Datasets:
Tasks:
Multiple Choice
Sub-tasks:
multiple-choice-coreference-resolution
Languages:
English
Size:
n<1K
ArXiv:
License:
"""A modification of the Winograd Schema Challenge to ensure answers are a single context word""" | |
from __future__ import absolute_import, division, print_function | |
import os | |
import re | |
import datasets | |
_CITATION = """\ | |
@article{McCann2018decaNLP, | |
title={The Natural Language Decathlon: Multitask Learning as Question Answering}, | |
author={Bryan McCann and Nitish Shirish Keskar and Caiming Xiong and Richard Socher}, | |
journal={arXiv preprint arXiv:1806.08730}, | |
year={2018} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Examples taken from the Winograd Schema Challenge modified to ensure that answers are a single word from the context. | |
This modified Winograd Schema Challenge (MWSC) ensures that scores are neither inflated nor deflated by oddities in phrasing. | |
""" | |
_DATA_URL = "https://raw.githubusercontent.com/salesforce/decaNLP/1e9605f246b9e05199b28bde2a2093bc49feeeaa/local_data/schema.txt" | |
# Alternate: https://s3.amazonaws.com/research.metamind.io/decaNLP/data/schema.txt | |
class MWSC(datasets.GeneratorBasedBuilder): | |
"""MWSC: modified Winograd Schema Challenge""" | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"sentence": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"options": datasets.features.Sequence(datasets.Value("string")), | |
"answer": datasets.Value("string"), | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="http://decanlp.com", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
schemas_file = dl_manager.download_and_extract(_DATA_URL) | |
if os.path.isdir(schemas_file): | |
# During testing the download manager mock gives us a directory | |
schemas_file = os.path.join(schemas_file, "schema.txt") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": schemas_file, "split": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": schemas_file, "split": "test"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": schemas_file, "split": "dev"}, | |
), | |
] | |
def _get_both_schema(self, context): | |
"""Split [option1/option2] into 2 sentences. | |
From https://github.com/salesforce/decaNLP/blob/1e9605f246b9e05199b28bde2a2093bc49feeeaa/text/torchtext/datasets/generic.py#L815-L827""" | |
pattern = r"\[.*\]" | |
variations = [x[1:-1].split("/") for x in re.findall(pattern, context)] | |
splits = re.split(pattern, context) | |
results = [] | |
for which_schema in range(2): | |
vs = [v[which_schema] for v in variations] | |
context = "" | |
for idx in range(len(splits)): | |
context += splits[idx] | |
if idx < len(vs): | |
context += vs[idx] | |
results.append(context) | |
return results | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
schemas = [] | |
with open(filepath, encoding="utf-8") as schema_file: | |
schema = [] | |
for line in schema_file: | |
if len(line.split()) == 0: | |
schemas.append(schema) | |
schema = [] | |
continue | |
else: | |
schema.append(line.strip()) | |
# Train/test/dev split from decaNLP code | |
splits = {} | |
traindev = schemas[:-50] | |
splits["test"] = schemas[-50:] | |
splits["train"] = traindev[:40] | |
splits["dev"] = traindev[40:] | |
idx = 0 | |
for schema in splits[split]: | |
sentence, question, answers = schema | |
sentence = self._get_both_schema(sentence) | |
question = self._get_both_schema(question) | |
answers = answers.split("/") | |
for i in range(2): | |
yield idx, {"sentence": sentence[i], "question": question[i], "options": answers, "answer": answers[i]} | |
idx += 1 | |