repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
sequence | docstring
stringlengths 3
17.3k
| docstring_tokens
sequence | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
rwl/pylon | pylon/ac_pf.py | FastDecoupledPF._q_iteration | def _q_iteration(self, Q, Bpp_solver, Vm, Va, pq):
""" Performs a Q iteration, updates Vm.
"""
dVm = -Bpp_solver.solve(Q)
# Update voltage.
Vm[pq] = Vm[pq] + dVm
V = Vm * exp(1j * Va)
return V, Vm, Va | python | def _q_iteration(self, Q, Bpp_solver, Vm, Va, pq):
""" Performs a Q iteration, updates Vm.
"""
dVm = -Bpp_solver.solve(Q)
# Update voltage.
Vm[pq] = Vm[pq] + dVm
V = Vm * exp(1j * Va)
return V, Vm, Va | [
"def",
"_q_iteration",
"(",
"self",
",",
"Q",
",",
"Bpp_solver",
",",
"Vm",
",",
"Va",
",",
"pq",
")",
":",
"dVm",
"=",
"-",
"Bpp_solver",
".",
"solve",
"(",
"Q",
")",
"# Update voltage.",
"Vm",
"[",
"pq",
"]",
"=",
"Vm",
"[",
"pq",
"]",
"+",
"dVm",
"V",
"=",
"Vm",
"*",
"exp",
"(",
"1j",
"*",
"Va",
")",
"return",
"V",
",",
"Vm",
",",
"Va"
] | Performs a Q iteration, updates Vm. | [
"Performs",
"a",
"Q",
"iteration",
"updates",
"Vm",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/ac_pf.py#L494-L503 | train |
melizalab/libtfr | examples/tfr_tm.py | fmsin | def fmsin(N, fnormin=0.05, fnormax=0.45, period=None, t0=None, fnorm0=0.25, pm1=1):
"""
Signal with sinusoidal frequency modulation.
generates a frequency modulation with a sinusoidal frequency.
This sinusoidal modulation is designed such that the instantaneous
frequency at time T0 is equal to FNORM0, and the ambiguity between
increasing or decreasing frequency is solved by PM1.
N : number of points.
FNORMIN : smallest normalized frequency (default: 0.05)
FNORMAX : highest normalized frequency (default: 0.45)
PERIOD : period of the sinusoidal fm (default: N )
T0 : time reference for the phase (default: N/2 )
FNORM0 : normalized frequency at time T0 (default: 0.25)
PM1 : frequency direction at T0 (-1 or +1) (default: +1 )
Returns:
Y : signal
IFLAW : its instantaneous frequency law
Example:
z,i=fmsin(140,0.05,0.45,100,20,0.3,-1.0)
Original MATLAB code F. Auger, July 1995.
(note: Licensed under GPL; see main LICENSE file)
"""
if period==None:
period = N
if t0==None:
t0 = N/2
pm1 = nx.sign(pm1)
fnormid=0.5*(fnormax+fnormin);
delta =0.5*(fnormax-fnormin);
phi =-pm1*nx.arccos((fnorm0-fnormid)/delta);
time =nx.arange(1,N)-t0;
phase =2*nx.pi*fnormid*time+delta*period*(nx.sin(2*nx.pi*time/period+phi)-nx.sin(phi));
y =nx.exp(1j*phase)
iflaw =fnormid+delta*nx.cos(2*nx.pi*time/period+phi);
return y,iflaw | python | def fmsin(N, fnormin=0.05, fnormax=0.45, period=None, t0=None, fnorm0=0.25, pm1=1):
"""
Signal with sinusoidal frequency modulation.
generates a frequency modulation with a sinusoidal frequency.
This sinusoidal modulation is designed such that the instantaneous
frequency at time T0 is equal to FNORM0, and the ambiguity between
increasing or decreasing frequency is solved by PM1.
N : number of points.
FNORMIN : smallest normalized frequency (default: 0.05)
FNORMAX : highest normalized frequency (default: 0.45)
PERIOD : period of the sinusoidal fm (default: N )
T0 : time reference for the phase (default: N/2 )
FNORM0 : normalized frequency at time T0 (default: 0.25)
PM1 : frequency direction at T0 (-1 or +1) (default: +1 )
Returns:
Y : signal
IFLAW : its instantaneous frequency law
Example:
z,i=fmsin(140,0.05,0.45,100,20,0.3,-1.0)
Original MATLAB code F. Auger, July 1995.
(note: Licensed under GPL; see main LICENSE file)
"""
if period==None:
period = N
if t0==None:
t0 = N/2
pm1 = nx.sign(pm1)
fnormid=0.5*(fnormax+fnormin);
delta =0.5*(fnormax-fnormin);
phi =-pm1*nx.arccos((fnorm0-fnormid)/delta);
time =nx.arange(1,N)-t0;
phase =2*nx.pi*fnormid*time+delta*period*(nx.sin(2*nx.pi*time/period+phi)-nx.sin(phi));
y =nx.exp(1j*phase)
iflaw =fnormid+delta*nx.cos(2*nx.pi*time/period+phi);
return y,iflaw | [
"def",
"fmsin",
"(",
"N",
",",
"fnormin",
"=",
"0.05",
",",
"fnormax",
"=",
"0.45",
",",
"period",
"=",
"None",
",",
"t0",
"=",
"None",
",",
"fnorm0",
"=",
"0.25",
",",
"pm1",
"=",
"1",
")",
":",
"if",
"period",
"==",
"None",
":",
"period",
"=",
"N",
"if",
"t0",
"==",
"None",
":",
"t0",
"=",
"N",
"/",
"2",
"pm1",
"=",
"nx",
".",
"sign",
"(",
"pm1",
")",
"fnormid",
"=",
"0.5",
"*",
"(",
"fnormax",
"+",
"fnormin",
")",
"delta",
"=",
"0.5",
"*",
"(",
"fnormax",
"-",
"fnormin",
")",
"phi",
"=",
"-",
"pm1",
"*",
"nx",
".",
"arccos",
"(",
"(",
"fnorm0",
"-",
"fnormid",
")",
"/",
"delta",
")",
"time",
"=",
"nx",
".",
"arange",
"(",
"1",
",",
"N",
")",
"-",
"t0",
"phase",
"=",
"2",
"*",
"nx",
".",
"pi",
"*",
"fnormid",
"*",
"time",
"+",
"delta",
"*",
"period",
"*",
"(",
"nx",
".",
"sin",
"(",
"2",
"*",
"nx",
".",
"pi",
"*",
"time",
"/",
"period",
"+",
"phi",
")",
"-",
"nx",
".",
"sin",
"(",
"phi",
")",
")",
"y",
"=",
"nx",
".",
"exp",
"(",
"1j",
"*",
"phase",
")",
"iflaw",
"=",
"fnormid",
"+",
"delta",
"*",
"nx",
".",
"cos",
"(",
"2",
"*",
"nx",
".",
"pi",
"*",
"time",
"/",
"period",
"+",
"phi",
")",
"return",
"y",
",",
"iflaw"
] | Signal with sinusoidal frequency modulation.
generates a frequency modulation with a sinusoidal frequency.
This sinusoidal modulation is designed such that the instantaneous
frequency at time T0 is equal to FNORM0, and the ambiguity between
increasing or decreasing frequency is solved by PM1.
N : number of points.
FNORMIN : smallest normalized frequency (default: 0.05)
FNORMAX : highest normalized frequency (default: 0.45)
PERIOD : period of the sinusoidal fm (default: N )
T0 : time reference for the phase (default: N/2 )
FNORM0 : normalized frequency at time T0 (default: 0.25)
PM1 : frequency direction at T0 (-1 or +1) (default: +1 )
Returns:
Y : signal
IFLAW : its instantaneous frequency law
Example:
z,i=fmsin(140,0.05,0.45,100,20,0.3,-1.0)
Original MATLAB code F. Auger, July 1995.
(note: Licensed under GPL; see main LICENSE file) | [
"Signal",
"with",
"sinusoidal",
"frequency",
"modulation",
"."
] | 9f7e7705793d258a0b205f185b20e3bbcda473da | https://github.com/melizalab/libtfr/blob/9f7e7705793d258a0b205f185b20e3bbcda473da/examples/tfr_tm.py#L14-L56 | train |
rwl/pylon | pylon/io/rdf.py | RDFReader._parse_rdf | def _parse_rdf(self, file):
""" Returns a case from the given file.
"""
store = Graph()
store.parse(file)
print len(store) | python | def _parse_rdf(self, file):
""" Returns a case from the given file.
"""
store = Graph()
store.parse(file)
print len(store) | [
"def",
"_parse_rdf",
"(",
"self",
",",
"file",
")",
":",
"store",
"=",
"Graph",
"(",
")",
"store",
".",
"parse",
"(",
"file",
")",
"print",
"len",
"(",
"store",
")"
] | Returns a case from the given file. | [
"Returns",
"a",
"case",
"from",
"the",
"given",
"file",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/rdf.py#L72-L78 | train |
finklabs/metrics | metrics/plugins.py | load_plugins | def load_plugins(group='metrics.plugin.10'):
"""Load and installed metrics plugins.
"""
# on using entrypoints:
# http://stackoverflow.com/questions/774824/explain-python-entry-points
file_processors = []
build_processors = []
for ep in pkg_resources.iter_entry_points(group, name=None):
log.debug('loading \'%s\'', ep)
plugin = ep.load() # load the plugin
if hasattr(plugin, 'get_file_processors'):
file_processors.extend(plugin.get_file_processors())
if hasattr(plugin, 'get_build_processors'):
build_processors.extend(plugin.get_build_processors())
return file_processors, build_processors | python | def load_plugins(group='metrics.plugin.10'):
"""Load and installed metrics plugins.
"""
# on using entrypoints:
# http://stackoverflow.com/questions/774824/explain-python-entry-points
file_processors = []
build_processors = []
for ep in pkg_resources.iter_entry_points(group, name=None):
log.debug('loading \'%s\'', ep)
plugin = ep.load() # load the plugin
if hasattr(plugin, 'get_file_processors'):
file_processors.extend(plugin.get_file_processors())
if hasattr(plugin, 'get_build_processors'):
build_processors.extend(plugin.get_build_processors())
return file_processors, build_processors | [
"def",
"load_plugins",
"(",
"group",
"=",
"'metrics.plugin.10'",
")",
":",
"# on using entrypoints:",
"# http://stackoverflow.com/questions/774824/explain-python-entry-points",
"file_processors",
"=",
"[",
"]",
"build_processors",
"=",
"[",
"]",
"for",
"ep",
"in",
"pkg_resources",
".",
"iter_entry_points",
"(",
"group",
",",
"name",
"=",
"None",
")",
":",
"log",
".",
"debug",
"(",
"'loading \\'%s\\''",
",",
"ep",
")",
"plugin",
"=",
"ep",
".",
"load",
"(",
")",
"# load the plugin",
"if",
"hasattr",
"(",
"plugin",
",",
"'get_file_processors'",
")",
":",
"file_processors",
".",
"extend",
"(",
"plugin",
".",
"get_file_processors",
"(",
")",
")",
"if",
"hasattr",
"(",
"plugin",
",",
"'get_build_processors'",
")",
":",
"build_processors",
".",
"extend",
"(",
"plugin",
".",
"get_build_processors",
"(",
")",
")",
"return",
"file_processors",
",",
"build_processors"
] | Load and installed metrics plugins. | [
"Load",
"and",
"installed",
"metrics",
"plugins",
"."
] | fd9974af498831664b9ae8e8f3834e1ec2e8a699 | https://github.com/finklabs/metrics/blob/fd9974af498831664b9ae8e8f3834e1ec2e8a699/metrics/plugins.py#L11-L25 | train |
rwl/pylon | pylon/main.py | read_case | def read_case(input, format=None):
""" Returns a case object from the given input file object. The data
format may be optionally specified.
"""
# Map of data file types to readers.
format_map = {"matpower": MATPOWERReader,
"psse": PSSEReader, "pickle": PickleReader}
# Read case data.
if format_map.has_key(format):
reader_klass = format_map[format]
reader = reader_klass()
case = reader.read(input)
else:
# Try each of the readers at random.
for reader_klass in format_map.values():
reader = reader_klass()
try:
case = reader.read(input)
if case is not None:
break
except:
pass
else:
case = None
return case | python | def read_case(input, format=None):
""" Returns a case object from the given input file object. The data
format may be optionally specified.
"""
# Map of data file types to readers.
format_map = {"matpower": MATPOWERReader,
"psse": PSSEReader, "pickle": PickleReader}
# Read case data.
if format_map.has_key(format):
reader_klass = format_map[format]
reader = reader_klass()
case = reader.read(input)
else:
# Try each of the readers at random.
for reader_klass in format_map.values():
reader = reader_klass()
try:
case = reader.read(input)
if case is not None:
break
except:
pass
else:
case = None
return case | [
"def",
"read_case",
"(",
"input",
",",
"format",
"=",
"None",
")",
":",
"# Map of data file types to readers.",
"format_map",
"=",
"{",
"\"matpower\"",
":",
"MATPOWERReader",
",",
"\"psse\"",
":",
"PSSEReader",
",",
"\"pickle\"",
":",
"PickleReader",
"}",
"# Read case data.",
"if",
"format_map",
".",
"has_key",
"(",
"format",
")",
":",
"reader_klass",
"=",
"format_map",
"[",
"format",
"]",
"reader",
"=",
"reader_klass",
"(",
")",
"case",
"=",
"reader",
".",
"read",
"(",
"input",
")",
"else",
":",
"# Try each of the readers at random.",
"for",
"reader_klass",
"in",
"format_map",
".",
"values",
"(",
")",
":",
"reader",
"=",
"reader_klass",
"(",
")",
"try",
":",
"case",
"=",
"reader",
".",
"read",
"(",
"input",
")",
"if",
"case",
"is",
"not",
"None",
":",
"break",
"except",
":",
"pass",
"else",
":",
"case",
"=",
"None",
"return",
"case"
] | Returns a case object from the given input file object. The data
format may be optionally specified. | [
"Returns",
"a",
"case",
"object",
"from",
"the",
"given",
"input",
"file",
"object",
".",
"The",
"data",
"format",
"may",
"be",
"optionally",
"specified",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/main.py#L48-L74 | train |
rwl/pylon | pylon/main.py | detect_data_file | def detect_data_file(input, file_name=""):
""" Detects the format of a network data file according to the
file extension and the header.
"""
_, ext = os.path.splitext(file_name)
if ext == ".m":
line = input.readline() # first line
if line.startswith("function"):
type = "matpower"
logger.info("Recognised MATPOWER data file.")
elif line.startswith("Bus.con" or line.startswith("%")):
type = "psat"
logger.info("Recognised PSAT data file.")
else:
type = "unrecognised"
input.seek(0) # reset buffer for parsing
elif (ext == ".raw") or (ext == ".psse"):
type = "psse"
logger.info("Recognised PSS/E data file.")
elif (ext == ".pkl") or (ext == ".pickle"):
type = "pickle"
logger.info("Recognised pickled case.")
else:
type = None
return type | python | def detect_data_file(input, file_name=""):
""" Detects the format of a network data file according to the
file extension and the header.
"""
_, ext = os.path.splitext(file_name)
if ext == ".m":
line = input.readline() # first line
if line.startswith("function"):
type = "matpower"
logger.info("Recognised MATPOWER data file.")
elif line.startswith("Bus.con" or line.startswith("%")):
type = "psat"
logger.info("Recognised PSAT data file.")
else:
type = "unrecognised"
input.seek(0) # reset buffer for parsing
elif (ext == ".raw") or (ext == ".psse"):
type = "psse"
logger.info("Recognised PSS/E data file.")
elif (ext == ".pkl") or (ext == ".pickle"):
type = "pickle"
logger.info("Recognised pickled case.")
else:
type = None
return type | [
"def",
"detect_data_file",
"(",
"input",
",",
"file_name",
"=",
"\"\"",
")",
":",
"_",
",",
"ext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"file_name",
")",
"if",
"ext",
"==",
"\".m\"",
":",
"line",
"=",
"input",
".",
"readline",
"(",
")",
"# first line",
"if",
"line",
".",
"startswith",
"(",
"\"function\"",
")",
":",
"type",
"=",
"\"matpower\"",
"logger",
".",
"info",
"(",
"\"Recognised MATPOWER data file.\"",
")",
"elif",
"line",
".",
"startswith",
"(",
"\"Bus.con\"",
"or",
"line",
".",
"startswith",
"(",
"\"%\"",
")",
")",
":",
"type",
"=",
"\"psat\"",
"logger",
".",
"info",
"(",
"\"Recognised PSAT data file.\"",
")",
"else",
":",
"type",
"=",
"\"unrecognised\"",
"input",
".",
"seek",
"(",
"0",
")",
"# reset buffer for parsing",
"elif",
"(",
"ext",
"==",
"\".raw\"",
")",
"or",
"(",
"ext",
"==",
"\".psse\"",
")",
":",
"type",
"=",
"\"psse\"",
"logger",
".",
"info",
"(",
"\"Recognised PSS/E data file.\"",
")",
"elif",
"(",
"ext",
"==",
"\".pkl\"",
")",
"or",
"(",
"ext",
"==",
"\".pickle\"",
")",
":",
"type",
"=",
"\"pickle\"",
"logger",
".",
"info",
"(",
"\"Recognised pickled case.\"",
")",
"else",
":",
"type",
"=",
"None",
"return",
"type"
] | Detects the format of a network data file according to the
file extension and the header. | [
"Detects",
"the",
"format",
"of",
"a",
"network",
"data",
"file",
"according",
"to",
"the",
"file",
"extension",
"and",
"the",
"header",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/main.py#L80-L109 | train |
rwl/pylon | pylon/io/dot.py | DotWriter.write | def write(self, file_or_filename, prog=None, format='xdot'):
""" Writes the case data in Graphviz DOT language.
The format 'raw' is used to dump the Dot representation of the Case
object, without further processing. The output can be processed by any
of graphviz tools, defined in 'prog'.
"""
if prog is None:
file = super(DotWriter, self).write(file_or_filename)
else:
buf = StringIO.StringIO()
super(DotWriter, self).write(buf)
buf.seek(0)
data = self.create(buf.getvalue(), prog, format)
if isinstance(file_or_filename, basestring):
file = None
try:
file = open(file_or_filename, "wb")
except:
logger.error("Error opening %s." % file_or_filename)
finally:
if file is not None:
file.write(data)
file.close()
else:
file = file_or_filename
file.write(data)
return file | python | def write(self, file_or_filename, prog=None, format='xdot'):
""" Writes the case data in Graphviz DOT language.
The format 'raw' is used to dump the Dot representation of the Case
object, without further processing. The output can be processed by any
of graphviz tools, defined in 'prog'.
"""
if prog is None:
file = super(DotWriter, self).write(file_or_filename)
else:
buf = StringIO.StringIO()
super(DotWriter, self).write(buf)
buf.seek(0)
data = self.create(buf.getvalue(), prog, format)
if isinstance(file_or_filename, basestring):
file = None
try:
file = open(file_or_filename, "wb")
except:
logger.error("Error opening %s." % file_or_filename)
finally:
if file is not None:
file.write(data)
file.close()
else:
file = file_or_filename
file.write(data)
return file | [
"def",
"write",
"(",
"self",
",",
"file_or_filename",
",",
"prog",
"=",
"None",
",",
"format",
"=",
"'xdot'",
")",
":",
"if",
"prog",
"is",
"None",
":",
"file",
"=",
"super",
"(",
"DotWriter",
",",
"self",
")",
".",
"write",
"(",
"file_or_filename",
")",
"else",
":",
"buf",
"=",
"StringIO",
".",
"StringIO",
"(",
")",
"super",
"(",
"DotWriter",
",",
"self",
")",
".",
"write",
"(",
"buf",
")",
"buf",
".",
"seek",
"(",
"0",
")",
"data",
"=",
"self",
".",
"create",
"(",
"buf",
".",
"getvalue",
"(",
")",
",",
"prog",
",",
"format",
")",
"if",
"isinstance",
"(",
"file_or_filename",
",",
"basestring",
")",
":",
"file",
"=",
"None",
"try",
":",
"file",
"=",
"open",
"(",
"file_or_filename",
",",
"\"wb\"",
")",
"except",
":",
"logger",
".",
"error",
"(",
"\"Error opening %s.\"",
"%",
"file_or_filename",
")",
"finally",
":",
"if",
"file",
"is",
"not",
"None",
":",
"file",
".",
"write",
"(",
"data",
")",
"file",
".",
"close",
"(",
")",
"else",
":",
"file",
"=",
"file_or_filename",
"file",
".",
"write",
"(",
"data",
")",
"return",
"file"
] | Writes the case data in Graphviz DOT language.
The format 'raw' is used to dump the Dot representation of the Case
object, without further processing. The output can be processed by any
of graphviz tools, defined in 'prog'. | [
"Writes",
"the",
"case",
"data",
"in",
"Graphviz",
"DOT",
"language",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/dot.py#L71-L100 | train |
rwl/pylon | pylon/io/dot.py | DotWriter.write_bus_data | def write_bus_data(self, file, padding=" "):
""" Writes bus data to file.
"""
for bus in self.case.buses:
attrs = ['%s="%s"' % (k, v) for k, v in self.bus_attr.iteritems()]
# attrs.insert(0, 'label="%s"' % bus.name)
attr_str = ", ".join(attrs)
file.write("%s%s [%s];\n" % (padding, bus.name, attr_str)) | python | def write_bus_data(self, file, padding=" "):
""" Writes bus data to file.
"""
for bus in self.case.buses:
attrs = ['%s="%s"' % (k, v) for k, v in self.bus_attr.iteritems()]
# attrs.insert(0, 'label="%s"' % bus.name)
attr_str = ", ".join(attrs)
file.write("%s%s [%s];\n" % (padding, bus.name, attr_str)) | [
"def",
"write_bus_data",
"(",
"self",
",",
"file",
",",
"padding",
"=",
"\" \"",
")",
":",
"for",
"bus",
"in",
"self",
".",
"case",
".",
"buses",
":",
"attrs",
"=",
"[",
"'%s=\"%s\"'",
"%",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"self",
".",
"bus_attr",
".",
"iteritems",
"(",
")",
"]",
"# attrs.insert(0, 'label=\"%s\"' % bus.name)",
"attr_str",
"=",
"\", \"",
".",
"join",
"(",
"attrs",
")",
"file",
".",
"write",
"(",
"\"%s%s [%s];\\n\"",
"%",
"(",
"padding",
",",
"bus",
".",
"name",
",",
"attr_str",
")",
")"
] | Writes bus data to file. | [
"Writes",
"bus",
"data",
"to",
"file",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/dot.py#L114-L122 | train |
rwl/pylon | pylon/io/dot.py | DotWriter.write_branch_data | def write_branch_data(self, file, padding=" "):
""" Writes branch data in Graphviz DOT language.
"""
attrs = ['%s="%s"' % (k,v) for k,v in self.branch_attr.iteritems()]
attr_str = ", ".join(attrs)
for br in self.case.branches:
file.write("%s%s -> %s [%s];\n" % \
(padding, br.from_bus.name, br.to_bus.name, attr_str)) | python | def write_branch_data(self, file, padding=" "):
""" Writes branch data in Graphviz DOT language.
