Datasets:
Languages:
English
ArXiv:
Tags:
query-by-example-spoken-term-detection
audio-slot-filling
speaker-diarization
automatic-speaker-verification
License:
File size: 30,173 Bytes
64cab28 cf54b2f 64cab28 cb0e6fc 64cab28 cf54b2f 64cab28 cb0e6fc 64cab28 cf54b2f cb0e6fc 64cab28 cb0e6fc 64cab28 cb0e6fc 64cab28 a6bda85 64cab28 cb0e6fc 2e02378 cb0e6fc cf54b2f cb0e6fc a6bda85 cb0e6fc cf54b2f a6bda85 cf54b2f a6bda85 cf54b2f cb0e6fc a6bda85 cb0e6fc cf54b2f a6bda85 cf54b2f cb0e6fc cf54b2f cb0e6fc 64cab28 cb0e6fc cf54b2f cb0e6fc cf54b2f 64cab28 cb0e6fc 64cab28 cb0e6fc cf54b2f cb0e6fc bc51ffc cb0e6fc bc51ffc cb0e6fc bc51ffc cf54b2f bc51ffc cf54b2f bc51ffc cf54b2f bc51ffc cf54b2f bc51ffc cf54b2f cb0e6fc 64cab28 cb0e6fc bc51ffc cb0e6fc 64cab28 cb0e6fc bc51ffc cb0e6fc cf54b2f bc51ffc cf54b2f bc51ffc cf54b2f cb0e6fc cf54b2f cb0e6fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""SUPERB: Speech processing Universal PERformance Benchmark."""
import csv
import glob
import os
import textwrap
from dataclasses import dataclass
import datasets
from datasets.tasks import AutomaticSpeechRecognition
_CITATION = """\
@article{DBLP:journals/corr/abs-2105-01051,
author = {Shu{-}Wen Yang and
Po{-}Han Chi and
Yung{-}Sung Chuang and
Cheng{-}I Jeff Lai and
Kushal Lakhotia and
Yist Y. Lin and
Andy T. Liu and
Jiatong Shi and
Xuankai Chang and
Guan{-}Ting Lin and
Tzu{-}Hsien Huang and
Wei{-}Cheng Tseng and
Ko{-}tik Lee and
Da{-}Rong Liu and
Zili Huang and
Shuyan Dong and
Shang{-}Wen Li and
Shinji Watanabe and
Abdelrahman Mohamed and
Hung{-}yi Lee},
title = {{SUPERB:} Speech processing Universal PERformance Benchmark},
journal = {CoRR},
volume = {abs/2105.01051},
year = {2021},
url = {https://arxiv.org/abs/2105.01051},
archivePrefix = {arXiv},
eprint = {2105.01051},
timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
Self-supervised learning (SSL) has proven vital for advancing research in
natural language processing (NLP) and computer vision (CV). The paradigm
pretrains a shared model on large volumes of unlabeled data and achieves
state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
speech processing community lacks a similar setup to systematically explore the
paradigm. To bridge this gap, we introduce Speech processing Universal
PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
performance of a shared model across a wide range of speech processing tasks
with minimal architecture changes and labeled data. Among multiple usages of the
shared model, we especially focus on extracting the representation learned from
SSL due to its preferable re-usability. We present a simple framework to solve
SUPERB tasks by learning task-specialized lightweight prediction heads on top of
the frozen shared model. Our results demonstrate that the framework is promising
as SSL representations show competitive generalizability and accessibility
across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
benchmark toolkit to fuel the research in representation learning and general
speech processing.
Note that in order to limit the required storage for preparing this dataset, the
audio is stored in the .wav format and is not converted to a float32 array. To
convert the audio file to a float32 array, please make use of the `.map()`
function as follows:
```python
import soundfile as sf
def map_to_array(batch):
speech_array, _ = sf.read(batch["file"])
batch["speech"] = speech_array
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
```
"""
class SuperbConfig(datasets.BuilderConfig):
"""BuilderConfig for Superb."""
def __init__(
self,
features,
url,
data_url=None,
supervised_keys=None,
task_templates=None,
**kwargs,
):
super().__init__(version=datasets.Version("1.9.0", ""), **kwargs)
self.features = features
self.data_url = data_url
self.url = url
self.supervised_keys = supervised_keys
self.task_templates = task_templates
class Superb(datasets.GeneratorBasedBuilder):
"""Superb dataset."""
