repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
janpipek/physt
physt/binnings.py
human_binning
def human_binning(data=None, bin_count: Optional[int] = None, *, range=None, **kwargs) -> FixedWidthBinning: """Construct fixed-width ninning schema with bins automatically optimized to human-friendly widths. Typical widths are: 1.0, 25,0, 0.02, 500, 2.5e-7, ... Parameters ---------- bin_count: Number of bins range: Optional[tuple] (min, max) """ subscales = np.array([0.5, 1, 2, 2.5, 5, 10]) # TODO: remove colliding kwargs if data is None and range is None: raise RuntimeError("Cannot guess optimum bin width without data.") if bin_count is None: bin_count = ideal_bin_count(data) min_ = range[0] if range else data.min() max_ = range[1] if range else data.max() bw = (max_ - min_) / bin_count power = np.floor(np.log10(bw)).astype(int) best_index = np.argmin(np.abs(np.log(subscales * (10.0 ** power) / bw))) bin_width = (10.0 ** power) * subscales[best_index] return fixed_width_binning(bin_width=bin_width, data=data, range=range, **kwargs)
python
def human_binning(data=None, bin_count: Optional[int] = None, *, range=None, **kwargs) -> FixedWidthBinning: """Construct fixed-width ninning schema with bins automatically optimized to human-friendly widths. Typical widths are: 1.0, 25,0, 0.02, 500, 2.5e-7, ... Parameters ---------- bin_count: Number of bins range: Optional[tuple] (min, max) """ subscales = np.array([0.5, 1, 2, 2.5, 5, 10]) # TODO: remove colliding kwargs if data is None and range is None: raise RuntimeError("Cannot guess optimum bin width without data.") if bin_count is None: bin_count = ideal_bin_count(data) min_ = range[0] if range else data.min() max_ = range[1] if range else data.max() bw = (max_ - min_) / bin_count power = np.floor(np.log10(bw)).astype(int) best_index = np.argmin(np.abs(np.log(subscales * (10.0 ** power) / bw))) bin_width = (10.0 ** power) * subscales[best_index] return fixed_width_binning(bin_width=bin_width, data=data, range=range, **kwargs)
[ "def", "human_binning", "(", "data", "=", "None", ",", "bin_count", ":", "Optional", "[", "int", "]", "=", "None", ",", "*", ",", "range", "=", "None", ",", "*", "*", "kwargs", ")", "->", "FixedWidthBinning", ":", "subscales", "=", "np", ".", "array", "(", "[", "0.5", ",", "1", ",", "2", ",", "2.5", ",", "5", ",", "10", "]", ")", "# TODO: remove colliding kwargs", "if", "data", "is", "None", "and", "range", "is", "None", ":", "raise", "RuntimeError", "(", "\"Cannot guess optimum bin width without data.\"", ")", "if", "bin_count", "is", "None", ":", "bin_count", "=", "ideal_bin_count", "(", "data", ")", "min_", "=", "range", "[", "0", "]", "if", "range", "else", "data", ".", "min", "(", ")", "max_", "=", "range", "[", "1", "]", "if", "range", "else", "data", ".", "max", "(", ")", "bw", "=", "(", "max_", "-", "min_", ")", "/", "bin_count", "power", "=", "np", ".", "floor", "(", "np", ".", "log10", "(", "bw", ")", ")", ".", "astype", "(", "int", ")", "best_index", "=", "np", ".", "argmin", "(", "np", ".", "abs", "(", "np", ".", "log", "(", "subscales", "*", "(", "10.0", "**", "power", ")", "/", "bw", ")", ")", ")", "bin_width", "=", "(", "10.0", "**", "power", ")", "*", "subscales", "[", "best_index", "]", "return", "fixed_width_binning", "(", "bin_width", "=", "bin_width", ",", "data", "=", "data", ",", "range", "=", "range", ",", "*", "*", "kwargs", ")" ]
Construct fixed-width ninning schema with bins automatically optimized to human-friendly widths. Typical widths are: 1.0, 25,0, 0.02, 500, 2.5e-7, ... Parameters ---------- bin_count: Number of bins range: Optional[tuple] (min, max)
[ "Construct", "fixed", "-", "width", "ninning", "schema", "with", "bins", "automatically", "optimized", "to", "human", "-", "friendly", "widths", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L628-L653
train
janpipek/physt
physt/binnings.py
quantile_binning
def quantile_binning(data=None, bins=10, *, qrange=(0.0, 1.0), **kwargs) -> StaticBinning: """Binning schema based on quantile ranges. This binning finds equally spaced quantiles. This should lead to all bins having roughly the same frequencies. Note: weights are not (yet) take into account for calculating quantiles. Parameters ---------- bins: sequence or Optional[int] Number of bins qrange: Optional[tuple] Two floats as minimum and maximum quantile (default: 0.0, 1.0) Returns ------- StaticBinning """ if np.isscalar(bins): bins = np.linspace(qrange[0] * 100, qrange[1] * 100, bins + 1) bins = np.percentile(data, bins) return static_binning(bins=make_bin_array(bins), includes_right_edge=True)
python
def quantile_binning(data=None, bins=10, *, qrange=(0.0, 1.0), **kwargs) -> StaticBinning: """Binning schema based on quantile ranges. This binning finds equally spaced quantiles. This should lead to all bins having roughly the same frequencies. Note: weights are not (yet) take into account for calculating quantiles. Parameters ---------- bins: sequence or Optional[int] Number of bins qrange: Optional[tuple] Two floats as minimum and maximum quantile (default: 0.0, 1.0) Returns ------- StaticBinning """ if np.isscalar(bins): bins = np.linspace(qrange[0] * 100, qrange[1] * 100, bins + 1) bins = np.percentile(data, bins) return static_binning(bins=make_bin_array(bins), includes_right_edge=True)
[ "def", "quantile_binning", "(", "data", "=", "None", ",", "bins", "=", "10", ",", "*", ",", "qrange", "=", "(", "0.0", ",", "1.0", ")", ",", "*", "*", "kwargs", ")", "->", "StaticBinning", ":", "if", "np", ".", "isscalar", "(", "bins", ")", ":", "bins", "=", "np", ".", "linspace", "(", "qrange", "[", "0", "]", "*", "100", ",", "qrange", "[", "1", "]", "*", "100", ",", "bins", "+", "1", ")", "bins", "=", "np", ".", "percentile", "(", "data", ",", "bins", ")", "return", "static_binning", "(", "bins", "=", "make_bin_array", "(", "bins", ")", ",", "includes_right_edge", "=", "True", ")" ]
Binning schema based on quantile ranges. This binning finds equally spaced quantiles. This should lead to all bins having roughly the same frequencies. Note: weights are not (yet) take into account for calculating quantiles. Parameters ---------- bins: sequence or Optional[int] Number of bins qrange: Optional[tuple] Two floats as minimum and maximum quantile (default: 0.0, 1.0) Returns ------- StaticBinning
[ "Binning", "schema", "based", "on", "quantile", "ranges", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L656-L680
train
janpipek/physt
physt/binnings.py
static_binning
def static_binning(data=None, bins=None, **kwargs) -> StaticBinning: """Construct static binning with whatever bins.""" return StaticBinning(bins=make_bin_array(bins), **kwargs)
python
def static_binning(data=None, bins=None, **kwargs) -> StaticBinning: """Construct static binning with whatever bins.""" return StaticBinning(bins=make_bin_array(bins), **kwargs)
[ "def", "static_binning", "(", "data", "=", "None", ",", "bins", "=", "None", ",", "*", "*", "kwargs", ")", "->", "StaticBinning", ":", "return", "StaticBinning", "(", "bins", "=", "make_bin_array", "(", "bins", ")", ",", "*", "*", "kwargs", ")" ]
Construct static binning with whatever bins.
[ "Construct", "static", "binning", "with", "whatever", "bins", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L683-L685
train
janpipek/physt
physt/binnings.py
integer_binning
def integer_binning(data=None, **kwargs) -> StaticBinning: """Construct fixed-width binning schema with bins centered around integers. Parameters ---------- range: Optional[Tuple[int]] min (included) and max integer (excluded) bin bin_width: Optional[int] group "bin_width" integers into one bin (not recommended) """ if "range" in kwargs: kwargs["range"] = tuple(r - 0.5 for r in kwargs["range"]) return fixed_width_binning(data=data, bin_width=kwargs.pop("bin_width", 1), align=True, bin_shift=0.5, **kwargs)
python
def integer_binning(data=None, **kwargs) -> StaticBinning: """Construct fixed-width binning schema with bins centered around integers. Parameters ---------- range: Optional[Tuple[int]] min (included) and max integer (excluded) bin bin_width: Optional[int] group "bin_width" integers into one bin (not recommended) """ if "range" in kwargs: kwargs["range"] = tuple(r - 0.5 for r in kwargs["range"]) return fixed_width_binning(data=data, bin_width=kwargs.pop("bin_width", 1), align=True, bin_shift=0.5, **kwargs)
[ "def", "integer_binning", "(", "data", "=", "None", ",", "*", "*", "kwargs", ")", "->", "StaticBinning", ":", "if", "\"range\"", "in", "kwargs", ":", "kwargs", "[", "\"range\"", "]", "=", "tuple", "(", "r", "-", "0.5", "for", "r", "in", "kwargs", "[", "\"range\"", "]", ")", "return", "fixed_width_binning", "(", "data", "=", "data", ",", "bin_width", "=", "kwargs", ".", "pop", "(", "\"bin_width\"", ",", "1", ")", ",", "align", "=", "True", ",", "bin_shift", "=", "0.5", ",", "*", "*", "kwargs", ")" ]
Construct fixed-width binning schema with bins centered around integers. Parameters ---------- range: Optional[Tuple[int]] min (included) and max integer (excluded) bin bin_width: Optional[int] group "bin_width" integers into one bin (not recommended)
[ "Construct", "fixed", "-", "width", "binning", "schema", "with", "bins", "centered", "around", "integers", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L688-L701
train
janpipek/physt
physt/binnings.py
fixed_width_binning
def fixed_width_binning(data=None, bin_width: Union[float, int] = 1, *, range=None, includes_right_edge=False, **kwargs) -> FixedWidthBinning: """Construct fixed-width binning schema. Parameters ---------- bin_width: float range: Optional[tuple] (min, max) align: Optional[float] Must be multiple of bin_width """ result = FixedWidthBinning(bin_width=bin_width, includes_right_edge=includes_right_edge, **kwargs) if range: result._force_bin_existence(range[0]) result._force_bin_existence(range[1], includes_right_edge=True) if not kwargs.get("adaptive"): return result # Otherwise we want to adapt to data if data is not None and data.shape[0]: # print("Jo, tady") result._force_bin_existence([np.min(data), np.max(data)], includes_right_edge=includes_right_edge) return result
python
def fixed_width_binning(data=None, bin_width: Union[float, int] = 1, *, range=None, includes_right_edge=False, **kwargs) -> FixedWidthBinning: """Construct fixed-width binning schema. Parameters ---------- bin_width: float range: Optional[tuple] (min, max) align: Optional[float] Must be multiple of bin_width """ result = FixedWidthBinning(bin_width=bin_width, includes_right_edge=includes_right_edge, **kwargs) if range: result._force_bin_existence(range[0]) result._force_bin_existence(range[1], includes_right_edge=True) if not kwargs.get("adaptive"): return result # Otherwise we want to adapt to data if data is not None and data.shape[0]: # print("Jo, tady") result._force_bin_existence([np.min(data), np.max(data)], includes_right_edge=includes_right_edge) return result
[ "def", "fixed_width_binning", "(", "data", "=", "None", ",", "bin_width", ":", "Union", "[", "float", ",", "int", "]", "=", "1", ",", "*", ",", "range", "=", "None", ",", "includes_right_edge", "=", "False", ",", "*", "*", "kwargs", ")", "->", "FixedWidthBinning", ":", "result", "=", "FixedWidthBinning", "(", "bin_width", "=", "bin_width", ",", "includes_right_edge", "=", "includes_right_edge", ",", "*", "*", "kwargs", ")", "if", "range", ":", "result", ".", "_force_bin_existence", "(", "range", "[", "0", "]", ")", "result", ".", "_force_bin_existence", "(", "range", "[", "1", "]", ",", "includes_right_edge", "=", "True", ")", "if", "not", "kwargs", ".", "get", "(", "\"adaptive\"", ")", ":", "return", "result", "# Otherwise we want to adapt to data", "if", "data", "is", "not", "None", "and", "data", ".", "shape", "[", "0", "]", ":", "# print(\"Jo, tady\")", "result", ".", "_force_bin_existence", "(", "[", "np", ".", "min", "(", "data", ")", ",", "np", ".", "max", "(", "data", ")", "]", ",", "includes_right_edge", "=", "includes_right_edge", ")", "return", "result" ]
Construct fixed-width binning schema. Parameters ---------- bin_width: float range: Optional[tuple] (min, max) align: Optional[float] Must be multiple of bin_width
[ "Construct", "fixed", "-", "width", "binning", "schema", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L704-L726
train
janpipek/physt
physt/binnings.py
exponential_binning
def exponential_binning(data=None, bin_count: Optional[int] = None, *, range=None, **kwargs) -> ExponentialBinning: """Construct exponential binning schema. Parameters ---------- bin_count: Optional[int] Number of bins range: Optional[tuple] (min, max) See also -------- numpy.logspace - note that our range semantics is different """ if bin_count is None: bin_count = ideal_bin_count(data) if range: range = (np.log10(range[0]), np.log10(range[1])) else: range = (np.log10(data.min()), np.log10(data.max())) log_width = (range[1] - range[0]) / bin_count return ExponentialBinning(log_min=range[0], log_width=log_width, bin_count=bin_count, **kwargs)
python
def exponential_binning(data=None, bin_count: Optional[int] = None, *, range=None, **kwargs) -> ExponentialBinning: """Construct exponential binning schema. Parameters ---------- bin_count: Optional[int] Number of bins range: Optional[tuple] (min, max) See also -------- numpy.logspace - note that our range semantics is different """ if bin_count is None: bin_count = ideal_bin_count(data) if range: range = (np.log10(range[0]), np.log10(range[1])) else: range = (np.log10(data.min()), np.log10(data.max())) log_width = (range[1] - range[0]) / bin_count return ExponentialBinning(log_min=range[0], log_width=log_width, bin_count=bin_count, **kwargs)
[ "def", "exponential_binning", "(", "data", "=", "None", ",", "bin_count", ":", "Optional", "[", "int", "]", "=", "None", ",", "*", ",", "range", "=", "None", ",", "*", "*", "kwargs", ")", "->", "ExponentialBinning", ":", "if", "bin_count", "is", "None", ":", "bin_count", "=", "ideal_bin_count", "(", "data", ")", "if", "range", ":", "range", "=", "(", "np", ".", "log10", "(", "range", "[", "0", "]", ")", ",", "np", ".", "log10", "(", "range", "[", "1", "]", ")", ")", "else", ":", "range", "=", "(", "np", ".", "log10", "(", "data", ".", "min", "(", ")", ")", ",", "np", ".", "log10", "(", "data", ".", "max", "(", ")", ")", ")", "log_width", "=", "(", "range", "[", "1", "]", "-", "range", "[", "0", "]", ")", "/", "bin_count", "return", "ExponentialBinning", "(", "log_min", "=", "range", "[", "0", "]", ",", "log_width", "=", "log_width", ",", "bin_count", "=", "bin_count", ",", "*", "*", "kwargs", ")" ]
Construct exponential binning schema. Parameters ---------- bin_count: Optional[int] Number of bins range: Optional[tuple] (min, max) See also -------- numpy.logspace - note that our range semantics is different
[ "Construct", "exponential", "binning", "schema", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L729-L751
train
janpipek/physt
physt/binnings.py
calculate_bins
def calculate_bins(array, _=None, *args, **kwargs) -> BinningBase: """Find optimal binning from arguments. Parameters ---------- array: arraylike Data from which the bins should be decided (sometimes used, sometimes not) _: int or str or Callable or arraylike or Iterable or BinningBase To-be-guessed parameter that specifies what kind of binning should be done check_nan: bool Check for the presence of nan's in array? Default: True range: tuple Limit values to a range. Some of the binning methods also (subsequently) use this parameter for the bin shape. Returns ------- BinningBase A two-dimensional array with pairs of bin edges (not necessarily consecutive). """ if array is not None: if kwargs.pop("check_nan", True): if np.any(np.isnan(array)): raise RuntimeError("Cannot calculate bins in presence of NaN's.") if kwargs.get("range", None): # TODO: re-consider the usage of this parameter array = array[(array >= kwargs["range"][0]) & (array <= kwargs["range"][1])] if _ is None: bin_count = 10 # kwargs.pop("bins", ideal_bin_count(data=array)) - same as numpy binning = numpy_binning(array, bin_count, *args, **kwargs) elif isinstance(_, BinningBase): binning = _ elif isinstance(_, int): binning = numpy_binning(array, _, *args, **kwargs) elif isinstance(_, str): # What about the ranges??? if _ in bincount_methods: bin_count = ideal_bin_count(array, method=_) binning = numpy_binning(array, bin_count, *args, **kwargs) elif _ in binning_methods: method = binning_methods[_] binning = method(array, *args, **kwargs) else: raise RuntimeError("No binning method {0} available.".format(_)) elif callable(_): binning = _(array, *args, **kwargs) elif np.iterable(_): binning = static_binning(array, _, *args, **kwargs) else: raise RuntimeError("Binning {0} not understood.".format(_)) return binning
python
def calculate_bins(array, _=None, *args, **kwargs) -> BinningBase: """Find optimal binning from arguments. Parameters ---------- array: arraylike Data from which the bins should be decided (sometimes used, sometimes not) _: int or str or Callable or arraylike or Iterable or BinningBase To-be-guessed parameter that specifies what kind of binning should be done check_nan: bool Check for the presence of nan's in array? Default: True range: tuple Limit values to a range. Some of the binning methods also (subsequently) use this parameter for the bin shape. Returns ------- BinningBase A two-dimensional array with pairs of bin edges (not necessarily consecutive). """ if array is not None: if kwargs.pop("check_nan", True): if np.any(np.isnan(array)): raise RuntimeError("Cannot calculate bins in presence of NaN's.") if kwargs.get("range", None): # TODO: re-consider the usage of this parameter array = array[(array >= kwargs["range"][0]) & (array <= kwargs["range"][1])] if _ is None: bin_count = 10 # kwargs.pop("bins", ideal_bin_count(data=array)) - same as numpy binning = numpy_binning(array, bin_count, *args, **kwargs) elif isinstance(_, BinningBase): binning = _ elif isinstance(_, int): binning = numpy_binning(array, _, *args, **kwargs) elif isinstance(_, str): # What about the ranges??? if _ in bincount_methods: bin_count = ideal_bin_count(array, method=_) binning = numpy_binning(array, bin_count, *args, **kwargs) elif _ in binning_methods: method = binning_methods[_] binning = method(array, *args, **kwargs) else: raise RuntimeError("No binning method {0} available.".format(_)) elif callable(_): binning = _(array, *args, **kwargs) elif np.iterable(_): binning = static_binning(array, _, *args, **kwargs) else: raise RuntimeError("Binning {0} not understood.".format(_)) return binning
[ "def", "calculate_bins", "(", "array", ",", "_", "=", "None", ",", "*", "args", ",", "*", "*", "kwargs", ")", "->", "BinningBase", ":", "if", "array", "is", "not", "None", ":", "if", "kwargs", ".", "pop", "(", "\"check_nan\"", ",", "True", ")", ":", "if", "np", ".", "any", "(", "np", ".", "isnan", "(", "array", ")", ")", ":", "raise", "RuntimeError", "(", "\"Cannot calculate bins in presence of NaN's.\"", ")", "if", "kwargs", ".", "get", "(", "\"range\"", ",", "None", ")", ":", "# TODO: re-consider the usage of this parameter", "array", "=", "array", "[", "(", "array", ">=", "kwargs", "[", "\"range\"", "]", "[", "0", "]", ")", "&", "(", "array", "<=", "kwargs", "[", "\"range\"", "]", "[", "1", "]", ")", "]", "if", "_", "is", "None", ":", "bin_count", "=", "10", "# kwargs.pop(\"bins\", ideal_bin_count(data=array)) - same as numpy", "binning", "=", "numpy_binning", "(", "array", ",", "bin_count", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "isinstance", "(", "_", ",", "BinningBase", ")", ":", "binning", "=", "_", "elif", "isinstance", "(", "_", ",", "int", ")", ":", "binning", "=", "numpy_binning", "(", "array", ",", "_", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "isinstance", "(", "_", ",", "str", ")", ":", "# What about the ranges???", "if", "_", "in", "bincount_methods", ":", "bin_count", "=", "ideal_bin_count", "(", "array", ",", "method", "=", "_", ")", "binning", "=", "numpy_binning", "(", "array", ",", "bin_count", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "_", "in", "binning_methods", ":", "method", "=", "binning_methods", "[", "_", "]", "binning", "=", "method", "(", "array", ",", "*", "args", ",", "*", "*", "kwargs", ")", "else", ":", "raise", "RuntimeError", "(", "\"No binning method {0} available.\"", ".", "format", "(", "_", ")", ")", "elif", "callable", "(", "_", ")", ":", "binning", "=", "_", "(", "array", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "np", ".", "iterable", "(", "_", ")", ":", "binning", "=", "static_binning", "(", "array", ",", "_", ",", "*", "args", ",", "*", "*", "kwargs", ")", "else", ":", "raise", "RuntimeError", "(", "\"Binning {0} not understood.\"", ".", "format", "(", "_", ")", ")", "return", "binning" ]
Find optimal binning from arguments. Parameters ---------- array: arraylike Data from which the bins should be decided (sometimes used, sometimes not) _: int or str or Callable or arraylike or Iterable or BinningBase To-be-guessed parameter that specifies what kind of binning should be done check_nan: bool Check for the presence of nan's in array? Default: True range: tuple Limit values to a range. Some of the binning methods also (subsequently) use this parameter for the bin shape. Returns ------- BinningBase A two-dimensional array with pairs of bin edges (not necessarily consecutive).
[ "Find", "optimal", "binning", "from", "arguments", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L754-L804
train
janpipek/physt
physt/binnings.py
ideal_bin_count
def ideal_bin_count(data, method: str = "default") -> int: """A theoretically ideal bin count. Parameters ---------- data: array_likes Data to work on. Most methods don't use this. method: str Name of the method to apply, available values: - default (~sturges) - sqrt - sturges - doane - rice See https://en.wikipedia.org/wiki/Histogram for the description """ n = data.size if n < 1: return 1 if method == "default": if n <= 32: return 7 else: return ideal_bin_count(data, "sturges") elif method == "sqrt": return int(np.ceil(np.sqrt(n))) elif method == "sturges": return int(np.ceil(np.log2(n)) + 1) elif method == "doane": if n < 3: return 1 from scipy.stats import skew sigma = np.sqrt(6 * (n-2) / (n + 1) * (n + 3)) return int(np.ceil(1 + np.log2(n) + np.log2(1 + np.abs(skew(data)) / sigma))) elif method == "rice": return int(np.ceil(2 * np.power(n, 1 / 3)))
python
def ideal_bin_count(data, method: str = "default") -> int: """A theoretically ideal bin count. Parameters ---------- data: array_likes Data to work on. Most methods don't use this. method: str Name of the method to apply, available values: - default (~sturges) - sqrt - sturges - doane - rice See https://en.wikipedia.org/wiki/Histogram for the description """ n = data.size if n < 1: return 1 if method == "default": if n <= 32: return 7 else: return ideal_bin_count(data, "sturges") elif method == "sqrt": return int(np.ceil(np.sqrt(n))) elif method == "sturges": return int(np.ceil(np.log2(n)) + 1) elif method == "doane": if n < 3: return 1 from scipy.stats import skew sigma = np.sqrt(6 * (n-2) / (n + 1) * (n + 3)) return int(np.ceil(1 + np.log2(n) + np.log2(1 + np.abs(skew(data)) / sigma))) elif method == "rice": return int(np.ceil(2 * np.power(n, 1 / 3)))
[ "def", "ideal_bin_count", "(", "data", ",", "method", ":", "str", "=", "\"default\"", ")", "->", "int", ":", "n", "=", "data", ".", "size", "if", "n", "<", "1", ":", "return", "1", "if", "method", "==", "\"default\"", ":", "if", "n", "<=", "32", ":", "return", "7", "else", ":", "return", "ideal_bin_count", "(", "data", ",", "\"sturges\"", ")", "elif", "method", "==", "\"sqrt\"", ":", "return", "int", "(", "np", ".", "ceil", "(", "np", ".", "sqrt", "(", "n", ")", ")", ")", "elif", "method", "==", "\"sturges\"", ":", "return", "int", "(", "np", ".", "ceil", "(", "np", ".", "log2", "(", "n", ")", ")", "+", "1", ")", "elif", "method", "==", "\"doane\"", ":", "if", "n", "<", "3", ":", "return", "1", "from", "scipy", ".", "stats", "import", "skew", "sigma", "=", "np", ".", "sqrt", "(", "6", "*", "(", "n", "-", "2", ")", "/", "(", "n", "+", "1", ")", "*", "(", "n", "+", "3", ")", ")", "return", "int", "(", "np", ".", "ceil", "(", "1", "+", "np", ".", "log2", "(", "n", ")", "+", "np", ".", "log2", "(", "1", "+", "np", ".", "abs", "(", "skew", "(", "data", ")", ")", "/", "sigma", ")", ")", ")", "elif", "method", "==", "\"rice\"", ":", "return", "int", "(", "np", ".", "ceil", "(", "2", "*", "np", ".", "power", "(", "n", ",", "1", "/", "3", ")", ")", ")" ]
A theoretically ideal bin count. Parameters ---------- data: array_likes Data to work on. Most methods don't use this. method: str Name of the method to apply, available values: - default (~sturges) - sqrt - sturges - doane - rice See https://en.wikipedia.org/wiki/Histogram for the description
[ "A", "theoretically", "ideal", "bin", "count", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L972-L1007
train
janpipek/physt
physt/binnings.py
as_binning
def as_binning(obj, copy: bool = False) -> BinningBase: """Ensure that an object is a binning Parameters --------- obj : BinningBase or array_like Can be a binning, numpy-like bins or full physt bins copy : If true, ensure that the returned object is independent """ if isinstance(obj, BinningBase): if copy: return obj.copy() else: return obj else: bins = make_bin_array(obj) return StaticBinning(bins)
python
def as_binning(obj, copy: bool = False) -> BinningBase: """Ensure that an object is a binning Parameters --------- obj : BinningBase or array_like Can be a binning, numpy-like bins or full physt bins copy : If true, ensure that the returned object is independent """ if isinstance(obj, BinningBase): if copy: return obj.copy() else: return obj else: bins = make_bin_array(obj) return StaticBinning(bins)
[ "def", "as_binning", "(", "obj", ",", "copy", ":", "bool", "=", "False", ")", "->", "BinningBase", ":", "if", "isinstance", "(", "obj", ",", "BinningBase", ")", ":", "if", "copy", ":", "return", "obj", ".", "copy", "(", ")", "else", ":", "return", "obj", "else", ":", "bins", "=", "make_bin_array", "(", "obj", ")", "return", "StaticBinning", "(", "bins", ")" ]
Ensure that an object is a binning Parameters --------- obj : BinningBase or array_like Can be a binning, numpy-like bins or full physt bins copy : If true, ensure that the returned object is independent
[ "Ensure", "that", "an", "object", "is", "a", "binning" ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L1013-L1029
train
janpipek/physt
physt/binnings.py
BinningBase.to_dict
def to_dict(self) -> OrderedDict: """Dictionary representation of the binning schema. This serves as template method, please implement _update_dict """ result = OrderedDict() result["adaptive"] = self._adaptive result["binning_type"] = type(self).__name__ self._update_dict(result) return result
python
def to_dict(self) -> OrderedDict: """Dictionary representation of the binning schema. This serves as template method, please implement _update_dict """ result = OrderedDict() result["adaptive"] = self._adaptive result["binning_type"] = type(self).__name__ self._update_dict(result) return result
[ "def", "to_dict", "(", "self", ")", "->", "OrderedDict", ":", "result", "=", "OrderedDict", "(", ")", "result", "[", "\"adaptive\"", "]", "=", "self", ".", "_adaptive", "result", "[", "\"binning_type\"", "]", "=", "type", "(", "self", ")", ".", "__name__", "self", ".", "_update_dict", "(", "result", ")", "return", "result" ]
Dictionary representation of the binning schema. This serves as template method, please implement _update_dict
[ "Dictionary", "representation", "of", "the", "binning", "schema", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L77-L86
train
janpipek/physt
physt/binnings.py
BinningBase.is_regular
def is_regular(self, rtol: float = 1.e-5, atol: float = 1.e-8) -> bool: """Whether all bins have the same width. Parameters ---------- rtol, atol : numpy tolerance parameters """ return np.allclose(np.diff(self.bins[1] - self.bins[0]), 0.0, rtol=rtol, atol=atol)
python
def is_regular(self, rtol: float = 1.e-5, atol: float = 1.e-8) -> bool: """Whether all bins have the same width. Parameters ---------- rtol, atol : numpy tolerance parameters """ return np.allclose(np.diff(self.bins[1] - self.bins[0]), 0.0, rtol=rtol, atol=atol)
[ "def", "is_regular", "(", "self", ",", "rtol", ":", "float", "=", "1.e-5", ",", "atol", ":", "float", "=", "1.e-8", ")", "->", "bool", ":", "return", "np", ".", "allclose", "(", "np", ".", "diff", "(", "self", ".", "bins", "[", "1", "]", "-", "self", ".", "bins", "[", "0", "]", ")", ",", "0.0", ",", "rtol", "=", "rtol", ",", "atol", "=", "atol", ")" ]
Whether all bins have the same width. Parameters ---------- rtol, atol : numpy tolerance parameters
[ "Whether", "all", "bins", "have", "the", "same", "width", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L97-L104
train
janpipek/physt
physt/binnings.py
BinningBase.is_consecutive
def is_consecutive(self, rtol: float = 1.e-5, atol: float = 1.e-8) -> bool: """Whether all bins are in a growing order. Parameters ---------- rtol, atol : numpy tolerance parameters """ if self.inconsecutive_allowed: if self._consecutive is None: if self._numpy_bins is not None: self._consecutive = True self._consecutive = is_consecutive(self.bins, rtol, atol) return self._consecutive else: return True
python
def is_consecutive(self, rtol: float = 1.e-5, atol: float = 1.e-8) -> bool: """Whether all bins are in a growing order. Parameters ---------- rtol, atol : numpy tolerance parameters """ if self.inconsecutive_allowed: if self._consecutive is None: if self._numpy_bins is not None: self._consecutive = True self._consecutive = is_consecutive(self.bins, rtol, atol) return self._consecutive else: return True
[ "def", "is_consecutive", "(", "self", ",", "rtol", ":", "float", "=", "1.e-5", ",", "atol", ":", "float", "=", "1.e-8", ")", "->", "bool", ":", "if", "self", ".", "inconsecutive_allowed", ":", "if", "self", ".", "_consecutive", "is", "None", ":", "if", "self", ".", "_numpy_bins", "is", "not", "None", ":", "self", ".", "_consecutive", "=", "True", "self", ".", "_consecutive", "=", "is_consecutive", "(", "self", ".", "bins", ",", "rtol", ",", "atol", ")", "return", "self", ".", "_consecutive", "else", ":", "return", "True" ]
Whether all bins are in a growing order. Parameters ---------- rtol, atol : numpy tolerance parameters
[ "Whether", "all", "bins", "are", "in", "a", "growing", "order", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L106-L120
train
janpipek/physt
physt/binnings.py
BinningBase.adapt
def adapt(self, other: 'BinningBase'): """Adapt this binning so that it contains all bins of another binning. Parameters ---------- other: BinningBase """ # TODO: in-place arg if np.array_equal(self.bins, other.bins): return None, None elif not self.is_adaptive(): raise RuntimeError("Cannot adapt non-adaptive binning.") else: return self._adapt(other)
python
def adapt(self, other: 'BinningBase'): """Adapt this binning so that it contains all bins of another binning. Parameters ---------- other: BinningBase """ # TODO: in-place arg if np.array_equal(self.bins, other.bins): return None, None elif not self.is_adaptive(): raise RuntimeError("Cannot adapt non-adaptive binning.") else: return self._adapt(other)
[ "def", "adapt", "(", "self", ",", "other", ":", "'BinningBase'", ")", ":", "# TODO: in-place arg", "if", "np", ".", "array_equal", "(", "self", ".", "bins", ",", "other", ".", "bins", ")", ":", "return", "None", ",", "None", "elif", "not", "self", ".", "is_adaptive", "(", ")", ":", "raise", "RuntimeError", "(", "\"Cannot adapt non-adaptive binning.\"", ")", "else", ":", "return", "self", ".", "_adapt", "(", "other", ")" ]
Adapt this binning so that it contains all bins of another binning. Parameters ---------- other: BinningBase
[ "Adapt", "this", "binning", "so", "that", "it", "contains", "all", "bins", "of", "another", "binning", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L154-L167
train
janpipek/physt
physt/binnings.py
BinningBase.numpy_bins
def numpy_bins(self) -> np.ndarray: """Bins in the numpy format This might not be available for inconsecutive binnings. Returns ------- edges: np.ndarray shape=(bin_count+1,) """ if self._numpy_bins is None: self._numpy_bins = to_numpy_bins(self.bins) return self._numpy_bins
python
def numpy_bins(self) -> np.ndarray: """Bins in the numpy format This might not be available for inconsecutive binnings. Returns ------- edges: np.ndarray shape=(bin_count+1,) """ if self._numpy_bins is None: self._numpy_bins = to_numpy_bins(self.bins) return self._numpy_bins
[ "def", "numpy_bins", "(", "self", ")", "->", "np", ".", "ndarray", ":", "if", "self", ".", "_numpy_bins", "is", "None", ":", "self", ".", "_numpy_bins", "=", "to_numpy_bins", "(", "self", ".", "bins", ")", "return", "self", ".", "_numpy_bins" ]
Bins in the numpy format This might not be available for inconsecutive binnings. Returns ------- edges: np.ndarray shape=(bin_count+1,)
[ "Bins", "in", "the", "numpy", "format" ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L200-L212
train
janpipek/physt
physt/binnings.py
BinningBase.numpy_bins_with_mask
def numpy_bins_with_mask(self) -> Tuple[np.ndarray, np.ndarray]: """Bins in the numpy format, including the gaps in inconsecutive binnings. Returns ------- edges, mask: np.ndarray See Also -------- bin_utils.to_numpy_bins_with_mask """ bwm = to_numpy_bins_with_mask(self.bins) if not self.includes_right_edge: bwm[0].append(np.inf) return bwm
python
def numpy_bins_with_mask(self) -> Tuple[np.ndarray, np.ndarray]: """Bins in the numpy format, including the gaps in inconsecutive binnings. Returns ------- edges, mask: np.ndarray See Also -------- bin_utils.to_numpy_bins_with_mask """ bwm = to_numpy_bins_with_mask(self.bins) if not self.includes_right_edge: bwm[0].append(np.inf) return bwm
[ "def", "numpy_bins_with_mask", "(", "self", ")", "->", "Tuple", "[", "np", ".", "ndarray", ",", "np", ".", "ndarray", "]", ":", "bwm", "=", "to_numpy_bins_with_mask", "(", "self", ".", "bins", ")", "if", "not", "self", ".", "includes_right_edge", ":", "bwm", "[", "0", "]", ".", "append", "(", "np", ".", "inf", ")", "return", "bwm" ]
Bins in the numpy format, including the gaps in inconsecutive binnings. Returns ------- edges, mask: np.ndarray See Also -------- bin_utils.to_numpy_bins_with_mask
[ "Bins", "in", "the", "numpy", "format", "including", "the", "gaps", "in", "inconsecutive", "binnings", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L215-L229
train
janpipek/physt
physt/binnings.py
StaticBinning.as_static
def as_static(self, copy: bool = True) -> 'StaticBinning': """Convert binning to a static form. Returns ------- StaticBinning A new static binning with a copy of bins. Parameters ---------- copy : if True, returns itself (already satisfying conditions). """ if copy: return StaticBinning(bins=self.bins.copy(), includes_right_edge=self.includes_right_edge) else: return self
python
def as_static(self, copy: bool = True) -> 'StaticBinning': """Convert binning to a static form. Returns ------- StaticBinning A new static binning with a copy of bins. Parameters ---------- copy : if True, returns itself (already satisfying conditions). """ if copy: return StaticBinning(bins=self.bins.copy(), includes_right_edge=self.includes_right_edge) else: return self
[ "def", "as_static", "(", "self", ",", "copy", ":", "bool", "=", "True", ")", "->", "'StaticBinning'", ":", "if", "copy", ":", "return", "StaticBinning", "(", "bins", "=", "self", ".", "bins", ".", "copy", "(", ")", ",", "includes_right_edge", "=", "self", ".", "includes_right_edge", ")", "else", ":", "return", "self" ]
Convert binning to a static form. Returns ------- StaticBinning A new static binning with a copy of bins. Parameters ---------- copy : if True, returns itself (already satisfying conditions).