"""
attrs = ['%s="%s"' % (k,v) for k,v in self.branch_attr.iteritems()]
attr_str = ", ".join(attrs)
for br in self.case.branches:
file.write("%s%s -> %s [%s];\n" % \
(padding, br.from_bus.name, br.to_bus.name, attr_str)) | [
"def",
"write_branch_data",
"(",
"self",
",",
"file",
",",
"padding",
"=",
"\" \"",
")",
":",
"attrs",
"=",
"[",
"'%s=\"%s\"'",
"%",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"self",
".",
"branch_attr",
".",
"iteritems",
"(",
")",
"]",
"attr_str",
"=",
"\", \"",
".",
"join",
"(",
"attrs",
")",
"for",
"br",
"in",
"self",
".",
"case",
".",
"branches",
":",
"file",
".",
"write",
"(",
"\"%s%s -> %s [%s];\\n\"",
"%",
"(",
"padding",
",",
"br",
".",
"from_bus",
".",
"name",
",",
"br",
".",
"to_bus",
".",
"name",
",",
"attr_str",
")",
")"
] | Writes branch data in Graphviz DOT language. | [
"Writes",
"branch",
"data",
"in",
"Graphviz",
"DOT",
"language",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/dot.py#L125-L133 | train |
rwl/pylon | pylon/io/dot.py | DotWriter.write_generator_data | def write_generator_data(self, file, padding=" "):
""" Write generator data in Graphviz DOT language.
"""
attrs = ['%s="%s"' % (k, v) for k, v in self.gen_attr.iteritems()]
attr_str = ", ".join(attrs)
edge_attrs = ['%s="%s"' % (k,v) for k,v in {}.iteritems()]
edge_attr_str = ", ".join(edge_attrs)
for g in self.case.generators:
# Generator node.
file.write("%s%s [%s];\n" % (padding, g.name, attr_str))
# Edge connecting generator and bus.
file.write("%s%s -> %s [%s];\n" % \
(padding, g.name, g.bus.name, edge_attr_str)) | python | def write_generator_data(self, file, padding=" "):
""" Write generator data in Graphviz DOT language.
"""
attrs = ['%s="%s"' % (k, v) for k, v in self.gen_attr.iteritems()]
attr_str = ", ".join(attrs)
edge_attrs = ['%s="%s"' % (k,v) for k,v in {}.iteritems()]
edge_attr_str = ", ".join(edge_attrs)
for g in self.case.generators:
# Generator node.
file.write("%s%s [%s];\n" % (padding, g.name, attr_str))
# Edge connecting generator and bus.
file.write("%s%s -> %s [%s];\n" % \
(padding, g.name, g.bus.name, edge_attr_str)) | [
"def",
"write_generator_data",
"(",
"self",
",",
"file",
",",
"padding",
"=",
"\" \"",
")",
":",
"attrs",
"=",
"[",
"'%s=\"%s\"'",
"%",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"self",
".",
"gen_attr",
".",
"iteritems",
"(",
")",
"]",
"attr_str",
"=",
"\", \"",
".",
"join",
"(",
"attrs",
")",
"edge_attrs",
"=",
"[",
"'%s=\"%s\"'",
"%",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"{",
"}",
".",
"iteritems",
"(",
")",
"]",
"edge_attr_str",
"=",
"\", \"",
".",
"join",
"(",
"edge_attrs",
")",
"for",
"g",
"in",
"self",
".",
"case",
".",
"generators",
":",
"# Generator node.",
"file",
".",
"write",
"(",
"\"%s%s [%s];\\n\"",
"%",
"(",
"padding",
",",
"g",
".",
"name",
",",
"attr_str",
")",
")",
"# Edge connecting generator and bus.",
"file",
".",
"write",
"(",
"\"%s%s -> %s [%s];\\n\"",
"%",
"(",
"padding",
",",
"g",
".",
"name",
",",
"g",
".",
"bus",
".",
"name",
",",
"edge_attr_str",
")",
")"
] | Write generator data in Graphviz DOT language. | [
"Write",
"generator",
"data",
"in",
"Graphviz",
"DOT",
"language",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/dot.py#L136-L151 | train |
rwl/pylon | pylon/io/dot.py | DotWriter.create | def create(self, dotdata, prog="dot", format="xdot"):
""" Creates and returns a representation of the graph using the
Graphviz layout program given by 'prog', according to the given format.
Writes the graph to a temporary dot file and processes it with the
program given by 'prog' (which defaults to 'dot'), reading the output
and returning it as a string if the operation is successful. On failure
None is returned.
Based on PyDot by Ero Carrera.
"""
import os, tempfile
from dot2tex.dotparsing import find_graphviz
# Map Graphviz executable names to their paths.
progs = find_graphviz()
if progs is None:
logger.warning("GraphViz executables not found.")
return None
if not progs.has_key(prog):
logger.warning('Invalid program [%s]. Available programs are: %s' % \
(prog, progs.keys()))
return None
# Make a temporary file ...
tmp_fd, tmp_name = tempfile.mkstemp()
os.close(tmp_fd)
# ... and save the graph to it.
dot_fd = file(tmp_name, "w+b")
dot_fd.write(dotdata) # DOT language.
dot_fd.close()
# Get the temporary file directory name.
tmp_dir = os.path.dirname(tmp_name)
# Process the file using the layout program, specifying the format.
p = subprocess.Popen((progs[prog], '-T'+format, tmp_name),
cwd=tmp_dir, stderr=subprocess.PIPE, stdout=subprocess.PIPE)
stderr = p.stderr
stdout = p.stdout
# Make sense of the standard output form the process.
stdout_output = list()
while True:
data = stdout.read()
if not data:
break
stdout_output.append(data)
stdout.close()
if stdout_output:
stdout_output = ''.join(stdout_output)
# Similarly so for any standard error.
if not stderr.closed:
stderr_output = list()
while True:
data = stderr.read()
if not data:
break
stderr_output.append(data)
stderr.close()
if stderr_output:
stderr_output = ''.join(stderr_output)
status = p.wait()
if status != 0 :
logger.error("Program [%s] terminated with status: %d. stderr " \
"follows: %s" % ( prog, status, stderr_output ) )
elif stderr_output:
logger.error( "%s", stderr_output )
# Remove the temporary file.
os.unlink(tmp_name)
return stdout_output | python | def create(self, dotdata, prog="dot", format="xdot"):
""" Creates and returns a representation of the graph using the
Graphviz layout program given by 'prog', according to the given format.
Writes the graph to a temporary dot file and processes it with the
program given by 'prog' (which defaults to 'dot'), reading the output
and returning it as a string if the operation is successful. On failure
None is returned.
Based on PyDot by Ero Carrera.
"""
import os, tempfile
from dot2tex.dotparsing import find_graphviz
# Map Graphviz executable names to their paths.
progs = find_graphviz()
if progs is None:
logger.warning("GraphViz executables not found.")
return None
if not progs.has_key(prog):
logger.warning('Invalid program [%s]. Available programs are: %s' % \
(prog, progs.keys()))
return None
# Make a temporary file ...
tmp_fd, tmp_name = tempfile.mkstemp()
os.close(tmp_fd)
# ... and save the graph to it.
dot_fd = file(tmp_name, "w+b")
dot_fd.write(dotdata) # DOT language.
dot_fd.close()
# Get the temporary file directory name.
tmp_dir = os.path.dirname(tmp_name)
# Process the file using the layout program, specifying the format.
p = subprocess.Popen((progs[prog], '-T'+format, tmp_name),
cwd=tmp_dir, stderr=subprocess.PIPE, stdout=subprocess.PIPE)
stderr = p.stderr
stdout = p.stdout
# Make sense of the standard output form the process.
stdout_output = list()
while True:
data = stdout.read()
if not data:
break
stdout_output.append(data)
stdout.close()
if stdout_output:
stdout_output = ''.join(stdout_output)
# Similarly so for any standard error.
if not stderr.closed:
stderr_output = list()
while True:
data = stderr.read()
if not data:
break
stderr_output.append(data)
stderr.close()
if stderr_output:
stderr_output = ''.join(stderr_output)
status = p.wait()
if status != 0 :
logger.error("Program [%s] terminated with status: %d. stderr " \
"follows: %s" % ( prog, status, stderr_output ) )
elif stderr_output:
logger.error( "%s", stderr_output )
# Remove the temporary file.
os.unlink(tmp_name)
return stdout_output | [
"def",
"create",
"(",
"self",
",",
"dotdata",
",",
"prog",
"=",
"\"dot\"",
",",
"format",
"=",
"\"xdot\"",
")",
":",
"import",
"os",
",",
"tempfile",
"from",
"dot2tex",
".",
"dotparsing",
"import",
"find_graphviz",
"# Map Graphviz executable names to their paths.",
"progs",
"=",
"find_graphviz",
"(",
")",
"if",
"progs",
"is",
"None",
":",
"logger",
".",
"warning",
"(",
"\"GraphViz executables not found.\"",
")",
"return",
"None",
"if",
"not",
"progs",
".",
"has_key",
"(",
"prog",
")",
":",
"logger",
".",
"warning",
"(",
"'Invalid program [%s]. Available programs are: %s'",
"%",
"(",
"prog",
",",
"progs",
".",
"keys",
"(",
")",
")",
")",
"return",
"None",
"# Make a temporary file ...",
"tmp_fd",
",",
"tmp_name",
"=",
"tempfile",
".",
"mkstemp",
"(",
")",
"os",
".",
"close",
"(",
"tmp_fd",
")",
"# ... and save the graph to it.",
"dot_fd",
"=",
"file",
"(",
"tmp_name",
",",
"\"w+b\"",
")",
"dot_fd",
".",
"write",
"(",
"dotdata",
")",
"# DOT language.",
"dot_fd",
".",
"close",
"(",
")",
"# Get the temporary file directory name.",
"tmp_dir",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"tmp_name",
")",
"# Process the file using the layout program, specifying the format.",
"p",
"=",
"subprocess",
".",
"Popen",
"(",
"(",
"progs",
"[",
"prog",
"]",
",",
"'-T'",
"+",
"format",
",",
"tmp_name",
")",
",",
"cwd",
"=",
"tmp_dir",
",",
"stderr",
"=",
"subprocess",
".",
"PIPE",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
")",
"stderr",
"=",
"p",
".",
"stderr",
"stdout",
"=",
"p",
".",
"stdout",
"# Make sense of the standard output form the process.",
"stdout_output",
"=",
"list",
"(",
")",
"while",
"True",
":",
"data",
"=",
"stdout",
".",
"read",
"(",
")",
"if",
"not",
"data",
":",
"break",
"stdout_output",
".",
"append",
"(",
"data",
")",
"stdout",
".",
"close",
"(",
")",
"if",
"stdout_output",
":",
"stdout_output",
"=",
"''",
".",
"join",
"(",
"stdout_output",
")",
"# Similarly so for any standard error.",
"if",
"not",
"stderr",
".",
"closed",
":",
"stderr_output",
"=",
"list",
"(",
")",
"while",
"True",
":",
"data",
"=",
"stderr",
".",
"read",
"(",
")",
"if",
"not",
"data",
":",
"break",
"stderr_output",
".",
"append",
"(",
"data",
")",
"stderr",
".",
"close",
"(",
")",
"if",
"stderr_output",
":",
"stderr_output",
"=",
"''",
".",
"join",
"(",
"stderr_output",
")",
"status",
"=",
"p",
".",
"wait",
"(",
")",
"if",
"status",
"!=",
"0",
":",
"logger",
".",
"error",
"(",
"\"Program [%s] terminated with status: %d. stderr \"",
"\"follows: %s\"",
"%",
"(",
"prog",
",",
"status",
",",
"stderr_output",
")",
")",
"elif",
"stderr_output",
":",
"logger",
".",
"error",
"(",
"\"%s\"",
",",
"stderr_output",
")",
"# Remove the temporary file.",
"os",
".",
"unlink",
"(",
"tmp_name",
")",
"return",
"stdout_output"
] | Creates and returns a representation of the graph using the
Graphviz layout program given by 'prog', according to the given format.
Writes the graph to a temporary dot file and processes it with the
program given by 'prog' (which defaults to 'dot'), reading the output
and returning it as a string if the operation is successful. On failure
None is returned.
Based on PyDot by Ero Carrera. | [
"Creates",
"and",
"returns",
"a",
"representation",
"of",
"the",
"graph",
"using",
"the",
"Graphviz",
"layout",
"program",
"given",
"by",
"prog",
"according",
"to",
"the",
"given",
"format",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/dot.py#L157-L235 | train |
finklabs/metrics | metrics/outputformat_xml.py | format | def format(file_metrics, build_metrics):
"""compute output in XML format."""
def indent(elem, level=0):
i = "\n" + level*" "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
if not elem.tail or not elem.tail.strip():
elem.tail = i
for elem in elem:
indent(elem, level+1)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i
root = ET.Element('metrics')
# file_metrics
files = ET.Element('files')
root.append(files)
for key in file_metrics.keys():
tmp_file = ET.SubElement(files, "file",
{'name': key, 'language': file_metrics[key]['language']})
for name in file_metrics[key].keys():
if name == 'language':
continue
tmp_metric = ET.SubElement(tmp_file, "metric",
{'name': name, 'value': str(file_metrics[key][name])})
# build_metrics
if build_metrics:
build = ET.Element('build')
root.append(build)
# TODO
indent(root)
if PY3:
body = ET.tostring(root, encoding='unicode')
else:
body = ET.tostring(root)
return body | python | def format(file_metrics, build_metrics):
"""compute output in XML format."""
def indent(elem, level=0):
i = "\n" + level*" "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
if not elem.tail or not elem.tail.strip():
elem.tail = i
for elem in elem:
indent(elem, level+1)
if not elem.tail or not elem.tail.strip():
elem.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i
root = ET.Element('metrics')
# file_metrics
files = ET.Element('files')
root.append(files)
for key in file_metrics.keys():
tmp_file = ET.SubElement(files, "file",
{'name': key, 'language': file_metrics[key]['language']})
for name in file_metrics[key].keys():
if name == 'language':
continue
tmp_metric = ET.SubElement(tmp_file, "metric",
{'name': name, 'value': str(file_metrics[key][name])})
# build_metrics
if build_metrics:
build = ET.Element('build')
root.append(build)
# TODO
indent(root)
if PY3:
body = ET.tostring(root, encoding='unicode')
else:
body = ET.tostring(root)
return body | [
"def",
"format",
"(",
"file_metrics",
",",
"build_metrics",
")",
":",
"def",
"indent",
"(",
"elem",
",",
"level",
"=",
"0",
")",
":",
"i",
"=",
"\"\\n\"",
"+",
"level",
"*",
"\" \"",
"if",
"len",
"(",
"elem",
")",
":",
"if",
"not",
"elem",
".",
"text",
"or",
"not",
"elem",
".",
"text",
".",
"strip",
"(",
")",
":",
"elem",
".",
"text",
"=",
"i",
"+",
"\" \"",
"if",
"not",
"elem",
".",
"tail",
"or",
"not",
"elem",
".",
"tail",
".",
"strip",
"(",
")",
":",
"elem",
".",
"tail",
"=",
"i",
"for",
"elem",
"in",
"elem",
":",
"indent",
"(",
"elem",
",",
"level",
"+",
"1",
")",
"if",
"not",
"elem",
".",
"tail",
"or",
"not",
"elem",
".",
"tail",
".",
"strip",
"(",
")",
":",
"elem",
".",
"tail",
"=",
"i",
"else",
":",
"if",
"level",
"and",
"(",
"not",
"elem",
".",
"tail",
"or",
"not",
"elem",
".",
"tail",
".",
"strip",
"(",
")",
")",
":",
"elem",
".",
"tail",
"=",
"i",
"root",
"=",
"ET",
".",
"Element",
"(",
"'metrics'",
")",
"# file_metrics",
"files",
"=",
"ET",
".",
"Element",
"(",
"'files'",
")",
"root",
".",
"append",
"(",
"files",
")",
"for",
"key",
"in",
"file_metrics",
".",
"keys",
"(",
")",
":",
"tmp_file",
"=",
"ET",
".",
"SubElement",
"(",
"files",
",",
"\"file\"",
",",
"{",
"'name'",
":",
"key",
",",
"'language'",
":",
"file_metrics",
"[",
"key",
"]",
"[",
"'language'",
"]",
"}",
")",
"for",
"name",
"in",
"file_metrics",
"[",
"key",
"]",
".",
"keys",
"(",
")",
":",
"if",
"name",
"==",
"'language'",
":",
"continue",
"tmp_metric",
"=",
"ET",
".",
"SubElement",
"(",
"tmp_file",
",",
"\"metric\"",
",",
"{",
"'name'",
":",
"name",
",",
"'value'",
":",
"str",
"(",
"file_metrics",
"[",
"key",
"]",
"[",
"name",
"]",
")",
"}",
")",
"# build_metrics",
"if",
"build_metrics",
":",
"build",
"=",
"ET",
".",
"Element",
"(",
"'build'",
")",
"root",
".",
"append",
"(",
"build",
")",
"# TODO",
"indent",
"(",
"root",
")",
"if",
"PY3",
":",
"body",
"=",
"ET",
".",
"tostring",
"(",
"root",
",",
"encoding",
"=",
"'unicode'",
")",
"else",
":",
"body",
"=",
"ET",
".",
"tostring",
"(",
"root",
")",
"return",
"body"
] | compute output in XML format. | [
"compute",
"output",
"in",
"XML",
"format",
"."
] | fd9974af498831664b9ae8e8f3834e1ec2e8a699 | https://github.com/finklabs/metrics/blob/fd9974af498831664b9ae8e8f3834e1ec2e8a699/metrics/outputformat_xml.py#L16-L59 | train |
brunobord/tdaemon | tdaemon.py | ask | def ask(message='Are you sure? [y/N]'):
"""Asks the user his opinion."""
agree = False
answer = raw_input(message).lower()
if answer.startswith('y'):
agree = True
return agree | python | def ask(message='Are you sure? [y/N]'):
"""Asks the user his opinion."""
agree = False
answer = raw_input(message).lower()
if answer.startswith('y'):
agree = True
return agree | [
"def",
"ask",
"(",
"message",
"=",
"'Are you sure? [y/N]'",
")",
":",
"agree",
"=",
"False",
"answer",
"=",
"raw_input",
"(",
"message",
")",
".",
"lower",
"(",
")",
"if",
"answer",
".",
"startswith",
"(",
"'y'",
")",
":",
"agree",
"=",
"True",
"return",
"agree"
] | Asks the user his opinion. | [
"Asks",
"the",
"user",
"his",
"opinion",
"."
] | 733b5bddb4b12bc3db326a192ce5606f28768307 | https://github.com/brunobord/tdaemon/blob/733b5bddb4b12bc3db326a192ce5606f28768307/tdaemon.py#L45-L51 | train |
brunobord/tdaemon | tdaemon.py | main | def main(prog_args=None):
"""
What do you expect?
"""
if prog_args is None:
prog_args = sys.argv
parser = optparse.OptionParser()
parser.usage = """Usage: %[prog] [options] [<path>]"""
parser.add_option("-t", "--test-program", dest="test_program",
default="nose", help="specifies the test-program to use. Valid values"
" include `nose` (or `nosetests`), `django`, `py` (for `py.test`), "
'`symfony`, `jelix` `phpunit` and `tox`')
parser.add_option("-d", "--debug", dest="debug", action="store_true",
default=False)
parser.add_option('-s', '--size-max', dest='size_max', default=25,
type="int", help="Sets the maximum size (in MB) of files.")
parser.add_option('--custom-args', dest='custom_args', default='',
type="str",
help="Defines custom arguments to pass after the test program command")
parser.add_option('--ignore-dirs', dest='ignore_dirs', default='',
type="str",
help="Defines directories to ignore. Use a comma-separated list.")
parser.add_option('-y', '--quiet', dest='quiet', action="store_true",
default=False,
help="Don't ask for any input.")
opt, args = parser.parse_args(prog_args)
if args[1:]:
path = args[1]
else:
path = '.'
try:
watcher = Watcher(path, opt.test_program, opt.debug, opt.custom_args,
opt.ignore_dirs, opt.quiet)
watcher_file_size = watcher.file_sizes()
if watcher_file_size > opt.size_max:
message = "It looks like the total file size (%dMb) is larger than the `max size` option (%dMb).\nThis may slow down the file comparison process, and thus the daemon performances.\nDo you wish to continue? [y/N] " % (watcher_file_size, opt.size_max)
if not opt.quiet and not ask(message):
raise CancelDueToUserRequest('Ok, thx, bye...')
print "Ready to watch file changes..."
watcher.loop()
except (KeyboardInterrupt, SystemExit):
# Ignore when you exit via Crtl-C
pass
except Exception, msg:
print msg
print "Bye" | python | def main(prog_args=None):
"""
What do you expect?
"""
if prog_args is None:
prog_args = sys.argv
parser = optparse.OptionParser()
parser.usage = """Usage: %[prog] [options] [<path>]"""
parser.add_option("-t", "--test-program", dest="test_program",
default="nose", help="specifies the test-program to use. Valid values"
" include `nose` (or `nosetests`), `django`, `py` (for `py.test`), "
'`symfony`, `jelix` `phpunit` and `tox`')
parser.add_option("-d", "--debug", dest="debug", action="store_true",
default=False)
parser.add_option('-s', '--size-max', dest='size_max', default=25,
type="int", help="Sets the maximum size (in MB) of files.")
parser.add_option('--custom-args', dest='custom_args', default='',
type="str",
help="Defines custom arguments to pass after the test program command")
parser.add_option('--ignore-dirs', dest='ignore_dirs', default='',
type="str",
help="Defines directories to ignore. Use a comma-separated list.")
parser.add_option('-y', '--quiet', dest='quiet', action="store_true",
default=False,
help="Don't ask for any input.")
opt, args = parser.parse_args(prog_args)
if args[1:]:
path = args[1]
else:
path = '.'
try:
watcher = Watcher(path, opt.test_program, opt.debug, opt.custom_args,
opt.ignore_dirs, opt.quiet)
watcher_file_size = watcher.file_sizes()
if watcher_file_size > opt.size_max:
message = "It looks like the total file size (%dMb) is larger than the `max size` option (%dMb).\nThis may slow down the file comparison process, and thus the daemon performances.\nDo you wish to continue? [y/N] " % (watcher_file_size, opt.size_max)
if not opt.quiet and not ask(message):
raise CancelDueToUserRequest('Ok, thx, bye...')
print "Ready to watch file changes..."
watcher.loop()
except (KeyboardInterrupt, SystemExit):
# Ignore when you exit via Crtl-C
pass
except Exception, msg:
print msg
print "Bye" | [
"def",
"main",
"(",
"prog_args",
"=",
"None",
")",
":",
"if",
"prog_args",
"is",
"None",
":",
"prog_args",
"=",
"sys",
".",
"argv",
"parser",
"=",
"optparse",
".",
"OptionParser",
"(",
")",
"parser",
".",
"usage",
"=",
"\"\"\"Usage: %[prog] [options] [<path>]\"\"\"",
"parser",
".",
"add_option",
"(",
"\"-t\"",
",",
"\"--test-program\"",
",",
"dest",
"=",
"\"test_program\"",
",",
"default",
"=",
"\"nose\"",
",",
"help",
"=",
"\"specifies the test-program to use. Valid values\"",
"\" include `nose` (or `nosetests`), `django`, `py` (for `py.test`), \"",
"'`symfony`, `jelix` `phpunit` and `tox`'",
")",
"parser",
".",
"add_option",
"(",
"\"-d\"",
",",
"\"--debug\"",
",",
"dest",
"=",
"\"debug\"",
",",
"action",
"=",
"\"store_true\"",
",",
"default",
"=",
"False",
")",
"parser",
".",
"add_option",
"(",
"'-s'",
",",
"'--size-max'",
",",
"dest",
"=",
"'size_max'",
",",
"default",
"=",
"25",
",",
"type",
"=",
"\"int\"",
",",
"help",
"=",
"\"Sets the maximum size (in MB) of files.\"",
")",
"parser",
".",
"add_option",
"(",
"'--custom-args'",
",",
"dest",
"=",
"'custom_args'",
",",
"default",
"=",
"''",
",",
"type",
"=",
"\"str\"",
",",
"help",
"=",
"\"Defines custom arguments to pass after the test program command\"",
")",
"parser",
".",
"add_option",
"(",
"'--ignore-dirs'",
",",
"dest",
"=",
"'ignore_dirs'",
",",
"default",
"=",
"''",
",",
"type",
"=",
"\"str\"",
",",
"help",
"=",
"\"Defines directories to ignore. Use a comma-separated list.\"",
")",
"parser",
".",
"add_option",
"(",
"'-y'",
",",
"'--quiet'",
",",
"dest",
"=",
"'quiet'",
",",
"action",
"=",
"\"store_true\"",
",",
"default",
"=",
"False",
",",
"help",
"=",
"\"Don't ask for any input.\"",
")",
"opt",
",",
"args",
"=",
"parser",
".",
"parse_args",
"(",
"prog_args",
")",
"if",
"args",
"[",
"1",
":",
"]",
":",
"path",
"=",
"args",
"[",
"1",
"]",
"else",
":",
"path",
"=",
"'.'",
"try",
":",
"watcher",
"=",
"Watcher",
"(",
"path",
",",
"opt",
".",
"test_program",
",",
"opt",
".",
"debug",
",",
"opt",
".",
"custom_args",
",",
"opt",
".",
"ignore_dirs",
",",
"opt",
".",
"quiet",
")",
"watcher_file_size",
"=",
"watcher",
".",
"file_sizes",
"(",
")",
"if",
"watcher_file_size",
">",
"opt",
".",
"size_max",
":",
"message",
"=",
"\"It looks like the total file size (%dMb) is larger than the `max size` option (%dMb).\\nThis may slow down the file comparison process, and thus the daemon performances.\\nDo you wish to continue? [y/N] \"",
"%",
"(",
"watcher_file_size",
",",
"opt",
".",
"size_max",
")",
"if",
"not",
"opt",
".",
"quiet",
"and",
"not",
"ask",
"(",
"message",
")",
":",
"raise",
"CancelDueToUserRequest",
"(",
"'Ok, thx, bye...'",
")",
"print",
"\"Ready to watch file changes...\"",
"watcher",
".",
"loop",
"(",
")",
"except",
"(",
"KeyboardInterrupt",
",",
"SystemExit",
")",
":",
"# Ignore when you exit via Crtl-C",
"pass",
"except",
"Exception",
",",
"msg",
":",
"print",
"msg",
"print",
"\"Bye\""
] | What do you expect? | [
"What",
"do",
"you",
"expect?"