BUILDER_CONFIGS = [
SuperbConfig(
name="asr",
description=textwrap.dedent(
"""\
ASR transcribes utterances into words. While PR analyzes the
improvement in modeling phonetics, ASR reflects the significance of
the improvement in a real-world scenario. LibriSpeech
train-clean-100/dev-clean/test-clean subsets are used for
training/validation/testing. The evaluation metric is word error
rate (WER)."""
),
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"speaker_id": datasets.Value("int64"),
"chapter_id": datasets.Value("int64"),
"id": datasets.Value("string"),
}
),
supervised_keys=("file", "text"),
url="http://www.openslr.org/12",
data_url="http://www.openslr.org/resources/12/",
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
),
SuperbConfig(
name="ks",
description=textwrap.dedent(
"""\
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
inference time are all crucial. SUPERB uses the widely used Speech Commands dataset v1.0 for the task.
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
false positive. The evaluation metric is accuracy (ACC)"""
),
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"label": datasets.ClassLabel(
names=[
"yes",
"no",
"up",
"down",
"left",
"right",
"on",
"off",
"stop",
"go",
"_silence_",
"_unknown_",
]
),
}
),
supervised_keys=("file", "label"),
url="https://www.tensorflow.org/datasets/catalog/speech_commands",
data_url="http://download.tensorflow.org/data/{filename}",
),
SuperbConfig(
name="ic",
description=textwrap.dedent(
"""\
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
speakers. SUPERB uses the Fluent Speech Commands dataset, where each utterance is tagged with three intent
labels: action, object, and location. The evaluation metric is accuracy (ACC)."""
),
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"speaker_id": datasets.Value("string"),
"text": datasets.Value("string"),
"action": datasets.ClassLabel(
names=["activate", "bring", "change language", "deactivate", "decrease", "increase"]
),
"object": datasets.ClassLabel(
names=[
"Chinese",
"English",
"German",
"Korean",
"heat",
"juice",
"lamp",
"lights",
"music",
"newspaper",
"none",
"shoes",
"socks",
"volume",
]
),
"location": datasets.ClassLabel(names=["bedroom", "kitchen", "none", "washroom"]),
}
),
supervised_keys=None,
url="https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/",
data_url="http://fluent.ai:2052/jf8398hf30f0381738rucj3828chfdnchs.tar.gz",
),
SuperbConfig(
name="si",
description=textwrap.dedent(
"""\
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
classification, where speakers are in the same predefined set for both training and testing. The widely
used VoxCeleb1 dataset is adopted, and the evaluation metric is accuracy (ACC)."""
),
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
# VoxCeleb1 contains 1251 speaker IDs in range ["id10001",..."id11251"]
"label": datasets.ClassLabel(names=[f"id{i + 10001}" for i in range(1251)]),
}
),
supervised_keys=("file", "label"),
url="https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html",
),
SuperbConfig(
name="sd",
description=textwrap.dedent(
"""\
Speaker Diarization (SD) predicts `who is speaking when` for each timestamp, and multiple speakers can
speak simultaneously. The model has to encode rich speaker characteristics for each frame and should be
able to represent mixtures of signals. [LibriMix] is adopted where LibriSpeech
train-clean-100/dev-clean/test-clean are used to generate mixtures for training/validation/testing.
We focus on the two-speaker scenario as the first step. The time-coded speaker labels were generated using
alignments from Kaldi LibriSpeech ASR model. The evaluation metric is diarization error rate (DER)."""
),
features=datasets.Features(
{
"record_id": datasets.Value("string"),
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
"speakers": [
{
"speaker_id": datasets.Value("string"),
"start": datasets.Value("int64"),
"end": datasets.Value("int64"),
}
],
}
), # TODO
supervised_keys=None, # TODO
url="https://github.com/ftshijt/LibriMix",
data_url="https://huggingface.co/datasets/superb/superb-data/resolve/main/sd/{split}/{filename}",
),
SuperbConfig(
name="er",
description=textwrap.dedent(
"""\
Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
IEMOCAP is adopted, and we follow the conventional evaluation protocol: we drop the unbalanced emotion
classes to leave the final four classes with a similar amount of data points and cross-validate on five
folds of the standard splits. The evaluation metric is accuracy (ACC)."""
