renovation / renovation.py
rshrott's picture
Update renovation.py
bcded4e
raw
history blame
3.84 kB
import csv
import random
import datasets
import requests
import os
import py7zr
import numpy as np
from PIL import Image
from io import BytesIO
from datasets.tasks import ImageClassification
_HOMEPAGE = "https://huggingface.co/datasets/rshrott/renovation"
_CITATION = """\
@ONLINE {renovationquality,
author="Your Name",
title="Renovation Quality Dataset",
month="Your Month",
year="Your Year",
url="https://huggingface.co/datasets/rshrott/renovation"
}
"""
_DESCRIPTION = """\
This dataset contains images of various properties, along with labels indicating the quality of renovation - 'cheap', 'average', 'expensive'.
"""
_URLS = {
"cheap": "https://huggingface.co/datasets/rshrott/renovation/raw/main/cheap.7z",
"average": "https://huggingface.co/datasets/rshrott/renovation/raw/main/average.7z",
"expensive": "https://huggingface.co/datasets/rshrott/renovation/raw/main/expensive.7z",
}
_NAMES = ["cheap", "average", "expensive"]
class RenovationQualityDataset(datasets.GeneratorBasedBuilder):
"""Renovation Quality Dataset."""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image_file_path": datasets.Value("string"),
"image": datasets.Image(),
"labels": datasets.features.ClassLabel(names=_NAMES),
}
),
supervised_keys=("image", "labels"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[ImageClassification(image_column="image", label_column="labels")],
)
def _split_generators(self, dl_manager):
# Download and extract images
image_paths = []
for label, url in _URLS.items():
extract_path = dl_manager.download_and_extract(url)
print(f"Extracted files for label {label} to path: {extract_path}")
# Get image paths
for root, _, files in os.walk(extract_path):
for file in files:
if file.endswith(".jpeg"): # Assuming all images are .jpeg
image_paths.append((os.path.join(root, file), label))
print(f"Collected a total of {len(image_paths)} image paths.")
# Shuffle image paths
random.shuffle(image_paths)
# 80% for training, 10% for validation, 10% for testing
train_end = int(0.8 * len(image_paths))
val_end = int(0.9 * len(image_paths))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"rows": image_paths[:train_end],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"rows": image_paths[train_end:val_end],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"rows": image_paths[val_end:],
},
),
]
def _generate_examples(self, rows):
def file_to_image(file_path):
img = Image.open(file_path)
return np.array(img)
for id_, (image_file_path, label) in enumerate(rows):
image = file_to_image(image_file_path)
yield id_, {
'image_file_path': image_file_path,
'image': image,
'labels': label,
}