text
stringlengths
1
2.05k
use regex::Regex; use std::fs; use std::path::Path;
fn main() { let trait_path = "src/operators/tensor/core.cairo"; let doc_path = "docs/framework/operators/tensor"; let label = "tensor"; let trait_name = "TensorTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/operators/nn/core.cairo"; let doc_path = "docs/framework/operators/neural-network"; let label = "nn"; let trait_name = "NNTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/operators/sequence/core.cairo"; let doc_path = "docs/framework/operators/sequence"; let label = "sequence"; let trait_name = "SequenceTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/numbers/fixed_point/core.cairo"; let doc_path = "docs/framework/numbers/fixed-point"; let label = "fp"; let trait_name = "FixedTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/numbers/complex_number/complex_trait.cairo"; let doc_path = "docs/framework/numbers/complex-number"; let label = "complex"; let trait_name: &str = "ComplexTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/operators/ml/tree_ensemble/tree_ensemble_classifier.cairo"; let doc_path = "docs/framework/operators/machine-learning/tree-ensemble-classifier"; let label = "tree_ensemble_classifier"; let trait_name: &str = "TreeEnsembleClassifierTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/operators/ml/tree_ensemble/tree_ensemble_regressor.cairo"; let doc_path = "docs/framework/operators/machine-learning/tree-ensemble-regressor"; let label = "tree_ensem
ble_regressor"; let trait_name: &str = "TreeEnsembleRegressorTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/operators/ml/linear/linear_regressor.cairo"; let doc_path = "docs/framework/operators/machine-learning/linear-regressor"; let label = "linear_regressor"; let trait_name: &str = "LinearRegressorTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/operators/ml/linear/linear_classifier.cairo"; let doc_path = "docs/framework/operators/machine-learning/linear-classifier"; let label = "linear_classifier"; let trait_name: &str = "LinearClassifierTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/operators/ml/svm/svm_regressor.cairo"; let doc_path = "docs/framework/operators/machine-learning/svm-regressor"; let label = "svm_regressor"; let trait_name: &str = "SVMRegressorTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/operators/ml/svm/svm_classifier.cairo"; let doc_path = "docs/framework/operators/machine-learning/svm-classifier"; let label = "svm_classifier"; let trait_name: &str = "SVMClassifierTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); let trait_path = "src/operators/ml/normalizer/normalizer.cairo"; let doc_path = "docs/framework/operators/machine-learning/normalizer"; let label = "normalizer"; let trait_name: &str = "NormalizerTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); }
fn doc_trait(trait_path: &str, doc_path: &str, label: &str) { let path_str = format!("../{}", trait_path); let path = Path::new(&path_str); let contents = fs::read_to_string(&path).expect("Could not read the file"); let re = Regex::new(r let mut table = String::from("| function | description |\n| --- | --- |\n"); for cap in re.captures_iter(&contents) { if &cap[1] == "Trait" { continue; } let func_name = format!( "[`{}.{}`]({}.{}.md)", label, &cap[1], label, &cap[1].replace('_', r"\_") ); let func_desc = &cap[2]; table += &format!("| {} | {} |\n", func_name, func_desc); } let readme_path_str = format!("../{}/README.md", doc_path); let readme_path = Path::new(&readme_path_str); let readme = fs::read_to_string(&readme_path).expect("Could not read the file"); let re_table = Regex::new(r"(?ms)\n\n\| fun.*?(\n[^|]|\z)").unwrap(); let new_readme = re_table.replace(&readme, &("\n\n".to_owned() + &table + "\n")); fs::write(&readme_path, &*new_readme).expect("Could not write the file"); }
fn doc_functions(trait_path: &str, doc_path: &str, trait_name: &str, label: &str) { let filepath_str = format!("../{}", trait_path); let filepath = Path::new(&filepath_str); let contents = fs::read_to_string(filepath).expect("Something went wrong reading the file"); let trait_re = Regex::new(&format!( r"(?s)trait\s+{}\s*(<[\w\s,]*>)?\s*\{{.*?\n\s*\}}", trait_name )) .unwrap(); let trait_match = trait_re.captures(&contents).unwrap(); let trait_block = trait_match.get(0).unwrap().as_str(); let func_re = Regex::new(r"(?s)( for func_match in func_re.captures_iter(trait_block) { let func_name = func_match.get(2).unwrap().as_str(); let doc_comment = func_match.get(1).unwrap().as_str(); let markdown_filename = format!("../{}/{}.{}.md", doc_path, label, func_name); let transformed_comment = doc_comment .lines() .map(|line| { line.trim_start().strip_prefix(" line.trim_start() .strip_prefix(" .unwrap_or(line.trim_start()), ) }) .collect::<Vec<_>>() .join("\n"); fs::write(markdown_filename, transformed_comment).expect("Unable to write file"); } }
import os from pathlib
import Path BASE_PATH = "./tests/nodes" class ModFile: def __init__(self): """ Initialize a ModFile object. This method creates a new file with a .cairo extension in the BASE_PATH directory. If the directory doesn't exist, it's created. The contents of the file are then read into the buffer attribute. """ self.path = Path(f"{BASE_PATH}.cairo") self.path.parent.mkdir(parents=True, exist_ok=True) with self.path.open("r") as f: self.buffer = f.readlines() def update(self, name: str): """ Update the .cairo file with a new module statement. Args: name (str): The name of the module to be added. This method checks if a module statement for the given name already exists in the buffer. If it doesn't, the new module statement is appended to the file. """ statement = f"mod {name};" if any([line.startswith(statement) for line in self.buffer]): return with self.path.open("a") as f: f.write(f"{statement}\n") class File: def __init__(self, path: str): """ Initialize a File object. Args: path (str): The file path where the File object will operate. This method creates a new file at the specified path. If the file already exists, its contents are read into the buffer attribute. """ self.path = Path(path) self.path.parent.mkdir(parents=True, exist_ok=True) self.buffer = [] if os.path.isfile(path): with self.path.open("r") as f: self.buffer = f.readlines() def dump(self): """ Write the contents of the buffer to the file. This method writes each line in the buffer to the file, ensuring each line is properly terminated with a newline character. """ with self.path.open("w") as f: f.writelines([f"{line}\n" for line in self.buffer])
class CairoTest(File): def __init__(self, file: str): super().__init__(os.path.join(BASE_PATH, file)) @classmethod def base_template( cls, name: str, arg_cnt: int, refs: list[str], func_sig: str, out_cnt: int = 1 ) -> list[str]: """ Create a template for a Cairo test function which expects a tensor output. Args: name (str): Name of the test function. arg_cnt (int): Number of arguments for the function. refs (list[str]): List of references (modules) to be used in the function. func_sig (str): The function signature. out_cnt (int): Number of outputs for the function. Defaults to 1. Returns: list[str]: A list of strings that together form the template of a Cairo test function. This method generates a list of strings that form the template of a Cairo test function, including module imports, function definition, and assertions. """ template = [ *[f"mod input_{i};" for i in range(arg_cnt)], *[f"mod output_{i};" for i in range(out_cnt)], "", "", *[f"use {ref};" for ref in refs], "", " " f"fn test_{name}()" + " {", *[f" let input_{i} = input_{i}::input_{i}();" for i in range(arg_cnt)], *[f" let z_{i} = output_{i}::output_{i}();" for i in range(out_cnt)], "" ] if out_cnt > 1: template.append(f" let ({', '.join(f'y_{i}' for i in range(out_cnt))}) = {func_sig};") else: template.append(f" let y_0 = {func_sig};") template.extend([ "", *[f" assert_eq(y_{i}, z_{i});" for i in range(out_cnt)], "}" ]) return template @classmethod def sequence_template(cls, name: str, arg_cnt: int, refs: list[str], func_sig: str) -> list[str]: """ Create a template for a
