signature
stringlengths 8
3.44k
| body
stringlengths 0
1.41M
| docstring
stringlengths 1
122k
| id
stringlengths 5
17
|
---|---|---|---|
def VRF_prediction(self): | g = self.g<EOL>h = self.h<EOL>return (<NUM_LIT:2>*g**<NUM_LIT:2> + <NUM_LIT:2>*h + g*h) / (g*(<NUM_LIT:4> - <NUM_LIT:2>*g - h))<EOL> | Returns the Variance Reduction Factor of the prediction
step of the filter. The VRF is the
normalized variance for the filter, as given in the equation below.
.. math::
VRF(\hat{x}_{n+1,n}) = \\frac{VAR(\hat{x}_{n+1,n})}{\sigma^2_x}
References
----------
Asquith, "Weight Selection in First Order Linear Filters"
Report No RG-TR-69-12, U.S. Army Missle Command. Redstone Arsenal, Al.
November 24, 1970. | f691:c1:m3 |
def VRF(self): | g = self.g<EOL>h = self.h<EOL>den = g*(<NUM_LIT:4> - <NUM_LIT:2>*g - h)<EOL>vx = (<NUM_LIT:2>*g**<NUM_LIT:2> + <NUM_LIT:2>*h - <NUM_LIT:3>*g*h) / den<EOL>vdx = <NUM_LIT:2>*h**<NUM_LIT:2> / (self.dt**<NUM_LIT:2> * den)<EOL>return (vx, vdx)<EOL> | Returns the Variance Reduction Factor (VRF) of the state variable
of the filter (x) and its derivatives (dx, ddx). The VRF is the
normalized variance for the filter, as given in the equations below.
.. math::
VRF(\hat{x}_{n,n}) = \\frac{VAR(\hat{x}_{n,n})}{\sigma^2_x}
VRF(\hat{\dot{x}}_{n,n}) = \\frac{VAR(\hat{\dot{x}}_{n,n})}{\sigma^2_x}
VRF(\hat{\ddot{x}}_{n,n}) = \\frac{VAR(\hat{\ddot{x}}_{n,n})}{\sigma^2_x}
Returns
-------
vrf_x VRF of x state variable
vrf_dx VRF of the dx state variable (derivative of x) | f691:c1:m4 |
def update(self, z, g=None, h=None, k=None): | if g is None:<EOL><INDENT>g = self.g<EOL><DEDENT>if h is None:<EOL><INDENT>h = self.h<EOL><DEDENT>if k is None:<EOL><INDENT>k = self.k<EOL><DEDENT>dt = self.dt<EOL>dt_sqr = dt**<NUM_LIT:2><EOL>self.ddx_prediction = self.ddx<EOL>self.dx_prediction = self.dx + self.ddx*dt<EOL>self.x_prediction = self.x + self.dx*dt + <NUM_LIT>*self.ddx*(dt_sqr)<EOL>self.y = z - self.x_prediction<EOL>self.ddx = self.ddx_prediction + <NUM_LIT:2>*k*self.y / dt_sqr<EOL>self.dx = self.dx_prediction + h * self.y / dt<EOL>self.x = self.x_prediction + g * self.y<EOL>return (self.x, self.dx)<EOL> | Performs the g-h filter predict and update step on the
measurement z.
On return, self.x, self.dx, self.y, and self.x_prediction
will have been updated with the results of the computation. For
convienence, self.x and self.dx are returned in a tuple.
Parameters
----------
z : scalar
the measurement
g : scalar (optional)
Override the fixed self.g value for this update
h : scalar (optional)
Override the fixed self.h value for this update
k : scalar (optional)
Override the fixed self.k value for this update
Returns
-------
x filter output for x
dx filter output for dx (derivative of x | f691:c2:m1 |
def batch_filter(self, data, save_predictions=False): | x = self.x<EOL>dx = self.dx<EOL>n = len(data)<EOL>results = np.zeros((n+<NUM_LIT:1>, <NUM_LIT:2>))<EOL>results[<NUM_LIT:0>, <NUM_LIT:0>] = x<EOL>results[<NUM_LIT:0>, <NUM_LIT:1>] = dx<EOL>if save_predictions:<EOL><INDENT>predictions = np.zeros(n)<EOL><DEDENT>h_dt = self.h / self.dt<EOL>for i, z in enumerate(data):<EOL><INDENT>x_est = x + (dx*self.dt)<EOL>residual = z - x_est<EOL>dx = dx + h_dt * residual <EOL>x = x_est + self.g * residual<EOL>results[i+<NUM_LIT:1>, <NUM_LIT:0>] = x<EOL>results[i+<NUM_LIT:1>, <NUM_LIT:1>] = dx<EOL>if save_predictions:<EOL><INDENT>predictions[i] = x_est<EOL><DEDENT><DEDENT>if save_predictions:<EOL><INDENT>return results, predictions<EOL><DEDENT>return results<EOL> | Performs g-h filter with a fixed g and h.
Uses self.x and self.dx to initialize the filter, but DOES NOT
alter self.x and self.dx during execution, allowing you to use this
class multiple times without reseting self.x and self.dx. I'm not sure
how often you would need to do that, but the capability is there.
More exactly, none of the class member variables are modified
by this function.
Parameters
----------
data : list_like
contains the data to be filtered.
save_predictions : boolean
The predictions will be saved and returned if this is true
Returns
-------
results : np.array shape (n+1, 2), where n=len(data)
contains the results of the filter, where
results[i,0] is x , and
results[i,1] is dx (derivative of x)
First entry is the initial values of x and dx as set by __init__.
predictions : np.array shape(n), or None
the predictions for each step in the filter. Only returned if
save_predictions == True | f691:c2:m2 |
def VRF_prediction(self): | g = self.g<EOL>h = self.h<EOL>k = self.k<EOL>gh2 = <NUM_LIT:2>*g + h<EOL>return ((g*k*(gh2-<NUM_LIT:4>)+ h*(g*gh2+<NUM_LIT:2>*h)) /<EOL>(<NUM_LIT:2>*k - (g*(h+k)*(gh2-<NUM_LIT:4>))))<EOL> | Returns the Variance Reduction Factor for x of the prediction
step of the filter.
This implements the equation
.. math::
VRF(\hat{x}_{n+1,n}) = \\frac{VAR(\hat{x}_{n+1,n})}{\sigma^2_x}
References
----------
Asquith and Woods, "Total Error Minimization in First
and Second Order Prediction Filters" Report No RE-TR-70-17, U.S.
Army Missle Command. Redstone Arsenal, Al. November 24, 1970. | f691:c2:m3 |
def bias_error(self, dddx): | return -self.dt**<NUM_LIT:3> * dddx / (<NUM_LIT:2>*self.k)<EOL> | Returns the bias error given the specified constant jerk(dddx)
Parameters
----------
dddx : type(self.x)
3rd derivative (jerk) of the state variable x.
References
----------
Asquith and Woods, "Total Error Minimization in First
and Second Order Prediction Filters" Report No RE-TR-70-17, U.S.
Army Missle Command. Redstone Arsenal, Al. November 24, 1970. | f691:c2:m4 |
def VRF(self): | g = self.g<EOL>h = self.h<EOL>k = self.k<EOL>hg4 = <NUM_LIT:4>- <NUM_LIT:2>*g - h<EOL>ghk = g*h + g*k - <NUM_LIT:2>*k<EOL>vx = (<NUM_LIT:2>*h*(<NUM_LIT:2>*(g**<NUM_LIT:2>) + <NUM_LIT:2>*h - <NUM_LIT:3>*g*h) - <NUM_LIT:2>*g*k*hg4) / (<NUM_LIT:2>*k - g*(h+k) * hg4)<EOL>vdx = (<NUM_LIT:2>*(h**<NUM_LIT:3>) - <NUM_LIT:4>*(h**<NUM_LIT:2>)*k + <NUM_LIT:4>*(k**<NUM_LIT:2>)*(<NUM_LIT:2>-g)) / (<NUM_LIT:2>*hg4*ghk)<EOL>vddx = <NUM_LIT:8>*h*(k**<NUM_LIT:2>) / ((self.dt**<NUM_LIT:4>)*hg4*ghk)<EOL>return (vx, vdx, vddx)<EOL> | Returns the Variance Reduction Factor (VRF) of the state variable
of the filter (x) and its derivatives (dx, ddx). The VRF is the
normalized variance for the filter, as given in the equations below.
.. math::
VRF(\hat{x}_{n,n}) = \\frac{VAR(\hat{x}_{n,n})}{\sigma^2_x}
VRF(\hat{\dot{x}}_{n,n}) = \\frac{VAR(\hat{\dot{x}}_{n,n})}{\sigma^2_x}
VRF(\hat{\ddot{x}}_{n,n}) = \\frac{VAR(\hat{\ddot{x}}_{n,n})}{\sigma^2_x}
Returns
-------
vrf_x : type(x)
VRF of x state variable
vrf_dx : type(x)
VRF of the dx state variable (derivative of x)
vrf_ddx : type(x)
VRF of the ddx state variable (second derivative of x) | f691:c2:m5 |
def __init__(self, dt, order, noise_variance=<NUM_LIT:0.>): | assert order >= <NUM_LIT:0><EOL>assert order <= <NUM_LIT:2><EOL>self.reset()<EOL>self.dt = dt<EOL>self.dt2 = dt**<NUM_LIT:2><EOL>self.sigma = noise_variance<EOL>self._order = order<EOL> | Least Squares filter of order 0 to 2.