] | 733b5bddb4b12bc3db326a192ce5606f28768307 | https://github.com/brunobord/tdaemon/blob/733b5bddb4b12bc3db326a192ce5606f28768307/tdaemon.py#L235-L288 | train |
brunobord/tdaemon | tdaemon.py | Watcher.check_configuration | def check_configuration(self, file_path, test_program, custom_args):
"""Checks if configuration is ok."""
# checking filepath
if not os.path.isdir(file_path):
raise InvalidFilePath("INVALID CONFIGURATION: file path %s is not a directory" %
os.path.abspath(file_path)
)
if not test_program in IMPLEMENTED_TEST_PROGRAMS:
raise InvalidTestProgram('The `%s` is unknown, or not yet implemented. Please chose another one.' % test_program)
if custom_args:
if not self.quiet and not ask("WARNING!!!\nYou are about to run the following command\n\n $ %s\n\nAre you sure you still want to proceed [y/N]? " % self.get_cmd()):
raise CancelDueToUserRequest('Test cancelled...') | python | def check_configuration(self, file_path, test_program, custom_args):
"""Checks if configuration is ok."""
# checking filepath
if not os.path.isdir(file_path):
raise InvalidFilePath("INVALID CONFIGURATION: file path %s is not a directory" %
os.path.abspath(file_path)
)
if not test_program in IMPLEMENTED_TEST_PROGRAMS:
raise InvalidTestProgram('The `%s` is unknown, or not yet implemented. Please chose another one.' % test_program)
if custom_args:
if not self.quiet and not ask("WARNING!!!\nYou are about to run the following command\n\n $ %s\n\nAre you sure you still want to proceed [y/N]? " % self.get_cmd()):
raise CancelDueToUserRequest('Test cancelled...') | [
"def",
"check_configuration",
"(",
"self",
",",
"file_path",
",",
"test_program",
",",
"custom_args",
")",
":",
"# checking filepath",
"if",
"not",
"os",
".",
"path",
".",
"isdir",
"(",
"file_path",
")",
":",
"raise",
"InvalidFilePath",
"(",
"\"INVALID CONFIGURATION: file path %s is not a directory\"",
"%",
"os",
".",
"path",
".",
"abspath",
"(",
"file_path",
")",
")",
"if",
"not",
"test_program",
"in",
"IMPLEMENTED_TEST_PROGRAMS",
":",
"raise",
"InvalidTestProgram",
"(",
"'The `%s` is unknown, or not yet implemented. Please chose another one.'",
"%",
"test_program",
")",
"if",
"custom_args",
":",
"if",
"not",
"self",
".",
"quiet",
"and",
"not",
"ask",
"(",
"\"WARNING!!!\\nYou are about to run the following command\\n\\n $ %s\\n\\nAre you sure you still want to proceed [y/N]? \"",
"%",
"self",
".",
"get_cmd",
"(",
")",
")",
":",
"raise",
"CancelDueToUserRequest",
"(",
"'Test cancelled...'",
")"
] | Checks if configuration is ok. | [
"Checks",
"if",
"configuration",
"is",
"ok",
"."
] | 733b5bddb4b12bc3db326a192ce5606f28768307 | https://github.com/brunobord/tdaemon/blob/733b5bddb4b12bc3db326a192ce5606f28768307/tdaemon.py#L88-L101 | train |
brunobord/tdaemon | tdaemon.py | Watcher.check_dependencies | def check_dependencies(self):
"Checks if the test program is available in the python environnement"
if self.test_program == 'nose':
try:
import nose
except ImportError:
sys.exit('Nosetests is not available on your system. Please install it and try to run it again')
if self.test_program == 'py':
try:
import py
except:
sys.exit('py.test is not available on your system. Please install it and try to run it again')
if self.test_program == 'django':
try:
import django
except:
sys.exit('django is not available on your system. Please install it and try to run it again')
if self.test_program == 'phpunit':
try:
process = subprocess.check_call(['phpunit','--version'])
except:
sys.exit('phpunit is not available on your system. Please install it and try to run it again')
if self.test_program == 'tox':
try:
import tox
except ImportError:
sys.exit('tox is not available on your system. Please install it and try to run it again') | python | def check_dependencies(self):
"Checks if the test program is available in the python environnement"
if self.test_program == 'nose':
try:
import nose
except ImportError:
sys.exit('Nosetests is not available on your system. Please install it and try to run it again')
if self.test_program == 'py':
try:
import py
except:
sys.exit('py.test is not available on your system. Please install it and try to run it again')
if self.test_program == 'django':
try:
import django
except:
sys.exit('django is not available on your system. Please install it and try to run it again')
if self.test_program == 'phpunit':
try:
process = subprocess.check_call(['phpunit','--version'])
except:
sys.exit('phpunit is not available on your system. Please install it and try to run it again')
if self.test_program == 'tox':
try:
import tox
except ImportError:
sys.exit('tox is not available on your system. Please install it and try to run it again') | [
"def",
"check_dependencies",
"(",
"self",
")",
":",
"if",
"self",
".",
"test_program",
"==",
"'nose'",
":",
"try",
":",
"import",
"nose",
"except",
"ImportError",
":",
"sys",
".",
"exit",
"(",
"'Nosetests is not available on your system. Please install it and try to run it again'",
")",
"if",
"self",
".",
"test_program",
"==",
"'py'",
":",
"try",
":",
"import",
"py",
"except",
":",
"sys",
".",
"exit",
"(",
"'py.test is not available on your system. Please install it and try to run it again'",
")",
"if",
"self",
".",
"test_program",
"==",
"'django'",
":",
"try",
":",
"import",
"django",
"except",
":",
"sys",
".",
"exit",
"(",
"'django is not available on your system. Please install it and try to run it again'",
")",
"if",
"self",
".",
"test_program",
"==",
"'phpunit'",
":",
"try",
":",
"process",
"=",
"subprocess",
".",
"check_call",
"(",
"[",
"'phpunit'",
",",
"'--version'",
"]",
")",
"except",
":",
"sys",
".",
"exit",
"(",
"'phpunit is not available on your system. Please install it and try to run it again'",
")",
"if",
"self",
".",
"test_program",
"==",
"'tox'",
":",
"try",
":",
"import",
"tox",
"except",
"ImportError",
":",
"sys",
".",
"exit",
"(",
"'tox is not available on your system. Please install it and try to run it again'",
")"
] | Checks if the test program is available in the python environnement | [
"Checks",
"if",
"the",
"test",
"program",
"is",
"available",
"in",
"the",
"python",
"environnement"
] | 733b5bddb4b12bc3db326a192ce5606f28768307 | https://github.com/brunobord/tdaemon/blob/733b5bddb4b12bc3db326a192ce5606f28768307/tdaemon.py#L103-L129 | train |
brunobord/tdaemon | tdaemon.py | Watcher.get_cmd | def get_cmd(self):
"""Returns the full command to be executed at runtime"""
cmd = None
if self.test_program in ('nose', 'nosetests'):
cmd = "nosetests %s" % self.file_path
elif self.test_program == 'django':
executable = "%s/manage.py" % self.file_path
if os.path.exists(executable):
cmd = "python %s/manage.py test" % self.file_path
else:
cmd = "django-admin.py test"
elif self.test_program == 'py':
cmd = 'py.test %s' % self.file_path
elif self.test_program == 'symfony':
cmd = 'symfony test-all'
elif self.test_program == 'jelix':
# as seen on http://jelix.org/articles/fr/manuel-1.1/tests_unitaires
cmd = 'php tests.php'
elif self.test_program == 'phpunit':
cmd = 'phpunit'
elif self.test_program == 'sphinx':
cmd = 'make html'
elif self.test_program == 'tox':
cmd = 'tox'
if not cmd:
raise InvalidTestProgram("The test program %s is unknown. Valid options are: `nose`, `django` and `py`" % self.test_program)
# adding custom args
if self.custom_args:
cmd = '%s %s' % (cmd, self.custom_args)
return cmd | python | def get_cmd(self):
"""Returns the full command to be executed at runtime"""
cmd = None
if self.test_program in ('nose', 'nosetests'):
cmd = "nosetests %s" % self.file_path
elif self.test_program == 'django':
executable = "%s/manage.py" % self.file_path
if os.path.exists(executable):
cmd = "python %s/manage.py test" % self.file_path
else:
cmd = "django-admin.py test"
elif self.test_program == 'py':
cmd = 'py.test %s' % self.file_path
elif self.test_program == 'symfony':
cmd = 'symfony test-all'
elif self.test_program == 'jelix':
# as seen on http://jelix.org/articles/fr/manuel-1.1/tests_unitaires
cmd = 'php tests.php'
elif self.test_program == 'phpunit':
cmd = 'phpunit'
elif self.test_program == 'sphinx':
cmd = 'make html'
elif self.test_program == 'tox':
cmd = 'tox'
if not cmd:
raise InvalidTestProgram("The test program %s is unknown. Valid options are: `nose`, `django` and `py`" % self.test_program)
# adding custom args
if self.custom_args:
cmd = '%s %s' % (cmd, self.custom_args)
return cmd | [
"def",
"get_cmd",
"(",
"self",
")",
":",
"cmd",
"=",
"None",
"if",
"self",
".",
"test_program",
"in",
"(",
"'nose'",
",",
"'nosetests'",
")",
":",
"cmd",
"=",
"\"nosetests %s\"",
"%",
"self",
".",
"file_path",
"elif",
"self",
".",
"test_program",
"==",
"'django'",
":",
"executable",
"=",
"\"%s/manage.py\"",
"%",
"self",
".",
"file_path",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"executable",
")",
":",
"cmd",
"=",
"\"python %s/manage.py test\"",
"%",
"self",
".",
"file_path",
"else",
":",
"cmd",
"=",
"\"django-admin.py test\"",
"elif",
"self",
".",
"test_program",
"==",
"'py'",
":",
"cmd",
"=",
"'py.test %s'",
"%",
"self",
".",
"file_path",
"elif",
"self",
".",
"test_program",
"==",
"'symfony'",
":",
"cmd",
"=",
"'symfony test-all'",
"elif",
"self",
".",
"test_program",
"==",
"'jelix'",
":",
"# as seen on http://jelix.org/articles/fr/manuel-1.1/tests_unitaires",
"cmd",
"=",
"'php tests.php'",
"elif",
"self",
".",
"test_program",
"==",
"'phpunit'",
":",
"cmd",
"=",
"'phpunit'",
"elif",
"self",
".",
"test_program",
"==",
"'sphinx'",
":",
"cmd",
"=",
"'make html'",
"elif",
"self",
".",
"test_program",
"==",
"'tox'",
":",
"cmd",
"=",
"'tox'",
"if",
"not",
"cmd",
":",
"raise",
"InvalidTestProgram",
"(",
"\"The test program %s is unknown. Valid options are: `nose`, `django` and `py`\"",
"%",
"self",
".",
"test_program",
")",
"# adding custom args",
"if",
"self",
".",
"custom_args",
":",
"cmd",
"=",
"'%s %s'",
"%",
"(",
"cmd",
",",
"self",
".",
"custom_args",
")",
"return",
"cmd"
] | Returns the full command to be executed at runtime | [
"Returns",
"the",
"full",
"command",
"to",
"be",
"executed",
"at",
"runtime"
] | 733b5bddb4b12bc3db326a192ce5606f28768307 | https://github.com/brunobord/tdaemon/blob/733b5bddb4b12bc3db326a192ce5606f28768307/tdaemon.py#L132-L164 | train |
brunobord/tdaemon | tdaemon.py | Watcher.include | def include(self, path):
"""Returns `True` if the file is not ignored"""
for extension in IGNORE_EXTENSIONS:
if path.endswith(extension):
return False
parts = path.split(os.path.sep)
for part in parts:
if part in self.ignore_dirs:
return False
return True | python | def include(self, path):
"""Returns `True` if the file is not ignored"""
for extension in IGNORE_EXTENSIONS:
if path.endswith(extension):
return False
parts = path.split(os.path.sep)
for part in parts:
if part in self.ignore_dirs:
return False
return True | [
"def",
"include",
"(",
"self",
",",
"path",
")",
":",
"for",
"extension",
"in",
"IGNORE_EXTENSIONS",
":",
"if",
"path",
".",
"endswith",
"(",
"extension",
")",
":",
"return",
"False",
"parts",
"=",
"path",
".",
"split",
"(",
"os",
".",
"path",
".",
"sep",
")",
"for",
"part",
"in",
"parts",
":",
"if",
"part",
"in",
"self",
".",
"ignore_dirs",
":",
"return",
"False",
"return",
"True"
] | Returns `True` if the file is not ignored | [
"Returns",
"True",
"if",
"the",
"file",
"is",
"not",
"ignored"
] | 733b5bddb4b12bc3db326a192ce5606f28768307 | https://github.com/brunobord/tdaemon/blob/733b5bddb4b12bc3db326a192ce5606f28768307/tdaemon.py#L167-L176 | train |
brunobord/tdaemon | tdaemon.py | Watcher.diff_list | def diff_list(self, list1, list2):
"""Extracts differences between lists. For debug purposes"""
for key in list1:
if key in list2 and list2[key] != list1[key]:
print key
elif key not in list2:
print key | python | def diff_list(self, list1, list2):
"""Extracts differences between lists. For debug purposes"""
for key in list1:
if key in list2 and list2[key] != list1[key]:
print key
elif key not in list2:
print key | [
"def",
"diff_list",
"(",
"self",
",",
"list1",
",",
"list2",
")",
":",
"for",
"key",
"in",
"list1",
":",
"if",
"key",
"in",
"list2",
"and",
"list2",
"[",
"key",
"]",
"!=",
"list1",
"[",
"key",
"]",
":",
"print",
"key",
"elif",
"key",
"not",
"in",
"list2",
":",
"print",
"key"
] | Extracts differences between lists. For debug purposes | [
"Extracts",
"differences",
"between",
"lists",
".",
"For",
"debug",
"purposes"
] | 733b5bddb4b12bc3db326a192ce5606f28768307 | https://github.com/brunobord/tdaemon/blob/733b5bddb4b12bc3db326a192ce5606f28768307/tdaemon.py#L205-L211 | train |
brunobord/tdaemon | tdaemon.py | Watcher.run | def run(self, cmd):
"""Runs the appropriate command"""
print datetime.datetime.now()
output = subprocess.Popen(cmd, shell=True)
output = output.communicate()[0]
print output | python | def run(self, cmd):
"""Runs the appropriate command"""
print datetime.datetime.now()
output = subprocess.Popen(cmd, shell=True)
output = output.communicate()[0]
print output | [
"def",
"run",
"(",
"self",
",",
"cmd",
")",
":",
"print",
"datetime",
".",
"datetime",
".",
"now",
"(",
")",
"output",
"=",
"subprocess",
".",
"Popen",
"(",
"cmd",
",",
"shell",
"=",
"True",
")",
"output",
"=",
"output",
".",
"communicate",
"(",
")",
"[",
"0",
"]",
"print",
"output"
] | Runs the appropriate command | [
"Runs",
"the",
"appropriate",
"command"
] | 733b5bddb4b12bc3db326a192ce5606f28768307 | https://github.com/brunobord/tdaemon/blob/733b5bddb4b12bc3db326a192ce5606f28768307/tdaemon.py#L213-L218 | train |
brunobord/tdaemon | tdaemon.py | Watcher.loop | def loop(self):
"""Main loop daemon."""
while True:
sleep(1)
new_file_list = self.walk(self.file_path, {})
if new_file_list != self.file_list:
if self.debug:
self.diff_list(new_file_list, self.file_list)
self.run_tests()
self.file_list = new_file_list | python | def loop(self):
"""Main loop daemon."""
while True:
sleep(1)
new_file_list = self.walk(self.file_path, {})
if new_file_list != self.file_list:
if self.debug:
self.diff_list(new_file_list, self.file_list)
self.run_tests()
self.file_list = new_file_list | [
"def",
"loop",
"(",
"self",
")",
":",
"while",
"True",
":",
"sleep",
"(",
"1",
")",
"new_file_list",
"=",
"self",
".",
"walk",
"(",
"self",
".",
"file_path",
",",
"{",
"}",
")",
"if",
"new_file_list",
"!=",
"self",
".",
"file_list",
":",
"if",
"self",
".",
"debug",
":",
"self",
".",
"diff_list",
"(",
"new_file_list",
",",
"self",
".",
"file_list",
")",
"self",
".",
"run_tests",
"(",
")",
"self",
".",
"file_list",
"=",
"new_file_list"
] | Main loop daemon. | [
"Main",
"loop",
"daemon",
"."
] | 733b5bddb4b12bc3db326a192ce5606f28768307 | https://github.com/brunobord/tdaemon/blob/733b5bddb4b12bc3db326a192ce5606f28768307/tdaemon.py#L224-L233 | train |
finklabs/metrics | metrics/outputformat_json.py | format | def format(file_metrics, build_metrics):
"""compute output in JSON format."""
metrics = {'files': file_metrics}
if build_metrics:
metrics['build'] = build_metrics
body = json.dumps(metrics, sort_keys=True, indent=4) + '\n'
return body | python | def format(file_metrics, build_metrics):
"""compute output in JSON format."""
metrics = {'files': file_metrics}
if build_metrics:
metrics['build'] = build_metrics
body = json.dumps(metrics, sort_keys=True, indent=4) + '\n'
return body | [
"def",
"format",
"(",
"file_metrics",
",",
"build_metrics",
")",
":",
"metrics",
"=",
"{",
"'files'",
":",
"file_metrics",
"}",
"if",
"build_metrics",
":",
"metrics",
"[",
"'build'",
"]",
"=",
"build_metrics",
"body",
"=",
"json",
".",
"dumps",
"(",
"metrics",
",",
"sort_keys",
"=",
"True",
",",
"indent",
"=",
"4",
")",
"+",
"'\\n'",
"return",
"body"
] | compute output in JSON format. | [
"compute",
"output",
"in",
"JSON",
"format",
"."
] | fd9974af498831664b9ae8e8f3834e1ec2e8a699 | https://github.com/finklabs/metrics/blob/fd9974af498831664b9ae8e8f3834e1ec2e8a699/metrics/outputformat_json.py#L9-L15 | train |
rwl/pylon | contrib/cvxopf.py | split_linear_constraints | def split_linear_constraints(A, l, u):
""" Returns the linear equality and inequality constraints.
"""
ieq = []
igt = []
ilt = []
ibx = []
for i in range(len(l)):
if abs(u[i] - l[i]) <= EPS:
ieq.append(i)
elif (u[i] > 1e10) and (l[i] > -1e10):
igt.append(i)
elif (l[i] <= -1e10) and (u[i] < 1e10):
ilt.append(i)
elif (abs(u[i] - l[i]) > EPS) and (u[i] < 1e10) and (l[i] > -1e10):
ibx.append(i)
else:
raise ValueError
Ae = A[ieq, :]
Ai = sparse([A[ilt, :], -A[igt, :], A[ibx, :], -A[ibx, :]])
be = u[ieq, :]
bi = matrix([u[ilt], -l[igt], u[ibx], -l[ibx]])
return Ae, be, Ai, bi | python | def split_linear_constraints(A, l, u):
""" Returns the linear equality and inequality constraints.
"""
ieq = []
igt = []
ilt = []
ibx = []
for i in range(len(l)):
if abs(u[i] - l[i]) <= EPS:
ieq.append(i)
elif (u[i] > 1e10) and (l[i] > -1e10):
igt.append(i)
elif (l[i] <= -1e10) and (u[i] < 1e10):
ilt.append(i)
elif (abs(u[i] - l[i]) > EPS) and (u[i] < 1e10) and (l[i] > -1e10):
ibx.append(i)
else:
raise ValueError
Ae = A[ieq, :]
Ai = sparse([A[ilt, :], -A[igt, :], A[ibx, :], -A[ibx, :]])
be = u[ieq, :]
bi = matrix([u[ilt], -l[igt], u[ibx], -l[ibx]])
return Ae, be, Ai, bi | [
"def",
"split_linear_constraints",
"(",
"A",
",",
"l",
",",
"u",
")",
":",
"ieq",
"=",
"[",
"]",
"igt",
"=",
"[",
"]",
"ilt",
"=",
"[",
"]",
"ibx",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"l",
")",
")",
":",
"if",
"abs",
"(",
"u",
"[",
"i",
"]",
"-",
"l",
"[",
"i",
"]",
")",
"<=",
"EPS",
":",
"ieq",
".",
"append",
"(",
"i",
")",
"elif",
"(",
"u",
"[",
"i",
"]",
">",
"1e10",
")",
"and",
"(",
"l",
"[",
"i",
"]",
">",
"-",
"1e10",
")",
":",
"igt",
".",
"append",
"(",
"i",
")",
"elif",
"(",
"l",
"[",
"i",
"]",
"<=",
"-",
"1e10",
")",
"and",
"(",
"u",
"[",
"i",
"]",
"<",
"1e10",
")",
":",
"ilt",
".",
"append",
"(",
"i",
")",
"elif",
"(",
"abs",
"(",
"u",
"[",
"i",
"]",
"-",
"l",
"[",
"i",
"]",
")",
">",
"EPS",
")",
"and",
"(",
"u",
"[",
"i",
"]",
"<",
"1e10",
")",
"and",
"(",
"l",
"[",
"i",
"]",
">",
"-",
"1e10",
")",
":",
"ibx",
".",
"append",
"(",
"i",
")",
"else",
":",
"raise",
"ValueError",
"Ae",
"=",
"A",
"[",
"ieq",
",",
":",
"]",
"Ai",
"=",
"sparse",
"(",
"[",
"A",
"[",
"ilt",
",",
":",
"]",
",",
"-",
"A",
"[",
"igt",
",",
":",
"]",
",",
"A",
"[",
"ibx",
",",
":",
"]",
",",
"-",
"A",
"[",
"ibx",
",",
":",
"]",
"]",
")",
"be",
"=",
"u",
"[",
"ieq",
",",
":",
"]",
"bi",
"=",
"matrix",
"(",
"[",
"u",
"[",
"ilt",
"]",
",",
"-",
"l",
"[",
"igt",
"]",
",",
"u",
"[",
"ibx",
"]",
",",
"-",
"l",
"[",
"ibx",
"]",
"]",
")",
"return",
"Ae",
",",
"be",
",",
"Ai",
",",
"bi"
] | Returns the linear equality and inequality constraints. | [
"Returns",
"the",
"linear",
"equality",
"and",
"inequality",
"constraints",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/cvxopf.py#L472-L496 | train |
rwl/pylon | contrib/cvxopf.py | dSbus_dV | def dSbus_dV(Y, V):
""" Computes the partial derivative of power injection w.r.t. voltage.
