / 0.000490 (0.613673) | 0.052784 / 0.000200 (0.052584) | 0.000206 / 0.000054 (0.000151) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031728 / 0.037411 (-0.005684) | 0.088048 / 0.014526 (0.073522) | 0.105759 / 0.176557 (-0.070798) | 0.181433 / 0.737135 (-0.555703) | 0.103133 / 0.296338 (-0.193205) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.659710 / 0.215209 (0.444501) | 5.876378 / 2.077655 (3.798723) | 2.899444 / 1.504120 (1.395324) | 2.871592 / 1.541195 (1.330397) | 2.861205 / 1.468490 (1.392715) | 0.879452 / 4.584777 (-3.705325) | 5.395988 / 3.745712 (1.650275) | 4.548359 / 5.269862 (-0.721502) | 2.946601 / 4.565676 (-1.619076) | 0.099832 / 0.424275 (-0.324443) | 0.008958 / 0.007607 (0.001351) | 0.778480 / 0.226044 (0.552435) | 7.672282 / 2.268929 (5.403354) | 3.963701 / 55.444624 (-51.480923) | 3.154950 / 6.876477 (-3.721527) | 3.351070 / 2.142072 (1.208997) | 1.059459 / 4.805227 (-3.745768) | 0.212035 / 6.500664 (-6.288629) | 0.076941 / 0.075469 (0.001472) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.639813 / 1.841788 (-0.201975) | 24.807517 / 8.074308 (16.733208) | 20.662500 / 10.191392 (10.471108) | 0.244486 / 0.680424 (-0.435937) | 0.032335 / 0.534201 (-0.501866) | 0.470896 / 0.579283 (-0.108387) | 0.581561 / 0.434364 (0.147197) | 0.495158 / 0.540337 (-0.045179) | 0.788350 / 1.386936 (-0.598586) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#99641ced2e08a28cb876f483babcdd43f7dd76d2 \"CML watermark\")\n"
] | "2023-09-08T16:09:13" | "2023-09-08T18:02:49" | "2023-09-08T17:52:16" | CONTRIBUTOR | null | Fix #6225 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6228/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6228/timeline | null | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6228.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6228",
"merged_at": "2023-09-08T17:52:16Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6228.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6228"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6226 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6226/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6226/comments | https://api.github.com/repos/huggingface/datasets/issues/6226/events | https://github.com/huggingface/datasets/pull/6226 | 1,887,462,591 | PR_kwDODunzps5Z3arq | 6,226 | Add push_to_hub with multiple configs docs | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005920 / 0.011353 (-0.005433) | 0.003623 / 0.011008 (-0.007385) | 0.079283 / 0.038508 (0.040775) | 0.058325 / 0.023109 (0.035216) | 0.313733 / 0.275898 (0.037835) | 0.360790 / 0.323480 (0.037310) | 0.004653 / 0.007986 (-0.003332) | 0.002876 / 0.004328 (-0.001452) | 0.062137 / 0.004250 (0.057886) | 0.045084 / 0.037052 (0.008031) | 0.328569 / 0.258489 (0.070079) | 0.368965 / 0.293841 (0.075124) | 0.027085 / 0.128546 (-0.101461) | 0.008051 / 0.075646 (-0.067595) | 0.260222 / 0.419271 (-0.159050) | 0.045477 / 0.043533 (0.001944) | 0.315344 / 0.255139 (0.060205) | 0.348215 / 0.283200 (0.065015) | 0.021352 / 0.141683 (-0.120331) | 1.432200 / 1.452155 (-0.019955) | 1.509217 / 1.492716 (0.016501) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199843 / 0.018006 (0.181837) | 0.427925 / 0.000490 (0.427435) | 0.002903 / 0.000200 (0.002703) | 0.000067 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023121 / 0.037411 (-0.014291) | 0.072451 / 0.014526 (0.057925) | 0.083260 / 0.176557 (-0.093296) | 0.142879 / 0.737135 (-0.594257) | 0.084053 / 0.296338 (-0.212286) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394922 / 0.215209 (0.179713) | 3.956111 / 2.077655 (1.878456) | 1.926411 / 1.504120 (0.422291) | 1.743840 / 1.541195 (0.202646) | 1.776957 / 1.468490 (0.308467) | 0.502134 / 4.584777 (-4.082643) | 3.001721 / 3.745712 (-0.743991) | 2.852496 / 5.269862 (-2.417365) | 1.862794 / 4.565676 (-2.702883) | 0.057544 / 0.424275 (-0.366731) | 0.006751 / 0.007607 (-0.000856) | 0.470619 / 0.226044 (0.244575) | 4.696674 / 2.268929 (2.427746) | 2.326545 / 55.444624 (-53.118080) | 1.980888 / 6.876477 (-4.895589) | 2.139172 / 2.142072 (-0.002901) | 0.590256 / 4.805227 (-4.214971) | 0.125815 / 6.500664 (-6.374849) | 0.061000 / 0.075469 (-0.014469) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.261948 / 1.841788 (-0.579839) | 18.317473 / 8.074308 (10.243165) | 13.810883 / 10.191392 (3.619491) | 0.146180 / 0.680424 (-0.534244) | 0.016701 / 0.534201 (-0.517500) | 0.330731 / 0.579283 (-0.248552) | 0.345103 / 0.434364 (-0.089261) | 0.374449 / 0.540337 (-0.165889) | 0.522463 / 1.386936 (-0.864473) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006217 / 0.011353 (-0.005136) | 0.003678 / 0.011008 (-0.007331) | 0.062321 / 0.038508 (0.023813) | 0.059256 / 0.023109 (0.036147) | 0.444501 / 0.275898 (0.168603) | 0.475881 / 0.323480 (0.152401) | 0.004863 / 0.007986 (-0.003123) | 0.002916 / 0.004328 (-0.001412) | 0.062197 / 0.004250 (0.057946) | 0.048449 / 0.037052 (0.011396) | 0.443680 / 0.258489 (0.185191) | 0.484570 / 0.293841 (0.190729) | 0.028694 / 0.128546 (-0.099852) | 0.008096 / 0.075646 (-0.067550) | 0.068347 / 0.419271 (-0.350924) | 0.041031 / 0.043533 (-0.002502) | 0.443907 / 0.255139 (0.188768) | 0.469888 / 0.283200 (0.186689) | 0.020237 / 0.141683 (-0.121445) | 1.438484 / 1.452155 (-0.013671) | 1.512652 / 1.492716 (0.019936) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243118 / 0.018006 (0.225111) | 0.416797 / 0.000490 (0.416308) | 0.010421 / 0.000200 (0.010221) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026191 / 0.037411 (-0.011220) | 0.080881 / 0.014526 (0.066355) | 0.093207 / 0.176557 (-0.083349) | 0.146708 / 0.737135 (-0.590428) | 0.091676 / 0.296338 (-0.204663) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461475 / 0.215209 (0.246266) | 4.617351 / 2.077655 (2.539696) | 2.564369 / 1.504120 (1.060249) | 2.393263 / 1.541195 (0.852068) | 2.447343 / 1.468490 (0.978853) | 0.508764 / 4.584777 (-4.076013) | 3.075460 / 3.745712 (-0.670252) | 2.884683 / 5.269862 (-2.385179) | 1.866432 / 4.565676 (-2.699244) | 0.058759 / 0.424275 (-0.365516) | 0.006591 / 0.007607 (-0.001016) | 0.537718 / 0.226044 (0.311674) | 5.378709 / 2.268929 (3.109781) | 3.006751 / 55.444624 (-52.437873) | 2.666653 / 6.876477 (-4.209824) | 2.847559 / 2.142072 (0.705486) | 0.596878 / 4.805227 (-4.208350) | 0.125073 / 6.500664 (-6.375591) | 0.061345 / 0.075469 (-0.014124) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.349066 / 1.841788 (-0.492721) | 18.684735 / 8.074308 (10.610427) | 15.128142 / 10.191392 (4.936750) | 0.149254 / 0.680424 (-0.531170) | 0.017911 / 0.534201 (-0.516290) | 0.344057 / 0.579283 (-0.235226) | 0.363474 / 0.434364 (-0.070890) | 0.399425 / 0.540337 (-0.140912) | 0.549329 / 1.386936 (-0.837607) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e675a2396efb5204a4553721001f3b46aa4cc334 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005843 / 0.011353 (-0.005510) | 0.003549 / 0.011008 (-0.007460) | 0.082318 / 0.038508 (0.043810) | 0.056835 / 0.023109 (0.033726) | 0.312968 / 0.275898 (0.037070) | 0.345918 / 0.323480 (0.022438) | 0.003239 / 0.007986 (-0.004747) | 0.002762 / 0.004328 (-0.001567) | 0.062362 / 0.004250 (0.058111) | 0.045934 / 0.037052 (0.008882) | 0.317035 / 0.258489 (0.058546) | 0.358473 / 0.293841 (0.064632) | 0.027311 / 0.128546 (-0.101235) | 0.007994 / 0.075646 (-0.067652) | 0.261565 / 0.419271 (-0.157706) | 0.044942 / 0.043533 (0.001410) | 0.313092 / 0.255139 (0.057953) | 0.339021 / 0.283200 (0.055821) | 0.021555 / 0.141683 (-0.120127) | 1.421232 / 1.452155 (-0.030923) | 1.487597 / 1.492716 (-0.005119) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206432 / 0.018006 (0.188425) | 0.421932 / 0.000490 (0.421442) | 0.002825 / 0.000200 (0.002625) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022795 / 0.037411 (-0.014616) | 0.072666 / 0.014526 (0.058140) | 0.082779 / 0.176557 (-0.093778) | 0.142320 / 0.737135 (-0.594815) | 0.083343 / 0.296338 (-0.212995) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394227 / 0.215209 (0.179018) | 3.931858 / 2.077655 (1.854203) | 1.909953 / 1.504120 (0.405833) | 1.711298 / 1.541195 (0.170104) | 1.745816 / 1.468490 (0.277326) | 0.503670 / 4.584777 (-4.081107) | 3.053677 / 3.745712 (-0.692035) | 2.802597 / 5.269862 (-2.467264) | 1.825315 / 4.565676 (-2.740362) | 0.057741 / 0.424275 (-0.366534) | 0.006581 / 0.007607 (-0.001027) | 0.463597 / 0.226044 (0.237552) | 4.638821 / 2.268929 (2.369893) | 2.301266 / 55.444624 (-53.143358) | 1.967111 / 6.876477 (-4.909365) | 2.097756 / 2.142072 (-0.044317) | 0.589840 / 4.805227 (-4.215387) | 0.125538 / 6.500664 (-6.375126) | 0.061203 / 0.075469 (-0.014266) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291815 / 1.841788 (-0.549973) | 17.997040 / 8.074308 (9.922732) | 13.616252 / 10.191392 (3.424860) | 0.137349 / 0.680424 (-0.543075) | 0.016626 / 0.534201 (-0.517575) | 0.329611 / 0.579283 (-0.249672) | 0.346592 / 0.434364 (-0.087772) | 0.379521 / 0.540337 (-0.160817) | 0.528058 / 1.386936 (-0.858878) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006073 / 0.011353 (-0.005280) | 0.003594 / 0.011008 (-0.007414) | 0.062537 / 0.038508 (0.024029) | 0.057503 / 0.023109 (0.034394) | 0.449427 / 0.275898 (0.173529) | 0.482729 / 0.323480 (0.159249) | 0.004690 / 0.007986 (-0.003295) | 0.002901 / 0.004328 (-0.001428) | 0.062421 / 0.004250 (0.058171) | 0.046405 / 0.037052 (0.009353) | 0.456578 / 0.258489 (0.198089) | 0.492268 / 0.293841 (0.198427) | 0.028283 / 0.128546 (-0.100263) | 0.008028 / 0.075646 (-0.067618) | 0.067885 / 0.419271 (-0.351387) | 0.041273 / 0.043533 (-0.002260) | 0.449870 / 0.255139 (0.194731) | 0.472305 / 0.283200 (0.189106) | 0.018556 / 0.141683 (-0.123127) | 1.449016 / 1.452155 (-0.003138) | 1.490839 / 1.492716 (-0.001877) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226569 / 0.018006 (0.208563) | 0.417106 / 0.000490 (0.416616) | 0.002784 / 0.000200 (0.002584) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025803 / 0.037411 (-0.011608) | 0.081084 / 0.014526 (0.066559) | 0.091851 / 0.176557 (-0.084706) | 0.143982 / 0.737135 (-0.593153) | 0.090511 / 0.296338 (-0.205827) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463664 / 0.215209 (0.248454) | 4.634528 / 2.077655 (2.556874) | 2.574739 / 1.504120 (1.070619) | 2.412857 / 1.541195 (0.871662) | 2.442858 / 1.468490 (0.974368) | 0.511990 / 4.584777 (-4.072787) | 3.070345 / 3.745712 (-0.675367) | 2.842290 / 5.269862 (-2.427571) | 1.846727 / 4.565676 (-2.718950) | 0.058852 / 0.424275 (-0.365424) | 0.006624 / 0.007607 (-0.000983) | 0.539616 / 0.226044 (0.313571) | 5.410784 / 2.268929 (3.141856) | 3.065593 / 55.444624 (-52.379031) | 2.677930 / 6.876477 (-4.198547) | 2.817548 / 2.142072 (0.675476) | 0.602672 / 4.805227 (-4.202555) | 0.125689 / 6.500664 (-6.374975) | 0.062007 / 0.075469 (-0.013462) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.335336 / 1.841788 (-0.506452) | 18.310099 / 8.074308 (10.235791) | 14.818452 / 10.191392 (4.627060) | 0.154001 / 0.680424 (-0.526423) | 0.017892 / 0.534201 (-0.516309) | 0.345989 / 0.579283 (-0.233294) | 0.352108 / 0.434364 (-0.082256) | 0.394333 / 0.540337 (-0.146004) | 0.547680 / 1.386936 (-0.839256) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d058d6e9b849acb5bc61d7df597a94253b487eb6 \"CML watermark\")\n"