Cairo test function which expects a tensor sequence. Args: name (str): Name of the test function. arg_cnt (int): Number of arguments for the function. refs (list[str]): List of references (modules) to be used in the function. func_sig (str): The function signature. Returns: list[str]: A list of strings that together form the template of a Cairo test function. This method generates a list of strings that form the template of a Cairo test function, including module imports, function definition, and assertions. """ return [ *[f"mod input_{i};" for i in range(arg_cnt)], *[ "mod output_0;"], *[ ""], *[ ""], *[f"use {ref};" for ref in refs], *[ ""], *[ " *[ " *[f"fn test_{name}()"+" {"], *[f" let input_{i} = input_{i}::input_{i}();" for i in range(arg_cnt)], *[ " let z = output_0::output_0();"], *[ ""], *[f" let y = {func_sig};"], *[ ""], *[ " assert_seq_eq(y, z);"], *[ "}"], ]
class CairoData(File): def __init__(self, file: str): super().__init__(os.path.join(BASE_PATH, file)) @classmethod def base_template( cls, func: str, dtype: str, refs: list[str], data: list[str], shape: tuple ) -> list[str]: """ Create a base template for data representation in Cairo. Args: func (str): The function name. dtype (str): The data type of the tensor. refs (list[str]): A list of module references. data (list[str]): The data to be included in the tensor. shape (tuple): The shape of the tensor. Returns: list[str]: A list of strings that together form the template of a data function in Cairo. This method generates a list of strings representing a function in Cairo for data handling, defining the shape and contents of a tensor. """ template = [ *[f"use {ref};" for ref in refs], *[""], *[f"fn {func}() -> Tensor<{dtype}>" + " {"], *[" let mut shape = ArrayTrait::<usize>::new();"], *[f" shape.append({s});" for s in shape], *[""], *[" let mut data = ArrayTrait::new();"], *[f" data.append({d});" for d in data], *[" TensorTrait::new(shape.span(), data.span())"], *["}"], ] return template @classmethod def sequence_template( cls, func: str, dtype: str, refs: list[str], data: list[list[str]], shape: list[tuple], ) -> list[str]: """ Create a template for handling tensor sequences in Cairo. Args: func (str): The function name. dtype (str): The data type of the tensor sequence. refs (list[str]): A list of module references. data (list[list[str]]): The data to be included in each tensor. shape (list[tuple]): The shapes of each tensor in the sequence.
Returns: list[str]: A list of strings that together form the template of a sequence tensor function in Cairo. This method generates a list of strings representing a function in Cairo for handling a sequence of tensors, each with its own data and shape. """ def expand_sequence_init(s: list[tuple], d: list[list[str]]) -> list[str]: snippet = [] for i in range(len(s)): snippet += [ *[" let mut shape = ArrayTrait::<usize>::new();"], *[f" shape.append({s});" for s in s[i]], *[""], *[" let mut data = ArrayTrait::new();"], *[f" data.append({d});" for d in d[i]], *[""], *[ " sequence.append(TensorTrait::new(shape.span(), data.span()));" ], *[""], ] return snippet template = [ *[f"use {ref};" for ref in refs], *[""], *[f"fn {func}() -> Array<Tensor<{dtype}>>" + " {"], *[" let mut sequence = ArrayTrait::new();"], *[""], *expand_sequence_init(shape, data), *[" sequence"], *["}"], ] return template
from enum
import Enum
import os from typing
import List from .file_manager
import CairoTest, CairoData, ModFile
import numpy as np
class FixedImpl(Enum): FP8x23 = 'FP8x23' FP16x16 = 'FP16x16' FP32x32 = 'FP32x32' def to_fp(x: np.ndarray, fp_impl: FixedImpl): match fp_impl: case FixedImpl.FP8x23: return (x * 2**23).astype(np.int64) case FixedImpl.FP16x16: return (x * 2**16).astype(np.int64) case FixedImpl.FP32x32: return (x * 2**32).astype(np.int64)
class Dtype(Enum): FP8x23 = 'FP8x23' FP16x16 = 'FP16x16' FP32x32 = 'FP32x32' I8 = 'i8' I32 = 'i32' U32 = 'u32' BOOL = 'bool' COMPLEX64 = 'complex64' class Tensor: def __init__(self, dtype: Dtype, shape: tuple, data: np.ndarray): self.dtype = dtype self.shape = shape self.data = data Sequence = List[Tensor]
class Trait(Enum): TENSOR = 'TENSOR' NN = 'NN' SEQUENCE = 'SEQUENCE' def make_test(inputs: list[Tensor | Sequence], output: Tensor | Sequence, func_sig: str, name: str, trait: Trait = Trait.TENSOR): """ Generate and write Cairo tests based on the provided inputs and output. Args: inputs (list[Tensor | list[Tensor]]): A list of input tensors or tensor sequences. output (Tensor | list[Tensor]): The expected output tensor or tensor sequences. func_sig (str): The signature of the function to be tested. name (str): The name of the test. trait (Trait, optional): The trait of the tensors. Defaults to Trait.TENSOR. """ ModFile().update(name) for i, input in enumerate(inputs): input_data = CairoData(os.path.join(name, f"input_{i}.cairo")) match input: case list(): input_data.buffer = CairoData.sequence_template( func=f"input_{i}", dtype=input[0].dtype.value, refs=get_data_refs(input[0].dtype), data=get_data_statement_for_sequences( input, input[0].dtype), shape=[x.shape for x in input], ) case Tensor(): input_data.buffer = CairoData.base_template( func=f"input_{i}", dtype=input.dtype.value, refs=get_data_refs(input.dtype), data=get_data_statement(input.data, input.dtype), shape=input.shape, ) input_data.dump() match output: case list(): output_data = CairoData(os.path.join(name, "output_0.cairo")) output_data.buffer = CairoData.sequence_template( func="output_0", dtype=output[0].dtype.value, refs=get_data_refs(output[0].dtype), data=get_data_statement_for_sequences(output, output[0].dtype), shape=[
x.shape for x in output], ) output_data.dump() case tuple(): for i, out in enumerate(output): output_data = CairoData( os.path.join(name, f"output_{i}.cairo")) output_data.buffer = CairoData.base_template( func=f"output_{i}", dtype=out.dtype.value, refs=get_data_refs(out.dtype), data=get_data_statement(out.data, out.dtype), shape=out.shape, ) output_data.dump() case Tensor(): output_data = CairoData(os.path.join(name, "output_0.cairo")) output_data.buffer = CairoData.base_template( func="output_0", dtype=output.dtype.value, refs=get_data_refs(output.dtype), data=get_data_statement(output.data, output.dtype), shape=output.shape, ) output_data.dump() test_file = CairoTest(f"{name}.cairo") match output: case list(): test_file.buffer = CairoTest.sequence_template( name=name, arg_cnt=len(inputs), refs=get_all_test_refs(find_all_types([*inputs, *output]), trait), func_sig=func_sig, ) case Tensor(): test_file.buffer = CairoTest.base_template( name=name, arg_cnt=len(inputs), refs=get_all_test_refs(find_all_types([*inputs, output]), trait), func_sig=func_sig, ) case tuple(): test_file.buffer = CairoTest.base_template( name=name, arg_cnt=len(inputs), out_cnt=len(output), refs=get_all_test_refs(find_all_types([*inputs, output]), trait), func_sig=func_sig, ) test_file.dump() def get_data_refs(dtype: Dtype) -> list[str]: refs = [ *trait_to_r