References:
Ray Zimmerman, "dSbus_dV.m", MATPOWER, version 3.2,
PSERC (Cornell), http://www.pserc.cornell.edu/matpower/
"""
I = Y * V
diagV = spdiag(V)
diagIbus = spdiag(I)
diagVnorm = spdiag(div(V, abs(V))) # Element-wise division.
dS_dVm = diagV * conj(Y * diagVnorm) + conj(diagIbus) * diagVnorm
dS_dVa = 1j * diagV * conj(diagIbus - Y * diagV)
return dS_dVm, dS_dVa | python | def dSbus_dV(Y, V):
""" Computes the partial derivative of power injection w.r.t. voltage.
References:
Ray Zimmerman, "dSbus_dV.m", MATPOWER, version 3.2,
PSERC (Cornell), http://www.pserc.cornell.edu/matpower/
"""
I = Y * V
diagV = spdiag(V)
diagIbus = spdiag(I)
diagVnorm = spdiag(div(V, abs(V))) # Element-wise division.
dS_dVm = diagV * conj(Y * diagVnorm) + conj(diagIbus) * diagVnorm
dS_dVa = 1j * diagV * conj(diagIbus - Y * diagV)
return dS_dVm, dS_dVa | [
"def",
"dSbus_dV",
"(",
"Y",
",",
"V",
")",
":",
"I",
"=",
"Y",
"*",
"V",
"diagV",
"=",
"spdiag",
"(",
"V",
")",
"diagIbus",
"=",
"spdiag",
"(",
"I",
")",
"diagVnorm",
"=",
"spdiag",
"(",
"div",
"(",
"V",
",",
"abs",
"(",
"V",
")",
")",
")",
"# Element-wise division.",
"dS_dVm",
"=",
"diagV",
"*",
"conj",
"(",
"Y",
"*",
"diagVnorm",
")",
"+",
"conj",
"(",
"diagIbus",
")",
"*",
"diagVnorm",
"dS_dVa",
"=",
"1j",
"*",
"diagV",
"*",
"conj",
"(",
"diagIbus",
"-",
"Y",
"*",
"diagV",
")",
"return",
"dS_dVm",
",",
"dS_dVa"
] | Computes the partial derivative of power injection w.r.t. voltage.
References:
Ray Zimmerman, "dSbus_dV.m", MATPOWER, version 3.2,
PSERC (Cornell), http://www.pserc.cornell.edu/matpower/ | [
"Computes",
"the",
"partial",
"derivative",
"of",
"power",
"injection",
"w",
".",
"r",
".",
"t",
".",
"voltage",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/cvxopf.py#L502-L518 | train |
rwl/pylon | contrib/cvxopf.py | dIbr_dV | def dIbr_dV(Yf, Yt, V):
""" Computes partial derivatives of branch currents w.r.t. voltage.
Ray Zimmerman, "dIbr_dV.m", MATPOWER, version 4.0b1,
PSERC (Cornell), http://www.pserc.cornell.edu/matpower/
"""
# nb = len(V)
Vnorm = div(V, abs(V))
diagV = spdiag(V)
diagVnorm = spdiag(Vnorm)
dIf_dVa = Yf * 1j * diagV
dIf_dVm = Yf * diagVnorm
dIt_dVa = Yt * 1j * diagV
dIt_dVm = Yt * diagVnorm
# Compute currents.
If = Yf * V
It = Yt * V
return dIf_dVa, dIf_dVm, dIt_dVa, dIt_dVm, If, It | python | def dIbr_dV(Yf, Yt, V):
""" Computes partial derivatives of branch currents w.r.t. voltage.
Ray Zimmerman, "dIbr_dV.m", MATPOWER, version 4.0b1,
PSERC (Cornell), http://www.pserc.cornell.edu/matpower/
"""
# nb = len(V)
Vnorm = div(V, abs(V))
diagV = spdiag(V)
diagVnorm = spdiag(Vnorm)
dIf_dVa = Yf * 1j * diagV
dIf_dVm = Yf * diagVnorm
dIt_dVa = Yt * 1j * diagV
dIt_dVm = Yt * diagVnorm
# Compute currents.
If = Yf * V
It = Yt * V
return dIf_dVa, dIf_dVm, dIt_dVa, dIt_dVm, If, It | [
"def",
"dIbr_dV",
"(",
"Yf",
",",
"Yt",
",",
"V",
")",
":",
"# nb = len(V)",
"Vnorm",
"=",
"div",
"(",
"V",
",",
"abs",
"(",
"V",
")",
")",
"diagV",
"=",
"spdiag",
"(",
"V",
")",
"diagVnorm",
"=",
"spdiag",
"(",
"Vnorm",
")",
"dIf_dVa",
"=",
"Yf",
"*",
"1j",
"*",
"diagV",
"dIf_dVm",
"=",
"Yf",
"*",
"diagVnorm",
"dIt_dVa",
"=",
"Yt",
"*",
"1j",
"*",
"diagV",
"dIt_dVm",
"=",
"Yt",
"*",
"diagVnorm",
"# Compute currents.",
"If",
"=",
"Yf",
"*",
"V",
"It",
"=",
"Yt",
"*",
"V",
"return",
"dIf_dVa",
",",
"dIf_dVm",
",",
"dIt_dVa",
",",
"dIt_dVm",
",",
"If",
",",
"It"
] | Computes partial derivatives of branch currents w.r.t. voltage.
Ray Zimmerman, "dIbr_dV.m", MATPOWER, version 4.0b1,
PSERC (Cornell), http://www.pserc.cornell.edu/matpower/ | [
"Computes",
"partial",
"derivatives",
"of",
"branch",
"currents",
"w",
".",
"r",
".",
"t",
".",
"voltage",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/cvxopf.py#L524-L544 | train |
rwl/pylon | contrib/cvxopf.py | dSbr_dV | def dSbr_dV(Yf, Yt, V, buses, branches):
""" Computes the branch power flow vector and the partial derivative of
branch power flow w.r.t voltage.
"""
nl = len(branches)
nb = len(V)
f = matrix([l.from_bus._i for l in branches])
t = matrix([l.to_bus._i for l in branches])
# Compute currents.
If = Yf * V
It = Yt * V
Vnorm = div(V, abs(V))
diagVf = spdiag(V[f])
diagIf = spdiag(If)
diagVt = spdiag(V[t])
diagIt = spdiag(It)
diagV = spdiag(V)
diagVnorm = spdiag(Vnorm)
ibr = range(nl)
size = (nl, nb)
# Partial derivative of S w.r.t voltage phase angle.
dSf_dVa = 1j * (conj(diagIf) *
spmatrix(V[f], ibr, f, size) - diagVf * conj(Yf * diagV))
dSt_dVa = 1j * (conj(diagIt) *
spmatrix(V[t], ibr, t, size) - diagVt * conj(Yt * diagV))
# Partial derivative of S w.r.t. voltage amplitude.
dSf_dVm = diagVf * conj(Yf * diagVnorm) + conj(diagIf) * \
spmatrix(Vnorm[f], ibr, f, size)
dSt_dVm = diagVt * conj(Yt * diagVnorm) + conj(diagIt) * \
spmatrix(Vnorm[t], ibr, t, size)
# Compute power flow vectors.
Sf = mul(V[f], conj(If))
St = mul(V[t], conj(It))
return dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St | python | def dSbr_dV(Yf, Yt, V, buses, branches):
""" Computes the branch power flow vector and the partial derivative of
branch power flow w.r.t voltage.
"""
nl = len(branches)
nb = len(V)
f = matrix([l.from_bus._i for l in branches])
t = matrix([l.to_bus._i for l in branches])
# Compute currents.
If = Yf * V
It = Yt * V
Vnorm = div(V, abs(V))
diagVf = spdiag(V[f])
diagIf = spdiag(If)
diagVt = spdiag(V[t])
diagIt = spdiag(It)
diagV = spdiag(V)
diagVnorm = spdiag(Vnorm)
ibr = range(nl)
size = (nl, nb)
# Partial derivative of S w.r.t voltage phase angle.
dSf_dVa = 1j * (conj(diagIf) *
spmatrix(V[f], ibr, f, size) - diagVf * conj(Yf * diagV))
dSt_dVa = 1j * (conj(diagIt) *
spmatrix(V[t], ibr, t, size) - diagVt * conj(Yt * diagV))
# Partial derivative of S w.r.t. voltage amplitude.
dSf_dVm = diagVf * conj(Yf * diagVnorm) + conj(diagIf) * \
spmatrix(Vnorm[f], ibr, f, size)
dSt_dVm = diagVt * conj(Yt * diagVnorm) + conj(diagIt) * \
spmatrix(Vnorm[t], ibr, t, size)
# Compute power flow vectors.
Sf = mul(V[f], conj(If))
St = mul(V[t], conj(It))
return dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St | [
"def",
"dSbr_dV",
"(",
"Yf",
",",
"Yt",
",",
"V",
",",
"buses",
",",
"branches",
")",
":",
"nl",
"=",
"len",
"(",
"branches",
")",
"nb",
"=",
"len",
"(",
"V",
")",
"f",
"=",
"matrix",
"(",
"[",
"l",
".",
"from_bus",
".",
"_i",
"for",
"l",
"in",
"branches",
"]",
")",
"t",
"=",
"matrix",
"(",
"[",
"l",
".",
"to_bus",
".",
"_i",
"for",
"l",
"in",
"branches",
"]",
")",
"# Compute currents.",
"If",
"=",
"Yf",
"*",
"V",
"It",
"=",
"Yt",
"*",
"V",
"Vnorm",
"=",
"div",
"(",
"V",
",",
"abs",
"(",
"V",
")",
")",
"diagVf",
"=",
"spdiag",
"(",
"V",
"[",
"f",
"]",
")",
"diagIf",
"=",
"spdiag",
"(",
"If",
")",
"diagVt",
"=",
"spdiag",
"(",
"V",
"[",
"t",
"]",
")",
"diagIt",
"=",
"spdiag",
"(",
"It",
")",
"diagV",
"=",
"spdiag",
"(",
"V",
")",
"diagVnorm",
"=",
"spdiag",
"(",
"Vnorm",
")",
"ibr",
"=",
"range",
"(",
"nl",
")",
"size",
"=",
"(",
"nl",
",",
"nb",
")",
"# Partial derivative of S w.r.t voltage phase angle.",
"dSf_dVa",
"=",
"1j",
"*",
"(",
"conj",
"(",
"diagIf",
")",
"*",
"spmatrix",
"(",
"V",
"[",
"f",
"]",
",",
"ibr",
",",
"f",
",",
"size",
")",
"-",
"diagVf",
"*",
"conj",
"(",
"Yf",
"*",
"diagV",
")",
")",
"dSt_dVa",
"=",
"1j",
"*",
"(",
"conj",
"(",
"diagIt",
")",
"*",
"spmatrix",
"(",
"V",
"[",
"t",
"]",
",",
"ibr",
",",
"t",
",",
"size",
")",
"-",
"diagVt",
"*",
"conj",
"(",
"Yt",
"*",
"diagV",
")",
")",
"# Partial derivative of S w.r.t. voltage amplitude.",
"dSf_dVm",
"=",
"diagVf",
"*",
"conj",
"(",
"Yf",
"*",
"diagVnorm",
")",
"+",
"conj",
"(",
"diagIf",
")",
"*",
"spmatrix",
"(",
"Vnorm",
"[",
"f",
"]",
",",
"ibr",
",",
"f",
",",
"size",
")",
"dSt_dVm",
"=",
"diagVt",
"*",
"conj",
"(",
"Yt",
"*",
"diagVnorm",
")",
"+",
"conj",
"(",
"diagIt",
")",
"*",
"spmatrix",
"(",
"Vnorm",
"[",
"t",
"]",
",",
"ibr",
",",
"t",
",",
"size",
")",
"# Compute power flow vectors.",
"Sf",
"=",
"mul",
"(",
"V",
"[",
"f",
"]",
",",
"conj",
"(",
"If",
")",
")",
"St",
"=",
"mul",
"(",
"V",
"[",
"t",
"]",
",",
"conj",
"(",
"It",
")",
")",
"return",
"dSf_dVa",
",",
"dSf_dVm",
",",
"dSt_dVa",
",",
"dSt_dVm",
",",
"Sf",
",",
"St"
] | Computes the branch power flow vector and the partial derivative of
branch power flow w.r.t voltage. | [
"Computes",
"the",
"branch",
"power",
"flow",
"vector",
"and",
"the",
"partial",
"derivative",
"of",
"branch",
"power",
"flow",
"w",
".",
"r",
".",
"t",
"voltage",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/cvxopf.py#L550-L593 | train |
rwl/pylon | contrib/cvxopf.py | dAbr_dV | def dAbr_dV(dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St):
""" Partial derivatives of squared flow magnitudes w.r.t voltage.
Computes partial derivatives of apparent power w.r.t active and
reactive power flows. Partial derivative must equal 1 for lines
with zero flow to avoid division by zero errors (1 comes from
L'Hopital).
"""
dAf_dPf = spdiag(2 * Sf.real())
dAf_dQf = spdiag(2 * Sf.imag())
dAt_dPt = spdiag(2 * St.real())
dAt_dQt = spdiag(2 * St.imag())
# Partial derivative of apparent power magnitude w.r.t voltage
# phase angle.
dAf_dVa = dAf_dPf * dSf_dVa.real() + dAf_dQf * dSf_dVa.imag()
dAt_dVa = dAt_dPt * dSt_dVa.real() + dAt_dQt * dSt_dVa.imag()
# Partial derivative of apparent power magnitude w.r.t. voltage
# amplitude.
dAf_dVm = dAf_dPf * dSf_dVm.real() + dAf_dQf * dSf_dVm.imag()
dAt_dVm = dAt_dPt * dSt_dVm.real() + dAt_dQt * dSt_dVm.imag()
return dAf_dVa, dAf_dVm, dAt_dVa, dAt_dVm | python | def dAbr_dV(dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm, Sf, St):
""" Partial derivatives of squared flow magnitudes w.r.t voltage.
Computes partial derivatives of apparent power w.r.t active and
reactive power flows. Partial derivative must equal 1 for lines
with zero flow to avoid division by zero errors (1 comes from
L'Hopital).
"""
dAf_dPf = spdiag(2 * Sf.real())
dAf_dQf = spdiag(2 * Sf.imag())
dAt_dPt = spdiag(2 * St.real())
dAt_dQt = spdiag(2 * St.imag())
# Partial derivative of apparent power magnitude w.r.t voltage
# phase angle.
dAf_dVa = dAf_dPf * dSf_dVa.real() + dAf_dQf * dSf_dVa.imag()
dAt_dVa = dAt_dPt * dSt_dVa.real() + dAt_dQt * dSt_dVa.imag()
# Partial derivative of apparent power magnitude w.r.t. voltage
# amplitude.
dAf_dVm = dAf_dPf * dSf_dVm.real() + dAf_dQf * dSf_dVm.imag()
dAt_dVm = dAt_dPt * dSt_dVm.real() + dAt_dQt * dSt_dVm.imag()
return dAf_dVa, dAf_dVm, dAt_dVa, dAt_dVm | [
"def",
"dAbr_dV",
"(",
"dSf_dVa",
",",
"dSf_dVm",
",",
"dSt_dVa",
",",
"dSt_dVm",
",",
"Sf",
",",
"St",
")",
":",
"dAf_dPf",
"=",
"spdiag",
"(",
"2",
"*",
"Sf",
".",
"real",
"(",
")",
")",
"dAf_dQf",
"=",
"spdiag",
"(",
"2",
"*",
"Sf",
".",
"imag",
"(",
")",
")",
"dAt_dPt",
"=",
"spdiag",
"(",
"2",
"*",
"St",
".",
"real",
"(",
")",
")",
"dAt_dQt",
"=",
"spdiag",
"(",
"2",
"*",
"St",
".",
"imag",
"(",
")",
")",
"# Partial derivative of apparent power magnitude w.r.t voltage",
"# phase angle.",
"dAf_dVa",
"=",
"dAf_dPf",
"*",
"dSf_dVa",
".",
"real",
"(",
")",
"+",
"dAf_dQf",
"*",
"dSf_dVa",
".",
"imag",
"(",
")",
"dAt_dVa",
"=",
"dAt_dPt",
"*",
"dSt_dVa",
".",
"real",
"(",
")",
"+",
"dAt_dQt",
"*",
"dSt_dVa",
".",
"imag",
"(",
")",
"# Partial derivative of apparent power magnitude w.r.t. voltage",
"# amplitude.",
"dAf_dVm",
"=",
"dAf_dPf",
"*",
"dSf_dVm",
".",
"real",
"(",
")",
"+",
"dAf_dQf",
"*",
"dSf_dVm",
".",
"imag",
"(",
")",
"dAt_dVm",
"=",
"dAt_dPt",
"*",
"dSt_dVm",
".",
"real",
"(",
")",
"+",
"dAt_dQt",
"*",
"dSt_dVm",
".",
"imag",
"(",
")",
"return",
"dAf_dVa",
",",
"dAf_dVm",
",",
"dAt_dVa",
",",
"dAt_dVm"
] | Partial derivatives of squared flow magnitudes w.r.t voltage.
Computes partial derivatives of apparent power w.r.t active and
reactive power flows. Partial derivative must equal 1 for lines
with zero flow to avoid division by zero errors (1 comes from
L'Hopital). | [
"Partial",
"derivatives",
"of",
"squared",
"flow",
"magnitudes",
"w",
".",
"r",
".",
"t",
"voltage",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/cvxopf.py#L599-L621 | train |
rwl/pylon | contrib/cvxopf.py | d2Sbus_dV2 | def d2Sbus_dV2(Ybus, V, lam):
""" Computes 2nd derivatives of power injection w.r.t. voltage.
"""
n = len(V)
Ibus = Ybus * V
diaglam = spdiag(lam)
diagV = spdiag(V)
A = spmatrix(mul(lam, V), range(n), range(n))
B = Ybus * diagV
C = A * conj(B)
D = Ybus.H * diagV
E = conj(diagV) * (D * diaglam - spmatrix(D*lam, range(n), range(n)))
F = C - A * spmatrix(conj(Ibus), range(n), range(n))
G = spmatrix(div(matrix(1.0, (n, 1)), abs(V)), range(n), range(n))
Gaa = E + F
Gva = 1j * G * (E - F)
Gav = Gva.T
Gvv = G * (C + C.T) * G
return Gaa, Gav, Gva, Gvv | python | def d2Sbus_dV2(Ybus, V, lam):
""" Computes 2nd derivatives of power injection w.r.t. voltage.
"""
n = len(V)
Ibus = Ybus * V
diaglam = spdiag(lam)
diagV = spdiag(V)
A = spmatrix(mul(lam, V), range(n), range(n))
B = Ybus * diagV
C = A * conj(B)
D = Ybus.H * diagV
E = conj(diagV) * (D * diaglam - spmatrix(D*lam, range(n), range(n)))
F = C - A * spmatrix(conj(Ibus), range(n), range(n))
G = spmatrix(div(matrix(1.0, (n, 1)), abs(V)), range(n), range(n))
Gaa = E + F
Gva = 1j * G * (E - F)
Gav = Gva.T
Gvv = G * (C + C.T) * G
return Gaa, Gav, Gva, Gvv | [
"def",
"d2Sbus_dV2",
"(",
"Ybus",
",",
"V",
",",
"lam",
")",
":",
"n",
"=",
"len",
"(",
"V",
")",
"Ibus",
"=",
"Ybus",
"*",
"V",
"diaglam",
"=",
"spdiag",
"(",
"lam",
")",
"diagV",
"=",
"spdiag",
"(",
"V",
")",
"A",
"=",
"spmatrix",
"(",
"mul",
"(",
"lam",
",",
"V",
")",
",",
"range",
"(",
"n",
")",
",",
"range",
"(",
"n",
")",
")",
"B",
"=",
"Ybus",
"*",
"diagV",
"C",
"=",
"A",
"*",
"conj",
"(",
"B",
")",
"D",
"=",
"Ybus",
".",
"H",
"*",
"diagV",
"E",
"=",
"conj",
"(",
"diagV",
")",
"*",
"(",
"D",
"*",
"diaglam",
"-",
"spmatrix",
"(",
"D",
"*",
"lam",
",",
"range",
"(",
"n",
")",
",",
"range",
"(",
"n",
")",
")",
")",
"F",
"=",
"C",
"-",
"A",
"*",
"spmatrix",
"(",
"conj",
"(",
"Ibus",
")",
",",
"range",
"(",
"n",
")",
",",
"range",
"(",
"n",
")",
")",
"G",
"=",
"spmatrix",
"(",
"div",
"(",
"matrix",
"(",
"1.0",
",",
"(",
"n",
",",
"1",
")",
")",
",",
"abs",
"(",
"V",
")",
")",
",",
"range",
"(",
"n",
")",
",",
"range",
"(",
"n",
")",
")",
"Gaa",
"=",
"E",
"+",
"F",
"Gva",
"=",
"1j",
"*",
"G",
"*",
"(",
"E",
"-",
"F",
")",
"Gav",
"=",
"Gva",
".",
"T",
"Gvv",
"=",
"G",
"*",
"(",
"C",
"+",
"C",
".",
"T",
")",
"*",
"G",
"return",
"Gaa",
",",
"Gav",
",",
"Gva",
",",
"Gvv"
] | Computes 2nd derivatives of power injection w.r.t. voltage. | [
"Computes",
"2nd",
"derivatives",
"of",
"power",
"injection",
"w",
".",
"r",
".",
"t",
".",
"voltage",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/cvxopf.py#L627-L648 | train |
rwl/pylon | contrib/cvxopf.py | d2Ibr_dV2 | def d2Ibr_dV2(Ybr, V, lam):
""" Computes 2nd derivatives of complex branch current w.r.t. voltage.
"""
nb = len(V)
diaginvVm = spdiag(div(matrix(1.0, (nb, 1)), abs(V)))
Haa = spdiag(mul(-(Ybr.T * lam), V))
Hva = -1j * Haa * diaginvVm
Hav = Hva
Hvv = spmatrix([], [], [], (nb, nb))
return Haa, Hav, Hva, Hvv | python | def d2Ibr_dV2(Ybr, V, lam):
""" Computes 2nd derivatives of complex branch current w.r.t. voltage.
