File size: 13,588 Bytes
502c746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0aad6e
502c746
 
 
 
 
 
 
 
 
 
09e2f84
502c746
09e2f84
502c746
75a635f
fb3b08a
714876f
 
502c746
 
 
 
 
 
 
 
75a635f
502c746
 
75a635f
714876f
75a635f
 
 
 
714876f
502c746
 
 
 
 
 
 
 
 
 
 
 
 
fb3b08a
 
 
 
 
 
502c746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4a42c
502c746
 
 
 
 
8f4a42c
502c746
 
 
 
 
 
 
8f4a42c
502c746
 
 
 
 
 
 
8f4a42c
502c746
 
 
 
 
 
884a611
 
fb3b08a
884a611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3b08a
884a611
fb3b08a
884a611
8f4a42c
502c746
75a635f
502c746
75a635f
8f4a42c
75a635f
 
502c746
75a635f
502c746
8f4a42c
502c746
8f4a42c
 
 
 
 
 
 
 
502c746
75a635f
8f4a42c
502c746
75a635f
502c746
75a635f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# coding=utf-8

"""MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages"""

import json
import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """
@misc{fitzgerald2022massive,
      title={MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages}, 
      author={Jack FitzGerald and Christopher Hench and Charith Peris and Scott Mackie and Kay Rottmann and Ana Sanchez and Aaron Nash and Liam Urbach and Vishesh Kakarala and Richa Singh and Swetha Ranganath and Laurie Crist and Misha Britan and Wouter Leeuwis and Gokhan Tur and Prem Natarajan},
      year={2022},
      eprint={2204.08582},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

@inproceedings{bastianelli-etal-2020-slurp,
    title = "{SLURP}: A Spoken Language Understanding Resource Package",
    author = "Bastianelli, Emanuele  and
      Vanzo, Andrea  and
      Swietojanski, Pawel  and
      Rieser, Verena",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.emnlp-main.588",
    doi = "10.18653/v1/2020.emnlp-main.588",
    pages = "7252--7262",
    abstract = "Spoken Language Understanding infers semantic meaning directly from audio data, and thus promises to reduce error propagation and misunderstandings in end-user applications. However, publicly available SLU resources are limited. In this paper, we release SLURP, a new SLU package containing the following: (1) A new challenging dataset in English spanning 18 domains, which is substantially bigger and linguistically more diverse than existing datasets; (2) Competitive baselines based on state-of-the-art NLU and ASR systems; (3) A new transparent metric for entity labelling which enables a detailed error analysis for identifying potential areas of improvement. SLURP is available at https://github.com/pswietojanski/slurp."
}
"""

_LANGUAGE_PAIRS = ['af-ZA', 'am-ET', 'ar-SA', 'az-AZ', 'bn-BD', 'cy-GB', 'da-DK', 'de-DE', 'el-GR', 'en-US', 'es-ES', 'fa-IR', 'fi-FI', 'fr-FR', 'he-IL', 'hi-IN', 'hu-HU', 'hy-AM', 'id-ID', 'is-IS', 'it-IT', 'ja-JP', 'jv-ID', 'ka-GE', 'km-KH', 'kn-IN', 'ko-KR', 'lv-LV', 'ml-IN', 'mn-MN', 'ms-MY', 'my-MM', 'nb-NO', 'nl-NL', 'pl-PL', 'pt-PT', 'ro-RO', 'ru-RU', 'sl-SL', 'sq-AL', 'sv-SE', 'sw-KE', 'ta-IN', 'te-IN', 'th-TH', 'tl-PH', 'tr-TR', 'ur-PK', 'vi-VN', 'zh-CN', 'zh-TW']

_LICENSE = "cc-by-4-0"

_DESCRIPTION = """
MASSIVE is a parallel dataset of > 1M utterances across 51 languages with annotations
for the Natural Language Understanding tasks of intent prediction and slot annotation.
Utterances span 60 intents and include 55 slot types. MASSIVE was created by localizing
the SLURP dataset, composed of general Intelligent Voice Assistant single-shot interactions.
"""

_URL = "https://amazon-massive-nlu-dataset.s3.amazonaws.com/amazon-massive-dataset-1.0.tar.gz"

_SCENARIOS = ['calendar', 'recommendation', 'social', 'general', 'news', 'cooking', 'iot', 'email', 'weather', 'alarm', 'transport', 'lists', 'takeaway', 'play', 'audio', 'music', 'qa', 'datetime']

