Dataset Viewer
	| width_cm
				 float64 | length_cm
				 float64 | blemish_count
				 int64 | color
				 string | firmness
				 int64 | sample_id
				 string | 
|---|---|---|---|---|---|
| 2.3 | 2.5 | 4 | 
	red | 1 | 
	SYN_0000 | 
| 2.3 | 2.5 | 4 | 
	red | 1 | 
	SYN_0001 | 
| 2.1 | 2.1 | 2 | 
	red | 2 | 
	SYN_0002 | 
| 1.7 | 1.6 | 1 | 
	red | 1 | 
	SYN_0003 | 
| 2 | 2.3 | 5 | 
	red | 1 | 
	SYN_0004 | 
| 2 | 2.3 | 5 | 
	red | 1 | 
	SYN_0005 | 
| 2.3 | 2.5 | 4 | 
	red | 1 | 
	SYN_0006 | 
| 2.1 | 2.2 | 2 | 
	red | 2 | 
	SYN_0007 | 
| 2.2 | 2.4 | 0 | 
	green | 3 | 
	SYN_0008 | 
| 2 | 2.5 | 3 | 
	green | 2 | 
	SYN_0009 | 
| 2 | 2.5 | 2 | 
	green | 3 | 
	SYN_0010 | 
| 1.7 | 2.5 | 3 | 
	red | 1 | 
	SYN_0011 | 
| 2.4 | 2.8 | 1 | 
	red | 3 | 
	SYN_0012 | 
| 2.2 | 2.4 | 0 | 
	green | 3 | 
	SYN_0013 | 
| 2.3 | 2.6 | 3 | 
	red | 1 | 
	SYN_0014 | 
| 2.4 | 2.4 | 4 | 
	green | 1 | 
	SYN_0015 | 
| 2.3 | 2.5 | 2 | 
	green | 3 | 
	SYN_0016 | 
| 2.2 | 2.3 | 0 | 
	red | 2 | 
	SYN_0017 | 
| 2.3 | 2.6 | 3 | 
	red | 1 | 
	SYN_0018 | 
| 2.2 | 2.7 | 0 | 
	red | 2 | 
	SYN_0019 | 
| 2.4 | 2.7 | 4 | 
	red | 1 | 
	SYN_0020 | 
| 2.3 | 2.7 | 3 | 
	red | 2 | 
	SYN_0021 | 
| 2.2 | 2.4 | 0 | 
	red | 2 | 
	SYN_0022 | 
| 2.2 | 2.5 | 0 | 
	green | 3 | 
	SYN_0023 | 
| 2.4 | 2.8 | 1 | 
	red | 3 | 
	SYN_0024 | 
| 2.5 | 2.7 | 5 | 
	green | 2 | 
	SYN_0025 | 
| 2.2 | 2.6 | 4 | 
	red | 3 | 
	SYN_0026 | 
| 2.2 | 2.4 | 5 | 
	green | 3 | 
	SYN_0027 | 
| 2.3 | 2.7 | 3 | 
	red | 2 | 
	SYN_0028 | 
| 2.3 | 2.5 | 4 | 
	red | 1 | 
	SYN_0029 | 
| 2.2 | 2.4 | 0 | 
	red | 2 | 
	SYN_0030 | 
| 2.5 | 2.7 | 5 | 
	green | 2 | 
	SYN_0031 | 
| 2 | 2.5 | 4 | 
	green | 2 | 
	SYN_0032 | 
| 2.2 | 2.7 | 1 | 
	green | 2 | 
	SYN_0033 | 
| 2.3 | 2.4 | 4 | 
	red | 1 | 
	SYN_0034 | 
| 2.4 | 2.8 | 1 | 
	red | 3 | 
	SYN_0035 | 
| 2.2 | 2.4 | 0 | 
	green | 3 | 
	SYN_0036 | 
| 2.2 | 2.7 | 1 | 
	green | 2 | 
	SYN_0037 | 
| 2 | 2.5 | 4 | 
	green | 2 | 
	SYN_0038 | 
| 2 | 2.3 | 5 | 
	red | 1 | 
	SYN_0039 | 
| 2.4 | 2.7 | 4 | 
	red | 1 | 
	SYN_0040 | 
| 2.3 | 2.6 | 4 | 
	green | 2 | 
	SYN_0041 | 
| 2.2 | 2.4 | 0 | 
	red | 2 | 
	SYN_0042 | 
| 2.2 | 2.4 | 0 | 
	green | 3 | 
	SYN_0043 | 
| 2.2 | 2.4 | 0 | 
	red | 2 | 
	SYN_0044 | 
| 2.4 | 2.4 | 1 | 
	green | 3 | 
	SYN_0045 | 
| 1.9 | 2.1 | 2 | 
	red | 1 | 
	SYN_0046 | 
| 2.2 | 2.7 | 1 | 
	green | 2 | 
	SYN_0047 | 
| 2.3 | 2.4 | 2 | 
	green | 3 | 
	SYN_0048 | 
| 2.3 | 2.6 | 6 | 
	green | 2 | 
	SYN_0049 | 
| 2.5 | 2.8 | 3 | 
	green | 3 | 
	SYN_0050 | 
| 2.4 | 2.7 | 4 | 
	red | 1 | 
	SYN_0051 | 
| 2.1 | 2.2 | 2 | 
	red | 2 | 
	SYN_0052 | 
| 2.3 | 2.7 | 2 | 
	green | 2 | 
	SYN_0053 | 
| 2.3 | 2.6 | 6 | 
	green | 2 | 
	SYN_0054 | 
| 2.2 | 2.4 | 5 | 
	green | 3 | 
	SYN_0055 | 
| 2.5 | 2.8 | 3 | 
	green | 3 | 
	SYN_0056 | 
| 2.2 | 2.4 | 0 | 
	red | 2 | 
	SYN_0057 | 
| 2.3 | 2.6 | 6 | 
	green | 2 | 
	SYN_0058 | 
| 1.7 | 2.5 | 3 | 
	red | 1 | 
	SYN_0059 | 
| 2.1 | 2.1 | 2 | 
	red | 2 | 
	SYN_0060 | 
| 2.3 | 2.6 | 6 | 
	green | 2 | 
	SYN_0061 | 
| 2.2 | 2.4 | 5 | 