"""
nb = len(V)
diaginvVm = spdiag(div(matrix(1.0, (nb, 1)), abs(V)))
Haa = spdiag(mul(-(Ybr.T * lam), V))
Hva = -1j * Haa * diaginvVm
Hav = Hva
Hvv = spmatrix([], [], [], (nb, nb))
return Haa, Hav, Hva, Hvv | [
"def",
"d2Ibr_dV2",
"(",
"Ybr",
",",
"V",
",",
"lam",
")",
":",
"nb",
"=",
"len",
"(",
"V",
")",
"diaginvVm",
"=",
"spdiag",
"(",
"div",
"(",
"matrix",
"(",
"1.0",
",",
"(",
"nb",
",",
"1",
")",
")",
",",
"abs",
"(",
"V",
")",
")",
")",
"Haa",
"=",
"spdiag",
"(",
"mul",
"(",
"-",
"(",
"Ybr",
".",
"T",
"*",
"lam",
")",
",",
"V",
")",
")",
"Hva",
"=",
"-",
"1j",
"*",
"Haa",
"*",
"diaginvVm",
"Hav",
"=",
"Hva",
"Hvv",
"=",
"spmatrix",
"(",
"[",
"]",
",",
"[",
"]",
",",
"[",
"]",
",",
"(",
"nb",
",",
"nb",
")",
")",
"return",
"Haa",
",",
"Hav",
",",
"Hva",
",",
"Hvv"
] | Computes 2nd derivatives of complex branch current w.r.t. voltage. | [
"Computes",
"2nd",
"derivatives",
"of",
"complex",
"branch",
"current",
"w",
".",
"r",
".",
"t",
".",
"voltage",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/cvxopf.py#L654-L665 | train |
rwl/pylon | contrib/cvxopf.py | d2Sbr_dV2 | def d2Sbr_dV2(Cbr, Ybr, V, lam):
""" Computes 2nd derivatives of complex power flow w.r.t. voltage.
"""
nb = len(V)
diaglam = spdiag(lam)
diagV = spdiag(V)
A = Ybr.H * diaglam * Cbr
B = conj(diagV) * A * diagV
D = spdiag(mul((A*V), conj(V)))
E = spdiag(mul((A.T * conj(V)), V))
F = B + B.T
G = spdiag(div(matrix(1.0, (nb, 1)), abs(V)))
Haa = F - D - E
Hva = 1j * G * (B - B.T - D + E)
Hav = Hva.T
Hvv = G * F * G
return Haa, Hav, Hva, Hvv | python | def d2Sbr_dV2(Cbr, Ybr, V, lam):
""" Computes 2nd derivatives of complex power flow w.r.t. voltage.
"""
nb = len(V)
diaglam = spdiag(lam)
diagV = spdiag(V)
A = Ybr.H * diaglam * Cbr
B = conj(diagV) * A * diagV
D = spdiag(mul((A*V), conj(V)))
E = spdiag(mul((A.T * conj(V)), V))
F = B + B.T
G = spdiag(div(matrix(1.0, (nb, 1)), abs(V)))
Haa = F - D - E
Hva = 1j * G * (B - B.T - D + E)
Hav = Hva.T
Hvv = G * F * G
return Haa, Hav, Hva, Hvv | [
"def",
"d2Sbr_dV2",
"(",
"Cbr",
",",
"Ybr",
",",
"V",
",",
"lam",
")",
":",
"nb",
"=",
"len",
"(",
"V",
")",
"diaglam",
"=",
"spdiag",
"(",
"lam",
")",
"diagV",
"=",
"spdiag",
"(",
"V",
")",
"A",
"=",
"Ybr",
".",
"H",
"*",
"diaglam",
"*",
"Cbr",
"B",
"=",
"conj",
"(",
"diagV",
")",
"*",
"A",
"*",
"diagV",
"D",
"=",
"spdiag",
"(",
"mul",
"(",
"(",
"A",
"*",
"V",
")",
",",
"conj",
"(",
"V",
")",
")",
")",
"E",
"=",
"spdiag",
"(",
"mul",
"(",
"(",
"A",
".",
"T",
"*",
"conj",
"(",
"V",
")",
")",
",",
"V",
")",
")",
"F",
"=",
"B",
"+",
"B",
".",
"T",
"G",
"=",
"spdiag",
"(",
"div",
"(",
"matrix",
"(",
"1.0",
",",
"(",
"nb",
",",
"1",
")",
")",
",",
"abs",
"(",
"V",
")",
")",
")",
"Haa",
"=",
"F",
"-",
"D",
"-",
"E",
"Hva",
"=",
"1j",
"*",
"G",
"*",
"(",
"B",
"-",
"B",
".",
"T",
"-",
"D",
"+",
"E",
")",
"Hav",
"=",
"Hva",
".",
"T",
"Hvv",
"=",
"G",
"*",
"F",
"*",
"G",
"return",
"Haa",
",",
"Hav",
",",
"Hva",
",",
"Hvv"
] | Computes 2nd derivatives of complex power flow w.r.t. voltage. | [
"Computes",
"2nd",
"derivatives",
"of",
"complex",
"power",
"flow",
"w",
".",
"r",
".",
"t",
".",
"voltage",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/cvxopf.py#L671-L691 | train |
rwl/pylon | contrib/cvxopf.py | tocvx | def tocvx(B):
""" Converts a sparse SciPy matrix into a sparse CVXOPT matrix.
"""
Bcoo = B.tocoo()
return spmatrix(Bcoo.data, Bcoo.row.tolist(), Bcoo.col.tolist()) | python | def tocvx(B):
""" Converts a sparse SciPy matrix into a sparse CVXOPT matrix.
"""
Bcoo = B.tocoo()
return spmatrix(Bcoo.data, Bcoo.row.tolist(), Bcoo.col.tolist()) | [
"def",
"tocvx",
"(",
"B",
")",
":",
"Bcoo",
"=",
"B",
".",
"tocoo",
"(",
")",
"return",
"spmatrix",
"(",
"Bcoo",
".",
"data",
",",
"Bcoo",
".",
"row",
".",
"tolist",
"(",
")",
",",
"Bcoo",
".",
"col",
".",
"tolist",
"(",
")",
")"
] | Converts a sparse SciPy matrix into a sparse CVXOPT matrix. | [
"Converts",
"a",
"sparse",
"SciPy",
"matrix",
"into",
"a",
"sparse",
"CVXOPT",
"matrix",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/cvxopf.py#L741-L745 | train |
rwl/pylon | pyreto/discrete/experiment.py | MarketExperiment.doInteractions | def doInteractions(self, number=1):
""" Directly maps the agents and the tasks.
"""
t0 = time.time()
for _ in range(number):
self._oneInteraction()
elapsed = time.time() - t0
logger.info("%d interactions executed in %.3fs." % (number, elapsed))
return self.stepid | python | def doInteractions(self, number=1):
""" Directly maps the agents and the tasks.
"""
t0 = time.time()
for _ in range(number):
self._oneInteraction()
elapsed = time.time() - t0
logger.info("%d interactions executed in %.3fs." % (number, elapsed))
return self.stepid | [
"def",
"doInteractions",
"(",
"self",
",",
"number",
"=",
"1",
")",
":",
"t0",
"=",
"time",
".",
"time",
"(",
")",
"for",
"_",
"in",
"range",
"(",
"number",
")",
":",
"self",
".",
"_oneInteraction",
"(",
")",
"elapsed",
"=",
"time",
".",
"time",
"(",
")",
"-",
"t0",
"logger",
".",
"info",
"(",
"\"%d interactions executed in %.3fs.\"",
"%",
"(",
"number",
",",
"elapsed",
")",
")",
"return",
"self",
".",
"stepid"
] | Directly maps the agents and the tasks. | [
"Directly",
"maps",
"the",
"agents",
"and",
"the",
"tasks",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/discrete/experiment.py#L72-L83 | train |
rwl/pylon | pylon/dyn.py | DynamicCase.exciter | def exciter(self, Xexc, Pexc, Vexc):
""" Exciter model.
Based on Exciter.m from MatDyn by Stijn Cole, developed at Katholieke
Universiteit Leuven. See U{http://www.esat.kuleuven.be/electa/teaching/
matdyn/} for more information.
"""
exciters = self.exciters
F = zeros(Xexc.shape)
typ1 = [e.generator._i for e in exciters if e.model ==CONST_EXCITATION]
typ2 = [e.generator._i for e in exciters if e.model == IEEE_DC1A]
# Exciter type 1: constant excitation
F[typ1, :] = 0.0
# Exciter type 2: IEEE DC1A
Efd = Xexc[typ2, 0]
Uf = Xexc[typ2, 1]
Ur = Xexc[typ2, 2]
Ka = Pexc[typ2, 0]
Ta = Pexc[typ2, 1]
Ke = Pexc[typ2, 2]
Te = Pexc[typ2, 3]
Kf = Pexc[typ2, 4]
Tf = Pexc[typ2, 5]
Aex = Pexc[typ2, 6]
Bex = Pexc[typ2, 7]
Ur_min = Pexc[typ2, 8]
Ur_max = Pexc[typ2, 9]
Uref = Pexc[typ2, 10]
Uref2 = Pexc[typ2, 11]
U = Vexc[typ2, 1]
Ux = Aex * exp(Bex * Efd)
dUr = 1 / Ta * (Ka * (Uref - U + Uref2 - Uf) - Ur)
dUf = 1 / Tf * (Kf / Te * (Ur - Ux - Ke * Efd) - Uf)
if sum(flatnonzero(Ur > Ur_max)) >= 1:
Ur2 = Ur_max
elif sum(flatnonzero(Ur < Ur_max)) >= 1:
Ur2 = Ur_min
else:
Ur2 = Ur
dEfd = 1 / Te * (Ur2 - Ux - Ke * Efd)
F[typ2, :] = c_[dEfd, dUf, dUr]
# Exciter type 3:
# Exciter type 4:
return F | python | def exciter(self, Xexc, Pexc, Vexc):
""" Exciter model.
Based on Exciter.m from MatDyn by Stijn Cole, developed at Katholieke
Universiteit Leuven. See U{http://www.esat.kuleuven.be/electa/teaching/
matdyn/} for more information.
"""
exciters = self.exciters
F = zeros(Xexc.shape)
typ1 = [e.generator._i for e in exciters if e.model ==CONST_EXCITATION]
typ2 = [e.generator._i for e in exciters if e.model == IEEE_DC1A]
# Exciter type 1: constant excitation
F[typ1, :] = 0.0
# Exciter type 2: IEEE DC1A
Efd = Xexc[typ2, 0]
Uf = Xexc[typ2, 1]
Ur = Xexc[typ2, 2]
Ka = Pexc[typ2, 0]
Ta = Pexc[typ2, 1]
Ke = Pexc[typ2, 2]
Te = Pexc[typ2, 3]
Kf = Pexc[typ2, 4]
Tf = Pexc[typ2, 5]
Aex = Pexc[typ2, 6]
Bex = Pexc[typ2, 7]
Ur_min = Pexc[typ2, 8]
Ur_max = Pexc[typ2, 9]
Uref = Pexc[typ2, 10]
Uref2 = Pexc[typ2, 11]
U = Vexc[typ2, 1]
Ux = Aex * exp(Bex * Efd)
dUr = 1 / Ta * (Ka * (Uref - U + Uref2 - Uf) - Ur)
dUf = 1 / Tf * (Kf / Te * (Ur - Ux - Ke * Efd) - Uf)
if sum(flatnonzero(Ur > Ur_max)) >= 1:
Ur2 = Ur_max
elif sum(flatnonzero(Ur < Ur_max)) >= 1:
Ur2 = Ur_min
else:
Ur2 = Ur
dEfd = 1 / Te * (Ur2 - Ux - Ke * Efd)
F[typ2, :] = c_[dEfd, dUf, dUr]
# Exciter type 3:
# Exciter type 4:
return F | [
"def",
"exciter",
"(",
"self",
",",
"Xexc",
",",
"Pexc",
",",
"Vexc",
")",
":",
"exciters",
"=",
"self",
".",
"exciters",
"F",
"=",
"zeros",
"(",
"Xexc",
".",
"shape",
")",
"typ1",
"=",
"[",
"e",
".",
"generator",
".",
"_i",
"for",
"e",
"in",
"exciters",
"if",
"e",
".",
"model",
"==",
"CONST_EXCITATION",
"]",
"typ2",
"=",
"[",
"e",
".",
"generator",
".",
"_i",
"for",
"e",
"in",
"exciters",
"if",
"e",
".",
"model",
"==",
"IEEE_DC1A",
"]",
"# Exciter type 1: constant excitation",
"F",
"[",
"typ1",
",",
":",
"]",
"=",
"0.0",
"# Exciter type 2: IEEE DC1A",
"Efd",
"=",
"Xexc",
"[",
"typ2",
",",
"0",
"]",
"Uf",
"=",
"Xexc",
"[",
"typ2",
",",
"1",
"]",
"Ur",
"=",
"Xexc",
"[",
"typ2",
",",
"2",
"]",
"Ka",
"=",
"Pexc",
"[",
"typ2",
",",
"0",
"]",
"Ta",
"=",
"Pexc",
"[",
"typ2",
",",
"1",
"]",
"Ke",
"=",
"Pexc",
"[",
"typ2",
",",
"2",
"]",
"Te",
"=",
"Pexc",
"[",
"typ2",
",",
"3",
"]",
"Kf",
"=",
"Pexc",
"[",
"typ2",
",",
"4",
"]",
"Tf",
"=",
"Pexc",
"[",
"typ2",
",",
"5",
"]",
"Aex",
"=",
"Pexc",
"[",
"typ2",
",",
"6",
"]",
"Bex",
"=",
"Pexc",
"[",
"typ2",
",",
"7",
"]",
"Ur_min",
"=",
"Pexc",
"[",
"typ2",
",",
"8",
"]",
"Ur_max",
"=",
"Pexc",
"[",
"typ2",
",",
"9",
"]",
"Uref",
"=",
"Pexc",
"[",
"typ2",
",",
"10",
"]",
"Uref2",
"=",
"Pexc",
"[",
"typ2",
",",
"11",
"]",
"U",
"=",
"Vexc",
"[",
"typ2",
",",
"1",
"]",
"Ux",
"=",
"Aex",
"*",
"exp",
"(",
"Bex",
"*",
"Efd",
")",
"dUr",
"=",
"1",
"/",
"Ta",
"*",
"(",
"Ka",
"*",
"(",
"Uref",
"-",
"U",
"+",
"Uref2",
"-",
"Uf",
")",
"-",
"Ur",
")",
"dUf",
"=",
"1",
"/",
"Tf",
"*",
"(",
"Kf",
"/",
"Te",
"*",
"(",
"Ur",
"-",
"Ux",
"-",
"Ke",
"*",
"Efd",
")",
"-",
"Uf",
")",
"if",
"sum",
"(",
"flatnonzero",
"(",
"Ur",
">",
"Ur_max",
")",
")",
">=",
"1",
":",
"Ur2",
"=",
"Ur_max",
"elif",
"sum",
"(",
"flatnonzero",
"(",
"Ur",
"<",
"Ur_max",
")",
")",
">=",
"1",
":",
"Ur2",
"=",
"Ur_min",
"else",
":",
"Ur2",
"=",
"Ur",
"dEfd",
"=",
"1",
"/",
"Te",
"*",
"(",
"Ur2",
"-",
"Ux",
"-",
"Ke",
"*",
"Efd",
")",
"F",
"[",
"typ2",
",",
":",
"]",
"=",
"c_",
"[",
"dEfd",
",",
"dUf",
",",
"dUr",
"]",
"# Exciter type 3:",
"# Exciter type 4:",
"return",
"F"
] | Exciter model.
Based on Exciter.m from MatDyn by Stijn Cole, developed at Katholieke
Universiteit Leuven. See U{http://www.esat.kuleuven.be/electa/teaching/
matdyn/} for more information. | [
"Exciter",
"model",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/dyn.py#L409-L464 | train |
rwl/pylon | pylon/dyn.py | DynamicCase.governor | def governor(self, Xgov, Pgov, Vgov):
""" Governor model.
Based on Governor.m from MatDyn by Stijn Cole, developed at Katholieke
Universiteit Leuven. See U{http://www.esat.kuleuven.be/electa/teaching/
matdyn/} for more information.
"""
governors = self.governors
omegas = 2 * pi * self.freq
F = zeros(Xgov.shape)
typ1 = [g.generator._i for g in governors if g.model == CONST_POWER]
typ2 = [g.generator._i for g in governors if g.model == GENERAL_IEEE]
# Governor type 1: constant power
F[typ1, 0] = 0
# Governor type 2: IEEE general speed-governing system
Pm = Xgov[typ2, 0]
P = Xgov[typ2, 1]
x = Xgov[typ2, 2]
z = Xgov[typ2, 3]
K = Pgov[typ2, 0]
T1 = Pgov[typ2, 1]
T2 = Pgov[typ2, 2]
T3 = Pgov[typ2, 3]
Pup = Pgov[typ2, 4]
Pdown = Pgov[typ2, 5]
Pmax = Pgov[typ2, 6]
Pmin = Pgov[typ2, 7]
P0 = Pgov[typ2, 8]
omega = Vgov[typ2, 0]
dx = K * (-1 / T1 * x + (1 - T2 / T1) * (omega - omegas))
dP = 1 / T1 * x + T2 / T1 * (omega - omegas)
y = 1 / T3 * (P0 - P - Pm)
y2 = y
if sum(flatnonzero(y > Pup)) >= 1:
y2 = (1 - flatnonzero(y > Pup)) * y2 + flatnonzero(y > Pup) * Pup
if sum(flatnonzero(y < Pdown)) >= 1:
y2 = (1 - flatnonzero(y<Pdown)) * y2 + flatnonzero(y<Pdown) * Pdown
dz = y2
dPm = y2
if sum(flatnonzero(z > Pmax)) >= 1:
dPm = (1 - flatnonzero(z > Pmax)) * dPm + flatnonzero(z > Pmax) * 0
if sum(flatnonzero(z < Pmin)) >= 1:
dPm = (1 - flatnonzero(z < Pmin)) * dPm + flatnonzero(z < Pmin) * 0
F[typ2, :] = c_[dPm, dP, dx, dz]
# Governor type 3:
# Governor type 4:
return F | python | def governor(self, Xgov, Pgov, Vgov):
""" Governor model.
Based on Governor.m from MatDyn by Stijn Cole, developed at Katholieke
Universiteit Leuven. See U{http://www.esat.kuleuven.be/electa/teaching/
matdyn/} for more information.
"""
governors = self.governors
omegas = 2 * pi * self.freq
F = zeros(Xgov.shape)
typ1 = [g.generator._i for g in governors if g.model == CONST_POWER]
typ2 = [g.generator._i for g in governors if g.model == GENERAL_IEEE]
# Governor type 1: constant power
F[typ1, 0] = 0
# Governor type 2: IEEE general speed-governing system
Pm = Xgov[typ2, 0]
P = Xgov[typ2, 1]
x = Xgov[typ2, 2]
z = Xgov[typ2, 3]
K = Pgov[typ2, 0]
T1 = Pgov[typ2, 1]
T2 = Pgov[typ2, 2]
T3 = Pgov[typ2, 3]
Pup = Pgov[typ2, 4]
Pdown = Pgov[typ2, 5]
Pmax = Pgov[typ2, 6]
Pmin = Pgov[typ2, 7]
P0 = Pgov[typ2, 8]
omega = Vgov[typ2, 0]
dx = K * (-1 / T1 * x + (1 - T2 / T1) * (omega - omegas))
dP = 1 / T1 * x + T2 / T1 * (omega - omegas)
y = 1 / T3 * (P0 - P - Pm)
y2 = y
if sum(flatnonzero(y > Pup)) >= 1:
y2 = (1 - flatnonzero(y > Pup)) * y2 + flatnonzero(y > Pup) * Pup
if sum(flatnonzero(y < Pdown)) >= 1:
y2 = (1 - flatnonzero(y<Pdown)) * y2 + flatnonzero(y<Pdown) * Pdown
dz = y2
dPm = y2
if sum(flatnonzero(z > Pmax)) >= 1:
dPm = (1 - flatnonzero(z > Pmax)) * dPm + flatnonzero(z > Pmax) * 0
if sum(flatnonzero(z < Pmin)) >= 1:
dPm = (1 - flatnonzero(z < Pmin)) * dPm + flatnonzero(z < Pmin) * 0
F[typ2, :] = c_[dPm, dP, dx, dz]
# Governor type 3:
# Governor type 4:
return F | [
"def",
"governor",
"(",
"self",
",",
"Xgov",
",",
"Pgov",
",",
"Vgov",
")",
":",
"governors",
"=",
"self",
".",
"governors",
"omegas",
"=",
"2",
"*",
"pi",
"*",
"self",
".",
"freq",
"F",
"=",
"zeros",
"(",
"Xgov",
".",
"shape",
")",
"typ1",
"=",
"[",
"g",
".",
"generator",
".",
"_i",
"for",
"g",
"in",
"governors",
"if",
"g",
".",
"model",
"==",
"CONST_POWER",
"]",
"typ2",
"=",
"[",
"g",
".",
"generator",
".",
"_i",
"for",
"g",
"in",
"governors",
"if",
"g",
".",
"model",
"==",
"GENERAL_IEEE",
"]",
"# Governor type 1: constant power",
"F",
"[",
"typ1",
",",
"0",
"]",
"=",
"0",
"# Governor type 2: IEEE general speed-governing system",
"Pm",
"=",
"Xgov",
"[",
"typ2",
",",
"0",
"]",
"P",
"=",
"Xgov",
"[",
"typ2",
",",
"1",
"]",
"x",
"=",
"Xgov",
"[",
"typ2",
",",
"2",
"]",
"z",
"=",
"Xgov",
"[",
"typ2",
",",
"3",
"]",
"K",
"=",
"Pgov",
"[",
"typ2",
",",
"0",
"]",
"T1",
"=",
"Pgov",
"[",
"typ2",
",",
"1",
"]",
"T2",
"=",
"Pgov",
"[",
"typ2",
",",
"2",
"]",
"T3",
"=",
"Pgov",
"[",
"typ2",
",",
"3",
"]",
"Pup",
"=",
"Pgov",
"[",
"typ2",
",",
"4",
"]",
"Pdown",
"=",
"Pgov",
"[",
"typ2",
",",
"5",
"]",
"Pmax",
"=",
"Pgov",
"[",
"typ2",
",",
"6",
"]",
"Pmin",
"=",
"Pgov",
"[",
"typ2",
",",
"7",
"]",
"P0",
"=",
"Pgov",
"[",
"typ2",
",",
"8",
"]",
"omega",
"=",
"Vgov",
"[",
"typ2",
",",
"0",
"]",
"dx",
"=",
"K",
"*",
"(",
"-",
"1",
"/",
"T1",
"*",
"x",
"+",
"(",
"1",
"-",
"T2",
"/",
"T1",
")",
"*",
"(",
"omega",
"-",
"omegas",
")",
")",
"dP",
"=",
"1",
"/",
"T1",
"*",
"x",
"+",
"T2",
"/",
"T1",
"*",
"(",
"omega",
"-",
"omegas",
")",
"y",
"=",
"1",
"/",
"T3",
"*",
"(",
"P0",
"-",
"P",
"-",
"Pm",
")",
"y2",
"=",
"y",
"if",
"sum",
"(",
"flatnonzero",
"(",
"y",
">",
"Pup",
")",
")",
">=",
"1",
":",
"y2",
"=",
"(",
"1",
"-",
"flatnonzero",
"(",
"y",
">",
"Pup",
")",
")",
"*",
"y2",
"+",
"flatnonzero",
"(",
"y",
">",
"Pup",
")",
"*",
"Pup",
"if",
"sum",
"(",
"flatnonzero",
"(",
"y",
"<",
"Pdown",
")",
")",
">=",
"1",
":",
"y2",
"=",
"(",
"1",
"-",
"flatnonzero",
"(",
"y",
"<",
"Pdown",
")",
")",
"*",
"y2",
"+",
"flatnonzero",
"(",
"y",
"<",
"Pdown",
")",
"*",
"Pdown",
"dz",
"=",
"y2",
"dPm",
"=",
"y2",
"if",
"sum",
"(",
"flatnonzero",
"(",
"z",
">",
"Pmax",
")",
")",
">=",
"1",
":",
"dPm",
"=",
"(",
"1",
"-",
"flatnonzero",
"(",
"z",
">",
"Pmax",
")",
")",
"*",
"dPm",
"+",
"flatnonzero",
"(",
"z",
">",
"Pmax",
")",
"*",
"0",
"if",
"sum",
"(",
"flatnonzero",
"(",
"z",
"<",
"Pmin",
")",
")",
">=",
"1",
":",
"dPm",
"=",
"(",
"1",
"-",
"flatnonzero",
"(",
"z",
"<",
"Pmin",
")",
")",
"*",
"dPm",
"+",
"flatnonzero",
"(",
"z",
"<",
"Pmin",
")",
"*",
"0",
"F",
"[",
"typ2",
",",
":",
"]",
"=",
"c_",
"[",
"dPm",
",",
"dP",
",",
"dx",
",",
"dz",
"]",
"# Governor type 3:",
"# Governor type 4:",
"return",
"F"
] | Governor model.
