File size: 2,754 Bytes
d61a5ba
 
6f69865
fc74c6f
 
6f69865
fc74c6f
 
6f69865
1af3915
6f69865
 
 
 
fc74c6f
 
 
 
6f69865
 
 
fc74c6f
 
498fbdd
28ae5ed
 
 
498fbdd
fc74c6f
1af3915
fc74c6f
 
6f69865
 
ea0a244
fc74c6f
 
 
 
 
3f0c3b8
d61a5ba
4058cac
fc74c6f
 
4058cac
fc74c6f
 
4058cac
fc74c6f
 
eb03b30
6f69865
eb03b30
 
 
 
6f69865
eb03b30
 
 
 
 
6f69865
eb03b30
 
 
 
 
6f69865
eb03b30
 
 
 
6f69865
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os

import datasets
from datasets.tasks import ImageClassification

_HOMEPAGE = "https://github.com/your-github/renovation"

_CITATION = """\
@ONLINE {renovationdata,
    author="Your Name",
    title="Renovation dataset",
    month="January",
    year="2023",
    url="https://github.com/your-github/renovation"
}
"""

_DESCRIPTION = """\
Renovations is a dataset of images of houses taken in the field using smartphone
cameras. It consists of 3 classes: cheap, average, and expensive renovations.
Data was collected by the your research lab.
"""

_URLS = {
    "cheap": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/cheap.7z",
    "average": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/average.7z",
    "expensive": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/expensive.7z",
}

_NAMES = ["cheap", "average", "expensive"]


class Renovations(datasets.GeneratorBasedBuilder):
    """Renovations house images dataset."""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image_file_path": datasets.Value("string"),
                    "image": datasets.Image(),
                    "labels": datasets.features.ClassLabel(names=_NAMES),
                }
            ),
            supervised_keys=("image", "labels"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[ImageClassification(image_column="image", label_column="labels")],
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files["cheap"]]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files["average"]]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files["expensive"]]),
                },
            ),
        ]

    def _generate_examples(self, files):
        for i, path in enumerate(files):
            file_name = os.path.basename(path)
            if file_name.endswith(".jpg"):
                yield i, {
                    "image_file_path": path,
                    "image": path,
                    "labels": os.path.basename(os.path.dirname(path)).lower(),
                }