Parameters
----------
dt : float
time step per update
order : int
order of filter 0..2
noise_variance : float
variance in x. This allows us to calculate the error of the filter,
it does not influence the filter output. | f692:c1:m0 |
def reset(self): | self.n = <NUM_LIT:0> <EOL>self.x = <NUM_LIT:0.><EOL>self.error = <NUM_LIT:0.><EOL>self.derror = <NUM_LIT:0.><EOL>self.dderror = <NUM_LIT:0.><EOL>self.dx = <NUM_LIT:0.><EOL>self.ddx = <NUM_LIT:0.><EOL>self.K1 = <NUM_LIT:0><EOL>self.K2 = <NUM_LIT:0><EOL>self.K3 = <NUM_LIT:0><EOL> | reset filter back to state at time of construction | f692:c1:m1 |
def reset(self): | self.n = <NUM_LIT:0> <EOL>self.x = np.zeros(self._order + <NUM_LIT:1>)<EOL>self.K = np.zeros(self._order + <NUM_LIT:1>)<EOL>self.y = <NUM_LIT:0><EOL> | reset filter back to state at time of construction | f694:c0:m1 |
def update(self, z): | self.n += <NUM_LIT:1><EOL>n = self.n<EOL>dt = self.dt<EOL>x = self.x<EOL>K = self.K<EOL>y = self.y<EOL>if self._order == <NUM_LIT:0>:<EOL><INDENT>K[<NUM_LIT:0>] = <NUM_LIT:1.> / n<EOL>y = z - x<EOL>x[<NUM_LIT:0>] += K[<NUM_LIT:0>] * y<EOL><DEDENT>elif self._order == <NUM_LIT:1>:<EOL><INDENT>K[<NUM_LIT:0>] = <NUM_LIT> * (<NUM_LIT:2>*n - <NUM_LIT:1>) / (n*(n + <NUM_LIT:1>))<EOL>K[<NUM_LIT:1>] = <NUM_LIT> / (n*(n + <NUM_LIT:1>)*dt)<EOL>y = z - x[<NUM_LIT:0>] - (dt * x[<NUM_LIT:1>])<EOL>x[<NUM_LIT:0>] += (K[<NUM_LIT:0>] * y) + (dt * x[<NUM_LIT:1>])<EOL>x[<NUM_LIT:1>] += (K[<NUM_LIT:1>] * y)<EOL><DEDENT>else:<EOL><INDENT>den = n * (n+<NUM_LIT:1>) * (n+<NUM_LIT:2>)<EOL>K[<NUM_LIT:0>] = <NUM_LIT> * (<NUM_LIT:3>*n**<NUM_LIT:2> - <NUM_LIT:3>*n + <NUM_LIT:2>) / den<EOL>K[<NUM_LIT:1>] = <NUM_LIT> * (<NUM_LIT:2>*n-<NUM_LIT:1>) / (den*dt)<EOL>K[<NUM_LIT:2>] = <NUM_LIT> / (den*dt**<NUM_LIT:2>)<EOL>y = z - x[<NUM_LIT:0>] - (dt * x[<NUM_LIT:1>]) - (<NUM_LIT:0.5> * dt**<NUM_LIT:2> * x[<NUM_LIT:2>])<EOL>x[<NUM_LIT:0>] += (K[<NUM_LIT:0>] * y) + (x[<NUM_LIT:1>] * dt) + (<NUM_LIT> * dt**<NUM_LIT:2> * x[<NUM_LIT:2>])<EOL>x[<NUM_LIT:1>] += (K[<NUM_LIT:1>] * y) + (x[<NUM_LIT:2>] * dt)<EOL>x[<NUM_LIT:2>] += (K[<NUM_LIT:2>] * y)<EOL><DEDENT>return self.x<EOL> | Update filter with new measurement `z`
Returns
-------
x : np.array
estimate for this time step (same as self.x) | f694:c0:m2 |
def errors(self): | n = self.n<EOL>dt = self.dt<EOL>order = self._order<EOL>sigma = self.sigma<EOL>error = np.zeros(order + <NUM_LIT:1>)<EOL>std = np.zeros(order + <NUM_LIT:1>)<EOL>if n == <NUM_LIT:0>:<EOL><INDENT>return (error, std)<EOL><DEDENT>if order == <NUM_LIT:0>:<EOL><INDENT>error[<NUM_LIT:0>] = sigma/sqrt(n)<EOL>std[<NUM_LIT:0>] = sigma/sqrt(n)<EOL><DEDENT>elif order == <NUM_LIT:1>:<EOL><INDENT>if n > <NUM_LIT:1>:<EOL><INDENT>error[<NUM_LIT:0>] = sigma * sqrt(<NUM_LIT:2>*(<NUM_LIT:2>*n-<NUM_LIT:1>) / (n*(n+<NUM_LIT:1>)))<EOL>error[<NUM_LIT:1>] = sigma * sqrt(<NUM_LIT> / (n*(n*n-<NUM_LIT:1>)*dt*dt))<EOL><DEDENT>std[<NUM_LIT:0>] = sigma * sqrt((<NUM_LIT:2>*(<NUM_LIT:2>*n-<NUM_LIT:1>)) / (n*(n+<NUM_LIT:1>)))<EOL>std[<NUM_LIT:1>] = (sigma/dt) * sqrt(<NUM_LIT> / (n*(n*n-<NUM_LIT:1>)))<EOL><DEDENT>elif order == <NUM_LIT:2>:<EOL><INDENT>dt2 = dt * dt<EOL>if n >= <NUM_LIT:3>:<EOL><INDENT>error[<NUM_LIT:0>] = sigma * sqrt(<NUM_LIT:3>*(<NUM_LIT:3>*n*n-<NUM_LIT:3>*n+<NUM_LIT:2>) / (n*(n+<NUM_LIT:1>)*(n+<NUM_LIT:2>)))<EOL>error[<NUM_LIT:1>] = sigma * sqrt(<NUM_LIT:12>*(<NUM_LIT:16>*n*n-<NUM_LIT:30>*n+<NUM_LIT:11>) /<EOL>(n*(n*n-<NUM_LIT:1>)*(n*n-<NUM_LIT:4>)*dt2))<EOL>error[<NUM_LIT:2>] = sigma * sqrt(<NUM_LIT>/(n*(n*n-<NUM_LIT:1>)*(n*n-<NUM_LIT:4>)*dt2*dt2))<EOL><DEDENT>std[<NUM_LIT:0>] = sigma * sqrt((<NUM_LIT:3>*(<NUM_LIT:3>*n*n - <NUM_LIT:3>*n + <NUM_LIT:2>)) / (n*(n+<NUM_LIT:1>)*(n+<NUM_LIT:2>)))<EOL>std[<NUM_LIT:1>] = (sigma/dt) * sqrt((<NUM_LIT:12>*(<NUM_LIT:16>*n*n - <NUM_LIT:30>*n + <NUM_LIT:11>)) /<EOL>(n*(n*n - <NUM_LIT:1>)*(n*n - <NUM_LIT:4>)))<EOL>std[<NUM_LIT:2>] = (sigma/dt2) * sqrt(<NUM_LIT> / (n*(n*n-<NUM_LIT:1>)*(n*n-<NUM_LIT:4>)))<EOL><DEDENT>return error, std<EOL> | Computes and returns the error and standard deviation of the
filter at this time step.
Returns
-------
error : np.array size 1xorder+1
std : np.array size 1xorder+1 | f694:c0:m3 |
def get_radar(dt): | if not hasattr(get_radar, "<STR_LIT>"):<EOL><INDENT>get_radar.posp = <NUM_LIT:0><EOL><DEDENT>vel = <NUM_LIT:100> + <NUM_LIT> * randn()<EOL>alt = <NUM_LIT:1000> + <NUM_LIT:10> * randn()<EOL>pos = get_radar.posp + vel*dt<EOL>v = <NUM_LIT:0> + pos* <NUM_LIT>*randn()<EOL>slant_range = math.sqrt(pos**<NUM_LIT:2> + alt**<NUM_LIT:2>) + v<EOL>get_radar.posp = pos<EOL>return slant_range<EOL> | Simulate radar range to object at 1K altidue and moving at 100m/s.
Adds about 5% measurement noise. Returns slant range to the object.
Call once for each new measurement at dt time from last call. | f695:m0 |
def fx(x, dt): | F = np.array([[<NUM_LIT:1.>, dt, <NUM_LIT:0.>],<EOL>[<NUM_LIT:0.>, <NUM_LIT:1.>, <NUM_LIT:0.>],<EOL>[<NUM_LIT:0.>, <NUM_LIT:0.>, <NUM_LIT:1.>]])<EOL>return np.dot(F, x)<EOL> | state transition function for sstate [downrange, vel, altitude] | f697:m0 |
def hx(x): | return (x[<NUM_LIT:0>]**<NUM_LIT:2> + x[<NUM_LIT:2>]**<NUM_LIT:2>)**<NUM_LIT><EOL> | returns slant range based on downrange distance and altitude | f697:m1 |
def get_range(self, process_err_pct=<NUM_LIT>): | vel = self.vel + <NUM_LIT:5> * randn()<EOL>alt = self.alt + <NUM_LIT:10> * randn()<EOL>self.pos += vel*self.dt<EOL>err = (self.pos * process_err_pct) * randn()<EOL>slant_range = (self.pos**<NUM_LIT:2> + alt**<NUM_LIT:2>)**<NUM_LIT> + err<EOL>return slant_range<EOL> | Returns slant range to the object. Call once for each
new measurement at dt time from last call. | f698:c0:m1 |
def fx(x,dt): | <EOL>return array([x[<NUM_LIT:0>]+x[<NUM_LIT:1>], x[<NUM_LIT:1>]])<EOL> | state transition function | f699:m0 |
def hx(x): | return math.atan2(platform_pos[<NUM_LIT:1>],x[<NUM_LIT:0>]-platform_pos[<NUM_LIT:0>])<EOL> | measurement function - convert position to bearing | f699:m1 |
def mahalanobis(x, mean, cov): | x = _validate_vector(x)<EOL>mean = _validate_vector(mean)<EOL>if x.shape != mean.shape:<EOL><INDENT>raise ValueError("<STR_LIT>")<EOL><DEDENT>y = x - mean<EOL>S = np.atleast_2d(cov)<EOL>dist = float(np.dot(np.dot(y.T, inv(S)), y))<EOL>return math.sqrt(dist)<EOL> | Computes the Mahalanobis distance between the state vector x from the
Gaussian `mean` with covariance `cov`. This can be thought as the number
of standard deviations x is from the mean, i.e. a return value of 3 means
x is 3 std from mean.
Parameters
----------
x : (N,) array_like, or float
Input state vector
mean : (N,) array_like, or float
mean of multivariate Gaussian
cov : (N, N) array_like or float
covariance of the multivariate Gaussian
Returns
-------
mahalanobis : double
The Mahalanobis distance between vectors `x` and `mean`
Examples
--------
>>> mahalanobis(x=3., mean=3.5, cov=4.**2) # univariate case
0.125
>>> mahalanobis(x=3., mean=6, cov=1) # univariate, 3 std away
3.0
>>> mahalanobis([1., 2], [1.1, 3.5], [[1., .1],[.1, 13]])
0.42533327058913922 | f702:m1 |
def log_likelihood(z, x, P, H, R): | S = np.dot(H, np.dot(P, H.T)) + R<EOL>return logpdf(z, np.dot(H, x), S)<EOL> | Returns log-likelihood of the measurement z given the Gaussian
posterior (x, P) using measurement function H and measurement
covariance error R | f702:m2 |
def likelihood(z, x, P, H, R): | return np.exp(log_likelihood(z, x, P, H, R))<EOL> | Returns likelihood of the measurement z given the Gaussian
posterior (x, P) using measurement function H and measurement
covariance error R | f702:m3 |
def logpdf(x, mean=None, cov=<NUM_LIT:1>, allow_singular=True): | if mean is not None:<EOL><INDENT>flat_mean = np.asarray(mean).flatten()<EOL><DEDENT>else:<EOL><INDENT>flat_mean = None<EOL><DEDENT>flat_x = np.asarray(x).flatten()<EOL>if _support_singular:<EOL><INDENT>return multivariate_normal.logpdf(flat_x, flat_mean, cov, allow_singular)<EOL><DEDENT>return multivariate_normal.logpdf(flat_x, flat_mean, cov)<EOL> | Computes the log of the probability density function of the normal
N(mean, cov) for the data x. The normal may be univariate or multivariate.
Wrapper for older versions of scipy.multivariate_normal.logpdf which
don't support support the allow_singular keyword prior to verion 0.15.0.
If it is not supported, and cov is singular or not PSD you may get
an exception.
`x` and `mean` may be column vectors, row vectors, or lists. | f702:m4 |
def gaussian(x, mean, var, normed=True): | g = ((<NUM_LIT:2>*math.pi*var)**-<NUM_LIT>) * np.exp((-<NUM_LIT:0.5>*(np.asarray(x)-mean)**<NUM_LIT>) / var)<EOL>if normed and len(np.shape(g)) > <NUM_LIT:0>:<EOL><INDENT>g = g / sum(g)<EOL><DEDENT>return g<EOL> | returns normal distribution (pdf) for x given a Gaussian with the
specified mean and variance. All must be scalars.
gaussian (1,2,3) is equivalent to scipy.stats.norm(2,math.sqrt(3)).pdf(1)
It is quite a bit faster albeit much less flexible than the latter.
Parameters
----------
x : scalar or array-like
The value for which we compute the probability
mean : scalar
Mean of the Gaussian
var : scalar
Variance of the Gaussian
norm : bool, default True
Normalize the output if the input is an array of values.
Returns
-------
probability : float
probability of x for the Gaussian (mean, var). E.g. 0.101 denotes
10.1%.
Examples
--------
>>> gaussian(8, 1, 2)
1.3498566943461957e-06
>>> gaussian([8, 7, 9], 1, 2)
array([1.34985669e-06, 3.48132630e-05, 3.17455867e-08]) | f702:m5 |
def mul(mean1, var1, mean2, var2): | mean = (var1*mean2 + var2*mean1) / (var1 + var2)<EOL>var = <NUM_LIT:1> / (<NUM_LIT:1>/var1 + <NUM_LIT:1>/var2)<EOL>return (mean, var)<EOL> | Multiply Gaussian (mean1, var1) with (mean2, var2) and return the
results as a tuple (mean, var).
Strictly speaking the product of two Gaussian PDFs is a Gaussian
function, not Gaussian PDF. It is, however, proportional to a Gaussian
PDF, so it is safe to treat the output as a PDF for any filter using
Bayes equation, which normalizes the result anyway.
Parameters
----------
mean1 : scalar
mean of first Gaussian
var1 : scalar
variance of first Gaussian
mean2 : scalar
mean of second Gaussian
var2 : scalar
variance of second Gaussian
Returns
-------
mean : scalar
mean of product
var : scalar
variance of product
Examples
--------
>>> mul(1, 2, 3, 4)
(1.6666666666666667, 1.3333333333333333)
References
----------
Bromily. "Products and Convolutions of Gaussian Probability Functions",
Tina Memo No. 2003-003.
http://www.tina-vision.net/docs/memos/2003-003.pdf | f702:m6 |
def mul_pdf(mean1, var1, mean2, var2): | mean = (var1*mean2 + var2*mean1) / (var1 + var2)<EOL>var = <NUM_LIT:1.> / (<NUM_LIT:1.>/var1 + <NUM_LIT:1.>/var2)<EOL>S = math.exp(-(mean1 - mean2)**<NUM_LIT:2> / (<NUM_LIT:2>*(var1 + var2))) /math.sqrt(<NUM_LIT:2> * math.pi * (var1 + var2))<EOL>return mean, var, S<EOL> | Multiply Gaussian (mean1, var1) with (mean2, var2) and return the
results as a tuple (mean, var, scale_factor).
