|
import csv |
|
import random |
|
import datasets |
|
import requests |
|
import os |
|
import py7zr |
|
import numpy as np |
|
|
|
from PIL import Image |
|
from io import BytesIO |
|
from datasets.tasks import ImageClassification |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/rshrott/renovation" |
|
|
|
_CITATION = """\ |
|
@ONLINE {renovationquality, |
|
author="Your Name", |
|
title="Renovation Quality Dataset", |
|
month="Your Month", |
|
year="Your Year", |
|
url="https://huggingface.co/datasets/rshrott/renovation" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains images of various properties, along with labels indicating the quality of renovation - 'cheap', 'average', 'expensive'. |
|
""" |
|
|
|
_URLS = { |
|
"cheap": "https://huggingface.co/datasets/rshrott/renovation/raw/main/cheap.7z", |
|
"average": "https://huggingface.co/datasets/rshrott/renovation/raw/main/average.7z", |
|
"expensive": "https://huggingface.co/datasets/rshrott/renovation/raw/main/expensive.7z", |
|
} |
|
|
|
_NAMES = ["cheap", "average", "expensive"] |
|
|
|
class RenovationQualityDataset(datasets.GeneratorBasedBuilder): |
|
"""Renovation Quality Dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image_file_path": datasets.Value("string"), |
|
"image": datasets.Image(), |
|
"labels": datasets.features.ClassLabel(names=_NAMES), |
|
} |
|
), |
|
supervised_keys=("image", "labels"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[ImageClassification(image_column="image", label_column="labels")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
image_paths = [] |
|
for label, url in _URLS.items(): |
|
extract_path = dl_manager.download_and_extract(url) |
|
print(f"Extracted files for label {label} to path: {extract_path}") |
|
|
|
|
|
for root, _, files in os.walk(extract_path): |
|
for file in files: |
|
if file.endswith(".jpeg"): |
|
image_paths.append((os.path.join(root, file), label)) |
|
|
|
print(f"Collected a total of {len(image_paths)} image paths.") |
|
|
|
|
|
random.shuffle(image_paths) |
|
|
|
|
|
train_end = int(0.8 * len(image_paths)) |
|
val_end = int(0.9 * len(image_paths)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"rows": image_paths[:train_end], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"rows": image_paths[train_end:val_end], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"rows": image_paths[val_end:], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, rows): |
|
def file_to_image(file_path): |
|
img = Image.open(file_path) |
|
return np.array(img) |
|
|
|
for id_, (image_file_path, label) in enumerate(rows): |
|
image = file_to_image(image_file_path) |
|
yield id_, { |
|
'image_file_path': image_file_path, |
|
'image': image, |
|
'labels': label, |
|
} |