Based on Governor.m from MatDyn by Stijn Cole, developed at Katholieke
Universiteit Leuven. See U{http://www.esat.kuleuven.be/electa/teaching/
matdyn/} for more information. | [
"Governor",
"model",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/dyn.py#L467-L530 | train |
rwl/pylon | pylon/dyn.py | DynamicCase.generator | def generator(self, Xgen, Xexc, Xgov, Vgen):
""" Generator model.
Based on Generator.m from MatDyn by Stijn Cole, developed at Katholieke
Universiteit Leuven. See U{http://www.esat.kuleuven.be/electa/teaching/
matdyn/} for more information.
"""
generators = self.dyn_generators
omegas = 2 * pi * self.freq
F = zeros(Xgen.shape)
typ1 = [g._i for g in generators if g.model == CLASSICAL]
typ2 = [g._i for g in generators if g.model == FOURTH_ORDER]
# Generator type 1: classical model
omega = Xgen[typ1, 1]
Pm0 = Xgov[typ1, 0]
H = array([g.h for g in generators])[typ1]
D = array([g.d for g in generators])[typ1]
Pe = Vgen[typ1, 2]
ddelta = omega = omegas
domega = pi * self.freq / H * (-D * (omega - omegas) + Pm0 - Pe)
dEq = zeros(len(typ1))
F[typ1, :] = c_[ddelta, domega, dEq]
# Generator type 2: 4th order model
omega = Xgen[typ2, 1]
Eq_tr = Xgen[typ2, 2]
Ed_tr = Xgen[typ2, 3]
H = array([g.h for g in generators])
D = array([g.d for g in generators])
xd = array([g.xd for g in generators])
xq = array([g.xq for g in generators])
xd_tr = array([g.xd_tr for g in generators])
xq_tr = array([g.xq_tr for g in generators])
Td0_tr = array([g.td for g in generators])
Tq0_tr = array([g.tq for g in generators])
Id = Vgen[typ2, 0]
Iq = Vgen[typ2, 1]
Pe = Vgen[typ2, 2]
Efd = Xexc[typ2, 0]
Pm = Xgov[typ2, 0]
ddelta = omega - omegas
domega = pi * self.freq / H * (-D * (omega - omegas) + Pm - Pe)
dEq = 1 / Td0_tr * (Efd - Eq_tr + (xd - xd_tr) * Id)
dEd = 1 / Tq0_tr * (-Ed_tr - (xq - xq_tr) * Iq)
F[typ2, :] = c_[ddelta, domega, dEq, dEd]
# Generator type 3:
# Generator type 4:
return F | python | def generator(self, Xgen, Xexc, Xgov, Vgen):
""" Generator model.
Based on Generator.m from MatDyn by Stijn Cole, developed at Katholieke
Universiteit Leuven. See U{http://www.esat.kuleuven.be/electa/teaching/
matdyn/} for more information.
"""
generators = self.dyn_generators
omegas = 2 * pi * self.freq
F = zeros(Xgen.shape)
typ1 = [g._i for g in generators if g.model == CLASSICAL]
typ2 = [g._i for g in generators if g.model == FOURTH_ORDER]
# Generator type 1: classical model
omega = Xgen[typ1, 1]
Pm0 = Xgov[typ1, 0]
H = array([g.h for g in generators])[typ1]
D = array([g.d for g in generators])[typ1]
Pe = Vgen[typ1, 2]
ddelta = omega = omegas
domega = pi * self.freq / H * (-D * (omega - omegas) + Pm0 - Pe)
dEq = zeros(len(typ1))
F[typ1, :] = c_[ddelta, domega, dEq]
# Generator type 2: 4th order model
omega = Xgen[typ2, 1]
Eq_tr = Xgen[typ2, 2]
Ed_tr = Xgen[typ2, 3]
H = array([g.h for g in generators])
D = array([g.d for g in generators])
xd = array([g.xd for g in generators])
xq = array([g.xq for g in generators])
xd_tr = array([g.xd_tr for g in generators])
xq_tr = array([g.xq_tr for g in generators])
Td0_tr = array([g.td for g in generators])
Tq0_tr = array([g.tq for g in generators])
Id = Vgen[typ2, 0]
Iq = Vgen[typ2, 1]
Pe = Vgen[typ2, 2]
Efd = Xexc[typ2, 0]
Pm = Xgov[typ2, 0]
ddelta = omega - omegas
domega = pi * self.freq / H * (-D * (omega - omegas) + Pm - Pe)
dEq = 1 / Td0_tr * (Efd - Eq_tr + (xd - xd_tr) * Id)
dEd = 1 / Tq0_tr * (-Ed_tr - (xq - xq_tr) * Iq)
F[typ2, :] = c_[ddelta, domega, dEq, dEd]
# Generator type 3:
# Generator type 4:
return F | [
"def",
"generator",
"(",
"self",
",",
"Xgen",
",",
"Xexc",
",",
"Xgov",
",",
"Vgen",
")",
":",
"generators",
"=",
"self",
".",
"dyn_generators",
"omegas",
"=",
"2",
"*",
"pi",
"*",
"self",
".",
"freq",
"F",
"=",
"zeros",
"(",
"Xgen",
".",
"shape",
")",
"typ1",
"=",
"[",
"g",
".",
"_i",
"for",
"g",
"in",
"generators",
"if",
"g",
".",
"model",
"==",
"CLASSICAL",
"]",
"typ2",
"=",
"[",
"g",
".",
"_i",
"for",
"g",
"in",
"generators",
"if",
"g",
".",
"model",
"==",
"FOURTH_ORDER",
"]",
"# Generator type 1: classical model",
"omega",
"=",
"Xgen",
"[",
"typ1",
",",
"1",
"]",
"Pm0",
"=",
"Xgov",
"[",
"typ1",
",",
"0",
"]",
"H",
"=",
"array",
"(",
"[",
"g",
".",
"h",
"for",
"g",
"in",
"generators",
"]",
")",
"[",
"typ1",
"]",
"D",
"=",
"array",
"(",
"[",
"g",
".",
"d",
"for",
"g",
"in",
"generators",
"]",
")",
"[",
"typ1",
"]",
"Pe",
"=",
"Vgen",
"[",
"typ1",
",",
"2",
"]",
"ddelta",
"=",
"omega",
"=",
"omegas",
"domega",
"=",
"pi",
"*",
"self",
".",
"freq",
"/",
"H",
"*",
"(",
"-",
"D",
"*",
"(",
"omega",
"-",
"omegas",
")",
"+",
"Pm0",
"-",
"Pe",
")",
"dEq",
"=",
"zeros",
"(",
"len",
"(",
"typ1",
")",
")",
"F",
"[",
"typ1",
",",
":",
"]",
"=",
"c_",
"[",
"ddelta",
",",
"domega",
",",
"dEq",
"]",
"# Generator type 2: 4th order model",
"omega",
"=",
"Xgen",
"[",
"typ2",
",",
"1",
"]",
"Eq_tr",
"=",
"Xgen",
"[",
"typ2",
",",
"2",
"]",
"Ed_tr",
"=",
"Xgen",
"[",
"typ2",
",",
"3",
"]",
"H",
"=",
"array",
"(",
"[",
"g",
".",
"h",
"for",
"g",
"in",
"generators",
"]",
")",
"D",
"=",
"array",
"(",
"[",
"g",
".",
"d",
"for",
"g",
"in",
"generators",
"]",
")",
"xd",
"=",
"array",
"(",
"[",
"g",
".",
"xd",
"for",
"g",
"in",
"generators",
"]",
")",
"xq",
"=",
"array",
"(",
"[",
"g",
".",
"xq",
"for",
"g",
"in",
"generators",
"]",
")",
"xd_tr",
"=",
"array",
"(",
"[",
"g",
".",
"xd_tr",
"for",
"g",
"in",
"generators",
"]",
")",
"xq_tr",
"=",
"array",
"(",
"[",
"g",
".",
"xq_tr",
"for",
"g",
"in",
"generators",
"]",
")",
"Td0_tr",
"=",
"array",
"(",
"[",
"g",
".",
"td",
"for",
"g",
"in",
"generators",
"]",
")",
"Tq0_tr",
"=",
"array",
"(",
"[",
"g",
".",
"tq",
"for",
"g",
"in",
"generators",
"]",
")",
"Id",
"=",
"Vgen",
"[",
"typ2",
",",
"0",
"]",
"Iq",
"=",
"Vgen",
"[",
"typ2",
",",
"1",
"]",
"Pe",
"=",
"Vgen",
"[",
"typ2",
",",
"2",
"]",
"Efd",
"=",
"Xexc",
"[",
"typ2",
",",
"0",
"]",
"Pm",
"=",
"Xgov",
"[",
"typ2",
",",
"0",
"]",
"ddelta",
"=",
"omega",
"-",
"omegas",
"domega",
"=",
"pi",
"*",
"self",
".",
"freq",
"/",
"H",
"*",
"(",
"-",
"D",
"*",
"(",
"omega",
"-",
"omegas",
")",
"+",
"Pm",
"-",
"Pe",
")",
"dEq",
"=",
"1",
"/",
"Td0_tr",
"*",
"(",
"Efd",
"-",
"Eq_tr",
"+",
"(",
"xd",
"-",
"xd_tr",
")",
"*",
"Id",
")",
"dEd",
"=",
"1",
"/",
"Tq0_tr",
"*",
"(",
"-",
"Ed_tr",
"-",
"(",
"xq",
"-",
"xq_tr",
")",
"*",
"Iq",
")",
"F",
"[",
"typ2",
",",
":",
"]",
"=",
"c_",
"[",
"ddelta",
",",
"domega",
",",
"dEq",
",",
"dEd",
"]",
"# Generator type 3:",
"# Generator type 4:",
"return",
"F"
] | Generator model.
Based on Generator.m from MatDyn by Stijn Cole, developed at Katholieke
Universiteit Leuven. See U{http://www.esat.kuleuven.be/electa/teaching/
matdyn/} for more information. | [
"Generator",
"model",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/dyn.py#L533-L595 | train |
rwl/pylon | pylon/io/rst.py | ReSTWriter._write_data | def _write_data(self, file):
""" Writes case data to file in ReStructuredText format.
"""
self.write_case_data(file)
file.write("Bus Data\n")
file.write("-" * 8 + "\n")
self.write_bus_data(file)
file.write("\n")
file.write("Branch Data\n")
file.write("-" * 11 + "\n")
self.write_branch_data(file)
file.write("\n")
file.write("Generator Data\n")
file.write("-" * 14 + "\n")
self.write_generator_data(file)
file.write("\n") | python | def _write_data(self, file):
""" Writes case data to file in ReStructuredText format.
"""
self.write_case_data(file)
file.write("Bus Data\n")
file.write("-" * 8 + "\n")
self.write_bus_data(file)
file.write("\n")
file.write("Branch Data\n")
file.write("-" * 11 + "\n")
self.write_branch_data(file)
file.write("\n")
file.write("Generator Data\n")
file.write("-" * 14 + "\n")
self.write_generator_data(file)
file.write("\n") | [
"def",
"_write_data",
"(",
"self",
",",
"file",
")",
":",
"self",
".",
"write_case_data",
"(",
"file",
")",
"file",
".",
"write",
"(",
"\"Bus Data\\n\"",
")",
"file",
".",
"write",
"(",
"\"-\"",
"*",
"8",
"+",
"\"\\n\"",
")",
"self",
".",
"write_bus_data",
"(",
"file",
")",
"file",
".",
"write",
"(",
"\"\\n\"",
")",
"file",
".",
"write",
"(",
"\"Branch Data\\n\"",
")",
"file",
".",
"write",
"(",
"\"-\"",
"*",
"11",
"+",
"\"\\n\"",
")",
"self",
".",
"write_branch_data",
"(",
"file",
")",
"file",
".",
"write",
"(",
"\"\\n\"",
")",
"file",
".",
"write",
"(",
"\"Generator Data\\n\"",
")",
"file",
".",
"write",
"(",
"\"-\"",
"*",
"14",
"+",
"\"\\n\"",
")",
"self",
".",
"write_generator_data",
"(",
"file",
")",
"file",
".",
"write",
"(",
"\"\\n\"",
")"
] | Writes case data to file in ReStructuredText format. | [
"Writes",
"case",
"data",
"to",
"file",
"in",
"ReStructuredText",
"format",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/rst.py#L40-L58 | train |
rwl/pylon | pylon/io/rst.py | ReSTWriter.write_bus_data | def write_bus_data(self, file):
""" Writes bus data to a ReST table.
"""
report = CaseReport(self.case)
buses = self.case.buses
col_width = 8
col_width_2 = col_width * 2 + 1
col1_width = 6
sep = "=" * 6 + " " + ("=" * col_width + " ") * 6 + "\n"
file.write(sep)
# Line one of column headers
file.write("Name".center(col1_width) + " ")
file.write("Voltage (pu)".center(col_width_2) + " ")
file.write("Generation".center(col_width_2) + " ")
file.write("Load".center(col_width_2) + " ")
file.write("\n")
file.write("-" * col1_width +" "+ ("-" * col_width_2 + " ") * 3 + "\n")
# Line two of column header
file.write("..".ljust(col1_width) + " ")
file.write("Amp".center(col_width) + " ")
file.write("Phase".center(col_width) + " ")
file.write("P (MW)".center(col_width) + " ")
file.write("Q (MVAr)".center(col_width) + " ")
file.write("P (MW)".center(col_width) + " ")
file.write("Q (MVAr)".center(col_width) + " ")
file.write("\n")
file.write(sep)
# Bus rows
for bus in buses:
file.write(bus.name[:col1_width].ljust(col1_width))
file.write(" %8.3f" % bus.v_magnitude)
file.write(" %8.3f" % bus.v_angle)
file.write(" %8.2f" % self.case.s_supply(bus).real)
file.write(" %8.2f" % self.case.s_supply(bus).imag)
file.write(" %8.2f" % self.case.s_demand(bus).real)
file.write(" %8.2f" % self.case.s_demand(bus).imag)
file.write("\n")
# Totals
# file.write("..".ljust(col1_width) + " ")
# file.write(("..".ljust(col_width) + " ")*2)
# file.write(("_"*col_width + " ")*4 + "\n")
file.write("..".ljust(col1_width) + " " + "..".ljust(col_width) + " ")
file.write("*Total:*".rjust(col_width) + " ")
ptot = report.actual_pgen
qtot = report.actual_qgen
file.write("%8.2f " % ptot)
file.write("%8.2f " % qtot)
file.write("%8.2f " % report.p_demand)
file.write("%8.2f " % report.q_demand)
file.write("\n")
file.write(sep)
del report | python | def write_bus_data(self, file):
""" Writes bus data to a ReST table.
"""
report = CaseReport(self.case)
buses = self.case.buses
col_width = 8
col_width_2 = col_width * 2 + 1
col1_width = 6
sep = "=" * 6 + " " + ("=" * col_width + " ") * 6 + "\n"
file.write(sep)
# Line one of column headers
file.write("Name".center(col1_width) + " ")
file.write("Voltage (pu)".center(col_width_2) + " ")
file.write("Generation".center(col_width_2) + " ")
file.write("Load".center(col_width_2) + " ")
file.write("\n")
file.write("-" * col1_width +" "+ ("-" * col_width_2 + " ") * 3 + "\n")
# Line two of column header
file.write("..".ljust(col1_width) + " ")
file.write("Amp".center(col_width) + " ")
file.write("Phase".center(col_width) + " ")
file.write("P (MW)".center(col_width) + " ")
file.write("Q (MVAr)".center(col_width) + " ")
file.write("P (MW)".center(col_width) + " ")
file.write("Q (MVAr)".center(col_width) + " ")
file.write("\n")
file.write(sep)
# Bus rows
for bus in buses:
file.write(bus.name[:col1_width].ljust(col1_width))
file.write(" %8.3f" % bus.v_magnitude)
file.write(" %8.3f" % bus.v_angle)
file.write(" %8.2f" % self.case.s_supply(bus).real)
file.write(" %8.2f" % self.case.s_supply(bus).imag)
file.write(" %8.2f" % self.case.s_demand(bus).real)
file.write(" %8.2f" % self.case.s_demand(bus).imag)
file.write("\n")
# Totals
# file.write("..".ljust(col1_width) + " ")
# file.write(("..".ljust(col_width) + " ")*2)
# file.write(("_"*col_width + " ")*4 + "\n")
file.write("..".ljust(col1_width) + " " + "..".ljust(col_width) + " ")
file.write("*Total:*".rjust(col_width) + " ")
ptot = report.actual_pgen
qtot = report.actual_qgen
file.write("%8.2f " % ptot)
file.write("%8.2f " % qtot)
file.write("%8.2f " % report.p_demand)
file.write("%8.2f " % report.q_demand)
file.write("\n")
file.write(sep)
del report | [
"def",
"write_bus_data",
"(",
"self",
",",
"file",
")",
":",
"report",
"=",
"CaseReport",
"(",
"self",
".",
"case",
")",
"buses",
"=",
"self",
".",
"case",
".",
"buses",
"col_width",
"=",
"8",
"col_width_2",
"=",
"col_width",
"*",
"2",
"+",
"1",
"col1_width",
"=",
"6",
"sep",
"=",
"\"=\"",
"*",
"6",
"+",
"\" \"",
"+",
"(",
"\"=\"",
"*",
"col_width",
"+",
"\" \"",
")",
"*",
"6",
"+",
"\"\\n\"",
"file",
".",
"write",
"(",
"sep",
")",
"# Line one of column headers",
"file",
".",
"write",
"(",
"\"Name\"",
".",
"center",
"(",
"col1_width",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"Voltage (pu)\"",
".",
"center",
"(",
"col_width_2",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"Generation\"",
".",
"center",
"(",
"col_width_2",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"Load\"",
".",
"center",
"(",
"col_width_2",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"\\n\"",
")",
"file",
".",
"write",
"(",
"\"-\"",
"*",
"col1_width",
"+",
"\" \"",
"+",
"(",
"\"-\"",
"*",
"col_width_2",
"+",
"\" \"",
")",
"*",
"3",
"+",
"\"\\n\"",
")",
"# Line two of column header",
"file",
".",
"write",
"(",
"\"..\"",
".",
"ljust",
"(",
"col1_width",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"Amp\"",
".",
"center",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"Phase\"",
".",
"center",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"P (MW)\"",
".",
"center",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"Q (MVAr)\"",
".",
"center",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"P (MW)\"",
".",
"center",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"Q (MVAr)\"",
".",
"center",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"\\n\"",
")",
"file",
".",
"write",
"(",
"sep",
")",
"# Bus rows",
"for",
"bus",
"in",
"buses",
":",
"file",
".",
"write",
"(",
"bus",
".",
"name",
"[",
":",
"col1_width",
"]",
".",
"ljust",
"(",
"col1_width",
")",
")",
"file",
".",
"write",
"(",
"\" %8.3f\"",
"%",
"bus",
".",
"v_magnitude",
")",
"file",
".",
"write",
"(",
"\" %8.3f\"",
"%",
"bus",
".",
"v_angle",
")",
"file",
".",
"write",
"(",
"\" %8.2f\"",
"%",
"self",
".",
"case",
".",
"s_supply",
"(",
"bus",
")",
".",
"real",
")",
"file",
".",
"write",
"(",
"\" %8.2f\"",
"%",
"self",
".",
"case",
".",
"s_supply",
"(",
"bus",
")",
".",
"imag",
")",
"file",
".",
"write",
"(",
"\" %8.2f\"",
"%",
"self",
".",
"case",
".",
"s_demand",
"(",
"bus",
")",
".",
"real",
")",
"file",
".",
"write",
"(",
"\" %8.2f\"",
"%",
"self",
".",
"case",
".",
"s_demand",
"(",
"bus",
")",
".",
"imag",
")",
"file",
".",
"write",
"(",
"\"\\n\"",
")",
"# Totals",
"# file.write(\"..\".ljust(col1_width) + \" \")",
"# file.write((\"..\".ljust(col_width) + \" \")*2)",
"# file.write((\"_\"*col_width + \" \")*4 + \"\\n\")",
"file",
".",
"write",
"(",
"\"..\"",
".",
"ljust",
"(",
"col1_width",
")",
"+",
"\" \"",
"+",
"\"..\"",
".",
"ljust",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"*Total:*\"",
".",
"rjust",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"ptot",
"=",
"report",
".",
"actual_pgen",
"qtot",
"=",
"report",
".",
"actual_qgen",
"file",
".",
"write",
"(",
"\"%8.2f \"",
"%",
"ptot",
")",
"file",
".",
"write",
"(",
"\"%8.2f \"",
"%",
"qtot",
")",
"file",
".",
"write",
"(",
"\"%8.2f \"",
"%",
"report",
".",
"p_demand",
")",
"file",
".",
"write",
"(",
"\"%8.2f \"",
"%",
"report",
".",
"q_demand",
")",
"file",
".",
"write",
"(",
"\"\\n\"",
")",
"file",
".",
"write",
"(",
"sep",
")",
"del",
"report"
] | Writes bus data to a ReST table. | [
"Writes",
"bus",
"data",
"to",
"a",
"ReST",
"table",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/rst.py#L87-L146 | train |
rwl/pylon | pylon/io/rst.py | ReSTWriter.write_how_many | def write_how_many(self, file):
""" Writes component numbers to a table.
"""
report = CaseReport(self.case)
# Map component labels to attribute names
components = [("Bus", "n_buses"), ("Generator", "n_generators"),
("Committed Generator", "n_online_generators"),
("Load", "n_loads"), ("Fixed Load", "n_fixed_loads"),
("Despatchable Load", "n_online_vloads"), ("Shunt", "n_shunts"),
("Branch", "n_branches"), ("Transformer", "n_transformers"),
("Inter-tie", "n_interties"), ("Area", "n_areas")
]
# Column 1 width
longest = max([len(c[0]) for c in components])
col1_header = "Object"
col1_width = longest
col2_header = "Quantity"
col2_width = len(col2_header)
# Row separator
sep = "="*col1_width + " " + "="*col2_width + "\n"
# Row headers
file.write(sep)
file.write(col1_header.center(col1_width))
file.write(" ")
file.write("%s\n" % col2_header.center(col2_width))
file.write(sep)
# Rows
for label, attr in components:
col2_value = str(getattr(report, attr))
file.write("%s %s\n" %
(label.ljust(col1_width), col2_value.rjust(col2_width)))
else:
file.write(sep)
file.write("\n")
del report | python | def write_how_many(self, file):
""" Writes component numbers to a table.