Strictly speaking the product of two Gaussian PDFs is a Gaussian
function, not Gaussian PDF. It is, however, proportional to a Gaussian
PDF. `scale_factor` provides this proportionality constant
Parameters
----------
mean1 : scalar
mean of first Gaussian
var1 : scalar
variance of first Gaussian
mean2 : scalar
mean of second Gaussian
var2 : scalar
variance of second Gaussian
Returns
-------
mean : scalar
mean of product
var : scalar
variance of product
scale_factor : scalar
proportionality constant
Examples
--------
>>> mul(1, 2, 3, 4)
(1.6666666666666667, 1.3333333333333333)
References
----------
Bromily. "Products and Convolutions of Gaussian Probability Functions",
Tina Memo No. 2003-003.
http://www.tina-vision.net/docs/memos/2003-003.pdf | f702:m7 |
def add(mean1, var1, mean2, var2): | return (mean1+mean2, var1+var2)<EOL> | Add the Gaussians (mean1, var1) with (mean2, var2) and return the
results as a tuple (mean,var).
var1 and var2 are variances - sigma squared in the usual parlance. | f702:m8 |
def multivariate_gaussian(x, mu, cov): | warnings.warn(<EOL>("<STR_LIT>"<EOL>"<STR_LIT>"<EOL>"<STR_LIT>"), DeprecationWarning)<EOL>x = np.array(x, copy=False, ndmin=<NUM_LIT:1>).flatten()<EOL>mu = np.array(mu, copy=False, ndmin=<NUM_LIT:1>).flatten()<EOL>nx = len(mu)<EOL>cov = _to_cov(cov, nx)<EOL>norm_coeff = nx*math.log(<NUM_LIT:2>*math.pi) + np.linalg.slogdet(cov)[<NUM_LIT:1>]<EOL>err = x - mu<EOL>if sp.issparse(cov):<EOL><INDENT>numerator = spln.spsolve(cov, err).T.dot(err)<EOL><DEDENT>else:<EOL><INDENT>numerator = np.linalg.solve(cov, err).T.dot(err)<EOL><DEDENT>return math.exp(-<NUM_LIT:0.5>*(norm_coeff + numerator))<EOL> | This is designed to replace scipy.stats.multivariate_normal
which is not available before version 0.14. You may either pass in a
multivariate set of data:
.. code-block:: Python
multivariate_gaussian (array([1,1]), array([3,4]), eye(2)*1.4)
multivariate_gaussian (array([1,1,1]), array([3,4,5]), 1.4)
or unidimensional data:
.. code-block:: Python
multivariate_gaussian(1, 3, 1.4)
In the multivariate case if cov is a scalar it is interpreted as eye(n)*cov
The function gaussian() implements the 1D (univariate)case, and is much
faster than this function.
equivalent calls:
.. code-block:: Python
multivariate_gaussian(1, 2, 3)
scipy.stats.multivariate_normal(2,3).pdf(1)
Parameters
----------
x : float, or np.array-like
Value to compute the probability for. May be a scalar if univariate,
or any type that can be converted to an np.array (list, tuple, etc).
np.array is best for speed.
mu : float, or np.array-like
mean for the Gaussian . May be a scalar if univariate, or any type
that can be converted to an np.array (list, tuple, etc).np.array is
best for speed.
cov : float, or np.array-like
Covariance for the Gaussian . May be a scalar if univariate, or any
type that can be converted to an np.array (list, tuple, etc).np.array is
best for speed.
Returns
-------
probability : float
probability for x for the Gaussian (mu,cov) | f702:m9 |
def multivariate_multiply(m1, c1, m2, c2): | C1 = np.asarray(c1)<EOL>C2 = np.asarray(c2)<EOL>M1 = np.asarray(m1)<EOL>M2 = np.asarray(m2)<EOL>sum_inv = np.linalg.inv(C1+C2)<EOL>C3 = np.dot(C1, sum_inv).dot(C2)<EOL>M3 = (np.dot(C2, sum_inv).dot(M1) +<EOL>np.dot(C1, sum_inv).dot(M2))<EOL>return M3, C3<EOL> | Multiplies the two multivariate Gaussians together and returns the
results as the tuple (mean, covariance).
Examples
--------
.. code-block:: Python
m, c = multivariate_multiply([7.0, 2], [[1.0, 2.0], [2.0, 1.0]],
[3.2, 0], [[8.0, 1.1], [1.1,8.0]])
Parameters
----------
m1 : array-like
Mean of first Gaussian. Must be convertable to an 1D array via
numpy.asarray(), For example 6, [6], [6, 5], np.array([3, 4, 5, 6])
are all valid.
c1 : matrix-like
Covariance of first Gaussian. Must be convertable to an 2D array via
numpy.asarray().
m2 : array-like
Mean of second Gaussian. Must be convertable to an 1D array via
numpy.asarray(), For example 6, [6], [6, 5], np.array([3, 4, 5, 6])
are all valid.
c2 : matrix-like
Covariance of second Gaussian. Must be convertable to an 2D array via
numpy.asarray().
Returns
-------
m : ndarray
mean of the result
c : ndarray
covariance of the result | f702:m10 |
def plot_discrete_cdf(xs, ys, ax=None, xlabel=None, ylabel=None,<EOL>label=None): | import matplotlib.pyplot as plt<EOL>if ax is None:<EOL><INDENT>ax = plt.gca()<EOL><DEDENT>if xs is None:<EOL><INDENT>xs = range(len(ys))<EOL><DEDENT>ys = np.cumsum(ys)<EOL>ax.plot(xs, ys, label=label)<EOL>ax.set_xlabel(xlabel)<EOL>ax.set_ylabel(ylabel)<EOL>return ax<EOL> | Plots a normal distribution CDF with the given mean and variance.
x-axis contains the mean, the y-axis shows the cumulative probability.
Parameters
----------
xs : list-like of scalars
x values corresponding to the values in `y`s. Can be `None`, in which
case range(len(ys)) will be used.
ys : list-like of scalars
list of probabilities to be plotted which should sum to 1.
ax : matplotlib axes object, optional
If provided, the axes to draw on, otherwise plt.gca() is used.
xlim, ylim: (float,float), optional
specify the limits for the x or y axis as tuple (low,high).
If not specified, limits will be automatically chosen to be 'nice'
xlabel : str,optional
label for the x-axis
ylabel : str, optional
label for the y-axis
label : str, optional
label for the legend
Returns
-------
axis of plot | f702:m11 |
def plot_gaussian_cdf(mean=<NUM_LIT:0.>, variance=<NUM_LIT:1.>,<EOL>ax=None,<EOL>xlim=None, ylim=(<NUM_LIT:0.>, <NUM_LIT:1.>),<EOL>xlabel=None, ylabel=None,<EOL>label=None): | import matplotlib.pyplot as plt<EOL>if ax is None:<EOL><INDENT>ax = plt.gca()<EOL><DEDENT>sigma = math.sqrt(variance)<EOL>n = norm(mean, sigma)<EOL>if xlim is None:<EOL><INDENT>xlim = [n.ppf(<NUM_LIT>), n.ppf(<NUM_LIT>)]<EOL><DEDENT>xs = np.arange(xlim[<NUM_LIT:0>], xlim[<NUM_LIT:1>], (xlim[<NUM_LIT:1>] - xlim[<NUM_LIT:0>]) / <NUM_LIT>)<EOL>cdf = n.cdf(xs)<EOL>ax.plot(xs, cdf, label=label)<EOL>ax.set_xlim(xlim)<EOL>ax.set_ylim(ylim)<EOL>ax.set_xlabel(xlabel)<EOL>ax.set_ylabel(ylabel)<EOL>return ax<EOL> | Plots a normal distribution CDF with the given mean and variance.
x-axis contains the mean, the y-axis shows the cumulative probability.
Parameters
----------
mean : scalar, default 0.
mean for the normal distribution.
variance : scalar, default 0.
variance for the normal distribution.
ax : matplotlib axes object, optional
If provided, the axes to draw on, otherwise plt.gca() is used.
xlim, ylim: (float,float), optional
specify the limits for the x or y axis as tuple (low,high).
If not specified, limits will be automatically chosen to be 'nice'
xlabel : str,optional
label for the x-axis
ylabel : str, optional
label for the y-axis
label : str, optional
label for the legend
Returns
-------
axis of plot | f702:m12 |
def plot_gaussian_pdf(mean=<NUM_LIT:0.>,<EOL>variance=<NUM_LIT:1.>,<EOL>std=None,<EOL>ax=None,<EOL>mean_line=False,<EOL>xlim=None, ylim=None,<EOL>xlabel=None, ylabel=None,<EOL>label=None): | import matplotlib.pyplot as plt<EOL>if ax is None:<EOL><INDENT>ax = plt.gca()<EOL><DEDENT>if variance is not None and std is not None:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>if variance is None and std is None:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>if variance is not None:<EOL><INDENT>std = math.sqrt(variance)<EOL><DEDENT>n = norm(mean, std)<EOL>if xlim is None:<EOL><INDENT>xlim = [n.ppf(<NUM_LIT>), n.ppf(<NUM_LIT>)]<EOL><DEDENT>xs = np.arange(xlim[<NUM_LIT:0>], xlim[<NUM_LIT:1>], (xlim[<NUM_LIT:1>] - xlim[<NUM_LIT:0>]) / <NUM_LIT>)<EOL>ax.plot(xs, n.pdf(xs), label=label)<EOL>ax.set_xlim(xlim)<EOL>if ylim is not None:<EOL><INDENT>ax.set_ylim(ylim)<EOL><DEDENT>if mean_line:<EOL><INDENT>plt.axvline(mean)<EOL><DEDENT>if xlabel is not None:<EOL><INDENT>ax.set_xlabel(xlabel)<EOL><DEDENT>if ylabel is not None:<EOL><INDENT>ax.set_ylabel(ylabel)<EOL><DEDENT>return ax<EOL> | Plots a normal distribution PDF with the given mean and variance.
x-axis contains the mean, the y-axis shows the probability density.
Parameters
----------
mean : scalar, default 0.
mean for the normal distribution.
variance : scalar, default 1., optional
variance for the normal distribution.
std: scalar, default=None, optional
standard deviation of the normal distribution. Use instead of
`variance` if desired
ax : matplotlib axes object, optional
If provided, the axes to draw on, otherwise plt.gca() is used.
mean_line : boolean
draws a line at x=mean
xlim, ylim: (float,float), optional
specify the limits for the x or y axis as tuple (low,high).
If not specified, limits will be automatically chosen to be 'nice'
xlabel : str,optional
label for the x-axis
ylabel : str, optional
label for the y-axis
label : str, optional
label for the legend
Returns
-------
axis of plot | f702:m13 |
def plot_gaussian(mean=<NUM_LIT:0.>, variance=<NUM_LIT:1.>,<EOL>ax=None,<EOL>mean_line=False,<EOL>xlim=None,<EOL>ylim=None,<EOL>xlabel=None,<EOL>ylabel=None,<EOL>label=None): | warnings.warn('<STR_LIT>''<STR_LIT>''<STR_LIT>',<EOL>DeprecationWarning)<EOL>return plot_gaussian_pdf(mean, variance, ax, mean_line, xlim, ylim, xlabel,<EOL>ylabel, label)<EOL> | DEPRECATED. Use plot_gaussian_pdf() instead. This is poorly named, as
there are multiple ways to plot a Gaussian. | f702:m14 |
def covariance_ellipse(P, deviations=<NUM_LIT:1>): | U, s, _ = linalg.svd(P)<EOL>orientation = math.atan2(U[<NUM_LIT:1>, <NUM_LIT:0>], U[<NUM_LIT:0>, <NUM_LIT:0>])<EOL>width = deviations * math.sqrt(s[<NUM_LIT:0>])<EOL>height = deviations * math.sqrt(s[<NUM_LIT:1>])<EOL>if height > width:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>return (orientation, width, height)<EOL> | Returns a tuple defining the ellipse representing the 2 dimensional
covariance matrix P.
Parameters
----------
P : nd.array shape (2,2)
covariance matrix
deviations : int (optional, default = 1)
# of standard deviations. Default is 1.
Returns (angle_radians, width_radius, height_radius) | f702:m15 |
def _eigsorted(cov, asc=True): | eigval, eigvec = np.linalg.eigh(cov)<EOL>order = eigval.argsort()<EOL>if not asc:<EOL><INDENT>order = order[::-<NUM_LIT:1>]<EOL><DEDENT>return eigval[order], eigvec[:, order]<EOL> | Computes eigenvalues and eigenvectors of a covariance matrix and returns
them sorted by eigenvalue.
Parameters
----------
cov : ndarray
covariance matrix
asc : bool, default=True
determines whether we are sorted smallest to largest (asc=True),
or largest to smallest (asc=False)
Returns
-------
eigval : 1D ndarray
eigenvalues of covariance ordered largest to smallest
eigvec : 2D ndarray
eigenvectors of covariance matrix ordered to match `eigval` ordering.