ef[Trait.TENSOR], *dtype_to_tensor[dtype], *dtype_to_numbers[dtype], ] return refs def get_data_statement(data: np.ndarray, dtype: Dtype) -> list[str]: match dtype: case Dtype.U32: return [f"{int(x)}" for x in data.flatten()] case Dtype.I32: return [f"{int(x)}" for x in data.flatten()] case Dtype.I8: return [f"{int(x)}" for x in data.flatten()] case Dtype.FP8x23: return ["FP8x23 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"}" for x in data.flatten()] case Dtype.FP16x16: return ["FP16x16 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"}" for x in data.flatten()] case Dtype.FP32x32: return ["FP32x32 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"}" for x in data.flatten()] case Dtype.BOOL: return [str(x).lower() for x in data.flatten()] case Dtype.COMPLEX64: return ["complex64 { "+"real: FP64x64 { "+f"mag: {abs(int(np.real(x)))}, sign: {str(np.real(x) < 0).lower()} "+"} , img: FP64x64 { "+f"mag: {abs(int(np.imag(x)))}, sign: {str(np.imag(x) < 0).lower()} "+"} }" for x in data.flatten()] def get_data_statement_for_sequences(data: Sequence, dtype: Dtype) -> list[list[str]]: return [get_data_statement(x.data, dtype) for x in data] def get_all_test_refs(dtypes: list[Dtype], trait: Trait) -> list[str]: refs = [] for dtype in dtypes: refs += get_test_refs(dtype, trait) return list(set(refs)) def get_test_refs(dtype: Dtype, trait: Trait) -> list[str]: if trait == Trait.NN and dtype == Dtype.BOOL: raise Exception("NN trait does not support bool dtype") if trait == Trait.NN: dtype_ref = dtype_to_nn[dtype] elif trait == Trait.SEQUENCE: dtype_ref = dtype_to_sequence[dtype] else: dtype_ref = dtype_to_tensor[dtype] refs = [ *trait_to_ref[trait], *dtype_ref, *dtype_to_partial_eq[dtype],
"orion::utils::{assert_eq, assert_seq_eq}", ] return refs def find_all_types(tensors: list[Tensor | Sequence]) -> list[Dtype]: dtypes = [] for tensor in tensors: if isinstance(tensor, list) or isinstance(tensor, tuple): dtypes += [x.dtype for x in tensor] else: dtypes.append(tensor.dtype) return list(set(dtypes)) trait_to_ref = { Trait.TENSOR: [ "core::array::{ArrayTrait, SpanTrait}", "orion::operators::tensor::{TensorTrait, Tensor}", ], Trait.NN: [ "orion::numbers::FixedTrait", "orion::operators::nn::NNTrait", ], Trait.SEQUENCE: [ "core::array::{ArrayTrait, SpanTrait}", "orion::operators::sequence::SequenceTrait", ], } dtype_to_tensor = { Dtype.U32: ["orion::operators::tensor::{U32Tensor, U32TensorAdd}",], Dtype.I32: ["orion::operators::tensor::{I32Tensor, I32TensorAdd}",], Dtype.I8: ["orion::operators::tensor::{I8Tensor, I8TensorAdd}",], Dtype.FP8x23: ["orion::operators::tensor::{FP8x23Tensor, FP8x23TensorAdd}",], Dtype.FP16x16: ["orion::operators::tensor::{FP16x16Tensor, FP16x16TensorAdd}",], Dtype.BOOL: ["orion::operators::tensor::BoolTensor",], Dtype.COMPLEX64: ["orion::operators::tensor::Complex64Tensor",], Dtype.FP32x32: ["orion::operators::tensor::FP32x32Tensor",], } dtype_to_nn = { Dtype.U32: ["orion::operators::nn::U32NN",], Dtype.I32: ["orion::operators::nn::I32NN",], Dtype.I8: ["orion::operators::nn::I8NN",], Dtype.FP8x23: ["orion::operators::nn::FP8x23NN",], Dtype.FP16x16: ["orion::operators::nn::FP16x16NN",], } dtype_to_sequence = { Dtype.U32: ["orion::operators::sequence::U32Sequence",], Dtype.I32: ["orion::operators::sequence::I32Sequence",], Dtype.I8: ["orion::operators::sequence::I8Sequence",], Dtype.FP8x23: ["orion::operators::sequence::FP8x23Sequence",], Dtype.FP16x16: ["orion::operators::sequence::FP16x16Sequence",], } dtype_to_partial_eq = { Dtype.U32: ["orion::oper
ators::tensor::U32TensorPartialEq",], Dtype.I32: ["orion::operators::tensor::I32TensorPartialEq",], Dtype.I8: ["orion::operators::tensor::I8TensorPartialEq",], Dtype.FP8x23: ["orion::operators::tensor::FP8x23TensorPartialEq",], Dtype.FP16x16: ["orion::operators::tensor::FP16x16TensorPartialEq",], Dtype.FP32x32: ["orion::operators::tensor::FP32x32TensorPartialEq",], Dtype.BOOL: ["orion::operators::tensor::BoolTensorPartialEq",], Dtype.COMPLEX64: ["orion::operators::tensor::Complex64TensorPartialEq",], } dtype_to_numbers = { Dtype.U32: ["orion::numbers::NumberTrait"], Dtype.I32: ["orion::numbers::NumberTrait"], Dtype.I8: ["orion::numbers::NumberTrait"], Dtype.FP8x23: ["orion::numbers::{FixedTrait, FP8x23}",], Dtype.FP16x16: ["orion::numbers::{FixedTrait, FP16x16}",], Dtype.FP32x32: ["orion::numbers::{FixedTrait, FP32x32}",], Dtype.BOOL: [], Dtype.COMPLEX64: ["orion::numbers::{NumberTrait, complex64}",], }
import argparse import importlib import os import sys class RunAll: @classmethod def run_all(cls): for method_name in dir(cls): if method_name.startswith('__') or method_name == 'run_all': continue method = getattr(cls, method_name) if callable(method): method() # Add the path to the 'orion' directory to the Python path sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..')) def main(): parser = argparse.ArgumentParser(description="Generate nodes.") parser.add_argument('node_class', help="The class of node to run.") args = parser.parse_args() class_name = args.node_class.capitalize() # Verify that the specified Python file exists filename = os.path.join('nodegen/node', args.node_class + '.py') if not os.path.exists(filename): print(f"Error: {filename} does not exist.") return # Import the module dynamically module = importlib.import_module('nodegen.node.' + args.node_class) # Get the class from the module node_class = getattr(module, class_name) # Instantiate the class and call the run_all method node_instance = node_class() node_instance.run_all() if __name__ == "__main__": main()
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Abs(RunAll): @staticmethod def abs_i32(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int32) y = abs(x) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "abs_i32" make_test([x], y, "input_0.abs()", name) @staticmethod def abs_i8(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int8) y = abs(x) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "abs_i8" make_test([x], y, "input_0.abs()", name) @staticmethod def abs_fp8x23(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int64), FixedImpl.FP8x23) y = abs(x) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "abs_fp8x23" make_test([x], y, "input_0.abs()", name) @staticmethod def abs_fp16x16(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int64), FixedImpl.FP16x16) y = abs(x) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "abs_fp16x16" make_test([x], y, "input_0.abs()", name)
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Acos(RunAll): @staticmethod def acos_fp8x23(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.arccos(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "acos_fp8x23" make_test([x], y, "input_0.acos()", name) @staticmethod def acos_fp16x16(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.arccos(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "acos_fp16x16" make_test([x], y, "input_0.acos()", name)