),
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"label": datasets.ClassLabel(names=["neu", "hap", "ang", "sad"]),
}
),
supervised_keys=("file", "label"),
url="https://sail.usc.edu/iemocap/",
),
]
@property
def manual_download_instructions(self):
if self.config.name == "si":
return textwrap.dedent(
"""
Please download the VoxCeleb dataset using the following script,
which should create `VoxCeleb1/wav/id*` directories for both train and test speakers`:
```
mkdir VoxCeleb1
cd VoxCeleb1
wget https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partaa
wget https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partab
wget https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partac
wget https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partad
cat vox1_dev* > vox1_dev_wav.zip
unzip vox1_dev_wav.zip
wget https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_test_wav.zip
unzip vox1_test_wav.zip
# download the official SUPERB train-dev-test split
wget https://raw.githubusercontent.com/s3prl/s3prl/master/s3prl/downstream/voxceleb1/veri_test_class.txt
```"""
)
elif self.config.name == "er":
return textwrap.dedent(
"""
Please download the IEMOCAP dataset after submitting the request form here:
https://sail.usc.edu/iemocap/iemocap_release.htm
Having downloaded the dataset you can extract it with `tar -xvzf IEMOCAP_full_release.tar.gz`
which should create a folder called `IEMOCAP_full_release`
"""
)
return None
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=self.config.features,
supervised_keys=self.config.supervised_keys,
homepage=self.config.url,
citation=_CITATION,
task_templates=self.config.task_templates,
)
def _split_generators(self, dl_manager):
if self.config.name == "asr":
_DL_URLS = {
"dev": self.config.data_url + "dev-clean.tar.gz",
"test": self.config.data_url + "test-clean.tar.gz",
"train": self.config.data_url + "train-clean-100.tar.gz",
}
archive_path = dl_manager.download_and_extract(_DL_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"archive_path": archive_path["train"]}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"archive_path": archive_path["dev"]}
),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path["test"]}),
]
elif self.config.name == "ks":
_DL_URLS = {
"train_val_test": self.config.data_url.format(filename="speech_commands_v0.01.tar.gz"),
"test": self.config.data_url.format(filename="speech_commands_test_set_v0.01.tar.gz"),
}
archive_path = dl_manager.download_and_extract(_DL_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"archive_path": archive_path["train_val_test"], "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"archive_path": archive_path["train_val_test"], "split": "val"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path["test"], "split": "test"}
),
]
elif self.config.name == "ic":
archive_path = dl_manager.download_and_extract(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"archive_path": archive_path, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"archive_path": archive_path, "split": "valid"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"}
),
]
elif self.config.name == "si":
manual_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"archive_path": manual_dir, "split": 1},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"archive_path": manual_dir, "split": 2},
),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"archive_path": manual_dir, "split": 3}),
]
elif self.config.name == "sd":
splits = ["train", "dev", "test"]
_DL_URLS = {
split: {
filename: self.config.data_url.format(split=split, filename=filename)
for filename in ["reco2dur", "segments", "utt2spk", "wav.zip"]
}
for split in splits
}
archive_path = dl_manager.download_and_extract(_DL_URLS)
return [
datasets.SplitGenerator(
name=datasets.NamedSplit(split), gen_kwargs={"archive_path": archive_path[split], "split": split}
)
for split in splits
]
elif self.config.name == "er":
manual_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
return [
datasets.SplitGenerator(
name=f"session{i}",
gen_kwargs={"archive_path": manual_dir, "split": i},
)
for i in range(1, 6)
]
def _generate_examples(self, archive_path, split=None):
"""Generate examples."""