[ "Convert", "binning", "to", "a", "static", "form", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L319-L335
train
janpipek/physt
physt/compat/dask.py
histogram1d
def histogram1d(data, bins=None, *args, **kwargs): """Facade function to create one-dimensional histogram using dask. Parameters ---------- data: dask.DaskArray or array-like See also -------- physt.histogram """ import dask if not hasattr(data, "dask"): data = dask.array.from_array(data, chunks=int(data.shape[0] / options["chunk_split"])) if not kwargs.get("adaptive", True): raise RuntimeError("Only adaptive histograms supported for dask (currently).") kwargs["adaptive"] = True def block_hist(array): return original_h1(array, bins, *args, **kwargs) return _run_dask( name="dask_adaptive1d", data=data, compute=kwargs.pop("compute", True), method=kwargs.pop("dask_method", "threaded"), func=block_hist)
python
def histogram1d(data, bins=None, *args, **kwargs): """Facade function to create one-dimensional histogram using dask. Parameters ---------- data: dask.DaskArray or array-like See also -------- physt.histogram """ import dask if not hasattr(data, "dask"): data = dask.array.from_array(data, chunks=int(data.shape[0] / options["chunk_split"])) if not kwargs.get("adaptive", True): raise RuntimeError("Only adaptive histograms supported for dask (currently).") kwargs["adaptive"] = True def block_hist(array): return original_h1(array, bins, *args, **kwargs) return _run_dask( name="dask_adaptive1d", data=data, compute=kwargs.pop("compute", True), method=kwargs.pop("dask_method", "threaded"), func=block_hist)
[ "def", "histogram1d", "(", "data", ",", "bins", "=", "None", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "import", "dask", "if", "not", "hasattr", "(", "data", ",", "\"dask\"", ")", ":", "data", "=", "dask", ".", "array", ".", "from_array", "(", "data", ",", "chunks", "=", "int", "(", "data", ".", "shape", "[", "0", "]", "/", "options", "[", "\"chunk_split\"", "]", ")", ")", "if", "not", "kwargs", ".", "get", "(", "\"adaptive\"", ",", "True", ")", ":", "raise", "RuntimeError", "(", "\"Only adaptive histograms supported for dask (currently).\"", ")", "kwargs", "[", "\"adaptive\"", "]", "=", "True", "def", "block_hist", "(", "array", ")", ":", "return", "original_h1", "(", "array", ",", "bins", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "_run_dask", "(", "name", "=", "\"dask_adaptive1d\"", ",", "data", "=", "data", ",", "compute", "=", "kwargs", ".", "pop", "(", "\"compute\"", ",", "True", ")", ",", "method", "=", "kwargs", ".", "pop", "(", "\"dask_method\"", ",", "\"threaded\"", ")", ",", "func", "=", "block_hist", ")" ]
Facade function to create one-dimensional histogram using dask. Parameters ---------- data: dask.DaskArray or array-like See also -------- physt.histogram
[ "Facade", "function", "to", "create", "one", "-", "dimensional", "histogram", "using", "dask", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/compat/dask.py#L30-L57
train
janpipek/physt
physt/compat/dask.py
histogram2d
def histogram2d(data1, data2, bins=None, *args, **kwargs): """Facade function to create 2D histogram using dask.""" # TODO: currently very unoptimized! for non-dasks import dask if "axis_names" not in kwargs: if hasattr(data1, "name") and hasattr(data2, "name"): kwargs["axis_names"] = [data1.name, data2.name] if not hasattr(data1, "dask"): data1 = dask.array.from_array(data1, chunks=data1.size() / 100) if not hasattr(data2, "dask"): data2 = dask.array.from_array(data2, chunks=data2.size() / 100) data = dask.array.stack([data1, data2], axis=1) kwargs["dim"] = 2 return histogramdd(data, bins, *args, **kwargs)
python
def histogram2d(data1, data2, bins=None, *args, **kwargs): """Facade function to create 2D histogram using dask.""" # TODO: currently very unoptimized! for non-dasks import dask if "axis_names" not in kwargs: if hasattr(data1, "name") and hasattr(data2, "name"): kwargs["axis_names"] = [data1.name, data2.name] if not hasattr(data1, "dask"): data1 = dask.array.from_array(data1, chunks=data1.size() / 100) if not hasattr(data2, "dask"): data2 = dask.array.from_array(data2, chunks=data2.size() / 100) data = dask.array.stack([data1, data2], axis=1) kwargs["dim"] = 2 return histogramdd(data, bins, *args, **kwargs)
[ "def", "histogram2d", "(", "data1", ",", "data2", ",", "bins", "=", "None", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# TODO: currently very unoptimized! for non-dasks", "import", "dask", "if", "\"axis_names\"", "not", "in", "kwargs", ":", "if", "hasattr", "(", "data1", ",", "\"name\"", ")", "and", "hasattr", "(", "data2", ",", "\"name\"", ")", ":", "kwargs", "[", "\"axis_names\"", "]", "=", "[", "data1", ".", "name", ",", "data2", ".", "name", "]", "if", "not", "hasattr", "(", "data1", ",", "\"dask\"", ")", ":", "data1", "=", "dask", ".", "array", ".", "from_array", "(", "data1", ",", "chunks", "=", "data1", ".", "size", "(", ")", "/", "100", ")", "if", "not", "hasattr", "(", "data2", ",", "\"dask\"", ")", ":", "data2", "=", "dask", ".", "array", ".", "from_array", "(", "data2", ",", "chunks", "=", "data2", ".", "size", "(", ")", "/", "100", ")", "data", "=", "dask", ".", "array", ".", "stack", "(", "[", "data1", ",", "data2", "]", ",", "axis", "=", "1", ")", "kwargs", "[", "\"dim\"", "]", "=", "2", "return", "histogramdd", "(", "data", ",", "bins", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Facade function to create 2D histogram using dask.
[ "Facade", "function", "to", "create", "2D", "histogram", "using", "dask", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/compat/dask.py#L88-L102
train
janpipek/physt
physt/util.py
all_subclasses
def all_subclasses(cls: type) -> Tuple[type, ...]: """All subclasses of a class. From: http://stackoverflow.com/a/17246726/2692780 """ subclasses = [] for subclass in cls.__subclasses__(): subclasses.append(subclass) subclasses.extend(all_subclasses(subclass)) return tuple(subclasses)
python
def all_subclasses(cls: type) -> Tuple[type, ...]: """All subclasses of a class. From: http://stackoverflow.com/a/17246726/2692780 """ subclasses = [] for subclass in cls.__subclasses__(): subclasses.append(subclass) subclasses.extend(all_subclasses(subclass)) return tuple(subclasses)
[ "def", "all_subclasses", "(", "cls", ":", "type", ")", "->", "Tuple", "[", "type", ",", "...", "]", ":", "subclasses", "=", "[", "]", "for", "subclass", "in", "cls", ".", "__subclasses__", "(", ")", ":", "subclasses", ".", "append", "(", "subclass", ")", "subclasses", ".", "extend", "(", "all_subclasses", "(", "subclass", ")", ")", "return", "tuple", "(", "subclasses", ")" ]
All subclasses of a class. From: http://stackoverflow.com/a/17246726/2692780
[ "All", "subclasses", "of", "a", "class", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/util.py#L9-L18
train
janpipek/physt
physt/util.py
find_subclass
def find_subclass(base: type, name: str) -> type: """Find a named subclass of a base class. Uses only the class name without namespace. """ class_candidates = [klass for klass in all_subclasses(base) if klass.__name__ == name ] if len(class_candidates) == 0: raise RuntimeError("No \"{0}\" subclass of \"{1}\".".format(base.__name__, name)) elif len(class_candidates) > 1: raise RuntimeError("Multiple \"{0}\" subclasses of \"{1}\".".format(base.__name__, name)) return class_candidates[0]
python
def find_subclass(base: type, name: str) -> type: """Find a named subclass of a base class. Uses only the class name without namespace. """ class_candidates = [klass for klass in all_subclasses(base) if klass.__name__ == name ] if len(class_candidates) == 0: raise RuntimeError("No \"{0}\" subclass of \"{1}\".".format(base.__name__, name)) elif len(class_candidates) > 1: raise RuntimeError("Multiple \"{0}\" subclasses of \"{1}\".".format(base.__name__, name)) return class_candidates[0]
[ "def", "find_subclass", "(", "base", ":", "type", ",", "name", ":", "str", ")", "->", "type", ":", "class_candidates", "=", "[", "klass", "for", "klass", "in", "all_subclasses", "(", "base", ")", "if", "klass", ".", "__name__", "==", "name", "]", "if", "len", "(", "class_candidates", ")", "==", "0", ":", "raise", "RuntimeError", "(", "\"No \\\"{0}\\\" subclass of \\\"{1}\\\".\"", ".", "format", "(", "base", ".", "__name__", ",", "name", ")", ")", "elif", "len", "(", "class_candidates", ")", ">", "1", ":", "raise", "RuntimeError", "(", "\"Multiple \\\"{0}\\\" subclasses of \\\"{1}\\\".\"", ".", "format", "(", "base", ".", "__name__", ",", "name", ")", ")", "return", "class_candidates", "[", "0", "]" ]
Find a named subclass of a base class. Uses only the class name without namespace.
[ "Find", "a", "named", "subclass", "of", "a", "base", "class", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/util.py#L21-L34
train
janpipek/physt
physt/histogram_collection.py
HistogramCollection.add
def add(self, histogram: Histogram1D): """Add a histogram to the collection.""" if self.binning and not self.binning == histogram.binning: raise ValueError("Cannot add histogram with different binning.") self.histograms.append(histogram)
python
def add(self, histogram: Histogram1D): """Add a histogram to the collection.""" if self.binning and not self.binning == histogram.binning: raise ValueError("Cannot add histogram with different binning.") self.histograms.append(histogram)
[ "def", "add", "(", "self", ",", "histogram", ":", "Histogram1D", ")", ":", "if", "self", ".", "binning", "and", "not", "self", ".", "binning", "==", "histogram", ".", "binning", ":", "raise", "ValueError", "(", "\"Cannot add histogram with different binning.\"", ")", "self", ".", "histograms", ".", "append", "(", "histogram", ")" ]
Add a histogram to the collection.
[ "Add", "a", "histogram", "to", "the", "collection", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_collection.py#L80-L84
train
janpipek/physt
physt/histogram_collection.py
HistogramCollection.normalize_bins
def normalize_bins(self, inplace: bool = False) -> "HistogramCollection": """Normalize each bin in the collection so that the sum is 1.0 for each bin. Note: If a bin is zero in all collections, the result will be inf. """ col = self if inplace else self.copy() sums = self.sum().frequencies for h in col.histograms: h.set_dtype(float) h._frequencies /= sums h._errors2 /= sums ** 2 # TODO: Does this make sense? return col
python
def normalize_bins(self, inplace: bool = False) -> "HistogramCollection": """Normalize each bin in the collection so that the sum is 1.0 for each bin. Note: If a bin is zero in all collections, the result will be inf. """ col = self if inplace else self.copy() sums = self.sum().frequencies for h in col.histograms: h.set_dtype(float) h._frequencies /= sums h._errors2 /= sums ** 2 # TODO: Does this make sense? return col
[ "def", "normalize_bins", "(", "self", ",", "inplace", ":", "bool", "=", "False", ")", "->", "\"HistogramCollection\"", ":", "col", "=", "self", "if", "inplace", "else", "self", ".", "copy", "(", ")", "sums", "=", "self", ".", "sum", "(", ")", ".", "frequencies", "for", "h", "in", "col", ".", "histograms", ":", "h", ".", "set_dtype", "(", "float", ")", "h", ".", "_frequencies", "/=", "sums", "h", ".", "_errors2", "/=", "sums", "**", "2", "# TODO: Does this make sense?", "return", "col" ]
Normalize each bin in the collection so that the sum is 1.0 for each bin. Note: If a bin is zero in all collections, the result will be inf.
[ "Normalize", "each", "bin", "in", "the", "collection", "so", "that", "the", "sum", "is", "1", ".", "0", "for", "each", "bin", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_collection.py#L113-L124
train
janpipek/physt
physt/histogram_collection.py
HistogramCollection.multi_h1
def multi_h1(cls, a_dict: Dict[str, Any], bins=None, **kwargs) -> "HistogramCollection": """Create a collection from multiple datasets.""" from physt.binnings import calculate_bins mega_values = np.concatenate(list(a_dict.values())) binning = calculate_bins(mega_values, bins, **kwargs) title = kwargs.pop("title", None) name = kwargs.pop("name", None) collection = HistogramCollection(binning=binning, title=title, name=name) for key, value in a_dict.items(): collection.create(key, value) return collection
python
def multi_h1(cls, a_dict: Dict[str, Any], bins=None, **kwargs) -> "HistogramCollection": """Create a collection from multiple datasets.""" from physt.binnings import calculate_bins mega_values = np.concatenate(list(a_dict.values())) binning = calculate_bins(mega_values, bins, **kwargs) title = kwargs.pop("title", None) name = kwargs.pop("name", None) collection = HistogramCollection(binning=binning, title=title, name=name) for key, value in a_dict.items(): collection.create(key, value) return collection
[ "def", "multi_h1", "(", "cls", ",", "a_dict", ":", "Dict", "[", "str", ",", "Any", "]", ",", "bins", "=", "None", ",", "*", "*", "kwargs", ")", "->", "\"HistogramCollection\"", ":", "from", "physt", ".", "binnings", "import", "calculate_bins", "mega_values", "=", "np", ".", "concatenate", "(", "list", "(", "a_dict", ".", "values", "(", ")", ")", ")", "binning", "=", "calculate_bins", "(", "mega_values", ",", "bins", ",", "*", "*", "kwargs", ")", "title", "=", "kwargs", ".", "pop", "(", "\"title\"", ",", "None", ")", "name", "=", "kwargs", ".", "pop", "(", "\"name\"", ",", "None", ")", "collection", "=", "HistogramCollection", "(", "binning", "=", "binning", ",", "title", "=", "title", ",", "name", "=", "name", ")", "for", "key", ",", "value", "in", "a_dict", ".", "items", "(", ")", ":", "collection", ".", "create", "(", "key", ",", "value", ")", "return", "collection" ]
Create a collection from multiple datasets.
[ "Create", "a", "collection", "from", "multiple", "datasets", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_collection.py#L142-L154
train
janpipek/physt
physt/histogram_collection.py
HistogramCollection.to_json
def to_json(self, path: Optional[str] = None, **kwargs) -> str: """Convert to JSON representation. Parameters ---------- path: Where to write the JSON. Returns ------- The JSON representation. """ from .io import save_json return save_json(self, path, **kwargs)
python
def to_json(self, path: Optional[str] = None, **kwargs) -> str: """Convert to JSON representation. Parameters ---------- path: Where to write the JSON. Returns ------- The JSON representation. """ from .io import save_json return save_json(self, path, **kwargs)
[ "def", "to_json", "(", "self", ",", "path", ":", "Optional", "[", "str", "]", "=", "None", ",", "*", "*", "kwargs", ")", "->", "str", ":", "from", ".", "io", "import", "save_json", "return", "save_json", "(", "self", ",", "path", ",", "*", "*", "kwargs", ")" ]
Convert to JSON representation. Parameters ---------- path: Where to write the JSON. Returns ------- The JSON representation.
[ "Convert", "to", "JSON", "representation", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_collection.py#L171-L183
train
janpipek/physt
physt/histogram_base.py
HistogramBase._get_axis
def _get_axis(self, name_or_index: AxisIdentifier) -> int: """Get a zero-based index of an axis and check its existence.""" # TODO: Add unit test if isinstance(name_or_index, int): if name_or_index < 0 or name_or_index >= self.ndim: raise ValueError("No such axis, must be from 0 to {0}".format(self.ndim-1)) return name_or_index elif isinstance(name_or_index, str): if name_or_index not in self.axis_names: named_axes = [name for name in self.axis_names if name] raise ValueError("No axis with such name: {0}, available names: {1}. In most places, you can also use numbers." .format(name_or_index, ", ".join(named_axes))) return self.axis_names.index(name_or_index) else: raise TypeError("Argument of type {0} not understood, int or str expected.".format(type(name_or_index)))
python
def _get_axis(self, name_or_index: AxisIdentifier) -> int: """Get a zero-based index of an axis and check its existence.""" # TODO: Add unit test if isinstance(name_or_index, int): if name_or_index < 0 or name_or_index >= self.ndim: raise ValueError("No such axis, must be from 0 to {0}".format(self.ndim-1)) return name_or_index elif isinstance(name_or_index, str): if name_or_index not in self.axis_names: named_axes = [name for name in self.axis_names if name] raise ValueError("No axis with such name: {0}, available names: {1}. In most places, you can also use numbers." .format(name_or_index, ", ".join(named_axes))) return self.axis_names.index(name_or_index) else: raise TypeError("Argument of type {0} not understood, int or str expected.".format(type(name_or_index)))
[ "def", "_get_axis", "(", "self", ",", "name_or_index", ":", "AxisIdentifier", ")", "->", "int", ":", "# TODO: Add unit test", "if", "isinstance", "(", "name_or_index", ",", "int", ")", ":", "if", "name_or_index", "<", "0", "or", "name_or_index", ">=", "self", ".", "ndim", ":", "raise", "ValueError", "(", "\"No such axis, must be from 0 to {0}\"", ".", "format", "(", "self", ".", "ndim", "-", "1", ")", ")", "return", "name_or_index", "elif", "isinstance", "(", "name_or_index", ",", "str", ")", ":", "if", "name_or_index", "not", "in", "self", ".", "axis_names", ":", "named_axes", "=", "[", "name", "for", "name", "in", "self", ".", "axis_names", "if", "name", "]", "raise", "ValueError", "(", "\"No axis with such name: {0}, available names: {1}. In most places, you can also use numbers.\"", ".", "format", "(", "name_or_index", ",", "\", \"", ".", "join", "(", "named_axes", ")", ")", ")", "return", "self", ".", "axis_names", ".", "index", "(", "name_or_index", ")", "else", ":", "raise", "TypeError", "(", "\"Argument of type {0} not understood, int or str expected.\"", ".", "format", "(", "type", "(", "name_or_index", ")", ")", ")" ]
Get a zero-based index of an axis and check its existence.
[ "Get", "a", "zero", "-", "based", "index", "of", "an", "axis", "and", "check", "its", "existence", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L177-L191
train
janpipek/physt
physt/histogram_base.py
HistogramBase.shape
def shape(self) -> Tuple[int, ...]: """Shape of histogram's data. Returns ------- One-element tuple with the number of bins along each axis. """ return tuple(bins.bin_count for bins in self._binnings)
python
def shape(self) -> Tuple[int, ...]: """Shape of histogram's data. Returns ------- One-element tuple with the number of bins along each axis. """ return tuple(bins.bin_count for bins in self._binnings)
[ "def", "shape", "(", "self", ")", "->", "Tuple", "[", "int", ",", "...", "]", ":", "return", "tuple", "(", "bins", ".", "bin_count", "for", "bins", "in", "self", ".", "_binnings", ")" ]
Shape of histogram's data. Returns ------- One-element tuple with the number of bins along each axis.