I.e eigvec[:, 0] is the rotation vector for eigval[0] | f702:m16 |
def plot_3d_covariance(mean, cov, std=<NUM_LIT:1.>,<EOL>ax=None, title=None,<EOL>color=None, alpha=<NUM_LIT:1.>,<EOL>label_xyz=True,<EOL>N=<NUM_LIT>,<EOL>shade=True,<EOL>limit_xyz=True,<EOL>**kwargs): | from mpl_toolkits.mplot3d import Axes3D<EOL>import matplotlib.pyplot as plt<EOL>mean = np.atleast_2d(mean)<EOL>if mean.shape[<NUM_LIT:1>] == <NUM_LIT:1>:<EOL><INDENT>mean = mean.T<EOL><DEDENT>if not(mean.shape[<NUM_LIT:0>] == <NUM_LIT:1> and mean.shape[<NUM_LIT:1>] == <NUM_LIT:3>):<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>mean = mean[<NUM_LIT:0>]<EOL>cov = np.asarray(cov)<EOL>if cov.shape[<NUM_LIT:0>] != <NUM_LIT:3> or cov.shape[<NUM_LIT:1>] != <NUM_LIT:3>:<EOL><INDENT>raise ValueError("<STR_LIT>")<EOL><DEDENT>eigval, eigvec = _eigsorted(cov, asc=True)<EOL>radii = std * np.sqrt(np.real(eigval))<EOL>if eigval[<NUM_LIT:0>] < <NUM_LIT:0>:<EOL><INDENT>raise ValueError("<STR_LIT>")<EOL><DEDENT>u = np.linspace(<NUM_LIT:0.0>, <NUM_LIT> * np.pi, N)<EOL>v = np.linspace(<NUM_LIT:0.0>, np.pi, N)<EOL>x = np.outer(np.cos(u), np.sin(v)) * radii[<NUM_LIT:0>]<EOL>y = np.outer(np.sin(u), np.sin(v)) * radii[<NUM_LIT:1>]<EOL>z = np.outer(np.ones_like(u), np.cos(v)) * radii[<NUM_LIT:2>]<EOL>a = np.kron(eigvec[:, <NUM_LIT:0>], x)<EOL>b = np.kron(eigvec[:, <NUM_LIT:1>], y)<EOL>c = np.kron(eigvec[:, <NUM_LIT:2>], z)<EOL>data = a + b + c<EOL>N = data.shape[<NUM_LIT:0>]<EOL>x = data[:, <NUM_LIT:0>:N] + mean[<NUM_LIT:0>]<EOL>y = data[:, N:N*<NUM_LIT:2>] + mean[<NUM_LIT:1>]<EOL>z = data[:, N*<NUM_LIT:2>:] + mean[<NUM_LIT:2>]<EOL>fig = plt.gcf()<EOL>if ax is None:<EOL><INDENT>ax = fig.add_subplot(<NUM_LIT>, projection='<STR_LIT>')<EOL><DEDENT>ax.plot_surface(x, y, z,<EOL>rstride=<NUM_LIT:3>, cstride=<NUM_LIT:3>, linewidth=<NUM_LIT:0.1>, alpha=alpha,<EOL>shade=shade, color=color, **kwargs)<EOL>if label_xyz:<EOL><INDENT>ax.set_xlabel('<STR_LIT:X>')<EOL>ax.set_ylabel('<STR_LIT:Y>')<EOL>ax.set_zlabel('<STR_LIT>')<EOL><DEDENT>if limit_xyz:<EOL><INDENT>r = radii.max()<EOL>ax.set_xlim(-r + mean[<NUM_LIT:0>], r + mean[<NUM_LIT:0>])<EOL>ax.set_ylim(-r + mean[<NUM_LIT:1>], r + mean[<NUM_LIT:1>])<EOL>ax.set_zlim(-r + mean[<NUM_LIT:2>], r + mean[<NUM_LIT:2>])<EOL><DEDENT>if title is not None:<EOL><INDENT>plt.title(title)<EOL><DEDENT>Axes3D <EOL>return ax<EOL> | Plots a covariance matrix `cov` as a 3D ellipsoid centered around
the `mean`.
Parameters
----------
mean : 3-vector
mean in x, y, z. Can be any type convertable to a row vector.
cov : ndarray 3x3
covariance matrix
std : double, default=1
standard deviation of ellipsoid
ax : matplotlib.axes._subplots.Axes3DSubplot, optional
Axis to draw on. If not provided, a new 3d axis will be generated
for the current figure
title : str, optional
If provided, specifies the title for the plot
color : any value convertible to a color
if specified, color of the ellipsoid.
alpha : float, default 1.
Alpha value of the ellipsoid. <1 makes is semi-transparent.
label_xyz: bool, default True
Gives labels 'X', 'Y', and 'Z' to the axis.
N : int, default=60
Number of segments to compute ellipsoid in u,v space. Large numbers
can take a very long time to plot. Default looks nice.
shade : bool, default=True
Use shading to draw the ellipse
limit_xyz : bool, default=True
Limit the axis range to fit the ellipse
**kwargs : optional
keyword arguments to supply to the call to plot_surface() | f702:m17 |
def plot_covariance_ellipse(<EOL>mean, cov=None, variance=<NUM_LIT:1.0>, std=None,<EOL>ellipse=None, title=None, axis_equal=True, show_semiaxis=False,<EOL>facecolor=None, edgecolor=None,<EOL>fc='<STR_LIT:none>', ec='<STR_LIT>',<EOL>alpha=<NUM_LIT:1.0>, xlim=None, ylim=None,<EOL>ls='<STR_LIT>'): | warnings.warn("<STR_LIT>", DeprecationWarning)<EOL>plot_covariance(mean=mean, cov=cov, variance=variance, std=std,<EOL>ellipse=ellipse, title=title, axis_equal=axis_equal,<EOL>show_semiaxis=show_semiaxis, facecolor=facecolor,<EOL>edgecolor=edgecolor, fc=fc, ec=ec, alpha=alpha,<EOL>xlim=xlim, ylim=ylim, ls=ls)<EOL> | Deprecated function to plot a covariance ellipse. Use plot_covariance
instead.
See Also
--------
plot_covariance | f702:m18 |
def _std_tuple_of(var=None, std=None, interval=None): | if std is not None:<EOL><INDENT>if np.isscalar(std):<EOL><INDENT>std = (std,)<EOL><DEDENT>return std<EOL><DEDENT>if interval is not None:<EOL><INDENT>if np.isscalar(interval):<EOL><INDENT>interval = (interval,)<EOL><DEDENT>return norm.interval(interval)[<NUM_LIT:1>]<EOL><DEDENT>if var is None:<EOL><INDENT>raise ValueError("<STR_LIT>")<EOL><DEDENT>if np.isscalar(var):<EOL><INDENT>var = (var,)<EOL><DEDENT>return np.sqrt(var)<EOL> | Convienence function for plotting. Given one of var, standard
deviation, or interval, return the std. Any of the three can be an
iterable list.
Examples
--------
>>>_std_tuple_of(var=[1, 3, 9])
(1, 2, 3) | f702:m19 |
def plot_covariance(<EOL>mean, cov=None, variance=<NUM_LIT:1.0>, std=None, interval=None,<EOL>ellipse=None, title=None, axis_equal=True,<EOL>show_semiaxis=False, show_center=True,<EOL>facecolor=None, edgecolor=None,<EOL>fc='<STR_LIT:none>', ec='<STR_LIT>',<EOL>alpha=<NUM_LIT:1.0>, xlim=None, ylim=None,<EOL>ls='<STR_LIT>'): | from matplotlib.patches import Ellipse<EOL>import matplotlib.pyplot as plt<EOL>if cov is not None and ellipse is not None:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>if cov is None and ellipse is None:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>if facecolor is None:<EOL><INDENT>facecolor = fc<EOL><DEDENT>if edgecolor is None:<EOL><INDENT>edgecolor = ec<EOL><DEDENT>if cov is not None:<EOL><INDENT>ellipse = covariance_ellipse(cov)<EOL><DEDENT>if axis_equal:<EOL><INDENT>plt.axis('<STR_LIT>')<EOL><DEDENT>if title is not None:<EOL><INDENT>plt.title(title)<EOL><DEDENT>ax = plt.gca()<EOL>angle = np.degrees(ellipse[<NUM_LIT:0>])<EOL>width = ellipse[<NUM_LIT:1>] * <NUM_LIT><EOL>height = ellipse[<NUM_LIT:2>] * <NUM_LIT><EOL>std = _std_tuple_of(variance, std, interval)<EOL>for sd in std:<EOL><INDENT>e = Ellipse(xy=mean, width=sd*width, height=sd*height, angle=angle,<EOL>facecolor=facecolor,<EOL>edgecolor=edgecolor,<EOL>alpha=alpha,<EOL>lw=<NUM_LIT:2>, ls=ls)<EOL>ax.add_patch(e)<EOL><DEDENT>x, y = mean<EOL>if show_center:<EOL><INDENT>plt.scatter(x, y, marker='<STR_LIT:+>', color=edgecolor)<EOL><DEDENT>if xlim is not None:<EOL><INDENT>ax.set_xlim(xlim)<EOL><DEDENT>if ylim is not None:<EOL><INDENT>ax.set_ylim(ylim)<EOL><DEDENT>if show_semiaxis:<EOL><INDENT>a = ellipse[<NUM_LIT:0>]<EOL>h, w = height/<NUM_LIT:4>, width/<NUM_LIT:4><EOL>plt.plot([x, x+ h*cos(a+np.pi/<NUM_LIT:2>)], [y, y + h*sin(a+np.pi/<NUM_LIT:2>)])<EOL>plt.plot([x, x+ w*cos(a)], [y, y + w*sin(a)])<EOL><DEDENT> | Plots the covariance ellipse for the 2D normal defined by (mean, cov)
`variance` is the normal sigma^2 that we want to plot. If list-like,
ellipses for all ellipses will be ploted. E.g. [1,2] will plot the
sigma^2 = 1 and sigma^2 = 2 ellipses. Alternatively, use std for the
standard deviation, in which case `variance` will be ignored.
ellipse is a (angle,width,height) tuple containing the angle in radians,
and width and height radii.
You may provide either cov or ellipse, but not both.
Parameters
----------
mean : row vector like (2x1)
The mean of the normal
cov : ndarray-like
2x2 covariance matrix
variance : float, default 1, or iterable float, optional
Variance of the plotted ellipse. May specify std or interval instead.
If iterable, such as (1, 2**2, 3**2), then ellipses will be drawn
for all in the list.
std : float, or iterable float, optional
Standard deviation of the plotted ellipse. If specified, variance
is ignored, and interval must be `None`.
If iterable, such as (1, 2, 3), then ellipses will be drawn
for all in the list.
interval : float range [0,1), or iterable float, optional
Confidence interval for the plotted ellipse. For example, .68 (for
68%) gives roughly 1 standand deviation. If specified, variance
is ignored and `std` must be `None`
If iterable, such as (.68, .95), then ellipses will be drawn
for all in the list.
ellipse: (float, float, float)
Instead of a covariance, plots an ellipse described by (angle, width,
height), where angle is in radians, and the width and height are the
minor and major sub-axis radii. `cov` must be `None`.
title: str, optional
title for the plot
axis_equal: bool, default=True
Use the same scale for the x-axis and y-axis to ensure the aspect
ratio is correct.
show_semiaxis: bool, default=False
Draw the semiaxis of the ellipse
show_center: bool, default=True
Mark the center of the ellipse with a cross
facecolor, fc: color, default=None
If specified, fills the ellipse with the specified color. `fc` is an
allowed abbreviation
edgecolor, ec: color, default=None
If specified, overrides the default color sequence for the edge color
of the ellipse. `ec` is an allowed abbreviation
alpha: float range [0,1], default=1.
alpha value for the ellipse
xlim: float or (float,float), default=None
specifies the limits for the x-axis
ylim: float or (float,float), default=None
specifies the limits for the y-axis
ls: str, default='solid':
line style for the edge of the ellipse | f702:m20 |
def norm_cdf(x_range, mu, var=<NUM_LIT:1>, std=None): | if std is None:<EOL><INDENT>std = math.sqrt(var)<EOL><DEDENT>return abs(norm.cdf(x_range[<NUM_LIT:0>], loc=mu, scale=std) -<EOL>norm.cdf(x_range[<NUM_LIT:1>], loc=mu, scale=std))<EOL> | Computes the probability that a Gaussian distribution lies
within a range of values.
Parameters
----------
x_range : (float, float)
tuple of range to compute probability for
mu : float
mean of the Gaussian
var : float, optional
variance of the Gaussian. Ignored if `std` is provided
std : float, optional
standard deviation of the Gaussian. This overrides the `var` parameter
Returns
-------
probability : float
probability that Gaussian is within x_range. E.g. .1 means 10%. | f702:m21 |
def _to_cov(x, n): | if np.isscalar(x):<EOL><INDENT>if x < <NUM_LIT:0>:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>return np.eye(n) * x<EOL><DEDENT>x = np.atleast_2d(x)<EOL>try:<EOL><INDENT>np.linalg.cholesky(x)<EOL><DEDENT>except:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>return x<EOL> | If x is a scalar, returns a covariance matrix generated from it
as the identity matrix multiplied by x. The dimension will be nxn.
If x is already a 2D numpy array then it is returned unchanged.