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Acosh(RunAll): @staticmethod def acosh_fp8x23(): x = np.random.uniform(1, 5, (2, 2)).astype(np.float64) y = np.arccosh(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "acosh_fp8x23" make_test([x], y, "input_0.acosh()", name) @staticmethod def acosh_fp16x16(): x = np.random.uniform(1, 5, (2, 2)).astype(np.float64) y = np.arccosh(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "acosh_fp16x16" make_test([x], y, "input_0.acosh()", name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Add(RunAll): @staticmethod def add_u32(): def default(): x = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32) z = x + y x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "add_u32" make_test([x, y], z, "input_0 + input_1", name) def broadcast(): x = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 3, (1, 3, 1)).astype(np.uint32) z = x + y x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "add_u32_broadcast" make_test([x, y], z, "input_0 + input_1", name) default() broadcast() @staticmethod def add_i32(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) z = x + y x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "add_i32" make_test([x, y], z, "input_0 + input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int32) z = x + y x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "add_i32_broadcast" make_test([x, y], z, "input_0 + input_1", name) default() broadcast() @staticmethod def add_i8(): def default(): x = np.ran
dom.randint(-3, 3, (3, 3, 3)).astype(np.int8) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) z = x + y x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "add_i8" make_test([x, y], z, "input_0 + input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int8) z = x + y x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "add_i8_broadcast" make_test([x, y], z, "input_0 + input_1", name) default() broadcast() @staticmethod def add_fp8x23(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = x + y x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "add_fp8x23" make_test([x, y], z, "input_0 + input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64) z = x + y x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "add_fp8x23_broadcast"
make_test([x, y], z, "input_0 + input_1", name) default() broadcast() @staticmethod def add_fp16x16(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = x + y x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "add_fp16x16" make_test([x, y], z, "input_0 + input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64) z = x + y x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "add_fp16x16_broadcast" make_test([x, y], z, "input_0 + input_1", name) default() broadcast()
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class And(RunAll): @staticmethod def and_bool(): def default(): x = (np.random.randn(3, 4) > 0).astype(bool) y = (np.random.randn(3, 4) > 0).astype(bool) z = np.logical_and(x, y) x = Tensor(Dtype.BOOL, x.shape, x.flatten()) y = Tensor(Dtype.BOOL, y.shape, y.flatten()) z = Tensor(Dtype.BOOL, z.shape, z.flatten()) name = "and_bool" make_test([x, y], z, "BoolTensor::and(@input_0, @input_1)", name) def broadcast(): x = (np.random.randn(3, 4, 5) > 0).astype(bool) y = (np.random.randn(3, 4, 5) > 0).astype(bool) z = np.logical_and(x, y) x = Tensor(Dtype.BOOL, x.shape, x.flatten()) y = Tensor(Dtype.BOOL, y.shape, y.flatten()) z = Tensor(Dtype.BOOL, z.shape, z.flatten()) name = "and_bool_broadcast" make_test([x, y], z, "BoolTensor::and(@input_0, @input_1)", name) default() broadcast()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl def argmax_use_numpy(data: np.ndarray, axis: int = 0, keepdims: int = 1) -> np.ndarray: result = np.argmax(data, axis=axis) if keepdims == 1: result = np.expand_dims(result, axis) return result.astype(np.int64) def argmax_use_numpy_select_last_index( data: np.ndarray, axis: int = 0, keepdims: int = True ) -> np.ndarray: data = np.flip(data, axis) result = np.argmax(data, axis=axis) result = data.shape[axis] - result - 1 if keepdims: result = np.expand_dims(result, axis) return result.astype(np.int64)
class Argmax(RunAll): @staticmethod def no_keepdims(): data = np.array([[2, 1], [3, 10]], dtype=np.float32) axis = 1 keepdims = 0 result = argmax_use_numpy(data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_no_keepdims" make_test( [x], y, "input_0.argmax(1, Option::Some(false), Option::None(()))", name) @staticmethod def keepdims(): data = np.array([[2, 1], [3, 10]], dtype=np.float32) axis = 1 keepdims = 1 result = argmax_use_numpy(data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_keepdims" make_test( [x], y, "input_0.argmax(1, Option::Some(true), Option::None(()))", name) @staticmethod def default_axes_keepdims(): data = np.array([[2, 1], [3, 10]], dtype=np.float32) keepdims = 1 result = argmax_use_numpy(data, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_default_axes_keepdims" make_test( [x], y, "input_0.argmax(0, Option::Some(true), Option::None(()))", name) @staticmethod def negative_axis_keepdims(): data = np.array([[2, 1], [3, 10]], dtype=np.float32) axis = -1 keepdims = 1 result = argmax_use_numpy(data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_negative_axis_keepdims" make_test( [x], y, "input_0.argmax(-1, Option::Some(true), Option::None(()))", name) @staticmethod def no_keepdims_select_last_index(): data = np.array([[2, 2], [3, 10]], dtyp
e=np.float32) axis = 1 keepdims = 0 result = argmax_use_numpy_select_last_index( data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_no_keepdims_select_last_index" make_test( [x], y, "input_0.argmax(1, Option::Some(false), Option::Some(true))", name) @staticmethod def keepdims_select_last_index(): data = np.array([[2, 2], [3, 10]], dtype=np.float32) axis = 1 keepdims = 1 result = argmax_use_numpy_select_last_index( data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_keepdims_select_last_index" make_test( [x], y, "input_0.argmax(1, Option::Some(true), Option::Some(true))", name) @staticmethod def default_axes_keepdims_select_last_index(): data = np.array([[2, 2], [3, 10]], dtype=np.float32) keepdims = 1 result = argmax_use_numpy_select_last_index(data, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_default_axes_keepdims_select_last_index" make_test( [x], y, "input_0.argmax(0, Option::Some(true), Option::Some(true))", name) @staticmethod def negative_axis_keepdims_select_last_index(): data = np.array([[2, 2], [3, 10]], dtype=np.float32) axis = -1 keepdims = 1 result = argmax_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_negative_axis_keepdims_select_last_index" make_test( [x], y, "input_0.argmax(-1, Option::Some(true), Option::Some(t
rue))", name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl def argmin_use_numpy(data: np.ndarray, axis: int = 0, keepdims: int = 1, dtype=np.int64) -> np.ndarray: result = np.argmin(data, axis=axis) if keepdims == 1: result = np.expand_dims(result, axis) return result.astype(dtype) def argmin_use_numpy_select_last_index( data: np.ndarray, axis: int = 0, keepdims: int = True, dtype=np.int64 ) -> np.ndarray: data = np.flip(data, axis) result = np.argmin(data, axis=axis) result = data.shape[axis] - result - 1 if keepdims: result = np.expand_dims(result, axis) return result.astype(dtype)
class Argmin(RunAll): @staticmethod def argmin_u32(): def argmin_1D(): def default_params(): x = np.random.randint(0, 255, (3)).astype(np.uint32) y = argmin_use_numpy(x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_1D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(0, 255, (3)).astype(np.uint32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_1D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(0, 255, (3)).astype(np.uint32) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_1D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_1D() def argmin_2D(): def default_params(): x = np.random.randint(0, 255, (2, 2)).astype(np.uint32) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_2D_default" make_test(