[ "Shape", "of", "histogram", "s", "data", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L194-L201
train
janpipek/physt
physt/histogram_base.py
HistogramBase.set_dtype
def set_dtype(self, value, check: bool = True): """Change data type of the bin contents. Allowed conversions: - from integral to float types - between the same category of type (float/integer) - from float types to integer if weights are trivial Parameters ---------- value: np.dtype or something convertible to it. check: bool If True (default), all values are checked against the limits """ # TODO? Deal with unsigned types value, type_info = self._eval_dtype(value) if value == self._dtype: return if self.dtype is None or np.can_cast(self.dtype, value): pass # Ok elif check: if np.issubdtype(value, np.integer): if self.dtype.kind == "f": for array in (self._frequencies, self._errors2): if np.any(array % 1.0): raise RuntimeError("Data contain non-integer values.") for array in (self._frequencies, self._errors2): if np.any((array > type_info.max) | (array < type_info.min)): raise RuntimeError("Data contain values outside the specified range.") self._dtype = value self._frequencies = self._frequencies.astype(value) self._errors2 = self._errors2.astype(value) self._missed = self._missed.astype(value)
python
def set_dtype(self, value, check: bool = True): """Change data type of the bin contents. Allowed conversions: - from integral to float types - between the same category of type (float/integer) - from float types to integer if weights are trivial Parameters ---------- value: np.dtype or something convertible to it. check: bool If True (default), all values are checked against the limits """ # TODO? Deal with unsigned types value, type_info = self._eval_dtype(value) if value == self._dtype: return if self.dtype is None or np.can_cast(self.dtype, value): pass # Ok elif check: if np.issubdtype(value, np.integer): if self.dtype.kind == "f": for array in (self._frequencies, self._errors2): if np.any(array % 1.0): raise RuntimeError("Data contain non-integer values.") for array in (self._frequencies, self._errors2): if np.any((array > type_info.max) | (array < type_info.min)): raise RuntimeError("Data contain values outside the specified range.") self._dtype = value self._frequencies = self._frequencies.astype(value) self._errors2 = self._errors2.astype(value) self._missed = self._missed.astype(value)
[ "def", "set_dtype", "(", "self", ",", "value", ",", "check", ":", "bool", "=", "True", ")", ":", "# TODO? Deal with unsigned types", "value", ",", "type_info", "=", "self", ".", "_eval_dtype", "(", "value", ")", "if", "value", "==", "self", ".", "_dtype", ":", "return", "if", "self", ".", "dtype", "is", "None", "or", "np", ".", "can_cast", "(", "self", ".", "dtype", ",", "value", ")", ":", "pass", "# Ok", "elif", "check", ":", "if", "np", ".", "issubdtype", "(", "value", ",", "np", ".", "integer", ")", ":", "if", "self", ".", "dtype", ".", "kind", "==", "\"f\"", ":", "for", "array", "in", "(", "self", ".", "_frequencies", ",", "self", ".", "_errors2", ")", ":", "if", "np", ".", "any", "(", "array", "%", "1.0", ")", ":", "raise", "RuntimeError", "(", "\"Data contain non-integer values.\"", ")", "for", "array", "in", "(", "self", ".", "_frequencies", ",", "self", ".", "_errors2", ")", ":", "if", "np", ".", "any", "(", "(", "array", ">", "type_info", ".", "max", ")", "|", "(", "array", "<", "type_info", ".", "min", ")", ")", ":", "raise", "RuntimeError", "(", "\"Data contain values outside the specified range.\"", ")", "self", ".", "_dtype", "=", "value", "self", ".", "_frequencies", "=", "self", ".", "_frequencies", ".", "astype", "(", "value", ")", "self", ".", "_errors2", "=", "self", ".", "_errors2", ".", "astype", "(", "value", ")", "self", ".", "_missed", "=", "self", ".", "_missed", ".", "astype", "(", "value", ")" ]
Change data type of the bin contents. Allowed conversions: - from integral to float types - between the same category of type (float/integer) - from float types to integer if weights are trivial Parameters ---------- value: np.dtype or something convertible to it. check: bool If True (default), all values are checked against the limits
[ "Change", "data", "type", "of", "the", "bin", "contents", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L244-L278
train
janpipek/physt
physt/histogram_base.py
HistogramBase._coerce_dtype
def _coerce_dtype(self, other_dtype): """Possibly change the bin content type to allow correct operations with other operand. Parameters ---------- other_dtype : np.dtype or type """ if self._dtype is None: new_dtype = np.dtype(other_dtype) else: new_dtype = np.find_common_type([self._dtype, np.dtype(other_dtype)], []) if new_dtype != self.dtype: self.set_dtype(new_dtype)
python
def _coerce_dtype(self, other_dtype): """Possibly change the bin content type to allow correct operations with other operand. Parameters ---------- other_dtype : np.dtype or type """ if self._dtype is None: new_dtype = np.dtype(other_dtype) else: new_dtype = np.find_common_type([self._dtype, np.dtype(other_dtype)], []) if new_dtype != self.dtype: self.set_dtype(new_dtype)
[ "def", "_coerce_dtype", "(", "self", ",", "other_dtype", ")", ":", "if", "self", ".", "_dtype", "is", "None", ":", "new_dtype", "=", "np", ".", "dtype", "(", "other_dtype", ")", "else", ":", "new_dtype", "=", "np", ".", "find_common_type", "(", "[", "self", ".", "_dtype", ",", "np", ".", "dtype", "(", "other_dtype", ")", "]", ",", "[", "]", ")", "if", "new_dtype", "!=", "self", ".", "dtype", ":", "self", ".", "set_dtype", "(", "new_dtype", ")" ]
Possibly change the bin content type to allow correct operations with other operand. Parameters ---------- other_dtype : np.dtype or type
[ "Possibly", "change", "the", "bin", "content", "type", "to", "allow", "correct", "operations", "with", "other", "operand", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L282-L294
train
janpipek/physt
physt/histogram_base.py
HistogramBase.normalize
def normalize(self, inplace: bool = False, percent: bool = False) -> "HistogramBase": """Normalize the histogram, so that the total weight is equal to 1. Parameters ---------- inplace: If True, updates itself. If False (default), returns copy percent: If True, normalizes to percent instead of 1. Default: False Returns ------- HistogramBase : either modified copy or self See also -------- densities HistogramND.partial_normalize """ if inplace: self /= self.total * (.01 if percent else 1) return self else: return self / self.total * (100 if percent else 1)
python
def normalize(self, inplace: bool = False, percent: bool = False) -> "HistogramBase": """Normalize the histogram, so that the total weight is equal to 1. Parameters ---------- inplace: If True, updates itself. If False (default), returns copy percent: If True, normalizes to percent instead of 1. Default: False Returns ------- HistogramBase : either modified copy or self See also -------- densities HistogramND.partial_normalize """ if inplace: self /= self.total * (.01 if percent else 1) return self else: return self / self.total * (100 if percent else 1)
[ "def", "normalize", "(", "self", ",", "inplace", ":", "bool", "=", "False", ",", "percent", ":", "bool", "=", "False", ")", "->", "\"HistogramBase\"", ":", "if", "inplace", ":", "self", "/=", "self", ".", "total", "*", "(", ".01", "if", "percent", "else", "1", ")", "return", "self", "else", ":", "return", "self", "/", "self", ".", "total", "*", "(", "100", "if", "percent", "else", "1", ")" ]
Normalize the histogram, so that the total weight is equal to 1. Parameters ---------- inplace: If True, updates itself. If False (default), returns copy percent: If True, normalizes to percent instead of 1. Default: False Returns ------- HistogramBase : either modified copy or self See also -------- densities HistogramND.partial_normalize
[ "Normalize", "the", "histogram", "so", "that", "the", "total", "weight", "is", "equal", "to", "1", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L314-L335
train
janpipek/physt
physt/histogram_base.py
HistogramBase._change_binning
def _change_binning(self, new_binning, bin_map: Iterable[Tuple[int, int]], axis: int = 0): """Set new binnning and update the bin contents according to a map. Fills frequencies and errors with 0. It's the caller's responsibility to provide correct binning and map. Parameters ---------- new_binning: physt.binnings.BinningBase bin_map: Iterable[tuple] tuples contain bin indices (old, new) axis: int What axis does the binning describe(0..ndim-1) """ axis = int(axis) if axis < 0 or axis >= self.ndim: raise RuntimeError("Axis must be in range 0..(ndim-1)") self._reshape_data(new_binning.bin_count, bin_map, axis) self._binnings[axis] = new_binning
python
def _change_binning(self, new_binning, bin_map: Iterable[Tuple[int, int]], axis: int = 0): """Set new binnning and update the bin contents according to a map. Fills frequencies and errors with 0. It's the caller's responsibility to provide correct binning and map. Parameters ---------- new_binning: physt.binnings.BinningBase bin_map: Iterable[tuple] tuples contain bin indices (old, new) axis: int What axis does the binning describe(0..ndim-1) """ axis = int(axis) if axis < 0 or axis >= self.ndim: raise RuntimeError("Axis must be in range 0..(ndim-1)") self._reshape_data(new_binning.bin_count, bin_map, axis) self._binnings[axis] = new_binning
[ "def", "_change_binning", "(", "self", ",", "new_binning", ",", "bin_map", ":", "Iterable", "[", "Tuple", "[", "int", ",", "int", "]", "]", ",", "axis", ":", "int", "=", "0", ")", ":", "axis", "=", "int", "(", "axis", ")", "if", "axis", "<", "0", "or", "axis", ">=", "self", ".", "ndim", ":", "raise", "RuntimeError", "(", "\"Axis must be in range 0..(ndim-1)\"", ")", "self", ".", "_reshape_data", "(", "new_binning", ".", "bin_count", ",", "bin_map", ",", "axis", ")", "self", ".", "_binnings", "[", "axis", "]", "=", "new_binning" ]
Set new binnning and update the bin contents according to a map. Fills frequencies and errors with 0. It's the caller's responsibility to provide correct binning and map. Parameters ---------- new_binning: physt.binnings.BinningBase bin_map: Iterable[tuple] tuples contain bin indices (old, new) axis: int What axis does the binning describe(0..ndim-1)
[ "Set", "new", "binnning", "and", "update", "the", "bin", "contents", "according", "to", "a", "map", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L386-L404
train
janpipek/physt
physt/histogram_base.py
HistogramBase._reshape_data
def _reshape_data(self, new_size, bin_map, axis=0): """Reshape data to match new binning schema. Fills frequencies and errors with 0. Parameters ---------- new_size: int bin_map: Iterable[(old, new)] or int or None If None, we can keep the data unchanged. If int, it is offset by which to shift the data (can be 0) If iterable, pairs specify which old bin should go into which new bin axis: int On which axis to apply """ if bin_map is None: return else: new_shape = list(self.shape) new_shape[axis] = new_size new_frequencies = np.zeros(new_shape, dtype=self._frequencies.dtype) new_errors2 = np.zeros(new_shape, dtype=self._frequencies.dtype) self._apply_bin_map( old_frequencies=self._frequencies, new_frequencies=new_frequencies, old_errors2=self._errors2, new_errors2=new_errors2, bin_map=bin_map, axis=axis) self._frequencies = new_frequencies self._errors2 = new_errors2
python
def _reshape_data(self, new_size, bin_map, axis=0): """Reshape data to match new binning schema. Fills frequencies and errors with 0. Parameters ---------- new_size: int bin_map: Iterable[(old, new)] or int or None If None, we can keep the data unchanged. If int, it is offset by which to shift the data (can be 0) If iterable, pairs specify which old bin should go into which new bin axis: int On which axis to apply """ if bin_map is None: return else: new_shape = list(self.shape) new_shape[axis] = new_size new_frequencies = np.zeros(new_shape, dtype=self._frequencies.dtype) new_errors2 = np.zeros(new_shape, dtype=self._frequencies.dtype) self._apply_bin_map( old_frequencies=self._frequencies, new_frequencies=new_frequencies, old_errors2=self._errors2, new_errors2=new_errors2, bin_map=bin_map, axis=axis) self._frequencies = new_frequencies self._errors2 = new_errors2
[ "def", "_reshape_data", "(", "self", ",", "new_size", ",", "bin_map", ",", "axis", "=", "0", ")", ":", "if", "bin_map", "is", "None", ":", "return", "else", ":", "new_shape", "=", "list", "(", "self", ".", "shape", ")", "new_shape", "[", "axis", "]", "=", "new_size", "new_frequencies", "=", "np", ".", "zeros", "(", "new_shape", ",", "dtype", "=", "self", ".", "_frequencies", ".", "dtype", ")", "new_errors2", "=", "np", ".", "zeros", "(", "new_shape", ",", "dtype", "=", "self", ".", "_frequencies", ".", "dtype", ")", "self", ".", "_apply_bin_map", "(", "old_frequencies", "=", "self", ".", "_frequencies", ",", "new_frequencies", "=", "new_frequencies", ",", "old_errors2", "=", "self", ".", "_errors2", ",", "new_errors2", "=", "new_errors2", ",", "bin_map", "=", "bin_map", ",", "axis", "=", "axis", ")", "self", ".", "_frequencies", "=", "new_frequencies", "self", ".", "_errors2", "=", "new_errors2" ]
Reshape data to match new binning schema. Fills frequencies and errors with 0. Parameters ---------- new_size: int bin_map: Iterable[(old, new)] or int or None If None, we can keep the data unchanged. If int, it is offset by which to shift the data (can be 0) If iterable, pairs specify which old bin should go into which new bin axis: int On which axis to apply
[ "Reshape", "data", "to", "match", "new", "binning", "schema", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L455-L482
train
janpipek/physt
physt/histogram_base.py
HistogramBase._apply_bin_map
def _apply_bin_map(self, old_frequencies, new_frequencies, old_errors2, new_errors2, bin_map, axis=0): """Fill new data arrays using a map. Parameters ---------- old_frequencies : np.ndarray Source of frequencies data new_frequencies : np.ndarray Target of frequencies data old_errors2 : np.ndarray Source of errors data new_errors2 : np.ndarray Target of errors data bin_map: Iterable[(old, new)] or int or None As in _reshape_data axis: int On which axis to apply See also -------- HistogramBase._reshape_data """ if old_frequencies is not None and old_frequencies.shape[axis] > 0: if isinstance(bin_map, int): new_index = [slice(None) for i in range(self.ndim)] new_index[axis] = slice(bin_map, bin_map + old_frequencies.shape[axis]) new_frequencies[tuple(new_index)] += old_frequencies new_errors2[tuple(new_index)] += old_errors2 else: for (old, new) in bin_map: # Generic enough new_index = [slice(None) for i in range(self.ndim)] new_index[axis] = new old_index = [slice(None) for i in range(self.ndim)] old_index[axis] = old new_frequencies[tuple(new_index)] += old_frequencies[tuple(old_index)] new_errors2[tuple(new_index)] += old_errors2[tuple(old_index)]
python
def _apply_bin_map(self, old_frequencies, new_frequencies, old_errors2, new_errors2, bin_map, axis=0): """Fill new data arrays using a map. Parameters ---------- old_frequencies : np.ndarray Source of frequencies data new_frequencies : np.ndarray Target of frequencies data old_errors2 : np.ndarray Source of errors data new_errors2 : np.ndarray Target of errors data bin_map: Iterable[(old, new)] or int or None As in _reshape_data axis: int On which axis to apply See also -------- HistogramBase._reshape_data """ if old_frequencies is not None and old_frequencies.shape[axis] > 0: if isinstance(bin_map, int): new_index = [slice(None) for i in range(self.ndim)] new_index[axis] = slice(bin_map, bin_map + old_frequencies.shape[axis]) new_frequencies[tuple(new_index)] += old_frequencies new_errors2[tuple(new_index)] += old_errors2 else: for (old, new) in bin_map: # Generic enough new_index = [slice(None) for i in range(self.ndim)] new_index[axis] = new old_index = [slice(None) for i in range(self.ndim)] old_index[axis] = old new_frequencies[tuple(new_index)] += old_frequencies[tuple(old_index)] new_errors2[tuple(new_index)] += old_errors2[tuple(old_index)]
[ "def", "_apply_bin_map", "(", "self", ",", "old_frequencies", ",", "new_frequencies", ",", "old_errors2", ",", "new_errors2", ",", "bin_map", ",", "axis", "=", "0", ")", ":", "if", "old_frequencies", "is", "not", "None", "and", "old_frequencies", ".", "shape", "[", "axis", "]", ">", "0", ":", "if", "isinstance", "(", "bin_map", ",", "int", ")", ":", "new_index", "=", "[", "slice", "(", "None", ")", "for", "i", "in", "range", "(", "self", ".", "ndim", ")", "]", "new_index", "[", "axis", "]", "=", "slice", "(", "bin_map", ",", "bin_map", "+", "old_frequencies", ".", "shape", "[", "axis", "]", ")", "new_frequencies", "[", "tuple", "(", "new_index", ")", "]", "+=", "old_frequencies", "new_errors2", "[", "tuple", "(", "new_index", ")", "]", "+=", "old_errors2", "else", ":", "for", "(", "old", ",", "new", ")", "in", "bin_map", ":", "# Generic enough", "new_index", "=", "[", "slice", "(", "None", ")", "for", "i", "in", "range", "(", "self", ".", "ndim", ")", "]", "new_index", "[", "axis", "]", "=", "new", "old_index", "=", "[", "slice", "(", "None", ")", "for", "i", "in", "range", "(", "self", ".", "ndim", ")", "]", "old_index", "[", "axis", "]", "=", "old", "new_frequencies", "[", "tuple", "(", "new_index", ")", "]", "+=", "old_frequencies", "[", "tuple", "(", "old_index", ")", "]", "new_errors2", "[", "tuple", "(", "new_index", ")", "]", "+=", "old_errors2", "[", "tuple", "(", "old_index", ")", "]" ]
Fill new data arrays using a map. Parameters ---------- old_frequencies : np.ndarray Source of frequencies data new_frequencies : np.ndarray Target of frequencies data old_errors2 : np.ndarray Source of errors data new_errors2 : np.ndarray Target of errors data bin_map: Iterable[(old, new)] or int or None As in _reshape_data axis: int On which axis to apply See also -------- HistogramBase._reshape_data
[ "Fill", "new", "data", "arrays", "using", "a", "map", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L484-L520
train
janpipek/physt
physt/histogram_base.py
HistogramBase.has_same_bins
def has_same_bins(self, other: "HistogramBase") -> bool: """Whether two histograms share the same binning.""" if self.shape != other.shape: return False elif self.ndim == 1: return np.allclose(self.bins, other.bins) elif self.ndim > 1: for i in range(self.ndim): if not np.allclose(self.bins[i], other.bins[i]): return False return True
python
def has_same_bins(self, other: "HistogramBase") -> bool: """Whether two histograms share the same binning.""" if self.shape != other.shape: return False elif self.ndim == 1: return np.allclose(self.bins, other.bins) elif self.ndim > 1: for i in range(self.ndim): if not np.allclose(self.bins[i], other.bins[i]): return False return True
[ "def", "has_same_bins", "(", "self", ",", "other", ":", "\"HistogramBase\"", ")", "->", "bool", ":", "if", "self", ".", "shape", "!=", "other", ".", "shape", ":", "return", "False", "elif", "self", ".", "ndim", "==", "1", ":", "return", "np", ".", "allclose", "(", "self", ".", "bins", ",", "other", ".", "bins", ")", "elif", "self", ".", "ndim", ">", "1", ":", "for", "i", "in", "range", "(", "self", ".", "ndim", ")", ":", "if", "not", "np", ".", "allclose", "(", "self", ".", "bins", "[", "i", "]", ",", "other", ".", "bins", "[", "i", "]", ")", ":", "return", "False", "return", "True" ]
Whether two histograms share the same binning.
[ "Whether", "two", "histograms", "share", "the", "same", "binning", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L522-L532
train
janpipek/physt
physt/histogram_base.py
HistogramBase.copy
def copy(self, include_frequencies: bool = True) -> "HistogramBase": """Copy the histogram. Parameters ---------- include_frequencies : If false, all frequencies are set to zero. """ if include_frequencies: frequencies = np.copy(self.frequencies) missed = self._missed.copy() errors2 = np.copy(self.errors2) stats = self._stats or None else: frequencies = np.zeros_like(self._frequencies) errors2 = np.zeros_like(self._errors2) missed = np.zeros_like(self._missed) stats = None a_copy = self.__class__.__new__(self.__class__) a_copy._binnings = [binning.copy() for binning in self._binnings] a_copy._dtype = self.dtype a_copy._frequencies = frequencies a_copy._errors2 = errors2 a_copy._meta_data = self._meta_data.copy() a_copy.keep_missed = self.keep_missed a_copy._missed = missed a_copy._stats = stats return a_copy
python
def copy(self, include_frequencies: bool = True) -> "HistogramBase": """Copy the histogram. Parameters ---------- include_frequencies : If false, all frequencies are set to zero. """ if include_frequencies: frequencies = np.copy(self.frequencies) missed = self._missed.copy() errors2 = np.copy(self.errors2) stats = self._stats or None else: frequencies = np.zeros_like(self._frequencies) errors2 = np.zeros_like(self._errors2) missed = np.zeros_like(self._missed) stats = None a_copy = self.__class__.__new__(self.__class__) a_copy._binnings = [binning.copy() for binning in self._binnings] a_copy._dtype = self.dtype a_copy._frequencies = frequencies a_copy._errors2 = errors2 a_copy._meta_data = self._meta_data.copy() a_copy.keep_missed = self.keep_missed a_copy._missed = missed a_copy._stats = stats return a_copy
[ "def", "copy", "(", "self", ",", "include_frequencies", ":", "bool", "=", "True", ")", "->", "\"HistogramBase\"", ":", "if", "include_frequencies", ":", "frequencies", "=", "np", ".", "copy", "(", "self", ".", "frequencies", ")", "missed", "=", "self", ".", "_missed", ".", "copy", "(", ")", "errors2", "=", "np", ".", "copy", "(", "self", ".", "errors2", ")", "stats", "=", "self", ".", "_stats", "or", "None", "else", ":", "frequencies", "=", "np", ".", "zeros_like", "(", "self", ".", "_frequencies", ")", "errors2", "=", "np", ".", "zeros_like", "(", "self", ".", "_errors2", ")", "missed", "=", "np", ".", "zeros_like", "(", "self", ".", "_missed", ")", "stats", "=", "None", "a_copy", "=", "self", ".", "__class__", ".", "__new__", "(", "self", ".", "__class__", ")", "a_copy", ".", "_binnings", "=", "[", "binning", ".", "copy", "(", ")", "for", "binning", "in", "self", ".", "_binnings", "]", "a_copy", ".", "_dtype", "=", "self", ".", "dtype", "a_copy", ".", "_frequencies", "=", "frequencies", "a_copy", ".", "_errors2", "=", "errors2", "a_copy", ".", "_meta_data", "=", "self", ".", "_meta_data", ".", "copy", "(", ")", "a_copy", ".", "keep_missed", "=", "self", ".", "keep_missed", "a_copy", ".", "_missed", "=", "missed", "a_copy", ".", "_stats", "=", "stats", "return", "a_copy" ]
Copy the histogram. Parameters ---------- include_frequencies : If false, all frequencies are set to zero.
[ "Copy", "the", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L534-L560
train
janpipek/physt
physt/histogram_base.py
HistogramBase.to_dict
def to_dict(self) -> OrderedDict: """Dictionary with all data in the histogram. This is used for export into various formats (e.g. JSON) If a descendant class needs to update the dictionary in some way (put some more information), override the _update_dict method. """ result = OrderedDict() result["histogram_type"] = type(self).__name__ result["binnings"] = [binning.to_dict() for binning in self._binnings] result["frequencies"] = self.frequencies.tolist() result["dtype"] = str(np.dtype(self.dtype)) # TODO: Optimize for _errors == _frequencies result["errors2"] = self.errors2.tolist() result["meta_data"] = self._meta_data result["missed"] = self._missed.tolist() result["missed_keep"] = self.keep_missed self._update_dict(result) return result
python
def to_dict(self) -> OrderedDict: """Dictionary with all data in the histogram. This is used for export into various formats (e.g. JSON) If a descendant class needs to update the dictionary in some way (put some more information), override the _update_dict method. """ result = OrderedDict() result["histogram_type"] = type(self).__name__ result["binnings"] = [binning.to_dict() for binning in self._binnings] result["frequencies"] = self.frequencies.tolist() result["dtype"] = str(np.dtype(self.dtype)) # TODO: Optimize for _errors == _frequencies result["errors2"] = self.errors2.tolist() result["meta_data"] = self._meta_data result["missed"] = self._missed.tolist() result["missed_keep"] = self.keep_missed self._update_dict(result) return result
[ "def", "to_dict", "(", "self", ")", "->", "OrderedDict", ":", "result", "=", "OrderedDict", "(", ")", "result", "[", "\"histogram_type\"", "]", "=", "type", "(", "self", ")", ".", "__name__", "result", "[", "\"binnings\"", "]", "=", "[", "binning", ".", "to_dict", "(", ")", "for", "binning", "in", "self", ".", "_binnings", "]", "result", "[", "\"frequencies\"", "]", "=", "self", ".", "frequencies", ".", "tolist", "(", ")", "result", "[", "\"dtype\"", "]", "=", "str", "(", "np", ".", "dtype", "(", "self", ".", "dtype", ")", ")", "# TODO: Optimize for _errors == _frequencies", "result", "[", "\"errors2\"", "]", "=", "self", ".", "errors2", ".", "tolist", "(", ")", "result", "[", "\"meta_data\"", "]", "=", "self", ".", "_meta_data", "result", "[", "\"missed\"", "]", "=", "self", ".", "_missed", ".", "tolist", "(", ")", "result", "[", "\"missed_keep\"", "]", "=", "self", ".", "keep_missed", "self", ".", "_update_dict", "(", "result", ")", "return", "result" ]
Dictionary with all data in the histogram. This is used for export into various formats (e.g. JSON) If a descendant class needs to update the dictionary in some way (put some more information), override the _update_dict method.
[ "Dictionary", "with", "all", "data", "in", "the", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L619-L638
train
janpipek/physt
physt/histogram_base.py
HistogramBase._merge_meta_data
def _merge_meta_data(cls, first: "HistogramBase", second: "HistogramBase") -> dict: """Merge meta data of two histograms leaving only the equal values. (Used in addition and subtraction) """ keys = set(first._meta_data.keys()) keys = keys.union(set(second._meta_data.keys())) return {key: (first._meta_data.get(key, None) if first._meta_data.get(key, None) == second._meta_data.get(key, None) else None) for key in keys}
python
def _merge_meta_data(cls, first: "HistogramBase", second: "HistogramBase") -> dict: """Merge meta data of two histograms leaving only the equal values. (Used in addition and subtraction) """ keys = set(first._meta_data.keys()) keys = keys.union(set(second._meta_data.keys())) return {key: (first._meta_data.get(key, None) if first._meta_data.get(key, None) == second._meta_data.get(key, None) else None) for key in keys}
[ "def", "_merge_meta_data", "(", "cls", ",", "first", ":", "\"HistogramBase\"", ",", "second", ":", "\"HistogramBase\"", ")", "->", "dict", ":", "keys", "=", "set", "(", "first", ".", "_meta_data", ".", "keys", "(", ")", ")", "keys", "=", "keys", ".", "union", "(", "set", "(", "second", ".", "_meta_data", ".", "keys", "(", ")", ")", ")", "return", "{", "key", ":", "(", "first", ".", "_meta_data", ".", "get", "(", "key", ",", "None", ")", "if", "first", ".", "_meta_data", ".", "get", "(", "key", ",", "None", ")", "==", "second", ".", "_meta_data", ".", "get", "(", "key", ",", "None", ")", "else", "None", ")", "for", "key", "in", "keys", "}" ]
Merge meta data of two histograms leaving only the equal values. (Used in addition and subtraction)
[ "Merge", "meta", "data", "of", "two", "histograms", "leaving", "only", "the", "equal", "values", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram_base.py#L816-L825
train
janpipek/physt
physt/histogram1d.py
Histogram1D.mean
def mean(self) -> Optional[float]: """Statistical mean of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. """ if self._stats: # TODO: should be true always? if self.total > 0: return self._stats["sum"] / self.total else: return np.nan else: return None
python
def mean(self) -> Optional[float]: """Statistical mean of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. """ if self._stats: # TODO: should be true always? if self.total > 0: return self._stats["sum"] / self.total else: return np.nan else: return None
[ "def", "mean", "(", "self", ")", "->", "Optional", "[", "float", "]", ":", "if", "self", ".", "_stats", ":", "# TODO: should be true always?", "if", "self", ".", "total", ">", "0", ":", "return", "self", ".", "_stats", "[", "\"sum\"", "]", "/", "self", ".", "total", "else", ":", "return", "np", ".", "nan", "else", ":", "return", "None" ]
Statistical mean of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents.
[ "Statistical", "mean", "of", "all", "values", "entered", "into", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram1d.py#L208-L220
train
janpipek/physt
physt/histogram1d.py
Histogram1D.std
def std(self) -> Optional[float]: #, ddof=0): """Standard deviation of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. Returns ------- float """ # TODO: Add DOF if self._stats: return np.sqrt(self.variance()) else: return None
python
def std(self) -> Optional[float]: #, ddof=0): """Standard deviation of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. Returns ------- float """ # TODO: Add DOF if self._stats: return np.sqrt(self.variance()) else: return None
[ "def", "std", "(", "self", ")", "->", "Optional", "[", "float", "]", ":", "#, ddof=0):", "# TODO: Add DOF", "if", "self", ".", "_stats", ":", "return", "np", ".", "sqrt", "(", "self", ".", "variance", "(", ")", ")", "else", ":", "return", "None" ]
Standard deviation of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. Returns ------- float
[ "Standard", "deviation", "of", "all", "values", "entered", "into", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram1d.py#L222-L236
train
janpipek/physt
physt/histogram1d.py
Histogram1D.variance
def variance(self) -> Optional[float]: #, ddof: int = 0) -> float: """Statistical variance of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. Returns ------- float """ # TODO: Add DOF # http://stats.stackexchange.com/questions/6534/how-do-i-calculate-a-weighted-standard-deviation-in-excel if self._stats: if self.total > 0: return (self._stats["sum2"] - self._stats["sum"] ** 2 / self.total) / self.total else: return np.nan else: return None
python
def variance(self) -> Optional[float]: #, ddof: int = 0) -> float: """Statistical variance of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. Returns ------- float """ # TODO: Add DOF # http://stats.stackexchange.com/questions/6534/how-do-i-calculate-a-weighted-standard-deviation-in-excel if self._stats: if self.total > 0: return (self._stats["sum2"] - self._stats["sum"] ** 2 / self.total) / self.total else: return np.nan else: return None
[ "def", "variance", "(", "self", ")", "->", "Optional", "[", "float", "]", ":", "#, ddof: int = 0) -> float:", "# TODO: Add DOF", "# http://stats.stackexchange.com/questions/6534/how-do-i-calculate-a-weighted-standard-deviation-in-excel", "if", "self", ".", "_stats", ":", "if", "self", ".", "total", ">", "0", ":", "return", "(", "self", ".", "_stats", "[", "\"sum2\"", "]", "-", "self", ".", "_stats", "[", "\"sum\"", "]", "**", "2", "/", "self", ".", "total", ")", "/", "self", ".", "total", "else", ":", "return", "np", ".", "nan", "else", ":", "return", "None" ]
Statistical variance of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. Returns ------- float
[ "Statistical", "variance", "of", "all", "values", "entered", "into", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram1d.py#L238-L256
train
janpipek/physt
physt/histogram1d.py
Histogram1D.find_bin
def find_bin(self, value): """Index of bin corresponding to a value. Parameters ---------- value: float Value to be searched for. Returns ------- int index of bin to which value belongs (-1=underflow, N=overflow, None=not found - inconsecutive) """ ixbin = np.searchsorted(self.bin_left_edges, value, side="right") if ixbin == 0: return -1 elif ixbin == self.bin_count: if value <= self.bin_right_edges[-1]: return ixbin - 1 else: return self.bin_count elif value < self.bin_right_edges[ixbin - 1]: return ixbin - 1 elif ixbin == self.bin_count: return self.bin_count else: return None
python
def find_bin(self, value): """Index of bin corresponding to a value. Parameters ---------- value: float Value to be searched for. Returns ------- int index of bin to which value belongs (-1=underflow, N=overflow, None=not found - inconsecutive) """ ixbin = np.searchsorted(self.bin_left_edges, value, side="right") if ixbin == 0: return -1 elif ixbin == self.bin_count: if value <= self.bin_right_edges[-1]: return ixbin - 1 else: return self.bin_count elif value < self.bin_right_edges[ixbin - 1]: return ixbin - 1 elif ixbin == self.bin_count: return self.bin_count else: return None
[ "def", "find_bin", "(", "self", ",", "value", ")", ":", "ixbin", "=", "np", ".", "searchsorted", "(", "self", ".", "bin_left_edges", ",", "value", ",", "side", "=", "\"right\"", ")", "if", "ixbin", "==", "0", ":", "return", "-", "1", "elif", "ixbin", "==", "self", ".", "bin_count", ":", "if", "value", "<=", "self", ".", "bin_right_edges", "[", "-", "1", "]", ":", "return", "ixbin", "-", "1", "else", ":", "return", "self", ".", "bin_count", "elif", "value", "<", "self", ".", "bin_right_edges", "[", "ixbin", "-", "1", "]", ":", "return", "ixbin", "-", "1", "elif", "ixbin", "==", "self", ".", "bin_count", ":", "return", "self", ".", "bin_count", "else", ":", "return", "None" ]
Index of bin corresponding to a value. Parameters ---------- value: float Value to be searched for. Returns ------- int index of bin to which value belongs (-1=underflow, N=overflow, None=not found - inconsecutive)
[ "Index", "of", "bin", "corresponding", "to", "a", "value", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram1d.py#L342-L369
train
janpipek/physt
physt/histogram1d.py
Histogram1D.fill
def fill(self, value, weight=1): """Update histogram with a new value. Parameters ---------- value: float Value to be added. weight: float, optional Weight assigned to the value. Returns ------- int index of bin which was incremented (-1=underflow, N=overflow, None=not found) Note: If a gap in unconsecutive bins is matched, underflow & overflow are not valid anymore. Note: Name was selected because of the eponymous method in ROOT """ self._coerce_dtype(type(weight)) if self._binning.is_adaptive(): map = self._binning.force_bin_existence(value) self._reshape_data(self._binning.bin_count, map) ixbin = self.find_bin(value) if ixbin is None: self.overflow = np.nan self.underflow = np.nan elif ixbin == -1 and self.keep_missed: self.underflow += weight elif ixbin == self.bin_count and self.keep_missed: self.overflow += weight else: self._frequencies[ixbin] += weight self._errors2[ixbin] += weight ** 2 if self._stats: self._stats["sum"] += weight * value self._stats["sum2"] += weight * value ** 2 return ixbin
python
def fill(self, value, weight=1): """Update histogram with a new value. Parameters ---------- value: float Value to be added. weight: float, optional Weight assigned to the value. Returns ------- int index of bin which was incremented (-1=underflow, N=overflow, None=not found) Note: If a gap in unconsecutive bins is matched, underflow & overflow are not valid anymore. Note: Name was selected because of the eponymous method in ROOT """ self._coerce_dtype(type(weight)) if self._binning.is_adaptive(): map = self._binning.force_bin_existence(value) self._reshape_data(self._binning.bin_count, map) ixbin = self.find_bin(value) if ixbin is None: self.overflow = np.nan self.underflow = np.nan elif ixbin == -1 and self.keep_missed: self.underflow += weight elif ixbin == self.bin_count and self.keep_missed: self.overflow += weight else: self._frequencies[ixbin] += weight self._errors2[ixbin] += weight ** 2 if self._stats: self._stats["sum"] += weight * value self._stats["sum2"] += weight * value ** 2 return ixbin
[ "def", "fill", "(", "self", ",", "value", ",", "weight", "=", "1", ")", ":", "self", ".", "_coerce_dtype", "(", "type", "(", "weight", ")", ")", "if", "self", ".", "_binning", ".", "is_adaptive", "(", ")", ":", "map", "=", "self", ".", "_binning", ".", "force_bin_existence", "(", "value", ")", "self", ".", "_reshape_data", "(", "self", ".", "_binning", ".", "bin_count", ",", "map", ")", "ixbin", "=", "self", ".", "find_bin", "(", "value", ")", "if", "ixbin", "is", "None", ":", "self", ".", "overflow", "=", "np", ".", "nan", "self", ".", "underflow", "=", "np", ".", "nan", "elif", "ixbin", "==", "-", "1", "and", "self", ".", "keep_missed", ":", "self", ".", "underflow", "+=", "weight", "elif", "ixbin", "==", "self", ".", "bin_count", "and", "self", ".", "keep_missed", ":", "self", ".", "overflow", "+=", "weight", "else", ":", "self", ".", "_frequencies", "[", "ixbin", "]", "+=", "weight", "self", ".", "_errors2", "[", "ixbin", "]", "+=", "weight", "**", "2", "if", "self", ".", "_stats", ":", "self", ".", "_stats", "[", "\"sum\"", "]", "+=", "weight", "*", "value", "self", ".", "_stats", "[", "\"sum2\"", "]", "+=", "weight", "*", "value", "**", "2", "return", "ixbin" ]
Update histogram with a new value. Parameters ---------- value: float Value to be added. weight: float, optional Weight assigned to the value. Returns ------- int index of bin which was incremented (-1=underflow, N=overflow, None=not found) Note: If a gap in unconsecutive bins is matched, underflow & overflow are not valid anymore. Note: Name was selected because of the eponymous method in ROOT
[ "Update", "histogram", "with", "a", "new", "value", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram1d.py#L371-L408
train
janpipek/physt
physt/histogram1d.py
Histogram1D.fill_n
def fill_n(self, values, weights=None, dropna: bool = True): """Update histograms with a set of values. Parameters ---------- values: array_like weights: Optional[array_like] drop_na: Optional[bool] If true (default), all nan's are skipped. """ # TODO: Unify with HistogramBase values = np.asarray(values) if dropna: values = values[~np.isnan(values)] if self._binning.is_adaptive(): map = self._binning.force_bin_existence(values) self._reshape_data(self._binning.bin_count, map) if weights: weights = np.asarray(weights) self._coerce_dtype(weights.dtype) (frequencies, errors2, underflow, overflow, stats) = \ calculate_frequencies(values, self._binning, dtype=self.dtype, weights=weights, validate_bins=False) self._frequencies += frequencies self._errors2 += errors2 # TODO: check that adaptive does not produce under-/over-flows? if self.keep_missed: self.underflow += underflow self.overflow += overflow if self._stats: for key in self._stats: self._stats[key] += stats.get(key, 0.0)
python
def fill_n(self, values, weights=None, dropna: bool = True): """Update histograms with a set of values. Parameters ---------- values: array_like weights: Optional[array_like] drop_na: Optional[bool] If true (default), all nan's are skipped. """ # TODO: Unify with HistogramBase values = np.asarray(values) if dropna: values = values[~np.isnan(values)] if self._binning.is_adaptive(): map = self._binning.force_bin_existence(values) self._reshape_data(self._binning.bin_count, map) if weights: weights = np.asarray(weights) self._coerce_dtype(weights.dtype) (frequencies, errors2, underflow, overflow, stats) = \ calculate_frequencies(values, self._binning, dtype=self.dtype, weights=weights, validate_bins=False) self._frequencies += frequencies self._errors2 += errors2 # TODO: check that adaptive does not produce under-/over-flows? if self.keep_missed: self.underflow += underflow self.overflow += overflow if self._stats: for key in self._stats: self._stats[key] += stats.get(key, 0.0)
[ "def", "fill_n", "(", "self", ",", "values", ",", "weights", "=", "None", ",", "dropna", ":", "bool", "=", "True", ")", ":", "# TODO: Unify with HistogramBase", "values", "=", "np", ".", "asarray", "(", "values", ")", "if", "dropna", ":", "values", "=", "values", "[", "~", "np", ".", "isnan", "(", "values", ")", "]", "if", "self", ".", "_binning", ".", "is_adaptive", "(", ")", ":", "map", "=", "self", ".", "_binning", ".", "force_bin_existence", "(", "values", ")", "self", ".", "_reshape_data", "(", "self", ".", "_binning", ".", "bin_count", ",", "map", ")", "if", "weights", ":", "weights", "=", "np", ".", "asarray", "(", "weights", ")", "self", ".", "_coerce_dtype", "(", "weights", ".", "dtype", ")", "(", "frequencies", ",", "errors2", ",", "underflow", ",", "overflow", ",", "stats", ")", "=", "calculate_frequencies", "(", "values", ",", "self", ".", "_binning", ",", "dtype", "=", "self", ".", "dtype", ",", "weights", "=", "weights", ",", "validate_bins", "=", "False", ")", "self", ".", "_frequencies", "+=", "frequencies", "self", ".", "_errors2", "+=", "errors2", "# TODO: check that adaptive does not produce under-/over-flows?", "if", "self", ".", "keep_missed", ":", "self", ".", "underflow", "+=", "underflow", "self", ".", "overflow", "+=", "overflow", "if", "self", ".", "_stats", ":", "for", "key", "in", "self", ".", "_stats", ":", "self", ".", "_stats", "[", "key", "]", "+=", "stats", ".", "get", "(", "key", ",", "0.0", ")" ]
Update histograms with a set of values. Parameters ---------- values: array_like weights: Optional[array_like] drop_na: Optional[bool] If true (default), all nan's are skipped.