Raises ValueError if not positive definite | f702:m22 |
def rand_student_t(df, mu=<NUM_LIT:0>, std=<NUM_LIT:1>): | x = random.gauss(<NUM_LIT:0>, std)<EOL>y = <NUM_LIT>*random.gammavariate(<NUM_LIT:0.5> * df, <NUM_LIT>)<EOL>return x / (math.sqrt(y / df)) + mu<EOL> | return random number distributed by student's t distribution with
`df` degrees of freedom with the specified mean and standard deviation. | f702:m23 |
def NESS(xs, est_xs, ps): | est_err = xs - est_xs<EOL>ness = []<EOL>for x, p in zip(est_err, ps):<EOL><INDENT>ness.append(np.dot(x.T, linalg.inv(p)).dot(x))<EOL><DEDENT>return ness<EOL> | Computes the normalized estimated error squared test on a sequence
of estimates. The estimates are optimal if the mean error is zero and
the covariance matches the Kalman filter's covariance. If this holds,
then the mean of the NESS should be equal to or less than the dimension
of x.
Examples
--------
.. code-block: Python
xs = ground_truth()
est_xs, ps, _, _ = kf.batch_filter(zs)
NESS(xs, est_xs, ps)
Parameters
----------
xs : list-like
sequence of true values for the state x
est_xs : list-like
sequence of estimates from an estimator (such as Kalman filter)
ps : list-like
sequence of covariance matrices from the estimator
Returns
-------
ness : list of floats
list of NESS computed for each estimate | f702:m24 |
def update(self, z): | if self.order == <NUM_LIT:0>:<EOL><INDENT>G = <NUM_LIT:1> - self.beta<EOL>self.x = self.x + dot(G, (z - self.x))<EOL><DEDENT>elif self.order == <NUM_LIT:1>:<EOL><INDENT>G = <NUM_LIT:1> - self.beta**<NUM_LIT:2><EOL>H = (<NUM_LIT:1>-self.beta)**<NUM_LIT:2><EOL>x = self.x[<NUM_LIT:0>]<EOL>dx = self.x[<NUM_LIT:1>]<EOL>dxdt = dot(dx, self.dt)<EOL>residual = z - (x+dxdt)<EOL>self.x[<NUM_LIT:0>] = x + dxdt + G*residual<EOL>self.x[<NUM_LIT:1>] = dx + (H / self.dt)*residual<EOL><DEDENT>else: <EOL><INDENT>G = <NUM_LIT:1>-self.beta**<NUM_LIT:3><EOL>H = <NUM_LIT>*(<NUM_LIT:1>+self.beta)*(<NUM_LIT:1>-self.beta)**<NUM_LIT:2><EOL>K = <NUM_LIT:0.5>*(<NUM_LIT:1>-self.beta)**<NUM_LIT:3><EOL>x = self.x[<NUM_LIT:0>]<EOL>dx = self.x[<NUM_LIT:1>]<EOL>ddx = self.x[<NUM_LIT:2>]<EOL>dxdt = dot(dx, self.dt)<EOL>T2 = self.dt**<NUM_LIT><EOL>residual = z - (x + dxdt + <NUM_LIT:0.5>*ddx*T2)<EOL>self.x[<NUM_LIT:0>] = x + dxdt + <NUM_LIT:0.5>*ddx*T2 + G*residual<EOL>self.x[<NUM_LIT:1>] = dx + ddx*self.dt + (H/self.dt)*residual<EOL>self.x[<NUM_LIT:2>] = ddx + (<NUM_LIT:2>*K/(self.dt**<NUM_LIT:2>))*residual<EOL><DEDENT> | update the filter with measurement z. z must be the same type
(or treatable as the same type) as self.x[0]. | f706:c0:m2 |
def kinematic_state_transition(order, dt): | if not(order >= <NUM_LIT:0> and int(order) == order):<EOL><INDENT>raise ValueError("<STR_LIT>")<EOL><DEDENT>if order == <NUM_LIT:0>:<EOL><INDENT>return np.array([[<NUM_LIT:1.>]])<EOL><DEDENT>if order == <NUM_LIT:1>:<EOL><INDENT>return np.array([[<NUM_LIT:1.>, dt],<EOL>[<NUM_LIT:0.>, <NUM_LIT:1.>]])<EOL><DEDENT>if order == <NUM_LIT:2>:<EOL><INDENT>return np.array([[<NUM_LIT:1.>, dt, <NUM_LIT:0.5>*dt*dt],<EOL>[<NUM_LIT:0.>, <NUM_LIT:1.>, dt],<EOL>[<NUM_LIT:0.>, <NUM_LIT:0.>, <NUM_LIT:1.>]])<EOL><DEDENT>N = order + <NUM_LIT:1><EOL>F = np.zeros((N, N))<EOL>for n in range(N):<EOL><INDENT>F[<NUM_LIT:0>, n] = float(dt**n) / math.factorial(n)<EOL><DEDENT>for j in range(<NUM_LIT:1>, N):<EOL><INDENT>F[j, j:] = F[<NUM_LIT:0>, <NUM_LIT:0>:-j]<EOL><DEDENT>return F<EOL> | create a state transition matrix of a given order for a given time
step `dt`. | f709:m0 |
def kinematic_kf(dim, order, dt=<NUM_LIT:1.>, dim_z=<NUM_LIT:1>, order_by_dim=True): | from filterpy.kalman import KalmanFilter<EOL>if dim < <NUM_LIT:1>:<EOL><INDENT>raise ValueError("<STR_LIT>")<EOL><DEDENT>if order < <NUM_LIT:0>:<EOL><INDENT>raise ValueError("<STR_LIT>")<EOL><DEDENT>if dim_z < <NUM_LIT:1>:<EOL><INDENT>raise ValueError("<STR_LIT>")<EOL><DEDENT>dim_x = order + <NUM_LIT:1><EOL>kf = KalmanFilter(dim_x=dim * dim_x, dim_z=dim)<EOL>F = kinematic_state_transition(order, dt)<EOL>if order_by_dim:<EOL><INDENT>diag = [F] * dim<EOL>kf.F = block_diag(*diag)<EOL><DEDENT>else:<EOL><INDENT>kf.F.fill(<NUM_LIT:0.0>)<EOL>for i, x in enumerate(F.ravel()):<EOL><INDENT>f = np.eye(dim) * x<EOL>ix, iy = (i // dim_x) * dim, (i % dim_x) * dim<EOL>kf.F[ix:ix+dim, iy:iy+dim] = f<EOL><DEDENT><DEDENT>if order_by_dim:<EOL><INDENT>for i in range(dim):<EOL><INDENT>kf.H[i, i * dim_x] = <NUM_LIT:1.><EOL><DEDENT><DEDENT>else:<EOL><INDENT>for i in range(dim):<EOL><INDENT>kf.H[i, i] = <NUM_LIT:1.><EOL><DEDENT><DEDENT>return kf<EOL> | Returns a KalmanFilter using newtonian kinematics of arbitrary order
for any number of dimensions. For example, a constant velocity filter
in 3D space would have order 1 dimension 3.
Examples
--------
A constant velocity filter in 3D space with delta time = .2 seconds
would be created with
>>> kf = kinematic_kf(dim=3, order=1, dt=.2)
>>> kf.F
>>> array([[1. , 0.2, 0. , 0. , 0. , 0. ],
[0. , 1. , 0. , 0. , 0. , 0. ],
[0. , 0. , 1. , 0.2, 0. , 0. ],
[0. , 0. , 0. , 1. , 0. , 0. ],
[0. , 0. , 0. , 0. , 1. , 0.2],
[0. , 0. , 0. , 0. , 0. , 1. ]])
which will set the state `x` to be interpreted as
[x, x', y, y', z, z'].T
If you set `order_by_dim` to False, then `x` is ordered as
[x y z x' y' z'].T
As another example, a 2D constant jerk is created with
>> kinematic_kf(2, 3)
Assumes that the measurement z is position in each dimension. If this is not
true you will have to alter the H matrix by hand.
P, Q, R are all set to the Identity matrix.
H is assigned assuming the measurement is position, one per dimension `dim`.
>>> kf = kinematic_kf(2, 1, dt=3.0)
>>> kf.F
array([[1., 3., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 3.],
[0., 0., 0., 1.]])
Parameters
----------
dim : int, >= 1
number of dimensions (2D space would be dim=2)
order : int, >= 0
order of the filter. 2 would be a const acceleration model with
a stat
dim_z : int, default 1
size of z vector *per* dimension `dim`. Normally should be 1
dt : float, default 1.0
Time step. Used to create the state transition matrix
order_by_dim : bool, default=True
Defines ordering of variables in the state vector. `True` orders
by keeping all derivatives of each dimensions)
[x x' x'' y y' y'']
whereas `False` interleaves the dimensions
[x y z x' y' z' x'' y'' z''] | f709:m1 |
def order_by_derivative(Q, dim, block_size): | N = dim * block_size<EOL>D = zeros((N, N))<EOL>Q = array(Q)<EOL>for i, x in enumerate(Q.ravel()):<EOL><INDENT>f = eye(block_size) * x<EOL>ix, iy = (i // dim) * block_size, (i % dim) * block_size<EOL>D[ix:ix+block_size, iy:iy+block_size] = f<EOL><DEDENT>return D<EOL> | Given a matrix Q, ordered assuming state space
[x y z x' y' z' x'' y'' z''...]
return a reordered matrix assuming an ordering of
[ x x' x'' y y' y'' z z' y'']
This works for any covariance matrix or state transition function
Parameters
----------
Q : np.array, square
The matrix to reorder
dim : int >= 1
number of independent state variables. 3 for x, y, z
block_size : int >= 0
Size of derivatives. Second derivative would be a block size of 3
(x, x', x'') | f710:m0 |
def Q_discrete_white_noise(dim, dt=<NUM_LIT:1.>, var=<NUM_LIT:1.>, block_size=<NUM_LIT:1>, order_by_dim=True): | if not (dim == <NUM_LIT:2> or dim == <NUM_LIT:3> or dim == <NUM_LIT:4>):<EOL><INDENT>raise ValueError("<STR_LIT>")<EOL><DEDENT>if dim == <NUM_LIT:2>:<EOL><INDENT>Q = [[<NUM_LIT>*dt**<NUM_LIT:4>, <NUM_LIT>*dt**<NUM_LIT:3>],<EOL>[ <NUM_LIT>*dt**<NUM_LIT:3>, dt**<NUM_LIT:2>]]<EOL><DEDENT>elif dim == <NUM_LIT:3>:<EOL><INDENT>Q = [[<NUM_LIT>*dt**<NUM_LIT:4>, <NUM_LIT>*dt**<NUM_LIT:3>, <NUM_LIT>*dt**<NUM_LIT:2>],<EOL>[ <NUM_LIT>*dt**<NUM_LIT:3>, dt**<NUM_LIT:2>, dt],<EOL>[ <NUM_LIT>*dt**<NUM_LIT:2>, dt, <NUM_LIT:1>]]<EOL><DEDENT>else:<EOL><INDENT>Q = [[(dt**<NUM_LIT:6>)/<NUM_LIT>, (dt**<NUM_LIT:5>)/<NUM_LIT:12>, (dt**<NUM_LIT:4>)/<NUM_LIT:6>, (dt**<NUM_LIT:3>)/<NUM_LIT:6>],<EOL>[(dt**<NUM_LIT:5>)/<NUM_LIT:12>, (dt**<NUM_LIT:4>)/<NUM_LIT:4>, (dt**<NUM_LIT:3>)/<NUM_LIT:2>, (dt**<NUM_LIT:2>)/<NUM_LIT:2>],<EOL>[(dt**<NUM_LIT:4>)/<NUM_LIT:6>, (dt**<NUM_LIT:3>)/<NUM_LIT:2>, dt**<NUM_LIT:2>, dt],<EOL>[(dt**<NUM_LIT:3>)/<NUM_LIT:6>, (dt**<NUM_LIT:2>)/<NUM_LIT:2> , dt, <NUM_LIT:1.>]]<EOL><DEDENT>if order_by_dim:<EOL><INDENT>return block_diag(*[Q]*block_size) * var<EOL><DEDENT>return order_by_derivative(array(Q), dim, block_size) * var<EOL> | Returns the Q matrix for the Discrete Constant White Noise
Model. dim may be either 2, 3, or 4 dt is the time step, and sigma
is the variance in the noise.
Q is computed as the G * G^T * variance, where G is the process noise per
time step. In other words, G = [[.5dt^2][dt]]^T for the constant velocity
model.