	green | 3 | 
	SYN_0062 | 
| 2.2 | 2.4 | 2 | 
	red | 1 | 
	SYN_0063 | 
| 2.3 | 2.4 | 4 | 
	red | 1 | 
	SYN_0064 | 
| 2.2 | 2.5 | 2 | 
	red | 3 | 
	SYN_0065 | 
| 2.2 | 2.7 | 2 | 
	green | 3 | 
	SYN_0066 | 
| 2.3 | 2.5 | 4 | 
	red | 1 | 
	SYN_0067 | 
| 2.2 | 2.4 | 0 | 
	green | 3 | 
	SYN_0068 | 
| 2.2 | 2.3 | 0 | 
	red | 2 | 
	SYN_0069 | 
| 2.2 | 2.4 | 0 | 
	red | 2 | 
	SYN_0070 | 
| 2.2 | 2.4 | 5 | 
	green | 3 | 
	SYN_0071 | 
| 2.1 | 2.4 | 3 | 
	green | 3 | 
	SYN_0072 | 
| 2.2 | 2.4 | 0 | 
	red | 2 | 
	SYN_0073 | 
| 2.5 | 2.9 | 1 | 
	red | 3 | 
	SYN_0074 | 
| 2.3 | 2.4 | 2 | 
	green | 3 | 
	SYN_0075 | 
| 2.5 | 2.8 | 4 | 
	red | 1 | 
	SYN_0076 | 
| 2.5 | 2.7 | 5 | 
	green | 2 | 
	SYN_0077 | 
| 2.2 | 2.3 | 0 | 
	red | 2 | 
	SYN_0078 | 
| 2.3 | 2.7 | 3 | 
	red | 2 | 
	SYN_0079 | 
| 2.3 | 2.6 | 4 | 
	green | 2 | 
	SYN_0080 | 
| 2.3 | 2.5 | 4 | 
	red | 1 | 
	SYN_0081 | 
| 2.4 | 2.4 | 4 | 
	green | 1 | 
	SYN_0082 | 
| 2.5 | 2.7 | 5 | 
	green | 2 | 
	SYN_0083 | 
| 2.1 | 2.1 | 2 | 
	red | 2 | 
	SYN_0084 | 
| 2.3 | 2.6 | 3 | 
	red | 1 | 
	SYN_0085 | 
| 2 | 2.5 | 4 | 
	green | 2 | 
	SYN_0086 | 
| 2.1 | 2.4 | 3 | 
	green | 3 | 
	SYN_0087 | 
| 2.2 | 2.7 | 2 | 
	green | 3 | 
	SYN_0088 | 
| 2 | 2.3 | 5 | 
	red | 1 | 
	SYN_0089 | 
| 2.2 | 2.7 | 1 | 
	green | 2 | 
	SYN_0090 | 
| 2.3 | 2.7 | 2 | 
	green | 2 | 
	SYN_0091 | 
| 2 | 2.5 | 3 | 
	green | 2 | 
	SYN_0092 | 
| 2 | 2.5 | 3 | 
	green | 2 | 
	SYN_0093 | 
| 2 | 2.5 | 4 | 
	green | 2 | 
	SYN_0094 | 
| 2 | 2.3 | 5 | 
	red | 1 | 
	SYN_0095 | 
| 2.3 | 2.6 | 4 | 
	green | 2 | 
	SYN_0096 | 
| 2.5 | 2.8 | 4 | 
	red | 1 | 
	SYN_0097 | 
| 2 | 2.5 | 4 | 
	green | 2 | 
	SYN_0098 | 
| 2.3 | 2.6 | 3 | 
	red | 1 | 
	SYN_0099 | 
End of preview. Expand
						in Data Studio
					
YAML Metadata
		Warning:
	empty or missing yaml metadata in repo card
	(https://huggingface.co/docs/hub/datasets-cards)
Dataset Card for Grape Firmness Dataset
Dataset Metadata
- Purpose: The dataset is intended for training a machine learning model to predict grape firmness based on physical characteristics and blemishes.
- Composition: The dataset contains measurements of grape width, length, blemish count, color, and firmness.
- Collection Method: Data was collected manually through physical measurements and visual inspection of grape samples.
- Labels: The target variable "firmness" is a categorical label with three levels: 1 (Soft), 2 (Medium), and 3 (Firm).
- Splits:- original: Contains the initial 30 rows of collected data.
- augmented: Contains 300 augmented rows generated using SMOTE-NC and numeric jitter to address class imbalance and increase dataset size.
 
Exploratory Data Analysis (EDA) - Original Data
Here are some visualizations showing the distribution of firmness and the relationship between physical characteristics and firmness in the original dataset.
- Downloads last month
- 12
Size of downloaded dataset files:
		
			7.96 kB
Size of the auto-converted Parquet files:
		
			7.96 kB
Number of rows:
		
			330