[ "Update", "histograms", "with", "a", "set", "of", "values", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram1d.py#L410-L441
train
janpipek/physt
physt/histogram1d.py
Histogram1D.to_xarray
def to_xarray(self) -> "xarray.Dataset": """Convert to xarray.Dataset""" import xarray as xr data_vars = { "frequencies": xr.DataArray(self.frequencies, dims="bin"), "errors2": xr.DataArray(self.errors2, dims="bin"), "bins": xr.DataArray(self.bins, dims=("bin", "x01")) } coords = {} attrs = { "underflow": self.underflow, "overflow": self.overflow, "inner_missed": self.inner_missed, "keep_missed": self.keep_missed } attrs.update(self._meta_data) # TODO: Add stats return xr.Dataset(data_vars, coords, attrs)
python
def to_xarray(self) -> "xarray.Dataset": """Convert to xarray.Dataset""" import xarray as xr data_vars = { "frequencies": xr.DataArray(self.frequencies, dims="bin"), "errors2": xr.DataArray(self.errors2, dims="bin"), "bins": xr.DataArray(self.bins, dims=("bin", "x01")) } coords = {} attrs = { "underflow": self.underflow, "overflow": self.overflow, "inner_missed": self.inner_missed, "keep_missed": self.keep_missed } attrs.update(self._meta_data) # TODO: Add stats return xr.Dataset(data_vars, coords, attrs)
[ "def", "to_xarray", "(", "self", ")", "->", "\"xarray.Dataset\"", ":", "import", "xarray", "as", "xr", "data_vars", "=", "{", "\"frequencies\"", ":", "xr", ".", "DataArray", "(", "self", ".", "frequencies", ",", "dims", "=", "\"bin\"", ")", ",", "\"errors2\"", ":", "xr", ".", "DataArray", "(", "self", ".", "errors2", ",", "dims", "=", "\"bin\"", ")", ",", "\"bins\"", ":", "xr", ".", "DataArray", "(", "self", ".", "bins", ",", "dims", "=", "(", "\"bin\"", ",", "\"x01\"", ")", ")", "}", "coords", "=", "{", "}", "attrs", "=", "{", "\"underflow\"", ":", "self", ".", "underflow", ",", "\"overflow\"", ":", "self", ".", "overflow", ",", "\"inner_missed\"", ":", "self", ".", "inner_missed", ",", "\"keep_missed\"", ":", "self", ".", "keep_missed", "}", "attrs", ".", "update", "(", "self", ".", "_meta_data", ")", "# TODO: Add stats", "return", "xr", ".", "Dataset", "(", "data_vars", ",", "coords", ",", "attrs", ")" ]
Convert to xarray.Dataset
[ "Convert", "to", "xarray", ".", "Dataset" ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram1d.py#L487-L504
train
janpipek/physt
physt/histogram1d.py
Histogram1D.from_xarray
def from_xarray(cls, arr: "xarray.Dataset") -> "Histogram1D": """Convert form xarray.Dataset Parameters ---------- arr: The data in xarray representation """ kwargs = {'frequencies': arr["frequencies"], 'binning': arr["bins"], 'errors2': arr["errors2"], 'overflow': arr.attrs["overflow"], 'underflow': arr.attrs["underflow"], 'keep_missed': arr.attrs["keep_missed"]} # TODO: Add stats return cls(**kwargs)
python
def from_xarray(cls, arr: "xarray.Dataset") -> "Histogram1D": """Convert form xarray.Dataset Parameters ---------- arr: The data in xarray representation """ kwargs = {'frequencies': arr["frequencies"], 'binning': arr["bins"], 'errors2': arr["errors2"], 'overflow': arr.attrs["overflow"], 'underflow': arr.attrs["underflow"], 'keep_missed': arr.attrs["keep_missed"]} # TODO: Add stats return cls(**kwargs)
[ "def", "from_xarray", "(", "cls", ",", "arr", ":", "\"xarray.Dataset\"", ")", "->", "\"Histogram1D\"", ":", "kwargs", "=", "{", "'frequencies'", ":", "arr", "[", "\"frequencies\"", "]", ",", "'binning'", ":", "arr", "[", "\"bins\"", "]", ",", "'errors2'", ":", "arr", "[", "\"errors2\"", "]", ",", "'overflow'", ":", "arr", ".", "attrs", "[", "\"overflow\"", "]", ",", "'underflow'", ":", "arr", ".", "attrs", "[", "\"underflow\"", "]", ",", "'keep_missed'", ":", "arr", ".", "attrs", "[", "\"keep_missed\"", "]", "}", "# TODO: Add stats", "return", "cls", "(", "*", "*", "kwargs", ")" ]
Convert form xarray.Dataset Parameters ---------- arr: The data in xarray representation
[ "Convert", "form", "xarray", ".", "Dataset" ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/histogram1d.py#L507-L521
train
janpipek/physt
physt/plotting/__init__.py
set_default_backend
def set_default_backend(name: str): """Choose a default backend.""" global _default_backend if name == "bokeh": raise RuntimeError("Support for bokeh has been discontinued. At some point, we may return to support holoviews.") if not name in backends: raise RuntimeError("Backend {0} is not supported and cannot be set as default.".format(name)) _default_backend = name
python
def set_default_backend(name: str): """Choose a default backend.""" global _default_backend if name == "bokeh": raise RuntimeError("Support for bokeh has been discontinued. At some point, we may return to support holoviews.") if not name in backends: raise RuntimeError("Backend {0} is not supported and cannot be set as default.".format(name)) _default_backend = name
[ "def", "set_default_backend", "(", "name", ":", "str", ")", ":", "global", "_default_backend", "if", "name", "==", "\"bokeh\"", ":", "raise", "RuntimeError", "(", "\"Support for bokeh has been discontinued. At some point, we may return to support holoviews.\"", ")", "if", "not", "name", "in", "backends", ":", "raise", "RuntimeError", "(", "\"Backend {0} is not supported and cannot be set as default.\"", ".", "format", "(", "name", ")", ")", "_default_backend", "=", "name" ]
Choose a default backend.
[ "Choose", "a", "default", "backend", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/__init__.py#L139-L146
train
janpipek/physt
physt/plotting/__init__.py
_get_backend
def _get_backend(name: str = None): """Get a plotting backend. Tries to get it using the name - or the default one. """ if not backends: raise RuntimeError("No plotting backend available. Please, install matplotlib (preferred) or bokeh (limited).") if not name: name = _default_backend if name == "bokeh": raise RuntimeError("Support for bokeh has been discontinued. At some point, we may return to support holoviews.") backend = backends.get(name) if not backend: raise RuntimeError("Backend {0} does not exist. Use one of the following: {1}".format(name, ", ".join(backends.keys()))) return name, backends[name]
python
def _get_backend(name: str = None): """Get a plotting backend. Tries to get it using the name - or the default one. """ if not backends: raise RuntimeError("No plotting backend available. Please, install matplotlib (preferred) or bokeh (limited).") if not name: name = _default_backend if name == "bokeh": raise RuntimeError("Support for bokeh has been discontinued. At some point, we may return to support holoviews.") backend = backends.get(name) if not backend: raise RuntimeError("Backend {0} does not exist. Use one of the following: {1}".format(name, ", ".join(backends.keys()))) return name, backends[name]
[ "def", "_get_backend", "(", "name", ":", "str", "=", "None", ")", ":", "if", "not", "backends", ":", "raise", "RuntimeError", "(", "\"No plotting backend available. Please, install matplotlib (preferred) or bokeh (limited).\"", ")", "if", "not", "name", ":", "name", "=", "_default_backend", "if", "name", "==", "\"bokeh\"", ":", "raise", "RuntimeError", "(", "\"Support for bokeh has been discontinued. At some point, we may return to support holoviews.\"", ")", "backend", "=", "backends", ".", "get", "(", "name", ")", "if", "not", "backend", ":", "raise", "RuntimeError", "(", "\"Backend {0} does not exist. Use one of the following: {1}\"", ".", "format", "(", "name", ",", "\", \"", ".", "join", "(", "backends", ".", "keys", "(", ")", ")", ")", ")", "return", "name", ",", "backends", "[", "name", "]" ]
Get a plotting backend. Tries to get it using the name - or the default one.
[ "Get", "a", "plotting", "backend", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/__init__.py#L149-L163
train
janpipek/physt
physt/plotting/__init__.py
plot
def plot(histogram: HistogramBase, kind: Optional[str] = None, backend: Optional[str] = None, **kwargs): """Universal plotting function. All keyword arguments are passed to the plotting methods. Parameters ---------- kind: Type of the plot (like "scatter", "line", ...), similar to pandas """ backend_name, backend = _get_backend(backend) if kind is None: kinds = [t for t in backend.types if histogram.ndim in backend.dims[t]] if not kinds: raise RuntimeError("No plot type is supported for {0}" .format(histogram.__class__.__name__)) kind = kinds[0] if kind in backend.types: method = getattr(backend, kind) return method(histogram, **kwargs) else: raise RuntimeError("Histogram type error: {0} missing in backend {1}" .format(kind, backend_name))
python
def plot(histogram: HistogramBase, kind: Optional[str] = None, backend: Optional[str] = None, **kwargs): """Universal plotting function. All keyword arguments are passed to the plotting methods. Parameters ---------- kind: Type of the plot (like "scatter", "line", ...), similar to pandas """ backend_name, backend = _get_backend(backend) if kind is None: kinds = [t for t in backend.types if histogram.ndim in backend.dims[t]] if not kinds: raise RuntimeError("No plot type is supported for {0}" .format(histogram.__class__.__name__)) kind = kinds[0] if kind in backend.types: method = getattr(backend, kind) return method(histogram, **kwargs) else: raise RuntimeError("Histogram type error: {0} missing in backend {1}" .format(kind, backend_name))
[ "def", "plot", "(", "histogram", ":", "HistogramBase", ",", "kind", ":", "Optional", "[", "str", "]", "=", "None", ",", "backend", ":", "Optional", "[", "str", "]", "=", "None", ",", "*", "*", "kwargs", ")", ":", "backend_name", ",", "backend", "=", "_get_backend", "(", "backend", ")", "if", "kind", "is", "None", ":", "kinds", "=", "[", "t", "for", "t", "in", "backend", ".", "types", "if", "histogram", ".", "ndim", "in", "backend", ".", "dims", "[", "t", "]", "]", "if", "not", "kinds", ":", "raise", "RuntimeError", "(", "\"No plot type is supported for {0}\"", ".", "format", "(", "histogram", ".", "__class__", ".", "__name__", ")", ")", "kind", "=", "kinds", "[", "0", "]", "if", "kind", "in", "backend", ".", "types", ":", "method", "=", "getattr", "(", "backend", ",", "kind", ")", "return", "method", "(", "histogram", ",", "*", "*", "kwargs", ")", "else", ":", "raise", "RuntimeError", "(", "\"Histogram type error: {0} missing in backend {1}\"", ".", "format", "(", "kind", ",", "backend_name", ")", ")" ]
Universal plotting function. All keyword arguments are passed to the plotting methods. Parameters ---------- kind: Type of the plot (like "scatter", "line", ...), similar to pandas
[ "Universal", "plotting", "function", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/__init__.py#L166-L187
train
janpipek/physt
physt/plotting/vega.py
enable_inline_view
def enable_inline_view(f): """Decorator to enable in-line viewing in Python and saving to external file. It adds several parameters to each decorated plotted function: Parameters ---------- write_to: str (optional) Path to write vega JSON/HTML to. write_format: "auto" | "json" | "html" Whether to create a JSON data file or a full-fledged HTML page. display: "auto" | True | False Whether to try in-line display in IPython indent: int Indentation of JSON """ @wraps(f) def wrapper(hist, write_to=None, write_format="auto", display="auto", indent=2, **kwargs): vega_data = f(hist, **kwargs) if display is True and not VEGA_IPYTHON_PLUGIN_ENABLED: raise RuntimeError("Cannot display vega plot: {0}".format(VEGA_ERROR)) if display == "auto": display = write_to is None if write_to: write_vega(vega_data, hist.title, write_to, write_format, indent) return display_vega(vega_data, display) return wrapper
python
def enable_inline_view(f): """Decorator to enable in-line viewing in Python and saving to external file. It adds several parameters to each decorated plotted function: Parameters ---------- write_to: str (optional) Path to write vega JSON/HTML to. write_format: "auto" | "json" | "html" Whether to create a JSON data file or a full-fledged HTML page. display: "auto" | True | False Whether to try in-line display in IPython indent: int Indentation of JSON """ @wraps(f) def wrapper(hist, write_to=None, write_format="auto", display="auto", indent=2, **kwargs): vega_data = f(hist, **kwargs) if display is True and not VEGA_IPYTHON_PLUGIN_ENABLED: raise RuntimeError("Cannot display vega plot: {0}".format(VEGA_ERROR)) if display == "auto": display = write_to is None if write_to: write_vega(vega_data, hist.title, write_to, write_format, indent) return display_vega(vega_data, display) return wrapper
[ "def", "enable_inline_view", "(", "f", ")", ":", "@", "wraps", "(", "f", ")", "def", "wrapper", "(", "hist", ",", "write_to", "=", "None", ",", "write_format", "=", "\"auto\"", ",", "display", "=", "\"auto\"", ",", "indent", "=", "2", ",", "*", "*", "kwargs", ")", ":", "vega_data", "=", "f", "(", "hist", ",", "*", "*", "kwargs", ")", "if", "display", "is", "True", "and", "not", "VEGA_IPYTHON_PLUGIN_ENABLED", ":", "raise", "RuntimeError", "(", "\"Cannot display vega plot: {0}\"", ".", "format", "(", "VEGA_ERROR", ")", ")", "if", "display", "==", "\"auto\"", ":", "display", "=", "write_to", "is", "None", "if", "write_to", ":", "write_vega", "(", "vega_data", ",", "hist", ".", "title", ",", "write_to", ",", "write_format", ",", "indent", ")", "return", "display_vega", "(", "vega_data", ",", "display", ")", "return", "wrapper" ]
Decorator to enable in-line viewing in Python and saving to external file. It adds several parameters to each decorated plotted function: Parameters ---------- write_to: str (optional) Path to write vega JSON/HTML to. write_format: "auto" | "json" | "html" Whether to create a JSON data file or a full-fledged HTML page. display: "auto" | True | False Whether to try in-line display in IPython indent: int Indentation of JSON
[ "Decorator", "to", "enable", "in", "-", "line", "viewing", "in", "Python", "and", "saving", "to", "external", "file", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L102-L134
train
janpipek/physt
physt/plotting/vega.py
write_vega
def write_vega(vega_data, *, title: Optional[str], write_to: str, write_format: str = "auto", indent: int = 2): """Write vega dictionary to an external file. Parameters ---------- vega_data : Valid vega data as dictionary write_to: Path to write vega JSON/HTML to. write_format: "auto" | "json" | "html" Whether to create a JSON data file or a full-fledged HTML page. indent: Indentation of JSON """ spec = json.dumps(vega_data, indent=indent) if write_format == "html" or write_format is "auto" and write_to.endswith(".html"): output = HTML_TEMPLATE.replace("{{ title }}", title or "Histogram").replace("{{ spec }}", spec) elif write_format == "json" or write_format is "auto" and write_to.endswith(".json"): output = spec else: raise RuntimeError("Format not understood.") with codecs.open(write_to, "w", encoding="utf-8") as out: out.write(output)
python
def write_vega(vega_data, *, title: Optional[str], write_to: str, write_format: str = "auto", indent: int = 2): """Write vega dictionary to an external file. Parameters ---------- vega_data : Valid vega data as dictionary write_to: Path to write vega JSON/HTML to. write_format: "auto" | "json" | "html" Whether to create a JSON data file or a full-fledged HTML page. indent: Indentation of JSON """ spec = json.dumps(vega_data, indent=indent) if write_format == "html" or write_format is "auto" and write_to.endswith(".html"): output = HTML_TEMPLATE.replace("{{ title }}", title or "Histogram").replace("{{ spec }}", spec) elif write_format == "json" or write_format is "auto" and write_to.endswith(".json"): output = spec else: raise RuntimeError("Format not understood.") with codecs.open(write_to, "w", encoding="utf-8") as out: out.write(output)
[ "def", "write_vega", "(", "vega_data", ",", "*", ",", "title", ":", "Optional", "[", "str", "]", ",", "write_to", ":", "str", ",", "write_format", ":", "str", "=", "\"auto\"", ",", "indent", ":", "int", "=", "2", ")", ":", "spec", "=", "json", ".", "dumps", "(", "vega_data", ",", "indent", "=", "indent", ")", "if", "write_format", "==", "\"html\"", "or", "write_format", "is", "\"auto\"", "and", "write_to", ".", "endswith", "(", "\".html\"", ")", ":", "output", "=", "HTML_TEMPLATE", ".", "replace", "(", "\"{{ title }}\"", ",", "title", "or", "\"Histogram\"", ")", ".", "replace", "(", "\"{{ spec }}\"", ",", "spec", ")", "elif", "write_format", "==", "\"json\"", "or", "write_format", "is", "\"auto\"", "and", "write_to", ".", "endswith", "(", "\".json\"", ")", ":", "output", "=", "spec", "else", ":", "raise", "RuntimeError", "(", "\"Format not understood.\"", ")", "with", "codecs", ".", "open", "(", "write_to", ",", "\"w\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "out", ":", "out", ".", "write", "(", "output", ")" ]
Write vega dictionary to an external file. Parameters ---------- vega_data : Valid vega data as dictionary write_to: Path to write vega JSON/HTML to. write_format: "auto" | "json" | "html" Whether to create a JSON data file or a full-fledged HTML page. indent: Indentation of JSON
[ "Write", "vega", "dictionary", "to", "an", "external", "file", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L137-L156
train
janpipek/physt
physt/plotting/vega.py
display_vega
def display_vega(vega_data: dict, display: bool = True) -> Union['Vega', dict]: """Optionally display vega dictionary. Parameters ---------- vega_data : Valid vega data as dictionary display: Whether to try in-line display in IPython """ if VEGA_IPYTHON_PLUGIN_ENABLED and display: from vega3 import Vega return Vega(vega_data) else: return vega_data
python
def display_vega(vega_data: dict, display: bool = True) -> Union['Vega', dict]: """Optionally display vega dictionary. Parameters ---------- vega_data : Valid vega data as dictionary display: Whether to try in-line display in IPython """ if VEGA_IPYTHON_PLUGIN_ENABLED and display: from vega3 import Vega return Vega(vega_data) else: return vega_data
[ "def", "display_vega", "(", "vega_data", ":", "dict", ",", "display", ":", "bool", "=", "True", ")", "->", "Union", "[", "'Vega'", ",", "dict", "]", ":", "if", "VEGA_IPYTHON_PLUGIN_ENABLED", "and", "display", ":", "from", "vega3", "import", "Vega", "return", "Vega", "(", "vega_data", ")", "else", ":", "return", "vega_data" ]
Optionally display vega dictionary. Parameters ---------- vega_data : Valid vega data as dictionary display: Whether to try in-line display in IPython
[ "Optionally", "display", "vega", "dictionary", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L159-L171
train
janpipek/physt
physt/plotting/vega.py
bar
def bar(h1: Histogram1D, **kwargs) -> dict: """Bar plot of 1D histogram. Parameters ---------- lw : float Width of the line between bars alpha : float Opacity of the bars hover_alpha: float Opacity of the bars when hover on """ # TODO: Enable collections # TODO: Enable legend vega = _create_figure(kwargs) _add_title(h1, vega, kwargs) _create_scales(h1, vega, kwargs) _create_axes(h1, vega, kwargs) data = get_data(h1, kwargs.pop("density", None), kwargs.pop("cumulative", None)).tolist() lefts = h1.bin_left_edges.astype(float).tolist() rights = h1.bin_right_edges.astype(float).tolist() vega["data"] = [{ "name": "table", "values": [{ "x": lefts[i], "x2": rights[i], "y": data[i], } for i in range(h1.bin_count) ] }] alpha = kwargs.pop("alpha", 1) # hover_alpha = kwargs.pop("hover_alpha", alpha) vega["marks"] = [ { "type": "rect", "from": {"data": "table"}, "encode": { "enter": { "x": {"scale": "xscale", "field": "x"}, "x2": {"scale": "xscale", "field": "x2"}, "y": {"scale": "yscale", "value": 0}, "y2": {"scale": "yscale", "field": "y"}, # "stroke": {"scale": "color", "field": "c"}, "strokeWidth": {"value": kwargs.pop("lw", 2)} }, "update": { "fillOpacity": [ # {"test": "datum === tooltip", "value": hover_alpha}, {"value": alpha} ] }, } } ] _create_tooltips(h1, vega, kwargs) return vega
python
def bar(h1: Histogram1D, **kwargs) -> dict: """Bar plot of 1D histogram. Parameters ---------- lw : float Width of the line between bars alpha : float Opacity of the bars hover_alpha: float Opacity of the bars when hover on """ # TODO: Enable collections # TODO: Enable legend vega = _create_figure(kwargs) _add_title(h1, vega, kwargs) _create_scales(h1, vega, kwargs) _create_axes(h1, vega, kwargs) data = get_data(h1, kwargs.pop("density", None), kwargs.pop("cumulative", None)).tolist() lefts = h1.bin_left_edges.astype(float).tolist() rights = h1.bin_right_edges.astype(float).tolist() vega["data"] = [{ "name": "table", "values": [{ "x": lefts[i], "x2": rights[i], "y": data[i], } for i in range(h1.bin_count) ] }] alpha = kwargs.pop("alpha", 1) # hover_alpha = kwargs.pop("hover_alpha", alpha) vega["marks"] = [ { "type": "rect", "from": {"data": "table"}, "encode": { "enter": { "x": {"scale": "xscale", "field": "x"}, "x2": {"scale": "xscale", "field": "x2"}, "y": {"scale": "yscale", "value": 0}, "y2": {"scale": "yscale", "field": "y"}, # "stroke": {"scale": "color", "field": "c"}, "strokeWidth": {"value": kwargs.pop("lw", 2)} }, "update": { "fillOpacity": [ # {"test": "datum === tooltip", "value": hover_alpha}, {"value": alpha} ] }, } } ] _create_tooltips(h1, vega, kwargs) return vega
[ "def", "bar", "(", "h1", ":", "Histogram1D", ",", "*", "*", "kwargs", ")", "->", "dict", ":", "# TODO: Enable collections", "# TODO: Enable legend", "vega", "=", "_create_figure", "(", "kwargs", ")", "_add_title", "(", "h1", ",", "vega", ",", "kwargs", ")", "_create_scales", "(", "h1", ",", "vega", ",", "kwargs", ")", "_create_axes", "(", "h1", ",", "vega", ",", "kwargs", ")", "data", "=", "get_data", "(", "h1", ",", "kwargs", ".", "pop", "(", "\"density\"", ",", "None", ")", ",", "kwargs", ".", "pop", "(", "\"cumulative\"", ",", "None", ")", ")", ".", "tolist", "(", ")", "lefts", "=", "h1", ".", "bin_left_edges", ".", "astype", "(", "float", ")", ".", "tolist", "(", ")", "rights", "=", "h1", ".", "bin_right_edges", ".", "astype", "(", "float", ")", ".", "tolist", "(", ")", "vega", "[", "\"data\"", "]", "=", "[", "{", "\"name\"", ":", "\"table\"", ",", "\"values\"", ":", "[", "{", "\"x\"", ":", "lefts", "[", "i", "]", ",", "\"x2\"", ":", "rights", "[", "i", "]", ",", "\"y\"", ":", "data", "[", "i", "]", ",", "}", "for", "i", "in", "range", "(", "h1", ".", "bin_count", ")", "]", "}", "]", "alpha", "=", "kwargs", ".", "pop", "(", "\"alpha\"", ",", "1", ")", "# hover_alpha = kwargs.pop(\"hover_alpha\", alpha)", "vega", "[", "\"marks\"", "]", "=", "[", "{", "\"type\"", ":", "\"rect\"", ",", "\"from\"", ":", "{", "\"data\"", ":", "\"table\"", "}", ",", "\"encode\"", ":", "{", "\"enter\"", ":", "{", "\"x\"", ":", "{", "\"scale\"", ":", "\"xscale\"", ",", "\"field\"", ":", "\"x\"", "}", ",", "\"x2\"", ":", "{", "\"scale\"", ":", "\"xscale\"", ",", "\"field\"", ":", "\"x2\"", "}", ",", "\"y\"", ":", "{", "\"scale\"", ":", "\"yscale\"", ",", "\"value\"", ":", "0", "}", ",", "\"y2\"", ":", "{", "\"scale\"", ":", "\"yscale\"", ",", "\"field\"", ":", "\"y\"", "}", ",", "# \"stroke\": {\"scale\": \"color\", \"field\": \"c\"},", "\"strokeWidth\"", ":", "{", "\"value\"", ":", "kwargs", ".", "pop", "(", "\"lw\"", ",", "2", ")", "}", "}", ",", "\"update\"", ":", "{", "\"fillOpacity\"", ":", "[", "# {\"test\": \"datum === tooltip\", \"value\": hover_alpha},", "{", "\"value\"", ":", "alpha", "}", "]", "}", ",", "}", "}", "]", "_create_tooltips", "(", "h1", ",", "vega", ",", "kwargs", ")", "return", "vega" ]
Bar plot of 1D histogram. Parameters ---------- lw : float Width of the line between bars alpha : float Opacity of the bars hover_alpha: float Opacity of the bars when hover on
[ "Bar", "plot", "of", "1D", "histogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L175-L237
train
janpipek/physt
physt/plotting/vega.py
scatter
def scatter(h1: Histogram1D, **kwargs) -> dict: """Scatter plot of 1D histogram values. Points are horizontally placed in bin centers. Parameters ---------- shape : str """ shape = kwargs.pop("shape", DEFAULT_SCATTER_SHAPE) # size = kwargs.pop("size", DEFAULT_SCATTER_SIZE) mark_template = [{ "type": "symbol", "from": {"data": "series"}, "encode": { "enter": { "x": {"scale": "xscale", "field": "x"}, "y": {"scale": "yscale", "field": "y"}, "shape": {"value": shape}, # "size": {"value": size}, "fill": {"scale": "series", "field": "c"}, }, } }] vega = _scatter_or_line(h1, mark_template=mark_template, kwargs=kwargs) return vega
python
def scatter(h1: Histogram1D, **kwargs) -> dict: """Scatter plot of 1D histogram values. Points are horizontally placed in bin centers. Parameters ---------- shape : str """ shape = kwargs.pop("shape", DEFAULT_SCATTER_SHAPE) # size = kwargs.pop("size", DEFAULT_SCATTER_SIZE) mark_template = [{ "type": "symbol", "from": {"data": "series"}, "encode": { "enter": { "x": {"scale": "xscale", "field": "x"}, "y": {"scale": "yscale", "field": "y"}, "shape": {"value": shape}, # "size": {"value": size}, "fill": {"scale": "series", "field": "c"}, }, } }] vega = _scatter_or_line(h1, mark_template=mark_template, kwargs=kwargs) return vega
[ "def", "scatter", "(", "h1", ":", "Histogram1D", ",", "*", "*", "kwargs", ")", "->", "dict", ":", "shape", "=", "kwargs", ".", "pop", "(", "\"shape\"", ",", "DEFAULT_SCATTER_SHAPE", ")", "# size = kwargs.pop(\"size\", DEFAULT_SCATTER_SIZE)", "mark_template", "=", "[", "{", "\"type\"", ":", "\"symbol\"", ",", "\"from\"", ":", "{", "\"data\"", ":", "\"series\"", "}", ",", "\"encode\"", ":", "{", "\"enter\"", ":", "{", "\"x\"", ":", "{", "\"scale\"", ":", "\"xscale\"", ",", "\"field\"", ":", "\"x\"", "}", ",", "\"y\"", ":", "{", "\"scale\"", ":", "\"yscale\"", ",", "\"field\"", ":", "\"y\"", "}", ",", "\"shape\"", ":", "{", "\"value\"", ":", "shape", "}", ",", "# \"size\": {\"value\": size},", "\"fill\"", ":", "{", "\"scale\"", ":", "\"series\"", ",", "\"field\"", ":", "\"c\"", "}", ",", "}", ",", "}", "}", "]", "vega", "=", "_scatter_or_line", "(", "h1", ",", "mark_template", "=", "mark_template", ",", "kwargs", "=", "kwargs", ")", "return", "vega" ]
Scatter plot of 1D histogram values. Points are horizontally placed in bin centers. Parameters ---------- shape : str
[ "Scatter", "plot", "of", "1D", "histogram", "values", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L244-L270
train
janpipek/physt
physt/plotting/vega.py
line
def line(h1: Histogram1D, **kwargs) -> dict: """Line plot of 1D histogram values. Points are horizontally placed in bin centers. Parameters ---------- h1 : physt.histogram1d.Histogram1D Dimensionality of histogram for which it is applicable """ lw = kwargs.pop("lw", DEFAULT_STROKE_WIDTH) mark_template = [{ "type": "line", "encode": { "enter": { "x": {"scale": "xscale", "field": "x"}, "y": {"scale": "yscale", "field": "y"}, "stroke": {"scale": "series", "field": "c"}, "strokeWidth": {"value": lw} } }, "from": {"data": "series"}, }] vega = _scatter_or_line(h1, mark_template=mark_template, kwargs=kwargs) return vega
python
def line(h1: Histogram1D, **kwargs) -> dict: """Line plot of 1D histogram values. Points are horizontally placed in bin centers. Parameters ---------- h1 : physt.histogram1d.Histogram1D Dimensionality of histogram for which it is applicable """ lw = kwargs.pop("lw", DEFAULT_STROKE_WIDTH) mark_template = [{ "type": "line", "encode": { "enter": { "x": {"scale": "xscale", "field": "x"}, "y": {"scale": "yscale", "field": "y"}, "stroke": {"scale": "series", "field": "c"}, "strokeWidth": {"value": lw} } }, "from": {"data": "series"}, }] vega = _scatter_or_line(h1, mark_template=mark_template, kwargs=kwargs) return vega
[ "def", "line", "(", "h1", ":", "Histogram1D", ",", "*", "*", "kwargs", ")", "->", "dict", ":", "lw", "=", "kwargs", ".", "pop", "(", "\"lw\"", ",", "DEFAULT_STROKE_WIDTH", ")", "mark_template", "=", "[", "{", "\"type\"", ":", "\"line\"", ",", "\"encode\"", ":", "{", "\"enter\"", ":", "{", "\"x\"", ":", "{", "\"scale\"", ":", "\"xscale\"", ",", "\"field\"", ":", "\"x\"", "}", ",", "\"y\"", ":", "{", "\"scale\"", ":", "\"yscale\"", ",", "\"field\"", ":", "\"y\"", "}", ",", "\"stroke\"", ":", "{", "\"scale\"", ":", "\"series\"", ",", "\"field\"", ":", "\"c\"", "}", ",", "\"strokeWidth\"", ":", "{", "\"value\"", ":", "lw", "}", "}", "}", ",", "\"from\"", ":", "{", "\"data\"", ":", "\"series\"", "}", ",", "}", "]", "vega", "=", "_scatter_or_line", "(", "h1", ",", "mark_template", "=", "mark_template", ",", "kwargs", "=", "kwargs", ")", "return", "vega" ]
Line plot of 1D histogram values. Points are horizontally placed in bin centers. Parameters ---------- h1 : physt.histogram1d.Histogram1D Dimensionality of histogram for which it is applicable
[ "Line", "plot", "of", "1D", "histogram", "values", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L276-L302
train
janpipek/physt
physt/plotting/vega.py
_create_figure
def _create_figure(kwargs: Mapping[str, Any]) -> dict: """Create basic dictionary object with figure properties.""" return { "$schema": "https://vega.github.io/schema/vega/v3.json", "width": kwargs.pop("width", DEFAULT_WIDTH), "height": kwargs.pop("height", DEFAULT_HEIGHT), "padding": kwargs.pop("padding", DEFAULT_PADDING) }
python
def _create_figure(kwargs: Mapping[str, Any]) -> dict: """Create basic dictionary object with figure properties.""" return { "$schema": "https://vega.github.io/schema/vega/v3.json", "width": kwargs.pop("width", DEFAULT_WIDTH), "height": kwargs.pop("height", DEFAULT_HEIGHT), "padding": kwargs.pop("padding", DEFAULT_PADDING) }
[ "def", "_create_figure", "(", "kwargs", ":", "Mapping", "[", "str", ",", "Any", "]", ")", "->", "dict", ":", "return", "{", "\"$schema\"", ":", "\"https://vega.github.io/schema/vega/v3.json\"", ",", "\"width\"", ":", "kwargs", ".", "pop", "(", "\"width\"", ",", "DEFAULT_WIDTH", ")", ",", "\"height\"", ":", "kwargs", ".", "pop", "(", "\"height\"", ",", "DEFAULT_HEIGHT", ")", ",", "\"padding\"", ":", "kwargs", ".", "pop", "(", "\"padding\"", ",", "DEFAULT_PADDING", ")", "}" ]
Create basic dictionary object with figure properties.