Parameters
-----------
dim : int (2, 3, or 4)
dimension for Q, where the final dimension is (dim x dim)
dt : float, default=1.0
time step in whatever units your filter is using for time. i.e. the
amount of time between innovations
var : float, default=1.0
variance in the noise
block_size : int >= 1
If your state variable contains more than one dimension, such as
a 3d constant velocity model [x x' y y' z z']^T, then Q must be
a block diagonal matrix.
order_by_dim : bool, default=True
Defines ordering of variables in the state vector. `True` orders
by keeping all derivatives of each dimensions)
[x x' x'' y y' y'']
whereas `False` interleaves the dimensions
[x y z x' y' z' x'' y'' z'']
Examples
--------
>>> # constant velocity model in a 3D world with a 10 Hz update rate
>>> Q_discrete_white_noise(2, dt=0.1, var=1., block_size=3)
array([[0.000025, 0.0005 , 0. , 0. , 0. , 0. ],
[0.0005 , 0.01 , 0. , 0. , 0. , 0. ],
[0. , 0. , 0.000025, 0.0005 , 0. , 0. ],
[0. , 0. , 0.0005 , 0.01 , 0. , 0. ],
[0. , 0. , 0. , 0. , 0.000025, 0.0005 ],
[0. , 0. , 0. , 0. , 0.0005 , 0.01 ]])
References
----------
Bar-Shalom. "Estimation with Applications To Tracking and Navigation".
John Wiley & Sons, 2001. Page 274. | f710:m1 |
def Q_continuous_white_noise(dim, dt=<NUM_LIT:1.>, spectral_density=<NUM_LIT:1.>,<EOL>block_size=<NUM_LIT:1>, order_by_dim=True): | if not (dim == <NUM_LIT:2> or dim == <NUM_LIT:3> or dim == <NUM_LIT:4>):<EOL><INDENT>raise ValueError("<STR_LIT>")<EOL><DEDENT>if dim == <NUM_LIT:2>:<EOL><INDENT>Q = [[(dt**<NUM_LIT:3>)/<NUM_LIT>, (dt**<NUM_LIT:2>)/<NUM_LIT>],<EOL>[(dt**<NUM_LIT:2>)/<NUM_LIT>, dt]]<EOL><DEDENT>elif dim == <NUM_LIT:3>:<EOL><INDENT>Q = [[(dt**<NUM_LIT:5>)/<NUM_LIT>, (dt**<NUM_LIT:4>)/<NUM_LIT>, (dt**<NUM_LIT:3>)/<NUM_LIT>],<EOL>[ (dt**<NUM_LIT:4>)/<NUM_LIT>, (dt**<NUM_LIT:3>)/<NUM_LIT>, (dt**<NUM_LIT:2>)/<NUM_LIT>],<EOL>[ (dt**<NUM_LIT:3>)/<NUM_LIT>, (dt**<NUM_LIT:2>)/<NUM_LIT>, dt]]<EOL><DEDENT>else:<EOL><INDENT>Q = [[(dt**<NUM_LIT:7>)/<NUM_LIT>, (dt**<NUM_LIT:6>)/<NUM_LIT>, (dt**<NUM_LIT:5>)/<NUM_LIT>, (dt**<NUM_LIT:4>)/<NUM_LIT>],<EOL>[(dt**<NUM_LIT:6>)/<NUM_LIT>, (dt**<NUM_LIT:5>)/<NUM_LIT>, (dt**<NUM_LIT:4>)/<NUM_LIT>, (dt**<NUM_LIT:3>)/<NUM_LIT>],<EOL>[(dt**<NUM_LIT:5>)/<NUM_LIT>, (dt**<NUM_LIT:4>)/<NUM_LIT>, (dt**<NUM_LIT:3>)/<NUM_LIT>, (dt**<NUM_LIT:2>)/<NUM_LIT>],<EOL>[(dt**<NUM_LIT:4>)/<NUM_LIT>, (dt**<NUM_LIT:3>)/<NUM_LIT>, (dt**<NUM_LIT:2>/<NUM_LIT>), dt]]<EOL><DEDENT>if order_by_dim:<EOL><INDENT>return block_diag(*[Q]*block_size) * spectral_density<EOL><DEDENT>return order_by_derivative(array(Q), dim, block_size) * spectral_density<EOL> | Returns the Q matrix for the Discretized Continuous White Noise
Model. dim may be either 2, 3, 4, dt is the time step, and sigma is the
variance in the noise.
Parameters
----------
dim : int (2 or 3 or 4)
dimension for Q, where the final dimension is (dim x dim)
2 is constant velocity, 3 is constant acceleration, 4 is
constant jerk
dt : float, default=1.0
time step in whatever units your filter is using for time. i.e. the
amount of time between innovations
spectral_density : float, default=1.0
spectral density for the continuous process
block_size : int >= 1
If your state variable contains more than one dimension, such as
a 3d constant velocity model [x x' y y' z z']^T, then Q must be
a block diagonal matrix.
order_by_dim : bool, default=True
Defines ordering of variables in the state vector. `True` orders
by keeping all derivatives of each dimensions)
[x x' x'' y y' y'']
whereas `False` interleaves the dimensions
[x y z x' y' z' x'' y'' z'']
Examples
--------
>>> # constant velocity model in a 3D world with a 10 Hz update rate
>>> Q_continuous_white_noise(2, dt=0.1, block_size=3)
array([[0.00033333, 0.005 , 0. , 0. , 0. , 0. ],
[0.005 , 0.1 , 0. , 0. , 0. , 0. ],
[0. , 0. , 0.00033333, 0.005 , 0. , 0. ],
[0. , 0. , 0.005 , 0.1 , 0. , 0. ],
[0. , 0. , 0. , 0. , 0.00033333, 0.005 ],
[0. , 0. , 0. , 0. , 0.005 , 0.1 ]]) | f710:m2 |
def van_loan_discretization(F, G, dt): | n = F.shape[<NUM_LIT:0>]<EOL>A = zeros((<NUM_LIT:2>*n, <NUM_LIT:2>*n))<EOL>A[<NUM_LIT:0>:n, <NUM_LIT:0>:n] = -F.dot(dt)<EOL>A[<NUM_LIT:0>:n, n:<NUM_LIT:2>*n] = G.dot(G.T).dot(dt)<EOL>A[n:<NUM_LIT:2>*n, n:<NUM_LIT:2>*n] = F.T.dot(dt)<EOL>B=expm(A)<EOL>sigma = B[n:<NUM_LIT:2>*n, n:<NUM_LIT:2>*n].T<EOL>Q = sigma.dot(B[<NUM_LIT:0>:n, n:<NUM_LIT:2>*n])<EOL>return (sigma, Q)<EOL> | Discretizes a linear differential equation which includes white noise
according to the method of C. F. van Loan [1]. Given the continuous
model
x' = Fx + Gu
where u is the unity white noise, we compute and return the sigma and Q_k
that discretizes that equation.
Examples
--------
Given y'' + y = 2u(t), we create the continuous state model of
x' = [ 0 1] * x + [0]*u(t)
[-1 0] [2]
and a time step of 0.1:
>>> F = np.array([[0,1],[-1,0]], dtype=float)
>>> G = np.array([[0.],[2.]])
>>> phi, Q = van_loan_discretization(F, G, 0.1)
>>> phi
array([[ 0.99500417, 0.09983342],
[-0.09983342, 0.99500417]])
>>> Q
array([[ 0.00133067, 0.01993342],
[ 0.01993342, 0.39866933]])
(example taken from Brown[2])
References
----------
[1] C. F. van Loan. "Computing Integrals Involving the Matrix Exponential."
IEEE Trans. Automomatic Control, AC-23 (3): 395-404 (June 1978)
[2] Robert Grover Brown. "Introduction to Random Signals and Applied
Kalman Filtering." Forth edition. John Wiley & Sons. p. 126-7. (2012) | f710:m3 |
def runge_kutta4(y, x, dx, f): | k1 = dx * f(y, x)<EOL>k2 = dx * f(y + <NUM_LIT:0.5>*k1, x + <NUM_LIT:0.5>*dx)<EOL>k3 = dx * f(y + <NUM_LIT:0.5>*k2, x + <NUM_LIT:0.5>*dx)<EOL>k4 = dx * f(y + k3, x + dx)<EOL>return y + (k1 + <NUM_LIT:2>*k2 + <NUM_LIT:2>*k3 + k4) / <NUM_LIT><EOL> | computes 4th order Runge-Kutta for dy/dx.
Parameters
----------
y : scalar
Initial/current value for y
x : scalar
Initial/current value for x
dx : scalar
difference in x (e.g. the time step)
f : ufunc(y,x)
Callable function (y, x) that you supply to compute dy/dx for
the specified values. | f712:m0 |
def pretty_str(label, arr): | def is_col(a):<EOL><INDENT>"""<STR_LIT>"""<EOL>try:<EOL><INDENT>return a.shape[<NUM_LIT:0>] > <NUM_LIT:1> and a.shape[<NUM_LIT:1>] == <NUM_LIT:1><EOL><DEDENT>except (AttributeError, IndexError):<EOL><INDENT>return False<EOL><DEDENT><DEDENT>if label is None:<EOL><INDENT>label = '<STR_LIT>'<EOL><DEDENT>if label:<EOL><INDENT>label += '<STR_LIT>'<EOL><DEDENT>if is_col(arr):<EOL><INDENT>return label + str(arr.T).replace('<STR_LIT:\n>', '<STR_LIT>') + '<STR_LIT>'<EOL><DEDENT>rows = str(arr).split('<STR_LIT:\n>')<EOL>if not rows:<EOL><INDENT>return '<STR_LIT>'<EOL><DEDENT>s = label + rows[<NUM_LIT:0>]<EOL>pad = '<STR_LIT:U+0020>' * len(label)<EOL>for line in rows[<NUM_LIT:1>:]:<EOL><INDENT>s = s + '<STR_LIT:\n>' + pad + line<EOL><DEDENT>return s<EOL> | Generates a pretty printed NumPy array with an assignment. Optionally
transposes column vectors so they are drawn on one line. Strictly speaking
arr can be any time convertible by `str(arr)`, but the output may not
be what you want if the type of the variable is not a scalar or an
ndarray.
Examples
--------
>>> pprint('cov', np.array([[4., .1], [.1, 5]]))
cov = [[4. 0.1]
[0.1 5. ]]
>>> print(pretty_str('x', np.array([[1], [2], [3]])))
x = [[1 2 3]].T | f712:m1 |
def pprint(label, arr, **kwargs): | print(pretty_str(label, arr), **kwargs)<EOL> | pretty prints an NumPy array using the function pretty_str. Keyword
arguments are passed to the print() function.
See Also
--------
pretty_str
Examples
--------
>>> pprint('cov', np.array([[4., .1], [.1, 5]]))
cov = [[4. 0.1]
[0.1 5. ]] | f712:m2 |
def reshape_z(z, dim_z, ndim): | z = np.atleast_2d(z)<EOL>if z.shape[<NUM_LIT:1>] == dim_z:<EOL><INDENT>z = z.T<EOL><DEDENT>if z.shape != (dim_z, <NUM_LIT:1>):<EOL><INDENT>raise ValueError('<STR_LIT>'.format(dim_z))<EOL><DEDENT>if ndim == <NUM_LIT:1>:<EOL><INDENT>z = z[:, <NUM_LIT:0>]<EOL><DEDENT>if ndim == <NUM_LIT:0>:<EOL><INDENT>z = z[<NUM_LIT:0>, <NUM_LIT:0>]<EOL><DEDENT>return z<EOL> | ensure z is a (dim_z, 1) shaped vector | f712:m3 |
def inv_diagonal(S): | S = np.asarray(S)<EOL>if S.ndim != <NUM_LIT:2> or S.shape[<NUM_LIT:0>] != S.shape[<NUM_LIT:1>]:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT>si = np.zeros(S.shape)<EOL>for i in range(len(S)):<EOL><INDENT>si[i, i] = <NUM_LIT:1.> / S[i, i]<EOL><DEDENT>return si<EOL> | Computes the inverse of a diagonal NxN np.array S. In general this will
be much faster than calling np.linalg.inv().
However, does NOT check if the off diagonal elements are non-zero. So long
as S is truly diagonal, the output is identical to np.linalg.inv().
Parameters
----------
S : np.array
diagonal NxN array to take inverse of
Returns
-------
S_inv : np.array
inverse of S
Examples
--------
This is meant to be used as a replacement inverse function for
the KalmanFilter class when you know the system covariance S is
diagonal. It just makes the filter run faster, there is
>>> kf = KalmanFilter(dim_x=3, dim_z=1)
>>> kf.inv = inv_diagonal # S is 1x1, so safely diagonal | f712:m4 |
def outer_product_sum(A, B=None): | if B is None:<EOL><INDENT>B = A<EOL><DEDENT>outer = np.einsum('<STR_LIT>', A, B)<EOL>return np.sum(outer, axis=<NUM_LIT:0>)<EOL> | Computes the sum of the outer products of the rows in A and B
P = \Sum {A[i] B[i].T} for i in 0..N
Notionally:
P = 0
for y in A:
P += np.outer(y, y)
This is a standard computation for sigma points used in the UKF, ensemble
Kalman filter, etc., where A would be the residual of the sigma points
and the filter's state or measurement.
The computation is vectorized, so it is much faster than the for loop
for large A.
Parameters
----------
A : np.array, shape (M, N)
rows of N-vectors to have the outer product summed
B : np.array, shape (M, N)
rows of N-vectors to have the outer product summed
If it is `None`, it is set to A.
