File size: 9,585 Bytes
003d608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171c3f8
d8689e4
171c3f8
d8689e4
 
 
 
 
171c3f8
d8689e4
 
 
 
 
 
171c3f8
 
d8689e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171c3f8
d8689e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171c3f8
d8689e4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': airplane
          '1': alarm clock
          '2': angel
          '3': ant
          '4': apple
          '5': arm
          '6': armchair
          '7': ashtray
          '8': axe
          '9': backpack
          '10': banana
          '11': barn
          '12': baseball bat
          '13': basket
          '14': bathtub
          '15': bear (animal)
          '16': bed
          '17': bee
          '18': beer-mug
          '19': bell
          '20': bench
          '21': bicycle
          '22': binoculars
          '23': blimp
          '24': book
          '25': bookshelf
          '26': boomerang
          '27': bottle opener
          '28': bowl
          '29': brain
          '30': bread
          '31': bridge
          '32': bulldozer
          '33': bus
          '34': bush
          '35': butterfly
          '36': cabinet
          '37': cactus
          '38': cake
          '39': calculator
          '40': camel
          '41': camera
          '42': candle
          '43': cannon
          '44': canoe
          '45': car (sedan)
          '46': carrot
          '47': castle
          '48': cat
          '49': cell phone
          '50': chair
          '51': chandelier
          '52': church
          '53': cigarette
          '54': cloud
          '55': comb
          '56': computer monitor
          '57': computer-mouse
          '58': couch
          '59': cow
          '60': crab
          '61': crane (machine)
          '62': crocodile
          '63': crown
          '64': cup
          '65': diamond
          '66': dog
          '67': dolphin
          '68': donut
          '69': door
          '70': door handle
          '71': dragon
          '72': duck
          '73': ear
          '74': elephant
          '75': envelope
          '76': eye
          '77': eyeglasses
          '78': face
          '79': fan
          '80': feather
          '81': fire hydrant
          '82': fish
          '83': flashlight
          '84': floor lamp
          '85': flower with stem
          '86': flying bird
          '87': flying saucer
          '88': foot
          '89': fork
          '90': frog
          '91': frying-pan
          '92': giraffe
          '93': grapes
          '94': grenade
          '95': guitar
          '96': hamburger
          '97': hammer
          '98': hand
          '99': harp
          '100': hat
          '101': head
          '102': head-phones
          '103': hedgehog
          '104': helicopter
          '105': helmet
          '106': horse
          '107': hot air balloon
          '108': hot-dog
          '109': hourglass
          '110': house
          '111': human-skeleton
          '112': ice-cream-cone
          '113': ipod
          '114': kangaroo
          '115': key
          '116': keyboard
          '117': knife
          '118': ladder
          '119': laptop
          '120': leaf
          '121': lightbulb
          '122': lighter
          '123': lion
          '124': lobster
          '125': loudspeaker
          '126': mailbox
          '127': megaphone
          '128': mermaid
          '129': microphone
          '130': microscope
          '131': monkey
          '132': moon
          '133': mosquito
          '134': motorbike
          '135': mouse (animal)
          '136': mouth
          '137': mug
          '138': mushroom
          '139': nose
          '140': octopus
          '141': owl
          '142': palm tree
          '143': panda
          '144': paper clip
          '145': parachute
          '146': parking meter
          '147': parrot
          '148': pear
          '149': pen
          '150': penguin
          '151': person sitting
          '152': person walking
          '153': piano
          '154': pickup truck
          '155': pig
          '156': pigeon
          '157': pineapple
          '158': pipe (for smoking)
          '159': pizza
          '160': potted plant
          '161': power outlet
          '162': present
          '163': pretzel
          '164': pumpkin
          '165': purse
          '166': rabbit
          '167': race car
          '168': radio
          '169': rainbow
          '170': revolver
          '171': rifle
          '172': rollerblades
          '173': rooster
          '174': sailboat
          '175': santa claus
          '176': satellite
          '177': satellite dish
          '178': saxophone
          '179': scissors
          '180': scorpion
          '181': screwdriver
          '182': sea turtle
          '183': seagull
          '184': shark
          '185': sheep
          '186': ship
          '187': shoe
          '188': shovel
          '189': skateboard
          '190': skull
          '191': skyscraper
          '192': snail
          '193': snake
          '194': snowboard
          '195': snowman
          '196': socks
          '197': space shuttle
          '198': speed-boat
          '199': spider
          '200': sponge bob
          '201': spoon
          '202': squirrel
          '203': standing bird
          '204': stapler
          '205': strawberry
          '206': streetlight
          '207': submarine
          '208': suitcase
          '209': sun
          '210': suv
          '211': swan
          '212': sword
          '213': syringe
          '214': t-shirt
          '215': table
          '216': tablelamp
          '217': teacup
          '218': teapot
          '219': teddy-bear
          '220': telephone
          '221': tennis-racket
          '222': tent
          '223': tiger
          '224': tire
          '225': toilet
          '226': tomato
          '227': tooth
          '228': toothbrush
          '229': tractor
          '230': traffic light
          '231': train
          '232': tree
          '233': trombone
          '234': trousers
          '235': truck
          '236': trumpet
          '237': tv
          '238': umbrella
          '239': van
          '240': vase
          '241': violin
          '242': walkie talkie
          '243': wheel
          '244': wheelbarrow
          '245': windmill
          '246': wine-bottle
          '247': wineglass
          '248': wrist-watch
          '249': zebra
  splits:
  - name: train
    num_bytes: 480609419.0
    num_examples: 16000
  - name: validation
    num_bytes: 59693656.0
    num_examples: 2000
  - name: test
    num_bytes: 60354461.0
    num_examples: 2000
  download_size: 589082694
  dataset_size: 600657536.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
---
# Dataset Card for TU Berline Dataset

