|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import ( |
|
Any, |
|
Dict, |
|
Iterable, |
|
List, |
|
Tuple, |
|
) |
|
|
|
from datasets import ( |
|
Audio, |
|
BuilderConfig, |
|
DatasetInfo, |
|
Features, |
|
GeneratorBasedBuilder, |
|
Split, |
|
SplitGenerator, |
|
Value, |
|
) |
|
from datasets.download.download_manager import ( |
|
ArchiveIterable, |
|
DownloadManager, |
|
) |
|
|
|
|
|
class FLEURSHSConfig(BuilderConfig): |
|
def __init__( |
|
self, |
|
name, |
|
**kwargs, |
|
): |
|
super( |
|
FLEURSHSConfig, |
|
self, |
|
).__init__( |
|
name=name, |
|
**kwargs, |
|
) |
|
|
|
|
|
class FLEURSHSDataset(GeneratorBasedBuilder): |
|
DEFAULT_CONFIG_NAME = "en_us" |
|
|
|
BUILDER_CONFIGS = [ |
|
FLEURSHSConfig(name=name) |
|
for name in ( |
|
"de_de", |
|
"en_us", |
|
"es_419", |
|
"fr_fr", |
|
"it_it", |
|
"nl_nl", |
|
"pl_pl", |
|
"sv_se", |
|
) |
|
] |
|
|
|
def get_audio_archive_path( |
|
self, |
|
split: str, |
|
) -> Path: |
|
return Path("data") / self.config.name / "splits" / f"{split}.tar.gz" |
|
|
|
def _info(self) -> DatasetInfo: |
|
return DatasetInfo( |
|
description="FLEURS Human-Synthetic classification dataset", |
|
features=Features( |
|
{ |
|
"audio": Audio(sampling_rate=16000), |
|
"label": Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://huggingface.co/datasets/realnetworks-kontxt/fleurs-hs", |
|
license="CC BY 4.0", |
|
citation="\n".join( |
|
( |
|
"@inproceedings{dropuljic-ssdww2v2ivls", |
|
"author={Dropuljić, Branimir and Šuflaj, Miljenko and Jertec, Andrej and Obadić, Leo}", |
|
"booktitle={2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)}", |
|
"title={Synthetic speech detection with Wav2Vec 2.0 in various language settings}", |
|
"year={2024}", |
|
"volume={}", |
|
"number={}", |
|
"pages={1-5}", |
|
"keywords={Synthetic speech detection;text-to-speech;wav2vec 2.0;spoofing attack;multilingualism}", |
|
"doi={}", |
|
"}", |
|
) |
|
), |
|
) |
|
|
|
def _split_generators( |
|
self, |
|
download_manager: DownloadManager, |
|
) -> List[SplitGenerator]: |
|
archive_iterables = { |
|
split: str(self.get_audio_archive_path(split=split)) |
|
for split in ( |
|
"train", |
|
"dev", |
|
"test", |
|
) |
|
} |
|
archive_iterables = download_manager.download(archive_iterables) |
|
archive_iterables = { |
|
split: download_manager.iter_archive(path) |
|
for split, path in archive_iterables.items() |
|
} |
|
|
|
return [ |
|
SplitGenerator( |
|
name=Split.TRAIN, |
|
gen_kwargs={ |
|
"archive_iterable": archive_iterables["train"], |
|
}, |
|
), |
|
SplitGenerator( |
|
name=Split.VALIDATION, |
|
gen_kwargs={ |
|
"archive_iterable": archive_iterables["dev"], |
|
}, |
|
), |
|
SplitGenerator( |
|
name=Split.TEST, |
|
gen_kwargs={ |
|
"archive_iterable": archive_iterables["test"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
archive_iterable: ArchiveIterable, |
|
) -> Iterable[Tuple[int, Dict[str, Any]]]: |
|
current_index = 0 |
|
for audio_path, audio_file in archive_iterable: |
|
audio = { |
|
"path": audio_path, |
|
"bytes": audio_file.read(), |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
label = Path(audio_path).parent.name |
|
|
|
yield current_index, { |
|
"audio": audio, |
|
"label": label, |
|
} |
|
current_index += 1 |
|
|