ast_errors
stringlengths 0
3.2k
| d_id
int64 44
121k
| id
int64 70
338k
| n_whitespaces
int64 3
14k
| path
stringlengths 8
134
| n_words
int64 4
4.82k
| n_identifiers
int64 1
131
| random_cut
stringlengths 16
15.8k
| commit_message
stringlengths 2
15.3k
| fun_name
stringlengths 1
84
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| file_name
stringlengths 5
79
| ast_levels
int64 6
31
| nloc
int64 1
548
| url
stringlengths 31
59
| complexity
int64 1
66
| token_counts
int64 6
2.13k
| n_ast_errors
int64 0
28
| vocab_size
int64 4
1.11k
| n_ast_nodes
int64 15
19.2k
| language
stringclasses 1
value | documentation
dict | code
stringlengths 101
62.2k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5,241 | 29,606 | 140 | saleor/plugins/base_plugin.py | 39 | 10 | def _clean_configuration_value(cls, item_type, new_value):
| Fix plugin configuration (#11278)
* Fix updating plugin configuration
* Fix failing tax migration | _clean_configuration_value | eac1ae9cf107b8b0189b8b21ff6668c4131c6a00 | saleor | base_plugin.py | 11 | 10 | https://github.com/saleor/saleor.git | 5 | 48 | 0 | 31 | 80 | Python | {
"docstring": "Clean the value that is saved in plugin configuration.\n\n Change the string provided as boolean into the bool value.\n Return None for Output type, as it's read only field.\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 29,
"vocab_size": 26
} | def _clean_configuration_value(cls, item_type, new_value):
if (
item_type == ConfigurationTypeField.BOOLEAN
and new_value
and not isinstance(new_value, bool)
):
new_value = new_value.lower() == "true"
if item_type == ConfigurationTypeField.OUTPUT:
# OUTPUT field is read only. No need to update it
return
return new_value
|
|
12,025 | 60,232 | 62 | code/deep/BJMMD/caffe/python/caffe/coord_map.py | 47 | 3 | def coord_map_from_to(top_from, top_to):
# We need to find a common ancestor of top_from and top_to.
# We'll assume that all ancestors are equivalent here (otherwise the graph
# is an inconsistent state (which we could improve this to check for) | Balanced joint maximum mean discrepancy for deep transfer learning | coord_map_from_to | cc4d0564756ca067516f71718a3d135996525909 | transferlearning | coord_map.py | 6 | 28 | https://github.com/jindongwang/transferlearning.git | 8 | 177 | 0 | 42 | 19 | Python | {
"docstring": "\n Determine the coordinate mapping betweeen a top (from) and a top (to).\n Walk the graph to find a common ancestor while composing the coord maps for\n from and to until they meet. As a last step the from map is inverted.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 41,
"vocab_size": 31
} | def coord_map_from_to(top_from, top_to):
# We need to find a common ancestor of top_from and top_to.
# We'll assume that all ancestors are equivalent here (otherwise the graph
# is an inconsistent state (which we could improve this to check for)).
# For now use a brute-force algorithm.
|
|
13,985 | 65,678 | 19 | erpnext/controllers/stock_controller.py | 31 | 16 | def get_conditions_to_validate_future_sle(sl_entries):
warehouse_items_map = {}
for entry in sl_entries:
if entry.warehouse not in warehouse_ite | style: format code with black | get_conditions_to_validate_future_sle | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | stock_controller.py | 16 | 13 | https://github.com/frappe/erpnext.git | 4 | 69 | 0 | 25 | 155 | Python | {
"docstring": "warehouse = {frappe.db.escape(warehouse)}\n\t\t\t\tand item_code in ({', '.join(frappe.db.escape(item) for item in items)})",
"language": "en",
"n_whitespaces": 10,
"n_words": 12,
"vocab_size": 11
} | def get_conditions_to_validate_future_sle(sl_entries):
warehouse_items_map = {}
for entry in sl_entries:
if entry.warehouse not in warehouse_items_map:
warehouse_items_map[entry.warehouse] = set()
warehouse_items_map[entry.warehouse].add(entry.item_code)
or_conditions = []
for warehouse, items in warehouse_items_map.items():
or_conditions.append(
f
)
return or_conditions
|
|
77,180 | 262,317 | 324 | TTS/tts/datasets/__init__.py | 118 | 23 | def split_dataset(items, eval_split_max_size=None, eval_split_size=0.01):
speakers = [item["speaker_name"] for item in items]
is_multi_speaker = len(set(speakers)) > 1
if eval_split_size > 1:
eval_split_size = int(eval_split_size)
else:
if eval_split_max_size:
eval_split_size = min(eval_split_max_size, int(len(items) * eval_split_size))
else:
eval_split_size = int(len(items) * eval_split_size)
assert (
eval_split_size > 0
), " [!] You do not have enough samples for the evaluation set. You can work around this setting the 'eval_split_size' parameter to a minimum of {}".format(
1 / len(items)
)
np.random.seed( | Make style and lint | split_dataset | 1425a023fe4bc6bda8578295aeeeb02af78cc082 | TTS | __init__.py | 18 | 30 | https://github.com/coqui-ai/TTS.git | 8 | 219 | 0 | 82 | 347 | Python | {
"docstring": "Split a dataset into train and eval. Consider speaker distribution in multi-speaker training.\n\n Args:\n <<<<<<< HEAD\n items (List[List]):\n A list of samples. Each sample is a list of `[audio_path, text, speaker_id]`.\n\n eval_split_max_size (int):\n Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled).\n\n eval_split_size (float):\n If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set.\n If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%).\n =======\n items (List[List]): A list of samples. Each sample is a list of `[text, audio_path, speaker_id]`.\n >>>>>>> Fix docstring\n ",
"language": "en",
"n_whitespaces": 224,
"n_words": 101,
"vocab_size": 65
} | def split_dataset(items, eval_split_max_size=None, eval_split_size=0.01):
speakers = [item["speaker_name"] for item in items]
is_multi_speaker = len(set(speakers)) > 1
if eval_split_size > 1:
eval_split_size = int(eval_split_size)
else:
if eval_split_max_size:
eval_split_size = min(eval_split_max_size, int(len(items) * eval_split_size))
else:
eval_split_size = int(len(items) * eval_split_size)
assert (
eval_split_size > 0
), " [!] You do not have enough samples for the evaluation set. You can work around this setting the 'eval_split_size' parameter to a minimum of {}".format(
1 / len(items)
)
np.random.seed(0)
np.random.shuffle(items)
if is_multi_speaker:
items_eval = []
speakers = [item["speaker_name"] for item in items]
speaker_counter = Counter(speakers)
while len(items_eval) < eval_split_size:
item_idx = np.random.randint(0, len(items))
speaker_to_be_removed = items[item_idx]["speaker_name"]
if speaker_counter[speaker_to_be_removed] > 1:
items_eval.append(items[item_idx])
speaker_counter[speaker_to_be_removed] -= 1
del items[item_idx]
return items_eval, items
return items[:eval_split_size], items[eval_split_size:]
|
|
71,979 | 247,891 | 273 | tests/rest/admin/test_media.py | 67 | 21 | def test_quarantine_media(self) -> None:
media_info = self.get_success(self.store.get_local_media(self.media_id))
assert media_info is not None
self.assertFalse(media_info["quarantined_by"])
# quarantining
channel = self.make_request(
"POST",
self.url % ("quarantine", self.server_name, self.media_id),
access_token=self.admin_user_tok,
)
self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body)
self.assertFalse(channel.json_body)
media_info = self.get_success(self.store.get_local_media(self.media_id))
assert media_info is not None
self.assertTrue(media_info["quarantined_by"])
# remove from quarantine
channel = self.make_request(
"POST",
self.url % ("unquarantine", self.server_name, self.media_id),
access_token=self.admin_user_tok,
)
self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body)
self.assertFalse(channel.json_body)
media_info = self.get_success(self.store.get_local_media(self.media_id))
assert media_info is not None
self.assertFalse(media_info["quarantined_by"])
| Add type hints for `tests/unittest.py`. (#12347)
In particular, add type hints for get_success and friends, which are then helpful in a bunch of places. | test_quarantine_media | f0b03186d96305fd44d74a89bf4230beec0c5c31 | synapse | test_media.py | 11 | 27 | https://github.com/matrix-org/synapse.git | 1 | 215 | 0 | 33 | 340 | Python | {
"docstring": "\n Tests that quarantining and remove from quarantine a media is successfully\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | def test_quarantine_media(self) -> None:
media_info = self.get_success(self.store.get_local_media(self.media_id))
assert media_info is not None
self.assertFalse(media_info["quarantined_by"])
# quarantining
channel = self.make_request(
"POST",
self.url % ("quarantine", self.server_name, self.media_id),
access_token=self.admin_user_tok,
)
self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body)
self.assertFalse(channel.json_body)
media_info = self.get_success(self.store.get_local_media(self.media_id))
assert media_info is not None
self.assertTrue(media_info["quarantined_by"])
# remove from quarantine
channel = self.make_request(
"POST",
self.url % ("unquarantine", self.server_name, self.media_id),
access_token=self.admin_user_tok,
)
self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body)
self.assertFalse(channel.json_body)
media_info = self.get_success(self.store.get_local_media(self.media_id))
assert media_info is not None
self.assertFalse(media_info["quarantined_by"])
|
|
41,794 | 176,254 | 804 | networkx/algorithms/community/modularity_max.py | 250 | 29 | def naive_greedy_modularity_communities(G, resolution=1, weight=None):
r
# First create one community for each node
communities = list(frozenset([u]) for u in G.nodes())
# Track merges
merges = []
# Greedily merge communities until no improvement is possible
old_modularity = None
new_modularity = modularity(G, communities, resolution=resolution, weight=weight)
while old_modularity is None or new_modularity > old_modularity:
# Save modularity for comparison
old_modularity = new_modularity
# Find best pair to merge
trial_communities = list(communities)
to_merge = None
for i, u in enumerate(communities):
for j, v in enumerate(communities):
# Skip i==j and empty communities
if j <= i or len(u) == 0 or len(v) == 0:
continue
# Merge communities u and v
trial_communities[j] = u | v
trial_communities[i] = frozenset([])
trial_modularity = modularity(
G, trial_communities, resolution=resolution, weight=weight
)
if trial_modularity >= new_modularity:
# Check if strictly better or tie
if trial_modularity > new_modularity:
# Found new best, save modularity and group indexes
new_modularity = trial_modularity
to_merge = (i, j, new_modularity - old_modularity)
elif to_merge and min(i, j) < min(to_merge[0], to_merge[1]):
| Add weights to karate club graph (#5285)
Add weights to the karate_club_graph.
Modifies `non_randomness` and `naive_greedy_modularity_communities` to
accept a `weight` parameter and modifies tests that use the kcg accordingly
Co-authored-by: Kevin Berry <kevin.berry@worthix.com>
Co-authored-by: Dan Schult <dschult@colgate.edu> | naive_greedy_modularity_communities | 290ebce534b84f9db20ec58b98cbb170e65a0ba1 | networkx | modularity_max.py | 19 | 80 | https://github.com/networkx/networkx.git | 16 | 301 | 0 | 136 | 472 | Python | {
"docstring": "Find communities in G using greedy modularity maximization.\n\n This implementation is O(n^4), much slower than alternatives, but it is\n provided as an easy-to-understand reference implementation.\n\n Greedy modularity maximization begins with each node in its own community\n and joins the pair of communities that most increases modularity until no\n such pair exists.\n\n This function maximizes the generalized modularity, where `resolution`\n is the resolution parameter, often expressed as $\\gamma$.\n See :func:`~networkx.algorithms.community.quality.modularity`.\n\n Parameters\n ----------\n G : NetworkX graph\n\n resolution : float (default=1)\n If resolution is less than 1, modularity favors larger communities.\n Greater than 1 favors smaller communities.\n\n weight : string or None, optional (default=None)\n The name of an edge attribute that holds the numerical value used\n as a weight. If None, then each edge has weight 1.\n The degree is the sum of the edge weights adjacent to the node.\n\n Returns\n -------\n list\n A list of sets of nodes, one for each community.\n Sorted by length with largest communities first.\n\n Examples\n --------\n >>> from networkx.algorithms.community import \\\n ... naive_greedy_modularity_communities\n >>> G = nx.karate_club_graph()\n >>> c = naive_greedy_modularity_communities(G)\n >>> sorted(c[0])\n [8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]\n\n See Also\n --------\n greedy_modularity_communities\n modularity\n ",
"language": "en",
"n_whitespaces": 336,
"n_words": 199,
"vocab_size": 146
} | def naive_greedy_modularity_communities(G, resolution=1, weight=None):
r
# First create one community for each node
communities = list(frozenset([u]) for u in G.nodes())
# Track merges
merges = []
# Greedily merge communities until no improvement is possible
old_modularity = None
new_modularity = modularity(G, communities, resolution=resolution, weight=weight)
while old_modularity is None or new_modularity > old_modularity:
# Save modularity for comparison
old_modularity = new_modularity
# Find best pair to merge
trial_communities = list(communities)
to_merge = None
for i, u in enumerate(communities):
for j, v in enumerate(communities):
# Skip i==j and empty communities
if j <= i or len(u) == 0 or len(v) == 0:
continue
# Merge communities u and v
trial_communities[j] = u | v
trial_communities[i] = frozenset([])
trial_modularity = modularity(
G, trial_communities, resolution=resolution, weight=weight
)
if trial_modularity >= new_modularity:
# Check if strictly better or tie
if trial_modularity > new_modularity:
# Found new best, save modularity and group indexes
new_modularity = trial_modularity
to_merge = (i, j, new_modularity - old_modularity)
elif to_merge and min(i, j) < min(to_merge[0], to_merge[1]):
# Break ties by choosing pair with lowest min id
new_modularity = trial_modularity
to_merge = (i, j, new_modularity - old_modularity)
# Un-merge
trial_communities[i] = u
trial_communities[j] = v
if to_merge is not None:
# If the best merge improves modularity, use it
merges.append(to_merge)
i, j, dq = to_merge
u, v = communities[i], communities[j]
communities[j] = u | v
communities[i] = frozenset([])
# Remove empty communities and sort
return sorted((c for c in communities if len(c) > 0), key=len, reverse=True)
# old name
_naive_greedy_modularity_communities = naive_greedy_modularity_communities
|
|
7,717 | 42,747 | 871 | airflow/providers/microsoft/psrp/hooks/psrp.py | 167 | 43 | def invoke(self) -> Generator[PowerShell, None, None]:
logger = copy(self.log)
logger.setLevel(self._logging_level)
local_context = self._conn is None
if local_context:
self.__enter__()
try:
assert self._conn is not None
ps = PowerShell(self._conn)
yield ps
ps.begin_invoke()
streams = [
ps.output,
ps.streams.debug,
ps.streams.error,
ps.streams.information,
ps.streams.progress,
ps.streams.verbose,
ps.streams.warning,
]
offsets = [0 for _ in streams]
# We're using polling to make sure output and streams are
# handled while the process is running.
while ps.state == PSInvocationState.RUNNING:
ps.poll_invoke(timeout=self._operation_timeout)
| Ensure @contextmanager decorates generator func (#23103) | invoke | e58985598f202395098e15b686aec33645a906ff | airflow | psrp.py | 19 | 45 | https://github.com/apache/airflow.git | 11 | 264 | 0 | 116 | 420 | Python | {
"docstring": "\n Context manager that yields a PowerShell object to which commands can be\n added. Upon exit, the commands will be invoked.\n ",
"language": "en",
"n_whitespaces": 42,
"n_words": 20,
"vocab_size": 18
} | def invoke(self) -> Generator[PowerShell, None, None]:
logger = copy(self.log)
logger.setLevel(self._logging_level)
local_context = self._conn is None
if local_context:
self.__enter__()
try:
assert self._conn is not None
ps = PowerShell(self._conn)
yield ps
ps.begin_invoke()
streams = [
ps.output,
ps.streams.debug,
ps.streams.error,
ps.streams.information,
ps.streams.progress,
ps.streams.verbose,
ps.streams.warning,
]
offsets = [0 for _ in streams]
# We're using polling to make sure output and streams are
# handled while the process is running.
while ps.state == PSInvocationState.RUNNING:
ps.poll_invoke(timeout=self._operation_timeout)
for i, stream in enumerate(streams):
offset = offsets[i]
while len(stream) > offset:
record = stream[offset]
# Records received on the output stream during job
# status polling are handled via an optional callback,
# while the other streams are simply logged.
if stream is ps.output:
if self._on_output_callback is not None:
self._on_output_callback(record)
else:
self._log_record(logger.log, record)
offset += 1
offsets[i] = offset
# For good measure, we'll make sure the process has
# stopped running in any case.
ps.end_invoke()
self.log.info("Invocation state: %s", str(PSInvocationState(ps.state)))
if ps.streams.error:
raise AirflowException("Process had one or more errors")
finally:
if local_context:
self.__exit__(None, None, None)
|
|
117,210 | 320,536 | 38 | src/documents/tests/test_task_signals.py | 10 | 12 | def util_call_before_task_publish_handler(self, headers_to_use, body_to_use):
self.assertEqual(PaperlessTask.objects.all().count(), 0)
before_task_publish_handler(headers=headers_to_use, body=body_to_use)
| Switches task serialization over to pickle format | util_call_before_task_publish_handler | 97d6503fefc5737028637c39a2c1f33dd1e12904 | paperless-ngx | test_task_signals.py | 12 | 4 | https://github.com/paperless-ngx/paperless-ngx.git | 1 | 56 | 0 | 9 | 90 | Python | {
"docstring": "\n Simple utility to call the pre-run handle and ensure it created a single task\n instance\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 15,
"vocab_size": 15
} | def util_call_before_task_publish_handler(self, headers_to_use, body_to_use):
self.assertEqual(PaperlessTask.objects.all().count(), 0)
before_task_publish_handler(headers=headers_to_use, body=body_to_use)
self.assertEqual(PaperlessTask.objects.all().count(), 1)
|
|
15,807 | 71,963 | 84 | wagtail/admin/tests/test_edit_handlers.py | 21 | 15 | def test_form(self):
form = self.EventPageForm(instance=self.event_page)
self.assertIn("comments", form.formsets)
comments_formset = form.formsets["comments"]
self.assertEqual(len(comments_formset.forms), 1)
self.asse | Reformat with black | test_form | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | test_edit_handlers.py | 10 | 9 | https://github.com/wagtail/wagtail.git | 1 | 109 | 0 | 18 | 174 | Python | {
"docstring": "\n Check that the form has the comments/replies formsets, and that the\n user has been set on each CommentForm/CommentReplyForm subclass\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 15
} | def test_form(self):
form = self.EventPageForm(instance=self.event_page)
self.assertIn("comments", form.formsets)
comments_formset = form.formsets["comments"]
self.assertEqual(len(comments_formset.forms), 1)
self.assertEqual(comments_formset.forms[0].user, self.commenting_user)
replies_formset = comments_formset.forms[0].formsets["replies"]
self.assertEqual(len(replies_formset.forms), 2)
self.assertEqual(replies_formset.forms[0].user, self.commenting_user)
|
|
7,629 | 42,569 | 180 | nltk/corpus/reader/wordnet.py | 38 | 15 | def _doc(self, doc_type, default, lang="eng"):
corpus = self._wordnet_corpus_reader
if lang not in corpus.langs():
return None
elif lang == "eng":
return default
else:
corpus._load_lang_data(lang)
of = corpus.ss2of(self)
i = corpus.lg_attrs.index(doc_type)
if of in corpus._lang_data[lang][i]:
return corpus._lang_data[lang][i][ | Fix wordnet's all_synsets() function (#3078)
* Fix all_synsets() function
* Add simple regression tests for #3077
* Add suggestions by @tomaarsen
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com> | _doc | 3ca43e26efd7d5aa37b3cd79446258d8bfa79561 | nltk | wordnet.py | 14 | 14 | https://github.com/nltk/nltk.git | 4 | 94 | 0 | 27 | 151 | Python | {
"docstring": "Helper method for Synset.definition and Synset.examples",
"language": "en",
"n_whitespaces": 5,
"n_words": 6,
"vocab_size": 6
} | def _doc(self, doc_type, default, lang="eng"):
corpus = self._wordnet_corpus_reader
if lang not in corpus.langs():
return None
elif lang == "eng":
return default
else:
corpus._load_lang_data(lang)
of = corpus.ss2of(self)
i = corpus.lg_attrs.index(doc_type)
if of in corpus._lang_data[lang][i]:
return corpus._lang_data[lang][i][of]
else:
return None
|
|
39,392 | 163,184 | 221 | pandas/core/arrays/categorical.py | 73 | 30 | def map(self, mapper):
new_categories = self.categories.map(mapper)
try:
return self.from_codes(
self._codes.copy(), categories=new_categories, ordered=self.ordered
)
except ValueE | DOC: Improve doc summaries in series.rst (#45237) | map | 521259299f7829da667ba39302ec77acedde9e5e | pandas | categorical.py | 15 | 10 | https://github.com/pandas-dev/pandas.git | 3 | 85 | 0 | 57 | 216 | Python | {
"docstring": "\n Map categories using an input mapping or function.\n\n Maps the categories to new categories. If the mapping correspondence is\n one-to-one the result is a :class:`~pandas.Categorical` which has the\n same order property as the original, otherwise a :class:`~pandas.Index`\n is returned. NaN values are unaffected.\n\n If a `dict` or :class:`~pandas.Series` is used any unmapped category is\n mapped to `NaN`. Note that if this happens an :class:`~pandas.Index`\n will be returned.\n\n Parameters\n ----------\n mapper : function, dict, or Series\n Mapping correspondence.\n\n Returns\n -------\n pandas.Categorical or pandas.Index\n Mapped categorical.\n\n See Also\n --------\n CategoricalIndex.map : Apply a mapping correspondence on a\n :class:`~pandas.CategoricalIndex`.\n Index.map : Apply a mapping correspondence on an\n :class:`~pandas.Index`.\n Series.map : Apply a mapping correspondence on a\n :class:`~pandas.Series`.\n Series.apply : Apply more complex functions on a\n :class:`~pandas.Series`.\n\n Examples\n --------\n >>> cat = pd.Categorical(['a', 'b', 'c'])\n >>> cat\n ['a', 'b', 'c']\n Categories (3, object): ['a', 'b', 'c']\n >>> cat.map(lambda x: x.upper())\n ['A', 'B', 'C']\n Categories (3, object): ['A', 'B', 'C']\n >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'})\n ['first', 'second', 'third']\n Categories (3, object): ['first', 'second', 'third']\n\n If the mapping is one-to-one the ordering of the categories is\n preserved:\n\n >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True)\n >>> cat\n ['a', 'b', 'c']\n Categories (3, object): ['a' < 'b' < 'c']\n >>> cat.map({'a': 3, 'b': 2, 'c': 1})\n [3, 2, 1]\n Categories (3, int64): [3 < 2 < 1]\n\n If the mapping is not one-to-one an :class:`~pandas.Index` is returned:\n\n >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'})\n Index(['first', 'second', 'first'], dtype='object')\n\n If a `dict` is used, all unmapped categories are mapped to `NaN` and\n the result is an :class:`~pandas.Index`:\n\n >>> cat.map({'a': 'first', 'b': 'second'})\n Index(['first', 'second', nan], dtype='object')\n ",
"language": "en",
"n_whitespaces": 679,
"n_words": 269,
"vocab_size": 134
} | def map(self, mapper):
new_categories = self.categories.map(mapper)
try:
return self.from_codes(
self._codes.copy(), categories=new_categories, ordered=self.ordered
)
except ValueError:
# NA values are represented in self._codes with -1
# np.take causes NA values to take final element in new_categories
if np.any(self._codes == -1):
new_categories = new_categories.insert(len(new_categories), np.nan)
return np.take(new_categories, self._codes)
__eq__ = _cat_compare_op(operator.eq)
__ne__ = _cat_compare_op(operator.ne)
__lt__ = _cat_compare_op(operator.lt)
__gt__ = _cat_compare_op(operator.gt)
__le__ = _cat_compare_op(operator.le)
__ge__ = _cat_compare_op(operator.ge)
# -------------------------------------------------------------
# Validators; ideally these can be de-duplicated
|
|
36,295 | 155,204 | 91 | modin/experimental/core/execution/unidist/implementations/pandas_on_unidist/io/io.py | 26 | 11 | def to_pickle_distributed(cls, qc, **kwargs):
if not (
isinstance(kwargs["filepath_or_buffer"], str)
and "*" in kwargs["filepath_or_buffer"]
) or not isinstance(qc, PandasQueryCompiler):
warnings.warn("Defaulting to Modin core implementation")
return PandasO | FEAT-#5053: Add pandas on unidist execution with MPI backend (#5059)
Signed-off-by: Igoshev, Iaroslav <iaroslav.igoshev@intel.com> | to_pickle_distributed | 193505fdf0c984743397ba3df56262f30aee13a8 | modin | io.py | 13 | 12 | https://github.com/modin-project/modin.git | 4 | 93 | 0 | 25 | 95 | Python | {
"docstring": "\n When `*` in the filename all partitions are written to their own separate file.\n\n The filenames is determined as follows:\n - if `*` in the filename then it will be replaced by the increasing sequence 0, 1, 2, …\n - if `*` is not the filename, then will be used default implementation.\n\n Examples #1: 4 partitions and input filename=\"partition*.pkl.gz\", then filenames will be:\n `partition0.pkl.gz`, `partition1.pkl.gz`, `partition2.pkl.gz`, `partition3.pkl.gz`.\n\n Parameters\n ----------\n qc : BaseQueryCompiler\n The query compiler of the Modin dataframe that we want\n to run ``to_pickle_distributed`` on.\n **kwargs : dict\n Parameters for ``pandas.to_pickle(**kwargs)``.\n ",
"language": "en",
"n_whitespaces": 203,
"n_words": 92,
"vocab_size": 70
} | def to_pickle_distributed(cls, qc, **kwargs):
if not (
isinstance(kwargs["filepath_or_buffer"], str)
and "*" in kwargs["filepath_or_buffer"]
) or not isinstance(qc, PandasQueryCompiler):
warnings.warn("Defaulting to Modin core implementation")
return PandasOnUnidistIO.to_pickle(qc, **kwargs)
|
|
51,080 | 205,304 | 42 | django/db/migrations/loader.py | 10 | 8 | def project_state(self, nodes=None, at_end=True):
return self.graph.make_state(
nodes=nodes, at_end=at_end, real_apps=self.unmigrated_apps
)
| Refs #33476 -- Reformatted code with Black. | project_state | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | loader.py | 9 | 4 | https://github.com/django/django.git | 1 | 35 | 0 | 10 | 53 | Python | {
"docstring": "\n Return a ProjectState object representing the most recent state\n that the loaded migrations represent.\n\n See graph.make_state() for the meaning of \"nodes\" and \"at_end\".\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 23,
"vocab_size": 21
} | def project_state(self, nodes=None, at_end=True):
return self.graph.make_state(
nodes=nodes, at_end=at_end, real_apps=self.unmigrated_apps
)
|
|
39,282 | 162,744 | 375 | research/neo_peq/legacy_frequency_response.py | 125 | 26 | def center(self, frequency=1000):
equal_energy_fr = self.__class__(name='equal_energy', frequency=self.frequency.copy(), raw=self.raw.copy())
equal_energy_fr.interpolate()
interpolator = InterpolatedUnivariateSpline(np.log10(equal_energy_fr.frequency), equal_energy_fr.raw, k=1)
if type(frequency) in [list, np.ndarray] and len(frequency) > 1:
# Use the average of the gain values between the given frequencies as the difference to be subtracted
diff = np.mean(equal_energy_fr.raw[np.logical_and(
equal_energy_fr.frequency >= frequency[0],
equal_energy_fr.frequency <= frequency[1]
)])
else:
if type(frequency) in [list, np.ndarray]:
# List or array with only one element
frequency = frequency[0]
# Use the gain value a | Added PEQ configs to CLI and function interfaces. Improved default value handling for PEQ parameters and added more predefined configs. Removed legacy PEQ optimization. Fixed readme write. Improved shelf filter initialization. Added plot method to PEQ. Notebook for comparing old and new optimizers. Bug fixes. | center | 9120cdffe618c6c2ff16fe6a311b6a1367efdbc8 | AutoEq | legacy_frequency_response.py | 15 | 22 | https://github.com/jaakkopasanen/AutoEq.git | 7 | 225 | 0 | 87 | 353 | Python | {
"docstring": "Removed bias from frequency response.\n\n Args:\n frequency: Frequency which is set to 0 dB. If this is a list with two values then an average between the two\n frequencies is set to 0 dB.\n\n Returns:\n Gain shifted\n ",
"language": "en",
"n_whitespaces": 102,
"n_words": 37,
"vocab_size": 30
} | def center(self, frequency=1000):
equal_energy_fr = self.__class__(name='equal_energy', frequency=self.frequency.copy(), raw=self.raw.copy())
equal_energy_fr.interpolate()
interpolator = InterpolatedUnivariateSpline(np.log10(equal_energy_fr.frequency), equal_energy_fr.raw, k=1)
if type(frequency) in [list, np.ndarray] and len(frequency) > 1:
# Use the average of the gain values between the given frequencies as the difference to be subtracted
diff = np.mean(equal_energy_fr.raw[np.logical_and(
equal_energy_fr.frequency >= frequency[0],
equal_energy_fr.frequency <= frequency[1]
)])
else:
if type(frequency) in [list, np.ndarray]:
# List or array with only one element
frequency = frequency[0]
# Use the gain value at the given frequency as the difference to be subtracted
diff = interpolator(np.log10(frequency))
self.raw -= diff
if len(self.smoothed):
self.smoothed -= diff
if len(self.error):
self.error += diff
if len(self.error_smoothed):
self.error_smoothed += diff
# Everything but raw, smoothed, errors and target is affected by centering, reset them
self.reset(raw=False, smoothed=False, error=False, error_smoothed=False, target=False)
return -diff
|
|
51,569 | 206,570 | 98 | django/utils/cache.py | 51 | 9 | def _i18n_cache_key_suffix(request, cache_key):
if settings.USE_I18N:
# first check if LocaleMiddleware or another middleware added
# LANGUAGE_CODE to request, then fall back to the active lan | Refs #33476 -- Reformatted code with Black. | _i18n_cache_key_suffix | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | cache.py | 13 | 6 | https://github.com/django/django.git | 3 | 41 | 0 | 38 | 76 | Python | {
"docstring": "If necessary, add the current locale or time zone to the cache key.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 12
} | def _i18n_cache_key_suffix(request, cache_key):
if settings.USE_I18N:
# first check if LocaleMiddleware or another middleware added
# LANGUAGE_CODE to request, then fall back to the active language
# which in turn can also fall back to settings.LANGUAGE_CODE
cache_key += ".%s" % getattr(request, "LANGUAGE_CODE", get_language())
if settings.USE_TZ:
cache_key += ".%s" % get_current_timezone_name()
return cache_key
|
|
arff_file = BytesIO(
textwrap.dedent(
""" | 76,098 | 260,158 | 37 | sklearn/datasets/tests/test_arff_parser.py | 9 | 9 | def test_pandas_arff_parser_strip_double_quotes(parser_func):
pd = | FIX make pandas and liac arff parser quoting behaviour closer (#23497)
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
Co-authored-by: Thomas J. Fan <thomasjpfan@gmail.com>
Co-authored-by: Loïc Estève <loic.esteve@ymail.com> | test_pandas_arff_parser_strip_double_quotes | 8515b486810e844bc7f5f1a4fb2227405d46871e | scikit-learn | test_arff_parser.py | 9 | 54 | https://github.com/scikit-learn/scikit-learn.git | 1 | 186 | 1 | 8 | 39 | Python | {
"docstring": "Check that we properly strip double quotes from the data.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def test_pandas_arff_parser_strip_double_quotes(parser_func):
pd = pytest.importorskip("pandas")
arff_file = BytesIO(
textwrap.dedent(
|
3,369 | 20,440 | 1,512 | pipenv/patched/notpip/_vendor/pygments/lexer.py | 193 | 30 | def get_tokens_unprocessed(self, text=None, context=None):
tokendefs = self._tokens
if not context:
ctx = LexerContext(text, 0)
statetokens = tokendefs['root']
else:
ctx = context
statetokens = tokendefs[ctx.stack[-1]]
text = ctx.text
while 1:
for rexmatch, action, new_state in statetokens:
m = rexmatch(text, ctx.pos, ctx.end)
if m:
if action is not None:
if type(action) is _TokenType:
yield ctx.pos, action, m.group()
ctx.pos = m.end()
else:
yield from action(self, m, ctx)
if not new_state:
# altered the state stack?
statetokens = tokendefs[ctx.stack[-1]]
# CAUTION: callback must set ctx.pos!
if new_state is not None:
# state transition
if isinstance(new_state, tuple):
for state in new_state:
if state == '#pop':
if len(ctx.stack) > 1:
ctx.stack.pop()
elif state | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | get_tokens_unprocessed | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | lexer.py | 24 | 56 | https://github.com/pypa/pipenv.git | 20 | 373 | 0 | 108 | 609 | Python | {
"docstring": "\n Split ``text`` into (tokentype, text) pairs.\n If ``context`` is given, use this lexer context instead.\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 15,
"vocab_size": 15
} | def get_tokens_unprocessed(self, text=None, context=None):
tokendefs = self._tokens
if not context:
ctx = LexerContext(text, 0)
statetokens = tokendefs['root']
else:
ctx = context
statetokens = tokendefs[ctx.stack[-1]]
text = ctx.text
while 1:
for rexmatch, action, new_state in statetokens:
m = rexmatch(text, ctx.pos, ctx.end)
if m:
if action is not None:
if type(action) is _TokenType:
yield ctx.pos, action, m.group()
ctx.pos = m.end()
else:
yield from action(self, m, ctx)
if not new_state:
# altered the state stack?
statetokens = tokendefs[ctx.stack[-1]]
# CAUTION: callback must set ctx.pos!
if new_state is not None:
# state transition
if isinstance(new_state, tuple):
for state in new_state:
if state == '#pop':
if len(ctx.stack) > 1:
ctx.stack.pop()
elif state == '#push':
ctx.stack.append(ctx.stack[-1])
else:
ctx.stack.append(state)
elif isinstance(new_state, int):
# see RegexLexer for why this check is made
if abs(new_state) >= len(ctx.stack):
del ctx.state[1:]
else:
del ctx.stack[new_state:]
elif new_state == '#push':
ctx.stack.append(ctx.stack[-1])
else:
assert False, "wrong state def: %r" % new_state
statetokens = tokendefs[ctx.stack[-1]]
break
else:
try:
if ctx.pos >= ctx.end:
break
if text[ctx.pos] == '\n':
# at EOL, reset state to "root"
ctx.stack = ['root']
statetokens = tokendefs['root']
yield ctx.pos, Text, '\n'
ctx.pos += 1
continue
yield ctx.pos, Error, text[ctx.pos]
ctx.pos += 1
except IndexError:
break
|
|
30,625 | 135,458 | 230 | rllib/core/rl_module/torch/tests/test_torch_marl_module.py | 67 | 16 | def get_policy_data_from_agent_data(agent_data, policy_map_fn):
policy_data = {}
for agent_id, data in agent_data.items():
policy_id = policy_map_fn(agent_id)
policy_data.setdefault(policy_id, {})
policy_data[policy_id].setdefault("agent_id", [])
if data["obs"].ndim == 1:
policy_data[policy_id]["agent_id"].append(agent_id)
else:
policy_data[policy_id]["agent_id"] += [agent_id] * len(data["obs"])
for k, v in data.items():
policy_data[policy_id].setdefault(k, [])
if v.ndim == 1:
v = v[None]
policy_data[policy_id][k].append(v)
for policy_id in policy_data:
policy_data[policy_id] = {
k: np.concatenate(v) if k != "agent_id" else v
for k, v in policy_data[policy_id].items()
}
return policy_data
| [RLlib] MARLModule, RLModule PR 4/N (N=4) (#29449)
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com> | get_policy_data_from_agent_data | 30058267363b8de16b809c987bb1f7d7befad24d | ray | test_torch_marl_module.py | 16 | 21 | https://github.com/ray-project/ray.git | 8 | 182 | 0 | 47 | 291 | Python | {
"docstring": "Utility function to get policy data from agent data and policy map function.\n\n It also keeps track of agent_id for each row so that we can retreive the agent\n level information after the forward pass.\n\n Returns:\n dict of module_id to module data\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 42,
"vocab_size": 35
} | def get_policy_data_from_agent_data(agent_data, policy_map_fn):
policy_data = {}
for agent_id, data in agent_data.items():
policy_id = policy_map_fn(agent_id)
policy_data.setdefault(policy_id, {})
policy_data[policy_id].setdefault("agent_id", [])
if data["obs"].ndim == 1:
policy_data[policy_id]["agent_id"].append(agent_id)
else:
policy_data[policy_id]["agent_id"] += [agent_id] * len(data["obs"])
for k, v in data.items():
policy_data[policy_id].setdefault(k, [])
if v.ndim == 1:
v = v[None]
policy_data[policy_id][k].append(v)
for policy_id in policy_data:
policy_data[policy_id] = {
k: np.concatenate(v) if k != "agent_id" else v
for k, v in policy_data[policy_id].items()
}
return policy_data
|
|
44,390 | 183,911 | 73 | src/textual/widgets/_data_table.py | 23 | 13 | def _update_dimensions(self) -> None:
total_width = sum(column.width for column in self.columns)
s | docstring name change | _update_dimensions | c3dcc529b3aa0b168728b3315cfe973218d09685 | textual | _data_table.py | 12 | 7 | https://github.com/Textualize/textual.git | 3 | 50 | 0 | 22 | 78 | Python | {
"docstring": "Called to recalculate the virtual (scrollable) size.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | def _update_dimensions(self) -> None:
total_width = sum(column.width for column in self.columns)
self.virtual_size = Size(
total_width,
len(self._y_offsets) + (self.header_height if self.show_header else 0),
)
|
|
50,666 | 204,168 | 49 | django/contrib/messages/storage/base.py | 17 | 7 | def _store(self, messages, response, *args, **kwargs):
raise NotImplementedError(
"subclasses of BaseStorage mu | Refs #33476 -- Reformatted code with Black. | _store | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | base.py | 8 | 4 | https://github.com/django/django.git | 1 | 21 | 0 | 17 | 35 | Python | {
"docstring": "\n Store a list of messages and return a list of any messages which could\n not be stored.\n\n One type of object must be able to be stored, ``Message``.\n\n **This method must be implemented by a subclass.**\n ",
"language": "en",
"n_whitespaces": 72,
"n_words": 36,
"vocab_size": 26
} | def _store(self, messages, response, *args, **kwargs):
raise NotImplementedError(
"subclasses of BaseStorage must provide a _store() method"
)
|
|
72,812 | 249,309 | 86 | tests/rest/admin/test_event_reports.py | 18 | 13 | def test_from_is_negative(self) -> None:
channel = self.make_request(
"GET",
self.url + "?from=-5",
access_token=self.admin_user_tok,
)
self.assertEqual(400, channel.code, msg=channel.jso | Use literals in place of `HTTPStatus` constants in tests (#13488)
* Use literals in place of `HTTPStatus` constants in tests
* newsfile
* code style
* code style | test_from_is_negative | 2281427175e4c93a30c39607fb4ac23c2a1f399f | synapse | test_event_reports.py | 10 | 11 | https://github.com/matrix-org/synapse.git | 1 | 60 | 0 | 18 | 97 | Python | {
"docstring": "\n Testing that a negative from parameter returns a 400\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 8
} | def test_from_is_negative(self) -> None:
channel = self.make_request(
"GET",
self.url + "?from=-5",
access_token=self.admin_user_tok,
)
self.assertEqual(400, channel.code, msg=channel.json_body)
self.assertEqual(Codes.INVALID_PARAM, channel.json_body["errcode"])
|
|
45,340 | 186,112 | 8 | tests/test_binding_inheritance.py | 5 | 1 | async def test_focused_child_widget_no_inherit_empty_bindings_with_movement_bindings_on_screen() -> None:
| Add test for focused widget, no inherit, empty BINDINGS
Testing the overlap between #1343 and #1351. | test_focused_child_widget_no_inherit_empty_bindings_with_movement_bindings_on_screen | e8c87ced33ccac893121e3cc0fb1097b0d8da035 | textual | test_binding_inheritance.py | 6 | 5 | https://github.com/Textualize/textual.git | 2 | 53 | 0 | 5 | 16 | Python | {
"docstring": "A focused child widget, that doesn't inherit bindings and sets BINDINGS empty, with movement bindings in the screen, should trigger screen actions.",
"language": "en",
"n_whitespaces": 21,
"n_words": 22,
"vocab_size": 21
} | async def test_focused_child_widget_no_inherit_empty_bindings_with_movement_bindings_on_screen() -> None:
|
|
55,486 | 218,798 | 1,039 | python3.10.4/Lib/lib2to3/pgen2/parse.py | 220 | 28 | def addtoken(self, type, value, context):
# Map from token to label
ilabel = self.classify(type, value, context)
# Loop until the token is shifted; may raise exceptions
while True:
dfa, state, node = self.stack[-1]
states, first = dfa
arcs = states[state]
# Look for a state with this label
for i, newstate in arcs:
t, v = self.grammar.labels[i]
if ilabel == i:
# Look it up in the list of labels
assert t < 256
# Shift a token; we're done with it
self.shift(type, value, newstate, context)
# Pop while we are in an accept-only state
state = newstate
while states[state] == [(0, state)]:
self.pop()
if not self.stack:
# Done parsing!
return True
dfa, state, node = self.stack[-1]
states, first = dfa
# Done with this token
return False
elif t >= 256:
# See if it's a symbol and if we're in its first set
itsdfa = self.grammar.dfas[t]
itsstates, itsfirst = itsdfa
if ilabel in itsfirst:
# Push a symbol
self.push(t, self.grammar.dfas[t], newstate, context)
break # To continue the outer while loop
else:
if (0, state) in arcs:
# An accepting state, pop it and try something else
self.pop()
if not self.stack:
# Done parsing, but another token is input
raise ParseError("too much input",
type, value, context)
else:
# No success finding a transition
raise ParseError("bad input", type, value, context)
| add python 3.10.4 for windows | addtoken | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | parse.py | 19 | 33 | https://github.com/XX-net/XX-Net.git | 10 | 232 | 0 | 123 | 365 | Python | {
"docstring": "Add a token; return True iff this is the end of the program.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 12
} | def addtoken(self, type, value, context):
# Map from token to label
ilabel = self.classify(type, value, context)
# Loop until the token is shifted; may raise exceptions
while True:
dfa, state, node = self.stack[-1]
states, first = dfa
arcs = states[state]
# Look for a state with this label
for i, newstate in arcs:
t, v = self.grammar.labels[i]
if ilabel == i:
# Look it up in the list of labels
assert t < 256
# Shift a token; we're done with it
self.shift(type, value, newstate, context)
# Pop while we are in an accept-only state
state = newstate
while states[state] == [(0, state)]:
self.pop()
if not self.stack:
# Done parsing!
return True
dfa, state, node = self.stack[-1]
states, first = dfa
# Done with this token
return False
elif t >= 256:
# See if it's a symbol and if we're in its first set
itsdfa = self.grammar.dfas[t]
itsstates, itsfirst = itsdfa
if ilabel in itsfirst:
# Push a symbol
self.push(t, self.grammar.dfas[t], newstate, context)
break # To continue the outer while loop
else:
if (0, state) in arcs:
# An accepting state, pop it and try something else
self.pop()
if not self.stack:
# Done parsing, but another token is input
raise ParseError("too much input",
type, value, context)
else:
# No success finding a transition
raise ParseError("bad input", type, value, context)
|
|
8,055 | 43,771 | 464 | airflow/settings.py | 115 | 28 | def import_local_settings():
try:
import airflow_local_settings
if hasattr(airflow_local_settings, "__all__"):
for i in airflow_local_settings.__all__:
globals()[i] = getattr(airflow_local_settings, i)
else:
for k, v in airflow_local_settings.__dict__.items():
if not k.startswith("__"):
globals()[k] = v
# TODO: Remove once deprecated
if "policy" in globals() and "task_policy" not in globals():
warnings.warn(
"Using `policy` in airflow_local_settings.py is deprecated. "
"Please rename your `policy` to `task_policy`.",
DeprecationWarning,
stacklevel=2,
)
globals()["task_policy"] = globals()["policy"]
del globals()["policy"]
if not hasattr(task_instance_mutation_hook, 'is_noop'):
task_instance_mutation_hook.is_noop = False
log.info("Loaded airflow_local_settings from %s .", airflow_local_settings.__file__)
except ModuleNotFoundError as e:
if e.name == "airflow_local_settings":
log.debug("No airflow_local_settings to import.", exc_info=True)
else:
log.critical(
"Failed to import airflow_local_settings due to a trans | Speed up creation of DagRun for large DAGs (5k+ tasks) by 25-130% (#20722)
* Speed up creation of DagRun for large DAGs (5k+ tasks) by 15-40%
This uses the "bulk" operation API of SQLAlchemy to get a big speed
up. Due to the `task_instance_mutation_hook` we still need to keep
actual TaskInstance objects around.
For postgresql we have enabled to "batch operation helpers"[1] which
makes it even faster. The default page sizes are chosen somewhat
randomly based on the SQLA docs.
To make these options configurable I have added (and used here and in
KubeConfig) a new `getjson` option to AirflowConfigParser class.
Postgresql is over 77% faster with bulk_save_objects:
Before:
```
number_of_tis=1 mean=0.004397215199423954 per=0.004397215199423954 times=[0.009390181003254838, 0.002814065999700688, 0.00284132499655243, 0.0036120269942330196, 0.0033284770033787936]
number_of_tis=10 mean=0.008078816600027494 per=0.0008078816600027494 times=[0.011014281000825576, 0.008476420000079088, 0.00741832799394615, 0.006857775995740667, 0.006627278009545989]
number_of_tis=50 mean=0.01927847799670417 per=0.00038556955993408336 times=[0.02556803499464877, 0.01935569499619305, 0.01662322599440813, 0.01840184700267855, 0.01644358699559234]
number_of_tis=100 mean=0.03301511880126782 per=0.00033015118801267817 times=[0.04117956099798903, 0.030890661000739783, 0.03007458901265636, 0.03125198099587578, 0.03167880199907813]
number_of_tis=500 mean=0.15320950179593637 per=0.0003064190035918727 times=[0.20054609200451523, 0.14052859699586406, 0.14509809199080337, 0.1365471329918364, 0.1433275949966628]
number_of_tis=1000 mean=0.2929377429973101 per=0.0002929377429973101 times=[0.3517978919990128, 0.2807794280088274, 0.2806490379880415, 0.27710555399244186, 0.27435680299822707]
number_of_tis=3000 mean=0.9935687056015012 per=0.00033118956853383374 times=[1.2047388390055858, 0.8248025969951414, 0.8685875020019012, 0.9017027500085533, 1.1680118399963249]
number_of_tis=5000 mean=1.5349355740036117 per=0.00030698711480072236 times=[1.8663743910001358, 1.5182018500054255, 1.5446484510030132, 1.3932801040064078, 1.3521730740030762]
number_of_tis=10000 mean=3.7448632712010292 per=0.0003744863271201029 times=[4.135914924001554, 3.4411147559876554, 3.526543836007477, 3.7195197630062466, 3.9012230770022143]
number_of_tis=15000 mean=6.3099766838044165 per=0.00042066511225362775 times=[6.552250057997298, 6.1369703890086384, 6.8749958210100885, 6.067943914007628, 5.917723236998427]
number_of_tis=20000 mean=8.317583500797628 per=0.00041587917503988143 times=[8.720249108009739, 8.0188543760014, 8.328030352990027, 8.398350054994808, 8.122433611992165]
```
When using bulk_save_objects:
```
number_of_tis=20000 mean=4.678154367001843 per=0.00023390771835009216 times=[4.465847548010061, 4.571855771995615, 4.749505186002352, 4.724330568002188, 4.8792327609990025]
```
MySQL is only 10-15% faster (and a lot noisier)
Before:
```
number_of_tis=1 mean=0.006164804595755413 per=0.006164804595755413 times=[0.013516580002033152, 0.00427598599344492, 0.004508020996581763, 0.004067091998877004, 0.004456343987840228]
number_of_tis=10 mean=0.007822793803643435 per=0.0007822793803643434 times=[0.0081135170039488, 0.00719467100861948, 0.009007985994685441, 0.00758794900320936, 0.007209846007754095]
number_of_tis=50 mean=0.020377356800599954 per=0.00040754713601199905 times=[0.02612382399092894, 0.018950315003166907, 0.019109474000288174, 0.018008680999628268, 0.019694490008987486]
number_of_tis=100 mean=0.040682651600218375 per=0.00040682651600218374 times=[0.05449078499805182, 0.037430580996442586, 0.039291110006161034, 0.03625023599306587, 0.035950546007370576]
number_of_tis=500 mean=0.18646696420037187 per=0.00037293392840074375 times=[0.24278165798750706, 0.17090376401029062, 0.1837275660072919, 0.16893767600413412, 0.1659841569926357]
number_of_tis=1000 mean=0.5903461098030676 per=0.0005903461098030675 times=[0.6001852740009781, 0.5642872750031529, 0.686630773008801, 0.5578094649972627, 0.5428177620051429]
number_of_tis=3000 mean=1.9076304554007948 per=0.0006358768184669316 times=[2.042052763994434, 2.1137778090051142, 1.7461599689995637, 1.7260139089921722, 1.9101478260126896]
number_of_tis=5000 mean=2.9185905692051164 per=0.0005837181138410233 times=[2.9221124830073677, 3.2889883980096783, 2.7569778940087417, 2.973596281008213, 2.651277789991582]
number_of_tis=10000 mean=8.880191986600403 per=0.0008880191986600403 times=[7.3548113360011484, 9.13715232499817, 9.568511486999341, 8.80206210000324, 9.538422685000114]
number_of_tis=15000 mean=15.426499317999696 per=0.0010284332878666464 times=[14.944712879005237, 15.38737604500784, 15.409629273999599, 15.852925243991194, 15.53785314799461]
number_of_tis=20000 mean=20.579332908798825 per=0.0010289666454399414 times=[20.362008597003296, 19.878823954990366, 20.73281196100288, 20.837948996995692, 21.085071034001885]
```
After:
```
number_of_tis=20000 mean=18.36637533060275 per=0.0009183187665301375 times=[17.728908119010157, 18.62269214099797, 18.936747477011522, 17.74613195299753, 18.797396962996572]
```
[1]: https://docs.sqlalchemy.org/en/13/dialects/postgresql.html#psycopg2-batch-mode
* Use bulk_insert_mappings for even more speed where possible.
It gives us an extra speed up over bulk_save_objects, but we can't
use it when the task_instance_mutation_hook does anything, as that hook
needs an actual object.
So _when_ we know that hook won't do anything we switch in to
insert_mappings mode.
New speeds (vs baseline, not vs bulk_save_objects) when using
bulk_insert_mappings
PostgreSQL now 130% faster:
```
number_of_tis=1 mean=0.028053103599813767 per=0.028053103599813767 times=[0.03762496300623752, 0.02637488600157667, 0.025065611000172794, 0.024561002996051684, 0.026639054995030165]
number_of_tis=10 mean=0.02647183560184203 per=0.002647183560184203 times=[0.02698062499985099, 0.026417658998980187, 0.027347976007149555, 0.025797458001761697, 0.025815460001467727]
number_of_tis=50 mean=0.03149963079486042 per=0.0006299926158972085 times=[0.03810671299288515, 0.03055680700344965, 0.029733988994848914, 0.03016914198815357, 0.02893150299496483]
number_of_tis=100 mean=0.033998635396710594 per=0.0003399863539671059 times=[0.0351028829900315, 0.03299884400621522, 0.03358584298985079, 0.03295094799250364, 0.03535465900495183]
number_of_tis=500 mean=0.07903424859978259 per=0.00015806849719956516 times=[0.08279920800123364, 0.08588568199775182, 0.07312070899934042, 0.07360191999759991, 0.07976372400298715]
number_of_tis=1000 mean=0.12571056479937398 per=0.00012571056479937398 times=[0.12573593499837443, 0.12141938100103289, 0.12616568499652203, 0.12907471299695317, 0.12615711000398733]
number_of_tis=3000 mean=0.36025245799683037 per=0.00012008415266561012 times=[0.36071603700111154, 0.3470657339930767, 0.3373015969991684, 0.3337128989951452, 0.42246602299564984]
number_of_tis=5000 mean=0.6916533229988999 per=0.00013833066459977998 times=[0.9647149289958179, 0.6451378140045563, 0.5970188640058041, 0.5849326960014878, 0.6664623119868338]
number_of_tis=10000 mean=2.071472014003666 per=0.00020714720140036663 times=[2.957865878008306, 1.9388906149979448, 1.766649461002089, 1.8647991580073722, 1.8291549580026185]
number_of_tis=15000 mean=2.866650845797267 per=0.00019111005638648446 times=[3.3783503199956613, 2.657773957995232, 2.707275656008278, 2.7875704979960574, 2.802283796991105]
number_of_tis=20000 mean=3.5886989389982773 per=0.00017943494694991387 times=[3.969436354993377, 3.436962780993781, 3.9078941010084236, 3.6387251569976797, 2.9904763009981252]
```
MySQL is (only) 27% faster:
```
number_of_tis=1 mean=0.035956257799989545 per=0.035956257799989545 times=[0.03932315899874084, 0.03545605999534018, 0.03535486999317072, 0.034727805003058165, 0.03491939500963781]
number_of_tis=10 mean=0.036957260797498746 per=0.0036957260797498745 times=[0.040442515004542656, 0.0379129799985094, 0.03494819799379911, 0.03562593398964964, 0.03585667700099293]
number_of_tis=50 mean=0.04745422120031435 per=0.0009490844240062871 times=[0.06965546800347511, 0.04221734800375998, 0.04038520700123627, 0.040363031992455944, 0.04465005100064445]
number_of_tis=100 mean=0.0528092162014218 per=0.000528092162014218 times=[0.06113427500531543, 0.04883724599494599, 0.05276876600692049, 0.047688748003565706, 0.05361704599636141]
number_of_tis=500 mean=0.16223246100416872 per=0.0003244649220083374 times=[0.24469116200634744, 0.1407806619972689, 0.14792052800476085, 0.14703868801007047, 0.13073126500239596]
number_of_tis=1000 mean=0.285728433605982 per=0.00028572843360598197 times=[0.3230128890136257, 0.27035739900020417, 0.3003890450054314, 0.2638379510026425, 0.2710448840080062]
number_of_tis=3000 mean=1.1824120475997915 per=0.0003941373491999305 times=[1.3103130240051541, 1.286688863998279, 1.1455156929878285, 1.1072918410063721, 1.062250816001324]
number_of_tis=5000 mean=1.9416745471942705 per=0.0003883349094388541 times=[2.3746965279860888, 1.9103765429899795, 2.0542518720030785, 1.7706374429981224, 1.598410349994083]
number_of_tis=10000 mean=5.059874459402636 per=0.0005059874459402636 times=[5.431018351999228, 5.262124675995437, 5.174487816999317, 4.423381198008428, 5.008360254010768]
number_of_tis=15000 mean=9.717965700797503 per=0.0006478643800531668 times=[7.884617075993447, 9.466949063993525, 10.005758297003922, 10.105231182998978, 11.127272883997648]
number_of_tis=20000 mean=16.2008618004038 per=0.00081004309002019 times=[14.645835625007749, 16.304637463006657, 16.255490412993822, 16.830263861003914, 16.968081640006858]
``` | import_local_settings | f2039b4c9e15b514661d4facbd710791fe0a2ef4 | airflow | settings.py | 18 | 34 | https://github.com/apache/airflow.git | 11 | 191 | 0 | 83 | 336 | Python | {
"docstring": "Import airflow_local_settings.py files to allow overriding any configs in settings.py file",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def import_local_settings():
try:
import airflow_local_settings
if hasattr(airflow_local_settings, "__all__"):
for i in airflow_local_settings.__all__:
globals()[i] = getattr(airflow_local_settings, i)
else:
for k, v in airflow_local_settings.__dict__.items():
if not k.startswith("__"):
globals()[k] = v
# TODO: Remove once deprecated
if "policy" in globals() and "task_policy" not in globals():
warnings.warn(
"Using `policy` in airflow_local_settings.py is deprecated. "
"Please rename your `policy` to `task_policy`.",
DeprecationWarning,
stacklevel=2,
)
globals()["task_policy"] = globals()["policy"]
del globals()["policy"]
if not hasattr(task_instance_mutation_hook, 'is_noop'):
task_instance_mutation_hook.is_noop = False
log.info("Loaded airflow_local_settings from %s .", airflow_local_settings.__file__)
except ModuleNotFoundError as e:
if e.name == "airflow_local_settings":
log.debug("No airflow_local_settings to import.", exc_info=True)
else:
log.critical(
"Failed to import airflow_local_settings due to a transitive module not found error.",
exc_info=True,
)
raise
except ImportError:
log.critical("Failed to import airflow_local_settings.", exc_info=True)
raise
|
|
47,444 | 195,857 | 190 | sympy/functions/elementary/complexes.py | 75 | 13 | def unpolarify(eq, subs=None, exponents_only=False):
if isinstance(eq, bool):
return eq
eq = sympify(eq)
if subs is not None:
return unpolarify(eq.subs(subs))
changed = True
pause = False
if exponents_only:
pause = True
while changed:
changed = False
res = _unpolarify(eq, exponents_only, pause)
if res != eq:
changed = True
eq = res
if isinstance(res, bool):
return res
# Finally, replacing Exp(0) by 1 is always correct.
# So is polar_lift(0) -> 0.
return res.subs({exp_pola | Improved documentation formatting | unpolarify | cda8dfe6f45dc5ed394c2f5cda706cd6c729f713 | sympy | complexes.py | 11 | 19 | https://github.com/sympy/sympy.git | 7 | 116 | 0 | 46 | 184 | Python | {
"docstring": "\n If `p` denotes the projection from the Riemann surface of the logarithm to\n the complex line, return a simplified version `eq'` of `eq` such that\n `p(eq') = p(eq)`.\n Also apply the substitution subs in the end. (This is a convenience, since\n ``unpolarify``, in a certain sense, undoes :func:`polarify`.)\n\n Examples\n ========\n\n >>> from sympy import unpolarify, polar_lift, sin, I\n >>> unpolarify(polar_lift(I + 2))\n 2 + I\n >>> unpolarify(sin(polar_lift(I + 7)))\n sin(7 + I)\n ",
"language": "en",
"n_whitespaces": 112,
"n_words": 72,
"vocab_size": 56
} | def unpolarify(eq, subs=None, exponents_only=False):
if isinstance(eq, bool):
return eq
eq = sympify(eq)
if subs is not None:
return unpolarify(eq.subs(subs))
changed = True
pause = False
if exponents_only:
pause = True
while changed:
changed = False
res = _unpolarify(eq, exponents_only, pause)
if res != eq:
changed = True
eq = res
if isinstance(res, bool):
return res
# Finally, replacing Exp(0) by 1 is always correct.
# So is polar_lift(0) -> 0.
return res.subs({exp_polar(0): 1, polar_lift(0): 0})
|
|
21,170 | 101,766 | 34 | plugins/extract/_base.py | 9 | 4 | def check_and_raise_error(self) -> None:
for thread in self._th | Extract: Typing and standardization | check_and_raise_error | 765e385177bda9b9e99951492ef33b34b4e4773e | faceswap | _base.py | 9 | 7 | https://github.com/deepfakes/faceswap.git | 2 | 20 | 0 | 9 | 35 | Python | {
"docstring": " Check all threads for errors\n\n Exposed for :mod:`~plugins.extract.pipeline` to check plugin's threads for errors\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 10
} | def check_and_raise_error(self) -> None:
for thread in self._threads:
thread.check_and_raise_error()
|
|
92,777 | 293,721 | 54 | homeassistant/components/recorder/pool.py | 15 | 9 | def recorder_or_dbworker(self) -> bool:
thread_name = threading.current_thread().name
return bool(
thread_name == "Recorder" or thread_name.startswith(DB_WORKER_PREFIX)
)
| Use a dedicated executor pool for database operations (#68105)
Co-authored-by: Erik Montnemery <erik@montnemery.com>
Co-authored-by: Franck Nijhof <git@frenck.dev> | recorder_or_dbworker | bc862e97ed68cce8c437327651f85892787e755e | core | pool.py | 10 | 6 | https://github.com/home-assistant/core.git | 2 | 31 | 0 | 14 | 55 | Python | {
"docstring": "Check if the thread is a recorder or dbworker thread.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def recorder_or_dbworker(self) -> bool:
thread_name = threading.current_thread().name
return bool(
thread_name == "Recorder" or thread_name.startswith(DB_WORKER_PREFIX)
)
|
|
120,843 | 335,973 | 112 | scripts/convert_ldm_original_checkpoint_to_diffusers.py | 44 | 9 | def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
mapping = []
for old_item in old_list:
new_item = old_item.replace('in_layers.0', 'norm1')
| LDM conversion script (#92)
Conversion script
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> | renew_resnet_paths | 87060e6a9c7754b648e621175b4d73161e82906e | diffusers | convert_ldm_original_checkpoint_to_diffusers.py | 12 | 12 | https://github.com/huggingface/diffusers.git | 2 | 105 | 0 | 30 | 189 | Python | {
"docstring": "\n Updates paths inside resnets to the new naming scheme (local renaming)\n ",
"language": "en",
"n_whitespaces": 18,
"n_words": 11,
"vocab_size": 11
} | def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
mapping = []
for old_item in old_list:
new_item = old_item.replace('in_layers.0', 'norm1')
new_item = new_item.replace('in_layers.2', 'conv1')
new_item = new_item.replace('out_layers.0', 'norm2')
new_item = new_item.replace('out_layers.3', 'conv2')
new_item = new_item.replace('emb_layers.1', 'time_emb_proj')
new_item = new_item.replace('skip_connection', 'conv_shortcut')
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
mapping.append({'old': old_item, 'new': new_item})
return mapping
|
|
82,808 | 278,998 | 113 | keras/utils/metrics_utils.py | 42 | 13 | def _assert_splits_match(nested_splits_lists):
error_msg = (
"Inputs must have identical ragged splits. "
f"Input received: {nested_splits_lists}"
)
for splits_list in nested_splits_lists:
if len(splits_list) != len(nested_splits_lists[0]):
rais | Remove pylint comments.
PiperOrigin-RevId: 452353044 | _assert_splits_match | 3613c3defc39c236fb1592c4f7ba1a9cc887343a | keras | metrics_utils.py | 11 | 13 | https://github.com/keras-team/keras.git | 5 | 78 | 0 | 37 | 124 | Python | {
"docstring": "Checks that the given splits lists are identical.\n\n Performs static tests to ensure that the given splits lists are identical,\n and returns a list of control dependency op tensors that check that they are\n fully identical.\n\n Args:\n nested_splits_lists: A list of nested_splits_lists, where each split_list\n is a list of `splits` tensors from a `RaggedTensor`, ordered from\n outermost ragged dimension to innermost ragged dimension.\n\n Returns:\n A list of control dependency op tensors.\n Raises:\n ValueError: If the splits are not identical.\n ",
"language": "en",
"n_whitespaces": 129,
"n_words": 79,
"vocab_size": 49
} | def _assert_splits_match(nested_splits_lists):
error_msg = (
"Inputs must have identical ragged splits. "
f"Input received: {nested_splits_lists}"
)
for splits_list in nested_splits_lists:
if len(splits_list) != len(nested_splits_lists[0]):
raise ValueError(error_msg)
return [
tf.debugging.assert_equal(s1, s2, message=error_msg)
for splits_list in nested_splits_lists[1:]
for (s1, s2) in zip(nested_splits_lists[0], splits_list)
]
|
|
21,280 | 101,898 | 137 | lib/gui/display_command.py | 38 | 16 | def _iteration_limit_callback(self, *args) -> None:
try:
limit = self.vars["display_iterations"].get()
except tk.TclError:
| Typing - lib.gui.display_command | _iteration_limit_callback | dab823a3eb7a5257cb1e0818ee10ed234d3de97f | faceswap | display_command.py | 12 | 11 | https://github.com/deepfakes/faceswap.git | 3 | 62 | 0 | 36 | 105 | Python | {
"docstring": " Limit the amount of data displayed in the live graph on a iteration slider\n variable change. ",
"language": "en",
"n_whitespaces": 24,
"n_words": 16,
"vocab_size": 15
} | def _iteration_limit_callback(self, *args) -> None:
try:
limit = self.vars["display_iterations"].get()
except tk.TclError:
# Don't update when there is no value in the variable
return
logger.debug("Updating graph iteration limit: (new_value: %s, args: %s)",
limit, args)
for graph in self.subnotebook.children.values():
graph.calcs.set_iterations_limit(limit)
|
|
9,138 | 47,512 | 290 | tests/jobs/test_scheduler_job.py | 88 | 43 | def test_queued_dagruns_stops_creating_when_max_active_is_reached(self, dag_maker):
with dag_maker(max_active_runs=10) as dag:
EmptyOperator(task_id='mytask')
session = settings.Session()
self.scheduler_job = SchedulerJob(subdir=os.devnull)
self.scheduler_job.executor = MockExecutor()
self.scheduler_job.processor_agent = mock.MagicMock()
self.scheduler_job.dagbag = dag_maker.dagbag
session = settings.Session()
orm_dag = session.query(DagModel).get(dag.dag_id)
assert orm_dag is no | Replace usage of `DummyOperator` with `EmptyOperator` (#22974)
* Replace usage of `DummyOperator` with `EmptyOperator` | test_queued_dagruns_stops_creating_when_max_active_is_reached | 49e336ae0302b386a2f47269a6d13988382d975f | airflow | test_scheduler_job.py | 13 | 26 | https://github.com/apache/airflow.git | 4 | 278 | 0 | 48 | 448 | Python | {
"docstring": "This tests that queued dagruns stops creating once max_active_runs is reached",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def test_queued_dagruns_stops_creating_when_max_active_is_reached(self, dag_maker):
with dag_maker(max_active_runs=10) as dag:
EmptyOperator(task_id='mytask')
session = settings.Session()
self.scheduler_job = SchedulerJob(subdir=os.devnull)
self.scheduler_job.executor = MockExecutor()
self.scheduler_job.processor_agent = mock.MagicMock()
self.scheduler_job.dagbag = dag_maker.dagbag
session = settings.Session()
orm_dag = session.query(DagModel).get(dag.dag_id)
assert orm_dag is not None
for _ in range(20):
self.scheduler_job._create_dag_runs([orm_dag], session)
drs = session.query(DagRun).all()
assert len(drs) == 10
for dr in drs:
dr.state = State.RUNNING
session.merge(dr)
session.commit()
assert session.query(DagRun.state).filter(DagRun.state == State.RUNNING).count() == 10
for _ in range(20):
self.scheduler_job._create_dag_runs([orm_dag], session)
assert session.query(DagRun).count() == 10
assert session.query(DagRun.state).filter(DagRun.state == State.RUNNING).count() == 10
assert session.query(DagRun.state).filter(DagRun.state == State.QUEUED).count() == 0
assert orm_dag.next_dagrun_create_after is None
|
|
44,334 | 183,781 | 32 | tests/test_xterm_parser.py | 17 | 7 | def test_escape_sequence_resulting_in_multiple_keypresses(parser):
events = list(parser.feed("\x1b[2;4~"))
assert len(events) == 2
assert events[0].key == "escape"
| Backtracking unknown escape sequences, various tests for XTermParser | test_escape_sequence_resulting_in_multiple_keypresses | bfb962bacf274373e5706090cd854b6aa0857270 | textual | test_xterm_parser.py | 11 | 5 | https://github.com/Textualize/textual.git | 1 | 42 | 0 | 13 | 75 | Python | {
"docstring": "Some sequences are interpreted as more than 1 keypress",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def test_escape_sequence_resulting_in_multiple_keypresses(parser):
events = list(parser.feed("\x1b[2;4~"))
assert len(events) == 2
assert events[0].key == "escape"
assert events[1].key == "shift+insert"
|
|
51,057 | 205,271 | 516 | django/db/migrations/autodetector.py | 85 | 33 | def generate_altered_options(self):
models_to_check = self.kept_model_keys.union(
self.kept_proxy_keys,
self.kept_unmanaged_keys,
# unmanaged converted to managed
self.old_unmanaged_keys & self.new_model_keys,
# managed converted to unmanaged
self.old_model_keys & self.new_unmanaged_keys,
)
for app_label, model_name in sorted(models_to_check):
old_model_name = self.renamed_models.get(
(app_label, model_name), model_name
)
old_model_state = self.from_state.models[app_label, old_model_name]
new_model_state = self.to_state.models[app_label, model_name]
old_options = {
key: value
for key, value in old_model_state.options.items()
if key in AlterModelOptions.ALTER_OPTION_KEYS
}
new_options = {
key: value
for key, value in new_model_state.options.items()
if key in AlterModelOptions.ALTER_OPTION_KEYS
}
if old_options != new_options:
self.add_operation(
app_label,
operations.AlterModelOptions(
name=model_name,
options=new_options,
),
| Refs #33476 -- Reformatted code with Black. | generate_altered_options | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | autodetector.py | 14 | 31 | https://github.com/django/django.git | 7 | 165 | 0 | 52 | 248 | Python | {
"docstring": "\n Work out if any non-schema-affecting options have changed and make an\n operation to represent them in state changes (in case Python code in\n migrations needs them).\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 26,
"vocab_size": 25
} | def generate_altered_options(self):
models_to_check = self.kept_model_keys.union(
self.kept_proxy_keys,
self.kept_unmanaged_keys,
# unmanaged converted to managed
self.old_unmanaged_keys & self.new_model_keys,
# managed converted to unmanaged
self.old_model_keys & self.new_unmanaged_keys,
)
for app_label, model_name in sorted(models_to_check):
old_model_name = self.renamed_models.get(
(app_label, model_name), model_name
)
old_model_state = self.from_state.models[app_label, old_model_name]
new_model_state = self.to_state.models[app_label, model_name]
old_options = {
key: value
for key, value in old_model_state.options.items()
if key in AlterModelOptions.ALTER_OPTION_KEYS
}
new_options = {
key: value
for key, value in new_model_state.options.items()
if key in AlterModelOptions.ALTER_OPTION_KEYS
}
if old_options != new_options:
self.add_operation(
app_label,
operations.AlterModelOptions(
name=model_name,
options=new_options,
),
)
|
|
50,315 | 203,341 | 250 | django/contrib/admin/checks.py | 42 | 16 | def _check_readonly_fields(self, obj):
if obj.readonly_fields == ():
return []
elif not isinstance(obj.readonly_fields, (list, tuple)):
return must_be(
"a list o | Refs #33476 -- Reformatted code with Black. | _check_readonly_fields | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | checks.py | 16 | 16 | https://github.com/django/django.git | 4 | 85 | 0 | 37 | 137 | Python | {
"docstring": "Check that readonly_fields refers to proper attribute or field.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def _check_readonly_fields(self, obj):
if obj.readonly_fields == ():
return []
elif not isinstance(obj.readonly_fields, (list, tuple)):
return must_be(
"a list or tuple", option="readonly_fields", obj=obj, id="admin.E034"
)
else:
return list(
chain.from_iterable(
self._check_readonly_fields_item(
obj, field_name, "readonly_fields[%d]" % index
)
for index, field_name in enumerate(obj.readonly_fields)
)
)
|
|
@register.simple_tag(takes_context=True) | 15,652 | 71,268 | 139 | wagtail/admin/templatetags/wagtailadmin_tags.py | 61 | 16 | def querystring(context, **kwargs):
request = context["request"]
querydict = request.GET.copy()
# Can't do querydict.update(kwargs), because QueryDict.update() appends to
# the list of values, instead of replacing the values.
for key, value in kwar | Reformat with black | querystring | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | wagtailadmin_tags.py | 13 | 9 | https://github.com/wagtail/wagtail.git | 3 | 67 | 1 | 46 | 132 | Python | {
"docstring": "\n Print out the current querystring. Any keyword arguments to this template\n tag will be added to the querystring before it is printed out.\n\n <a href=\"/page/{% querystring key='value' %}\">\n\n Will result in something like:\n\n <a href=\"/page/?foo=bar&key=value\">\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 35,
"vocab_size": 31
} | def querystring(context, **kwargs):
request = context["request"]
querydict = request.GET.copy()
# Can't do querydict.update(kwargs), because QueryDict.update() appends to
# the list of values, instead of replacing the values.
for key, value in kwargs.items():
if value is None:
# Remove the key if the value is None
querydict.pop(key, None)
else:
# Set the key otherwise
querydict[key] = str(value)
return "?" + querydict.urlencode()
@register.simple_tag(takes_context=True) |
38,133 | 159,111 | 234 | rasa/graph_components/validators/finetuning_validator.py | 66 | 26 | def _get_fingerprint_of_schema_without_irrelevant_keys(self) -> Text:
graph_schema = self._execution_context.graph_schema
schema_as_dict = graph_schema.as_dict()
for node_name, node_dict in schema_as_dict["nodes"].items():
config_copy = copy.deepcopy(node_dict["config"])
config_copy.pop(EPOCHS, None)
# ignore default values since they're filled in anyway later and can
# end up in configs (or not) in mysterious ways
defaults = graph_schema.nodes[node_name].uses.get_default_config()
for key, default_value in defaults.items():
if key in config_copy and config_copy[key] == default_value:
config_copy.pop(key)
node_dict["config"] = config_copy
node_dict.pop("eager")
node_dict.pop("constructor_name")
return rasa.shared.utils.io.deep_container_fingerprint(schema_as_dict)
| Update dependencies in 3.0 to align with rasa-sdk (#10667)
* align dependencies
* use black 21.7b0
* apply black and docstring reformatting
* add changelog | _get_fingerprint_of_schema_without_irrelevant_keys | 36eb9c9a5fcca2160e54a6cde5076c93db5bd70b | rasa | finetuning_validator.py | 13 | 23 | https://github.com/RasaHQ/rasa.git | 5 | 129 | 0 | 52 | 217 | Python | {
"docstring": "Returns a fingerprint of the given schema with certain items removed.\n\n These items include specifications that do not influence actual training\n results such as \"eager\" mode. The only configuration (in your config) that is\n allowed to change is the number of `epochs`.\n\n Returns:\n fingerprint\n ",
"language": "en",
"n_whitespaces": 90,
"n_words": 44,
"vocab_size": 38
} | def _get_fingerprint_of_schema_without_irrelevant_keys(self) -> Text:
graph_schema = self._execution_context.graph_schema
schema_as_dict = graph_schema.as_dict()
for node_name, node_dict in schema_as_dict["nodes"].items():
config_copy = copy.deepcopy(node_dict["config"])
config_copy.pop(EPOCHS, None)
# ignore default values since they're filled in anyway later and can
# end up in configs (or not) in mysterious ways
defaults = graph_schema.nodes[node_name].uses.get_default_config()
for key, default_value in defaults.items():
if key in config_copy and config_copy[key] == default_value:
config_copy.pop(key)
node_dict["config"] = config_copy
node_dict.pop("eager")
node_dict.pop("constructor_name")
return rasa.shared.utils.io.deep_container_fingerprint(schema_as_dict)
|
|
77,454 | 263,829 | 18 | PyInstaller/utils/hooks/gi.py | 9 | 6 | def get_gi_typelibs(module, version):
module_info = GiModuleInfo(module, version)
return module_info.collect_ | hooks: refactor GObject introspection (gi) hooks
The modules imported from gi.repository are marked as runtime
modules by their corresponding pre-safe-import-module hooks.
Therefore, their standard hooks are always loaded and executed,
regardless of whether the modue is actually importable or not.
In PyInstaller v5, this behavior triggers errors in hooks for
GI modules that are not importable, because the new `isolated`
framework propagates the errors instead of swallowing them.
While these errors could be caught and demoted to warnings
to match the old behavior, it would be better hooks checked
whether module is importable before doing any processing
at all.
To that end, we introduce new class, `GiModuleInfo` that,
as part of its initialization, allows us to:
- perform availability check
- obtain data previously returned by `get_gi_typelibs`
- obtain data previously returned by `get_gi_libdir`
using a single isolated import attempt (instead of one
being performed in each of those steps).
In addition, if passed `hook_api` as an optional argument,
the `GiModuleInfo` can use hook configuration API to override
the GI module version to be collected (which allows the
standard use pattern to be removed from the hook itself).
The old `get_gi_typelibs` and `get_gi_libdir` functions
now internally use `GiModuleInfo` to provide backward
compatible behavior to (potential) exetnal user.
All `gi` hooks are ported to the `GiModuleInfo` and now
become no-op if the module is not available.
In addition, hooks are cleaned up/refactored so that all
processing is performed either in the loading stage ("simple"
hooks that do not require access to hook configuration API)
or in the `hook()` function (hooks that require access to
hook configuration API), but not in the mixture of the two. | get_gi_typelibs | 684bfac8adcf254fec5777f212c13eb62181f900 | pyinstaller | gi.py | 8 | 3 | https://github.com/pyinstaller/pyinstaller.git | 1 | 22 | 0 | 9 | 37 | Python | {
"docstring": "\n Return a tuple of (binaries, datas, hiddenimports) to be used by PyGObject related hooks. Searches for and adds\n dependencies recursively.\n\n :param module: GI module name, as passed to 'gi.require_version()'\n :param version: GI module version, as passed to 'gi.require_version()'\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 38,
"vocab_size": 30
} | def get_gi_typelibs(module, version):
module_info = GiModuleInfo(module, version)
return module_info.collect_typelib_data()
|
|
7,785 | 43,002 | 21 | airflow/www/security.py | 7 | 7 | def _sync_dag_view_permissions(self, dag_id, access_control):
dag | Fix permission issue for dag that has dot in name (#23510)
How we determine if a DAG is a subdag in airflow.security.permissions.resource_name_for_dag is not right.
If a dag_id contains a dot, the permission is not recorded correctly.
The current solution makes a query every time we check for permission for dags that has a dot in the name. Not that I like it but I think it's better than other options I considered such as changing how we name dags for subdag. That's not
good in UX. Another option I considered was making a query when parsing, that's not good and it's avoided
by passing root_dag to resource_name_for_dag
Co-authored-by: Ash Berlin-Taylor <ash_github@firemirror.com>
Co-authored-by: Tzu-ping Chung <uranusjr@gmail.com> | _sync_dag_view_permissions | cc35fcaf89eeff3d89e18088c2e68f01f8baad56 | airflow | security.py | 8 | 26 | https://github.com/apache/airflow.git | 7 | 116 | 0 | 7 | 30 | Python | {
"docstring": "\n Set the access policy on the given DAG's ViewModel.\n\n :param dag_id: the ID of the DAG whose permissions should be updated\n :param access_control: a dict where each key is a rolename and\n each value is a set() of action names (e.g. {'can_read'})\n ",
"language": "en",
"n_whitespaces": 82,
"n_words": 42,
"vocab_size": 33
} | def _sync_dag_view_permissions(self, dag_id, access_control):
dag_resource_name = permissions.resource_name_for_dag(dag_id)
|
|
40,788 | 172,199 | 39 | pandas/tests/util/test_assert_series_equal.py | 20 | 16 | def test_series_equal_datetime_values_mismatch(rtol):
msg =
s1 = Series(pd.date_range("2018-01-01", periods=3, freq="D"))
s2 = Series(pd.date_range("2019-02-02", periods=3, freq="D"))
with pytest.raises(AssertionError, match=msg):
tm.a | ENH: Include column for ea comparison in asserters (#50323)
* ENH: Include column for ea comparison in asserters
* Add gh ref
* Fix test
* Add gh ref
* Split tests | test_series_equal_datetime_values_mismatch | 07b363ea8eee184df30b54bfae9acd04511e1cda | pandas | test_assert_series_equal.py | 12 | 11 | https://github.com/pandas-dev/pandas.git | 1 | 70 | 0 | 16 | 131 | Python | {
"docstring": "Series are different\n\nSeries values are different \\\\(100.0 %\\\\)\n\\\\[index\\\\]: \\\\[0, 1, 2\\\\]\n\\\\[left\\\\]: \\\\[1514764800000000000, 1514851200000000000, 1514937600000000000\\\\]\n\\\\[right\\\\]: \\\\[1549065600000000000, 1549152000000000000, 1549238400000000000\\\\]",
"language": "en",
"n_whitespaces": 17,
"n_words": 21,
"vocab_size": 18
} | def test_series_equal_datetime_values_mismatch(rtol):
msg =
s1 = Series(pd.date_range("2018-01-01", periods=3, freq="D"))
s2 = Series(pd.date_range("2019-02-02", periods=3, freq="D"))
with pytest.raises(AssertionError, match=msg):
tm.assert_series_equal(s1, s2, rtol=rtol)
|
|
54,344 | 216,038 | 132 | tests/pytests/functional/pillar/test_gpg.py | 73 | 16 | def test_decrypt_pillar_invalid_renderer(salt_master, grains, pillar_homedir):
opts = salt_master.config.copy()
opts["decrypt_pillar"] = [{"secrets:vault": "gpg"}]
opts["dec | Add tests for gpg decryption failure option
Test that:
1. Pillar registers an error when `gpg_decrypt_must_succeed` is `True` and decryption fails
2. The GPG renderer fails silently when `gpg_decrypt_must_succeed` is `False`
Also mock `__opts__["gpg_decrypt_must_succeed"]` for gpg renderer unit pytests. | test_decrypt_pillar_invalid_renderer | b856d3225ef1003cbe94499dc8bd82efffabb661 | salt | test_gpg.py | 10 | 17 | https://github.com/saltstack/salt.git | 1 | 185 | 0 | 56 | 346 | Python | {
"docstring": "\n Test decryption using a renderer which is not permitted. It should\n fail, leaving the encrypted keys intact, and add an error to the pillar\n dictionary.\n\n decrypt_pillar_default: foo\n decrypt_pillar_renderers:\n - foo\n - bar\n decrypt_pillar:\n - 'secrets:vault': gpg\n ",
"language": "en",
"n_whitespaces": 97,
"n_words": 36,
"vocab_size": 32
} | def test_decrypt_pillar_invalid_renderer(salt_master, grains, pillar_homedir):
opts = salt_master.config.copy()
opts["decrypt_pillar"] = [{"secrets:vault": "gpg"}]
opts["decrypt_pillar_default"] = "foo"
opts["decrypt_pillar_renderers"] = ["foo", "bar"]
pillar_obj = salt.pillar.Pillar(opts, grains, "test", "base")
ret = pillar_obj.compile_pillar()
expected = copy.deepcopy(GPG_PILLAR_ENCRYPTED)
expected["_errors"] = [
"Failed to decrypt pillar key 'secrets:vault': 'gpg' is not a valid decryption"
" renderer. Valid choices are: foo, bar"
]
assert ret["_errors"] == expected["_errors"]
assert ret["secrets"]["vault"]["foo"] == expected["secrets"]["vault"]["foo"]
assert ret["secrets"]["vault"]["bar"] == expected["secrets"]["vault"]["bar"]
assert ret["secrets"]["vault"]["baz"] == expected["secrets"]["vault"]["baz"]
assert ret["secrets"]["vault"]["qux"] == expected["secrets"]["vault"]["qux"]
|
|
@DeveloperAPI | 27,515 | 124,104 | 49 | python/ray/tune/trainable/session.py | 14 | 9 | def get_trial_name():
warnings.warn(
_deprecation_msg,
DeprecationWarning,
)
_session = get_session()
if _session:
return _session.trial_name
| [air] update documentation to use `session.report` (#26051)
Update documentation to use `session.report`.
Next steps:
1. Update our internal caller to use `session.report`. Most importantly, CheckpointManager and DataParallelTrainer.
2. Update `get_trial_resources` to use PGF notions to incorporate the requirement of ResourceChangingScheduler. @Yard1
3. After 2 is done, change all `tune.get_trial_resources` to `session.get_trial_resources`
4. [internal implementation] remove special checkpoint handling logic from huggingface trainer. Optimize the flow for checkpoint conversion with `session.report`.
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com> | get_trial_name | ac831fded416381ad3c7fe2ba135eaa4aaab5879 | ray | session.py | 8 | 8 | https://github.com/ray-project/ray.git | 2 | 26 | 1 | 14 | 49 | Python | {
"docstring": "Trial name for the corresponding trial.\n\n For function API use only.\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 11,
"vocab_size": 11
} | def get_trial_name():
warnings.warn(
_deprecation_msg,
DeprecationWarning,
)
_session = get_session()
if _session:
return _session.trial_name
@DeveloperAPI |
36,580 | 156,139 | 48 | dask/utils.py | 23 | 14 | def get_scheduler_lock(collection=None, scheduler=None):
from dask import multiprocessing
from dask.base import get_scheduler
actual_get = get_scheduler(collections=[collection], scheduler=scheduler)
if actual_get == multiprocessing.get:
return multiprocessing.get_context().Manager(). | absolufy-imports - No relative - PEP8 (#8796)
Conversation in https://github.com/dask/distributed/issues/5889 | get_scheduler_lock | cccb9d8d8e33a891396b1275c2448c352ef40c27 | dask | utils.py | 13 | 7 | https://github.com/dask/dask.git | 2 | 61 | 0 | 19 | 100 | Python | {
"docstring": "Get an instance of the appropriate lock for a certain situation based on\n scheduler used.",
"language": "en",
"n_whitespaces": 17,
"n_words": 15,
"vocab_size": 15
} | def get_scheduler_lock(collection=None, scheduler=None):
from dask import multiprocessing
from dask.base import get_scheduler
actual_get = get_scheduler(collections=[collection], scheduler=scheduler)
if actual_get == multiprocessing.get:
return multiprocessing.get_context().Manager().Lock()
return SerializableLock()
|
|
80,868 | 271,851 | 150 | keras/engine/training_utils_v1.py | 58 | 16 | def verify_dataset_shuffled(x):
assert isinstance(x, tf.data.Dataset)
graph_def = get_dataset_graph_def(x)
for node in graph_def.node:
if node.op.startswith("ShuffleDataset"):
return True
# Also check graph_def.library.function for ds.interleave or ds.flat_map
for function in graph_def.library.functi | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | verify_dataset_shuffled | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | training_utils_v1.py | 12 | 15 | https://github.com/keras-team/keras.git | 6 | 79 | 0 | 45 | 134 | Python | {
"docstring": "Verifies that the dataset is shuffled.\n\n Args:\n x: Dataset passed as an input to the model.\n\n Returns:\n boolean, whether the input dataset is shuffled or not.\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 26,
"vocab_size": 21
} | def verify_dataset_shuffled(x):
assert isinstance(x, tf.data.Dataset)
graph_def = get_dataset_graph_def(x)
for node in graph_def.node:
if node.op.startswith("ShuffleDataset"):
return True
# Also check graph_def.library.function for ds.interleave or ds.flat_map
for function in graph_def.library.function:
for node in function.node_def:
if node.op.startswith("ShuffleDataset"):
return True
logging.warning(
"Expected a shuffled dataset but input dataset `x` is "
"not shuffled. Please invoke `shuffle()` on input dataset."
)
return False
|
|
@log_start_end(log=logger) | 84,165 | 282,485 | 39 | gamestonk_terminal/cryptocurrency/due_diligence/binance_model.py | 18 | 12 | def get_binance_available_quotes_for_each_coin() -> dict:
| Global plot styles (#1228)
* Add default stylesheets
* Add terminal style helper class and global style initialization in cfg
* Style comments and docstrings
* Load rich terminal theme from config file
* Add application chart styles to candle charts
* Add todos
* Remove explicit color setting for some ta charts
* Add user styles folder to gitignore
* Update default stylesheets
* Add matplotlib font manager support
* Add matplotlib font manager support
* Update docstrings and default style
* Update stocks candle chart formatting (return fig to style title)
* Style common ta overlap view
* Make up and down market colors a part of the style helper
* Update stylesheets
* Style common ta volume view
* Style common ta momentum view
* Style common ta trend indicators view
* Style common ta volatility view
* Style common ta volume view
* Style common ta custom indicators view
* Fix styling bugs and remove the obvious time x lablel
* Style charts in the covid menu
* Set legend position to upper left in the mpl stylesheet
* Add mpl_rcparams configs for parameters not covered by stylesheets
* Remove font configuration files
* Update style class utility functions
* Implement passing external axes and style utility usage in ema & stoch
* Add theme watermark and output helpers
* Rename style to theme
* Update helper usage in ta/ma and ta/stoch
* Update style to theme in sample menus
* Style forex (#1305)
* Make tight layout optional 'cause mplfinance doesn't support it
* Apply global style to the forex menu
* Update code layout in oanda view and black
* Style common TA (#1315)
* Make tight layout optional 'cause mplfinance doesn't support it
* Apply global style to the forex menu
* Add linewidth to theme for use in mpf's addplots
* Add vwap to the stocks notebook api
* Update common/ta overlap to follow charting style
* Apply style on TerminalStyle init
* Enable infrastructure for excluding non-trading days from plots
* Update notebook api to include there and resolve bandit warning
* Update ta/common/overlap to exclude non-trading days
* Enable external ax, style and non-trading days in common/ta/momentum
* Enable external ax, style and non-trading days in common/ta/trend
* Update vwap to the argument naming convention
* Enable external ax, style and non-trading days in common/ta/volatility
* Enable external ax, style and non-trading days in common/ta/volume
* Enable external ax, style and non-trading days in common/ta/custom
* Fix controller tests
* Forgot to disable rewriting of the cassettes ...
* Fix controller errors that came up because a merge conflict
* Fix price label position on fib
* Fix line having wrong x values in fib
Co-authored-by: Colin Delahunty <72827203+colin99d@users.noreply.github.com>
* Style economy (#1308)
* Began converting
* Added alphavan_view
* Added CNN View
* Updated nasdaq view, fixed glitch
* Added fred
* Refactored URL
* Theo's requested changes
* Updated docstrings
* Updated tests
* Fixed pylint
* Fixed tests
* Theo changes
* Econ Fix
* Refactor chart style for Crypto context (#1306)
* Remove mock for gff
* Mock visualize_output helper function
* Refactor
* Fix plot helper
* Update legend loc
* Refactor mplfinance candle plot
* Fix errors in the helper function
* Fix binbook having the wrong call_ function name
* Remove hardcoded style params
* Resolve kwargs future warning from pandas
* Remove warnings import
Co-authored-by: Theodore Aptekarev <aptekarev@gmail.com>
* funds + custom (#1311)
* funds + custom
* cleanup cleanup everybody everywhere
* Fix external axes conditional and a typo
Co-authored-by: Theodore Aptekarev <aptekarev@gmail.com>
* Add external axes mode to covid charts (#1328)
* Add portfolio menu plots (#1318)
* Portfolio view plots (commenting out report stuff)
* PA Menu broken. Commenting out and fix tests
* portfolio optimization
* comment out commented api line
* Add notes on disabling the pa submenu
Co-authored-by: Theodore Aptekarev <aptekarev@gmail.com>
* Plot updates in common BA (#1335)
* Add external axes support to common/ba/finbrain
* Add external axes support to common/ba/twitter
* Add external axes support to common/ba/google
* Add external axes support to common/ba/sentimentinvestor
* Add sentimentinvestor to the notebooks API
* Fix tests
* Etf refactor (#1323)
* Refactored no ETF
* Fixed gtff import
* Fixed tests
* Fix pie chart style
* Refactored etf/candle
* Added pylint fix
* Fixed tests
* Update candle chart layout
* Update etf controller test
* Remove strange binary file
Co-authored-by: Theodore Aptekarev <aptekarev@gmail.com>
* Expose ETF candle function in the notebooks API
* Common BA and Common QA charts update (#1342)
* Add external axes support to common/ba/finbrain
* Add external axes support to common/ba/twitter
* Add external axes support to common/ba/google
* Add external axes support to common/ba/sentimentinvestor
* Add sentimentinvestor to the notebooks API
* Fix tests
* Update stylesheet files
* Refactor charts for common/qa
* Update the forgotten line plot
* Update tests
* Add missing arg to a docstring
* Remove scientific notation
* Black imports
Co-authored-by: Minh Hoang <nminh.hoang1023@gmail.com>
* Options refactor (#1324)
* Fixed alphaquery_view
* finished options
* Fixed pylint
* Fixed tests
* Fixed tests
* Fixed tests
* update yfinance
* Tradier + Chartexchange
* change mocks from gtff to theme.visualize output
* tests
Co-authored-by: Theodore Aptekarev <aptekarev@gmail.com>
Co-authored-by: james <jmaslek11@gmail.com>
* Refactor Stocks menu (#1325)
* Fix backtesting menu
* Refactor comparison analysis
* Refactor Dark pool shorts
* Refactor rest of menu
* Fix test
* Fix tests failing
* Fix tests fail
* Fix test failing
* Remove record mode=none to record new output
* Rewrite test output
* Rewrite test outputs
* Adding more rewritten test output
* Mock plt.show
* Mock missing plt.show
* Missing @pytest.mark.vcr
* Updating tests : common/behavioural_analysis/finbrain
* Improve notebooks API coverage for CA and DPS
* Silence annoying flake8 warning
Co-authored-by: Chavithra PARANA <chavithra@gmail.com>
Co-authored-by: Theodore Aptekarev <aptekarev@gmail.com>
* Charts update for common/pred (#1344)
* Add external axes support to common/ba/finbrain
* Add external axes support to common/ba/twitter
* Add external axes support to common/ba/google
* Add external axes support to common/ba/sentimentinvestor
* Add sentimentinvestor to the notebooks API
* Fix tests
* Update stylesheet files
* Refactor charts for common/qa
* Update the forgotten line plot
* Update tests
* Add missing arg to a docstring
* Style pred helper and controllers
* Update ETS plot
* Update plots in KNN and pred helper
* Update plot and pretty table for arima
* Update plot for common/pred/regression
* Refactor mc_view
* Fix linting
* Fix mypy
* Move plot title to the axis level to make more vertical space
Co-authored-by: Minh Hoang <nminh.hoang1023@gmail.com>
Co-authored-by: jmaslek <jmaslek11@gmail.com>
* linter
* Update common/ba test data
* Change etf candle to match stock candle
* try updating sia test
Co-authored-by: Colin Delahunty <72827203+colin99d@users.noreply.github.com>
Co-authored-by: jmaslek <jmaslek11@gmail.com>
Co-authored-by: minhhoang1023 <40023817+minhhoang1023@users.noreply.github.com>
Co-authored-by: Minh Hoang <nminh.hoang1023@gmail.com>
Co-authored-by: Chavithra PARANA <chavithra@gmail.com> | get_binance_available_quotes_for_each_coin | e1b6022b9cf156ffc0697d0d25a5ed2772ea8d68 | OpenBBTerminal | binance_model.py | 12 | 15 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 2 | 40 | 1 | 16 | 82 | Python | {
"docstring": "Helper methods that for every coin available on Binance add all quote assets. [Source: Binance]\n\n Returns\n -------\n dict:\n All quote assets for given coin\n {'ETH' : ['BTC', 'USDT' ...], 'UNI' : ['ETH', 'BTC','BUSD', ...]\n\n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 34,
"vocab_size": 30
} | def get_binance_available_quotes_for_each_coin() -> dict:
trading_pairs = _get_trading_pairs()
results = defaultdict(list)
for pair in trading_pairs:
results[pair["baseAsset"]].append(pair["quoteAsset"])
return results
@log_start_end(log=logger) |
14,688 | 67,965 | 54 | erpnext/stock/stock_ledger.py | 73 | 17 | def update_qty_in_future_sle(args, allow_negative_stock=False):
datetime_limit_condition = ""
qty_shift = args.actual_qty
# find difference/shift in qty caused by stock reconciliation
if args.voucher_type == "Stock Reconciliation":
qty_shift = get_stock_reco_qty_shift(args)
# find the next nearest stock reco so that we only recalculate SLEs till that point
next_stock_reco_detail = get_next_stock_reco(args)
if next_stock_reco_detail:
detail = next_stock_reco_detail[0]
# add condi | style: format code with black | update_qty_in_future_sle | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | stock_ledger.py | 10 | 31 | https://github.com/frappe/erpnext.git | 3 | 80 | 0 | 59 | 136 | Python | {
"docstring": "Recalculate Qty after Transaction in future SLEs based on current SLE.\n\t\tupdate `tabStock Ledger Entry`\n\t\tset qty_after_transaction = qty_after_transaction + {qty_shift}\n\t\twhere\n\t\t\titem_code = %(item_code)s\n\t\t\tand warehouse = %(warehouse)s\n\t\t\tand voucher_no != %(voucher_no)s\n\t\t\tand is_cancelled = 0\n\t\t\tand (timestamp(posting_date, posting_time) > timestamp(%(posting_date)s, %(posting_time)s)\n\t\t\t\tor (\n\t\t\t\t\ttimestamp(posting_date, posting_time) = timestamp(%(posting_date)s, %(posting_time)s)\n\t\t\t\t\tand creation > %(creation)s\n\t\t\t\t)\n\t\t\t)\n\t\t{datetime_limit_condition}\n\t\t",
"language": "en",
"n_whitespaces": 42,
"n_words": 57,
"vocab_size": 43
} | def update_qty_in_future_sle(args, allow_negative_stock=False):
datetime_limit_condition = ""
qty_shift = args.actual_qty
# find difference/shift in qty caused by stock reconciliation
if args.voucher_type == "Stock Reconciliation":
qty_shift = get_stock_reco_qty_shift(args)
# find the next nearest stock reco so that we only recalculate SLEs till that point
next_stock_reco_detail = get_next_stock_reco(args)
if next_stock_reco_detail:
detail = next_stock_reco_detail[0]
# add condition to update SLEs before this date & time
datetime_limit_condition = get_datetime_limit_condition(detail)
frappe.db.sql(
.format(
qty_shift=qty_shift, datetime_limit_condition=datetime_limit_condition
),
args,
)
validate_negative_qty_in_future_sle(args, allow_negative_stock)
|
|
50,273 | 203,245 | 80 | django/templatetags/tz.py | 40 | 9 | def get_current_timezone_tag(parser, token):
# token.split_contents() isn't useful here because this tag doesn't accept variable as arguments
a | Refs #33476 -- Refactored problematic code before reformatting by Black.
In these cases Black produces unexpected results, e.g.
def make_random_password(
self,
length=10,
allowed_chars='abcdefghjkmnpqrstuvwxyz' 'ABCDEFGHJKLMNPQRSTUVWXYZ' '23456789',
):
or
cursor.execute("""
SELECT ...
""",
[table name],
) | get_current_timezone_tag | c5cd8783825b5f6384417dac5f3889b4210b7d08 | django | tz.py | 11 | 7 | https://github.com/django/django.git | 3 | 47 | 0 | 38 | 81 | Python | {
"docstring": "\n Store the name of the current time zone in the context.\n\n Usage::\n\n {% get_current_timezone as TIME_ZONE %}\n\n This will fetch the currently active time zone and put its name\n into the ``TIME_ZONE`` context variable.\n ",
"language": "en",
"n_whitespaces": 57,
"n_words": 34,
"vocab_size": 27
} | def get_current_timezone_tag(parser, token):
# token.split_contents() isn't useful here because this tag doesn't accept variable as arguments
args = token.contents.split()
if len(args) != 3 or args[1] != 'as':
raise TemplateSyntaxError(
"'get_current_timezone' requires 'as variable' (got %r)" % args
)
return GetCurrentTimezoneNode(args[2])
|
|
@register_agent("fake_report") | 47,106 | 194,834 | 365 | tests/test_train_model.py | 55 | 25 | def test_save_multiple_world_logs_mutator(self):
with testing_utils.tempdir() as tmpdir:
log_report = os.path.join(tmpdir, 'world_logs.jsonl')
multitask = 'integration_tests:mutators=flatt | Fixes train_model worldlogging for multitask with mutators. (#4414)
* Fixes train_model worldlogging for multitask with mutators.
* Fix bug in train_model when evaltask doesn't match task. | test_save_multiple_world_logs_mutator | d6773a0b4acf1027dc9b68342a1d84344f1a0d95 | ParlAI | test_train_model.py | 14 | 21 | https://github.com/facebookresearch/ParlAI.git | 2 | 113 | 1 | 47 | 207 | Python | {
"docstring": "\n Test that we can save multiple world_logs from train model on multiple tasks\n with mutators present.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 15
} | def test_save_multiple_world_logs_mutator(self):
with testing_utils.tempdir() as tmpdir:
log_report = os.path.join(tmpdir, 'world_logs.jsonl')
multitask = 'integration_tests:mutators=flatten,integration_tests:ReverseTeacher:mutator=reverse'
valid, test = testing_utils.train_model(
{
'task': multitask,
'validation_max_exs': 10,
'model': 'repeat_label',
'short_final_eval': True,
'num_epochs': 1.0,
'world_logs': log_report,
}
)
for task in multitask.split(','):
task_log_report = get_task_world_logs(
task, log_report, is_multitask=True
)
with PathManager.open(task_log_report) as f:
json_lines = f.readlines()
assert len(json_lines) == 5
@register_agent("fake_report") |
32,293 | 141,204 | 151 | python/ray/tune/tests/test_trial_relative_logdir.py | 36 | 19 | def testDotsInLogdir(self):
local_dir_path = Path("/tmp/test_ | [tune] Relative logdir paths in trials for ExperimentAnalysis in remote buckets (#25063)
When running an experiment for example in the cloud and syncing to a bucket the logdir path in the trials will be changed when working with the checkpoints in the bucket. There are some workarounds, but the easier solution is to also add a rel_logdir containing the relative path to the trials/checkpoints that can handle any changes in the location of experiment results.
As discussed with @Yard1 and @krfricke
Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
Co-authored-by: Kai Fricke <kai@anyscale.com> | testDotsInLogdir | 2a5d322e705df080e9254c9c9a3e187c1ea41c4e | ray | test_trial_relative_logdir.py | 14 | 13 | https://github.com/ray-project/ray.git | 4 | 100 | 0 | 22 | 179 | Python | {
"docstring": "This should result in errors as dots in paths are not allowed.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | def testDotsInLogdir(self):
local_dir_path = Path("/tmp/test_rel_dots")
local_dir = str(local_dir_path)
if local_dir_path.exists():
local_dir = tempfile.mkdtemp(prefix=str(local_dir_path) + "_")
trial = Trial(trainable_name="rel_logdir", local_dir=local_dir)
with self.assertRaises(ValueError):
trial.logdir = "/tmp/test_rel/../dots"
with self.assertRaises(ValueError):
trial.logdir = local_dir + "/../"
if shutil.rmtree.avoids_symlink_attacks:
if local_dir_path.exists():
shutil.rmtree(local_dir)
|
|
@override_settings(WAGTAILIMAGES_IMAGE_MODEL="tests.CustomImage") | 16,361 | 75,124 | 155 | wagtail/images/tests/test_admin_views.py | 40 | 25 | def test_delete_post(self):
# Send request
response = self.client.post(
reverse("wagtailimages:delete_multiple", args=(self.ima | Reformat with black | test_delete_post | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | test_admin_views.py | 14 | 12 | https://github.com/wagtail/wagtail.git | 1 | 128 | 1 | 33 | 232 | Python | {
"docstring": "\n This tests that a POST request to the delete view deletes the image\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 13,
"vocab_size": 12
} | def test_delete_post(self):
# Send request
response = self.client.post(
reverse("wagtailimages:delete_multiple", args=(self.image.id,))
)
# Check response
self.assertEqual(response.status_code, 200)
self.assertEqual(response["Content-Type"], "application/json")
# Make sure the image is deleted
self.assertFalse(Image.objects.filter(id=self.image.id).exists())
# Check JSON
response_json = json.loads(response.content.decode())
self.assertIn("image_id", response_json)
self.assertIn("success", response_json)
self.assertEqual(response_json["image_id"], self.image.id)
self.assertTrue(response_json["success"])
@override_settings(WAGTAILIMAGES_IMAGE_MODEL="tests.CustomImage") |
46,030 | 189,389 | 329 | tests/utils/GraphicalUnitTester.py | 106 | 31 | def _show_diff_helper(self, frame_data, expected_frame_data):
import matplotlib.gridspec as gridspec # type: ignore
import matplotlib.pyplot as plt
gs = gridspec.GridSpec(2, 2)
fig = plt.figure()
fig.suptitle(f"Test for {str(self.scene | Added MyPy Support (#1972)
* MyPy Support
* MyPy Hook
* Removing MyPy Hook
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Delete __init__.pyi
* Delete color.pyi
* Update .mypy.ini
Co-authored-by: Christopher Besch <christopher.besch@gmx.de>
* changes
* quick fix
* MyPy Hook
* MyPy Hook
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christopher Besch <christopher.besch@gmx.de> | _show_diff_helper | c4217731e08470d5a56cf02cf76cae01c03fb78f | manim | GraphicalUnitTester.py | 14 | 28 | https://github.com/ManimCommunity/manim.git | 1 | 240 | 0 | 69 | 407 | Python | {
"docstring": "Will visually display with matplotlib differences between frame generated and the one expected.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 13
} | def _show_diff_helper(self, frame_data, expected_frame_data):
import matplotlib.gridspec as gridspec # type: ignore
import matplotlib.pyplot as plt
gs = gridspec.GridSpec(2, 2)
fig = plt.figure()
fig.suptitle(f"Test for {str(self.scene).replace('Test', '')}", fontsize=16)
ax = fig.add_subplot(gs[0, 0])
ax.imshow(frame_data)
ax.set_title("Generated :")
ax = fig.add_subplot(gs[0, 1])
ax.imshow(expected_frame_data)
ax.set_title("Expected :")
ax = fig.add_subplot(gs[1, :])
diff_im = expected_frame_data.copy()
diff_im = np.where(
frame_data != np.array([0, 0, 0, 255]),
np.array([0, 255, 0, 255], dtype="uint8"),
np.array([0, 0, 0, 255], dtype="uint8"),
) # Set any non-black pixels to green
np.putmask(
diff_im,
expected_frame_data != frame_data,
np.array([255, 0, 0, 255], dtype="uint8"),
) # Set any different pixels to red
ax.imshow(diff_im, interpolation="nearest")
ax.set_title("Differences summary : (green = same, red = different)")
plt.show()
plt.savefig(f"{self.scene}.png")
|
|
17,326 | 82,188 | 84 | awx/main/scheduler/task_manager_models.py | 30 | 8 | def consume_capacity(self, task):
if self.is_container_gr | Add max concurrent jobs and max forks per ig
The intention of this feature is primarily to provide some notion of max
capacity of container groups, but the logic I've left generic. Default
is 0, which will be interpereted as no maximum number of jobs or forks.
Includes refactor of variable and method names for clarity.
instances_by_hostname is an internal attribute of TaskManagerInstances.
Clarify when we are expecting the actual TaskManagerInstances object.
Unify how we process running tasks and consume capacity. This has the
effect that we do less expensive work in after_lock_init and have 1 less
loop over all the running tasks. Previously we looped for both building
the dependency graph as well as for calculating the starting capacity of
all the instances and instance groups. Now we acheive both tasks in the
same loop.
Because of how this changes the somewhat subtle "do-si-do" of how to
initialize the Task Manager models, introduce a wrapper class that tries
to take some of that burden off of other areas where we re-use this like
in the serializer and the metrics. Also use this wrapper class to handle
nicities of how to track capacity consumption on instances and instance
groups.
Add tests for max_forks and max_concurrent_jobs
Fixup tests that use TaskManagerModels to accomodate changes.
assign ig before call to consume capacity
if we don't do it in that order, then we don't correctly account for
the container group jobs we are starting in the middle of the task
manager run | consume_capacity | 86856f242aec6051c1cace683fe1761c0775babb | awx | task_manager_models.py | 11 | 6 | https://github.com/ansible/awx.git | 2 | 32 | 0 | 28 | 56 | Python | {
"docstring": "We only consume capacity on an instance group level if it is a container group. Otherwise we consume capacity on an instance level.",
"language": "en",
"n_whitespaces": 22,
"n_words": 23,
"vocab_size": 18
} | def consume_capacity(self, task):
if self.is_container_group:
self.container_group_jobs += 1
self.container_group_consumed_forks += task.task_impact
else:
raise RuntimeError("We only track capacity for container groups at the instance group level. Otherwise, consume capacity on instances.")
|
|
31,216 | 137,681 | 25 | python/ray/util/spark/utils.py | 9 | 8 | def get_avail_mem_per_ray_worker_node(spark, object_store_memory_per_node):
num_cpus_per_spark_task = int(
spark.sparkContext.getConf().get("spark.task.cpus", "1")
)
| Ray on spark implementation (#28771)
REP: ray-project/enhancements#14 | get_avail_mem_per_ray_worker_node | e76ccee69aaa7583be1a9d81cf7b2aa72cf25647 | ray | utils.py | 13 | 20 | https://github.com/ray-project/ray.git | 2 | 83 | 0 | 9 | 49 | Python | {
"docstring": "\n Return the available heap memory and object store memory for each ray worker.\n NB: We have one ray node per spark task.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 22,
"vocab_size": 20
} | def get_avail_mem_per_ray_worker_node(spark, object_store_memory_per_node):
num_cpus_per_spark_task = int(
spark.sparkContext.getConf().get("spark.task.cpus", "1")
)
|
|
3,751 | 21,285 | 214 | pipenv/patched/notpip/_internal/metadata/importlib/_dists.py | 44 | 10 | def _iter_egg_info_dependencies(self) -> Iterable[str]:
for entry i | Vendor in pip 22.1.2 | _iter_egg_info_dependencies | c69d55f7c82d5ae2cce542bcfb98d043ca4836a0 | pipenv | _dists.py | 16 | 26 | https://github.com/pypa/pipenv.git | 7 | 69 | 0 | 30 | 161 | Python | {
"docstring": "Get distribution dependencies from the egg-info directory.\n\n To ease parsing, this converts a legacy dependency entry into a PEP 508\n requirement string. Like ``_iter_requires_txt_entries()``, there is code\n in ``importlib.metadata`` that does mostly the same, but not do exactly\n what we need.\n\n Namely, ``importlib.metadata`` does not normalize the extra name before\n putting it into the requirement string, which causes marker comparison\n to fail because the dist-info format do normalize. This is consistent in\n all currently available PEP 517 backends, although not standardized.\n ",
"language": "en",
"n_whitespaces": 144,
"n_words": 81,
"vocab_size": 66
} | def _iter_egg_info_dependencies(self) -> Iterable[str]:
for entry in self._iter_requires_txt_entries():
if entry.extra and entry.marker:
marker = f'({entry.marker}) and extra == "{safe_extra(entry.extra)}"'
elif entry.extra:
marker = f'extra == "{safe_extra(entry.extra)}"'
elif entry.marker:
marker = entry.marker
else:
marker = ""
if marker:
yield f"{entry.requirement} ; {marker}"
else:
yield entry.requirement
|
|
55,071 | 218,009 | 29 | python3.10.4/Lib/imp.py | 9 | 7 | def cache_from_source(path, debug_override=None):
with warnings.catch_warnings():
warnings.simplefilter('ignore')
return util.cache_from_source(path, debug_override)
| add python 3.10.4 for windows | cache_from_source | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | imp.py | 10 | 4 | https://github.com/XX-net/XX-Net.git | 1 | 32 | 0 | 9 | 57 | Python | {
"docstring": "**DEPRECATED**\n\n Given the path to a .py file, return the path to its .pyc file.\n\n The .py file does not need to exist; this simply returns the path to the\n .pyc file calculated as if the .py file were imported.\n\n If debug_override is not None, then it must be a boolean and is used in\n place of sys.flags.optimize.\n\n If sys.implementation.cache_tag is None then NotImplementedError is raised.\n\n ",
"language": "en",
"n_whitespaces": 87,
"n_words": 66,
"vocab_size": 45
} | def cache_from_source(path, debug_override=None):
with warnings.catch_warnings():
warnings.simplefilter('ignore')
return util.cache_from_source(path, debug_override)
|
|
54,998 | 217,895 | 287 | python3.10.4/Lib/http/server.py | 112 | 19 | def _url_collapse_path(path):
# Query componen | add python 3.10.4 for windows | _url_collapse_path | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | server.py | 14 | 25 | https://github.com/XX-net/XX-Net.git | 10 | 151 | 0 | 71 | 281 | Python | {
"docstring": "\n Given a URL path, remove extra '/'s and '.' path elements and collapse\n any '..' references and returns a collapsed path.\n\n Implements something akin to RFC-2396 5.2 step 6 to parse relative paths.\n The utility of this function is limited to is_cgi method and helps\n preventing some security attacks.\n\n Returns: The reconstituted URL, which will always start with a '/'.\n\n Raises: IndexError if too many '..' occur within the path.\n\n ",
"language": "en",
"n_whitespaces": 95,
"n_words": 70,
"vocab_size": 60
} | def _url_collapse_path(path):
# Query component should not be involved.
path, _, query = path.partition('?')
path = urllib.parse.unquote(path)
# Similar to os.path.split(os.path.normpath(path)) but specific to URL
# path semantics rather than local operating system semantics.
path_parts = path.split('/')
head_parts = []
for part in path_parts[:-1]:
if part == '..':
head_parts.pop() # IndexError if more '..' than prior parts
elif part and part != '.':
head_parts.append( part )
if path_parts:
tail_part = path_parts.pop()
if tail_part:
if tail_part == '..':
head_parts.pop()
tail_part = ''
elif tail_part == '.':
tail_part = ''
else:
tail_part = ''
if query:
tail_part = '?'.join((tail_part, query))
splitpath = ('/' + '/'.join(head_parts), tail_part)
collapsed_path = "/".join(splitpath)
return collapsed_path
nobody = None
|
|
40,402 | 169,224 | 72 | pandas/core/arrays/sparse/accessor.py | 26 | 16 | def to_coo(self, row_levels=(0,), column_levels=(1,), sort_labels: bool = False):
from pandas.core.arrays.sparse.scipy_sparse import sparse_series_to_coo
A, rows, columns = sparse_series_to_coo(
self._parent, row_levels, column_levels, sort_labels=sort_labels
)
return A, rows, columns
| TYP: type all arguments with bool default values (#48624)
* TYP: type all arguments with bool default values
* bool_t
* ignore type error in pandas/core/arrays/sparse/accessor.py | to_coo | 5c66e65d7b9fef47ccb585ce2fd0b3ea18dc82ea | pandas | accessor.py | 9 | 80 | https://github.com/pandas-dev/pandas.git | 1 | 64 | 0 | 22 | 89 | Python | {
"docstring": "\n Create a scipy.sparse.coo_matrix from a Series with MultiIndex.\n\n Use row_levels and column_levels to determine the row and column\n coordinates respectively. row_levels and column_levels are the names\n (labels) or numbers of the levels. {row_levels, column_levels} must be\n a partition of the MultiIndex level names (or numbers).\n\n Parameters\n ----------\n row_levels : tuple/list\n column_levels : tuple/list\n sort_labels : bool, default False\n Sort the row and column labels before forming the sparse matrix.\n When `row_levels` and/or `column_levels` refer to a single level,\n set to `True` for a faster execution.\n\n Returns\n -------\n y : scipy.sparse.coo_matrix\n rows : list (row labels)\n columns : list (column labels)\n\n Examples\n --------\n >>> s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan])\n >>> s.index = pd.MultiIndex.from_tuples(\n ... [\n ... (1, 2, \"a\", 0),\n ... (1, 2, \"a\", 1),\n ... (1, 1, \"b\", 0),\n ... (1, 1, \"b\", 1),\n ... (2, 1, \"b\", 0),\n ... (2, 1, \"b\", 1)\n ... ],\n ... names=[\"A\", \"B\", \"C\", \"D\"],\n ... )\n >>> s\n A B C D\n 1 2 a 0 3.0\n 1 NaN\n 1 b 0 1.0\n 1 3.0\n 2 1 b 0 NaN\n 1 NaN\n dtype: float64\n\n >>> ss = s.astype(\"Sparse\")\n >>> ss\n A B C D\n 1 2 a 0 3.0\n 1 NaN\n 1 b 0 1.0\n 1 3.0\n 2 1 b 0 NaN\n 1 NaN\n dtype: Sparse[float64, nan]\n\n >>> A, rows, columns = ss.sparse.to_coo(\n ... row_levels=[\"A\", \"B\"], column_levels=[\"C\", \"D\"], sort_labels=True\n ... )\n >>> A\n <3x4 sparse matrix of type '<class 'numpy.float64'>'\n with 3 stored elements in COOrdinate format>\n >>> A.todense()\n matrix([[0., 0., 1., 3.],\n [3., 0., 0., 0.],\n [0., 0., 0., 0.]])\n\n >>> rows\n [(1, 1), (1, 2), (2, 1)]\n >>> columns\n [('a', 0), ('a', 1), ('b', 0), ('b', 1)]\n ",
"language": "en",
"n_whitespaces": 936,
"n_words": 279,
"vocab_size": 148
} | def to_coo(self, row_levels=(0,), column_levels=(1,), sort_labels: bool = False):
from pandas.core.arrays.sparse.scipy_sparse import sparse_series_to_coo
A, rows, columns = sparse_series_to_coo(
self._parent, row_levels, column_levels, sort_labels=sort_labels
)
return A, rows, columns
|
|
47,255 | 195,349 | 171 | projects/bb3/agents/r2c2_bb3_agent.py | 28 | 9 | def _get_memory_heuristic_values(self) -> Dict[str, Union[str, float, bool]]:
return {
'ignore_in_session_memories': self.opt.get(
'ignore_in_session_memories_mkm', False
),
'memory_overlap_threshold': self.opt.get('memory_overlap_threshold', 0.0),
'memory_hard_block_for_n_turns': self.opt.get(
'memory_hard_block_for_n_turns', 0
| [BB3] Memory Heuristics (#4770)
* memory heuristics
* small changes
* address comments
* fix config
* reqs | _get_memory_heuristic_values | 58b6977a9cb45a91d78aabdc3c5538f873829a9f | ParlAI | r2c2_bb3_agent.py | 10 | 16 | https://github.com/facebookresearch/ParlAI.git | 1 | 79 | 0 | 24 | 123 | Python | {
"docstring": "\n Extract heuristics from self.opt.\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 4,
"vocab_size": 4
} | def _get_memory_heuristic_values(self) -> Dict[str, Union[str, float, bool]]:
return {
'ignore_in_session_memories': self.opt.get(
'ignore_in_session_memories_mkm', False
),
'memory_overlap_threshold': self.opt.get('memory_overlap_threshold', 0.0),
'memory_hard_block_for_n_turns': self.opt.get(
'memory_hard_block_for_n_turns', 0
),
'memory_soft_block_decay_factor': self.opt.get(
'memory_soft_block_decay_factor', 0.0
),
}
|
|
78,293 | 266,099 | 13 | netbox/extras/templatetags/plugins.py | 7 | 4 | def plugin_list_buttons(context, model):
return _ | 4751 Enable plugins to inject content within object list views (#10901)
* 4751 add plugin buttons to list templates
* 4751 add plugin buttons to list templates
* 4751 add documentation
* 4751 fix object reference
* 4751 update docs | plugin_list_buttons | 27bf7b4a9add27b4f3f8b0f4fd5dfc4cfe74a65b | netbox | plugins.py | 8 | 2 | https://github.com/netbox-community/netbox.git | 1 | 17 | 0 | 7 | 29 | Python | {
"docstring": "\n Render all list buttons registered by plugins\n ",
"language": "en",
"n_whitespaces": 14,
"n_words": 7,
"vocab_size": 7
} | def plugin_list_buttons(context, model):
return _get_registered_content(model, 'list_buttons', context)
|
|
10,052 | 50,215 | 157 | modules/image/text_to_image/disco_diffusion_ernievil_base/vit_b_16x/ernievil2/transformers/droppath.py | 73 | 16 | def drop_path(self, inputs):
# if prob is 0 or eval mode, return original input
if self.drop_prob == 0. or not self.training:
return inputs
| add disco_diffusion_ernievil_base | drop_path | ffcde21305c61d950a9f93e57e6180c9a9665b87 | PaddleHub | droppath.py | 11 | 10 | https://github.com/PaddlePaddle/PaddleHub.git | 3 | 101 | 0 | 48 | 162 | Python | {
"docstring": "drop path op\n Args:\n input: tensor with arbitrary shape\n drop_prob: float number of drop path probability, default: 0.0\n training: bool, if current mode is training, default: False\n Returns:\n output: output tensor after drop path\n ",
"language": "en",
"n_whitespaces": 99,
"n_words": 34,
"vocab_size": 28
} | def drop_path(self, inputs):
# if prob is 0 or eval mode, return original input
if self.drop_prob == 0. or not self.training:
return inputs
keep_prob = 1 - self.drop_prob
keep_prob = paddle.to_tensor(keep_prob, dtype='float32')
shape = (inputs.shape[0], ) + (1, ) * (inputs.ndim - 1) # shape=(N, 1, 1, 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=inputs.dtype)
random_tensor = random_tensor.floor() # mask
output = inputs.divide(keep_prob) * random_tensor #divide is to keep same output expectation
return output
|
|
7,473 | 42,069 | 17 | seaborn/rcmod.py | 8 | 8 | def set_style(style=None, rc=None):
style_object = axes_style | Convert docs to pydata-sphinx-theme and add new material (#2842)
* Do basic conversion of site to pydata_sphinx_theme
* Remove some pae structure customizations we no longer need
* Add some custom CSS
* Tweak a few more colors
* Remove vestigial div closing tag
* Reorganize release notes into hierarchical pages
* Rebuild full docs and fix some resulting issues
* Make release note doc refs absolute
* Convert homepage to use sphinx-design instead of hand-crafted html
* Remove original custom css
* Simplify header and put archive switcher in footer
* Streamline API docs for objects
* Play around with templates to fix shrinking content (not perfect yet)
* Improve use of horizontal space without sidebars
* Various tweaks
* Convert tutorial homepage source to native sphinx-design directives
* Move intro page into tutorial
* More tweaks
* Tweak theme colors and footer
* Remove reference to navbar version
* Note that error bar tutorial demonstrates new features as of v0.12
* Update layout customization for new theme features
* Various layout and CSS tweaks
* Narrow support guidance to StackOverflow
* Run all notebooks
* Adapt to new dropdown navbar in pydata theme
* Separate tutorial source and outputs
* Separate dostring source and outputs
* Add scale API template
* Update API docs
* Fix requirements
* Add new objects
* Point doc requirements at v0.10 RC for theme | set_style | 34662f4be5c364e7518f9c1118c9b362038ee5dd | seaborn | rcmod.py | 8 | 3 | https://github.com/mwaskom/seaborn.git | 1 | 28 | 0 | 8 | 46 | Python | {
"docstring": "\n Set the parameters that control the general style of the plots.\n\n The style parameters control properties like the color of the background and\n whether a grid is enabled by default. This is accomplished using the\n matplotlib rcParams system.\n\n The options are illustrated in the\n :doc:`aesthetics tutorial <../tutorial/aesthetics>`.\n\n See :func:`axes_style` to get the parameter values.\n\n Parameters\n ----------\n style : dict, or one of {darkgrid, whitegrid, dark, white, ticks}\n A dictionary of parameters or the name of a preconfigured style.\n rc : dict, optional\n Parameter mappings to override the values in the preset seaborn\n style dictionaries. This only updates parameters that are\n considered part of the style definition.\n\n Examples\n --------\n\n .. include:: ../docstrings/set_style.rst\n\n ",
"language": "en",
"n_whitespaces": 185,
"n_words": 111,
"vocab_size": 76
} | def set_style(style=None, rc=None):
style_object = axes_style(style, rc)
mpl.rcParams.update(style_object)
|
|
6,252 | 34,302 | 247 | src/transformers/models/vilt/feature_extraction_vilt.py | 97 | 23 | def _resize(self, image, shorter=800, longer=1333, size_divisor=32, resample=Image.BICUBIC):
if not isinstance(image, Image.Image):
image = self.to_pil_image(image)
w, h = image.size
min_size = shorter
max_size = longer
| Add ViLT (#14895)
* First commit
* Add conversion script
* Make conversion script work for base model
* More improvements
* Update conversion script, works for vqa
* Add indexing argument to meshgrid
* Make conversion script work for ViltForPreTraining
* Add ViltForPreTraining to docs
* Fix device issue
* Add processor
* Add MinMaxResize to feature extractor
* Implement call method of ViltProcessor
* Fix tests
* Add integration test
* Add loss calculation for VQA
* Improve tests
* Improve some more tests
* Debug tests
* Small improvements
* Add support for attention_mask
* Remove mask_it
* Add pixel_mask
* Add tests for ViltFeatureExtractor
* Improve tests
* Add ViltForNaturalLanguageVisualReasoning
* Add ViltForNaturalLanguageVisualReasoning to conversion script
* Minor fixes
* Add support for image_embeds, update docstrings to markdown
* Update docs to markdown
* Improve conversion script
* Rename ViltForPreTraining to ViltForMaskedLM
* Improve conversion script
* Convert docstrings to markdown
* Fix code example of retrieval model
* Properly convert masked language model
* Add integration test for nlvr
* Fix code quality
* Apply suggestions from code review
* Add copied from statements
* Fix pretrained_config_archive_map
* Fix docs
* Add model to README
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply more suggestions from code review
* Make code more readable
* Add ViltForNaturalLanguageVisualReasoning to the tests
* Rename ViltForVisualQuestionAnswering to ViltForQuestionAnswering
* Replace pixel_values_2 by single tensor
* Add hidden_states and attentions
* Fix one more test
* Fix all tests
* Update year
* Fix rebase issues
* Fix another rebase issue
* Remove ViltForPreTraining from auto mapping
* Rename ViltForImageRetrievalTextRetrieval to ViltForImageAndTextRetrieval
* Make it possible to use BertTokenizerFast in the processor
* Use BertTokenizerFast by default
* Rename ViltForNaturalLanguageVisualReasoning, define custom model output
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> | _resize | ac227093e41cecb07c7e0f2fc9a504850907bd06 | transformers | feature_extraction_vilt.py | 11 | 18 | https://github.com/huggingface/transformers.git | 4 | 169 | 0 | 52 | 266 | Python | {
"docstring": "\n Resizes the shorter edge of `image` to `shorter` and limits the longer edge to under `longer`, while preserving\n the aspect ratio. Also makes sure that both the height and width can be divided by `size_divisor`.\n\n Based on original implementation:\n https://github.com/dandelin/ViLT/blob/3db8b5035464afee84d951bf6322e1b27f1d072d/vilt/transforms/utils.py#L5\n\n Args:\n image (`PIL.Image`):\n The image to resize.\n shorter (`int`, *optional*, defaults to `800`):\n The size to which to resize the shorter side of the image.\n longer (`int`, *optional*, defaults to `1333`):\n The size by which to limit the longer side of the image, while preserving the aspect ratio.\n size_divisor (`int`, *optional*, defaults to `32`):\n The size by which both the height and the width must be divisible.\n resample (`int`, *optional*, defaults to `PIL.Image.BICUBIC`):\n An optional resampling filter.\n ",
"language": "en",
"n_whitespaces": 290,
"n_words": 117,
"vocab_size": 61
} | def _resize(self, image, shorter=800, longer=1333, size_divisor=32, resample=Image.BICUBIC):
if not isinstance(image, Image.Image):
image = self.to_pil_image(image)
w, h = image.size
min_size = shorter
max_size = longer
scale = min_size / min(w, h)
if h < w:
newh, neww = min_size, scale * w
else:
newh, neww = scale * h, min_size
if max(newh, neww) > max_size:
scale = max_size / max(newh, neww)
newh = newh * scale
neww = neww * scale
newh, neww = int(newh + 0.5), int(neww + 0.5)
newh, neww = newh // size_divisor * size_divisor, neww // size_divisor * size_divisor
return self.resize(image, size=(neww, newh), resample=resample)
|
|
31,708 | 139,470 | 39 | rllib/policy/dynamic_tf_policy_v2.py | 11 | 9 | def extra_action_out_fn(self) -> Dict[str, TensorType]:
extra_action_fetches = super().extra_action_out_fn()
extra_action_fetches.update(self._policy_extra_action_fetches)
return extra_action_fetches
| [RLlib] Introduce new policy base classes. (#24742) | extra_action_out_fn | bc3a1d35cf6e9a5fd7eef908a8e76aefb80ce6a9 | ray | dynamic_tf_policy_v2.py | 10 | 10 | https://github.com/ray-project/ray.git | 1 | 32 | 0 | 10 | 54 | Python | {
"docstring": "Extra values to fetch and return from compute_actions().\n\n Returns:\n Dict[str, TensorType]: An extra fetch-dict to be passed to and\n returned from the compute_actions() call.\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 24,
"vocab_size": 20
} | def extra_action_out_fn(self) -> Dict[str, TensorType]:
extra_action_fetches = super().extra_action_out_fn()
extra_action_fetches.update(self._policy_extra_action_fetches)
return extra_action_fetches
|
|
22,019 | 104,904 | 53 | src/datasets/builder.py | 14 | 13 | def get_all_exported_dataset_infos(cls) -> dict:
dset_infos_file_path = os.path.join(cls.get_imported_module_dir(), config.DATASETDICT_INFOS_FILENAME)
if os.path.exists(dset_infos_file_path):
return DatasetInfosDict.from_directory(cls.get_imported_module_dir() | Add API code examples for Builder classes (#4313)
* 📝 add examples for builder classes
* 📝 apply quentin review | get_all_exported_dataset_infos | d1d4f1065fd4ab91b2c8682643dbd12f86d66fcd | datasets | builder.py | 11 | 16 | https://github.com/huggingface/datasets.git | 2 | 50 | 0 | 13 | 96 | Python | {
"docstring": "Empty dict if doesn't exist\n\n Example:\n\n ```py\n >>> from datasets import load_dataset_builder\n >>> ds_builder = load_dataset_builder('rotten_tomatoes')\n >>> ds_builder.get_all_exported_dataset_infos()\n {'default': DatasetInfo(description=\"Movie Review Dataset.\\nThis is a dataset of containing 5,331 positive and 5,331 negative processed\\nsentences from Rotten Tomatoes movie reviews. This data was first used in Bo\\nPang and Lillian Lee, ``Seeing stars: Exploiting class relationships for\\nsentiment categorization with respect to rating scales.'', Proceedings of the\\nACL, 2005.\\n\", citation='@InProceedings{Pang+Lee:05a,\\n author = {Bo Pang and Lillian Lee},\\n title = {Seeing stars: Exploiting class relationships for sentiment\\n categorization with respect to rating scales},\\n booktitle = {Proceedings of the ACL},\\n year = 2005\\n}\\n', homepage='http://www.cs.cornell.edu/people/pabo/movie-review-data/', license='', features={'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None)}, post_processed=None, supervised_keys=SupervisedKeysData(input='', output=''), task_templates=[TextClassification(task='text-classification', text_column='text', label_column='label')], builder_name='rotten_tomatoes_movie_review', config_name='default', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=1074810, num_examples=8530, dataset_name='rotten_tomatoes_movie_review'), 'validation': SplitInfo(name='validation', num_bytes=134679, num_examples=1066, dataset_name='rotten_tomatoes_movie_review'), 'test': SplitInfo(name='test', num_bytes=135972, num_examples=1066, dataset_name='rotten_tomatoes_movie_review')}, download_checksums={'https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz': {'num_bytes': 487770, 'checksum': 'a05befe52aafda71d458d188a1c54506a998b1308613ba76bbda2e5029409ce9'}}, download_size=487770, post_processing_size=None, dataset_size=1345461, size_in_bytes=1833231)}\n ```\n ",
"language": "en",
"n_whitespaces": 241,
"n_words": 140,
"vocab_size": 116
} | def get_all_exported_dataset_infos(cls) -> dict:
dset_infos_file_path = os.path.join(cls.get_imported_module_dir(), config.DATASETDICT_INFOS_FILENAME)
if os.path.exists(dset_infos_file_path):
return DatasetInfosDict.from_directory(cls.get_imported_module_dir())
return {}
|
|
118,370 | 323,124 | 174 | paddlenlp/trainer/trainer_args.py | 44 | 20 | def to_sanitized_dict(self) -> Dict[str, Any]:
d = self.to_dict()
d = {
** d, ** {
"train_batch_size": self.train_batch_size,
"eval_batch_size": self.eval_batch_size
}
}
valid_types = [bool, int, | [Trainer] Add init version of paddlenlp trainer and apply finetune for ernie-1.0 pretraining. (#1761)
* add some datasets for finetune.
* support fine tune for all tastks.
* add trainer prototype.
* init verison for paddlenlp trainer.
* refine trainer.
* update for some details.
* support multi-cards training evaluation.
* support load from ckpt.
* support for export inference model.
* first version of trainer.
* seq cls support clue.
* trainer support for token classification and question answersing tasks.
* fix as reviews.
Co-authored-by: Zeyu Chen <chenzeyu01@baidu.com> | to_sanitized_dict | 44a290e94d1becd1f09fddc3d873f9e19c9d6919 | PaddleNLP | trainer_args.py | 11 | 17 | https://github.com/PaddlePaddle/PaddleNLP.git | 3 | 88 | 0 | 33 | 138 | Python | {
"docstring": "\n Sanitized serialization to use with TensorBoard’s hparams\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | def to_sanitized_dict(self) -> Dict[str, Any]:
d = self.to_dict()
d = {
** d, ** {
"train_batch_size": self.train_batch_size,
"eval_batch_size": self.eval_batch_size
}
}
valid_types = [bool, int, float, str]
valid_types.append(paddle.Tensor)
return {
k: v if type(v) in valid_types else str(v)
for k, v in d.items()
}
|
|
56,252 | 221,182 | 27 | python3.10.4/Lib/bz2.py | 6 | 5 | def readinto(self, b):
self._check_can_read()
| add python 3.10.4 for windows | readinto | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | bz2.py | 8 | 3 | https://github.com/XX-net/XX-Net.git | 1 | 22 | 0 | 6 | 38 | Python | {
"docstring": "Read bytes into b.\n\n Returns the number of bytes read (0 for EOF).\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 13,
"vocab_size": 12
} | def readinto(self, b):
self._check_can_read()
return self._buffer.readinto(b)
|
|
50,997 | 205,032 | 557 | django/db/backends/oracle/base.py | 126 | 18 | def _output_type_handler(cursor, name, defaultType, length, precision, scale):
if defaultType == Database.NUMBER:
if scale == -127:
if precision == 0:
# NUMBER column: decimal-precision floating point.
# This will normally be an integer from a sequence,
# but it could be a decimal value.
outconverter = FormatStylePlaceholderCursor._output_number_converter
else:
# FLOAT column: binary-precision floating point.
# This comes from FloatField columns.
outconverter = float
elif precision > 0:
# NUMBER(p,s) column: decimal-precision fixed point.
# This comes from IntegerField and DecimalField columns.
outconverter = FormatStylePlaceholderCursor._get_decimal_converter(
| Refs #33476 -- Reformatted code with Black. | _output_type_handler | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | base.py | 13 | 19 | https://github.com/django/django.git | 5 | 90 | 0 | 77 | 147 | Python | {
"docstring": "\n Called for each db column fetched from cursors. Return numbers as the\n appropriate Python type.\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 15,
"vocab_size": 15
} | def _output_type_handler(cursor, name, defaultType, length, precision, scale):
if defaultType == Database.NUMBER:
if scale == -127:
if precision == 0:
# NUMBER column: decimal-precision floating point.
# This will normally be an integer from a sequence,
# but it could be a decimal value.
outconverter = FormatStylePlaceholderCursor._output_number_converter
else:
# FLOAT column: binary-precision floating point.
# This comes from FloatField columns.
outconverter = float
elif precision > 0:
# NUMBER(p,s) column: decimal-precision fixed point.
# This comes from IntegerField and DecimalField columns.
outconverter = FormatStylePlaceholderCursor._get_decimal_converter(
precision, scale
)
else:
# No type information. This normally comes from a
# mathematical expression in the SELECT list. Guess int
# or Decimal based on whether it has a decimal point.
outconverter = FormatStylePlaceholderCursor._output_number_converter
return cursor.var(
Database.STRING,
size=255,
arraysize=cursor.arraysize,
outconverter=outconverter,
)
|
|
21,771 | 104,101 | 365 | src/datasets/features/features.py | 121 | 21 | def decode_nested_example(schema, obj):
# Nested structures: we allow dict, list/tuples, sequences
if isinstance(schema, dict):
return {
k: decode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in utils.zip_dict(schema, obj)
}
elif isinstance(schema, (list, tuple)):
sub_schema = schema[0]
if obj is None:
return None
else:
if len(obj) > 0:
for first_elmt in obj:
if _check_non_null_non_empty_recursive(first_elmt, sub_schema):
break
if decode_nested_example(sub_schema, first_elmt) != first_elmt:
return [decode_nested_example(sub_schema, o) for o in obj]
return list(obj)
elif isinstance(schema, Sequence):
# We allow to reverse list of dict => dict of list for compatiblity with tfds
if isinstance(schema.feature, dict):
return {k: decode_nested_example([schema.feature[k] | Add Arrow type casting to struct for Image and Audio + Support nested casting (#3575)
* add storage cast
* implement dict cast for image
* factorize extension type creation for audio and image + implement type cast for thos custom types
* fix tests
* style
* [big] allow extension array in nested arrays
* docs
* style
* fix Features pickling
* fix some tests
* fix more tests
* fix more tests
* add base extensionarray for pyarrow<6
* add extensionarray for pyarrow<6
* add soundfile to tests requirements
* minor
* remove not implemented error for complex casting in pyarrow 3
* style
* style again
* add casting for fixed size lists
* add libsndfile1 in the linux CI
* style
* typo
* start adding new tests just to notice the concatenation issue...
* [big] remove extension types + move cast_storage to the Image and Audio classes
* minor
* fix test
* style
* add more tests to image
* add audio tests
* support casting from null array
* fix field names verifications when casting
* docs + tests
* use the new table_cast on pyarrow tables
* whoops forgot one line
* remove unused string handling in Image.decode_example
* update tests accordingly | decode_nested_example | 6ca96c707502e0689f9b58d94f46d871fa5a3c9c | datasets | features.py | 18 | 25 | https://github.com/huggingface/datasets.git | 15 | 207 | 0 | 79 | 310 | Python | {
"docstring": "Decode a nested example.\n This is used since some features (in particular Audio and Image) have some logic during decoding.\n\n To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be decoded.\n If the first element needs to be decoded, then all the elements of the list will be decoded, otherwise they'll stay the same.\n ",
"language": "en",
"n_whitespaces": 85,
"n_words": 73,
"vocab_size": 57
} | def decode_nested_example(schema, obj):
# Nested structures: we allow dict, list/tuples, sequences
if isinstance(schema, dict):
return {
k: decode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in utils.zip_dict(schema, obj)
}
elif isinstance(schema, (list, tuple)):
sub_schema = schema[0]
if obj is None:
return None
else:
if len(obj) > 0:
for first_elmt in obj:
if _check_non_null_non_empty_recursive(first_elmt, sub_schema):
break
if decode_nested_example(sub_schema, first_elmt) != first_elmt:
return [decode_nested_example(sub_schema, o) for o in obj]
return list(obj)
elif isinstance(schema, Sequence):
# We allow to reverse list of dict => dict of list for compatiblity with tfds
if isinstance(schema.feature, dict):
return {k: decode_nested_example([schema.feature[k]], obj[k]) for k in schema.feature}
else:
return decode_nested_example([schema.feature], obj)
# Object with special decoding:
elif isinstance(schema, (Audio, Image)):
return schema.decode_example(obj) if obj is not None else None
return obj
|
|
41,541 | 175,013 | 14 | src/pip/_internal/utils/virtualenv.py | 8 | 4 | def running_under_virtualenv() -> bool:
return _running_und | Name virtualenv<20 as "legacy"
Well they are. At least not "regular" anymore. | running_under_virtualenv | 5ded5474ac9b323496506e6391e8d8c2c888d7f1 | pip | virtualenv.py | 8 | 3 | https://github.com/pypa/pip.git | 2 | 15 | 0 | 8 | 29 | Python | {
"docstring": "True if we're running inside a virtual environment, False otherwise.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def running_under_virtualenv() -> bool:
return _running_under_venv() or _running_under_legacy_virtualenv()
|
|
70,351 | 244,362 | 398 | mmdet/models/dense_heads/base_dense_head.py | 97 | 23 | def forward_train(self, x, data_samples, proposal_cfg=None, **kwargs):
img_metas = [data_sample['meta'] for data_sample in data_samples]
outs = self(x)
gt_bboxes = [
data_sample.gt_instances.bboxes for data_sample in data_samples
]
if hasattr(data_samples[0].gt_instances, 'labels'):
gt_labels = [
data_sample.gt_instances.labels | Simplify api of one-stage detector | forward_train | 9c5b3331ac8edbfa328922fbab45c382380da540 | mmdetection | base_dense_head.py | 12 | 30 | https://github.com/open-mmlab/mmdetection.git | 9 | 178 | 0 | 51 | 277 | Python | {
"docstring": "\n Args:\n x (list[Tensor]): Features from FPN.\n data_samples (list[:obj:`GeneralData`]): Each item contains\n the meta information of each image and corresponding\n annotations.\n proposal_cfg (mmcv.Config): Test / postprocessing configuration,\n if None, test_cfg would be used\n\n Returns:\n tuple or Tensor: When `proposal_cfg` is None, the detector is a \\\n normal one-stage detector, The return value is the losses.\n\n - losses: (dict[str, Tensor]): A dictionary of loss components.\n\n When the `proposal_cfg` is not None, the head is used as a\n `rpn_head`, the return value is a tuple contains:\n\n - losses: (dict[str, Tensor]): A dictionary of loss components.\n - results_list (list[:obj:`InstanceData`]): Detection\n results of each image after the post process.\n Each item usually contains following keys.\n\n - scores (Tensor): Classification scores, has a shape\n (num_instance,)\n - labels (Tensor): Labels of bboxes, has a shape\n (num_instances,).\n - bboxes (Tensor): Has a shape (num_instances, 4),\n the last dimension 4 arrange as (x1, y1, x2, y2).\n ",
"language": "en",
"n_whitespaces": 446,
"n_words": 147,
"vocab_size": 95
} | def forward_train(self, x, data_samples, proposal_cfg=None, **kwargs):
img_metas = [data_sample['meta'] for data_sample in data_samples]
outs = self(x)
gt_bboxes = [
data_sample.gt_instances.bboxes for data_sample in data_samples
]
if hasattr(data_samples[0].gt_instances, 'labels'):
gt_labels = [
data_sample.gt_instances.labels for data_sample in data_samples
]
else:
# RPN
gt_labels = None
if hasattr(data_samples[0], 'instances_ignore'):
gt_bboxes_ignore = [
data_sample.ignored_instances.bboxes
for data_sample in data_samples
]
else:
gt_bboxes_ignore = None
if gt_labels is None:
loss_inputs = outs + (gt_bboxes, img_metas)
else:
loss_inputs = outs + (gt_bboxes, gt_labels, img_metas)
losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
if proposal_cfg is None:
return losses
else:
results_list = self.get_results(
*outs, img_metas=img_metas, cfg=proposal_cfg)
return losses, results_list
|
|
78,277 | 266,040 | 54 | netbox/netbox/models/features.py | 11 | 7 | def cf(self):
return {
cf.name: cf.deserialize(self.custom_field_data.get(cf.name | Closes #10052: The cf attribute now returns deserialized custom field data | cf | ea6d86e6c4bb6037465410db6205a7471bc81a6c | netbox | features.py | 12 | 5 | https://github.com/netbox-community/netbox.git | 2 | 34 | 0 | 11 | 55 | Python | {
"docstring": "\n Return a dictionary mapping each custom field for this instance to its deserialized value.\n\n ```python\n >>> tenant = Tenant.objects.first()\n >>> tenant.cf\n {'primary_site': <Site: DM-NYC>, 'cust_id': 'DMI01', 'is_active': True}\n ```\n ",
"language": "en",
"n_whitespaces": 79,
"n_words": 29,
"vocab_size": 28
} | def cf(self):
return {
cf.name: cf.deserialize(self.custom_field_data.get(cf.name))
for cf in self.custom_fields
}
|
|
42,292 | 177,153 | 30 | networkx/drawing/tests/test_layout.py | 9 | 10 | def test_arf_layout_negative_a_check(self):
G = self.Gs
pytest.raises(ValueError, nx.arf_layout, G=G, a=- | Arf layout (#5910)
* added arf_layout
* reference to docstring and comparison to spring layout
* rebase to origin main
* black re-format
* Left aligned docstring text
* Cleaned up computation and update variables to new docstring
* Updated naming tests. Added input check on arf_layout parameter `a`
* Fixed Linter issues for py38 target
* Fixed Linter issues for target p38
* linter issue fixed | test_arf_layout_negative_a_check | 88245f69f89dbee75cef67bdf35bbfb986a42d52 | networkx | test_layout.py | 9 | 3 | https://github.com/networkx/networkx.git | 1 | 30 | 0 | 9 | 48 | Python | {
"docstring": "\n Checks input parameters correctly raises errors. For example, `a` should be larger than 1\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 14,
"vocab_size": 14
} | def test_arf_layout_negative_a_check(self):
G = self.Gs
pytest.raises(ValueError, nx.arf_layout, G=G, a=-1)
|
|
91,386 | 292,291 | 18 | tests/components/device_tracker/test_config_entry.py | 9 | 5 | async def test_connected_device_registered(hass):
registry = mock_registry(hass)
dispatches = []
| Ensure dhcp can still discover new devices from device trackers (#66822)
Co-authored-by: Martin Hjelmare <marhje52@gmail.com> | test_connected_device_registered | a18d4c51ff3ab9afd13ee08fe8c65e2f9b77f3b1 | core | test_config_entry.py | 8 | 50 | https://github.com/home-assistant/core.git | 1 | 204 | 0 | 8 | 31 | Python | {
"docstring": "Test dispatch on connected device being registered.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | async def test_connected_device_registered(hass):
registry = mock_registry(hass)
dispatches = []
|
|
@RunIf(min_gpus=2, skip_windows=True, fairscale=True) | 69,605 | 241,580 | 72 | tests/strategies/test_sharded_strategy.py | 39 | 28 | def test_ddp_sharded_strategy_checkpoint_multi_gpu(tmpdir):
model = BoringModel()
trainer = Trainer(gpus=2, strategy="ddp_sharded_spawn", fast_dev_run=True)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
trainer.save_checkpoint(checkpoint_path) | Rename training plugin test files & names to strategy (#11303) | test_ddp_sharded_strategy_checkpoint_multi_gpu | 650c710efacd633fa283955145342bb64063c883 | lightning | test_sharded_strategy.py | 12 | 9 | https://github.com/Lightning-AI/lightning.git | 2 | 93 | 1 | 35 | 177 | Python | {
"docstring": "Test to ensure that checkpoint is saved correctly when using multiple GPUs.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | def test_ddp_sharded_strategy_checkpoint_multi_gpu(tmpdir):
model = BoringModel()
trainer = Trainer(gpus=2, strategy="ddp_sharded_spawn", fast_dev_run=True)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
trainer.save_checkpoint(checkpoint_path)
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
# Assert model parameters are identical after loading
for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()):
assert torch.equal(ddp_param.to("cpu"), shard_param)
@RunIf(min_gpus=2, skip_windows=True, fairscale=True) |
29,408 | 130,870 | 522 | python/ray/serve/controller.py | 85 | 38 | def autoscale(self) -> None:
for deployment_name, (
deployment_info,
route_prefix,
) in self.list_deployments().items():
deployment_config = deployment_info.deployment_config
autoscaling_policy = depl | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | autoscale | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | controller.py | 15 | 36 | https://github.com/ray-project/ray.git | 6 | 180 | 0 | 56 | 284 | Python | {
"docstring": "Updates autoscaling deployments with calculated num_replicas.",
"language": "en",
"n_whitespaces": 5,
"n_words": 6,
"vocab_size": 6
} | def autoscale(self) -> None:
for deployment_name, (
deployment_info,
route_prefix,
) in self.list_deployments().items():
deployment_config = deployment_info.deployment_config
autoscaling_policy = deployment_info.autoscaling_policy
if autoscaling_policy is None:
continue
replicas = self.deployment_state_manager._deployment_states[
deployment_name
]._replicas
running_replicas = replicas.get([ReplicaState.RUNNING])
current_num_ongoing_requests = []
for replica in running_replicas:
replica_tag = replica.replica_tag
num_ongoing_requests = self.autoscaling_metrics_store.window_average(
replica_tag,
time.time() - autoscaling_policy.config.look_back_period_s,
)
if num_ongoing_requests is not None:
current_num_ongoing_requests.append(num_ongoing_requests)
if len(current_num_ongoing_requests) == 0:
continue
new_deployment_config = deployment_config.copy()
decision_num_replicas = autoscaling_policy.get_decision_num_replicas(
current_num_ongoing_requests=current_num_ongoing_requests,
curr_target_num_replicas=deployment_config.num_replicas,
)
new_deployment_config.num_replicas = decision_num_replicas
new_deployment_info = copy(deployment_info)
new_deployment_info.deployment_config = new_deployment_config
goal_id, updating = self.deployment_state_manager.deploy(
deployment_name, new_deployment_info
)
|
|
52,855 | 210,095 | 18 | ppdet/utils/checkpoint.py | 9 | 7 | def match_state_dict(model_state_dict, weight_state_dict):
| Add PP-YOLOv3 code (#5281)
* [ppyolov3] add ppyolov3 base code
* add ppyolov3 s/m/x
* modify ema
* modify code to convert onnx successfully
* support arbitrary shape
* update config to use amp default
* refine ppyolo_head code
* modify reparameter code
* refine act layer
* adapter pico_head and tood_head code
* remove ppyolov3 yaml
* fix codestyle
Co-authored-by: wangxinxin08 <wangxinxin08@baidu.com> | match_state_dict | ef83ab8a3f7814e9886a7a22c8dcc55f506b6081 | PaddleDetection | checkpoint.py | 10 | 46 | https://github.com/PaddlePaddle/PaddleDetection.git | 11 | 305 | 0 | 8 | 49 | Python | {
"docstring": "\n Match between the model state dict and pretrained weight state dict.\n Return the matched state dict.\n\n The method supposes that all the names in pretrained weight state dict are\n subclass of the names in models`, if the prefix 'backbone.' in pretrained weight\n keys is stripped. And we could get the candidates for each model key. Then we\n select the name with the longest matched size as the final match result. For\n example, the model state dict has the name of\n 'backbone.res2.res2a.branch2a.conv.weight' and the pretrained weight as\n name of 'res2.res2a.branch2a.conv.weight' and 'branch2a.conv.weight'. We\n match the 'res2.res2a.branch2a.conv.weight' to the model key.\n ",
"language": "en",
"n_whitespaces": 133,
"n_words": 99,
"vocab_size": 55
} | def match_state_dict(model_state_dict, weight_state_dict):
model_keys = sorted(model_state_dict.keys())
weight_keys = sorted(weight_state_dict.keys())
|
|
41,908 | 176,447 | 200 | networkx/algorithms/approximation/connectivity.py | 74 | 23 | def local_node_connectivity(G, source, target, cutoff=None):
if target == source:
raise nx.NetworkXError("source and target have to be different nodes.")
# Maximum possible node independent paths
if G.is_directed():
possible = min(G.out_degree(source), G.in_degree(target))
else:
possible = min(G.degree(source), G.degree(target))
K = 0
if not possible:
return K
if cutoff is None:
cutoff = float("inf")
exclude = set()
for i in range(min(possible, cutoff)):
try:
path = _bidirectional_shortest_path(G, source, target, exclude)
| Minor improvements from general code readthrough (#5414)
* Add deprecated directive to reversed docstring.
* Add missing dep directives to shpfiles.
* Remove defn of INF sentinel.
* typo.
* str -> comment in forloop.
* STY: appropriate casing for var name. | local_node_connectivity | cc1db275efc709cb964ce88abbfa877798d58c10 | networkx | connectivity.py | 13 | 21 | https://github.com/networkx/networkx.git | 7 | 143 | 0 | 56 | 232 | Python | {
"docstring": "Compute node connectivity between source and target.\n\n Pairwise or local node connectivity between two distinct and nonadjacent\n nodes is the minimum number of nodes that must be removed (minimum\n separating cutset) to disconnect them. By Menger's theorem, this is equal\n to the number of node independent paths (paths that share no nodes other\n than source and target). Which is what we compute in this function.\n\n This algorithm is a fast approximation that gives an strict lower\n bound on the actual number of node independent paths between two nodes [1]_.\n It works for both directed and undirected graphs.\n\n Parameters\n ----------\n\n G : NetworkX graph\n\n source : node\n Starting node for node connectivity\n\n target : node\n Ending node for node connectivity\n\n cutoff : integer\n Maximum node connectivity to consider. If None, the minimum degree\n of source or target is used as a cutoff. Default value None.\n\n Returns\n -------\n k: integer\n pairwise node connectivity\n\n Examples\n --------\n >>> # Platonic octahedral graph has node connectivity 4\n >>> # for each non adjacent node pair\n >>> from networkx.algorithms import approximation as approx\n >>> G = nx.octahedral_graph()\n >>> approx.local_node_connectivity(G, 0, 5)\n 4\n\n Notes\n -----\n This algorithm [1]_ finds node independents paths between two nodes by\n computing their shortest path using BFS, marking the nodes of the path\n found as 'used' and then searching other shortest paths excluding the\n nodes marked as used until no more paths exist. It is not exact because\n a shortest path could use nodes that, if the path were longer, may belong\n to two different node independent paths. Thus it only guarantees an\n strict lower bound on node connectivity.\n\n Note that the authors propose a further refinement, losing accuracy and\n gaining speed, which is not implemented yet.\n\n See also\n --------\n all_pairs_node_connectivity\n node_connectivity\n\n References\n ----------\n .. [1] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for\n Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035\n http://eclectic.ss.uci.edu/~drwhite/working.pdf\n\n ",
"language": "en",
"n_whitespaces": 494,
"n_words": 314,
"vocab_size": 192
} | def local_node_connectivity(G, source, target, cutoff=None):
if target == source:
raise nx.NetworkXError("source and target have to be different nodes.")
# Maximum possible node independent paths
if G.is_directed():
possible = min(G.out_degree(source), G.in_degree(target))
else:
possible = min(G.degree(source), G.degree(target))
K = 0
if not possible:
return K
if cutoff is None:
cutoff = float("inf")
exclude = set()
for i in range(min(possible, cutoff)):
try:
path = _bidirectional_shortest_path(G, source, target, exclude)
exclude.update(set(path))
K += 1
except nx.NetworkXNoPath:
break
return K
|
|
35,618 | 153,802 | 1,145 | modin/core/dataframe/pandas/dataframe/dataframe.py | 304 | 48 | def _copartition(self, axis, other, how, sort, force_repartition=False):
if isinstance(other, type(self)):
other = [other]
self_index = self.axes[axis]
others_index = [o.axes[axis] for o in other]
joined_index, make_reindexer = self._join_index_objects(
axis, [self_index] + others_index, how, sort
)
frames = [self] + other
non_empty_frames_idx = [
i for i, o in enumerate(frames) if o._partitions.size != 0
]
# If all frames are empty
if len(non_empty_frames_idx) == 0:
return (
self._partitions,
[o._partitions for o in other],
joined_index,
# There are no partition sizes because the resulting dataframe
# has no partitions.
[],
)
base_frame_idx = non_empty_frames_idx[0]
other_frames = frames[base_frame_idx + 1 :]
# Picking first non-empty frame
base_frame = frames[non_empty_frames_idx[0]]
base_index = base_frame.axes[axis]
# define conditions for reindexing and repartitioning `self` frame
do_reindex_base = not base_index.equals(joined_index)
do_repartition_base = force_repartition or do_reindex_base
# Perform repartitioning and reindexing for `base_frame` if needed.
# Also define length of base and fra | PERF-#4493: Use partition size caches more in Modin dataframe. (#4495)
Co-authored-by: Devin Petersohn <devin-petersohn@users.noreply.github.com>
Co-authored-by: Yaroslav Igoshev <Poolliver868@mail.ru>
Signed-off-by: mvashishtha <mahesh@ponder.io> | _copartition | cca9468648521e9317de1cb69cf8e6b1d5292d21 | modin | dataframe.py | 16 | 68 | https://github.com/modin-project/modin.git | 21 | 462 | 0 | 163 | 694 | Python | {
"docstring": "\n Copartition two Modin DataFrames.\n\n Perform aligning of partitions, index and partition blocks.\n\n Parameters\n ----------\n axis : {0, 1}\n Axis to copartition along (0 - rows, 1 - columns).\n other : PandasDataframe\n Other Modin DataFrame(s) to copartition against.\n how : str\n How to manage joining the index object (\"left\", \"right\", etc.).\n sort : bool\n Whether sort the joined index or not.\n force_repartition : bool, default: False\n Whether force the repartitioning or not. By default,\n this method will skip repartitioning if it is possible. This is because\n reindexing is extremely inefficient. Because this method is used to\n `join` or `append`, it is vital that the internal indices match.\n\n Returns\n -------\n tuple\n Tuple containing:\n 1) 2-d NumPy array of aligned left partitions\n 2) list of 2-d NumPy arrays of aligned right partitions\n 3) joined index along ``axis``\n 4) List with sizes of partitions along axis that partitioning\n was done on. This list will be empty if and only if all\n the frames are empty.\n ",
"language": "en",
"n_whitespaces": 448,
"n_words": 161,
"vocab_size": 111
} | def _copartition(self, axis, other, how, sort, force_repartition=False):
if isinstance(other, type(self)):
other = [other]
self_index = self.axes[axis]
others_index = [o.axes[axis] for o in other]
joined_index, make_reindexer = self._join_index_objects(
axis, [self_index] + others_index, how, sort
)
frames = [self] + other
non_empty_frames_idx = [
i for i, o in enumerate(frames) if o._partitions.size != 0
]
# If all frames are empty
if len(non_empty_frames_idx) == 0:
return (
self._partitions,
[o._partitions for o in other],
joined_index,
# There are no partition sizes because the resulting dataframe
# has no partitions.
[],
)
base_frame_idx = non_empty_frames_idx[0]
other_frames = frames[base_frame_idx + 1 :]
# Picking first non-empty frame
base_frame = frames[non_empty_frames_idx[0]]
base_index = base_frame.axes[axis]
# define conditions for reindexing and repartitioning `self` frame
do_reindex_base = not base_index.equals(joined_index)
do_repartition_base = force_repartition or do_reindex_base
# Perform repartitioning and reindexing for `base_frame` if needed.
# Also define length of base and frames. We will need to know the
# lengths for alignment.
if do_repartition_base:
reindexed_base = base_frame._partition_mgr_cls.map_axis_partitions(
axis,
base_frame._partitions,
make_reindexer(do_reindex_base, base_frame_idx),
)
if axis:
base_lengths = [obj.width() for obj in reindexed_base[0]]
else:
base_lengths = [obj.length() for obj in reindexed_base.T[0]]
else:
reindexed_base = base_frame._partitions
base_lengths = self._column_widths if axis else self._row_lengths
others_lengths = [o._axes_lengths[axis] for o in other_frames]
# define conditions for reindexing and repartitioning `other` frames
do_reindex_others = [
not o.axes[axis].equals(joined_index) for o in other_frames
]
do_repartition_others = [None] * len(other_frames)
for i in range(len(other_frames)):
do_repartition_others[i] = (
force_repartition
or do_reindex_others[i]
or others_lengths[i] != base_lengths
)
# perform repartitioning and reindexing for `other_frames` if needed
reindexed_other_list = [None] * len(other_frames)
for i in range(len(other_frames)):
if do_repartition_others[i]:
# indices of others frame start from `base_frame_idx` + 1
reindexed_other_list[i] = other_frames[
i
]._partition_mgr_cls.map_axis_partitions(
axis,
other_frames[i]._partitions,
make_reindexer(do_repartition_others[i], base_frame_idx + 1 + i),
lengths=base_lengths,
)
else:
reindexed_other_list[i] = other_frames[i]._partitions
reindexed_frames = (
[frames[i]._partitions for i in range(base_frame_idx)]
+ [reindexed_base]
+ reindexed_other_list
)
return (reindexed_frames[0], reindexed_frames[1:], joined_index, base_lengths)
|
|
40,414 | 169,303 | 45 | pandas/core/indexes/multi.py | 18 | 4 | def size(self) -> int:
# override Index.size to avoid materializing _values
return len(self)
# ------------------------------------------- | PERF: MultiIndex.size (#48723)
* add MultiIndex.size
* whatsnew | size | 2fbdd1eb4ef73a470f3db60cbf38a7d9f6c3ffe1 | pandas | multi.py | 7 | 5 | https://github.com/pandas-dev/pandas.git | 1 | 13 | 0 | 16 | 27 | Python | {
"docstring": "\n Return the number of elements in the underlying data.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 8
} | def size(self) -> int:
# override Index.size to avoid materializing _values
return len(self)
# --------------------------------------------------------------------
# Levels Methods
|
|
35,248 | 153,079 | 937 | modin/experimental/core/execution/native/implementations/omnisci_on_native/dataframe/dataframe.py | 278 | 49 | def groupby_agg(self, by, axis, agg, groupby_args, **kwargs):
# Currently we only expect 'by' to be a projection of the same frame.
# If 'by' holds a list of columns/series, then we create such projection
# to re-use code.
if not isinstance(by, DFAlgQueryCompiler):
if is_list_like(by):
by_cols = []
by_frames = []
for obj in by:
if isinstance(obj, str):
by_cols.append(obj)
elif hasattr(obj, "_modin_frame"):
by_frames.append(obj._modin_frame)
else:
raise NotImplementedError("unsupported groupby args")
by_cols = Index.__new__(Index, data=by_cols, dtype=self | REFACTOR-#2656: Update modin to fit algebra (code only) (#3717)
Co-authored-by: Yaroslav Igoshev <Poolliver868@mail.ru>
Co-authored-by: Vasily Litvinov <vasilij.n.litvinov@intel.com>
Co-authored-by: Alexey Prutskov <alexey.prutskov@intel.com>
Co-authored-by: Devin Petersohn <devin-petersohn@users.noreply.github.com>
Signed-off-by: Rehan Durrani <rehan@ponder.io> | groupby_agg | 58bbcc37477866d19c8b092a0e1974a4f0baa586 | modin | dataframe.py | 17 | 105 | https://github.com/modin-project/modin.git | 34 | 774 | 0 | 161 | 546 | Python | {
"docstring": "\n Groupby with aggregation operation.\n\n Parameters\n ----------\n by : DFAlgQueryCompiler or list-like of str\n Grouping keys.\n axis : {0, 1}\n Only rows groupby is supported, so should be 0.\n agg : str or dict\n Aggregates to compute.\n groupby_args : dict\n Additional groupby args.\n **kwargs : dict\n Keyword args. Currently ignored.\n\n Returns\n -------\n OmnisciOnNativeDataframe\n The new frame.\n ",
"language": "en",
"n_whitespaces": 206,
"n_words": 55,
"vocab_size": 45
} | def groupby_agg(self, by, axis, agg, groupby_args, **kwargs):
# Currently we only expect 'by' to be a projection of the same frame.
# If 'by' holds a list of columns/series, then we create such projection
# to re-use code.
if not isinstance(by, DFAlgQueryCompiler):
if is_list_like(by):
by_cols = []
by_frames = []
for obj in by:
if isinstance(obj, str):
by_cols.append(obj)
elif hasattr(obj, "_modin_frame"):
by_frames.append(obj._modin_frame)
else:
raise NotImplementedError("unsupported groupby args")
by_cols = Index.__new__(Index, data=by_cols, dtype=self.columns.dtype)
by_frame = self.mask(col_labels=by_cols)
if by_frames:
by_frame = by_frame.concat(
axis=1, other_modin_frames=by_frames, ignore_index=True
)
else:
raise NotImplementedError("unsupported groupby args")
else:
by_frame = by._modin_frame
if axis != 0:
raise NotImplementedError("groupby is supported for axis = 0 only")
base = by_frame._find_common_projections_base(self)
if base is None:
raise NotImplementedError("unsupported groupby args")
if groupby_args["level"] is not None:
raise NotImplementedError("levels are not supported for groupby")
drop = kwargs.get("drop", True)
as_index = groupby_args.get("as_index", True)
groupby_cols = by_frame.columns
if isinstance(agg, dict):
agg_cols = agg.keys()
elif not drop:
# If 'by' data came from a different frame then 'self-aggregation'
# columns are more prioritized.
agg_cols = self.columns
else:
agg_cols = [col for col in self.columns if col not in groupby_cols]
# Mimic pandas behaviour: pandas does not allow for aggregation to be empty
# in case of multi-column 'by'.
if not as_index and len(agg_cols) == 0 and len(groupby_cols) > 1:
agg_cols = self.columns
# Create new base where all required columns are computed. We don't allow
# complex expressions to be a group key or an aggeregate operand.
allowed_nodes = (FrameNode, TransformNode)
if not isinstance(by_frame._op, allowed_nodes):
raise NotImplementedError(
"OmniSci doesn't allow complex expression to be a group key. "
f"The only allowed frame nodes are: {tuple(o.__name__ for o in allowed_nodes)}, "
f"met '{type(by_frame._op).__name__}'."
)
col_to_delete_template = "__delete_me_{name}"
|
|
18,931 | 92,539 | 214 | src/sentry/snuba/tasks.py | 48 | 29 | def delete_subscription_from_snuba(query_subscription_id, **kwargs):
try:
subscription = QuerySubscription.objects.get(id=query_subscription_id)
except QuerySubscription.DoesNotExist:
metrics.incr("snuba.subscriptions.delete.subscription_does_not_exist")
return
if subscription.status not in [
QuerySubscription.Status.DELETING.value,
QuerySubscription.Status.DISABLED.value,
]:
metrics.incr("snuba.subscriptions.delete.incorrect_status")
return
if subscription.subscription_id is not None:
query_dataset = QueryDatasets(subscription.snuba_query.dataset)
entity_key = get_entity_key_from_snuba_query(
subscription.snuba_query, subscription.project.organization_id, subscription.project_id
)
_delete_from_s | feat(mep): Restructure how we determine entity subscription for alerts (#36605)
Previously we mapped a specific `EntityKey` to all `EntitySubscription` classes. As part of
introducing metric based performance alerts, we want to have the `EntitySubscription` determine the
specific entity that the subscription will run on. This allows us to automatically determine the
correct entity for metric based alerts without having to duplicate logic that parses
aggregates/datasets/etc. | delete_subscription_from_snuba | 06885ee7284a274d02a9dc1f6a0348c8edc07184 | sentry | tasks.py | 12 | 26 | https://github.com/getsentry/sentry.git | 5 | 142 | 0 | 40 | 227 | Python | {
"docstring": "\n Task to delete a corresponding subscription in Snuba from a `QuerySubscription` in\n Sentry.\n If the local subscription is marked for deletion (as opposed to disabled),\n then we delete the local subscription once we've successfully removed from Snuba.\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 37,
"vocab_size": 28
} | def delete_subscription_from_snuba(query_subscription_id, **kwargs):
try:
subscription = QuerySubscription.objects.get(id=query_subscription_id)
except QuerySubscription.DoesNotExist:
metrics.incr("snuba.subscriptions.delete.subscription_does_not_exist")
return
if subscription.status not in [
QuerySubscription.Status.DELETING.value,
QuerySubscription.Status.DISABLED.value,
]:
metrics.incr("snuba.subscriptions.delete.incorrect_status")
return
if subscription.subscription_id is not None:
query_dataset = QueryDatasets(subscription.snuba_query.dataset)
entity_key = get_entity_key_from_snuba_query(
subscription.snuba_query, subscription.project.organization_id, subscription.project_id
)
_delete_from_snuba(
query_dataset,
subscription.subscription_id,
entity_key,
)
if subscription.status == QuerySubscription.Status.DELETING.value:
subscription.delete()
else:
subscription.update(subscription_id=None)
|
|
@pytest.mark.parametrize('count, expected', [(1, 100), (3, 300),
(5, 500), (7, 500)]) | 117,443 | 320,931 | 89 | tests/unit/mainwindow/test_messageview.py | 26 | 18 | def test_changing_timer_with_messages_shown(qtbot, view, config_stub):
config_stub.val.messages.timeout = 900000 # 15s
view.show_message(message.MessageInfo(usertypes.MessageLevel.info, 'test'))
with qtbot.wait_signal(view._clear_timer.timeout):
config_stub.val.messages.timeout = 100
@pytest.mark.parametrize('count, expected', [(1, 100), (3, 300),
(5, 500), (7, 500)]) | Add a MessageInfo data class
Preparation for #7246 | test_changing_timer_with_messages_shown | 5616a99eff34f7074641d1391ed77d6b4b743529 | qutebrowser | test_messageview.py | 11 | 5 | https://github.com/qutebrowser/qutebrowser.git | 1 | 57 | 1 | 24 | 143 | Python | {
"docstring": "When we change messages.timeout, the timer should be restarted.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def test_changing_timer_with_messages_shown(qtbot, view, config_stub):
config_stub.val.messages.timeout = 900000 # 15s
view.show_message(message.MessageInfo(usertypes.MessageLevel.info, 'test'))
with qtbot.wait_signal(view._clear_timer.timeout):
config_stub.val.messages.timeout = 100
@pytest.mark.parametrize('count, expected', [(1, 100), (3, 300),
(5, 500), (7, 500)]) |
14,108 | 66,132 | 62 | erpnext/hr/doctype/interview/interview.py | 96 | 31 | def get_events(start, end, filters=None):
from frappe.desk.calendar import get_event_conditions
events = []
event_color = {
"Pending": "#fff4f0",
"Under Review": "#d3e8fc",
"Cleared": "#eaf5ed",
"Rejected": "#fce7e7",
}
conditions = get_event_conditions("Interview", filters)
interviews = frappe.db.sql(
.format(
conditions=conditions
),
{"start": start, "end": end},
as_dict=True,
update={"allDay": 0},
)
for d in interviews:
subject_data = []
for field in ["name", "job_applicant", "interview_round"]:
if not d.get(field):
continue
subject_data.append(d.get(field))
color = event_color.get(d.status)
interview_data = {
"from": get_datetime("%s %s" % (d.scheduled_on, d.from_time or "00:00:00")),
"to": get_datetime("%s %s" % (d.scheduled_on, d.to_time or "00:00:00")),
"name": d.name,
"subject": " | style: format code with black | get_events | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | interview.py | 16 | 45 | https://github.com/frappe/erpnext.git | 7 | 216 | 0 | 75 | 373 | Python | {
"docstring": "Returns events for Gantt / Calendar view rendering.\n\n\t:param start: Start date-time.\n\t:param end: End date-time.\n\t:param filters: Filters (JSON).\n\t\n\t\t\tSELECT DISTINCT\n\t\t\t\t`tabInterview`.name, `tabInterview`.job_applicant, `tabInterview`.interview_round,\n\t\t\t\t`tabInterview`.scheduled_on, `tabInterview`.status, `tabInterview`.from_time as from_time,\n\t\t\t\t`tabInterview`.to_time as to_time\n\t\t\tfrom\n\t\t\t\t`tabInterview`\n\t\t\twhere\n\t\t\t\t(`tabInterview`.scheduled_on between %(start)s and %(end)s)\n\t\t\t\tand docstatus != 2\n\t\t\t\t{conditions}\n\t\t\t",
"language": "en",
"n_whitespaces": 32,
"n_words": 46,
"vocab_size": 41
} | def get_events(start, end, filters=None):
from frappe.desk.calendar import get_event_conditions
events = []
event_color = {
"Pending": "#fff4f0",
"Under Review": "#d3e8fc",
"Cleared": "#eaf5ed",
"Rejected": "#fce7e7",
}
conditions = get_event_conditions("Interview", filters)
interviews = frappe.db.sql(
.format(
conditions=conditions
),
{"start": start, "end": end},
as_dict=True,
update={"allDay": 0},
)
for d in interviews:
subject_data = []
for field in ["name", "job_applicant", "interview_round"]:
if not d.get(field):
continue
subject_data.append(d.get(field))
color = event_color.get(d.status)
interview_data = {
"from": get_datetime("%s %s" % (d.scheduled_on, d.from_time or "00:00:00")),
"to": get_datetime("%s %s" % (d.scheduled_on, d.to_time or "00:00:00")),
"name": d.name,
"subject": "\n".join(subject_data),
"color": color if color else "#89bcde",
}
events.append(interview_data)
return events
|
|
31,364 | 138,228 | 263 | python/ray/tune/tests/test_experiment.py | 33 | 12 | def testFuncTrainableCheckpointConfigValidation(self):
with self.assertRaises(ValueError):
Experiment(
name="foo",
run="f1", # Will point to a wrapped function trainable
checkpoint_c | [Tune] Fix CheckpointConfig validation for function trainables (#31255)
This fixes an issue where a ValueError wasn't being properly raised when passing in a function trainable and setting `checkpoint_at_end=True` or `checkpoint_frequency > 0`. Previously, the error was only raised for function trainables of the form `def train_func(config, checkpoint_dir):`, which is the old checkpoint dir function API.
Signed-off-by: Justin Yu <justinvyu@berkeley.edu> | testFuncTrainableCheckpointConfigValidation | 51b56ad0118ed3f4341410e8c75625d1ca8cd757 | ray | test_experiment.py | 13 | 19 | https://github.com/ray-project/ray.git | 1 | 93 | 0 | 21 | 161 | Python | {
"docstring": "Raise an error when trying to specify checkpoint_at_end/checkpoint_frequency\n with a function trainable.",
"language": "en",
"n_whitespaces": 18,
"n_words": 12,
"vocab_size": 12
} | def testFuncTrainableCheckpointConfigValidation(self):
with self.assertRaises(ValueError):
Experiment(
name="foo",
run="f1", # Will point to a wrapped function trainable
checkpoint_config=CheckpointConfig(checkpoint_at_end=True),
)
with self.assertRaises(ValueError):
Experiment(
name="foo",
run="f1",
checkpoint_config=CheckpointConfig(checkpoint_frequency=1),
)
with self.assertRaises(ValueError):
Experiment(
name="foo",
run=lambda config: 1,
checkpoint_config=CheckpointConfig(checkpoint_at_end=True),
)
|
|
1,631 | 9,551 | 220 | reconstruction/ostec/utils/align2stylegan.py | 102 | 23 | def create_perspective_transform(src, dst, round=False, splat_args=False):
try:
transform_matrix = create_perspective_transform_matrix(src, dst)
error = None
except np.linalg.LinAlgError as e:
transform_matrix = np.identity(3, dtype=np.float)
error = "invalid input quads (%s and %s): %s" %(src, dst, e)
error = error.replace("\n", "")
to_eval = "def perspective_transform(%s):\n" %(
splat_args and "*pt" or "pt",
)
to_eval += " res = np.dot(transform_matrix, ((pt[0], ), (pt[1], ), (1, )))\n"
to_eval += " res = res / res[2]\n"
if round:
to_eval += " return (int(round(r | initialize ostec | create_perspective_transform | 7375ee364e0df2a417f92593e09557f1b2a3575a | insightface | align2stylegan.py | 13 | 26 | https://github.com/deepinsight/insightface.git | 5 | 144 | 0 | 67 | 254 | Python | {
"docstring": " Returns a function which will transform points in quadrilateral\n ``src`` to the corresponding points on quadrilateral ``dst``::\n\n >>> transform = create_perspective_transform(\n ... [(0, 0), (10, 0), (10, 10), (0, 10)],\n ... [(50, 50), (100, 50), (100, 100), (50, 100)],\n ... )\n >>> transform((5, 5))\n (74.99999999999639, 74.999999999999957)\n\n If ``round`` is ``True`` then points will be rounded to the nearest\n integer and integer values will be returned.\n\n >>> transform = create_perspective_transform(\n ... [(0, 0), (10, 0), (10, 10), (0, 10)],\n ... [(50, 50), (100, 50), (100, 100), (50, 100)],\n ... round=True,\n ... )\n >>> transform((5, 5))\n (75, 75)\n\n If ``splat_args`` is ``True`` the function will accept two arguments\n instead of a tuple.\n\n >>> transform = create_perspective_transform(\n ... [(0, 0), (10, 0), (10, 10), (0, 10)],\n ... [(50, 50), (100, 50), (100, 100), (50, 100)],\n ... splat_args=True,\n ... )\n >>> transform(5, 5)\n (74.99999999999639, 74.999999999999957)\n\n If the input values yield an invalid transformation matrix an identity\n function will be returned and the ``error`` attribute will be set to a\n description of the error::\n\n >>> tranform = create_perspective_transform(\n ... np.zeros((4, 2)),\n ... np.zeros((4, 2)),\n ... )\n >>> transform((5, 5))\n (5.0, 5.0)\n >>> transform.error\n 'invalid input quads (...): Singular matrix\n ",
"language": "en",
"n_whitespaces": 606,
"n_words": 194,
"vocab_size": 84
} | def create_perspective_transform(src, dst, round=False, splat_args=False):
try:
transform_matrix = create_perspective_transform_matrix(src, dst)
error = None
except np.linalg.LinAlgError as e:
transform_matrix = np.identity(3, dtype=np.float)
error = "invalid input quads (%s and %s): %s" %(src, dst, e)
error = error.replace("\n", "")
to_eval = "def perspective_transform(%s):\n" %(
splat_args and "*pt" or "pt",
)
to_eval += " res = np.dot(transform_matrix, ((pt[0], ), (pt[1], ), (1, )))\n"
to_eval += " res = res / res[2]\n"
if round:
to_eval += " return (int(round(res[0][0])), int(round(res[1][0])))\n"
else:
to_eval += " return (res[0][0], res[1][0])\n"
locals = {
"transform_matrix": transform_matrix,
}
locals.update(globals())
exec(to_eval,locals,locals)
res = locals["perspective_transform"]
res.matrix = transform_matrix
res.error = error
return res
|
|
117,539 | 321,111 | 111 | qutebrowser/browser/qtnetworkdownloads.py | 29 | 19 | def get(self, url, cache=True, **kwargs):
if not url.isValid():
urlutils.invalid_url_error(url, "start download")
return None
req = QNetworkRequest(url)
user_agent = websettings.user_agent(url)
req.setHeader(QNetworkRequest.KnownHeaders.UserAgentHeader, user_agent)
if not cache:
req.setAttribute(QNetworkRequest.Attribute.CacheSaveControlAttribute, False)
return self.get_request(req, **kw | Run scripts/dev/rewrite_enums.py | get | 0877fb0d78635692e481c8bde224fac5ad0dd430 | qutebrowser | qtnetworkdownloads.py | 11 | 10 | https://github.com/qutebrowser/qutebrowser.git | 3 | 85 | 0 | 25 | 136 | Python | {
"docstring": "Start a download with a link URL.\n\n Args:\n url: The URL to get, as QUrl\n cache: If set to False, don't cache the response.\n **kwargs: passed to get_request().\n\n Return:\n The created DownloadItem.\n ",
"language": "en",
"n_whitespaces": 97,
"n_words": 32,
"vocab_size": 28
} | def get(self, url, cache=True, **kwargs):
if not url.isValid():
urlutils.invalid_url_error(url, "start download")
return None
req = QNetworkRequest(url)
user_agent = websettings.user_agent(url)
req.setHeader(QNetworkRequest.KnownHeaders.UserAgentHeader, user_agent)
if not cache:
req.setAttribute(QNetworkRequest.Attribute.CacheSaveControlAttribute, False)
return self.get_request(req, **kwargs)
|
|
71,160 | 246,332 | 518 | tests/federation/test_federation_server.py | 106 | 31 | def test_send_join_partial_state(self):
joining_user = "@misspiggy:" + self.OTHER_SERVER_NAME
join_result = self._make_join(joining_user)
join_event_dict = join_result["event"]
add_hashes_and_signatures(
KNOWN_ROOM_VERSIONS[DEFAULT_ROOM_VERSION],
join_event_dict,
signature_name=self.OTHER_SERVER_NAME,
signing_key=self.OTHER_SERVER_SIGNATURE_KEY,
)
channel = self.make_signed_federation_request(
"PUT",
f"/_matrix/federation/v2/send_join/{self._room_id}/x?org.matrix.msc3706.partial_state=true",
content=join_event_dict,
)
self.assertEquals(channel.code, 200, channel.json_body)
# expect a reduced room state
returned_state = [
(ev["type"], ev["state_key"]) for ev in channel.json_body["state"]
]
self.assertCountEqual(
returned_state,
[
("m.room.create", ""),
("m.room.power_levels", ""),
("m.room.join_rules", ""),
("m.room.history_visibility", ""),
],
)
# the auth chain should not include anything already in "state"
returned_auth_chain_events = [
(ev["type"], ev["state_key"]) for ev in channel.json_body["auth_chain"]
]
self.assertCountEqual(
returned_auth | Implement MSC3706: partial state in `/send_join` response (#11967)
* Make `get_auth_chain_ids` return a Set
It has a set internally, and a set is often useful where it gets used, so let's
avoid converting to an intermediate list.
* Minor refactors in `on_send_join_request`
A little bit of non-functional groundwork
* Implement MSC3706: partial state in /send_join response | test_send_join_partial_state | 63c46349c41aa967e64a5a4042ef5177f934be47 | synapse | test_federation_server.py | 13 | 41 | https://github.com/matrix-org/synapse.git | 3 | 215 | 0 | 74 | 360 | Python | {
"docstring": "When MSC3706 support is enabled, /send_join should return partial state",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def test_send_join_partial_state(self):
joining_user = "@misspiggy:" + self.OTHER_SERVER_NAME
join_result = self._make_join(joining_user)
join_event_dict = join_result["event"]
add_hashes_and_signatures(
KNOWN_ROOM_VERSIONS[DEFAULT_ROOM_VERSION],
join_event_dict,
signature_name=self.OTHER_SERVER_NAME,
signing_key=self.OTHER_SERVER_SIGNATURE_KEY,
)
channel = self.make_signed_federation_request(
"PUT",
f"/_matrix/federation/v2/send_join/{self._room_id}/x?org.matrix.msc3706.partial_state=true",
content=join_event_dict,
)
self.assertEquals(channel.code, 200, channel.json_body)
# expect a reduced room state
returned_state = [
(ev["type"], ev["state_key"]) for ev in channel.json_body["state"]
]
self.assertCountEqual(
returned_state,
[
("m.room.create", ""),
("m.room.power_levels", ""),
("m.room.join_rules", ""),
("m.room.history_visibility", ""),
],
)
# the auth chain should not include anything already in "state"
returned_auth_chain_events = [
(ev["type"], ev["state_key"]) for ev in channel.json_body["auth_chain"]
]
self.assertCountEqual(
returned_auth_chain_events,
[
("m.room.member", "@kermit:test"),
],
)
# the room should show that the new user is a member
r = self.get_success(
self.hs.get_state_handler().get_current_state(self._room_id)
)
self.assertEqual(r[("m.room.member", joining_user)].membership, "join")
|
|
56,111 | 220,753 | 267 | python3.10.4/Lib/asyncio/streams.py | 87 | 10 | async def drain(self):
if self._reader is not None:
exc = self._reader.exception()
if exc is not None:
raise exc
if self._transport.is_closing():
# Wait for protocol.connection_lost() call
# Raise connection closing error if any,
# ConnectionResetError otherwise
# Yield to the event loop so connection_lost() may be
# called. Without this, _drain_helper() would return
# immediately, and code that calls
# write(...); await drain()
# in a loop would never call connection_lost(), so it
# would not see an error when the socket is closed.
await sleep(0)
await self._ | add python 3.10.4 for windows | drain | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | streams.py | 11 | 8 | https://github.com/XX-net/XX-Net.git | 4 | 53 | 0 | 60 | 100 | Python | {
"docstring": "Flush the write buffer.\n\n The intended use is to write\n\n w.write(data)\n await w.drain()\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 13,
"vocab_size": 12
} | async def drain(self):
if self._reader is not None:
exc = self._reader.exception()
if exc is not None:
raise exc
if self._transport.is_closing():
# Wait for protocol.connection_lost() call
# Raise connection closing error if any,
# ConnectionResetError otherwise
# Yield to the event loop so connection_lost() may be
# called. Without this, _drain_helper() would return
# immediately, and code that calls
# write(...); await drain()
# in a loop would never call connection_lost(), so it
# would not see an error when the socket is closed.
await sleep(0)
await self._protocol._drain_helper()
|
|
52,191 | 208,066 | 48 | celery/canvas.py | 16 | 9 | def on_chord_header_start(self, chord, **header) -> dict:
if not isinstance(chord.tasks, group):
chord.tasks = group(c | Canvas Header Stamping (#7384)
* Strip down the header-stamping PR to the basics.
* Serialize groups.
* Add groups to result backend meta data.
* Fix spelling mistake.
* Revert changes to canvas.py
* Revert changes to app/base.py
* Add stamping implementation to canvas.py
* Send task to AMQP with groups.
* Successfully pass single group to result.
* _freeze_gid dict merge fixed
* First draft of the visitor API.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* OptionsVisitor created
* Fixed canvas.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Added test for simple test for chord and fixed chord implementation
* Changed _IMMUTABLE_OPTIONS
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed list order
* Fixed tests (stamp test and chord test), fixed order in groups
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fixed lint and elements
* Changed implementation of stamp API and fix lint
* Added documentation to Stamping API. Added chord with groups test
* Implemented stamping inside replace and added test for an implementation
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Splitted into subtests
* Group stamping rollback
* group.id is None fixed
* Added integration test
* Added integration test
* apply_async fixed
* Integration test and test_chord fixed
* Lint fixed
* chord freeze fixed
* Minor fixes.
* Chain apply_async fixed and tests fixed
* lint fixed
* Added integration test for chord
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* type -> isinstance
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Redo header stamping (#7341)
* _freeze_gid dict merge fixed
* OptionsVisitor created
* Fixed canvas.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Added test for simple test for chord and fixed chord implementation
* Changed _IMMUTABLE_OPTIONS
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed list order
* Fixed tests (stamp test and chord test), fixed order in groups
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fixed lint and elements
* Changed implementation of stamp API and fix lint
* Added documentation to Stamping API. Added chord with groups test
* Implemented stamping inside replace and added test for an implementation
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Splitted into subtests
* Group stamping rollback
* group.id is None fixed
* Added integration test
* Added integration test
* apply_async fixed
* Integration test and test_chord fixed
* Lint fixed
* chord freeze fixed
* Minor fixes.
* Chain apply_async fixed and tests fixed
* lint fixed
* Added integration test for chord
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* type -> isinstance
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Omer Katz <omer.katz@omerkatz.com>
* Added stamping mechanism
* Manual stamping improved
* flake8 fixed
* Added subtests
* Add comma.
* Moved groups to stamps
* Fixed chord and added test for that
* Strip down the header-stamping PR to the basics.
* Serialize groups.
* Add groups to result backend meta data.
* Fix spelling mistake.
* Revert changes to canvas.py
* Revert changes to app/base.py
* Add stamping implementation to canvas.py
* Send task to AMQP with groups.
* Successfully pass single group to result.
* _freeze_gid dict merge fixed
* First draft of the visitor API.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* OptionsVisitor created
* Fixed canvas.py
* Added test for simple test for chord and fixed chord implementation
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Changed _IMMUTABLE_OPTIONS
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed chord interface
* Fixed list order
* Fixed tests (stamp test and chord test), fixed order in groups
* Fixed lint and elements
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Changed implementation of stamp API and fix lint
* Added documentation to Stamping API. Added chord with groups test
* Implemented stamping inside replace and added test for an implementation
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Added test additonal tests for chord, improved coverage
* Splitted into subtests
* Group stamping rollback
* group.id is None fixed
* Added integration test
* Added integration test
* apply_async fixed
* Integration test and test_chord fixed
* Lint fixed
* chord freeze fixed
* Minor fixes.
* Chain apply_async fixed and tests fixed
* lint fixed
* Added integration test for chord
* type -> isinstance
* Added stamping mechanism
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Manual stamping improved
* fail_ci_if_error uncommented
* flake8 fixed
* Added subtests
* Changes
* Add comma.
* Fixed chord and added test for that
* canvas.py fixed
* Test chord.py fixed
* Fixed stamped_headers
* collections import fixed
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* collections import fixed
* Update celery/backends/base.py
Co-authored-by: Omer Katz <omer.katz@omerkatz.com>
* ampq.py fixed
* Refrain from using deprecated import path.
* Fix test_complex_chain regression.
Whenever we stamp a group we need to freeze it first if it wasn't already frozen.
Somewhere along the line, the group id changed because we were freezing twice.
This commit places the stamping operation after preparing the chain's steps which fixes the problem somehow.
We don't know why yet.
* Fixed integration tests
* Fixed integration tests
* Fixed integration tests
* Fixed integration tests
* Fixed issues with maybe_list. Add documentation
* Fixed potential issue with integration tests
* Fixed issues with _regen
* Fixed issues with _regen
* Fixed test_generator issues
* Fixed _regen stamping
* Fixed _regen stamping
* Fixed TimeOut issue
* Fixed TimeOut issue
* Fixed TimeOut issue
* Update docs/userguide/canvas.rst
Co-authored-by: Omer Katz <omer.katz@omerkatz.com>
* Fixed Couchbase
* Better stamping intro
* New GroupVisitor example
* Adjust documentation.
Co-authored-by: Naomi Elstein <naomi.els@omerkatz.com>
Co-authored-by: Omer Katz <omer.katz@omerkatz.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Asif Saif Uddin <auvipy@gmail.com>
Co-authored-by: Omer Katz <omer.katz@kcg.tech> | on_chord_header_start | 1c4ff33bd22cf94e297bd6449a06b5a30c2c1fbc | celery | canvas.py | 11 | 12 | https://github.com/celery/celery.git | 2 | 46 | 0 | 15 | 73 | Python | {
"docstring": "Method that is called on сhord header stamping start.\n\n Arguments:\n chord (chord): chord that is stamped.\n headers (Dict): Partial headers that could be merged with existing headers.\n Returns:\n Dict: headers to update.\n ",
"language": "en",
"n_whitespaces": 92,
"n_words": 32,
"vocab_size": 26
} | def on_chord_header_start(self, chord, **header) -> dict:
if not isinstance(chord.tasks, group):
chord.tasks = group(chord.tasks)
return self.on_group_start(chord.tasks, **header)
|
|
34,932 | 151,043 | 436 | freqtrade/freqai/data_drawer.py | 105 | 17 | def load_historic_predictions_from_disk(self):
exists = self.historic_predictions_path.is_file()
if exists:
try:
with open(self.historic_predictions_path, "rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.info(
f"Found existing historic predictions at {self.full_path}, but beware "
"that statistics may be inaccurate if the bot ha | backup historical predictions pickle and load the backup in case of corruption | load_historic_predictions_from_disk | ec76214d023a6c53ffab0af8d43bc5b72b1d66af | freqtrade | data_drawer.py | 16 | 25 | https://github.com/freqtrade/freqtrade.git | 4 | 112 | 0 | 79 | 222 | Python | {
"docstring": "\n Locate and load a previously saved historic predictions.\n :return: bool - whether or not the drawer was located\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 18
} | def load_historic_predictions_from_disk(self):
exists = self.historic_predictions_path.is_file()
if exists:
try:
with open(self.historic_predictions_path, "rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.info(
f"Found existing historic predictions at {self.full_path}, but beware "
"that statistics may be inaccurate if the bot has been offline for "
"an extended period of time."
)
except EOFError:
logger.warning(
'Historical prediction file was corrupted. Trying to load backup file.')
with open(self.historic_predictions_bkp_path, "rb") as fp:
self.historic_predictions = cloudpickle.load(fp)
logger.warning('FreqAI successfully loaded the backup historical predictions file.')
elif not self.follow_mode:
logger.info("Could not find existing historic_predictions, starting from scratch")
else:
logger.warning(
f"Follower could not find historic predictions at {self.full_path} "
"sending null values back to strategy"
)
return exists
|
|
43,713 | 181,992 | 52 | tests/test_css_parse.py | 17 | 14 | def test_background(self):
css =
stylesheet = Stylesheet()
stylesheet.parse(css)
styles = stylesheet.rules[0].styles
| Namespacing parsing tests into classes | test_background | 1103844708c7f3a3bd1fc33cae56eb59209ef6c0 | textual | test_css_parse.py | 10 | 9 | https://github.com/Textualize/textual.git | 1 | 48 | 0 | 15 | 79 | Python | {
"docstring": "#some-widget {\n text: on red;\n }\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 6,
"vocab_size": 6
} | def test_background(self):
css =
stylesheet = Stylesheet()
stylesheet.parse(css)
styles = stylesheet.rules[0].styles
assert styles.text_background == Color("red", type=ColorType.STANDARD, number=1)
|
|
103,210 | 304,403 | 489 | homeassistant/components/dte_energy_bridge/sensor.py | 146 | 24 | def update(self) -> None:
try:
response = requests.get(self._url, timeout=5)
except (requests.exceptions.RequestException, ValueError):
_LOGGER.warning(
"Could not update status for DTE Energy Bridge (%s)", self._attr_name
)
return
if response.status_code != HTTPStatus.OK:
_LOGGER.warning(
"Invalid status_code from DTE Energy Bridge: %s (%s)",
response.status_code,
self._attr_name,
)
return
response_split = response.text.split()
if len(response_split) != 2:
_LOGGER.warning(
'Invalid response from DTE Energy Bridge: "%s" (%s)',
response.text,
self._attr_name,
)
return
| Improve entity type hints [d] (#77031) | update | bf7239c25db06f1377a895244a906b43242c9963 | core | sensor.py | 11 | 29 | https://github.com/home-assistant/core.git | 6 | 141 | 0 | 99 | 234 | Python | {
"docstring": "Get the energy usage data from the DTE energy bridge.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 8
} | def update(self) -> None:
try:
response = requests.get(self._url, timeout=5)
except (requests.exceptions.RequestException, ValueError):
_LOGGER.warning(
"Could not update status for DTE Energy Bridge (%s)", self._attr_name
)
return
if response.status_code != HTTPStatus.OK:
_LOGGER.warning(
"Invalid status_code from DTE Energy Bridge: %s (%s)",
response.status_code,
self._attr_name,
)
return
response_split = response.text.split()
if len(response_split) != 2:
_LOGGER.warning(
'Invalid response from DTE Energy Bridge: "%s" (%s)',
response.text,
self._attr_name,
)
return
val = float(response_split[0])
# A workaround for a bug in the DTE energy bridge.
# The returned value can randomly be in W or kW. Checking for a
# a decimal seems to be a reliable way to determine the units.
# Limiting to version 1 because version 2 apparently always returns
# values in the format 000000.000 kW, but the scaling is Watts
# NOT kWatts
if self._version == 1 and "." in response_split[0]:
self._attr_native_value = val
else:
self._attr_native_value = val / 1000
|
|
36,576 | 156,131 | 238 | dask/order.py | 78 | 20 | def ndependencies(dependencies, dependents):
num_needed = {}
result = {}
for k, v in dependencies.items():
num_needed[k] = len(v)
if not v:
result[k] = 1
num_dependencies = num_needed.copy()
current = []
current_pop = current.pop
cur | absolufy-imports - No relative - PEP8 (#8796)
Conversation in https://github.com/dask/distributed/issues/5889 | ndependencies | cccb9d8d8e33a891396b1275c2448c352ef40c27 | dask | order.py | 13 | 24 | https://github.com/dask/dask.git | 10 | 155 | 0 | 45 | 244 | Python | {
"docstring": "Number of total data elements on which this key depends\n\n For each key we return the number of tasks that must be run for us to run\n this task.\n\n Examples\n --------\n >>> inc = lambda x: x + 1\n >>> dsk = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b')}\n >>> dependencies, dependents = get_deps(dsk)\n >>> num_dependencies, total_dependencies = ndependencies(dependencies, dependents)\n >>> sorted(total_dependencies.items())\n [('a', 1), ('b', 2), ('c', 3)]\n\n Returns\n -------\n num_dependencies: Dict[key, int]\n total_dependencies: Dict[key, int]\n ",
"language": "en",
"n_whitespaces": 122,
"n_words": 77,
"vocab_size": 63
} | def ndependencies(dependencies, dependents):
num_needed = {}
result = {}
for k, v in dependencies.items():
num_needed[k] = len(v)
if not v:
result[k] = 1
num_dependencies = num_needed.copy()
current = []
current_pop = current.pop
current_append = current.append
for key in result:
for parent in dependents[key]:
num_needed[parent] -= 1
if not num_needed[parent]:
current_append(parent)
while current:
key = current_pop()
result[key] = 1 + sum(result[child] for child in dependencies[key])
for parent in dependents[key]:
num_needed[parent] -= 1
if not num_needed[parent]:
current_append(parent)
return num_dependencies, result
|
|
39,982 | 167,375 | 181 | pandas/io/pytables.py | 59 | 13 | def validate_attr(self, append) -> None:
if append:
existing_fields = getattr(self.attrs, self.kind_attr, None)
if existing_fields is not None and existing_fields != list(self.values):
raise ValueError("appended items do not match existing items in table!")
existing_dtype = getattr(self.attrs, self.dtype_attr, None)
if existing_dtype is not None an | TYP: some return annotations in pytables.py (#47512) | validate_attr | 7d2f9b8d59908fbf57c6453bc41891efbfe981a6 | pandas | pytables.py | 12 | 11 | https://github.com/pandas-dev/pandas.git | 6 | 78 | 0 | 34 | 124 | Python | {
"docstring": "validate that we have the same order as the existing & same dtype",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 11
} | def validate_attr(self, append) -> None:
if append:
existing_fields = getattr(self.attrs, self.kind_attr, None)
if existing_fields is not None and existing_fields != list(self.values):
raise ValueError("appended items do not match existing items in table!")
existing_dtype = getattr(self.attrs, self.dtype_attr, None)
if existing_dtype is not None and existing_dtype != self.dtype:
raise ValueError(
"appended items dtype do not match existing items dtype in table!"
)
|
|
Final = _FinalForm('Final',
doc="""A special typing construct to indicate that a name
cannot be re-assigned or overridden in a subclass.
For example:
MAX_SIZE: Final = 9000
MAX_SIZE += 1 # Error reported by type checker"""A special typing construct to indicate that a name
cannot be re-assigned or overridden in a subclass.
For example:
MAX_SIZE: Final = 9000
MAX_SIZE +=a subclass.
For example: | 3,619 | 20,928 | 101 | pipenv/patched/notpip/_vendor/typing_extensions.py | 18 | 28 | def __getitem__(self, parameters):
item = typing._type_check(parameters,
f'{self._name} accepts only single type')
return typing._GenericAlias(self, (item,))
Final = _FinalForm('Final',
d | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | __getitem__ | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | typing_extensions.py | 11 | 4 | https://github.com/pypa/pipenv.git | 1 | 30 | 3 | 17 | 103 | Python | {
"docstring": "A special typing construct to indicate that a name\n cannot be re-assigned or overridden in a subclass.\n For example:\n\n MAX_SIZE: Final = 9000\n MAX_SIZE += 1 # Error reported by type checker",
"language": "en",
"n_whitespaces": 128,
"n_words": 32,
"vocab_size": 31
} | def __getitem__(self, parameters):
item = typing._type_check(parameters,
f'{self._name} accepts only single type')
return typing._GenericAlias(self, (item,))
Final = _FinalForm('Final',
doc= |
81,863 | 277,091 | 76 | keras/utils/tf_utils.py | 36 | 9 | def type_spec_from_value(value):
if is_extension_type(value):
return value._type_spec # pylint: disable=protected-access
# Get a TensorSpec for array-like data without
# converting the data to a Tensor
if hasattr(value, "shape") and hasattr(value, "dtype"):
return tf.TensorSpec(value.shape, value | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | type_spec_from_value | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | tf_utils.py | 10 | 7 | https://github.com/keras-team/keras.git | 4 | 53 | 0 | 28 | 92 | Python | {
"docstring": "Grab type_spec without converting array-likes to tensors.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | def type_spec_from_value(value):
if is_extension_type(value):
return value._type_spec # pylint: disable=protected-access
# Get a TensorSpec for array-like data without
# converting the data to a Tensor
if hasattr(value, "shape") and hasattr(value, "dtype"):
return tf.TensorSpec(value.shape, value.dtype)
else:
return tf.type_spec_from_value(value)
|
|
53,367 | 212,726 | 141 | DemoPrograms/Demo_User_Settings_Class.py | 49 | 19 | def make_window():
sg.theme(settings.get('-theme-', 'DarkBlue2')) # set the theme
layout = [[sg.Text('Settings Window')],
[sg.Input(settings.get('-input-', ''), k='-IN-')],
[sg.Listbox(sg.theme_list(), default_values=[settings['-theme-'],], size=(15, 10), k='-LISTBOX-')],
[sg.CB('Option 1', settings.get('-option1-', True), k='-CB1-')],
[sg.CB('Option 2', settings.get('-option2-', False), k='-CB2-')],
[sg.T('Settings file = ' + settings.get_filename())],
[sg.Button('Save'), sg.Button('Settings Dictionar | Catching up on the many many demo programs that were not checked in.... | make_window | cfe2c96a1fa6fc721c998179298a7d430ccbaefd | PySimpleGUI | Demo_User_Settings_Class.py | 14 | 10 | https://github.com/PySimpleGUI/PySimpleGUI.git | 1 | 181 | 0 | 46 | 304 | Python | {
"docstring": "\n Creates a new window. The default values for some elements are pulled directly from the\n \"User Settings\" without the use of temp variables.\n\n Some get_entry calls don't have a default value, such as theme, because there was an initial call\n that would have set the default value if the setting wasn't present. Could still put the default\n value if you wanted but it would be 2 places to change if you wanted a different default value.\n\n Use of a lookup table to map between element keys and user settings could be aded. This demo\n is intentionally done without one to show how to use the settings APIs in the most basic,\n straightforward way.\n\n If your application allows changing the theme, then a make_window function is good to have\n so that you can close and re-create a window easily.\n\n :return: (sg.Window) The window that was created\n ",
"language": "en",
"n_whitespaces": 185,
"n_words": 145,
"vocab_size": 103
} | def make_window():
sg.theme(settings.get('-theme-', 'DarkBlue2')) # set the theme
layout = [[sg.Text('Settings Window')],
[sg.Input(settings.get('-input-', ''), k='-IN-')],
[sg.Listbox(sg.theme_list(), default_values=[settings['-theme-'],], size=(15, 10), k='-LISTBOX-')],
[sg.CB('Option 1', settings.get('-option1-', True), k='-CB1-')],
[sg.CB('Option 2', settings.get('-option2-', False), k='-CB2-')],
[sg.T('Settings file = ' + settings.get_filename())],
[sg.Button('Save'), sg.Button('Settings Dictionary'), sg.Button('Exit without saving', k='Exit')]]
window = sg.Window('A Settings Window', layout)
|
|
72,922 | 249,450 | 52 | synapse/metrics/common_usage_metrics.py | 13 | 7 | async def _collect(self) -> CommonUsageMetrics:
dau_count = await self._store.count_daily_users()
return CommonUsageMetrics(
daily_active_users=dau_count,
)
| Share some metrics between the Prometheus exporter and the phone home stats (#13671) | _collect | 898fef2789c9b1a20ef53c7d588f536f51f0fe2f | synapse | common_usage_metrics.py | 10 | 8 | https://github.com/matrix-org/synapse.git | 1 | 26 | 0 | 13 | 46 | Python | {
"docstring": "Collect the common metrics and either create the CommonUsageMetrics object to\n use if it doesn't exist yet, or update it.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 20,
"vocab_size": 19
} | async def _collect(self) -> CommonUsageMetrics:
dau_count = await self._store.count_daily_users()
return CommonUsageMetrics(
daily_active_users=dau_count,
)
|
|
42,702 | 178,456 | 260 | nuitka/plugins/Plugins.py | 65 | 12 | def getPreprocessorSymbols(cls):
if cls.preprocessor_symbols is None:
cls.preprocessor_symbols = OrderedDict()
for plugin in getActivePlugins():
value = plugin.getPreprocessorSymbols()
if value is not None:
assert type(value) is dict, value
# We order per plugin, but from the plugins, lets just take a dict
# and achieve determinism by ordering the defines by name.
for key, value in sorted(value.items()):
# False alarm, pylint | Minor cleanups
* Typos and minor problems only | getPreprocessorSymbols | 11b0190a5e2d77098b16ff01ae8597428e055f53 | Nuitka | Plugins.py | 16 | 10 | https://github.com/Nuitka/Nuitka.git | 5 | 75 | 0 | 47 | 124 | Python | {
"docstring": "Let plugins provide C defines to be used in compilation.\n\n Notes:\n The plugins can each contribute, but are hopefully using\n a namespace for their defines.\n\n Returns:\n OrderedDict(), where None value indicates no define value,\n i.e. \"-Dkey=value\" vs. \"-Dkey\"\n ",
"language": "en",
"n_whitespaces": 103,
"n_words": 38,
"vocab_size": 37
} | def getPreprocessorSymbols(cls):
if cls.preprocessor_symbols is None:
cls.preprocessor_symbols = OrderedDict()
for plugin in getActivePlugins():
value = plugin.getPreprocessorSymbols()
if value is not None:
assert type(value) is dict, value
# We order per plugin, but from the plugins, lets just take a dict
# and achieve determinism by ordering the defines by name.
for key, value in sorted(value.items()):
# False alarm, pylint: disable=I0021,unsupported-assignment-operation
cls.preprocessor_symbols[key] = value
return cls.preprocessor_symbols
|
|
23,267 | 108,585 | 117 | lib/matplotlib/text.py | 38 | 12 | def _check_xy(self, renderer=None):
if renderer is None:
renderer = self.figure._get_renderer()
b = self.get_annotation_clip()
if b or (b is None and self.xycoords == "data"):
| MNT: make renderer always optional | _check_xy | 24b16804731d3a724e4ec0984da140b1a6b05c66 | matplotlib | text.py | 11 | 8 | https://github.com/matplotlib/matplotlib.git | 5 | 65 | 0 | 29 | 109 | Python | {
"docstring": "Check whether the annotation at *xy_pixel* should be drawn.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def _check_xy(self, renderer=None):
if renderer is None:
renderer = self.figure._get_renderer()
b = self.get_annotation_clip()
if b or (b is None and self.xycoords == "data"):
# check if self.xy is inside the axes.
xy_pixel = self._get_position_xy(renderer)
return self.axes.contains_point(xy_pixel)
return True
|
|
78,660 | 266,931 | 41 | lib/ansible/plugins/connection/__init__.py | 20 | 7 | def _split_ssh_args(argstring):
# In Python3, shlex.split doesn't work on a byte string.
return [to_text(x.strip()) for x in shlex.split(argstring) i | Remove more Python 2.x compatibility code from controller. (#77320) | _split_ssh_args | 4baf18c573c17cf9cd5716b28dbf38a32b57aaff | ansible | __init__.py | 10 | 2 | https://github.com/ansible/ansible.git | 3 | 32 | 0 | 20 | 55 | Python | {
"docstring": "\n Takes a string like '-o Foo=1 -o Bar=\"foo bar\"' and returns a\n list ['-o', 'Foo=1', '-o', 'Bar=foo bar'] that can be added to\n the argument list. The list will not contain any empty elements.\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 34,
"vocab_size": 32
} | def _split_ssh_args(argstring):
# In Python3, shlex.split doesn't work on a byte string.
return [to_text(x.strip()) for x in shlex.split(argstring) if x.strip()]
|