This dataset card aims to provide comprehensive information about the TU Berlin dataset, a collection of hand-drawn sketches used for training and evaluating sketch classification models.

## Dataset Details

### Dataset Description

The TU Berlin dataset is a large-scale collection of hand-drawn sketches curated by the research team at TU Berlin. The dataset includes 20,000 unique sketches across 250 object categories, contributed by participants from around the world. The primary purpose of this dataset is to facilitate research in the field of computer vision, particularly for tasks related to sketch recognition and classification.

- **Curated by:** TU Berlin research team
- **Shared by [optional]:** TU Berlin

### Dataset Sources

- **Source:** [TU Berlin Dataset Source](https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/)
- **Paper:** [TU Berlin Dataset Paper](https://cybertron.cg.tu-berlin.de/eitz/pdf/2012_siggraph_classifysketch.pdf)

## Uses

### Direct Use

The dataset is intended for use in developing and evaluating sketch recognition algorithms. It is suitable for tasks such as:

- Training sketch classification models
- Evaluating the performance of sketch recognition systems
- Conducting research in computer vision and machine learning related to hand-drawn images

### Out-of-Scope Use

The dataset is not suitable for use cases that require high-resolution images or photographs. It is also not intended for tasks unrelated to sketch recognition, such as natural image classification.

## Dataset Structure

The dataset is organized into categories, each containing a collection of hand-drawn sketches. Each sketch is a black-and-white image representing an object from one of the predefined categories.

- **Number of Categories:** 250
- **Number of Sketches:** 20,000

### Dataset Splits

I downloaded the TU Berlin dataset and split it into train set, validation set, and test set.

- **Train Set:**
  - **Number of Examples:** 16,000
  - **Size:** 480,609,419 bytes
- **Validation Set:**
  - **Number of Examples:** 2,000
  - **Size:** 59,693,656 bytes
- **Test Set:**
  - **Number of Examples:** 2,000
  - **Size:** 60,354,461 bytes
- **Download Size:** 589,085,954 bytes
- **Total Dataset Size:** 600,657,536 bytes

The data was split using the following code:

```python
from sklearn.model_selection import train_test_split

train_data, temp_data = train_test_split(metadata, test_size=0.2, random_state=42)
val_data, test_data = train_test_split(temp_data, test_size=0.5, random_state=42)
```

## Citation

**BibTeX:**

```bibtex
@article{eitz2012hdhso,
  title={TU Berlin: A large-scale sketch dataset for computer vision},
  author={Eitz, Mathias and Hays, James and Alexa, Marc},
  journal={TU Berlin},
  year={2012}
}