"""
report = CaseReport(self.case)
# Map component labels to attribute names
components = [("Bus", "n_buses"), ("Generator", "n_generators"),
("Committed Generator", "n_online_generators"),
("Load", "n_loads"), ("Fixed Load", "n_fixed_loads"),
("Despatchable Load", "n_online_vloads"), ("Shunt", "n_shunts"),
("Branch", "n_branches"), ("Transformer", "n_transformers"),
("Inter-tie", "n_interties"), ("Area", "n_areas")
]
# Column 1 width
longest = max([len(c[0]) for c in components])
col1_header = "Object"
col1_width = longest
col2_header = "Quantity"
col2_width = len(col2_header)
# Row separator
sep = "="*col1_width + " " + "="*col2_width + "\n"
# Row headers
file.write(sep)
file.write(col1_header.center(col1_width))
file.write(" ")
file.write("%s\n" % col2_header.center(col2_width))
file.write(sep)
# Rows
for label, attr in components:
col2_value = str(getattr(report, attr))
file.write("%s %s\n" %
(label.ljust(col1_width), col2_value.rjust(col2_width)))
else:
file.write(sep)
file.write("\n")
del report | [
"def",
"write_how_many",
"(",
"self",
",",
"file",
")",
":",
"report",
"=",
"CaseReport",
"(",
"self",
".",
"case",
")",
"# Map component labels to attribute names",
"components",
"=",
"[",
"(",
"\"Bus\"",
",",
"\"n_buses\"",
")",
",",
"(",
"\"Generator\"",
",",
"\"n_generators\"",
")",
",",
"(",
"\"Committed Generator\"",
",",
"\"n_online_generators\"",
")",
",",
"(",
"\"Load\"",
",",
"\"n_loads\"",
")",
",",
"(",
"\"Fixed Load\"",
",",
"\"n_fixed_loads\"",
")",
",",
"(",
"\"Despatchable Load\"",
",",
"\"n_online_vloads\"",
")",
",",
"(",
"\"Shunt\"",
",",
"\"n_shunts\"",
")",
",",
"(",
"\"Branch\"",
",",
"\"n_branches\"",
")",
",",
"(",
"\"Transformer\"",
",",
"\"n_transformers\"",
")",
",",
"(",
"\"Inter-tie\"",
",",
"\"n_interties\"",
")",
",",
"(",
"\"Area\"",
",",
"\"n_areas\"",
")",
"]",
"# Column 1 width",
"longest",
"=",
"max",
"(",
"[",
"len",
"(",
"c",
"[",
"0",
"]",
")",
"for",
"c",
"in",
"components",
"]",
")",
"col1_header",
"=",
"\"Object\"",
"col1_width",
"=",
"longest",
"col2_header",
"=",
"\"Quantity\"",
"col2_width",
"=",
"len",
"(",
"col2_header",
")",
"# Row separator",
"sep",
"=",
"\"=\"",
"*",
"col1_width",
"+",
"\" \"",
"+",
"\"=\"",
"*",
"col2_width",
"+",
"\"\\n\"",
"# Row headers",
"file",
".",
"write",
"(",
"sep",
")",
"file",
".",
"write",
"(",
"col1_header",
".",
"center",
"(",
"col1_width",
")",
")",
"file",
".",
"write",
"(",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"%s\\n\"",
"%",
"col2_header",
".",
"center",
"(",
"col2_width",
")",
")",
"file",
".",
"write",
"(",
"sep",
")",
"# Rows",
"for",
"label",
",",
"attr",
"in",
"components",
":",
"col2_value",
"=",
"str",
"(",
"getattr",
"(",
"report",
",",
"attr",
")",
")",
"file",
".",
"write",
"(",
"\"%s %s\\n\"",
"%",
"(",
"label",
".",
"ljust",
"(",
"col1_width",
")",
",",
"col2_value",
".",
"rjust",
"(",
"col2_width",
")",
")",
")",
"else",
":",
"file",
".",
"write",
"(",
"sep",
")",
"file",
".",
"write",
"(",
"\"\\n\"",
")",
"del",
"report"
] | Writes component numbers to a table. | [
"Writes",
"component",
"numbers",
"to",
"a",
"table",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/rst.py#L312-L355 | train |
rwl/pylon | pylon/io/rst.py | ReSTWriter.write_min_max | def write_min_max(self, file):
""" Writes minimum and maximum values to a table.
"""
report = CaseReport(self.case)
col1_header = "Attribute"
col1_width = 19
col2_header = "Minimum"
col3_header = "Maximum"
col_width = 22
sep = "="*col1_width +" "+ "="*col_width +" "+ "="*col_width + "\n"
# Row headers
file.write(sep)
file.write("%s" % col1_header.center(col1_width))
file.write(" ")
file.write("%s" % col2_header.center(col_width))
file.write(" ")
file.write("%s" % col3_header.center(col_width))
file.write("\n")
file.write(sep)
# Rows
min_val, min_i = getattr(report, "min_v_magnitude")
max_val, max_i = getattr(report, "max_v_magnitude")
file.write("%s %7.3f p.u. @ bus %2d %7.3f p.u. @ bus %2d\n" %
("Voltage Amplitude".ljust(col1_width),
min_val, min_i, max_val, max_i))
min_val, min_i = getattr(report, "min_v_angle")
max_val, max_i = getattr(report, "max_v_angle")
file.write("%s %16.3f %16.3f\n" %
("Voltage Phase Angle".ljust(col1_width), min_val, max_val))
file.write(sep)
file.write("\n")
del report | python | def write_min_max(self, file):
""" Writes minimum and maximum values to a table.
"""
report = CaseReport(self.case)
col1_header = "Attribute"
col1_width = 19
col2_header = "Minimum"
col3_header = "Maximum"
col_width = 22
sep = "="*col1_width +" "+ "="*col_width +" "+ "="*col_width + "\n"
# Row headers
file.write(sep)
file.write("%s" % col1_header.center(col1_width))
file.write(" ")
file.write("%s" % col2_header.center(col_width))
file.write(" ")
file.write("%s" % col3_header.center(col_width))
file.write("\n")
file.write(sep)
# Rows
min_val, min_i = getattr(report, "min_v_magnitude")
max_val, max_i = getattr(report, "max_v_magnitude")
file.write("%s %7.3f p.u. @ bus %2d %7.3f p.u. @ bus %2d\n" %
("Voltage Amplitude".ljust(col1_width),
min_val, min_i, max_val, max_i))
min_val, min_i = getattr(report, "min_v_angle")
max_val, max_i = getattr(report, "max_v_angle")
file.write("%s %16.3f %16.3f\n" %
("Voltage Phase Angle".ljust(col1_width), min_val, max_val))
file.write(sep)
file.write("\n")
del report | [
"def",
"write_min_max",
"(",
"self",
",",
"file",
")",
":",
"report",
"=",
"CaseReport",
"(",
"self",
".",
"case",
")",
"col1_header",
"=",
"\"Attribute\"",
"col1_width",
"=",
"19",
"col2_header",
"=",
"\"Minimum\"",
"col3_header",
"=",
"\"Maximum\"",
"col_width",
"=",
"22",
"sep",
"=",
"\"=\"",
"*",
"col1_width",
"+",
"\" \"",
"+",
"\"=\"",
"*",
"col_width",
"+",
"\" \"",
"+",
"\"=\"",
"*",
"col_width",
"+",
"\"\\n\"",
"# Row headers",
"file",
".",
"write",
"(",
"sep",
")",
"file",
".",
"write",
"(",
"\"%s\"",
"%",
"col1_header",
".",
"center",
"(",
"col1_width",
")",
")",
"file",
".",
"write",
"(",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"%s\"",
"%",
"col2_header",
".",
"center",
"(",
"col_width",
")",
")",
"file",
".",
"write",
"(",
"\" \"",
")",
"file",
".",
"write",
"(",
"\"%s\"",
"%",
"col3_header",
".",
"center",
"(",
"col_width",
")",
")",
"file",
".",
"write",
"(",
"\"\\n\"",
")",
"file",
".",
"write",
"(",
"sep",
")",
"# Rows",
"min_val",
",",
"min_i",
"=",
"getattr",
"(",
"report",
",",
"\"min_v_magnitude\"",
")",
"max_val",
",",
"max_i",
"=",
"getattr",
"(",
"report",
",",
"\"max_v_magnitude\"",
")",
"file",
".",
"write",
"(",
"\"%s %7.3f p.u. @ bus %2d %7.3f p.u. @ bus %2d\\n\"",
"%",
"(",
"\"Voltage Amplitude\"",
".",
"ljust",
"(",
"col1_width",
")",
",",
"min_val",
",",
"min_i",
",",
"max_val",
",",
"max_i",
")",
")",
"min_val",
",",
"min_i",
"=",
"getattr",
"(",
"report",
",",
"\"min_v_angle\"",
")",
"max_val",
",",
"max_i",
"=",
"getattr",
"(",
"report",
",",
"\"max_v_angle\"",
")",
"file",
".",
"write",
"(",
"\"%s %16.3f %16.3f\\n\"",
"%",
"(",
"\"Voltage Phase Angle\"",
".",
"ljust",
"(",
"col1_width",
")",
",",
"min_val",
",",
"max_val",
")",
")",
"file",
".",
"write",
"(",
"sep",
")",
"file",
".",
"write",
"(",
"\"\\n\"",
")",
"del",
"report"
] | Writes minimum and maximum values to a table. | [
"Writes",
"minimum",
"and",
"maximum",
"values",
"to",
"a",
"table",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/rst.py#L438-L478 | train |
rwl/pylon | pylon/io/parsing_util.py | make_unique_name | def make_unique_name(base, existing=[], format="%s_%s"):
""" Return a name, unique within a context, based on the specified name.
@param base: the desired base name of the generated unique name.
@param existing: a sequence of the existing names to avoid returning.
@param format: a formatting specification for how the name is made unique.
"""
count = 2
name = base
while name in existing:
name = format % (base, count)
count += 1
return name | python | def make_unique_name(base, existing=[], format="%s_%s"):
""" Return a name, unique within a context, based on the specified name.
@param base: the desired base name of the generated unique name.
@param existing: a sequence of the existing names to avoid returning.
@param format: a formatting specification for how the name is made unique.
"""
count = 2
name = base
while name in existing:
name = format % (base, count)
count += 1
return name | [
"def",
"make_unique_name",
"(",
"base",
",",
"existing",
"=",
"[",
"]",
",",
"format",
"=",
"\"%s_%s\"",
")",
":",
"count",
"=",
"2",
"name",
"=",
"base",
"while",
"name",
"in",
"existing",
":",
"name",
"=",
"format",
"%",
"(",
"base",
",",
"count",
")",
"count",
"+=",
"1",
"return",
"name"
] | Return a name, unique within a context, based on the specified name.
@param base: the desired base name of the generated unique name.
@param existing: a sequence of the existing names to avoid returning.
@param format: a formatting specification for how the name is made unique. | [
"Return",
"a",
"name",
"unique",
"within",
"a",
"context",
"based",
"on",
"the",
"specified",
"name",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/parsing_util.py#L167-L180 | train |
pymoca/pymoca | setup.py | call_antlr4 | def call_antlr4(arg):
"calls antlr4 on grammar file"
# pylint: disable=unused-argument, unused-variable
antlr_path = os.path.join(ROOT_DIR, "java", "antlr-4.7-complete.jar")
classpath = os.pathsep.join([".", "{:s}".format(antlr_path), "$CLASSPATH"])
generated = os.path.join(ROOT_DIR, 'src', 'pymoca', 'generated')
cmd = "java -Xmx500M -cp \"{classpath:s}\" org.antlr.v4.Tool {arg:s}" \
" -o {generated:s} -visitor -Dlanguage=Python3".format(**locals())
print(cmd)
proc = subprocess.Popen(cmd.split(), cwd=os.path.join(ROOT_DIR, 'src', 'pymoca'))
proc.communicate()
with open(os.path.join(generated, '__init__.py'), 'w') as fid:
fid.write('') | python | def call_antlr4(arg):
"calls antlr4 on grammar file"
# pylint: disable=unused-argument, unused-variable
antlr_path = os.path.join(ROOT_DIR, "java", "antlr-4.7-complete.jar")
classpath = os.pathsep.join([".", "{:s}".format(antlr_path), "$CLASSPATH"])
generated = os.path.join(ROOT_DIR, 'src', 'pymoca', 'generated')
cmd = "java -Xmx500M -cp \"{classpath:s}\" org.antlr.v4.Tool {arg:s}" \
" -o {generated:s} -visitor -Dlanguage=Python3".format(**locals())
print(cmd)
proc = subprocess.Popen(cmd.split(), cwd=os.path.join(ROOT_DIR, 'src', 'pymoca'))
proc.communicate()
with open(os.path.join(generated, '__init__.py'), 'w') as fid:
fid.write('') | [
"def",
"call_antlr4",
"(",
"arg",
")",
":",
"# pylint: disable=unused-argument, unused-variable",
"antlr_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"ROOT_DIR",
",",
"\"java\"",
",",
"\"antlr-4.7-complete.jar\"",
")",
"classpath",
"=",
"os",
".",
"pathsep",
".",
"join",
"(",
"[",
"\".\"",
",",
"\"{:s}\"",
".",
"format",
"(",
"antlr_path",
")",
",",
"\"$CLASSPATH\"",
"]",
")",
"generated",
"=",
"os",
".",
"path",
".",
"join",
"(",
"ROOT_DIR",
",",
"'src'",
",",
"'pymoca'",
",",
"'generated'",
")",
"cmd",
"=",
"\"java -Xmx500M -cp \\\"{classpath:s}\\\" org.antlr.v4.Tool {arg:s}\"",
"\" -o {generated:s} -visitor -Dlanguage=Python3\"",
".",
"format",
"(",
"*",
"*",
"locals",
"(",
")",
")",
"print",
"(",
"cmd",
")",
"proc",
"=",
"subprocess",
".",
"Popen",
"(",
"cmd",
".",
"split",
"(",
")",
",",
"cwd",
"=",
"os",
".",
"path",
".",
"join",
"(",
"ROOT_DIR",
",",
"'src'",
",",
"'pymoca'",
")",
")",
"proc",
".",
"communicate",
"(",
")",
"with",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"generated",
",",
"'__init__.py'",
")",
",",
"'w'",
")",
"as",
"fid",
":",
"fid",
".",
"write",
"(",
"''",
")"
] | calls antlr4 on grammar file | [
"calls",
"antlr4",
"on",
"grammar",
"file"
] | 14b5eb7425e96689de6cc5c10f400895d586a978 | https://github.com/pymoca/pymoca/blob/14b5eb7425e96689de6cc5c10f400895d586a978/setup.py#L74-L86 | train |
pymoca/pymoca | setup.py | setup_package | def setup_package():
"""
Setup the package.
"""
with open('requirements.txt', 'r') as req_file:
install_reqs = req_file.read().split('\n')
cmdclass_ = {'antlr': AntlrBuildCommand}
cmdclass_.update(versioneer.get_cmdclass())
setup(
version=versioneer.get_version(),
name='pymoca',
maintainer="James Goppert",
maintainer_email="james.goppert@gmail.com",
description=DOCLINES[0],
long_description="\n".join(DOCLINES[2:]),
url='https://github.com/pymoca/pymoca',
author='James Goppert',
author_email='james.goppert@gmail.com',
download_url='https://github.com/pymoca/pymoca',
license='BSD',
classifiers=[_f for _f in CLASSIFIERS.split('\n') if _f],
platforms=["Windows", "Linux", "Solaris", "Mac OS-X", "Unix"],
install_requires=install_reqs,
tests_require=['coverage >= 3.7.1', 'nose >= 1.3.1'],
test_suite='nose.collector',
python_requires='>=3.5',
packages=find_packages("src"),
package_dir={"": "src"},
include_package_data=True,
cmdclass=cmdclass_
) | python | def setup_package():
"""
Setup the package.
"""
with open('requirements.txt', 'r') as req_file:
install_reqs = req_file.read().split('\n')
cmdclass_ = {'antlr': AntlrBuildCommand}
cmdclass_.update(versioneer.get_cmdclass())
setup(
version=versioneer.get_version(),
name='pymoca',
maintainer="James Goppert",
maintainer_email="james.goppert@gmail.com",
description=DOCLINES[0],
long_description="\n".join(DOCLINES[2:]),
url='https://github.com/pymoca/pymoca',
author='James Goppert',
author_email='james.goppert@gmail.com',
download_url='https://github.com/pymoca/pymoca',
license='BSD',
classifiers=[_f for _f in CLASSIFIERS.split('\n') if _f],
platforms=["Windows", "Linux", "Solaris", "Mac OS-X", "Unix"],
install_requires=install_reqs,
tests_require=['coverage >= 3.7.1', 'nose >= 1.3.1'],
test_suite='nose.collector',
python_requires='>=3.5',
packages=find_packages("src"),
package_dir={"": "src"},
include_package_data=True,
cmdclass=cmdclass_
) | [
"def",
"setup_package",
"(",
")",
":",
"with",
"open",
"(",
"'requirements.txt'",
",",
"'r'",
")",
"as",
"req_file",
":",
"install_reqs",
"=",
"req_file",
".",
"read",
"(",
")",
".",
"split",
"(",
"'\\n'",
")",
"cmdclass_",
"=",
"{",
"'antlr'",
":",
"AntlrBuildCommand",
"}",
"cmdclass_",
".",
"update",
"(",
"versioneer",
".",
"get_cmdclass",
"(",
")",
")",
"setup",
"(",
"version",
"=",
"versioneer",
".",
"get_version",
"(",
")",
",",
"name",
"=",
"'pymoca'",
",",
"maintainer",
"=",
"\"James Goppert\"",
",",
"maintainer_email",
"=",
"\"james.goppert@gmail.com\"",
",",
"description",
"=",
"DOCLINES",
"[",
"0",
"]",
",",
"long_description",
"=",
"\"\\n\"",
".",
"join",
"(",
"DOCLINES",
"[",
"2",
":",
"]",
")",
",",
"url",
"=",
"'https://github.com/pymoca/pymoca'",
",",
"author",
"=",
"'James Goppert'",
",",
"author_email",
"=",
"'james.goppert@gmail.com'",
",",
"download_url",
"=",
"'https://github.com/pymoca/pymoca'",
",",
"license",
"=",
"'BSD'",
",",
"classifiers",
"=",
"[",
"_f",
"for",
"_f",
"in",
"CLASSIFIERS",
".",
"split",
"(",
"'\\n'",
")",
"if",
"_f",
"]",
",",
"platforms",
"=",
"[",
"\"Windows\"",
",",
"\"Linux\"",
",",
"\"Solaris\"",
",",
"\"Mac OS-X\"",
",",
"\"Unix\"",
"]",
",",
"install_requires",
"=",
"install_reqs",
",",
"tests_require",
"=",
"[",
"'coverage >= 3.7.1'",
",",
"'nose >= 1.3.1'",
"]",
",",
"test_suite",
"=",
"'nose.collector'",
",",
"python_requires",
"=",
"'>=3.5'",
",",
"packages",
"=",
"find_packages",
"(",
"\"src\"",
")",
",",
"package_dir",
"=",
"{",
"\"\"",
":",
"\"src\"",
"}",
",",
"include_package_data",
"=",
"True",
",",
"cmdclass",
"=",
"cmdclass_",
")"
] | Setup the package. | [
"Setup",
"the",
"package",
"."
] | 14b5eb7425e96689de6cc5c10f400895d586a978 | https://github.com/pymoca/pymoca/blob/14b5eb7425e96689de6cc5c10f400895d586a978/setup.py#L89-L121 | train |
rwl/pylon | contrib/pylontk.py | CaseProperties.body | def body(self, frame):
""" Creates the dialog body. Returns the widget that should have
initial focus.
"""
master = Frame(self)
master.pack(padx=5, pady=0, expand=1, fill=BOTH)
title = Label(master, text="Buses")
title.pack(side=TOP)
bus_lb = self.bus_lb = Listbox(master, selectmode=SINGLE, width=10)
bus_lb.pack(side=LEFT)
for bus in self.case.buses:
bus_lb.insert(END, bus.name)
bus_lb.bind("<<ListboxSelect>>", self.on_bus)
self.bus_params = BusProperties(master)
return bus_lb | python | def body(self, frame):
""" Creates the dialog body. Returns the widget that should have
initial focus.
"""
master = Frame(self)
master.pack(padx=5, pady=0, expand=1, fill=BOTH)
title = Label(master, text="Buses")
title.pack(side=TOP)
bus_lb = self.bus_lb = Listbox(master, selectmode=SINGLE, width=10)
bus_lb.pack(side=LEFT)
for bus in self.case.buses:
bus_lb.insert(END, bus.name)
bus_lb.bind("<<ListboxSelect>>", self.on_bus)
self.bus_params = BusProperties(master)
return bus_lb | [
"def",
"body",
"(",
"self",
",",
"frame",
")",
":",
"master",
"=",
"Frame",
"(",
"self",
")",
"master",
".",
"pack",
"(",
"padx",
"=",
"5",
",",
"pady",
"=",
"0",
",",
"expand",
"=",
"1",
",",
"fill",
"=",
"BOTH",
")",
"title",
"=",
"Label",
"(",
"master",
",",
"text",
"=",
"\"Buses\"",
")",
"title",
".",
"pack",
"(",
"side",
"=",
"TOP",
")",
"bus_lb",
"=",
"self",
".",
"bus_lb",
"=",
"Listbox",
"(",
"master",
",",
"selectmode",
"=",
"SINGLE",
",",
"width",
"=",
"10",
")",
"bus_lb",
".",
"pack",
"(",
"side",
"=",
"LEFT",
")",
"for",
"bus",
"in",
"self",
".",
"case",
".",
"buses",
":",
"bus_lb",
".",
"insert",
"(",
"END",
",",
"bus",
".",
"name",
")",
"bus_lb",
".",
"bind",
"(",
"\"<<ListboxSelect>>\"",
",",
"self",
".",
"on_bus",
")",
"self",
".",
"bus_params",
"=",
"BusProperties",
"(",
"master",
")",
"return",
"bus_lb"
] | Creates the dialog body. Returns the widget that should have
initial focus. | [
"Creates",
"the",
"dialog",
"body",
".",
"Returns",
"the",
"widget",
"that",
"should",
"have",
"initial",
"focus",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/pylontk.py#L538-L558 | train |
rwl/pylon | pylon/opf.py | OPF.solve | def solve(self, solver_klass=None):
""" Solves an optimal power flow and returns a results dictionary.
"""
# Start the clock.
t0 = time()
# Build an OPF model with variables and constraints.
om = self._construct_opf_model(self.case)
if om is None:
return {"converged": False, "output": {"message": "No Ref Bus."}}
# Call the specific solver.
# if self.opt["verbose"]:
# print '\nPYLON Version %s, %s', "0.4.2", "April 2010"
if solver_klass is not None:
result = solver_klass(om, opt=self.opt).solve()
elif self.dc:
# if self.opt["verbose"]:
# print ' -- DC Optimal Power Flow\n'
result = DCOPFSolver(om, opt=self.opt).solve()
else:
# if self.opt["verbose"]:
# print ' -- AC Optimal Power Flow\n'
result = PIPSSolver(om, opt=self.opt).solve()
result["elapsed"] = time() - t0
if self.opt.has_key("verbose"):
if self.opt["verbose"]:
logger.info("OPF completed in %.3fs." % result["elapsed"])
return result | python | def solve(self, solver_klass=None):
""" Solves an optimal power flow and returns a results dictionary.