[x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(0, 255, (2, 2)).astype(np.uint32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_2D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(0, 255, (2, 2)).astype(np.uint32) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_2D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_2D() def argmin_3D(): def default_params(): x = np.random.randint(0, 255, (2, 2, 2)).astype(np.uint32) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_3D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(0, 255, (2, 2, 2)).astype(np.uint32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_3D_keepdims_false" mak
e_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(0, 255, (2, 2, 2)).astype(np.uint32) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_3D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_3D() @staticmethod def argmin_i32(): def argmin_1D(): def default_params(): x = np.random.randint(-127, 127, (3)).astype(np.int32) y = argmin_use_numpy(x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_1D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (3)).astype(np.int32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_1D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(0, 255, (3)).astype(np.int32) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape
, y.flatten()) name = "argmin_i32_1D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_1D() def argmin_2D(): def default_params(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int32) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_2D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_2D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int32) y = argmin_use_numpy_select_last_index( x, dtype=np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_2D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_2D() def argmin_3D(): def default_params(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int32) y = argmin_use_numpy(x, dtype=np.ui
nt32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_3D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_3D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int32) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_3D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_3D() @staticmethod def argmin_i8(): def argmin_1D(): def default_params(): x = np.random.randint(-127, 127, (3)).astype(np.int8) y = argmin_use_numpy(x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_1D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (3)).astype(np.int8) y = argmin_
use_numpy( x, keepdims=0, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_1D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(0, 255, (3)).astype(np.int8) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_1D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_1D() def argmin_2D(): def default_params(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int8) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_2D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int8) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_2D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int8)
y = argmin_use_numpy_select_last_index( x, dtype=np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_2D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_2D() def argmin_3D(): def default_params(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int8) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_3D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int8) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_3D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int8) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_3D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmi
n_3D() @staticmethod def argmin_fp16x16(): def argmin_1D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (3) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy(x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_1D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (3) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_1D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(0, 255, (3)).astype( np.int8), FixedImpl.FP16x16) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_1D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_1D() def argmin_2D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), Fixe
dImpl.FP16x16) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_2D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_2D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy_select_last_index( x, dtype=np.int8) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_2D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_2D() def argmin_3D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_3D_de
fault" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_3D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_3D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_3D() @staticmethod def argmin_fp8x23(): def argmin_1D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (3) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy(x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_1D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false():
x = to_fp(np.random.randint(-127, 127, (3) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_1D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(0, 255, (3)).astype( np.int8), FixedImpl.FP8x23) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_1D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_1D() def argmin_2D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_2D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy( x, k
eepdims=0, dtype=np.uint32) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_2D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy_select_last_index( x, dtype=np.int8) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_2D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_2D() def argmin_3D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_3D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y
.flatten()) name = "argmin_fp8x23_3D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_3D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_3D()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Array_feature_extractor(RunAll): @staticmethod def array_feature_extractor_3D(): def array_feature_extractor_i32(): x = np.random.randint(-3, 3, (2, 3, 4)).astype(np.int32) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "array_feature_extractor_3D_i32" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp8x23(): x = np.random.randint(-3, 3, (2, 3, 4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "array_feature_extractor_3D_fp8x23" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp16x16(): x = np.random.randint(-3, 3, (2, 3, 4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "array_feature_extractor_3D_fp16x16" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) array_feature_extractor_i32() array_feature_extractor_fp8x23() array_feature_extractor_fp16x16() @staticmethod def array_feature_extractor_2D():