_INTENTS = ['audio_volume_other', 'play_music', 'iot_hue_lighton', 'general_greet', 'calendar_set', 'audio_volume_down', 'social_query', 'audio_volume_mute', 'iot_wemo_on', 'iot_hue_lightup', 'audio_volume_up', 'iot_coffee', 'takeaway_query', 'qa_maths', 'play_game', 'cooking_query', 'iot_hue_lightdim', 'iot_wemo_off', 'music_settings', 'weather_query', 'news_query', 'alarm_remove', 'social_post', 'recommendation_events', 'transport_taxi', 'takeaway_order', 'music_query', 'calendar_query', 'lists_query', 'qa_currency', 'recommendation_movies', 'general_joke', 'recommendation_locations', 'email_querycontact', 'lists_remove', 'play_audiobook', 'email_addcontact', 'lists_createoradd', 'play_radio', 'qa_stock', 'alarm_query', 'email_sendemail', 'general_quirky', 'music_likeness', 'cooking_recipe', 'email_query', 'datetime_query', 'transport_traffic', 'play_podcasts', 'iot_hue_lightchange', 'calendar_remove', 'transport_query', 'transport_ticket', 'qa_factoid', 'iot_cleaning', 'alarm_set', 'datetime_convert', 'iot_hue_lightoff', 'qa_definition', 'music_dislikeness']

_TAGS = ['O', 'B-food_type', 'B-movie_type', 'B-person', 'B-change_amount', 'I-relation', 'I-game_name', 'B-date', 'B-movie_name', 'I-person', 'I-place_name', 'I-podcast_descriptor', 'I-audiobook_name', 'B-email_folder', 'B-coffee_type', 'B-app_name', 'I-time', 'I-coffee_type', 'B-transport_agency', 'B-podcast_descriptor', 'I-playlist_name', 'B-media_type', 'B-song_name', 'I-music_descriptor', 'I-song_name', 'B-event_name', 'I-timeofday', 'B-alarm_type', 'B-cooking_type', 'I-business_name', 'I-color_type', 'B-podcast_name', 'I-personal_info', 'B-weather_descriptor', 'I-list_name', 'B-transport_descriptor', 'I-game_type', 'I-date', 'B-place_name', 'B-color_type', 'B-game_name', 'I-artist_name', 'I-drink_type', 'B-business_name', 'B-timeofday', 'B-sport_type', 'I-player_setting', 'I-transport_agency', 'B-game_type', 'B-player_setting', 'I-music_album', 'I-event_name', 'I-general_frequency', 'I-podcast_name', 'I-cooking_type', 'I-radio_name', 'I-joke_type', 'I-meal_type', 'I-transport_type', 'B-joke_type', 'B-time', 'B-order_type', 'B-business_type', 'B-general_frequency', 'I-food_type', 'I-time_zone', 'B-currency_name', 'B-time_zone', 'B-ingredient', 'B-house_place', 'B-audiobook_name', 'I-ingredient', 'I-media_type', 'I-news_topic', 'B-music_genre', 'I-definition_word', 'B-list_name', 'B-playlist_name', 'B-email_address', 'I-currency_name', 'I-movie_name', 'I-device_type', 'I-weather_descriptor', 'B-audiobook_author', 'I-audiobook_author', 'I-app_name', 'I-order_type', 'I-transport_name', 'B-radio_name', 'I-business_type', 'B-definition_word', 'B-artist_name', 'I-movie_type', 'B-transport_name', 'I-email_folder', 'B-music_album', 'I-house_place', 'I-music_genre', 'B-drink_type', 'I-alarm_type', 'B-music_descriptor', 'B-news_topic', 'B-meal_type', 'I-transport_descriptor', 'I-email_address', 'I-change_amount', 'B-device_type', 'B-transport_type', 'B-relation', 'I-sport_type', 'B-personal_info']

_ALL = "all"

class MASSIVE(datasets.GeneratorBasedBuilder):
    """MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name = name,
            version = datasets.Version("1.0.0"),
            description = f"The MASSIVE corpora for {name}",
        ) for name in _LANGUAGE_PAIRS        
    ]

    BUILDER_CONFIGS.append(datasets.BuilderConfig(
        name = _ALL,
        version = datasets.Version("1.0.0"),
        description = f"The MASSIVE corpora for entire corpus",
    ))

    DEFAULT_CONFIG_NAME = _ALL

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "locale": datasets.Value("string"),
                    "partition": datasets.Value("string"),
                    "scenario": datasets.features.ClassLabel(names=_SCENARIOS),
                    "intent": datasets.features.ClassLabel(names=_INTENTS),
                    "utt": datasets.Value("string"),
                    "annot_utt": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names = _TAGS
                        )
                    ),
                    "worker_id": datasets.Value("string"),
                    "slot_method": datasets.Sequence({
                        "slot": datasets.Value("string"),
                        "method": datasets.Value("string"),
                    }),
                    "judgments": datasets.Sequence({
                        "worker_id": datasets.Value("string"),
                        "intent_score": datasets.Value("int8"), # [0, 1, 2]
                        "slots_score": datasets.Value("int8"), # [0, 1, 2]
                        "grammar_score": datasets.Value("int8"), # [0, 1, 2, 3, 4]
                        "spelling_score": datasets.Value("int8"), # [0, 1, 2]
                        "language_identification": datasets.Value("string"),
                    }),
                },
            ),
            supervised_keys=None,
            homepage="https://github.com/alexa/massive",
            citation=_CITATION,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):

        archive = dl_manager.download(_URL)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": dl_manager.iter_archive(archive),
                    "split": "train",
                    "lang": self.config.name,
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "files": dl_manager.iter_archive(archive),
                    "split": "dev",
                    "lang": self.config.name,
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "files": dl_manager.iter_archive(archive),
                    "split": "test",
                    "lang": self.config.name,
                }
            ),
        ]

    def _getBioFormat(self, text):

        tags, tokens = [], []

        bio_mode = False
        cpt_bio = 0
        current_tag = None
        
        split_iter = iter(text.split(" "))

        for s in split_iter:

            if s.startswith("["):
                current_tag = s.strip("[")
                bio_mode = True
                cpt_bio += 1
                next(split_iter)
                continue

            elif s.endswith("]"):
                bio_mode = False
                if cpt_bio == 1:
                    prefix = "B-"
                else:
                    prefix = "I-"
                token = prefix + current_tag
                word = s.strip("]")
                current_tag = None
                cpt_bio = 0

            else:

                if bio_mode == True:
                    if cpt_bio == 1:
                        prefix = "B-"
                    else:
                        prefix = "I-"
                    token = prefix + current_tag
                    word = s
                    cpt_bio += 1
                else:
                    token = "O"
                    word = s
            
            tags.append(token)
            tokens.append(word)

        return tokens, tags

    def _generate_examples(self, files, split, lang):

        key_ = 0

        if lang == "all":
            lang = _LANGUAGE_PAIRS.copy()
        else:
            lang = [lang]
        
        logger.info("⏳ Generating examples from = %s", ", ".join(lang))

        for path, f in files:

            l = path.split("1.0/data/")[-1].split(".jsonl")[0]
            
            if not lang:
                break
            elif l in lang:
                lang.remove(l)
            else:
                continue

            # Read the file
            lines = f.read().decode(encoding="utf-8").split("\n")

            for line in lines:

                data = json.loads(line)

                if data["partition"] != split:
                    continue

                # Slot method
                if "slot_method" in data:
                    slot_method = [
                        {
                            "slot": s["slot"],
                            "method": s["method"],
                        } for s in data["slot_method"]
                    ]
                else:
                    slot_method = []

                # Judgments
                if "judgments" in data:
                    judgments = [
                        {
                            "worker_id": j["worker_id"],
                            "intent_score": j["intent_score"],
                            "slots_score": j["slots_score"],
                            "grammar_score": j["grammar_score"],
                            "spelling_score": j["spelling_score"],
                            "language_identification": j["language_identification"] if "language_identification" in j else "target",
                        } for j in data["judgments"]
                    ]
                else:
                    judgments = []

                tokens, tags = self._getBioFormat(data["annot_utt"])

                yield key_, {
                    "id": data["id"],
                    "locale": data["locale"],
                    "partition": data["partition"],
                    "scenario": data["scenario"],
                    "intent": data["intent"],
                    "utt": data["utt"],
                    "annot_utt": data["annot_utt"],
                    "tokens": tokens,
                    "ner_tags": tags,
                    "worker_id": data["worker_id"],
                    "slot_method": slot_method,
                    "judgments": judgments,
                }

                key_ += 1