[ "Create", "basic", "dictionary", "object", "with", "figure", "properties", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L551-L558
train
janpipek/physt
physt/plotting/vega.py
_create_scales
def _create_scales(hist: HistogramBase, vega: dict, kwargs: dict): """Find proper scales for axes.""" if hist.ndim == 1: bins0 = hist.bins.astype(float) else: bins0 = hist.bins[0].astype(float) xlim = kwargs.pop("xlim", "auto") ylim = kwargs.pop("ylim", "auto") if xlim is "auto": nice_x = True else: nice_x = False if ylim is "auto": nice_y = True else: nice_y = False # TODO: Unify xlim & ylim parameters with matplotlib # TODO: Apply xscale & yscale parameters vega["scales"] = [ { "name": "xscale", "type": "linear", "range": "width", "nice": nice_x, "zero": None, "domain": [bins0[0, 0], bins0[-1, 1]] if xlim == "auto" else [float(xlim[0]), float(xlim[1])], # "domain": {"data": "table", "field": "x"} }, { "name": "yscale", "type": "linear", "range": "height", "nice": nice_y, "zero": True if hist.ndim == 1 else None, "domain": {"data": "table", "field": "y"} if ylim == "auto" else [float(ylim[0]), float(ylim[1])] } ] if hist.ndim >= 2: bins1 = hist.bins[1].astype(float) vega["scales"][1]["domain"] = [bins1[0, 0], bins1[-1, 1]]
python
def _create_scales(hist: HistogramBase, vega: dict, kwargs: dict): """Find proper scales for axes.""" if hist.ndim == 1: bins0 = hist.bins.astype(float) else: bins0 = hist.bins[0].astype(float) xlim = kwargs.pop("xlim", "auto") ylim = kwargs.pop("ylim", "auto") if xlim is "auto": nice_x = True else: nice_x = False if ylim is "auto": nice_y = True else: nice_y = False # TODO: Unify xlim & ylim parameters with matplotlib # TODO: Apply xscale & yscale parameters vega["scales"] = [ { "name": "xscale", "type": "linear", "range": "width", "nice": nice_x, "zero": None, "domain": [bins0[0, 0], bins0[-1, 1]] if xlim == "auto" else [float(xlim[0]), float(xlim[1])], # "domain": {"data": "table", "field": "x"} }, { "name": "yscale", "type": "linear", "range": "height", "nice": nice_y, "zero": True if hist.ndim == 1 else None, "domain": {"data": "table", "field": "y"} if ylim == "auto" else [float(ylim[0]), float(ylim[1])] } ] if hist.ndim >= 2: bins1 = hist.bins[1].astype(float) vega["scales"][1]["domain"] = [bins1[0, 0], bins1[-1, 1]]
[ "def", "_create_scales", "(", "hist", ":", "HistogramBase", ",", "vega", ":", "dict", ",", "kwargs", ":", "dict", ")", ":", "if", "hist", ".", "ndim", "==", "1", ":", "bins0", "=", "hist", ".", "bins", ".", "astype", "(", "float", ")", "else", ":", "bins0", "=", "hist", ".", "bins", "[", "0", "]", ".", "astype", "(", "float", ")", "xlim", "=", "kwargs", ".", "pop", "(", "\"xlim\"", ",", "\"auto\"", ")", "ylim", "=", "kwargs", ".", "pop", "(", "\"ylim\"", ",", "\"auto\"", ")", "if", "xlim", "is", "\"auto\"", ":", "nice_x", "=", "True", "else", ":", "nice_x", "=", "False", "if", "ylim", "is", "\"auto\"", ":", "nice_y", "=", "True", "else", ":", "nice_y", "=", "False", "# TODO: Unify xlim & ylim parameters with matplotlib", "# TODO: Apply xscale & yscale parameters", "vega", "[", "\"scales\"", "]", "=", "[", "{", "\"name\"", ":", "\"xscale\"", ",", "\"type\"", ":", "\"linear\"", ",", "\"range\"", ":", "\"width\"", ",", "\"nice\"", ":", "nice_x", ",", "\"zero\"", ":", "None", ",", "\"domain\"", ":", "[", "bins0", "[", "0", ",", "0", "]", ",", "bins0", "[", "-", "1", ",", "1", "]", "]", "if", "xlim", "==", "\"auto\"", "else", "[", "float", "(", "xlim", "[", "0", "]", ")", ",", "float", "(", "xlim", "[", "1", "]", ")", "]", ",", "# \"domain\": {\"data\": \"table\", \"field\": \"x\"}", "}", ",", "{", "\"name\"", ":", "\"yscale\"", ",", "\"type\"", ":", "\"linear\"", ",", "\"range\"", ":", "\"height\"", ",", "\"nice\"", ":", "nice_y", ",", "\"zero\"", ":", "True", "if", "hist", ".", "ndim", "==", "1", "else", "None", ",", "\"domain\"", ":", "{", "\"data\"", ":", "\"table\"", ",", "\"field\"", ":", "\"y\"", "}", "if", "ylim", "==", "\"auto\"", "else", "[", "float", "(", "ylim", "[", "0", "]", ")", ",", "float", "(", "ylim", "[", "1", "]", ")", "]", "}", "]", "if", "hist", ".", "ndim", ">=", "2", ":", "bins1", "=", "hist", ".", "bins", "[", "1", "]", ".", "astype", "(", "float", ")", "vega", "[", "\"scales\"", "]", "[", "1", "]", "[", "\"domain\"", "]", "=", "[", "bins1", "[", "0", ",", "0", "]", ",", "bins1", "[", "-", "1", ",", "1", "]", "]" ]
Find proper scales for axes.
[ "Find", "proper", "scales", "for", "axes", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L568-L613
train
janpipek/physt
physt/plotting/vega.py
_create_axes
def _create_axes(hist: HistogramBase, vega: dict, kwargs: dict): """Create axes in the figure.""" xlabel = kwargs.pop("xlabel", hist.axis_names[0]) ylabel = kwargs.pop("ylabel", hist.axis_names[1] if len(hist.axis_names) >= 2 else None) vega["axes"] = [ {"orient": "bottom", "scale": "xscale", "title": xlabel}, {"orient": "left", "scale": "yscale", "title": ylabel} ]
python
def _create_axes(hist: HistogramBase, vega: dict, kwargs: dict): """Create axes in the figure.""" xlabel = kwargs.pop("xlabel", hist.axis_names[0]) ylabel = kwargs.pop("ylabel", hist.axis_names[1] if len(hist.axis_names) >= 2 else None) vega["axes"] = [ {"orient": "bottom", "scale": "xscale", "title": xlabel}, {"orient": "left", "scale": "yscale", "title": ylabel} ]
[ "def", "_create_axes", "(", "hist", ":", "HistogramBase", ",", "vega", ":", "dict", ",", "kwargs", ":", "dict", ")", ":", "xlabel", "=", "kwargs", ".", "pop", "(", "\"xlabel\"", ",", "hist", ".", "axis_names", "[", "0", "]", ")", "ylabel", "=", "kwargs", ".", "pop", "(", "\"ylabel\"", ",", "hist", ".", "axis_names", "[", "1", "]", "if", "len", "(", "hist", ".", "axis_names", ")", ">=", "2", "else", "None", ")", "vega", "[", "\"axes\"", "]", "=", "[", "{", "\"orient\"", ":", "\"bottom\"", ",", "\"scale\"", ":", "\"xscale\"", ",", "\"title\"", ":", "xlabel", "}", ",", "{", "\"orient\"", ":", "\"left\"", ",", "\"scale\"", ":", "\"yscale\"", ",", "\"title\"", ":", "ylabel", "}", "]" ]
Create axes in the figure.
[ "Create", "axes", "in", "the", "figure", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L673-L680
train
janpipek/physt
physt/plotting/vega.py
_create_tooltips
def _create_tooltips(hist: Histogram1D, vega: dict, kwargs: dict): """In one-dimensional plots, show values above the value on hover.""" if kwargs.pop("tooltips", False): vega["signals"] = vega.get("signals", []) vega["signals"].append({ "name": "tooltip", "value": {}, "on": [ {"events": "rect:mouseover", "update": "datum"}, {"events": "rect:mouseout", "update": "{}"} ] }) font_size = kwargs.get("fontsize", DEFAULT_FONTSIZE) vega["marks"] = vega.get("marks", []) vega["marks"].append({ "type": "text", "encode": { "enter": { "align": {"value": "center"}, "baseline": {"value": "bottom"}, "fill": {"value": "#333"}, "fontSize": {"value": font_size} }, "update": { "x": {"scale": "xscale", "signal": "(tooltip.x + tooltip.x2) / 2", "band": 0.5}, "y": {"scale": "yscale", "signal": "tooltip.y", "offset": -2}, "text": {"signal": "tooltip.y"}, "fillOpacity": [ {"test": "datum === tooltip", "value": 0}, {"value": 1} ] } } })
python
def _create_tooltips(hist: Histogram1D, vega: dict, kwargs: dict): """In one-dimensional plots, show values above the value on hover.""" if kwargs.pop("tooltips", False): vega["signals"] = vega.get("signals", []) vega["signals"].append({ "name": "tooltip", "value": {}, "on": [ {"events": "rect:mouseover", "update": "datum"}, {"events": "rect:mouseout", "update": "{}"} ] }) font_size = kwargs.get("fontsize", DEFAULT_FONTSIZE) vega["marks"] = vega.get("marks", []) vega["marks"].append({ "type": "text", "encode": { "enter": { "align": {"value": "center"}, "baseline": {"value": "bottom"}, "fill": {"value": "#333"}, "fontSize": {"value": font_size} }, "update": { "x": {"scale": "xscale", "signal": "(tooltip.x + tooltip.x2) / 2", "band": 0.5}, "y": {"scale": "yscale", "signal": "tooltip.y", "offset": -2}, "text": {"signal": "tooltip.y"}, "fillOpacity": [ {"test": "datum === tooltip", "value": 0}, {"value": 1} ] } } })
[ "def", "_create_tooltips", "(", "hist", ":", "Histogram1D", ",", "vega", ":", "dict", ",", "kwargs", ":", "dict", ")", ":", "if", "kwargs", ".", "pop", "(", "\"tooltips\"", ",", "False", ")", ":", "vega", "[", "\"signals\"", "]", "=", "vega", ".", "get", "(", "\"signals\"", ",", "[", "]", ")", "vega", "[", "\"signals\"", "]", ".", "append", "(", "{", "\"name\"", ":", "\"tooltip\"", ",", "\"value\"", ":", "{", "}", ",", "\"on\"", ":", "[", "{", "\"events\"", ":", "\"rect:mouseover\"", ",", "\"update\"", ":", "\"datum\"", "}", ",", "{", "\"events\"", ":", "\"rect:mouseout\"", ",", "\"update\"", ":", "\"{}\"", "}", "]", "}", ")", "font_size", "=", "kwargs", ".", "get", "(", "\"fontsize\"", ",", "DEFAULT_FONTSIZE", ")", "vega", "[", "\"marks\"", "]", "=", "vega", ".", "get", "(", "\"marks\"", ",", "[", "]", ")", "vega", "[", "\"marks\"", "]", ".", "append", "(", "{", "\"type\"", ":", "\"text\"", ",", "\"encode\"", ":", "{", "\"enter\"", ":", "{", "\"align\"", ":", "{", "\"value\"", ":", "\"center\"", "}", ",", "\"baseline\"", ":", "{", "\"value\"", ":", "\"bottom\"", "}", ",", "\"fill\"", ":", "{", "\"value\"", ":", "\"#333\"", "}", ",", "\"fontSize\"", ":", "{", "\"value\"", ":", "font_size", "}", "}", ",", "\"update\"", ":", "{", "\"x\"", ":", "{", "\"scale\"", ":", "\"xscale\"", ",", "\"signal\"", ":", "\"(tooltip.x + tooltip.x2) / 2\"", ",", "\"band\"", ":", "0.5", "}", ",", "\"y\"", ":", "{", "\"scale\"", ":", "\"yscale\"", ",", "\"signal\"", ":", "\"tooltip.y\"", ",", "\"offset\"", ":", "-", "2", "}", ",", "\"text\"", ":", "{", "\"signal\"", ":", "\"tooltip.y\"", "}", ",", "\"fillOpacity\"", ":", "[", "{", "\"test\"", ":", "\"datum === tooltip\"", ",", "\"value\"", ":", "0", "}", ",", "{", "\"value\"", ":", "1", "}", "]", "}", "}", "}", ")" ]
In one-dimensional plots, show values above the value on hover.
[ "In", "one", "-", "dimensional", "plots", "show", "values", "above", "the", "value", "on", "hover", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L683-L718
train
janpipek/physt
physt/plotting/vega.py
_add_title
def _add_title(hist: HistogramBase, vega: dict, kwargs: dict): """Display plot title if available.""" title = kwargs.pop("title", hist.title) if title: vega["title"] = { "text": title }
python
def _add_title(hist: HistogramBase, vega: dict, kwargs: dict): """Display plot title if available.""" title = kwargs.pop("title", hist.title) if title: vega["title"] = { "text": title }
[ "def", "_add_title", "(", "hist", ":", "HistogramBase", ",", "vega", ":", "dict", ",", "kwargs", ":", "dict", ")", ":", "title", "=", "kwargs", ".", "pop", "(", "\"title\"", ",", "hist", ".", "title", ")", "if", "title", ":", "vega", "[", "\"title\"", "]", "=", "{", "\"text\"", ":", "title", "}" ]
Display plot title if available.
[ "Display", "plot", "title", "if", "available", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/vega.py#L721-L727
train
janpipek/physt
physt/special.py
_prepare_data
def _prepare_data(data, transformed, klass, *args, **kwargs): """Transform data for binning. Returns ------- np.ndarray """ # TODO: Maybe include in the class itself? data = np.asarray(data) if not transformed: data = klass.transform(data) dropna = kwargs.get("dropna", False) if dropna: data = data[~np.isnan(data).any(axis=1)] return data
python
def _prepare_data(data, transformed, klass, *args, **kwargs): """Transform data for binning. Returns ------- np.ndarray """ # TODO: Maybe include in the class itself? data = np.asarray(data) if not transformed: data = klass.transform(data) dropna = kwargs.get("dropna", False) if dropna: data = data[~np.isnan(data).any(axis=1)] return data
[ "def", "_prepare_data", "(", "data", ",", "transformed", ",", "klass", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# TODO: Maybe include in the class itself?", "data", "=", "np", ".", "asarray", "(", "data", ")", "if", "not", "transformed", ":", "data", "=", "klass", ".", "transform", "(", "data", ")", "dropna", "=", "kwargs", ".", "get", "(", "\"dropna\"", ",", "False", ")", "if", "dropna", ":", "data", "=", "data", "[", "~", "np", ".", "isnan", "(", "data", ")", ".", "any", "(", "axis", "=", "1", ")", "]", "return", "data" ]
Transform data for binning. Returns ------- np.ndarray
[ "Transform", "data", "for", "binning", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/special.py#L331-L345
train
janpipek/physt
physt/special.py
polar_histogram
def polar_histogram(xdata, ydata, radial_bins="numpy", phi_bins=16, transformed=False, *args, **kwargs): """Facade construction function for the PolarHistogram. Parameters ---------- transformed : bool phi_range : Optional[tuple] range """ dropna = kwargs.pop("dropna", True) data = np.concatenate([xdata[:, np.newaxis], ydata[:, np.newaxis]], axis=1) data = _prepare_data(data, transformed=transformed, klass=PolarHistogram, dropna=dropna) if isinstance(phi_bins, int): phi_range = (0, 2 * np.pi) if "phi_range" in "kwargs": phi_range = kwargs["phi_range"] elif "range" in "kwargs": phi_range = kwargs["range"][1] phi_range = list(phi_range) + [phi_bins + 1] phi_bins = np.linspace(*phi_range) bin_schemas = binnings.calculate_bins_nd(data, [radial_bins, phi_bins], *args, check_nan=not dropna, **kwargs) weights = kwargs.pop("weights", None) frequencies, errors2, missed = histogram_nd.calculate_frequencies(data, ndim=2, binnings=bin_schemas, weights=weights) return PolarHistogram(binnings=bin_schemas, frequencies=frequencies, errors2=errors2, missed=missed)
python
def polar_histogram(xdata, ydata, radial_bins="numpy", phi_bins=16, transformed=False, *args, **kwargs): """Facade construction function for the PolarHistogram. Parameters ---------- transformed : bool phi_range : Optional[tuple] range """ dropna = kwargs.pop("dropna", True) data = np.concatenate([xdata[:, np.newaxis], ydata[:, np.newaxis]], axis=1) data = _prepare_data(data, transformed=transformed, klass=PolarHistogram, dropna=dropna) if isinstance(phi_bins, int): phi_range = (0, 2 * np.pi) if "phi_range" in "kwargs": phi_range = kwargs["phi_range"] elif "range" in "kwargs": phi_range = kwargs["range"][1] phi_range = list(phi_range) + [phi_bins + 1] phi_bins = np.linspace(*phi_range) bin_schemas = binnings.calculate_bins_nd(data, [radial_bins, phi_bins], *args, check_nan=not dropna, **kwargs) weights = kwargs.pop("weights", None) frequencies, errors2, missed = histogram_nd.calculate_frequencies(data, ndim=2, binnings=bin_schemas, weights=weights) return PolarHistogram(binnings=bin_schemas, frequencies=frequencies, errors2=errors2, missed=missed)
[ "def", "polar_histogram", "(", "xdata", ",", "ydata", ",", "radial_bins", "=", "\"numpy\"", ",", "phi_bins", "=", "16", ",", "transformed", "=", "False", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "dropna", "=", "kwargs", ".", "pop", "(", "\"dropna\"", ",", "True", ")", "data", "=", "np", ".", "concatenate", "(", "[", "xdata", "[", ":", ",", "np", ".", "newaxis", "]", ",", "ydata", "[", ":", ",", "np", ".", "newaxis", "]", "]", ",", "axis", "=", "1", ")", "data", "=", "_prepare_data", "(", "data", ",", "transformed", "=", "transformed", ",", "klass", "=", "PolarHistogram", ",", "dropna", "=", "dropna", ")", "if", "isinstance", "(", "phi_bins", ",", "int", ")", ":", "phi_range", "=", "(", "0", ",", "2", "*", "np", ".", "pi", ")", "if", "\"phi_range\"", "in", "\"kwargs\"", ":", "phi_range", "=", "kwargs", "[", "\"phi_range\"", "]", "elif", "\"range\"", "in", "\"kwargs\"", ":", "phi_range", "=", "kwargs", "[", "\"range\"", "]", "[", "1", "]", "phi_range", "=", "list", "(", "phi_range", ")", "+", "[", "phi_bins", "+", "1", "]", "phi_bins", "=", "np", ".", "linspace", "(", "*", "phi_range", ")", "bin_schemas", "=", "binnings", ".", "calculate_bins_nd", "(", "data", ",", "[", "radial_bins", ",", "phi_bins", "]", ",", "*", "args", ",", "check_nan", "=", "not", "dropna", ",", "*", "*", "kwargs", ")", "weights", "=", "kwargs", ".", "pop", "(", "\"weights\"", ",", "None", ")", "frequencies", ",", "errors2", ",", "missed", "=", "histogram_nd", ".", "calculate_frequencies", "(", "data", ",", "ndim", "=", "2", ",", "binnings", "=", "bin_schemas", ",", "weights", "=", "weights", ")", "return", "PolarHistogram", "(", "binnings", "=", "bin_schemas", ",", "frequencies", "=", "frequencies", ",", "errors2", "=", "errors2", ",", "missed", "=", "missed", ")" ]
Facade construction function for the PolarHistogram. Parameters ---------- transformed : bool phi_range : Optional[tuple] range
[ "Facade", "construction", "function", "for", "the", "PolarHistogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/special.py#L348-L377
train
janpipek/physt
physt/special.py
spherical_histogram
def spherical_histogram(data=None, radial_bins="numpy", theta_bins=16, phi_bins=16, transformed=False, *args, **kwargs): """Facade construction function for the SphericalHistogram. """ dropna = kwargs.pop("dropna", True) data = _prepare_data(data, transformed=transformed, klass=SphericalHistogram, dropna=dropna) if isinstance(theta_bins, int): theta_range = (0, np.pi) if "theta_range" in "kwargs": theta_range = kwargs["theta_range"] elif "range" in "kwargs": theta_range = kwargs["range"][1] theta_range = list(theta_range) + [theta_bins + 1] theta_bins = np.linspace(*theta_range) if isinstance(phi_bins, int): phi_range = (0, 2 * np.pi) if "phi_range" in "kwargs": phi_range = kwargs["phi_range"] elif "range" in "kwargs": phi_range = kwargs["range"][2] phi_range = list(phi_range) + [phi_bins + 1] phi_bins = np.linspace(*phi_range) bin_schemas = binnings.calculate_bins_nd(data, [radial_bins, theta_bins, phi_bins], *args, check_nan=not dropna, **kwargs) weights = kwargs.pop("weights", None) frequencies, errors2, missed = histogram_nd.calculate_frequencies(data, ndim=3, binnings=bin_schemas, weights=weights) return SphericalHistogram(binnings=bin_schemas, frequencies=frequencies, errors2=errors2, missed=missed)
python
def spherical_histogram(data=None, radial_bins="numpy", theta_bins=16, phi_bins=16, transformed=False, *args, **kwargs): """Facade construction function for the SphericalHistogram. """ dropna = kwargs.pop("dropna", True) data = _prepare_data(data, transformed=transformed, klass=SphericalHistogram, dropna=dropna) if isinstance(theta_bins, int): theta_range = (0, np.pi) if "theta_range" in "kwargs": theta_range = kwargs["theta_range"] elif "range" in "kwargs": theta_range = kwargs["range"][1] theta_range = list(theta_range) + [theta_bins + 1] theta_bins = np.linspace(*theta_range) if isinstance(phi_bins, int): phi_range = (0, 2 * np.pi) if "phi_range" in "kwargs": phi_range = kwargs["phi_range"] elif "range" in "kwargs": phi_range = kwargs["range"][2] phi_range = list(phi_range) + [phi_bins + 1] phi_bins = np.linspace(*phi_range) bin_schemas = binnings.calculate_bins_nd(data, [radial_bins, theta_bins, phi_bins], *args, check_nan=not dropna, **kwargs) weights = kwargs.pop("weights", None) frequencies, errors2, missed = histogram_nd.calculate_frequencies(data, ndim=3, binnings=bin_schemas, weights=weights) return SphericalHistogram(binnings=bin_schemas, frequencies=frequencies, errors2=errors2, missed=missed)
[ "def", "spherical_histogram", "(", "data", "=", "None", ",", "radial_bins", "=", "\"numpy\"", ",", "theta_bins", "=", "16", ",", "phi_bins", "=", "16", ",", "transformed", "=", "False", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "dropna", "=", "kwargs", ".", "pop", "(", "\"dropna\"", ",", "True", ")", "data", "=", "_prepare_data", "(", "data", ",", "transformed", "=", "transformed", ",", "klass", "=", "SphericalHistogram", ",", "dropna", "=", "dropna", ")", "if", "isinstance", "(", "theta_bins", ",", "int", ")", ":", "theta_range", "=", "(", "0", ",", "np", ".", "pi", ")", "if", "\"theta_range\"", "in", "\"kwargs\"", ":", "theta_range", "=", "kwargs", "[", "\"theta_range\"", "]", "elif", "\"range\"", "in", "\"kwargs\"", ":", "theta_range", "=", "kwargs", "[", "\"range\"", "]", "[", "1", "]", "theta_range", "=", "list", "(", "theta_range", ")", "+", "[", "theta_bins", "+", "1", "]", "theta_bins", "=", "np", ".", "linspace", "(", "*", "theta_range", ")", "if", "isinstance", "(", "phi_bins", ",", "int", ")", ":", "phi_range", "=", "(", "0", ",", "2", "*", "np", ".", "pi", ")", "if", "\"phi_range\"", "in", "\"kwargs\"", ":", "phi_range", "=", "kwargs", "[", "\"phi_range\"", "]", "elif", "\"range\"", "in", "\"kwargs\"", ":", "phi_range", "=", "kwargs", "[", "\"range\"", "]", "[", "2", "]", "phi_range", "=", "list", "(", "phi_range", ")", "+", "[", "phi_bins", "+", "1", "]", "phi_bins", "=", "np", ".", "linspace", "(", "*", "phi_range", ")", "bin_schemas", "=", "binnings", ".", "calculate_bins_nd", "(", "data", ",", "[", "radial_bins", ",", "theta_bins", ",", "phi_bins", "]", ",", "*", "args", ",", "check_nan", "=", "not", "dropna", ",", "*", "*", "kwargs", ")", "weights", "=", "kwargs", ".", "pop", "(", "\"weights\"", ",", "None", ")", "frequencies", ",", "errors2", ",", "missed", "=", "histogram_nd", ".", "calculate_frequencies", "(", "data", ",", "ndim", "=", "3", ",", "binnings", "=", "bin_schemas", ",", "weights", "=", "weights", ")", "return", "SphericalHistogram", "(", "binnings", "=", "bin_schemas", ",", "frequencies", "=", "frequencies", ",", "errors2", "=", "errors2", ",", "missed", "=", "missed", ")" ]
Facade construction function for the SphericalHistogram.
[ "Facade", "construction", "function", "for", "the", "SphericalHistogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/special.py#L380-L412
train
janpipek/physt
physt/special.py
cylindrical_histogram
def cylindrical_histogram(data=None, rho_bins="numpy", phi_bins=16, z_bins="numpy", transformed=False, *args, **kwargs): """Facade construction function for the CylindricalHistogram. """ dropna = kwargs.pop("dropna", True) data = _prepare_data(data, transformed=transformed, klass=CylindricalHistogram, dropna=dropna) if isinstance(phi_bins, int): phi_range = (0, 2 * np.pi) if "phi_range" in "kwargs": phi_range = kwargs["phi_range"] elif "range" in "kwargs": phi_range = kwargs["range"][1] phi_range = list(phi_range) + [phi_bins + 1] phi_bins = np.linspace(*phi_range) bin_schemas = binnings.calculate_bins_nd(data, [rho_bins, phi_bins, z_bins], *args, check_nan=not dropna, **kwargs) weights = kwargs.pop("weights", None) frequencies, errors2, missed = histogram_nd.calculate_frequencies(data, ndim=3, binnings=bin_schemas, weights=weights) return CylindricalHistogram(binnings=bin_schemas, frequencies=frequencies, errors2=errors2, missed=missed)
python
def cylindrical_histogram(data=None, rho_bins="numpy", phi_bins=16, z_bins="numpy", transformed=False, *args, **kwargs): """Facade construction function for the CylindricalHistogram. """ dropna = kwargs.pop("dropna", True) data = _prepare_data(data, transformed=transformed, klass=CylindricalHistogram, dropna=dropna) if isinstance(phi_bins, int): phi_range = (0, 2 * np.pi) if "phi_range" in "kwargs": phi_range = kwargs["phi_range"] elif "range" in "kwargs": phi_range = kwargs["range"][1] phi_range = list(phi_range) + [phi_bins + 1] phi_bins = np.linspace(*phi_range) bin_schemas = binnings.calculate_bins_nd(data, [rho_bins, phi_bins, z_bins], *args, check_nan=not dropna, **kwargs) weights = kwargs.pop("weights", None) frequencies, errors2, missed = histogram_nd.calculate_frequencies(data, ndim=3, binnings=bin_schemas, weights=weights) return CylindricalHistogram(binnings=bin_schemas, frequencies=frequencies, errors2=errors2, missed=missed)
[ "def", "cylindrical_histogram", "(", "data", "=", "None", ",", "rho_bins", "=", "\"numpy\"", ",", "phi_bins", "=", "16", ",", "z_bins", "=", "\"numpy\"", ",", "transformed", "=", "False", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "dropna", "=", "kwargs", ".", "pop", "(", "\"dropna\"", ",", "True", ")", "data", "=", "_prepare_data", "(", "data", ",", "transformed", "=", "transformed", ",", "klass", "=", "CylindricalHistogram", ",", "dropna", "=", "dropna", ")", "if", "isinstance", "(", "phi_bins", ",", "int", ")", ":", "phi_range", "=", "(", "0", ",", "2", "*", "np", ".", "pi", ")", "if", "\"phi_range\"", "in", "\"kwargs\"", ":", "phi_range", "=", "kwargs", "[", "\"phi_range\"", "]", "elif", "\"range\"", "in", "\"kwargs\"", ":", "phi_range", "=", "kwargs", "[", "\"range\"", "]", "[", "1", "]", "phi_range", "=", "list", "(", "phi_range", ")", "+", "[", "phi_bins", "+", "1", "]", "phi_bins", "=", "np", ".", "linspace", "(", "*", "phi_range", ")", "bin_schemas", "=", "binnings", ".", "calculate_bins_nd", "(", "data", ",", "[", "rho_bins", ",", "phi_bins", ",", "z_bins", "]", ",", "*", "args", ",", "check_nan", "=", "not", "dropna", ",", "*", "*", "kwargs", ")", "weights", "=", "kwargs", ".", "pop", "(", "\"weights\"", ",", "None", ")", "frequencies", ",", "errors2", ",", "missed", "=", "histogram_nd", ".", "calculate_frequencies", "(", "data", ",", "ndim", "=", "3", ",", "binnings", "=", "bin_schemas", ",", "weights", "=", "weights", ")", "return", "CylindricalHistogram", "(", "binnings", "=", "bin_schemas", ",", "frequencies", "=", "frequencies", ",", "errors2", "=", "errors2", ",", "missed", "=", "missed", ")" ]
Facade construction function for the CylindricalHistogram.
[ "Facade", "construction", "function", "for", "the", "CylindricalHistogram", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/special.py#L415-L439
train
janpipek/physt
physt/special.py
TransformedHistogramMixin.projection
def projection(self, *axes, **kwargs): """Projection to lower-dimensional histogram. The inheriting class should implement the _projection_class_map class attribute to suggest class for the projection. If the arguments don't match any of the map keys, HistogramND is used. """ axes, _ = self._get_projection_axes(*axes) axes = tuple(sorted(axes)) if axes in self._projection_class_map: klass = self._projection_class_map[axes] return HistogramND.projection(self, *axes, type=klass, **kwargs) else: return HistogramND.projection(self, *axes, **kwargs)
python
def projection(self, *axes, **kwargs): """Projection to lower-dimensional histogram. The inheriting class should implement the _projection_class_map class attribute to suggest class for the projection. If the arguments don't match any of the map keys, HistogramND is used. """ axes, _ = self._get_projection_axes(*axes) axes = tuple(sorted(axes)) if axes in self._projection_class_map: klass = self._projection_class_map[axes] return HistogramND.projection(self, *axes, type=klass, **kwargs) else: return HistogramND.projection(self, *axes, **kwargs)
[ "def", "projection", "(", "self", ",", "*", "axes", ",", "*", "*", "kwargs", ")", ":", "axes", ",", "_", "=", "self", ".", "_get_projection_axes", "(", "*", "axes", ")", "axes", "=", "tuple", "(", "sorted", "(", "axes", ")", ")", "if", "axes", "in", "self", ".", "_projection_class_map", ":", "klass", "=", "self", ".", "_projection_class_map", "[", "axes", "]", "return", "HistogramND", ".", "projection", "(", "self", ",", "*", "axes", ",", "type", "=", "klass", ",", "*", "*", "kwargs", ")", "else", ":", "return", "HistogramND", ".", "projection", "(", "self", ",", "*", "axes", ",", "*", "*", "kwargs", ")" ]
Projection to lower-dimensional histogram. The inheriting class should implement the _projection_class_map class attribute to suggest class for the projection. If the arguments don't match any of the map keys, HistogramND is used.
[ "Projection", "to", "lower", "-", "dimensional", "histogram", ".", "The", "inheriting", "class", "should", "implement", "the", "_projection_class_map", "class", "attribute", "to", "suggest", "class", "for", "the", "projection", ".", "If", "the", "arguments", "don", "t", "match", "any", "of", "the", "map", "keys", "HistogramND", "is", "used", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/special.py#L86-L99
train
janpipek/physt
physt/plotting/plotly.py
enable_collection
def enable_collection(f): """Call the wrapped function with a HistogramCollection as argument.""" @wraps(f) def new_f(h: AbstractHistogram1D, **kwargs): from physt.histogram_collection import HistogramCollection if isinstance(h, HistogramCollection): return f(h, **kwargs) else: return f(HistogramCollection(h), **kwargs) return new_f
python
def enable_collection(f): """Call the wrapped function with a HistogramCollection as argument.""" @wraps(f) def new_f(h: AbstractHistogram1D, **kwargs): from physt.histogram_collection import HistogramCollection if isinstance(h, HistogramCollection): return f(h, **kwargs) else: return f(HistogramCollection(h), **kwargs) return new_f
[ "def", "enable_collection", "(", "f", ")", ":", "@", "wraps", "(", "f", ")", "def", "new_f", "(", "h", ":", "AbstractHistogram1D", ",", "*", "*", "kwargs", ")", ":", "from", "physt", ".", "histogram_collection", "import", "HistogramCollection", "if", "isinstance", "(", "h", ",", "HistogramCollection", ")", ":", "return", "f", "(", "h", ",", "*", "*", "kwargs", ")", "else", ":", "return", "f", "(", "HistogramCollection", "(", "h", ")", ",", "*", "*", "kwargs", ")", "return", "new_f" ]
Call the wrapped function with a HistogramCollection as argument.
[ "Call", "the", "wrapped", "function", "with", "a", "HistogramCollection", "as", "argument", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/plotly.py#L80-L89
train
janpipek/physt
physt/plotting/plotly.py
bar
def bar(h: Histogram2D, *, barmode: str = DEFAULT_BARMODE, alpha: float = DEFAULT_ALPHA, **kwargs): """Bar plot. Parameters ---------- alpha: Opacity (0.0 - 1.0) barmode : "overlay" | "group" | "stack" """ get_data_kwargs = pop_many(kwargs, "density", "cumulative", "flatten") data = [go.Bar( x=histogram.bin_centers, y=get_data(histogram, **get_data_kwargs), width=histogram.bin_widths, name=histogram.name, opacity=alpha, **kwargs ) for histogram in h] layout = go.Layout(barmode=barmode) _add_ticks(layout.xaxis, h[0], kwargs) figure = go.Figure(data=data, layout=layout) return figure
python
def bar(h: Histogram2D, *, barmode: str = DEFAULT_BARMODE, alpha: float = DEFAULT_ALPHA, **kwargs): """Bar plot. Parameters ---------- alpha: Opacity (0.0 - 1.0) barmode : "overlay" | "group" | "stack" """ get_data_kwargs = pop_many(kwargs, "density", "cumulative", "flatten") data = [go.Bar( x=histogram.bin_centers, y=get_data(histogram, **get_data_kwargs), width=histogram.bin_widths, name=histogram.name, opacity=alpha, **kwargs ) for histogram in h] layout = go.Layout(barmode=barmode) _add_ticks(layout.xaxis, h[0], kwargs) figure = go.Figure(data=data, layout=layout) return figure
[ "def", "bar", "(", "h", ":", "Histogram2D", ",", "*", ",", "barmode", ":", "str", "=", "DEFAULT_BARMODE", ",", "alpha", ":", "float", "=", "DEFAULT_ALPHA", ",", "*", "*", "kwargs", ")", ":", "get_data_kwargs", "=", "pop_many", "(", "kwargs", ",", "\"density\"", ",", "\"cumulative\"", ",", "\"flatten\"", ")", "data", "=", "[", "go", ".", "Bar", "(", "x", "=", "histogram", ".", "bin_centers", ",", "y", "=", "get_data", "(", "histogram", ",", "*", "*", "get_data_kwargs", ")", ",", "width", "=", "histogram", ".", "bin_widths", ",", "name", "=", "histogram", ".", "name", ",", "opacity", "=", "alpha", ",", "*", "*", "kwargs", ")", "for", "histogram", "in", "h", "]", "layout", "=", "go", ".", "Layout", "(", "barmode", "=", "barmode", ")", "_add_ticks", "(", "layout", ".", "xaxis", ",", "h", "[", "0", "]", ",", "kwargs", ")", "figure", "=", "go", ".", "Figure", "(", "data", "=", "data", ",", "layout", "=", "layout", ")", "return", "figure" ]
Bar plot. Parameters ---------- alpha: Opacity (0.0 - 1.0) barmode : "overlay" | "group" | "stack"
[ "Bar", "plot", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/plotly.py#L143-L169
train
janpipek/physt
physt/plotting/folium.py
_bins_to_json
def _bins_to_json(h2): """Create GeoJSON representation of histogram bins Parameters ---------- h2: physt.histogram_nd.Histogram2D A histogram of coordinates (in degrees) Returns ------- geo_json : dict """ south = h2.get_bin_left_edges(0) north = h2.get_bin_right_edges(0) west = h2.get_bin_left_edges(1) east = h2.get_bin_right_edges(1) return { "type":"FeatureCollection", "features": [ { "type": "Feature", "geometry": { "type": "Polygon", # Note that folium and GeoJson have them swapped "coordinates": [[ [east[j], south[i]], [east[j], north[i]], [west[j], north[i]], [west[j], south[i]], [east[j], south[i]]]], }, "properties" : { "count": float(h2.frequencies[i, j]) } } for i in range(h2.shape[0]) for j in range(h2.shape[1]) ] }
python
def _bins_to_json(h2): """Create GeoJSON representation of histogram bins Parameters ---------- h2: physt.histogram_nd.Histogram2D A histogram of coordinates (in degrees) Returns ------- geo_json : dict """ south = h2.get_bin_left_edges(0) north = h2.get_bin_right_edges(0) west = h2.get_bin_left_edges(1) east = h2.get_bin_right_edges(1) return { "type":"FeatureCollection", "features": [ { "type": "Feature", "geometry": { "type": "Polygon", # Note that folium and GeoJson have them swapped "coordinates": [[ [east[j], south[i]], [east[j], north[i]], [west[j], north[i]], [west[j], south[i]], [east[j], south[i]]]], }, "properties" : { "count": float(h2.frequencies[i, j]) } } for i in range(h2.shape[0]) for j in range(h2.shape[1]) ] }
[ "def", "_bins_to_json", "(", "h2", ")", ":", "south", "=", "h2", ".", "get_bin_left_edges", "(", "0", ")", "north", "=", "h2", ".", "get_bin_right_edges", "(", "0", ")", "west", "=", "h2", ".", "get_bin_left_edges", "(", "1", ")", "east", "=", "h2", ".", "get_bin_right_edges", "(", "1", ")", "return", "{", "\"type\"", ":", "\"FeatureCollection\"", ",", "\"features\"", ":", "[", "{", "\"type\"", ":", "\"Feature\"", ",", "\"geometry\"", ":", "{", "\"type\"", ":", "\"Polygon\"", ",", "# Note that folium and GeoJson have them swapped", "\"coordinates\"", ":", "[", "[", "[", "east", "[", "j", "]", ",", "south", "[", "i", "]", "]", ",", "[", "east", "[", "j", "]", ",", "north", "[", "i", "]", "]", ",", "[", "west", "[", "j", "]", ",", "north", "[", "i", "]", "]", ",", "[", "west", "[", "j", "]", ",", "south", "[", "i", "]", "]", ",", "[", "east", "[", "j", "]", ",", "south", "[", "i", "]", "]", "]", "]", ",", "}", ",", "\"properties\"", ":", "{", "\"count\"", ":", "float", "(", "h2", ".", "frequencies", "[", "i", ",", "j", "]", ")", "}", "}", "for", "i", "in", "range", "(", "h2", ".", "shape", "[", "0", "]", ")", "for", "j", "in", "range", "(", "h2", ".", "shape", "[", "1", "]", ")", "]", "}" ]
Create GeoJSON representation of histogram bins Parameters ---------- h2: physt.histogram_nd.Histogram2D A histogram of coordinates (in degrees) Returns ------- geo_json : dict
[ "Create", "GeoJSON", "representation", "of", "histogram", "bins" ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/folium.py#L16-L54
train
janpipek/physt
physt/plotting/folium.py
geo_map
def geo_map(h2, map=None, tiles='stamenterrain', cmap="wk", alpha=0.5, lw=1, fit_bounds=None, layer_name=None): """Show rectangular grid over a map. Parameters ---------- h2: physt.histogram_nd.Histogram2D A histogram of coordinates (in degrees: latitude, longitude) map : folium.folium.Map Returns ------- map : folium.folium.Map """ if not map: latitude = h2.get_bin_centers(0).mean() longitude = h2.get_bin_centers(1).mean() zoom_start = 10 map = folium.Map(location=[latitude, longitude], tiles=tiles) if fit_bounds == None: fit_bounds = True geo_json = _bins_to_json(h2) if not layer_name: layer_name = h2.name from branca.colormap import LinearColormap color_map = LinearColormap(cmap, vmin=h2.frequencies.min(), vmax=h2.frequencies.max()) # legend = folium.Html("<div>Legend</div>") # legend_div = folium.Div("20%", "20%", "75%", "5%") # # legend_div.add_to(map) # legend_div.add_child(legend) #xx = h2.frequencies.max() def styling_function(bin): count = bin["properties"]["count"] return { "fillColor": color_map(count), "color": "black", "fillOpacity": alpha if count > 0 else 0, "weight": lw, # "strokeWidth": lw, "opacity": alpha if count > 0 else 0, }# .update(styling) layer = folium.GeoJson(geo_json, style_function=styling_function, name=layer_name) layer.add_to(map) if fit_bounds: map.fit_bounds(layer.get_bounds()) return map
python
def geo_map(h2, map=None, tiles='stamenterrain', cmap="wk", alpha=0.5, lw=1, fit_bounds=None, layer_name=None): """Show rectangular grid over a map. Parameters ---------- h2: physt.histogram_nd.Histogram2D A histogram of coordinates (in degrees: latitude, longitude) map : folium.folium.Map Returns ------- map : folium.folium.Map """ if not map: latitude = h2.get_bin_centers(0).mean() longitude = h2.get_bin_centers(1).mean() zoom_start = 10 map = folium.Map(location=[latitude, longitude], tiles=tiles) if fit_bounds == None: fit_bounds = True geo_json = _bins_to_json(h2) if not layer_name: layer_name = h2.name from branca.colormap import LinearColormap color_map = LinearColormap(cmap, vmin=h2.frequencies.min(), vmax=h2.frequencies.max()) # legend = folium.Html("<div>Legend</div>") # legend_div = folium.Div("20%", "20%", "75%", "5%") # # legend_div.add_to(map) # legend_div.add_child(legend) #xx = h2.frequencies.max() def styling_function(bin): count = bin["properties"]["count"] return { "fillColor": color_map(count), "color": "black", "fillOpacity": alpha if count > 0 else 0, "weight": lw, # "strokeWidth": lw, "opacity": alpha if count > 0 else 0, }# .update(styling) layer = folium.GeoJson(geo_json, style_function=styling_function, name=layer_name) layer.add_to(map) if fit_bounds: map.fit_bounds(layer.get_bounds()) return map
[ "def", "geo_map", "(", "h2", ",", "map", "=", "None", ",", "tiles", "=", "'stamenterrain'", ",", "cmap", "=", "\"wk\"", ",", "alpha", "=", "0.5", ",", "lw", "=", "1", ",", "fit_bounds", "=", "None", ",", "layer_name", "=", "None", ")", ":", "if", "not", "map", ":", "latitude", "=", "h2", ".", "get_bin_centers", "(", "0", ")", ".", "mean", "(", ")", "longitude", "=", "h2", ".", "get_bin_centers", "(", "1", ")", ".", "mean", "(", ")", "zoom_start", "=", "10", "map", "=", "folium", ".", "Map", "(", "location", "=", "[", "latitude", ",", "longitude", "]", ",", "tiles", "=", "tiles", ")", "if", "fit_bounds", "==", "None", ":", "fit_bounds", "=", "True", "geo_json", "=", "_bins_to_json", "(", "h2", ")", "if", "not", "layer_name", ":", "layer_name", "=", "h2", ".", "name", "from", "branca", ".", "colormap", "import", "LinearColormap", "color_map", "=", "LinearColormap", "(", "cmap", ",", "vmin", "=", "h2", ".", "frequencies", ".", "min", "(", ")", ",", "vmax", "=", "h2", ".", "frequencies", ".", "max", "(", ")", ")", "# legend = folium.Html(\"<div>Legend</div>\")", "# legend_div = folium.Div(\"20%\", \"20%\", \"75%\", \"5%\")", "#", "# legend_div.add_to(map)", "# legend_div.add_child(legend)", "#xx = h2.frequencies.max()", "def", "styling_function", "(", "bin", ")", ":", "count", "=", "bin", "[", "\"properties\"", "]", "[", "\"count\"", "]", "return", "{", "\"fillColor\"", ":", "color_map", "(", "count", ")", ",", "\"color\"", ":", "\"black\"", ",", "\"fillOpacity\"", ":", "alpha", "if", "count", ">", "0", "else", "0", ",", "\"weight\"", ":", "lw", ",", "# \"strokeWidth\": lw,", "\"opacity\"", ":", "alpha", "if", "count", ">", "0", "else", "0", ",", "}", "# .update(styling)", "layer", "=", "folium", ".", "GeoJson", "(", "geo_json", ",", "style_function", "=", "styling_function", ",", "name", "=", "layer_name", ")", "layer", ".", "add_to", "(", "map", ")", "if", "fit_bounds", ":", "map", ".", "fit_bounds", "(", "layer", ".", "get_bounds", "(", ")", ")", "return", "map" ]
Show rectangular grid over a map. Parameters ---------- h2: physt.histogram_nd.Histogram2D A histogram of coordinates (in degrees: latitude, longitude) map : folium.folium.Map Returns ------- map : folium.folium.Map
[ "Show", "rectangular", "grid", "over", "a", "map", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/plotting/folium.py#L57-L110
train
janpipek/physt
physt/compat/geant4.py
load_csv
def load_csv(path): """Loads a histogram as output from Geant4 analysis tools in CSV format. Parameters ---------- path: str Path to the CSV file Returns ------- physt.histogram1d.Histogram1D or physt.histogram_nd.Histogram2D """ meta = [] data = [] with codecs.open(path, encoding="ASCII") as in_file: for line in in_file: if line.startswith("#"): key, value = line[1:].strip().split(" ", 1) meta.append((key, value)) # TODO: There are duplicit entries :-() else: try: data.append([float(frag) for frag in line.split(",")]) except: pass data = np.asarray(data) ndim = int(_get(meta, "dimension")) if ndim == 1: return _create_h1(data, meta) elif ndim == 2: return _create_h2(data, meta)
python
def load_csv(path): """Loads a histogram as output from Geant4 analysis tools in CSV format. Parameters ---------- path: str Path to the CSV file Returns ------- physt.histogram1d.Histogram1D or physt.histogram_nd.Histogram2D """ meta = [] data = [] with codecs.open(path, encoding="ASCII") as in_file: for line in in_file: if line.startswith("#"): key, value = line[1:].strip().split(" ", 1) meta.append((key, value)) # TODO: There are duplicit entries :-() else: try: data.append([float(frag) for frag in line.split(",")]) except: pass data = np.asarray(data) ndim = int(_get(meta, "dimension")) if ndim == 1: return _create_h1(data, meta) elif ndim == 2: return _create_h2(data, meta)
[ "def", "load_csv", "(", "path", ")", ":", "meta", "=", "[", "]", "data", "=", "[", "]", "with", "codecs", ".", "open", "(", "path", ",", "encoding", "=", "\"ASCII\"", ")", "as", "in_file", ":", "for", "line", "in", "in_file", ":", "if", "line", ".", "startswith", "(", "\"#\"", ")", ":", "key", ",", "value", "=", "line", "[", "1", ":", "]", ".", "strip", "(", ")", ".", "split", "(", "\" \"", ",", "1", ")", "meta", ".", "append", "(", "(", "key", ",", "value", ")", ")", "# TODO: There are duplicit entries :-()", "else", ":", "try", ":", "data", ".", "append", "(", "[", "float", "(", "frag", ")", "for", "frag", "in", "line", ".", "split", "(", "\",\"", ")", "]", ")", "except", ":", "pass", "data", "=", "np", ".", "asarray", "(", "data", ")", "ndim", "=", "int", "(", "_get", "(", "meta", ",", "\"dimension\"", ")", ")", "if", "ndim", "==", "1", ":", "return", "_create_h1", "(", "data", ",", "meta", ")", "elif", "ndim", "==", "2", ":", "return", "_create_h2", "(", "data", ",", "meta", ")" ]
Loads a histogram as output from Geant4 analysis tools in CSV format. Parameters ---------- path: str Path to the CSV file Returns ------- physt.histogram1d.Histogram1D or physt.histogram_nd.Histogram2D
[ "Loads", "a", "histogram", "as", "output", "from", "Geant4", "analysis", "tools", "in", "CSV", "format", "." ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/compat/geant4.py#L11-L40
train
janpipek/physt
physt/compat/geant4.py
_get
def _get(pseudodict, key, single=True): """Helper method for getting values from "multi-dict"s""" matches = [item[1] for item in pseudodict if item[0] == key] if single: return matches[0] else: return matches
python
def _get(pseudodict, key, single=True): """Helper method for getting values from "multi-dict"s""" matches = [item[1] for item in pseudodict if item[0] == key] if single: return matches[0] else: return matches
[ "def", "_get", "(", "pseudodict", ",", "key", ",", "single", "=", "True", ")", ":", "matches", "=", "[", "item", "[", "1", "]", "for", "item", "in", "pseudodict", "if", "item", "[", "0", "]", "==", "key", "]", "if", "single", ":", "return", "matches", "[", "0", "]", "else", ":", "return", "matches" ]
Helper method for getting values from "multi-dict"s
[ "Helper", "method", "for", "getting", "values", "from", "multi", "-", "dict", "s" ]
6dd441b073514e7728235f50b2352d56aacf38d4
https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/compat/geant4.py#L43-L49
train
openid/python-openid
openid/yadis/xrires.py
ProxyResolver.queryURL
def queryURL(self, xri, service_type=None): """Build a URL to query the proxy resolver. @param xri: An XRI to resolve. @type xri: unicode @param service_type: The service type to resolve, if you desire service endpoint selection. A service type is a URI. @type service_type: str @returns: a URL @returntype: str """ # Trim off the xri:// prefix. The proxy resolver didn't accept it # when this code was written, but that may (or may not) change for # XRI Resolution 2.0 Working Draft 11. qxri = toURINormal(xri)[6:] hxri = self.proxy_url + qxri args = { # XXX: If the proxy resolver will ensure that it doesn't return # bogus CanonicalIDs (as per Steve's message of 15 Aug 2006 # 11:13:42), then we could ask for application/xrd+xml instead, # which would give us a bit less to process. '_xrd_r': 'application/xrds+xml', } if service_type: args['_xrd_t'] = service_type else: # Don't perform service endpoint selection. args['_xrd_r'] += ';sep=false' query = _appendArgs(hxri, args) return query
python
def queryURL(self, xri, service_type=None): """Build a URL to query the proxy resolver. @param xri: An XRI to resolve. @type xri: unicode @param service_type: The service type to resolve, if you desire service endpoint selection. A service type is a URI. @type service_type: str @returns: a URL @returntype: str """ # Trim off the xri:// prefix. The proxy resolver didn't accept it # when this code was written, but that may (or may not) change for # XRI Resolution 2.0 Working Draft 11. qxri = toURINormal(xri)[6:] hxri = self.proxy_url + qxri args = { # XXX: If the proxy resolver will ensure that it doesn't return # bogus CanonicalIDs (as per Steve's message of 15 Aug 2006 # 11:13:42), then we could ask for application/xrd+xml instead, # which would give us a bit less to process. '_xrd_r': 'application/xrds+xml', } if service_type: args['_xrd_t'] = service_type else: # Don't perform service endpoint selection. args['_xrd_r'] += ';sep=false' query = _appendArgs(hxri, args) return query
[ "def", "queryURL", "(", "self", ",", "xri", ",", "service_type", "=", "None", ")", ":", "# Trim off the xri:// prefix. The proxy resolver didn't accept it", "# when this code was written, but that may (or may not) change for", "# XRI Resolution 2.0 Working Draft 11.", "qxri", "=", "toURINormal", "(", "xri", ")", "[", "6", ":", "]", "hxri", "=", "self", ".", "proxy_url", "+", "qxri", "args", "=", "{", "# XXX: If the proxy resolver will ensure that it doesn't return", "# bogus CanonicalIDs (as per Steve's message of 15 Aug 2006", "# 11:13:42), then we could ask for application/xrd+xml instead,", "# which would give us a bit less to process.", "'_xrd_r'", ":", "'application/xrds+xml'", ",", "}", "if", "service_type", ":", "args", "[", "'_xrd_t'", "]", "=", "service_type", "else", ":", "# Don't perform service endpoint selection.", "args", "[", "'_xrd_r'", "]", "+=", "';sep=false'", "query", "=", "_appendArgs", "(", "hxri", ",", "args", ")", "return", "query" ]
Build a URL to query the proxy resolver. @param xri: An XRI to resolve. @type xri: unicode @param service_type: The service type to resolve, if you desire service endpoint selection. A service type is a URI. @type service_type: str @returns: a URL @returntype: str
[ "Build", "a", "URL", "to", "query", "the", "proxy", "resolver", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/yadis/xrires.py#L20-L51
train
openid/python-openid
openid/yadis/xrires.py
ProxyResolver.query
def query(self, xri, service_types): """Resolve some services for an XRI. Note: I don't implement any service endpoint selection beyond what the resolver I'm querying does, so the Services I return may well include Services that were not of the types you asked for. May raise fetchers.HTTPFetchingError or L{etxrd.XRDSError} if the fetching or parsing don't go so well. @param xri: An XRI to resolve. @type xri: unicode @param service_types: A list of services types to query for. Service types are URIs. @type service_types: list of str @returns: tuple of (CanonicalID, Service elements) @returntype: (unicode, list of C{ElementTree.Element}s) """ # FIXME: No test coverage! services = [] # Make a seperate request to the proxy resolver for each service # type, as, if it is following Refs, it could return a different # XRDS for each. canonicalID = None for service_type in service_types: url = self.queryURL(xri, service_type) response = fetchers.fetch(url) if response.status not in (200, 206): # XXX: sucks to fail silently. # print "response not OK:", response continue et = etxrd.parseXRDS(response.body) canonicalID = etxrd.getCanonicalID(xri, et) some_services = list(iterServices(et)) services.extend(some_services) # TODO: # * If we do get hits for multiple service_types, we're almost # certainly going to have duplicated service entries and # broken priority ordering. return canonicalID, services
python
def query(self, xri, service_types): """Resolve some services for an XRI. Note: I don't implement any service endpoint selection beyond what the resolver I'm querying does, so the Services I return may well include Services that were not of the types you asked for. May raise fetchers.HTTPFetchingError or L{etxrd.XRDSError} if the fetching or parsing don't go so well. @param xri: An XRI to resolve. @type xri: unicode @param service_types: A list of services types to query for. Service types are URIs. @type service_types: list of str @returns: tuple of (CanonicalID, Service elements) @returntype: (unicode, list of C{ElementTree.Element}s) """ # FIXME: No test coverage! services = [] # Make a seperate request to the proxy resolver for each service # type, as, if it is following Refs, it could return a different # XRDS for each. canonicalID = None for service_type in service_types: url = self.queryURL(xri, service_type) response = fetchers.fetch(url) if response.status not in (200, 206): # XXX: sucks to fail silently. # print "response not OK:", response continue et = etxrd.parseXRDS(response.body) canonicalID = etxrd.getCanonicalID(xri, et) some_services = list(iterServices(et)) services.extend(some_services) # TODO: # * If we do get hits for multiple service_types, we're almost # certainly going to have duplicated service entries and # broken priority ordering. return canonicalID, services
[ "def", "query", "(", "self", ",", "xri", ",", "service_types", ")", ":", "# FIXME: No test coverage!", "services", "=", "[", "]", "# Make a seperate request to the proxy resolver for each service", "# type, as, if it is following Refs, it could return a different", "# XRDS for each.", "canonicalID", "=", "None", "for", "service_type", "in", "service_types", ":", "url", "=", "self", ".", "queryURL", "(", "xri", ",", "service_type", ")", "response", "=", "fetchers", ".", "fetch", "(", "url", ")", "if", "response", ".", "status", "not", "in", "(", "200", ",", "206", ")", ":", "# XXX: sucks to fail silently.", "# print \"response not OK:\", response", "continue", "et", "=", "etxrd", ".", "parseXRDS", "(", "response", ".", "body", ")", "canonicalID", "=", "etxrd", ".", "getCanonicalID", "(", "xri", ",", "et", ")", "some_services", "=", "list", "(", "iterServices", "(", "et", ")", ")", "services", ".", "extend", "(", "some_services", ")", "# TODO:", "# * If we do get hits for multiple service_types, we're almost", "# certainly going to have duplicated service entries and", "# broken priority ordering.", "return", "canonicalID", ",", "services" ]
Resolve some services for an XRI. Note: I don't implement any service endpoint selection beyond what the resolver I'm querying does, so the Services I return may well include Services that were not of the types you asked for. May raise fetchers.HTTPFetchingError or L{etxrd.XRDSError} if the fetching or parsing don't go so well. @param xri: An XRI to resolve. @type xri: unicode @param service_types: A list of services types to query for. Service types are URIs. @type service_types: list of str @returns: tuple of (CanonicalID, Service elements) @returntype: (unicode, list of C{ElementTree.Element}s)
[ "Resolve", "some", "services", "for", "an", "XRI", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/yadis/xrires.py#L54-L97
train
openid/python-openid
openid/yadis/accept.py
generateAcceptHeader
def generateAcceptHeader(*elements): """Generate an accept header value [str or (str, float)] -> str """ parts = [] for element in elements: if type(element) is str: qs = "1.0" mtype = element else: mtype, q = element q = float(q) if q > 1 or q <= 0: raise ValueError('Invalid preference factor: %r' % q) qs = '%0.1f' % (q,) parts.append((qs, mtype)) parts.sort() chunks = [] for q, mtype in parts: if q == '1.0': chunks.append(mtype) else: chunks.append('%s; q=%s' % (mtype, q)) return ', '.join(chunks)
python
def generateAcceptHeader(*elements): """Generate an accept header value [str or (str, float)] -> str """ parts = [] for element in elements: if type(element) is str: qs = "1.0" mtype = element else: mtype, q = element q = float(q) if q > 1 or q <= 0: raise ValueError('Invalid preference factor: %r' % q) qs = '%0.1f' % (q,) parts.append((qs, mtype)) parts.sort() chunks = [] for q, mtype in parts: if q == '1.0': chunks.append(mtype) else: chunks.append('%s; q=%s' % (mtype, q)) return ', '.join(chunks)
[ "def", "generateAcceptHeader", "(", "*", "elements", ")", ":", "parts", "=", "[", "]", "for", "element", "in", "elements", ":", "if", "type", "(", "element", ")", "is", "str", ":", "qs", "=", "\"1.0\"", "mtype", "=", "element", "else", ":", "mtype", ",", "q", "=", "element", "q", "=", "float", "(", "q", ")", "if", "q", ">", "1", "or", "q", "<=", "0", ":", "raise", "ValueError", "(", "'Invalid preference factor: %r'", "%", "q", ")", "qs", "=", "'%0.1f'", "%", "(", "q", ",", ")", "parts", ".", "append", "(", "(", "qs", ",", "mtype", ")", ")", "parts", ".", "sort", "(", ")", "chunks", "=", "[", "]", "for", "q", ",", "mtype", "in", "parts", ":", "if", "q", "==", "'1.0'", ":", "chunks", ".", "append", "(", "mtype", ")", "else", ":", "chunks", ".", "append", "(", "'%s; q=%s'", "%", "(", "mtype", ",", "q", ")", ")", "return", "', '", ".", "join", "(", "chunks", ")" ]
Generate an accept header value [str or (str, float)] -> str
[ "Generate", "an", "accept", "header", "value" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/yadis/accept.py#L5-L33
train
openid/python-openid
openid/yadis/accept.py
parseAcceptHeader
def parseAcceptHeader(value): """Parse an accept header, ignoring any accept-extensions returns a list of tuples containing main MIME type, MIME subtype, and quality markdown. str -> [(str, str, float)] """ chunks = [chunk.strip() for chunk in value.split(',')] accept = [] for chunk in chunks: parts = [s.strip() for s in chunk.split(';')] mtype = parts.pop(0) if '/' not in mtype: # This is not a MIME type, so ignore the bad data continue main, sub = mtype.split('/', 1) for ext in parts: if '=' in ext: k, v = ext.split('=', 1) if k == 'q': try: q = float(v) break except ValueError: # Ignore poorly formed q-values pass else: q = 1.0 accept.append((q, main, sub)) accept.sort() accept.reverse() return [(main, sub, q) for (q, main, sub) in accept]
python
def parseAcceptHeader(value): """Parse an accept header, ignoring any accept-extensions returns a list of tuples containing main MIME type, MIME subtype, and quality markdown. str -> [(str, str, float)] """ chunks = [chunk.strip() for chunk in value.split(',')] accept = [] for chunk in chunks: parts = [s.strip() for s in chunk.split(';')] mtype = parts.pop(0) if '/' not in mtype: # This is not a MIME type, so ignore the bad data continue main, sub = mtype.split('/', 1) for ext in parts: if '=' in ext: k, v = ext.split('=', 1) if k == 'q': try: q = float(v) break except ValueError: # Ignore poorly formed q-values pass else: q = 1.0 accept.append((q, main, sub)) accept.sort() accept.reverse() return [(main, sub, q) for (q, main, sub) in accept]
[ "def", "parseAcceptHeader", "(", "value", ")", ":", "chunks", "=", "[", "chunk", ".", "strip", "(", ")", "for", "chunk", "in", "value", ".", "split", "(", "','", ")", "]", "accept", "=", "[", "]", "for", "chunk", "in", "chunks", ":", "parts", "=", "[", "s", ".", "strip", "(", ")", "for", "s", "in", "chunk", ".", "split", "(", "';'", ")", "]", "mtype", "=", "parts", ".", "pop", "(", "0", ")", "if", "'/'", "not", "in", "mtype", ":", "# This is not a MIME type, so ignore the bad data", "continue", "main", ",", "sub", "=", "mtype", ".", "split", "(", "'/'", ",", "1", ")", "for", "ext", "in", "parts", ":", "if", "'='", "in", "ext", ":", "k", ",", "v", "=", "ext", ".", "split", "(", "'='", ",", "1", ")", "if", "k", "==", "'q'", ":", "try", ":", "q", "=", "float", "(", "v", ")", "break", "except", "ValueError", ":", "# Ignore poorly formed q-values", "pass", "else", ":", "q", "=", "1.0", "accept", ".", "append", "(", "(", "q", ",", "main", ",", "sub", ")", ")", "accept", ".", "sort", "(", ")", "accept", ".", "reverse", "(", ")", "return", "[", "(", "main", ",", "sub", ",", "q", ")", "for", "(", "q", ",", "main", ",", "sub", ")", "in", "accept", "]" ]
Parse an accept header, ignoring any accept-extensions returns a list of tuples containing main MIME type, MIME subtype, and quality markdown. str -> [(str, str, float)]
[ "Parse", "an", "accept", "header", "ignoring", "any", "accept", "-", "extensions" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/yadis/accept.py#L35-L72
train
openid/python-openid
openid/yadis/accept.py
getAcceptable
def getAcceptable(accept_header, have_types): """Parse the accept header and return a list of available types in preferred order. If a type is unacceptable, it will not be in the resulting list. This is a convenience wrapper around matchTypes and parseAcceptHeader. (str, [str]) -> [str] """ accepted = parseAcceptHeader(accept_header) preferred = matchTypes(accepted, have_types) return [mtype for (mtype, _) in preferred]
python
def getAcceptable(accept_header, have_types): """Parse the accept header and return a list of available types in preferred order. If a type is unacceptable, it will not be in the resulting list. This is a convenience wrapper around matchTypes and parseAcceptHeader. (str, [str]) -> [str] """ accepted = parseAcceptHeader(accept_header) preferred = matchTypes(accepted, have_types) return [mtype for (mtype, _) in preferred]
[ "def", "getAcceptable", "(", "accept_header", ",", "have_types", ")", ":", "accepted", "=", "parseAcceptHeader", "(", "accept_header", ")", "preferred", "=", "matchTypes", "(", "accepted", ",", "have_types", ")", "return", "[", "mtype", "for", "(", "mtype", ",", "_", ")", "in", "preferred", "]" ]
Parse the accept header and return a list of available types in preferred order. If a type is unacceptable, it will not be in the resulting list. This is a convenience wrapper around matchTypes and parseAcceptHeader. (str, [str]) -> [str]
[ "Parse", "the", "accept", "header", "and", "return", "a", "list", "of", "available", "types", "in", "preferred", "order", ".", "If", "a", "type", "is", "unacceptable", "it", "will", "not", "be", "in", "the", "resulting", "list", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/yadis/accept.py#L121-L133
train
openid/python-openid
openid/message.py
Message.fromPostArgs
def fromPostArgs(cls, args): """Construct a Message containing a set of POST arguments. """ self = cls() # Partition into "openid." args and bare args openid_args = {} for key, value in args.items(): if isinstance(value, list): raise TypeError("query dict must have one value for each key, " "not lists of values. Query is %r" % (args,)) try: prefix, rest = key.split('.', 1) except ValueError: prefix = None if prefix != 'openid': self.args[(BARE_NS, key)] = value else: openid_args[rest] = value self._fromOpenIDArgs(openid_args) return self
python
def fromPostArgs(cls, args): """Construct a Message containing a set of POST arguments. """ self = cls() # Partition into "openid." args and bare args openid_args = {} for key, value in args.items(): if isinstance(value, list): raise TypeError("query dict must have one value for each key, " "not lists of values. Query is %r" % (args,)) try: prefix, rest = key.split('.', 1) except ValueError: prefix = None if prefix != 'openid': self.args[(BARE_NS, key)] = value else: openid_args[rest] = value self._fromOpenIDArgs(openid_args) return self
[ "def", "fromPostArgs", "(", "cls", ",", "args", ")", ":", "self", "=", "cls", "(", ")", "# Partition into \"openid.\" args and bare args", "openid_args", "=", "{", "}", "for", "key", ",", "value", "in", "args", ".", "items", "(", ")", ":", "if", "isinstance", "(", "value", ",", "list", ")", ":", "raise", "TypeError", "(", "\"query dict must have one value for each key, \"", "\"not lists of values. Query is %r\"", "%", "(", "args", ",", ")", ")", "try", ":", "prefix", ",", "rest", "=", "key", ".", "split", "(", "'.'", ",", "1", ")", "except", "ValueError", ":", "prefix", "=", "None", "if", "prefix", "!=", "'openid'", ":", "self", ".", "args", "[", "(", "BARE_NS", ",", "key", ")", "]", "=", "value", "else", ":", "openid_args", "[", "rest", "]", "=", "value", "self", ".", "_fromOpenIDArgs", "(", "openid_args", ")", "return", "self" ]
Construct a Message containing a set of POST arguments.