Returns
-------
P : np.array, shape(N, N)
sum of the outer product of the rows of A and B
Examples
--------
Here sigmas is of shape (M, N), and x is of shape (N). The two sets of
code compute the same thing.
>>> P = outer_product_sum(sigmas - x)
>>>
>>> P = 0
>>> for s in sigmas:
>>> y = s - x
>>> P += np.outer(y, y) | f712:m5 |
def __init__(self, kf, save_current=False,<EOL>skip_private=False,<EOL>skip_callable=False,<EOL>ignore=()): | <EOL>self._kf = kf<EOL>self._DL = defaultdict(list)<EOL>self._skip_private = skip_private<EOL>self._skip_callable = skip_callable<EOL>self._ignore = ignore<EOL>self._len = <NUM_LIT:0><EOL>self.properties = inspect.getmembers(<EOL>type(kf), lambda o: isinstance(o, property))<EOL>if save_current:<EOL><INDENT>self.save()<EOL><DEDENT> | Construct the save object, optionally saving the current
state of the filter | f712:c0:m0 |
def save(self): | kf = self._kf<EOL>for prop in self.properties:<EOL><INDENT>self._DL[prop[<NUM_LIT:0>]].append(getattr(kf, prop[<NUM_LIT:0>]))<EOL><DEDENT>v = copy.deepcopy(kf.__dict__)<EOL>if self._skip_private:<EOL><INDENT>for key in list(v.keys()):<EOL><INDENT>if key.startswith('<STR_LIT:_>'):<EOL><INDENT>print('<STR_LIT>', key)<EOL>del v[key]<EOL><DEDENT><DEDENT><DEDENT>if self._skip_callable:<EOL><INDENT>for key in list(v.keys()):<EOL><INDENT>if callable(v[key]):<EOL><INDENT>del v[key]<EOL><DEDENT><DEDENT><DEDENT>for ig in self._ignore:<EOL><INDENT>if ig in v:<EOL><INDENT>del v[ig]<EOL><DEDENT><DEDENT>for key in list(v.keys()):<EOL><INDENT>self._DL[key].append(v[key])<EOL><DEDENT>self.__dict__.update(self._DL)<EOL>self._len += <NUM_LIT:1><EOL> | save the current state of the Kalman filter | f712:c0:m1 |
@property<EOL><INDENT>def keys(self):<DEDENT> | return list(self._DL.keys())<EOL> | list of all keys | f712:c0:m4 |
def to_array(self): | for key in self.keys:<EOL><INDENT>try:<EOL><INDENT>self.__dict__[key] = np.array(self._DL[key])<EOL><DEDENT>except:<EOL><INDENT>self.__dict__.update(self._DL)<EOL>raise ValueError(<EOL>"<STR_LIT>".format(key))<EOL><DEDENT><DEDENT> | Convert all saved attributes from a list to np.array.
This may or may not work - every saved attribute must have the
same shape for every instance. i.e., if `K` changes shape due to `z`
changing shape then the call will raise an exception.
This can also happen if the default initialization in __init__ gives
the variable a different shape then it becomes after a predict/update
cycle. | f712:c0:m5 |
def flatten(self): | for key in self.keys:<EOL><INDENT>try:<EOL><INDENT>arr = self.__dict__[key]<EOL>shape = arr.shape<EOL>if shape[<NUM_LIT:2>] == <NUM_LIT:1>:<EOL><INDENT>self.__dict__[key] = arr.reshape(shape[<NUM_LIT:0>], shape[<NUM_LIT:1>])<EOL><DEDENT><DEDENT>except:<EOL><INDENT>pass<EOL><DEDENT><DEDENT> | Flattens any np.array of column vectors into 1D arrays. Basically,
this makes data readable for humans if you are just inspecting via
the REPL. For example, if you have saved a KalmanFilter object with 89
epochs, self.x will be shape (89, 9, 1) (for example). After flatten
is run, self.x.shape == (89, 9), which displays nicely from the REPL.
There is no way to unflatten, so it's a one way trip. | f712:c0:m6 |
def __init__(self,dsn,dbtype='<STR_LIT>',debug=False): | self.hdr = "<STR_LIT>"<EOL>self.debug = debug<EOL>self.dbtype = dbtype<EOL>self.noclose = False<EOL>self.dsn = dsn<EOL>self.conn = None<EOL>try:<EOL><INDENT>if dbtype == '<STR_LIT>':<EOL><INDENT>import sqlite3 as dbmodule<EOL>self.conn = dbmodule.connect(dsn)<EOL>self.conn.row_factory = dbmodule.Row<EOL><DEDENT>elif dbtype == '<STR_LIT>':<EOL><INDENT>import psycopg2 as dbmodule<EOL>import psycopg2.extras<EOL>self.conn = dbmodule.connect(dsn, cursor_factory=psycopg2.extras.DictCursor)<EOL><DEDENT>else:<EOL><INDENT>print("<STR_LIT>" % dbtype);<EOL>self.noclose = True<EOL>sys.exit()<EOL><DEDENT><DEDENT>except:<EOL><INDENT>print("<STR_LIT>");<EOL>sys.exit()<EOL><DEDENT>self.dbmodule = dbmodule<EOL>self.debug = debug<EOL>self.dsn = re.sub( r"<STR_LIT>", "<STR_LIT>", self.dsn)<EOL>if dbtype == '<STR_LIT>':<EOL><INDENT>try:<EOL><INDENT>cur = self.conn.cursor()<EOL>cur.execute("<STR_LIT>")<EOL>cur.close()<EOL><DEDENT>except self.dbmodule.Error as e:<EOL><INDENT>print("<STR_LIT>")<EOL><DEDENT><DEDENT>self.create_tables()<EOL>return<EOL> | accepted options for dbtype: sqlite3 and pg (for postgres) | f717:c0:m0 |
def create_tables(self): | cdir = os.path.dirname( os.path.realpath(__file__) )<EOL>schema = os.path.join(cdir,"<STR_LIT:data>","<STR_LIT>")<EOL>if self.debug:<EOL><INDENT>print(self.hdr,"<STR_LIT>",schema)<EOL><DEDENT>self.populate(schema)<EOL>schema = os.path.join(cdir,"<STR_LIT:data>","<STR_LIT>")<EOL>if self.debug:<EOL><INDENT>print(self.hdr,"<STR_LIT>",schema)<EOL><DEDENT>self.populate(schema)<EOL>schema = os.path.join(cdir,"<STR_LIT:data>","<STR_LIT>")<EOL>if self.debug:<EOL><INDENT>print(self.hdr,"<STR_LIT>",schema)<EOL><DEDENT>self.populate(schema)<EOL>schema = os.path.join(cdir,"<STR_LIT:data>","<STR_LIT>")<EOL>if self.debug:<EOL><INDENT>print(self.hdr,"<STR_LIT>",schema)<EOL><DEDENT>self.populate(schema)<EOL>return<EOL> | create tables in database (if they don't already exist) | f717:c0:m1 |
def assertFuncValue(self, func, param, expected, funcname='<STR_LIT>', extra_msg='<STR_LIT>', **kwargs): | value = func(param)<EOL>if extra_msg:<EOL><INDENT>extra_msg = '<STR_LIT:U+0020>' + extra_msg<EOL><DEDENT>self.assertAlmostEqual(<EOL>value, expected,<EOL>msg='<STR_LIT>'.format(funcname, param, expected, value, extra_msg),<EOL>**kwargs)<EOL> | Asserts that func(param) == expected.
Optionally receives the function name, used in the error message | f722:c0:m0 |
def getLine(x1, y1, x2, y2): | x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)<EOL>points = []<EOL>issteep = abs(y2-y1) > abs(x2-x1)<EOL>if issteep:<EOL><INDENT>x1, y1 = y1, x1<EOL>x2, y2 = y2, x2<EOL><DEDENT>rev = False<EOL>if x1 > x2:<EOL><INDENT>x1, x2 = x2, x1<EOL>y1, y2 = y2, y1<EOL>rev = True<EOL><DEDENT>deltax = x2 - x1<EOL>deltay = abs(y2-y1)<EOL>error = int(deltax / <NUM_LIT:2>)<EOL>y = y1<EOL>ystep = None<EOL>if y1 < y2:<EOL><INDENT>ystep = <NUM_LIT:1><EOL><DEDENT>else:<EOL><INDENT>ystep = -<NUM_LIT:1><EOL><DEDENT>for x in range(x1, x2 + <NUM_LIT:1>):<EOL><INDENT>if issteep:<EOL><INDENT>points.append((y, x))<EOL><DEDENT>else:<EOL><INDENT>points.append((x, y))<EOL><DEDENT>error -= deltay<EOL>if error < <NUM_LIT:0>:<EOL><INDENT>y += ystep<EOL>error += deltax<EOL><DEDENT><DEDENT>if rev:<EOL><INDENT>points.reverse()<EOL><DEDENT>return points<EOL> | Returns a list of (x, y) tuples of every point on a line between
(x1, y1) and (x2, y2). The x and y values inside the tuple are integers.
Line generated with the Bresenham algorithm.
Args:
x1 (int, float): The x coordinate of the line's start point.
y1 (int, float): The y coordinate of the line's start point.
x2 (int, float): The x coordinate of the line's end point.
y2 (int, float): The y coordiante of the line's end point.
Returns:
[(x1, y1), (x2, y2), (x3, y3), ...]
Example:
>>> getLine(0, 0, 6, 6)
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]
>>> getLine(0, 0, 3, 6)
[(0, 0), (0, 1), (1, 2), (1, 3), (2, 4), (2, 5), (3, 6)]
>>> getLine(3, 3, -3, -3)
[(3, 3), (2, 2), (1, 1), (0, 0), (-1, -1), (-2, -2), (-3, -3)] | f725:m0 |
def getPointOnLine(x1, y1, x2, y2, n): | x = ((x2 - x1) * n) + x1<EOL>y = ((y2 - y1) * n) + y1<EOL>return (x, y)<EOL> | Returns the (x, y) tuple of the point that has progressed a proportion
n along the line defined by the two x, y coordinates.
Args:
x1 (int, float): The x coordinate of the line's start point.
y1 (int, float): The y coordinate of the line's start point.
x2 (int, float): The x coordinate of the line's end point.
y2 (int, float): The y coordiante of the line's end point.
n (float): Progress along the line. 0.0 is the start point, 1.0 is the end point. 0.5 is the midpoint. This value can be less than 0.0 or greater than 1.0.
Returns:
Tuple of floats for the x, y coordinate of the point.