if self.config.name == "asr":
transcripts_glob = os.path.join(archive_path, "LibriSpeech", "*", "*", "*", "*.txt")
key = 0
for transcript_path in sorted(glob.glob(transcripts_glob)):
transcript_dir_path = os.path.dirname(transcript_path)
with open(transcript_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
id_, transcript = line.split(" ", 1)
audio_file = f"{id_}.flac"
speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
audio_path = os.path.join(transcript_dir_path, audio_file)
yield key, {
"id": id_,
"speaker_id": speaker_id,
"chapter_id": chapter_id,
"file": audio_path,
"audio": audio_path,
"text": transcript,
}
key += 1
elif self.config.name == "ks":
words = ["yes", "no", "up", "down", "left", "right", "on", "off", "stop", "go"]
splits = _split_ks_files(archive_path, split)
for key, audio_file in enumerate(sorted(splits[split])):
base_dir, file_name = os.path.split(audio_file)
_, word = os.path.split(base_dir)
if word in words:
label = word
elif word == "_silence_" or word == "_background_noise_":
label = "_silence_"
else:
label = "_unknown_"
yield key, {"file": audio_file, "audio": audio_file, "label": label}
elif self.config.name == "ic":
root_path = os.path.join(archive_path, "fluent_speech_commands_dataset")
csv_path = os.path.join(root_path, "data", f"{split}_data.csv")
with open(csv_path, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",", skipinitialspace=True)
next(csv_reader)
for row in csv_reader:
key, file_path, speaker_id, text, action, object_, location = row
audio_path = os.path.join(root_path, file_path)
yield key, {
"file": audio_path,
"audio": audio_path,
"speaker_id": speaker_id,
"text": text,
"action": action,
"object": object_,
"location": location,
}
elif self.config.name == "si":
wav_path = os.path.join(archive_path, "wav")
splits_path = os.path.join(archive_path, "veri_test_class.txt")
with open(splits_path, "r", encoding="utf-8") as f:
for key, line in enumerate(f):
split_id, file_path = line.strip().split(" ")
if int(split_id) != split:
continue
speaker_id = file_path.split("/")[0]
audio_path = os.path.join(wav_path, file_path)
yield key, {
"file": audio_path,
"audio": audio_path,
"label": speaker_id,
}
elif self.config.name == "sd":
data = SdData(archive_path)
args = SdArgs()
chunk_indices = _generate_chunk_indices(data, args, split=split)
if split != "test":
for key, (rec, st, ed) in enumerate(chunk_indices):
speakers = _get_speakers(rec, data, args)
yield key, {
"record_id": rec,
"file": data.wavs[rec],
"audio": data.wavs[rec],
"start": st,
"end": ed,
"speakers": speakers,
}
else:
key = 0
for rec in chunk_indices:
for rec, st, ed in chunk_indices[rec]:
speakers = _get_speakers(rec, data, args)
yield key, {
"record_id": rec,
"file": data.wavs[rec],
"audio": data.wavs[rec],
"start": st,
"end": ed,
"speakers": speakers,
}
key += 1
elif self.config.name == "er":
root_path = os.path.join(archive_path, f"Session{split}")
wav_path = os.path.join(root_path, "sentences", "wav")
labels_path = os.path.join(root_path, "dialog", "EmoEvaluation", "*.txt")
emotions = ["neu", "hap", "ang", "sad", "exc"]
key = 0
for labels_file in sorted(glob.glob(labels_path)):
with open(labels_file, "r", encoding="utf-8") as f:
for line in f:
if line[0] != "[":
continue
_, filename, emo, _ = line.split("\t")
if emo not in emotions:
continue
wav_subdir = filename.rsplit("_", 1)[0]
filename = f"{filename}.wav"
audio_path = os.path.join(wav_path, wav_subdir, filename)
yield key, {
"file": audio_path,
"audio": audio_path,
"label": emo.replace("exc", "hap"),
}
key += 1
class SdData:
def __init__(self, data_dir):
"""Load sd data."""
self.segments = self._load_segments_rechash(data_dir["segments"])
self.utt2spk = self._load_utt2spk(data_dir["utt2spk"])
self.wavs = self._load_wav_zip(data_dir["wav.zip"])
self.reco2dur = self._load_reco2dur(data_dir["reco2dur"])
def _load_segments_rechash(self, segments_file):
"""Load segments file as dict with recid index."""