def array_feature_extractor_i32(): x = np.random.randint(-3, 3, (3, 4)).astype(np.int32) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "array_feature_extractor_2D_i32" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp8x23(): x = np.random.randint(-3, 3, (3, 4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "array_feature_extractor_2D_fp8x23" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp16x16(): x = np.random.randint(-3, 3, (3, 4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "array_feature_extractor_2D_fp16x16" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) array_feature_extractor_i32() array_feature_extractor_fp8x23() array_feature_extractor_fp16x16() @staticmethod def array_feature_extractor_1D(): def array_feature_extractor_i32(): x = np.random.randint(-3, 3, (4)).a
stype(np.int32) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "array_feature_extractor_1D_i32" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp8x23(): x = np.random.randint(-3, 3, (4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "array_feature_extractor_1D_fp8x23" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp16x16(): x = np.random.randint(-3, 3, (4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "array_feature_extractor_1D_fp16x16" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) array_feature_extractor_i32() array_feature_extractor_fp8x23() array_feature_extractor_fp16x16()
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Asin(RunAll): @staticmethod def asin_fp8x23(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.arcsin(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "asin_fp8x23" make_test([x], y, "input_0.asin()", name) @staticmethod def asin_fp16x16(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.arcsin(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "asin_fp16x16" make_test([x], y, "input_0.asin()", name)
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Asinh(RunAll): @staticmethod def asinh_fp8x23(): x = np.random.uniform(1, 5, (2, 2)).astype(np.float64) y = np.arcsinh(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "asinh_fp8x23" make_test([x], y, "input_0.asinh()", name) @staticmethod def asinh_fp16x16(): x = np.random.uniform(1, 5, (2, 2)).astype(np.float64) y = np.arcsinh(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "asinh_fp16x16" make_test([x], y, "input_0.asinh()", name)
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Atan(RunAll): @staticmethod def atan_fp8x23(): x = np.random.uniform(-10, 127, (2, 2)).astype(np.float64) y = np.arctan(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "atan_fp8x23" make_test([x], y, "input_0.atan()", name) @staticmethod def atan_fp16x16(): x = np.random.uniform(-10, 127, (2, 2)).astype(np.float64) y = np.arctan(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "atan_fp16x16" make_test([x], y, "input_0.atan()", name)
import numpy as np from nodegen.node import RunAll from ..helpers import make_node, make_test, to_fp, Tensor, Dtype, FixedImpl class Binarizer(RunAll): @staticmethod def binarizer_fp8x23(): x = np.random.uniform(-3, 3, (3, 3, 3)).astype(np.float64) threshold = np.float64(1) y = (x > threshold).astype(np.float64) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "binarizer_fp8x23" make_node([x], [y], name) make_test([x], y, "TensorTrait::binarizer(@input_0, Option::Some(FixedTrait::new(8388608, false));", name) @staticmethod def binarizer_fp16x16(): x = np.random.uniform(-3, 3, (3, 3, 3)).astype(np.float64) threshold = np.float64(1) y = (x > threshold).astype(np.float64) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "binarizer_fp16x16" make_node([x], [y], name) make_test([x], y, "TensorTrait::binarizer(@input_0, Option::Some(FixedTrait::new(65536, false));", name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait, get_data_statement def blackman_window(size, output_datatype=None, periodic=None) -> np.ndarray: if periodic == 1: N_1 = size else: N_1 = size - 1 ni = np.arange(size, dtype=output_datatype) alpha = 0.42 beta = 0.08 y = np.cos((ni * (np.float64(np.pi).astype(output_datatype) * 2)) / N_1).astype(output_datatype) * (-0.5) y += np.cos((ni * (np.float64(np.pi).astype(output_datatype) * 4)) / N_1) * beta y += alpha return y.astype(output_datatype)
class Blackman_window(RunAll): @staticmethod def fp8x23(): args = [3] args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP8x23), Dtype.FP8x23) y = blackman_window(*args, np.float64) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "blackman_window_fp8x23" make_test( [], y, f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(0))", name ) @staticmethod def fp16x16(): print(get_data_statement(to_fp(np.array([np.pi]).flatten(), FixedImpl.FP16x16), Dtype.FP16x16)) args = [3] args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP16x16), Dtype.FP16x16) y = blackman_window(*args, np.float16, 1) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "blackman_window_fp16x16" make_test( [], y, f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(1))", name )
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Ceil(RunAll): @staticmethod def ceil_fp8x23(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.ceil(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "ceil_fp8x23" make_test([x], y, "input_0.ceil()", name) @staticmethod def ceil_fp16x16(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.ceil(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "ceil_fp16x16" make_test([x], y, "input_0.ceil()", name)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl
class Clip(RunAll): @staticmethod def clip_u32(): def clip_2D(): x = np.random.randint(0, 255, (2, 4)).astype(np.uint32) y = np.clip(x, np.uint32(10), np.uint32(20)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "clip_u32_2d" make_test( [x], y, "input_0.clip(Option::Some(10_u32), Option::Some(20_u32))", name) def clip_3D(): x = np.random.randint(0, 255, (20, 10, 5)).astype(np.uint32) y = np.clip(x, np.uint32(10), np.uint32(20)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "clip_u32_3d" make_test( [x], y, "input_0.clip(Option::Some(10_u32), Option::Some(20_u32))", name) clip_2D() clip_3D() @staticmethod def clip_i32(): def clip_2D(): x = np.random.randint(-127, 127, (2, 4)).astype(np.int32) y = np.clip(x, np.int32(-10), np.int32(20)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "clip_i32_2d" make_test( [x], y, "input_0.clip(Option::Some(-10_i32), Option::Some(20_i32))", name) def clip_3D(): x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int32) y = np.clip(x, np.int32(-10), np.int32(20)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "clip_i32_3d" make_test( [x], y, "input_0.clip(Option::Some(-10_i32), Option::Some(20_i32))", name) clip_2D() clip_3D() @staticmethod def clip_i8(): def clip_2D(): x = np.random.randint(-127, 127, (2, 4)).astype(np.int8) y = np.clip(x, np.int8(-10), np.int8(20)) x = Tensor(Dtype.I8, x.shape, x