Example:
>>> getPointOnLine(0, 0, 6, 6, 0)
(0, 0)
>>> getPointOnLine(0, 0, 6, 6, 1)
(6, 6)
>>> getPointOnLine(0, 0, 6, 6, 0.5)
(3.0, 3.0)
>>> getPointOnLine(0, 0, 6, 6, 0.75)
(4.5, 4.5)
>>> getPointOnLine(3, 3, -3, -3, 0.5)
(0.0, 0.0)
>>> getPointOnLine(3, 3, -3, -3, 0.25)
(1.5, 1.5)
>>> getPointOnLine(3, 3, -3, -3, 0.75)
(-1.5, -1.5) | f725:m1 |
def _checkRange(n): | if not <NUM_LIT:0.0> <= n <= <NUM_LIT:1.0>:<EOL><INDENT>raise ValueError('<STR_LIT>')<EOL><DEDENT> | Raises ValueError if the argument is not between 0.0 and 1.0. | f725:m2 |
def linear(n): | _checkRange(n)<EOL>return n<EOL> | A linear tween function
Example:
>>> linear(0.0)
0.0
>>> linear(0.2)
0.2
>>> linear(0.4)
0.4
>>> linear(0.6)
0.6
>>> linear(0.8)
0.8
>>> linear(1.0)
1.0 | f725:m3 |
def easeInQuad(n): | _checkRange(n)<EOL>return n**<NUM_LIT:2><EOL> | A quadratic tween function that begins slow and then accelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m4 |
def easeOutQuad(n): | _checkRange(n)<EOL>return -n * (n-<NUM_LIT:2>)<EOL> | A quadratic tween function that begins fast and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m5 |
def easeInOutQuad(n): | _checkRange(n)<EOL>if n < <NUM_LIT:0.5>:<EOL><INDENT>return <NUM_LIT:2> * n**<NUM_LIT:2><EOL><DEDENT>else:<EOL><INDENT>n = n * <NUM_LIT:2> - <NUM_LIT:1><EOL>return -<NUM_LIT:0.5> * (n*(n-<NUM_LIT:2>) - <NUM_LIT:1>)<EOL><DEDENT> | A quadratic tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m6 |
def easeInCubic(n): | _checkRange(n)<EOL>return n**<NUM_LIT:3><EOL> | A cubic tween function that begins slow and then accelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m7 |
def easeOutCubic(n): | _checkRange(n)<EOL>n = n - <NUM_LIT:1><EOL>return n**<NUM_LIT:3> + <NUM_LIT:1><EOL> | A cubic tween function that begins fast and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m8 |
def easeInOutCubic(n): | _checkRange(n)<EOL>n = <NUM_LIT:2> * n<EOL>if n < <NUM_LIT:1>:<EOL><INDENT>return <NUM_LIT:0.5> * n**<NUM_LIT:3><EOL><DEDENT>else:<EOL><INDENT>n = n - <NUM_LIT:2><EOL>return <NUM_LIT:0.5> * (n**<NUM_LIT:3> + <NUM_LIT:2>)<EOL><DEDENT> | A cubic tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m9 |
def easeInQuart(n): | _checkRange(n)<EOL>return n**<NUM_LIT:4><EOL> | A quartic tween function that begins slow and then accelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m10 |
def easeOutQuart(n): | _checkRange(n)<EOL>n = n - <NUM_LIT:1><EOL>return -(n**<NUM_LIT:4> - <NUM_LIT:1>)<EOL> | A quartic tween function that begins fast and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m11 |
def easeInOutQuart(n): | _checkRange(n)<EOL>n = <NUM_LIT:2> * n<EOL>if n < <NUM_LIT:1>:<EOL><INDENT>return <NUM_LIT:0.5> * n**<NUM_LIT:4><EOL><DEDENT>else:<EOL><INDENT>n = n - <NUM_LIT:2><EOL>return -<NUM_LIT:0.5> * (n**<NUM_LIT:4> - <NUM_LIT:2>)<EOL><DEDENT> | A quartic tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m12 |
def easeInQuint(n): | _checkRange(n)<EOL>return n**<NUM_LIT:5><EOL> | A quintic tween function that begins slow and then accelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m13 |
def easeOutQuint(n): | _checkRange(n)<EOL>n = n - <NUM_LIT:1><EOL>return n**<NUM_LIT:5> + <NUM_LIT:1><EOL> | A quintic tween function that begins fast and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m14 |
def easeInOutQuint(n): | _checkRange(n)<EOL>n = <NUM_LIT:2> * n<EOL>if n < <NUM_LIT:1>:<EOL><INDENT>return <NUM_LIT:0.5> * n**<NUM_LIT:5><EOL><DEDENT>else:<EOL><INDENT>n = n - <NUM_LIT:2><EOL>return <NUM_LIT:0.5> * (n**<NUM_LIT:5> + <NUM_LIT:2>)<EOL><DEDENT> | A quintic tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m15 |
def easeInSine(n): | _checkRange(n)<EOL>return -<NUM_LIT:1> * math.cos(n * math.pi / <NUM_LIT:2>) + <NUM_LIT:1><EOL> | A sinusoidal tween function that begins slow and then accelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m16 |
def easeOutSine(n): | _checkRange(n)<EOL>return math.sin(n * math.pi / <NUM_LIT:2>)<EOL> | A sinusoidal tween function that begins fast and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m17 |
def easeInOutSine(n): | _checkRange(n)<EOL>return -<NUM_LIT:0.5> * (math.cos(math.pi * n) - <NUM_LIT:1>)<EOL> | A sinusoidal tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m18 |
def easeInExpo(n): | _checkRange(n)<EOL>if n == <NUM_LIT:0>:<EOL><INDENT>return <NUM_LIT:0><EOL><DEDENT>else:<EOL><INDENT>return <NUM_LIT:2>**(<NUM_LIT:10> * (n - <NUM_LIT:1>))<EOL><DEDENT> | An exponential tween function that begins slow and then accelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m19 |
def easeOutExpo(n): | _checkRange(n)<EOL>if n == <NUM_LIT:1>:<EOL><INDENT>return <NUM_LIT:1><EOL><DEDENT>else:<EOL><INDENT>return -(<NUM_LIT:2> ** (-<NUM_LIT:10> * n)) + <NUM_LIT:1><EOL><DEDENT> | An exponential tween function that begins fast and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m20 |
def easeInOutExpo(n): | _checkRange(n)<EOL>if n == <NUM_LIT:0>:<EOL><INDENT>return <NUM_LIT:0><EOL><DEDENT>elif n == <NUM_LIT:1>:<EOL><INDENT>return <NUM_LIT:1><EOL><DEDENT>else:<EOL><INDENT>n = n * <NUM_LIT:2><EOL>if n < <NUM_LIT:1>:<EOL><INDENT>return <NUM_LIT:0.5> * <NUM_LIT:2>**(<NUM_LIT:10> * (n - <NUM_LIT:1>))<EOL><DEDENT>else:<EOL><INDENT>n -= <NUM_LIT:1><EOL>return <NUM_LIT:0.5> * (-<NUM_LIT:1> * (<NUM_LIT:2> ** (-<NUM_LIT:10> * n)) + <NUM_LIT:2>)<EOL><DEDENT><DEDENT> | An exponential tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m21 |
def easeInCirc(n): | _checkRange(n)<EOL>return -<NUM_LIT:1> * (math.sqrt(<NUM_LIT:1> - n * n) - <NUM_LIT:1>)<EOL> | A circular tween function that begins slow and then accelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m22 |
def easeOutCirc(n): | _checkRange(n)<EOL>n -= <NUM_LIT:1><EOL>return math.sqrt(<NUM_LIT:1> - (n * n))<EOL> | A circular tween function that begins fast and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m23 |
def easeInOutCirc(n): | _checkRange(n)<EOL>n = n * <NUM_LIT:2><EOL>if n < <NUM_LIT:1>:<EOL><INDENT>return -<NUM_LIT:0.5> * (math.sqrt(<NUM_LIT:1> - n**<NUM_LIT:2>) - <NUM_LIT:1>)<EOL><DEDENT>else:<EOL><INDENT>n = n - <NUM_LIT:2><EOL>return <NUM_LIT:0.5> * (math.sqrt(<NUM_LIT:1> - n**<NUM_LIT:2>) + <NUM_LIT:1>)<EOL><DEDENT> | A circular tween function that accelerates, reaches the midpoint, and then decelerates.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m24 |
def easeInElastic(n, amplitude=<NUM_LIT:1>, period=<NUM_LIT>): | _checkRange(n)<EOL>return <NUM_LIT:1> - easeOutElastic(<NUM_LIT:1>-n, amplitude=amplitude, period=period)<EOL> | An elastic tween function that begins with an increasing wobble and then snaps into the destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m25 |
def easeOutElastic(n, amplitude=<NUM_LIT:1>, period=<NUM_LIT>): | _checkRange(n)<EOL>if amplitude < <NUM_LIT:1>:<EOL><INDENT>amplitude = <NUM_LIT:1><EOL>s = period / <NUM_LIT:4><EOL><DEDENT>else:<EOL><INDENT>s = period / (<NUM_LIT:2> * math.pi) * math.asin(<NUM_LIT:1> / amplitude)<EOL><DEDENT>return amplitude * <NUM_LIT:2>**(-<NUM_LIT:10>*n) * math.sin((n-s)*(<NUM_LIT:2>*math.pi / period)) + <NUM_LIT:1><EOL> | An elastic tween function that overshoots the destination and then "rubber bands" into the destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m26 |
def easeInOutElastic(n, amplitude=<NUM_LIT:1>, period=<NUM_LIT:0.5>): | _checkRange(n)<EOL>n *= <NUM_LIT:2><EOL>if n < <NUM_LIT:1>:<EOL><INDENT>return easeInElastic(n, amplitude=amplitude, period=period) / <NUM_LIT:2><EOL><DEDENT>else:<EOL><INDENT>return easeOutElastic(n-<NUM_LIT:1>, amplitude=amplitude, period=period) / <NUM_LIT:2> + <NUM_LIT:0.5><EOL><DEDENT> | An elastic tween function wobbles towards the midpoint.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m27 |
def easeInBack(n, s=<NUM_LIT>): | _checkRange(n)<EOL>return n * n * ((s + <NUM_LIT:1>) * n - s)<EOL> | A tween function that backs up first at the start and then goes to the destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m28 |
def easeOutBack(n, s=<NUM_LIT>): | _checkRange(n)<EOL>n = n - <NUM_LIT:1><EOL>return n * n * ((s + <NUM_LIT:1>) * n + s) + <NUM_LIT:1><EOL> | A tween function that overshoots the destination a little and then backs into the destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m29 |
def easeInOutBack(n, s=<NUM_LIT>): | _checkRange(n)<EOL>n = n * <NUM_LIT:2><EOL>if n < <NUM_LIT:1>:<EOL><INDENT>s *= <NUM_LIT><EOL>return <NUM_LIT:0.5> * (n * n * ((s + <NUM_LIT:1>) * n - s))<EOL><DEDENT>else:<EOL><INDENT>n -= <NUM_LIT:2><EOL>s *= <NUM_LIT><EOL>return <NUM_LIT:0.5> * (n * n * ((s + <NUM_LIT:1>) * n + s) + <NUM_LIT:2>)<EOL><DEDENT> | A "back-in" tween function that overshoots both the start and destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m30 |
def easeInBounce(n): | _checkRange(n)<EOL>return <NUM_LIT:1> - easeOutBounce(<NUM_LIT:1> - n)<EOL> | A bouncing tween function that begins bouncing and then jumps to the destination.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m31 |
def easeOutBounce(n): | _checkRange(n)<EOL>if n < (<NUM_LIT:1>/<NUM_LIT>):<EOL><INDENT>return <NUM_LIT> * n * n<EOL><DEDENT>elif n < (<NUM_LIT:2>/<NUM_LIT>):<EOL><INDENT>n -= (<NUM_LIT>/<NUM_LIT>)<EOL>return <NUM_LIT> * n * n + <NUM_LIT><EOL><DEDENT>elif n < (<NUM_LIT>/<NUM_LIT>):<EOL><INDENT>n -= (<NUM_LIT>/<NUM_LIT>)<EOL>return <NUM_LIT> * n * n + <NUM_LIT><EOL><DEDENT>else:<EOL><INDENT>n -= (<NUM_LIT>/<NUM_LIT>)<EOL>return <NUM_LIT> * n * n + <NUM_LIT><EOL><DEDENT> | A bouncing tween function that hits the destination and then bounces to rest.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m32 |
def easeInOutBounce(n): | _checkRange(n)<EOL>if n < <NUM_LIT:0.5>:<EOL><INDENT>return easeInBounce(n * <NUM_LIT:2>) * <NUM_LIT:0.5><EOL><DEDENT>else:<EOL><INDENT>return easeOutBounce(n * <NUM_LIT:2> - <NUM_LIT:1>) * <NUM_LIT:0.5> + <NUM_LIT:0.5><EOL><DEDENT> | A bouncing tween function that bounces at the start and end.
Args:
n (float): The time progress, starting at 0.0 and ending at 1.0.
Returns:
(float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). | f725:m33 |
def check_in(request, action): | if not request:<EOL><INDENT>req_str = "<STR_LIT>"<EOL>for idx, val in enumerate(actions[action]):<EOL><INDENT>req_str += "<STR_LIT:\n>" + val<EOL><DEDENT>erstr = "<STR_LIT>""<STR_LIT>" % req_str<EOL>raise ValueError(erstr)<EOL><DEDENT>required_fields = actions[action]<EOL>missing = []<EOL>for field in required_fields:<EOL><INDENT>if not is_key_present(request, field):<EOL><INDENT>missing.append(field)<EOL><DEDENT><DEDENT>if missing:<EOL><INDENT>missing_string = "<STR_LIT>"<EOL>for idx, val in enumerate(missing):<EOL><INDENT>missing_string += "<STR_LIT:\n>" + val<EOL><DEDENT>erstr = "<STR_LIT>""<STR_LIT>" % missing_string<EOL>raise ValueError(erstr)<EOL><DEDENT>return True<EOL> | This function checks for missing properties in the request dict
for the corresponding action. | f728:m0 |
def _determine_api_url(self, platform, service, action): | base_uri = settings.BASE_PAL_URL.format(platform)<EOL>if service == "<STR_LIT>":<EOL><INDENT>api_version = settings.API_RECURRING_VERSION<EOL><DEDENT>elif service == "<STR_LIT>":<EOL><INDENT>api_version = settings.API_PAYOUT_VERSION<EOL><DEDENT>else:<EOL><INDENT>api_version = settings.API_PAYMENT_VERSION<EOL><DEDENT>return '<STR_LIT:/>'.join([base_uri, service, api_version, action])<EOL> | This returns the Adyen API endpoint based on the provided platform,
service and action.
Args:
platform (str): Adyen platform, ie 'live' or 'test'.
service (str): API service to place request through.
action (str): the API action to perform. | f729:c1:m1 |
def _determine_hpp_url(self, platform, action): | base_uri = settings.BASE_HPP_URL.format(platform)<EOL>service = action + '<STR_LIT>'<EOL>result = '<STR_LIT:/>'.join([base_uri, service])<EOL>return result<EOL> | This returns the Adyen HPP endpoint based on the provided platform,
and action.
Args:
platform (str): Adyen platform, ie 'live' or 'test'.
action (str): the HPP action to perform.
possible actions: select, pay, skipDetails, directory | f729:c1:m2 |