ret = {}
if not os.path.exists(segments_file):
return None
with open(segments_file, encoding="utf-8") as f:
for line in f:
utt, rec, st, et = line.strip().split()
if rec not in ret:
ret[rec] = []
ret[rec].append({"utt": utt, "st": float(st), "et": float(et)})
return ret
def _load_wav_zip(self, wav_zip):
"""Return dictionary { rec: wav_rxfilename }."""
wav_dir = os.path.join(wav_zip, "wav")
return {
os.path.splitext(filename)[0]: os.path.join(wav_dir, filename) for filename in sorted(os.listdir(wav_dir))
}
def _load_utt2spk(self, utt2spk_file):
"""Returns dictionary { uttid: spkid }."""
with open(utt2spk_file, encoding="utf-8") as f:
lines = [line.strip().split(None, 1) for line in f]
return {x[0]: x[1] for x in lines}
def _load_reco2dur(self, reco2dur_file):
"""Returns dictionary { recid: duration }."""
if not os.path.exists(reco2dur_file):
return None
with open(reco2dur_file, encoding="utf-8") as f:
lines = [line.strip().split(None, 1) for line in f]
return {x[0]: float(x[1]) for x in lines}
@dataclass
class SdArgs:
chunk_size: int = 2000
frame_shift: int = 160
subsampling: int = 1
label_delay: int = 0
num_speakers: int = 2
rate: int = 16000
use_last_samples: bool = True
def _generate_chunk_indices(data, args, split=None):
chunk_indices = [] if split != "test" else {}
# make chunk indices: filepath, start_frame, end_frame
for rec in data.wavs:
data_len = int(data.reco2dur[rec] * args.rate / args.frame_shift)
data_len = int(data_len / args.subsampling)
if split == "test":
chunk_indices[rec] = []
if split != "test":
for st, ed in _gen_frame_indices(
data_len,
args.chunk_size,
args.chunk_size,
args.use_last_samples,
label_delay=args.label_delay,
subsampling=args.subsampling,
):
chunk_indices.append((rec, st * args.subsampling, ed * args.subsampling))
else:
for st, ed in _gen_chunk_indices(data_len, args.chunk_size):
chunk_indices[rec].append((rec, st * args.subsampling, ed * args.subsampling))
return chunk_indices
def _count_frames(data_len, size, step):
# no padding at edges, last remaining samples are ignored
return int((data_len - size + step) / step)
def _gen_frame_indices(data_length, size=2000, step=2000, use_last_samples=False, label_delay=0, subsampling=1):
i = -1
for i in range(_count_frames(data_length, size, step)):
yield i * step, i * step + size
if use_last_samples and i * step + size < data_length:
if data_length - (i + 1) * step - subsampling * label_delay > 0:
yield (i + 1) * step, data_length
def _gen_chunk_indices(data_len, chunk_size):
step = chunk_size
start = 0
while start < data_len:
end = min(data_len, start + chunk_size)
yield start, end
start += step
def _get_speakers(rec, data, args):
return [
{
"speaker_id": data.utt2spk[segment["utt"]],
"start": round(segment["st"] * args.rate / args.frame_shift),
"end": round(segment["et"] * args.rate / args.frame_shift),
}
for segment in data.segments[rec]
]
def _split_ks_files(archive_path, split):
audio_path = os.path.join(archive_path, "**", "*.wav")
audio_paths = glob.glob(audio_path)
if split == "test":
# use all available files for the test archive
return {"test": audio_paths}
val_list_file = os.path.join(archive_path, "validation_list.txt")
test_list_file = os.path.join(archive_path, "testing_list.txt")
with open(val_list_file, encoding="utf-8") as f:
val_paths = f.read().strip().splitlines()
val_paths = [os.path.join(archive_path, p) for p in val_paths]
with open(test_list_file, encoding="utf-8") as f:
test_paths = f.read().strip().splitlines()
test_paths = [os.path.join(archive_path, p) for p in test_paths]
# the paths for the train set is just whichever paths that do not exist in
# either the test or validation splits
train_paths = list(set(audio_paths) - set(val_paths) - set(test_paths))
return {"train": train_paths, "val": val_paths}
|