.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "clip_i8_2d" make_test( [x], y, "input_0.clip(Option::Some(-10_i8), Option::Some(20_i8))", name) def clip_3D(): x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int8) y = np.clip(x, np.int8(-10), np.int8(20)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "clip_i8_3d" make_test( [x], y, "input_0.clip(Option::Some(-10_i8), Option::Some(20_i8))", name) clip_2D() clip_3D() @staticmethod def clip_fp8x23(): def clip_2D(): x = to_fp(np.random.randint(-127, 127, (2, 4) ).astype(np.int64), FixedImpl.FP8x23) y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP8x23), to_fp(np.int64(20), FixedImpl.FP8x23)) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "clip_fp8x23_2d" make_test( [x], y, "input_0.clip(Option::Some(FP8x23 { mag: 83886080, sign: true }), Option::Some(FP8x23 { mag: 167772160, sign: false }))", name) def clip_3D(): x = to_fp(np.random.randint(-127, 127, (20, 10, 5) ).astype(np.int64), FixedImpl.FP8x23) y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP8x23), to_fp(np.int64(20), FixedImpl.FP8x23)) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "clip_fp8x23_3d" make_test( [x], y, "input_0.clip(Option::Some(FP8x23 { mag: 83886080, sign: true }), Option::Some(FP8x23 { mag: 167772160, sign: false }))", name) clip_2D() clip_3D() @staticmethod def clip_fp16x16(): def clip_2D(): x = to_fp(np
.random.randint(-127, 127, (2, 4) ).astype(np.int64), FixedImpl.FP16x16) y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP16x16), to_fp(np.int64(20), FixedImpl.FP16x16)) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "clip_fp16x16_2d" make_test( [x], y, "input_0.clip(Option::Some(FP16x16 { mag: 655360, sign: true }), Option::Some(FP16x16 { mag: 1310720, sign: false }))", name) def clip_3D(): x = to_fp(np.random.randint(-127, 127, (20, 10, 5) ).astype(np.int64), FixedImpl.FP16x16) y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP16x16), to_fp(np.int64(20), FixedImpl.FP16x16)) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "clip_fp16x16_3d" make_test( [x], y, "input_0.clip(Option::Some(FP16x16 { mag: 655360, sign: true }), Option::Some(FP16x16 { mag: 1310720, sign: false }))", name) clip_2D() clip_3D()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait def col2im(data, image_shape, block_shape, dilations=None, pads=None, strides=None): if dilations is None: dilations = [1 for s in image_shape] if pads is None: pads = [0 for s in image_shape] * 2 if strides is None: strides = [1 for s in image_shape] bl = np.prod(block_shape) C = data.shape[1] data = data.reshape(data.shape[:1] + (C,) + (bl,) + data.shape[2:]) ks = tuple(block_shape) res = None for n in range(data.shape[0]): for c in range(data.shape[1]): out = col2im_naive_implementation( data[n, c, ...], image_shape, ks, dilations, pads, strides ) if res is None: new_shape = data.shape[:2] + out.shape res = np.empty(new_shape, dtype=data.dtype) res[n, c, ...] = out return (res,) def _get_indices(i, shape): res = np.empty((len(shape),), dtype=np.int64) k = len(shape) - 1 while k > 0: m = i % shape[k] res[k] = m i -= m i /= shape[k] k -= 1 res[0] = i return res def _col2im_shape_check(X, output_shape, kernel_shape, dilations, pads, strides): n_input_plane = X.shape[0] kernel_size = np.prod(kernel_shape) if n_input_plane % kernel_size != 0: raise ValueError( f"Expected size of input's dimension 1 to be divisible by the " f"product of kernel_size={kernel_size}, " f"but got input.size(1)={n_input_plane} " f"and kernel_shape={kernel_shape}, X.shape={X.shape}, output_shape={output_shape}." ) input_length = X.shape[1] n_dims = len(output_shape) n_blocks = [] for i in range(n_dims): n_block = ( output_shape[i] + pads[i, :].sum() - dilations[i] * (kernel_shape[i] - 1) - 1 ) n_blocks.append(n_block) block_size = np.prod(n_blocks) if input_length
!= block_size: raise ValueError( f"Given n_input_plane={n_input_plane}, X.shape={X.shape}, " f"output_shape={output_shape}, kernel_shape={kernel_shape}, " f"dilations={dilations}, pads={pads}, strides={strides}, " f"expected size of input's dimension 2 to match the calculated number of " f"sliding blocks {n_blocks} = {block_size}, " f"but got input.size(2)={input_length}.", ) def col2im_naive_implementation(data, image_shape, kernel_shape, dilations, pads, strides): n_dims = len(pads) new_pads = np.array([(pads[i], pads[i + n_dims]) for i in range(n_dims)]) _col2im_shape_check(data, image_shape, kernel_shape, dilations, new_pads, strides) data_col = data data_im = np.zeros(image_shape, dtype=data.dtype) dim_col = [] for i in range(n_dims): col = ( image_shape[i] + new_pads[i, :].sum() - (dilations[i] * (kernel_shape[i] - 1) + 1) ) dim_col.append(col) kernel_size = np.prod(kernel_shape) col_size = np.prod(dim_col) for c_col in range(kernel_size): offset = _get_indices(c_col, kernel_shape) for col in range(col_size): ind_col = _get_indices(col, dim_col) ind_im = [] for i in range(n_dims): ind = ( ind_col[i] * strides[i] - new_pads[i, 0] + offset[i] * dilations[i] ) ind_im.append(ind) if not _is_out(ind_im, data_im.shape): data_im[tuple(ind_im)] += data_col[c_col, col] return data_im def _is_out(ind, shape): for i, s in zip(ind, shape): if i < 0: return True if i >= s: return True return False
class Col2im(RunAll): @staticmethod def export_col2im() -> None: x = np.array( [ [ [1.0, 6.0, 11.0, 16.0, 21.0], [2.0, 7.0, 12.0, 17.0, 22.0], [3.0, 8.0, 13.0, 18.0, 23.0], [4.0, 9.0, 14.0, 19.0, 24.0], [5.0, 0.0, 15.0, 20.0, 25.0], ] ] ).astype(np.float32) image_shape = np.array([5, 5]).astype(np.int64) block_shape = np.array([1, 5]).astype(np.int64) y = col2im(x,image_shape,block_shape) y = np.array(y[0]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "col2im" func_sig = "NNTrait::col2im(" func_sig += "@input_0," func_sig += "array![5, 5].span()," func_sig += "array![1, 5].span()," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x], y, func_sig, name, Trait.NN) @staticmethod def export_col2im_strides() -> None: x = np.array( [ [ [0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0], ] ] ).astype(np.float32) image_shape = np.array([5, 5]).astype(np.int64) block_shape = np.array([3, 3]).astype(np.int64) y = col2im(x,image_shape,block_shape,strides=[2, 2]) y = np.array(y[0]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(
y.flatten(), FixedImpl.FP16x16)) name = "col2im_strides" func_sig = "NNTrait::col2im(" func_sig += "@input_0," func_sig += "array![5, 5].span()," func_sig += "array![3, 3].span()," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![2, 2].span()))" make_test( [x], y, func_sig, name, Trait.NN) @staticmethod def export_col2im_pads() -> None: x = np.array( [ [ [ 1.0, 6.0, 11.0, 16.0, 21.0, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, ], [ 2.0, 7.0, 12.0, 17.0, 22.0, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, ], [ 3.0, 8.0, 13.0, 18.0, 23.0, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, ], [ 4.0, 9.0, 14.0, 19.0, 24.0, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, ], [ 5.0, 10.0, 15.0, 20.0, 25.0, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, ], ] ] ).astype(np.float32) image_shape = np.array([5, 5]).astype(np.int64) block_shape = np.array([1, 5]).astype(np.int64) y = col2im(x,image_shape,block_shape,pads=[0, 1, 0, 1]) y = np.array(y[0]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "col2im_pads" func_sig = "NNTrait::col2im(" func_sig += "@input_0," func_sig += "array![5, 5].span()," func_sig += "array![1, 5].span()," func_sig += "Option::None," func_sig += "Option::Some(array![0, 1, 0, 1].span())," func_sig += "Option::None)" make_test( [x], y, func_sig, name, Trait.NN) @sta