[ "Construct", "a", "Message", "containing", "a", "set", "of", "POST", "arguments", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/message.py#L143-L169
train
openid/python-openid
openid/message.py
Message.getKey
def getKey(self, namespace, ns_key): """Get the key for a particular namespaced argument""" namespace = self._fixNS(namespace) if namespace == BARE_NS: return ns_key ns_alias = self.namespaces.getAlias(namespace) # No alias is defined, so no key can exist if ns_alias is None: return None if ns_alias == NULL_NAMESPACE: tail = ns_key else: tail = '%s.%s' % (ns_alias, ns_key) return 'openid.' + tail
python
def getKey(self, namespace, ns_key): """Get the key for a particular namespaced argument""" namespace = self._fixNS(namespace) if namespace == BARE_NS: return ns_key ns_alias = self.namespaces.getAlias(namespace) # No alias is defined, so no key can exist if ns_alias is None: return None if ns_alias == NULL_NAMESPACE: tail = ns_key else: tail = '%s.%s' % (ns_alias, ns_key) return 'openid.' + tail
[ "def", "getKey", "(", "self", ",", "namespace", ",", "ns_key", ")", ":", "namespace", "=", "self", ".", "_fixNS", "(", "namespace", ")", "if", "namespace", "==", "BARE_NS", ":", "return", "ns_key", "ns_alias", "=", "self", ".", "namespaces", ".", "getAlias", "(", "namespace", ")", "# No alias is defined, so no key can exist", "if", "ns_alias", "is", "None", ":", "return", "None", "if", "ns_alias", "==", "NULL_NAMESPACE", ":", "tail", "=", "ns_key", "else", ":", "tail", "=", "'%s.%s'", "%", "(", "ns_alias", ",", "ns_key", ")", "return", "'openid.'", "+", "tail" ]
Get the key for a particular namespaced argument
[ "Get", "the", "key", "for", "a", "particular", "namespaced", "argument" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/message.py#L402-L419
train
openid/python-openid
openid/message.py
Message.getArg
def getArg(self, namespace, key, default=None): """Get a value for a namespaced key. @param namespace: The namespace in the message for this key @type namespace: str @param key: The key to get within this namespace @type key: str @param default: The value to use if this key is absent from this message. Using the special value openid.message.no_default will result in this method raising a KeyError instead of returning the default. @rtype: str or the type of default @raises KeyError: if default is no_default @raises UndefinedOpenIDNamespace: if the message has not yet had an OpenID namespace set """ namespace = self._fixNS(namespace) args_key = (namespace, key) try: return self.args[args_key] except KeyError: if default is no_default: raise KeyError((namespace, key)) else: return default
python
def getArg(self, namespace, key, default=None): """Get a value for a namespaced key. @param namespace: The namespace in the message for this key @type namespace: str @param key: The key to get within this namespace @type key: str @param default: The value to use if this key is absent from this message. Using the special value openid.message.no_default will result in this method raising a KeyError instead of returning the default. @rtype: str or the type of default @raises KeyError: if default is no_default @raises UndefinedOpenIDNamespace: if the message has not yet had an OpenID namespace set """ namespace = self._fixNS(namespace) args_key = (namespace, key) try: return self.args[args_key] except KeyError: if default is no_default: raise KeyError((namespace, key)) else: return default
[ "def", "getArg", "(", "self", ",", "namespace", ",", "key", ",", "default", "=", "None", ")", ":", "namespace", "=", "self", ".", "_fixNS", "(", "namespace", ")", "args_key", "=", "(", "namespace", ",", "key", ")", "try", ":", "return", "self", ".", "args", "[", "args_key", "]", "except", "KeyError", ":", "if", "default", "is", "no_default", ":", "raise", "KeyError", "(", "(", "namespace", ",", "key", ")", ")", "else", ":", "return", "default" ]
Get a value for a namespaced key. @param namespace: The namespace in the message for this key @type namespace: str @param key: The key to get within this namespace @type key: str @param default: The value to use if this key is absent from this message. Using the special value openid.message.no_default will result in this method raising a KeyError instead of returning the default. @rtype: str or the type of default @raises KeyError: if default is no_default @raises UndefinedOpenIDNamespace: if the message has not yet had an OpenID namespace set
[ "Get", "a", "value", "for", "a", "namespaced", "key", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/message.py#L421-L448
train
openid/python-openid
openid/message.py
NamespaceMap.add
def add(self, namespace_uri): """Add this namespace URI to the mapping, without caring what alias it ends up with""" # See if this namespace is already mapped to an alias alias = self.namespace_to_alias.get(namespace_uri) if alias is not None: return alias # Fall back to generating a numerical alias i = 0 while True: alias = 'ext' + str(i) try: self.addAlias(namespace_uri, alias) except KeyError: i += 1 else: return alias assert False, "Not reached"
python
def add(self, namespace_uri): """Add this namespace URI to the mapping, without caring what alias it ends up with""" # See if this namespace is already mapped to an alias alias = self.namespace_to_alias.get(namespace_uri) if alias is not None: return alias # Fall back to generating a numerical alias i = 0 while True: alias = 'ext' + str(i) try: self.addAlias(namespace_uri, alias) except KeyError: i += 1 else: return alias assert False, "Not reached"
[ "def", "add", "(", "self", ",", "namespace_uri", ")", ":", "# See if this namespace is already mapped to an alias", "alias", "=", "self", ".", "namespace_to_alias", ".", "get", "(", "namespace_uri", ")", "if", "alias", "is", "not", "None", ":", "return", "alias", "# Fall back to generating a numerical alias", "i", "=", "0", "while", "True", ":", "alias", "=", "'ext'", "+", "str", "(", "i", ")", "try", ":", "self", ".", "addAlias", "(", "namespace_uri", ",", "alias", ")", "except", "KeyError", ":", "i", "+=", "1", "else", ":", "return", "alias", "assert", "False", ",", "\"Not reached\"" ]
Add this namespace URI to the mapping, without caring what alias it ends up with
[ "Add", "this", "namespace", "URI", "to", "the", "mapping", "without", "caring", "what", "alias", "it", "ends", "up", "with" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/message.py#L604-L623
train
openid/python-openid
openid/yadis/parsehtml.py
findHTMLMeta
def findHTMLMeta(stream): """Look for a meta http-equiv tag with the YADIS header name. @param stream: Source of the html text @type stream: Object that implements a read() method that works like file.read @return: The URI from which to fetch the XRDS document @rtype: str @raises MetaNotFound: raised with the content that was searched as the first parameter. """ parser = YadisHTMLParser() chunks = [] while 1: chunk = stream.read(CHUNK_SIZE) if not chunk: # End of file break chunks.append(chunk) try: parser.feed(chunk) except HTMLParseError, why: # HTML parse error, so bail chunks.append(stream.read()) break except ParseDone, why: uri = why[0] if uri is None: # Parse finished, but we may need the rest of the file chunks.append(stream.read()) break else: return uri content = ''.join(chunks) raise MetaNotFound(content)
python
def findHTMLMeta(stream): """Look for a meta http-equiv tag with the YADIS header name. @param stream: Source of the html text @type stream: Object that implements a read() method that works like file.read @return: The URI from which to fetch the XRDS document @rtype: str @raises MetaNotFound: raised with the content that was searched as the first parameter. """ parser = YadisHTMLParser() chunks = [] while 1: chunk = stream.read(CHUNK_SIZE) if not chunk: # End of file break chunks.append(chunk) try: parser.feed(chunk) except HTMLParseError, why: # HTML parse error, so bail chunks.append(stream.read()) break except ParseDone, why: uri = why[0] if uri is None: # Parse finished, but we may need the rest of the file chunks.append(stream.read()) break else: return uri content = ''.join(chunks) raise MetaNotFound(content)
[ "def", "findHTMLMeta", "(", "stream", ")", ":", "parser", "=", "YadisHTMLParser", "(", ")", "chunks", "=", "[", "]", "while", "1", ":", "chunk", "=", "stream", ".", "read", "(", "CHUNK_SIZE", ")", "if", "not", "chunk", ":", "# End of file", "break", "chunks", ".", "append", "(", "chunk", ")", "try", ":", "parser", ".", "feed", "(", "chunk", ")", "except", "HTMLParseError", ",", "why", ":", "# HTML parse error, so bail", "chunks", ".", "append", "(", "stream", ".", "read", "(", ")", ")", "break", "except", "ParseDone", ",", "why", ":", "uri", "=", "why", "[", "0", "]", "if", "uri", "is", "None", ":", "# Parse finished, but we may need the rest of the file", "chunks", ".", "append", "(", "stream", ".", "read", "(", ")", ")", "break", "else", ":", "return", "uri", "content", "=", "''", ".", "join", "(", "chunks", ")", "raise", "MetaNotFound", "(", "content", ")" ]
Look for a meta http-equiv tag with the YADIS header name. @param stream: Source of the html text @type stream: Object that implements a read() method that works like file.read @return: The URI from which to fetch the XRDS document @rtype: str @raises MetaNotFound: raised with the content that was searched as the first parameter.
[ "Look", "for", "a", "meta", "http", "-", "equiv", "tag", "with", "the", "YADIS", "header", "name", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/yadis/parsehtml.py#L158-L197
train
openid/python-openid
openid/extensions/ax.py
toTypeURIs
def toTypeURIs(namespace_map, alias_list_s): """Given a namespace mapping and a string containing a comma-separated list of namespace aliases, return a list of type URIs that correspond to those aliases. @param namespace_map: The mapping from namespace URI to alias @type namespace_map: openid.message.NamespaceMap @param alias_list_s: The string containing the comma-separated list of aliases. May also be None for convenience. @type alias_list_s: str or NoneType @returns: The list of namespace URIs that corresponds to the supplied list of aliases. If the string was zero-length or None, an empty list will be returned. @raise KeyError: If an alias is present in the list of aliases but is not present in the namespace map. """ uris = [] if alias_list_s: for alias in alias_list_s.split(','): type_uri = namespace_map.getNamespaceURI(alias) if type_uri is None: raise KeyError( 'No type is defined for attribute name %r' % (alias,)) else: uris.append(type_uri) return uris
python
def toTypeURIs(namespace_map, alias_list_s): """Given a namespace mapping and a string containing a comma-separated list of namespace aliases, return a list of type URIs that correspond to those aliases. @param namespace_map: The mapping from namespace URI to alias @type namespace_map: openid.message.NamespaceMap @param alias_list_s: The string containing the comma-separated list of aliases. May also be None for convenience. @type alias_list_s: str or NoneType @returns: The list of namespace URIs that corresponds to the supplied list of aliases. If the string was zero-length or None, an empty list will be returned. @raise KeyError: If an alias is present in the list of aliases but is not present in the namespace map. """ uris = [] if alias_list_s: for alias in alias_list_s.split(','): type_uri = namespace_map.getNamespaceURI(alias) if type_uri is None: raise KeyError( 'No type is defined for attribute name %r' % (alias,)) else: uris.append(type_uri) return uris
[ "def", "toTypeURIs", "(", "namespace_map", ",", "alias_list_s", ")", ":", "uris", "=", "[", "]", "if", "alias_list_s", ":", "for", "alias", "in", "alias_list_s", ".", "split", "(", "','", ")", ":", "type_uri", "=", "namespace_map", ".", "getNamespaceURI", "(", "alias", ")", "if", "type_uri", "is", "None", ":", "raise", "KeyError", "(", "'No type is defined for attribute name %r'", "%", "(", "alias", ",", ")", ")", "else", ":", "uris", ".", "append", "(", "type_uri", ")", "return", "uris" ]
Given a namespace mapping and a string containing a comma-separated list of namespace aliases, return a list of type URIs that correspond to those aliases. @param namespace_map: The mapping from namespace URI to alias @type namespace_map: openid.message.NamespaceMap @param alias_list_s: The string containing the comma-separated list of aliases. May also be None for convenience. @type alias_list_s: str or NoneType @returns: The list of namespace URIs that corresponds to the supplied list of aliases. If the string was zero-length or None, an empty list will be returned. @raise KeyError: If an alias is present in the list of aliases but is not present in the namespace map.
[ "Given", "a", "namespace", "mapping", "and", "a", "string", "containing", "a", "comma", "-", "separated", "list", "of", "namespace", "aliases", "return", "a", "list", "of", "type", "URIs", "that", "correspond", "to", "those", "aliases", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/ax.py#L149-L179
train
openid/python-openid
openid/extensions/ax.py
FetchRequest.add
def add(self, attribute): """Add an attribute to this attribute exchange request. @param attribute: The attribute that is being requested @type attribute: C{L{AttrInfo}} @returns: None @raise KeyError: when the requested attribute is already present in this fetch request. """ if attribute.type_uri in self.requested_attributes: raise KeyError('The attribute %r has already been requested' % (attribute.type_uri,)) self.requested_attributes[attribute.type_uri] = attribute
python
def add(self, attribute): """Add an attribute to this attribute exchange request. @param attribute: The attribute that is being requested @type attribute: C{L{AttrInfo}} @returns: None @raise KeyError: when the requested attribute is already present in this fetch request. """ if attribute.type_uri in self.requested_attributes: raise KeyError('The attribute %r has already been requested' % (attribute.type_uri,)) self.requested_attributes[attribute.type_uri] = attribute
[ "def", "add", "(", "self", ",", "attribute", ")", ":", "if", "attribute", ".", "type_uri", "in", "self", ".", "requested_attributes", ":", "raise", "KeyError", "(", "'The attribute %r has already been requested'", "%", "(", "attribute", ".", "type_uri", ",", ")", ")", "self", ".", "requested_attributes", "[", "attribute", ".", "type_uri", "]", "=", "attribute" ]
Add an attribute to this attribute exchange request. @param attribute: The attribute that is being requested @type attribute: C{L{AttrInfo}} @returns: None @raise KeyError: when the requested attribute is already present in this fetch request.
[ "Add", "an", "attribute", "to", "this", "attribute", "exchange", "request", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/ax.py#L202-L217
train
openid/python-openid
openid/extensions/ax.py
AXKeyValueMessage.addValue
def addValue(self, type_uri, value): """Add a single value for the given attribute type to the message. If there are already values specified for this type, this value will be sent in addition to the values already specified. @param type_uri: The URI for the attribute @param value: The value to add to the response to the relying party for this attribute @type value: unicode @returns: None """ try: values = self.data[type_uri] except KeyError: values = self.data[type_uri] = [] values.append(value)
python
def addValue(self, type_uri, value): """Add a single value for the given attribute type to the message. If there are already values specified for this type, this value will be sent in addition to the values already specified. @param type_uri: The URI for the attribute @param value: The value to add to the response to the relying party for this attribute @type value: unicode @returns: None """ try: values = self.data[type_uri] except KeyError: values = self.data[type_uri] = [] values.append(value)
[ "def", "addValue", "(", "self", ",", "type_uri", ",", "value", ")", ":", "try", ":", "values", "=", "self", ".", "data", "[", "type_uri", "]", "except", "KeyError", ":", "values", "=", "self", ".", "data", "[", "type_uri", "]", "=", "[", "]", "values", ".", "append", "(", "value", ")" ]
Add a single value for the given attribute type to the message. If there are already values specified for this type, this value will be sent in addition to the values already specified. @param type_uri: The URI for the attribute @param value: The value to add to the response to the relying party for this attribute @type value: unicode @returns: None
[ "Add", "a", "single", "value", "for", "the", "given", "attribute", "type", "to", "the", "message", ".", "If", "there", "are", "already", "values", "specified", "for", "this", "type", "this", "value", "will", "be", "sent", "in", "addition", "to", "the", "values", "already", "specified", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/ax.py#L425-L444
train
openid/python-openid
openid/extensions/ax.py
AXKeyValueMessage.getSingle
def getSingle(self, type_uri, default=None): """Get a single value for an attribute. If no value was sent for this attribute, use the supplied default. If there is more than one value for this attribute, this method will fail. @type type_uri: str @param type_uri: The URI for the attribute @param default: The value to return if the attribute was not sent in the fetch_response. @returns: The value of the attribute in the fetch_response message, or the default supplied @rtype: unicode or NoneType @raises ValueError: If there is more than one value for this parameter in the fetch_response message. @raises KeyError: If the attribute was not sent in this response """ values = self.data.get(type_uri) if not values: return default elif len(values) == 1: return values[0] else: raise AXError( 'More than one value present for %r' % (type_uri,))
python
def getSingle(self, type_uri, default=None): """Get a single value for an attribute. If no value was sent for this attribute, use the supplied default. If there is more than one value for this attribute, this method will fail. @type type_uri: str @param type_uri: The URI for the attribute @param default: The value to return if the attribute was not sent in the fetch_response. @returns: The value of the attribute in the fetch_response message, or the default supplied @rtype: unicode or NoneType @raises ValueError: If there is more than one value for this parameter in the fetch_response message. @raises KeyError: If the attribute was not sent in this response """ values = self.data.get(type_uri) if not values: return default elif len(values) == 1: return values[0] else: raise AXError( 'More than one value present for %r' % (type_uri,))
[ "def", "getSingle", "(", "self", ",", "type_uri", ",", "default", "=", "None", ")", ":", "values", "=", "self", ".", "data", ".", "get", "(", "type_uri", ")", "if", "not", "values", ":", "return", "default", "elif", "len", "(", "values", ")", "==", "1", ":", "return", "values", "[", "0", "]", "else", ":", "raise", "AXError", "(", "'More than one value present for %r'", "%", "(", "type_uri", ",", ")", ")" ]
Get a single value for an attribute. If no value was sent for this attribute, use the supplied default. If there is more than one value for this attribute, this method will fail. @type type_uri: str @param type_uri: The URI for the attribute @param default: The value to return if the attribute was not sent in the fetch_response. @returns: The value of the attribute in the fetch_response message, or the default supplied @rtype: unicode or NoneType @raises ValueError: If there is more than one value for this parameter in the fetch_response message. @raises KeyError: If the attribute was not sent in this response
[ "Get", "a", "single", "value", "for", "an", "attribute", ".", "If", "no", "value", "was", "sent", "for", "this", "attribute", "use", "the", "supplied", "default", ".", "If", "there", "is", "more", "than", "one", "value", "for", "this", "attribute", "this", "method", "will", "fail", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/ax.py#L529-L555
train
openid/python-openid
openid/extensions/ax.py
FetchResponse.getExtensionArgs
def getExtensionArgs(self): """Serialize this object into arguments in the attribute exchange namespace @returns: The dictionary of unqualified attribute exchange arguments that represent this fetch_response. @rtype: {unicode;unicode} """ aliases = NamespaceMap() zero_value_types = [] if self.request is not None: # Validate the data in the context of the request (the # same attributes should be present in each, and the # counts in the response must be no more than the counts # in the request) for type_uri in self.data: if type_uri not in self.request: raise KeyError( 'Response attribute not present in request: %r' % (type_uri,)) for attr_info in self.request.iterAttrs(): # Copy the aliases from the request so that reading # the response in light of the request is easier if attr_info.alias is None: aliases.add(attr_info.type_uri) else: aliases.addAlias(attr_info.type_uri, attr_info.alias) try: values = self.data[attr_info.type_uri] except KeyError: values = [] zero_value_types.append(attr_info) if (attr_info.count != UNLIMITED_VALUES) and \ (attr_info.count < len(values)): raise AXError( 'More than the number of requested values were ' 'specified for %r' % (attr_info.type_uri,)) kv_args = self._getExtensionKVArgs(aliases) # Add the KV args into the response with the args that are # unique to the fetch_response ax_args = self._newArgs() # For each requested attribute, put its type/alias and count # into the response even if no data were returned. for attr_info in zero_value_types: alias = aliases.getAlias(attr_info.type_uri) kv_args['type.' + alias] = attr_info.type_uri kv_args['count.' + alias] = '0' update_url = ((self.request and self.request.update_url) or self.update_url) if update_url: ax_args['update_url'] = update_url ax_args.update(kv_args) return ax_args
python
def getExtensionArgs(self): """Serialize this object into arguments in the attribute exchange namespace @returns: The dictionary of unqualified attribute exchange arguments that represent this fetch_response. @rtype: {unicode;unicode} """ aliases = NamespaceMap() zero_value_types = [] if self.request is not None: # Validate the data in the context of the request (the # same attributes should be present in each, and the # counts in the response must be no more than the counts # in the request) for type_uri in self.data: if type_uri not in self.request: raise KeyError( 'Response attribute not present in request: %r' % (type_uri,)) for attr_info in self.request.iterAttrs(): # Copy the aliases from the request so that reading # the response in light of the request is easier if attr_info.alias is None: aliases.add(attr_info.type_uri) else: aliases.addAlias(attr_info.type_uri, attr_info.alias) try: values = self.data[attr_info.type_uri] except KeyError: values = [] zero_value_types.append(attr_info) if (attr_info.count != UNLIMITED_VALUES) and \ (attr_info.count < len(values)): raise AXError( 'More than the number of requested values were ' 'specified for %r' % (attr_info.type_uri,)) kv_args = self._getExtensionKVArgs(aliases) # Add the KV args into the response with the args that are # unique to the fetch_response ax_args = self._newArgs() # For each requested attribute, put its type/alias and count # into the response even if no data were returned. for attr_info in zero_value_types: alias = aliases.getAlias(attr_info.type_uri) kv_args['type.' + alias] = attr_info.type_uri kv_args['count.' + alias] = '0' update_url = ((self.request and self.request.update_url) or self.update_url) if update_url: ax_args['update_url'] = update_url ax_args.update(kv_args) return ax_args
[ "def", "getExtensionArgs", "(", "self", ")", ":", "aliases", "=", "NamespaceMap", "(", ")", "zero_value_types", "=", "[", "]", "if", "self", ".", "request", "is", "not", "None", ":", "# Validate the data in the context of the request (the", "# same attributes should be present in each, and the", "# counts in the response must be no more than the counts", "# in the request)", "for", "type_uri", "in", "self", ".", "data", ":", "if", "type_uri", "not", "in", "self", ".", "request", ":", "raise", "KeyError", "(", "'Response attribute not present in request: %r'", "%", "(", "type_uri", ",", ")", ")", "for", "attr_info", "in", "self", ".", "request", ".", "iterAttrs", "(", ")", ":", "# Copy the aliases from the request so that reading", "# the response in light of the request is easier", "if", "attr_info", ".", "alias", "is", "None", ":", "aliases", ".", "add", "(", "attr_info", ".", "type_uri", ")", "else", ":", "aliases", ".", "addAlias", "(", "attr_info", ".", "type_uri", ",", "attr_info", ".", "alias", ")", "try", ":", "values", "=", "self", ".", "data", "[", "attr_info", ".", "type_uri", "]", "except", "KeyError", ":", "values", "=", "[", "]", "zero_value_types", ".", "append", "(", "attr_info", ")", "if", "(", "attr_info", ".", "count", "!=", "UNLIMITED_VALUES", ")", "and", "(", "attr_info", ".", "count", "<", "len", "(", "values", ")", ")", ":", "raise", "AXError", "(", "'More than the number of requested values were '", "'specified for %r'", "%", "(", "attr_info", ".", "type_uri", ",", ")", ")", "kv_args", "=", "self", ".", "_getExtensionKVArgs", "(", "aliases", ")", "# Add the KV args into the response with the args that are", "# unique to the fetch_response", "ax_args", "=", "self", ".", "_newArgs", "(", ")", "# For each requested attribute, put its type/alias and count", "# into the response even if no data were returned.", "for", "attr_info", "in", "zero_value_types", ":", "alias", "=", "aliases", ".", "getAlias", "(", "attr_info", ".", "type_uri", ")", "kv_args", "[", "'type.'", "+", "alias", "]", "=", "attr_info", ".", "type_uri", "kv_args", "[", "'count.'", "+", "alias", "]", "=", "'0'", "update_url", "=", "(", "(", "self", ".", "request", "and", "self", ".", "request", ".", "update_url", ")", "or", "self", ".", "update_url", ")", "if", "update_url", ":", "ax_args", "[", "'update_url'", "]", "=", "update_url", "ax_args", ".", "update", "(", "kv_args", ")", "return", "ax_args" ]
Serialize this object into arguments in the attribute exchange namespace @returns: The dictionary of unqualified attribute exchange arguments that represent this fetch_response. @rtype: {unicode;unicode}
[ "Serialize", "this", "object", "into", "arguments", "in", "the", "attribute", "exchange", "namespace" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/ax.py#L616-L682
train
openid/python-openid
openid/extensions/ax.py
FetchResponse.fromSuccessResponse
def fromSuccessResponse(cls, success_response, signed=True): """Construct a FetchResponse object from an OpenID library SuccessResponse object. @param success_response: A successful id_res response object @type success_response: openid.consumer.consumer.SuccessResponse @param signed: Whether non-signed args should be processsed. If True (the default), only signed arguments will be processsed. @type signed: bool @returns: A FetchResponse containing the data from the OpenID message, or None if the SuccessResponse did not contain AX extension data. @raises AXError: when the AX data cannot be parsed. """ self = cls() ax_args = success_response.extensionResponse(self.ns_uri, signed) try: self.parseExtensionArgs(ax_args) except NotAXMessage, err: return None else: return self
python
def fromSuccessResponse(cls, success_response, signed=True): """Construct a FetchResponse object from an OpenID library SuccessResponse object. @param success_response: A successful id_res response object @type success_response: openid.consumer.consumer.SuccessResponse @param signed: Whether non-signed args should be processsed. If True (the default), only signed arguments will be processsed. @type signed: bool @returns: A FetchResponse containing the data from the OpenID message, or None if the SuccessResponse did not contain AX extension data. @raises AXError: when the AX data cannot be parsed. """ self = cls() ax_args = success_response.extensionResponse(self.ns_uri, signed) try: self.parseExtensionArgs(ax_args) except NotAXMessage, err: return None else: return self
[ "def", "fromSuccessResponse", "(", "cls", ",", "success_response", ",", "signed", "=", "True", ")", ":", "self", "=", "cls", "(", ")", "ax_args", "=", "success_response", ".", "extensionResponse", "(", "self", ".", "ns_uri", ",", "signed", ")", "try", ":", "self", ".", "parseExtensionArgs", "(", "ax_args", ")", "except", "NotAXMessage", ",", "err", ":", "return", "None", "else", ":", "return", "self" ]
Construct a FetchResponse object from an OpenID library SuccessResponse object. @param success_response: A successful id_res response object @type success_response: openid.consumer.consumer.SuccessResponse @param signed: Whether non-signed args should be processsed. If True (the default), only signed arguments will be processsed. @type signed: bool @returns: A FetchResponse containing the data from the OpenID message, or None if the SuccessResponse did not contain AX extension data. @raises AXError: when the AX data cannot be parsed.
[ "Construct", "a", "FetchResponse", "object", "from", "an", "OpenID", "library", "SuccessResponse", "object", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/ax.py#L689-L715
train
openid/python-openid
openid/extensions/sreg.py
SRegRequest.parseExtensionArgs
def parseExtensionArgs(self, args, strict=False): """Parse the unqualified simple registration request parameters and add them to this object. This method is essentially the inverse of C{L{getExtensionArgs}}. This method restores the serialized simple registration request fields. If you are extracting arguments from a standard OpenID checkid_* request, you probably want to use C{L{fromOpenIDRequest}}, which will extract the sreg namespace and arguments from the OpenID request. This method is intended for cases where the OpenID server needs more control over how the arguments are parsed than that method provides. >>> args = message.getArgs(ns_uri) >>> request.parseExtensionArgs(args) @param args: The unqualified simple registration arguments @type args: {str:str} @param strict: Whether requests with fields that are not defined in the simple registration specification should be tolerated (and ignored) @type strict: bool @returns: None; updates this object """ for list_name in ['required', 'optional']: required = (list_name == 'required') items = args.get(list_name) if items: for field_name in items.split(','): try: self.requestField(field_name, required, strict) except ValueError: if strict: raise self.policy_url = args.get('policy_url')
python
def parseExtensionArgs(self, args, strict=False): """Parse the unqualified simple registration request parameters and add them to this object. This method is essentially the inverse of C{L{getExtensionArgs}}. This method restores the serialized simple registration request fields. If you are extracting arguments from a standard OpenID checkid_* request, you probably want to use C{L{fromOpenIDRequest}}, which will extract the sreg namespace and arguments from the OpenID request. This method is intended for cases where the OpenID server needs more control over how the arguments are parsed than that method provides. >>> args = message.getArgs(ns_uri) >>> request.parseExtensionArgs(args) @param args: The unqualified simple registration arguments @type args: {str:str} @param strict: Whether requests with fields that are not defined in the simple registration specification should be tolerated (and ignored) @type strict: bool @returns: None; updates this object """ for list_name in ['required', 'optional']: required = (list_name == 'required') items = args.get(list_name) if items: for field_name in items.split(','): try: self.requestField(field_name, required, strict) except ValueError: if strict: raise self.policy_url = args.get('policy_url')
[ "def", "parseExtensionArgs", "(", "self", ",", "args", ",", "strict", "=", "False", ")", ":", "for", "list_name", "in", "[", "'required'", ",", "'optional'", "]", ":", "required", "=", "(", "list_name", "==", "'required'", ")", "items", "=", "args", ".", "get", "(", "list_name", ")", "if", "items", ":", "for", "field_name", "in", "items", ".", "split", "(", "','", ")", ":", "try", ":", "self", ".", "requestField", "(", "field_name", ",", "required", ",", "strict", ")", "except", "ValueError", ":", "if", "strict", ":", "raise", "self", ".", "policy_url", "=", "args", ".", "get", "(", "'policy_url'", ")" ]
Parse the unqualified simple registration request parameters and add them to this object. This method is essentially the inverse of C{L{getExtensionArgs}}. This method restores the serialized simple registration request fields. If you are extracting arguments from a standard OpenID checkid_* request, you probably want to use C{L{fromOpenIDRequest}}, which will extract the sreg namespace and arguments from the OpenID request. This method is intended for cases where the OpenID server needs more control over how the arguments are parsed than that method provides. >>> args = message.getArgs(ns_uri) >>> request.parseExtensionArgs(args) @param args: The unqualified simple registration arguments @type args: {str:str} @param strict: Whether requests with fields that are not defined in the simple registration specification should be tolerated (and ignored) @type strict: bool @returns: None; updates this object
[ "Parse", "the", "unqualified", "simple", "registration", "request", "parameters", "and", "add", "them", "to", "this", "object", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/sreg.py#L232-L271
train
openid/python-openid
openid/extensions/sreg.py
SRegRequest.requestField
def requestField(self, field_name, required=False, strict=False): """Request the specified field from the OpenID user @param field_name: the unqualified simple registration field name @type field_name: str @param required: whether the given field should be presented to the user as being a required to successfully complete the request @param strict: whether to raise an exception when a field is added to a request more than once @raise ValueError: when the field requested is not a simple registration field or strict is set and the field was requested more than once """ checkFieldName(field_name) if strict: if field_name in self.required or field_name in self.optional: raise ValueError('That field has already been requested') else: if field_name in self.required: return if field_name in self.optional: if required: self.optional.remove(field_name) else: return if required: self.required.append(field_name) else: self.optional.append(field_name)
python
def requestField(self, field_name, required=False, strict=False): """Request the specified field from the OpenID user @param field_name: the unqualified simple registration field name @type field_name: str @param required: whether the given field should be presented to the user as being a required to successfully complete the request @param strict: whether to raise an exception when a field is added to a request more than once @raise ValueError: when the field requested is not a simple registration field or strict is set and the field was requested more than once """ checkFieldName(field_name) if strict: if field_name in self.required or field_name in self.optional: raise ValueError('That field has already been requested') else: if field_name in self.required: return if field_name in self.optional: if required: self.optional.remove(field_name) else: return if required: self.required.append(field_name) else: self.optional.append(field_name)
[ "def", "requestField", "(", "self", ",", "field_name", ",", "required", "=", "False", ",", "strict", "=", "False", ")", ":", "checkFieldName", "(", "field_name", ")", "if", "strict", ":", "if", "field_name", "in", "self", ".", "required", "or", "field_name", "in", "self", ".", "optional", ":", "raise", "ValueError", "(", "'That field has already been requested'", ")", "else", ":", "if", "field_name", "in", "self", ".", "required", ":", "return", "if", "field_name", "in", "self", ".", "optional", ":", "if", "required", ":", "self", ".", "optional", ".", "remove", "(", "field_name", ")", "else", ":", "return", "if", "required", ":", "self", ".", "required", ".", "append", "(", "field_name", ")", "else", ":", "self", ".", "optional", ".", "append", "(", "field_name", ")" ]
Request the specified field from the OpenID user @param field_name: the unqualified simple registration field name @type field_name: str @param required: whether the given field should be presented to the user as being a required to successfully complete the request @param strict: whether to raise an exception when a field is added to a request more than once @raise ValueError: when the field requested is not a simple registration field or strict is set and the field was requested more than once
[ "Request", "the", "specified", "field", "from", "the", "OpenID", "user" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/sreg.py#L293-L328
train
openid/python-openid
openid/extensions/sreg.py
SRegRequest.requestFields
def requestFields(self, field_names, required=False, strict=False): """Add the given list of fields to the request @param field_names: The simple registration data fields to request @type field_names: [str] @param required: Whether these values should be presented to the user as required @param strict: whether to raise an exception when a field is added to a request more than once @raise ValueError: when a field requested is not a simple registration field or strict is set and a field was requested more than once """ if isinstance(field_names, basestring): raise TypeError('Fields should be passed as a list of ' 'strings (not %r)' % (type(field_names),)) for field_name in field_names: self.requestField(field_name, required, strict=strict)
python
def requestFields(self, field_names, required=False, strict=False): """Add the given list of fields to the request @param field_names: The simple registration data fields to request @type field_names: [str] @param required: Whether these values should be presented to the user as required @param strict: whether to raise an exception when a field is added to a request more than once @raise ValueError: when a field requested is not a simple registration field or strict is set and a field was requested more than once """ if isinstance(field_names, basestring): raise TypeError('Fields should be passed as a list of ' 'strings (not %r)' % (type(field_names),)) for field_name in field_names: self.requestField(field_name, required, strict=strict)
[ "def", "requestFields", "(", "self", ",", "field_names", ",", "required", "=", "False", ",", "strict", "=", "False", ")", ":", "if", "isinstance", "(", "field_names", ",", "basestring", ")", ":", "raise", "TypeError", "(", "'Fields should be passed as a list of '", "'strings (not %r)'", "%", "(", "type", "(", "field_names", ")", ",", ")", ")", "for", "field_name", "in", "field_names", ":", "self", ".", "requestField", "(", "field_name", ",", "required", ",", "strict", "=", "strict", ")" ]
Add the given list of fields to the request @param field_names: The simple registration data fields to request @type field_names: [str] @param required: Whether these values should be presented to the user as required @param strict: whether to raise an exception when a field is added to a request more than once @raise ValueError: when a field requested is not a simple registration field or strict is set and a field was requested more than once
[ "Add", "the", "given", "list", "of", "fields", "to", "the", "request" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/sreg.py#L330-L351
train
openid/python-openid
openid/extensions/sreg.py
SRegRequest.getExtensionArgs
def getExtensionArgs(self): """Get a dictionary of unqualified simple registration arguments representing this request. This method is essentially the inverse of C{L{parseExtensionArgs}}. This method serializes the simple registration request fields. @rtype: {str:str} """ args = {} if self.required: args['required'] = ','.join(self.required) if self.optional: args['optional'] = ','.join(self.optional) if self.policy_url: args['policy_url'] = self.policy_url return args
python
def getExtensionArgs(self): """Get a dictionary of unqualified simple registration arguments representing this request. This method is essentially the inverse of C{L{parseExtensionArgs}}. This method serializes the simple registration request fields. @rtype: {str:str} """ args = {} if self.required: args['required'] = ','.join(self.required) if self.optional: args['optional'] = ','.join(self.optional) if self.policy_url: args['policy_url'] = self.policy_url return args
[ "def", "getExtensionArgs", "(", "self", ")", ":", "args", "=", "{", "}", "if", "self", ".", "required", ":", "args", "[", "'required'", "]", "=", "','", ".", "join", "(", "self", ".", "required", ")", "if", "self", ".", "optional", ":", "args", "[", "'optional'", "]", "=", "','", ".", "join", "(", "self", ".", "optional", ")", "if", "self", ".", "policy_url", ":", "args", "[", "'policy_url'", "]", "=", "self", ".", "policy_url", "return", "args" ]
Get a dictionary of unqualified simple registration arguments representing this request. This method is essentially the inverse of C{L{parseExtensionArgs}}. This method serializes the simple registration request fields. @rtype: {str:str}
[ "Get", "a", "dictionary", "of", "unqualified", "simple", "registration", "arguments", "representing", "this", "request", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/sreg.py#L353-L374
train
openid/python-openid
openid/extensions/sreg.py
SRegResponse.get
def get(self, field_name, default=None): """Like dict.get, except that it checks that the field name is defined by the simple registration specification""" checkFieldName(field_name) return self.data.get(field_name, default)
python
def get(self, field_name, default=None): """Like dict.get, except that it checks that the field name is defined by the simple registration specification""" checkFieldName(field_name) return self.data.get(field_name, default)
[ "def", "get", "(", "self", ",", "field_name", ",", "default", "=", "None", ")", ":", "checkFieldName", "(", "field_name", ")", "return", "self", ".", "data", ".", "get", "(", "field_name", ",", "default", ")" ]
Like dict.get, except that it checks that the field name is defined by the simple registration specification
[ "Like", "dict", ".", "get", "except", "that", "it", "checks", "that", "the", "field", "name", "is", "defined", "by", "the", "simple", "registration", "specification" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/extensions/sreg.py#L483-L487
train
openid/python-openid
openid/server/trustroot.py
returnToMatches
def returnToMatches(allowed_return_to_urls, return_to): """Is the return_to URL under one of the supplied allowed return_to URLs? @since: 2.1.0 """ for allowed_return_to in allowed_return_to_urls: # A return_to pattern works the same as a realm, except that # it's not allowed to use a wildcard. We'll model this by # parsing it as a realm, and not trying to match it if it has # a wildcard. return_realm = TrustRoot.parse(allowed_return_to) if (# Parses as a trust root return_realm is not None and # Does not have a wildcard not return_realm.wildcard and # Matches the return_to that we passed in with it return_realm.validateURL(return_to) ): return True # No URL in the list matched return False
python
def returnToMatches(allowed_return_to_urls, return_to): """Is the return_to URL under one of the supplied allowed return_to URLs? @since: 2.1.0 """ for allowed_return_to in allowed_return_to_urls: # A return_to pattern works the same as a realm, except that # it's not allowed to use a wildcard. We'll model this by # parsing it as a realm, and not trying to match it if it has # a wildcard. return_realm = TrustRoot.parse(allowed_return_to) if (# Parses as a trust root return_realm is not None and # Does not have a wildcard not return_realm.wildcard and # Matches the return_to that we passed in with it return_realm.validateURL(return_to) ): return True # No URL in the list matched return False
[ "def", "returnToMatches", "(", "allowed_return_to_urls", ",", "return_to", ")", ":", "for", "allowed_return_to", "in", "allowed_return_to_urls", ":", "# A return_to pattern works the same as a realm, except that", "# it's not allowed to use a wildcard. We'll model this by", "# parsing it as a realm, and not trying to match it if it has", "# a wildcard.", "return_realm", "=", "TrustRoot", ".", "parse", "(", "allowed_return_to", ")", "if", "(", "# Parses as a trust root", "return_realm", "is", "not", "None", "and", "# Does not have a wildcard", "not", "return_realm", ".", "wildcard", "and", "# Matches the return_to that we passed in with it", "return_realm", ".", "validateURL", "(", "return_to", ")", ")", ":", "return", "True", "# No URL in the list matched", "return", "False" ]
Is the return_to URL under one of the supplied allowed return_to URLs? @since: 2.1.0
[ "Is", "the", "return_to", "URL", "under", "one", "of", "the", "supplied", "allowed", "return_to", "URLs?" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/server/trustroot.py#L381-L407
train
openid/python-openid
openid/server/trustroot.py
getAllowedReturnURLs
def getAllowedReturnURLs(relying_party_url): """Given a relying party discovery URL return a list of return_to URLs. @since: 2.1.0 """ (rp_url_after_redirects, return_to_urls) = services.getServiceEndpoints( relying_party_url, _extractReturnURL) if rp_url_after_redirects != relying_party_url: # Verification caused a redirect raise RealmVerificationRedirected( relying_party_url, rp_url_after_redirects) return return_to_urls
python
def getAllowedReturnURLs(relying_party_url): """Given a relying party discovery URL return a list of return_to URLs. @since: 2.1.0 """ (rp_url_after_redirects, return_to_urls) = services.getServiceEndpoints( relying_party_url, _extractReturnURL) if rp_url_after_redirects != relying_party_url: # Verification caused a redirect raise RealmVerificationRedirected( relying_party_url, rp_url_after_redirects) return return_to_urls
[ "def", "getAllowedReturnURLs", "(", "relying_party_url", ")", ":", "(", "rp_url_after_redirects", ",", "return_to_urls", ")", "=", "services", ".", "getServiceEndpoints", "(", "relying_party_url", ",", "_extractReturnURL", ")", "if", "rp_url_after_redirects", "!=", "relying_party_url", ":", "# Verification caused a redirect", "raise", "RealmVerificationRedirected", "(", "relying_party_url", ",", "rp_url_after_redirects", ")", "return", "return_to_urls" ]
Given a relying party discovery URL return a list of return_to URLs. @since: 2.1.0
[ "Given", "a", "relying", "party", "discovery", "URL", "return", "a", "list", "of", "return_to", "URLs", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/server/trustroot.py#L409-L422
train
openid/python-openid
openid/server/trustroot.py
verifyReturnTo
def verifyReturnTo(realm_str, return_to, _vrfy=getAllowedReturnURLs): """Verify that a return_to URL is valid for the given realm. This function builds a discovery URL, performs Yadis discovery on it, makes sure that the URL does not redirect, parses out the return_to URLs, and finally checks to see if the current return_to URL matches the return_to. @raises DiscoveryFailure: When Yadis discovery fails @returns: True if the return_to URL is valid for the realm @since: 2.1.0 """ realm = TrustRoot.parse(realm_str) if realm is None: # The realm does not parse as a URL pattern return False try: allowable_urls = _vrfy(realm.buildDiscoveryURL()) except RealmVerificationRedirected, err: logging.exception(str(err)) return False if returnToMatches(allowable_urls, return_to): return True else: logging.error("Failed to validate return_to %r for realm %r, was not " "in %s" % (return_to, realm_str, allowable_urls)) return False
python
def verifyReturnTo(realm_str, return_to, _vrfy=getAllowedReturnURLs): """Verify that a return_to URL is valid for the given realm. This function builds a discovery URL, performs Yadis discovery on it, makes sure that the URL does not redirect, parses out the return_to URLs, and finally checks to see if the current return_to URL matches the return_to. @raises DiscoveryFailure: When Yadis discovery fails @returns: True if the return_to URL is valid for the realm @since: 2.1.0 """ realm = TrustRoot.parse(realm_str) if realm is None: # The realm does not parse as a URL pattern return False try: allowable_urls = _vrfy(realm.buildDiscoveryURL()) except RealmVerificationRedirected, err: logging.exception(str(err)) return False if returnToMatches(allowable_urls, return_to): return True else: logging.error("Failed to validate return_to %r for realm %r, was not " "in %s" % (return_to, realm_str, allowable_urls)) return False
[ "def", "verifyReturnTo", "(", "realm_str", ",", "return_to", ",", "_vrfy", "=", "getAllowedReturnURLs", ")", ":", "realm", "=", "TrustRoot", ".", "parse", "(", "realm_str", ")", "if", "realm", "is", "None", ":", "# The realm does not parse as a URL pattern", "return", "False", "try", ":", "allowable_urls", "=", "_vrfy", "(", "realm", ".", "buildDiscoveryURL", "(", ")", ")", "except", "RealmVerificationRedirected", ",", "err", ":", "logging", ".", "exception", "(", "str", "(", "err", ")", ")", "return", "False", "if", "returnToMatches", "(", "allowable_urls", ",", "return_to", ")", ":", "return", "True", "else", ":", "logging", ".", "error", "(", "\"Failed to validate return_to %r for realm %r, was not \"", "\"in %s\"", "%", "(", "return_to", ",", "realm_str", ",", "allowable_urls", ")", ")", "return", "False" ]
Verify that a return_to URL is valid for the given realm. This function builds a discovery URL, performs Yadis discovery on it, makes sure that the URL does not redirect, parses out the return_to URLs, and finally checks to see if the current return_to URL matches the return_to. @raises DiscoveryFailure: When Yadis discovery fails @returns: True if the return_to URL is valid for the realm @since: 2.1.0
[ "Verify", "that", "a", "return_to", "URL", "is", "valid", "for", "the", "given", "realm", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/server/trustroot.py#L425-L454
train
openid/python-openid
openid/server/trustroot.py
TrustRoot.validateURL
def validateURL(self, url): """ Validates a URL against this trust root. @param url: The URL to check @type url: C{str} @return: Whether the given URL is within this trust root. @rtype: C{bool} """ url_parts = _parseURL(url) if url_parts is None: return False proto, host, port, path = url_parts if proto != self.proto: return False if port != self.port: return False if '*' in host: return False if not self.wildcard: if host != self.host: return False elif ((not host.endswith(self.host)) and ('.' + host) != self.host): return False if path != self.path: path_len = len(self.path) trust_prefix = self.path[:path_len] url_prefix = path[:path_len] # must be equal up to the length of the path, at least if trust_prefix != url_prefix: return False # These characters must be on the boundary between the end # of the trust root's path and the start of the URL's # path. if '?' in self.path: allowed = '&' else: allowed = '?/' return (self.path[-1] in allowed or path[path_len] in allowed) return True
python
def validateURL(self, url): """ Validates a URL against this trust root. @param url: The URL to check @type url: C{str} @return: Whether the given URL is within this trust root. @rtype: C{bool} """ url_parts = _parseURL(url) if url_parts is None: return False proto, host, port, path = url_parts if proto != self.proto: return False if port != self.port: return False if '*' in host: return False if not self.wildcard: if host != self.host: return False elif ((not host.endswith(self.host)) and ('.' + host) != self.host): return False if path != self.path: path_len = len(self.path) trust_prefix = self.path[:path_len] url_prefix = path[:path_len] # must be equal up to the length of the path, at least if trust_prefix != url_prefix: return False # These characters must be on the boundary between the end # of the trust root's path and the start of the URL's # path. if '?' in self.path: allowed = '&' else: allowed = '?/' return (self.path[-1] in allowed or path[path_len] in allowed) return True
[ "def", "validateURL", "(", "self", ",", "url", ")", ":", "url_parts", "=", "_parseURL", "(", "url", ")", "if", "url_parts", "is", "None", ":", "return", "False", "proto", ",", "host", ",", "port", ",", "path", "=", "url_parts", "if", "proto", "!=", "self", ".", "proto", ":", "return", "False", "if", "port", "!=", "self", ".", "port", ":", "return", "False", "if", "'*'", "in", "host", ":", "return", "False", "if", "not", "self", ".", "wildcard", ":", "if", "host", "!=", "self", ".", "host", ":", "return", "False", "elif", "(", "(", "not", "host", ".", "endswith", "(", "self", ".", "host", ")", ")", "and", "(", "'.'", "+", "host", ")", "!=", "self", ".", "host", ")", ":", "return", "False", "if", "path", "!=", "self", ".", "path", ":", "path_len", "=", "len", "(", "self", ".", "path", ")", "trust_prefix", "=", "self", ".", "path", "[", ":", "path_len", "]", "url_prefix", "=", "path", "[", ":", "path_len", "]", "# must be equal up to the length of the path, at least", "if", "trust_prefix", "!=", "url_prefix", ":", "return", "False", "# These characters must be on the boundary between the end", "# of the trust root's path and the start of the URL's", "# path.", "if", "'?'", "in", "self", ".", "path", ":", "allowed", "=", "'&'", "else", ":", "allowed", "=", "'?/'", "return", "(", "self", ".", "path", "[", "-", "1", "]", "in", "allowed", "or", "path", "[", "path_len", "]", "in", "allowed", ")", "return", "True" ]
Validates a URL against this trust root. @param url: The URL to check @type url: C{str} @return: Whether the given URL is within this trust root. @rtype: C{bool}
[ "Validates", "a", "URL", "against", "this", "trust", "root", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/server/trustroot.py#L190-L247
train
openid/python-openid
openid/server/trustroot.py
TrustRoot.checkSanity
def checkSanity(cls, trust_root_string): """str -> bool is this a sane trust root? """ trust_root = cls.parse(trust_root_string) if trust_root is None: return False else: return trust_root.isSane()
python
def checkSanity(cls, trust_root_string): """str -> bool is this a sane trust root? """ trust_root = cls.parse(trust_root_string) if trust_root is None: return False else: return trust_root.isSane()
[ "def", "checkSanity", "(", "cls", ",", "trust_root_string", ")", ":", "trust_root", "=", "cls", ".", "parse", "(", "trust_root_string", ")", "if", "trust_root", "is", "None", ":", "return", "False", "else", ":", "return", "trust_root", ".", "isSane", "(", ")" ]
str -> bool is this a sane trust root?
[ "str", "-", ">", "bool" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/server/trustroot.py#L303-L312
train
openid/python-openid
openid/server/trustroot.py
TrustRoot.checkURL
def checkURL(cls, trust_root, url): """quick func for validating a url against a trust root. See the TrustRoot class if you need more control.""" tr = cls.parse(trust_root) return tr is not None and tr.validateURL(url)
python
def checkURL(cls, trust_root, url): """quick func for validating a url against a trust root. See the TrustRoot class if you need more control.""" tr = cls.parse(trust_root) return tr is not None and tr.validateURL(url)
[ "def", "checkURL", "(", "cls", ",", "trust_root", ",", "url", ")", ":", "tr", "=", "cls", ".", "parse", "(", "trust_root", ")", "return", "tr", "is", "not", "None", "and", "tr", ".", "validateURL", "(", "url", ")" ]
quick func for validating a url against a trust root. See the TrustRoot class if you need more control.
[ "quick", "func", "for", "validating", "a", "url", "against", "a", "trust", "root", ".", "See", "the", "TrustRoot", "class", "if", "you", "need", "more", "control", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/server/trustroot.py#L316-L320
train
openid/python-openid
openid/server/trustroot.py
TrustRoot.buildDiscoveryURL
def buildDiscoveryURL(self): """Return a discovery URL for this realm. This function does not check to make sure that the realm is valid. Its behaviour on invalid inputs is undefined. @rtype: str @returns: The URL upon which relying party discovery should be run in order to verify the return_to URL @since: 2.1.0 """ if self.wildcard: # Use "www." in place of the star assert self.host.startswith('.'), self.host www_domain = 'www' + self.host return '%s://%s%s' % (self.proto, www_domain, self.path) else: return self.unparsed
python
def buildDiscoveryURL(self): """Return a discovery URL for this realm. This function does not check to make sure that the realm is valid. Its behaviour on invalid inputs is undefined. @rtype: str @returns: The URL upon which relying party discovery should be run in order to verify the return_to URL @since: 2.1.0 """ if self.wildcard: # Use "www." in place of the star assert self.host.startswith('.'), self.host www_domain = 'www' + self.host return '%s://%s%s' % (self.proto, www_domain, self.path) else: return self.unparsed
[ "def", "buildDiscoveryURL", "(", "self", ")", ":", "if", "self", ".", "wildcard", ":", "# Use \"www.\" in place of the star", "assert", "self", ".", "host", ".", "startswith", "(", "'.'", ")", ",", "self", ".", "host", "www_domain", "=", "'www'", "+", "self", ".", "host", "return", "'%s://%s%s'", "%", "(", "self", ".", "proto", ",", "www_domain", ",", "self", ".", "path", ")", "else", ":", "return", "self", ".", "unparsed" ]
Return a discovery URL for this realm. This function does not check to make sure that the realm is valid. Its behaviour on invalid inputs is undefined. @rtype: str @returns: The URL upon which relying party discovery should be run in order to verify the return_to URL @since: 2.1.0
[ "Return", "a", "discovery", "URL", "for", "this", "realm", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/server/trustroot.py#L324-L343
train
openid/python-openid
openid/yadis/manager.py
YadisServiceManager.next
def next(self): """Return the next service self.current() will continue to return that service until the next call to this method.""" try: self._current = self.services.pop(0) except IndexError: raise StopIteration else: return self._current
python
def next(self): """Return the next service self.current() will continue to return that service until the next call to this method.""" try: self._current = self.services.pop(0) except IndexError: raise StopIteration else: return self._current
[ "def", "next", "(", "self", ")", ":", "try", ":", "self", ".", "_current", "=", "self", ".", "services", ".", "pop", "(", "0", ")", "except", "IndexError", ":", "raise", "StopIteration", "else", ":", "return", "self", ".", "_current" ]
Return the next service self.current() will continue to return that service until the next call to this method.
[ "Return", "the", "next", "service" ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/yadis/manager.py#L27-L37
train
openid/python-openid
openid/yadis/manager.py
Discovery.getNextService
def getNextService(self, discover): """Return the next authentication service for the pair of user_input and session. This function handles fallback. @param discover: a callable that takes a URL and returns a list of services @type discover: str -> [service] @return: the next available service """ manager = self.getManager() if manager is not None and not manager: self.destroyManager() if not manager: yadis_url, services = discover(self.url) manager = self.createManager(services, yadis_url) if manager: service = manager.next() manager.store(self.session) else: service = None return service
python
def getNextService(self, discover): """Return the next authentication service for the pair of user_input and session. This function handles fallback. @param discover: a callable that takes a URL and returns a list of services @type discover: str -> [service] @return: the next available service """ manager = self.getManager() if manager is not None and not manager: self.destroyManager() if not manager: yadis_url, services = discover(self.url) manager = self.createManager(services, yadis_url) if manager: service = manager.next() manager.store(self.session) else: service = None return service
[ "def", "getNextService", "(", "self", ",", "discover", ")", ":", "manager", "=", "self", ".", "getManager", "(", ")", "if", "manager", "is", "not", "None", "and", "not", "manager", ":", "self", ".", "destroyManager", "(", ")", "if", "not", "manager", ":", "yadis_url", ",", "services", "=", "discover", "(", "self", ".", "url", ")", "manager", "=", "self", ".", "createManager", "(", "services", ",", "yadis_url", ")", "if", "manager", ":", "service", "=", "manager", ".", "next", "(", ")", "manager", ".", "store", "(", "self", ".", "session", ")", "else", ":", "service", "=", "None", "return", "service" ]
Return the next authentication service for the pair of user_input and session. This function handles fallback. @param discover: a callable that takes a URL and returns a list of services @type discover: str -> [service] @return: the next available service
[ "Return", "the", "next", "authentication", "service", "for", "the", "pair", "of", "user_input", "and", "session", ".", "This", "function", "handles", "fallback", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/yadis/manager.py#L87-L114
train
openid/python-openid
openid/yadis/manager.py
Discovery.cleanup
def cleanup(self, force=False): """Clean up Yadis-related services in the session and return the most-recently-attempted service from the manager, if one exists. @param force: True if the manager should be deleted regardless of whether it's a manager for self.url. @return: current service endpoint object or None if there is no current service """ manager = self.getManager(force=force) if manager is not None: service = manager.current() self.destroyManager(force=force) else: service = None return service
python
def cleanup(self, force=False): """Clean up Yadis-related services in the session and return the most-recently-attempted service from the manager, if one exists. @param force: True if the manager should be deleted regardless of whether it's a manager for self.url. @return: current service endpoint object or None if there is no current service """ manager = self.getManager(force=force) if manager is not None: service = manager.current() self.destroyManager(force=force) else: service = None return service
[ "def", "cleanup", "(", "self", ",", "force", "=", "False", ")", ":", "manager", "=", "self", ".", "getManager", "(", "force", "=", "force", ")", "if", "manager", "is", "not", "None", ":", "service", "=", "manager", ".", "current", "(", ")", "self", ".", "destroyManager", "(", "force", "=", "force", ")", "else", ":", "service", "=", "None", "return", "service" ]
Clean up Yadis-related services in the session and return the most-recently-attempted service from the manager, if one exists. @param force: True if the manager should be deleted regardless of whether it's a manager for self.url. @return: current service endpoint object or None if there is no current service
[ "Clean", "up", "Yadis", "-", "related", "services", "in", "the", "session", "and", "return", "the", "most", "-", "recently", "-", "attempted", "service", "from", "the", "manager", "if", "one", "exists", "." ]
f7e13536f0d1828d3cef5ae7a7b55cabadff37fc
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/yadis/manager.py#L116-L134
train