"""
# Start the clock.
t0 = time()
# Build an OPF model with variables and constraints.
om = self._construct_opf_model(self.case)
if om is None:
return {"converged": False, "output": {"message": "No Ref Bus."}}
# Call the specific solver.
# if self.opt["verbose"]:
# print '\nPYLON Version %s, %s', "0.4.2", "April 2010"
if solver_klass is not None:
result = solver_klass(om, opt=self.opt).solve()
elif self.dc:
# if self.opt["verbose"]:
# print ' -- DC Optimal Power Flow\n'
result = DCOPFSolver(om, opt=self.opt).solve()
else:
# if self.opt["verbose"]:
# print ' -- AC Optimal Power Flow\n'
result = PIPSSolver(om, opt=self.opt).solve()
result["elapsed"] = time() - t0
if self.opt.has_key("verbose"):
if self.opt["verbose"]:
logger.info("OPF completed in %.3fs." % result["elapsed"])
return result | [
"def",
"solve",
"(",
"self",
",",
"solver_klass",
"=",
"None",
")",
":",
"# Start the clock.",
"t0",
"=",
"time",
"(",
")",
"# Build an OPF model with variables and constraints.",
"om",
"=",
"self",
".",
"_construct_opf_model",
"(",
"self",
".",
"case",
")",
"if",
"om",
"is",
"None",
":",
"return",
"{",
"\"converged\"",
":",
"False",
",",
"\"output\"",
":",
"{",
"\"message\"",
":",
"\"No Ref Bus.\"",
"}",
"}",
"# Call the specific solver.",
"# if self.opt[\"verbose\"]:",
"# print '\\nPYLON Version %s, %s', \"0.4.2\", \"April 2010\"",
"if",
"solver_klass",
"is",
"not",
"None",
":",
"result",
"=",
"solver_klass",
"(",
"om",
",",
"opt",
"=",
"self",
".",
"opt",
")",
".",
"solve",
"(",
")",
"elif",
"self",
".",
"dc",
":",
"# if self.opt[\"verbose\"]:",
"# print ' -- DC Optimal Power Flow\\n'",
"result",
"=",
"DCOPFSolver",
"(",
"om",
",",
"opt",
"=",
"self",
".",
"opt",
")",
".",
"solve",
"(",
")",
"else",
":",
"# if self.opt[\"verbose\"]:",
"# print ' -- AC Optimal Power Flow\\n'",
"result",
"=",
"PIPSSolver",
"(",
"om",
",",
"opt",
"=",
"self",
".",
"opt",
")",
".",
"solve",
"(",
")",
"result",
"[",
"\"elapsed\"",
"]",
"=",
"time",
"(",
")",
"-",
"t0",
"if",
"self",
".",
"opt",
".",
"has_key",
"(",
"\"verbose\"",
")",
":",
"if",
"self",
".",
"opt",
"[",
"\"verbose\"",
"]",
":",
"logger",
".",
"info",
"(",
"\"OPF completed in %.3fs.\"",
"%",
"result",
"[",
"\"elapsed\"",
"]",
")",
"return",
"result"
] | Solves an optimal power flow and returns a results dictionary. | [
"Solves",
"an",
"optimal",
"power",
"flow",
"and",
"returns",
"a",
"results",
"dictionary",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L79-L110 | train |
rwl/pylon | pylon/opf.py | OPF._construct_opf_model | def _construct_opf_model(self, case):
""" Returns an OPF model.
"""
# Zero the case result attributes.
self.case.reset()
base_mva = case.base_mva
# Check for one reference bus.
oneref, refs = self._ref_check(case)
if not oneref: #return {"status": "error"}
None
# Remove isolated components.
bs, ln, gn = self._remove_isolated(case)
# Update bus indexes.
self.case.index_buses(bs)
# Convert single-block piecewise-linear costs into linear polynomial.
gn = self._pwl1_to_poly(gn)
# Set-up initial problem variables.
Va = self._get_voltage_angle_var(refs, bs)
Pg = self._get_pgen_var(gn, base_mva)
if self.dc: # DC model.
# Get the susceptance matrices and phase shift injection vectors.
B, Bf, Pbusinj, Pfinj = self.case.makeBdc(bs, ln)
# Power mismatch constraints (B*Va + Pg = Pd).
Pmis = self._power_mismatch_dc(bs, gn, B, Pbusinj, base_mva)
# Branch flow limit constraints.
Pf, Pt = self._branch_flow_dc(ln, Bf, Pfinj, base_mva)
else:
# Set-up additional AC-OPF problem variables.
Vm = self._get_voltage_magnitude_var(bs, gn)
Qg = self._get_qgen_var(gn, base_mva)
Pmis, Qmis, Sf, St = self._nln_constraints(len(bs), len(ln))
vl = self._const_pf_constraints(gn, base_mva)
# TODO: Generator PQ capability curve constraints.
# PQh, PQl = self._pq_capability_curve_constraints(gn)
# Branch voltage angle difference limits.
ang = self._voltage_angle_diff_limit(bs, ln)
if self.dc:
vars = [Va, Pg]
constraints = [Pmis, Pf, Pt, ang]
else:
vars = [Va, Vm, Pg, Qg]
constraints = [Pmis, Qmis, Sf, St, #PQh, PQL,
vl, ang]
# Piece-wise linear generator cost constraints.
y, ycon = self._pwl_gen_costs(gn, base_mva)
if ycon is not None:
vars.append(y)
constraints.append(ycon)
# Add variables and constraints to the OPF model object.
opf = OPFModel(case)
opf.add_vars(vars)
opf.add_constraints(constraints)
if self.dc: # user data
opf._Bf = Bf
opf._Pfinj = Pfinj
return opf | python | def _construct_opf_model(self, case):
""" Returns an OPF model.
"""
# Zero the case result attributes.
self.case.reset()
base_mva = case.base_mva
# Check for one reference bus.
oneref, refs = self._ref_check(case)
if not oneref: #return {"status": "error"}
None
# Remove isolated components.
bs, ln, gn = self._remove_isolated(case)
# Update bus indexes.
self.case.index_buses(bs)
# Convert single-block piecewise-linear costs into linear polynomial.
gn = self._pwl1_to_poly(gn)
# Set-up initial problem variables.
Va = self._get_voltage_angle_var(refs, bs)
Pg = self._get_pgen_var(gn, base_mva)
if self.dc: # DC model.
# Get the susceptance matrices and phase shift injection vectors.
B, Bf, Pbusinj, Pfinj = self.case.makeBdc(bs, ln)
# Power mismatch constraints (B*Va + Pg = Pd).
Pmis = self._power_mismatch_dc(bs, gn, B, Pbusinj, base_mva)
# Branch flow limit constraints.
Pf, Pt = self._branch_flow_dc(ln, Bf, Pfinj, base_mva)
else:
# Set-up additional AC-OPF problem variables.
Vm = self._get_voltage_magnitude_var(bs, gn)
Qg = self._get_qgen_var(gn, base_mva)
Pmis, Qmis, Sf, St = self._nln_constraints(len(bs), len(ln))
vl = self._const_pf_constraints(gn, base_mva)
# TODO: Generator PQ capability curve constraints.
# PQh, PQl = self._pq_capability_curve_constraints(gn)
# Branch voltage angle difference limits.
ang = self._voltage_angle_diff_limit(bs, ln)
if self.dc:
vars = [Va, Pg]
constraints = [Pmis, Pf, Pt, ang]
else:
vars = [Va, Vm, Pg, Qg]
constraints = [Pmis, Qmis, Sf, St, #PQh, PQL,
vl, ang]
# Piece-wise linear generator cost constraints.
y, ycon = self._pwl_gen_costs(gn, base_mva)
if ycon is not None:
vars.append(y)
constraints.append(ycon)
# Add variables and constraints to the OPF model object.
opf = OPFModel(case)
opf.add_vars(vars)
opf.add_constraints(constraints)
if self.dc: # user data
opf._Bf = Bf
opf._Pfinj = Pfinj
return opf | [
"def",
"_construct_opf_model",
"(",
"self",
",",
"case",
")",
":",
"# Zero the case result attributes.",
"self",
".",
"case",
".",
"reset",
"(",
")",
"base_mva",
"=",
"case",
".",
"base_mva",
"# Check for one reference bus.",
"oneref",
",",
"refs",
"=",
"self",
".",
"_ref_check",
"(",
"case",
")",
"if",
"not",
"oneref",
":",
"#return {\"status\": \"error\"}",
"None",
"# Remove isolated components.",
"bs",
",",
"ln",
",",
"gn",
"=",
"self",
".",
"_remove_isolated",
"(",
"case",
")",
"# Update bus indexes.",
"self",
".",
"case",
".",
"index_buses",
"(",
"bs",
")",
"# Convert single-block piecewise-linear costs into linear polynomial.",
"gn",
"=",
"self",
".",
"_pwl1_to_poly",
"(",
"gn",
")",
"# Set-up initial problem variables.",
"Va",
"=",
"self",
".",
"_get_voltage_angle_var",
"(",
"refs",
",",
"bs",
")",
"Pg",
"=",
"self",
".",
"_get_pgen_var",
"(",
"gn",
",",
"base_mva",
")",
"if",
"self",
".",
"dc",
":",
"# DC model.",
"# Get the susceptance matrices and phase shift injection vectors.",
"B",
",",
"Bf",
",",
"Pbusinj",
",",
"Pfinj",
"=",
"self",
".",
"case",
".",
"makeBdc",
"(",
"bs",
",",
"ln",
")",
"# Power mismatch constraints (B*Va + Pg = Pd).",
"Pmis",
"=",
"self",
".",
"_power_mismatch_dc",
"(",
"bs",
",",
"gn",
",",
"B",
",",
"Pbusinj",
",",
"base_mva",
")",
"# Branch flow limit constraints.",
"Pf",
",",
"Pt",
"=",
"self",
".",
"_branch_flow_dc",
"(",
"ln",
",",
"Bf",
",",
"Pfinj",
",",
"base_mva",
")",
"else",
":",
"# Set-up additional AC-OPF problem variables.",
"Vm",
"=",
"self",
".",
"_get_voltage_magnitude_var",
"(",
"bs",
",",
"gn",
")",
"Qg",
"=",
"self",
".",
"_get_qgen_var",
"(",
"gn",
",",
"base_mva",
")",
"Pmis",
",",
"Qmis",
",",
"Sf",
",",
"St",
"=",
"self",
".",
"_nln_constraints",
"(",
"len",
"(",
"bs",
")",
",",
"len",
"(",
"ln",
")",
")",
"vl",
"=",
"self",
".",
"_const_pf_constraints",
"(",
"gn",
",",
"base_mva",
")",
"# TODO: Generator PQ capability curve constraints.",
"# PQh, PQl = self._pq_capability_curve_constraints(gn)",
"# Branch voltage angle difference limits.",
"ang",
"=",
"self",
".",
"_voltage_angle_diff_limit",
"(",
"bs",
",",
"ln",
")",
"if",
"self",
".",
"dc",
":",
"vars",
"=",
"[",
"Va",
",",
"Pg",
"]",
"constraints",
"=",
"[",
"Pmis",
",",
"Pf",
",",
"Pt",
",",
"ang",
"]",
"else",
":",
"vars",
"=",
"[",
"Va",
",",
"Vm",
",",
"Pg",
",",
"Qg",
"]",
"constraints",
"=",
"[",
"Pmis",
",",
"Qmis",
",",
"Sf",
",",
"St",
",",
"#PQh, PQL,",
"vl",
",",
"ang",
"]",
"# Piece-wise linear generator cost constraints.",
"y",
",",
"ycon",
"=",
"self",
".",
"_pwl_gen_costs",
"(",
"gn",
",",
"base_mva",
")",
"if",
"ycon",
"is",
"not",
"None",
":",
"vars",
".",
"append",
"(",
"y",
")",
"constraints",
".",
"append",
"(",
"ycon",
")",
"# Add variables and constraints to the OPF model object.",
"opf",
"=",
"OPFModel",
"(",
"case",
")",
"opf",
".",
"add_vars",
"(",
"vars",
")",
"opf",
".",
"add_constraints",
"(",
"constraints",
")",
"if",
"self",
".",
"dc",
":",
"# user data",
"opf",
".",
"_Bf",
"=",
"Bf",
"opf",
".",
"_Pfinj",
"=",
"Pfinj",
"return",
"opf"
] | Returns an OPF model. | [
"Returns",
"an",
"OPF",
"model",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L116-L190 | train |
rwl/pylon | pylon/opf.py | OPF._ref_check | def _ref_check(self, case):
""" Checks that there is only one reference bus.
"""
refs = [bus._i for bus in case.buses if bus.type == REFERENCE]
if len(refs) == 1:
return True, refs
else:
logger.error("OPF requires a single reference bus.")
return False, refs | python | def _ref_check(self, case):
""" Checks that there is only one reference bus.
"""
refs = [bus._i for bus in case.buses if bus.type == REFERENCE]
if len(refs) == 1:
return True, refs
else:
logger.error("OPF requires a single reference bus.")
return False, refs | [
"def",
"_ref_check",
"(",
"self",
",",
"case",
")",
":",
"refs",
"=",
"[",
"bus",
".",
"_i",
"for",
"bus",
"in",
"case",
".",
"buses",
"if",
"bus",
".",
"type",
"==",
"REFERENCE",
"]",
"if",
"len",
"(",
"refs",
")",
"==",
"1",
":",
"return",
"True",
",",
"refs",
"else",
":",
"logger",
".",
"error",
"(",
"\"OPF requires a single reference bus.\"",
")",
"return",
"False",
",",
"refs"
] | Checks that there is only one reference bus. | [
"Checks",
"that",
"there",
"is",
"only",
"one",
"reference",
"bus",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L193-L202 | train |
rwl/pylon | pylon/opf.py | OPF._remove_isolated | def _remove_isolated(self, case):
""" Returns non-isolated case components.
"""
# case.deactivate_isolated()
buses = case.connected_buses
branches = case.online_branches
gens = case.online_generators
return buses, branches, gens | python | def _remove_isolated(self, case):
""" Returns non-isolated case components.
"""
# case.deactivate_isolated()
buses = case.connected_buses
branches = case.online_branches
gens = case.online_generators
return buses, branches, gens | [
"def",
"_remove_isolated",
"(",
"self",
",",
"case",
")",
":",
"# case.deactivate_isolated()",
"buses",
"=",
"case",
".",
"connected_buses",
"branches",
"=",
"case",
".",
"online_branches",
"gens",
"=",
"case",
".",
"online_generators",
"return",
"buses",
",",
"branches",
",",
"gens"
] | Returns non-isolated case components. | [
"Returns",
"non",
"-",
"isolated",
"case",
"components",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L205-L213 | train |
rwl/pylon | pylon/opf.py | OPF._pwl1_to_poly | def _pwl1_to_poly(self, generators):
""" Converts single-block piecewise-linear costs into linear
polynomial.
"""
for g in generators:
if (g.pcost_model == PW_LINEAR) and (len(g.p_cost) == 2):
g.pwl_to_poly()
return generators | python | def _pwl1_to_poly(self, generators):
""" Converts single-block piecewise-linear costs into linear
polynomial.
"""
for g in generators:
if (g.pcost_model == PW_LINEAR) and (len(g.p_cost) == 2):
g.pwl_to_poly()
return generators | [
"def",
"_pwl1_to_poly",
"(",
"self",
",",
"generators",
")",
":",
"for",
"g",
"in",
"generators",
":",
"if",
"(",
"g",
".",
"pcost_model",
"==",
"PW_LINEAR",
")",
"and",
"(",
"len",
"(",
"g",
".",
"p_cost",
")",
"==",
"2",
")",
":",
"g",
".",
"pwl_to_poly",
"(",
")",
"return",
"generators"
] | Converts single-block piecewise-linear costs into linear
polynomial. | [
"Converts",
"single",
"-",
"block",
"piecewise",
"-",
"linear",
"costs",
"into",
"linear",
"polynomial",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L216-L224 | train |
rwl/pylon | pylon/opf.py | OPF._get_voltage_angle_var | def _get_voltage_angle_var(self, refs, buses):
""" Returns the voltage angle variable set.
"""
Va = array([b.v_angle * (pi / 180.0) for b in buses])
Vau = Inf * ones(len(buses))
Val = -Vau
Vau[refs] = Va[refs]
Val[refs] = Va[refs]
return Variable("Va", len(buses), Va, Val, Vau) | python | def _get_voltage_angle_var(self, refs, buses):
""" Returns the voltage angle variable set.
"""
Va = array([b.v_angle * (pi / 180.0) for b in buses])
Vau = Inf * ones(len(buses))
Val = -Vau
Vau[refs] = Va[refs]
Val[refs] = Va[refs]
return Variable("Va", len(buses), Va, Val, Vau) | [
"def",
"_get_voltage_angle_var",
"(",
"self",
",",
"refs",
",",
"buses",
")",
":",
"Va",
"=",
"array",
"(",
"[",
"b",
".",
"v_angle",
"*",
"(",
"pi",
"/",
"180.0",
")",
"for",
"b",
"in",
"buses",
"]",
")",
"Vau",
"=",
"Inf",
"*",
"ones",
"(",
"len",
"(",
"buses",
")",
")",
"Val",
"=",
"-",
"Vau",
"Vau",
"[",
"refs",
"]",
"=",
"Va",
"[",
"refs",
"]",
"Val",
"[",
"refs",
"]",
"=",
"Va",
"[",
"refs",
"]",
"return",
"Variable",
"(",
"\"Va\"",
",",
"len",
"(",
"buses",
")",
",",
"Va",
",",
"Val",
",",
"Vau",
")"
] | Returns the voltage angle variable set. | [
"Returns",
"the",
"voltage",
"angle",
"variable",
"set",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L230-L240 | train |
rwl/pylon | pylon/opf.py | OPF._get_voltage_magnitude_var | def _get_voltage_magnitude_var(self, buses, generators):
""" Returns the voltage magnitude variable set.
"""
Vm = array([b.v_magnitude for b in buses])
# For buses with generators initialise Vm from gen data.
for g in generators:
Vm[g.bus._i] = g.v_magnitude
Vmin = array([b.v_min for b in buses])
Vmax = array([b.v_max for b in buses])
return Variable("Vm", len(buses), Vm, Vmin, Vmax) | python | def _get_voltage_magnitude_var(self, buses, generators):
""" Returns the voltage magnitude variable set.
"""
Vm = array([b.v_magnitude for b in buses])
# For buses with generators initialise Vm from gen data.
for g in generators:
Vm[g.bus._i] = g.v_magnitude
Vmin = array([b.v_min for b in buses])
Vmax = array([b.v_max for b in buses])
return Variable("Vm", len(buses), Vm, Vmin, Vmax) | [
"def",
"_get_voltage_magnitude_var",
"(",
"self",
",",
"buses",
",",
"generators",
")",
":",
"Vm",
"=",
"array",
"(",
"[",
"b",
".",
"v_magnitude",
"for",
"b",
"in",
"buses",
"]",
")",
"# For buses with generators initialise Vm from gen data.",
"for",
"g",
"in",
"generators",
":",
"Vm",
"[",
"g",
".",
"bus",
".",
"_i",
"]",
"=",
"g",
".",
"v_magnitude",
"Vmin",
"=",
"array",
"(",
"[",
"b",
".",
"v_min",
"for",
"b",
"in",
"buses",
"]",
")",
"Vmax",
"=",
"array",
"(",
"[",
"b",
".",
"v_max",
"for",
"b",
"in",
"buses",
"]",
")",
"return",
"Variable",
"(",
"\"Vm\"",
",",
"len",
"(",
"buses",
")",
",",
"Vm",
",",
"Vmin",
",",
"Vmax",
")"
] | Returns the voltage magnitude variable set. | [
"Returns",
"the",
"voltage",
"magnitude",
"variable",
"set",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L243-L255 | train |
rwl/pylon | pylon/opf.py | OPF._get_pgen_var | def _get_pgen_var(self, generators, base_mva):
""" Returns the generator active power set-point variable.
"""
Pg = array([g.p / base_mva for g in generators])
Pmin = array([g.p_min / base_mva for g in generators])
Pmax = array([g.p_max / base_mva for g in generators])
return Variable("Pg", len(generators), Pg, Pmin, Pmax) | python | def _get_pgen_var(self, generators, base_mva):
""" Returns the generator active power set-point variable.
"""
Pg = array([g.p / base_mva for g in generators])
Pmin = array([g.p_min / base_mva for g in generators])
Pmax = array([g.p_max / base_mva for g in generators])
return Variable("Pg", len(generators), Pg, Pmin, Pmax) | [
"def",
"_get_pgen_var",
"(",
"self",
",",
"generators",
",",
"base_mva",
")",
":",
"Pg",
"=",
"array",
"(",
"[",
"g",
".",
"p",
"/",
"base_mva",
"for",
"g",
"in",
"generators",
"]",
")",
"Pmin",
"=",
"array",
"(",
"[",
"g",
".",
"p_min",
"/",
"base_mva",
"for",
"g",
"in",
"generators",
"]",
")",
"Pmax",
"=",
"array",
"(",
"[",
"g",
".",
"p_max",
"/",
"base_mva",
"for",
"g",
"in",
"generators",
"]",
")",
"return",
"Variable",
"(",
"\"Pg\"",
",",
"len",
"(",
"generators",
")",
",",
"Pg",
",",
"Pmin",
",",
"Pmax",
")"
] | Returns the generator active power set-point variable. | [
"Returns",
"the",
"generator",
"active",
"power",
"set",
"-",
"point",
"variable",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L258-L266 | train |
rwl/pylon | pylon/opf.py | OPF._get_qgen_var | def _get_qgen_var(self, generators, base_mva):
""" Returns the generator reactive power variable set.
"""
Qg = array([g.q / base_mva for g in generators])
Qmin = array([g.q_min / base_mva for g in generators])
Qmax = array([g.q_max / base_mva for g in generators])
return Variable("Qg", len(generators), Qg, Qmin, Qmax) | python | def _get_qgen_var(self, generators, base_mva):
""" Returns the generator reactive power variable set.
"""
Qg = array([g.q / base_mva for g in generators])
Qmin = array([g.q_min / base_mva for g in generators])
Qmax = array([g.q_max / base_mva for g in generators])
return Variable("Qg", len(generators), Qg, Qmin, Qmax) | [
"def",
"_get_qgen_var",
"(",
"self",
",",
"generators",
",",
"base_mva",
")",
":",
"Qg",
"=",
"array",
"(",
"[",
"g",
".",
"q",
"/",
"base_mva",
"for",
"g",
"in",
"generators",
"]",
")",
"Qmin",
"=",
"array",
"(",
"[",
"g",
".",
"q_min",
"/",
"base_mva",
"for",
"g",
"in",
"generators",
"]",
")",
"Qmax",
"=",
"array",
"(",
"[",
"g",
".",
"q_max",
"/",
"base_mva",
"for",
"g",
"in",
"generators",
"]",
")",
"return",
"Variable",
"(",
"\"Qg\"",
",",
"len",
"(",
"generators",
")",
",",
"Qg",
",",
"Qmin",
",",
"Qmax",
")"
] | Returns the generator reactive power variable set. | [
"Returns",
"the",
"generator",
"reactive",
"power",
"variable",
"set",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L269-L277 | train |
rwl/pylon | pylon/opf.py | OPF._nln_constraints | def _nln_constraints(self, nb, nl):
""" Returns non-linear constraints for OPF.
"""
Pmis = NonLinearConstraint("Pmis", nb)
Qmis = NonLinearConstraint("Qmis", nb)
Sf = NonLinearConstraint("Sf", nl)
St = NonLinearConstraint("St", nl)
return Pmis, Qmis, Sf, St | python | def _nln_constraints(self, nb, nl):
""" Returns non-linear constraints for OPF.
"""
Pmis = NonLinearConstraint("Pmis", nb)
Qmis = NonLinearConstraint("Qmis", nb)
Sf = NonLinearConstraint("Sf", nl)
St = NonLinearConstraint("St", nl)
return Pmis, Qmis, