arsentd_lev / README.md
system's picture
system HF staff
Update files from the datasets library (from 1.6.0)
3aeea9c
|
raw
history blame
4.38 kB
---
annotations_creators:
- crowdsourced
language_creators:
- found
languages:
- apc
- apj
licenses:
- other-Copyright-2018-by-[American-University-of-Beirut]
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
- topic-classification
---
# Dataset Card for ArSenTD-LEV
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [ArSenTD-LEV homepage](http://oma-project.com/)
- **Paper:** [ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets](https://arxiv.org/abs/1906.01830)
### Dataset Summary
The Arabic Sentiment Twitter Dataset for Levantine dialect (ArSenTD-LEV) contains 4,000 tweets written in Arabic and equally retrieved from Jordan, Lebanon, Palestine and Syria.
### Supported Tasks and Leaderboards
Sentriment analysis
### Languages
Arabic Levantine Dualect
## Dataset Structure
### Data Instances
{'Country': 0,
'Sentiment': 3,
'Sentiment_Expression': 0,
'Sentiment_Target': 'هاي سوالف عصابات ارهابية',
'Topic': 'politics',
'Tweet': 'ثلاث تفجيرات في #كركوك الحصيلة قتيل و 16 جريح بدأت اكلاوات كركوك كانت امان قبل دخول القوات العراقية ، هاي سوالف عصابات ارهابية'}
### Data Fields
`Tweet`: the text content of the tweet \
`Country`: the country from which the tweet was collected ('jordan', 'lebanon', 'syria', 'palestine')\
`Topic`: the topic being discussed in the tweet (personal, politics, religion, sports, entertainment and others) \
`Sentiment`: the overall sentiment expressed in the tweet (very_negative, negative, neutral, positive and very_positive) \
`Sentiment_Expression`: the way how the sentiment was expressed: explicit, implicit, or none (the latter when sentiment is neutral) \
`Sentiment_Target`: the segment from the tweet to which sentiment is expressed. If sentiment is neutral, this field takes the 'none' value.
### Data Splits
No standard splits are provided
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Make sure to read and agree to the [license](http://oma-project.com/ArSenL/ArSenTD_Lev_Intro)
### Citation Information
```
@article{baly2019arsentd,
title={Arsentd-lev: A multi-topic corpus for target-based sentiment analysis in arabic levantine tweets},
author={Baly, Ramy and Khaddaj, Alaa and Hajj, Hazem and El-Hajj, Wassim and Shaban, Khaled Bashir},
journal={arXiv preprint arXiv:1906.01830},
year={2019}
}
```
### Contributions
Thanks to [@moussaKam](https://github.com/moussaKam) for adding this dataset.