] | "2023-09-08T11:08:55" | "2023-09-08T12:29:21" | "2023-09-08T12:20:51" | MEMBER | null | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 2,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 2,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6226/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6226/timeline | null | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/6226.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6226",
"merged_at": "2023-09-08T12:20:51Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6226.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6226"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6225 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6225/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6225/comments | https://api.github.com/repos/huggingface/datasets/issues/6225/events | https://github.com/huggingface/datasets/issues/6225 | 1,887,054,320 | I_kwDODunzps5weinw | 6,225 | Conversion from RGB to BGR in Object Detection tutorial | {
"avatar_url": "https://avatars.githubusercontent.com/u/33297401?v=4",
"events_url": "https://api.github.com/users/samokhinv/events{/privacy}",
"followers_url": "https://api.github.com/users/samokhinv/followers",
"following_url": "https://api.github.com/users/samokhinv/following{/other_user}",
"gists_url": "https://api.github.com/users/samokhinv/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/samokhinv",
"id": 33297401,
"login": "samokhinv",
"node_id": "MDQ6VXNlcjMzMjk3NDAx",
"organizations_url": "https://api.github.com/users/samokhinv/orgs",
"received_events_url": "https://api.github.com/users/samokhinv/received_events",
"repos_url": "https://api.github.com/users/samokhinv/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/samokhinv/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/samokhinv/subscriptions",
"type": "User",
"url": "https://api.github.com/users/samokhinv"
} | [] | closed | false | null | [] | null | [
"Good catch!"
] | "2023-09-08T06:49:19" | "2023-09-08T17:52:18" | "2023-09-08T17:52:17" | NONE | null | The [tutorial](https://huggingface.co/docs/datasets/main/en/object_detection) mentions the necessity of conversion the input image from BGR to RGB
> albumentations expects the image to be in BGR format, not RGB, so you’ll have to convert the image before applying the transform.
[Link to tutorial](https://github.com/huggingface/datasets/blob/0a068dbf3b446417ffd89d32857608394ec699e6/docs/source/object_detection.mdx#L77)
However, relevant albumentations' tutorials [on channels conversion](https://albumentations.ai/docs/examples/example/#read-the-image-from-the-disk-and-convert-it-from-the-bgr-color-space-to-the-rgb-color-space) and [on boxes](https://albumentations.ai/docs/examples/example_bboxes/) imply that it's not really true no more.
I suggest removing this outdated conversion from the tutorial. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6225/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/6225/timeline | null | completed | null | null | false |
End of preview. Expand
in Dataset Viewer.
- Downloads last month
- 39