ticmethod def export_col2im_dilations() -> None: x = np.array( [ [ [1.0, 5.0, 9.0, 13.0, 17], [2.0, 6.0, 10.0, 14.0, 18], [3.0, 7.0, 11.0, 15.0, 19], [4.0, 8.0, 12.0, 16.0, 20], ] ] ).astype(np.float32) image_shape = np.array([6, 6]).astype(np.int64) block_shape = np.array([2, 2]).astype(np.int64) y = col2im(x,image_shape,block_shape, dilations=[1, 5]) y = np.array(y[0]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "col2im_dilations" func_sig = "NNTrait::col2im(" func_sig += "@input_0," func_sig += "array![6, 6].span()," func_sig += "array![2, 2].span()," func_sig += "Option::Some(array![1, 5].span())," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x], y, func_sig, name, Trait.NN) @staticmethod def export_col2im_5D() -> None: x = np.array( [ [ [1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56], [2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57], [3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58], [4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59], [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60], [61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116], [62, 67, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117], [63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, 118], [64, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 119], [65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120], ] ] ).astype(np.float32) image_shape = np.array([3, 4, 5]
).astype(np.int64) block_shape = np.array([1, 1, 5]).astype(np.int64) y = col2im(x,image_shape,block_shape) y = np.array(y[0]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "col2im_5D" func_sig = "NNTrait::col2im(" func_sig += "@input_0," func_sig += "array![3, 4, 5].span()," func_sig += "array![1, 1, 5].span()," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x], y, func_sig, name, Trait.NN)
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Compress(RunAll): @staticmethod def compress_fp16x16(): def compress_3D(): def default(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=0) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "compress_fp16x16_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,180).reshape(3,4,3,5).astype(np.int64) x2 = np.array([1, 1, 1, 0]).astype(np.int64) y = x1.compress(x2, axis=1) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "compress_fp16x16_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,48).reshape(4,3,4).astype(np.int64) x2 = np.array([1, 0, 1, 1]).astype(np.int64) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "compress
_fp16x16_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) def axis3(): x1 = np.arange(0,96).reshape(4,3,4, 2).astype(np.int64) x2 = np.array([1, 0]).astype(np.int64) y = x1.compress(x2, axis=3) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "compress_fp16x16_3d_axis3" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(3))", name= name) def noaxis(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([1, 0, 1, 0, 1, 1, 1, 1, 1]).astype(np.int64) y = x1.compress(x2) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "compress_fp16x16_3d_noaxis" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::None(()))", name= name) default() axis1() axis2() axis3() noaxis() compress_3D() @staticmethod def compress_fp8x23(): def compress_3D(): def default(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1
.compress(x2, axis=0) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "compress_fp8x23_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=1) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "compress_fp8x23_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "compress_fp8x23_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) default() axis1() axis2() compress_3D() @staticmethod def compress_i8():
def compress_3D(): def default(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int8) x2 = np.array([0, 1, 1]).astype(np.uint8) y = x1.compress(x2, axis=0) x1 = Tensor(Dtype.I8, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "compress_i8_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int8) x2 = np.array([0, 1, 1]).astype(np.uint8) y = x1.compress(x2, axis=1) x1 = Tensor(Dtype.I8, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "compress_i8_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int8) x2 = np.array([0, 1, 1]).astype(np.uint8) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.I8, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "compress_i8_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) default() axis1() axis2() compress_3D() @staticmethod def compress_i32()
: def compress_3D(): def default(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int32) x2 = np.array([0, 1, 1]).astype(np.int32) y = x1.compress(x2, axis=0) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "compress_i32_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int32) x2 = np.array([0, 1, 1]).astype(np.int32) y = x1.compress(x2, axis=1) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "compress_i32_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int32) x2 = np.array([0, 1, 1]).astype(np.int32) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "compress_i32_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) default() axis1() axis2() compress_3D() @staticmet
hod def compress_u32(): def compress_3D(): def default(): x1 = np.arange(0,48).reshape(4,4,3).astype(np.uint32) x2 = np.array([1, 1]).astype(np.uint32) y = x1.compress(x2, axis=0) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "compress_u32_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,36).reshape(3,4,3).astype(np.uint32) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=1) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "compress_u32_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,48).reshape(3,4,4).astype(np.uint32) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "compress_u32_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) def axis2_2(): x1 = np.arange(0,60).reshap
e(3,4,5).astype(np.uint32) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "compress_u32_3d_axis2_2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) def axis3(): x1 = np.arange(0,270).reshape(3,3,5,6).astype(np.uint32) x2 = np.array([0, 1, 1,1,0,1]).astype(np.uint32) y = x1.compress(x2, axis=3) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "compress_u32_3d_axis3" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(3))", name= name) default() axis1() axis2() axis2_2() axis3() compress_3D()
import numpy as np from nodegen.node
import RunAll from ..helpers
import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait
class Concat(RunAll): @staticmethod def concat_u32(): def concat_1D(): x1 = np.arange(0,3).astype(np.uint32) x2 = np.arange(3,6).astype(np.uint32) y = np.concatenate((x1, x2)) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_1d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_2D(): x1 = np.arange(0,4).astype(np.uint32).reshape(2,2) x2 = np.arange(4,8).astype(np.uint32).reshape(2,2) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_2d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_3D(): def default(): x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def axis_1(): x1 = np.arange(0,27).astype(np.uint32).resha

This dataset is a truncated version of this one but where the format is compatible with MLX-lora, using {"text": "This is an example for the model."}, and where each entry has been truncated, following some code logic (i.e., following classes, functions etc) to ensure each entry is smaller than 2048 tokens.

Downloads last month
50
Edit dataset card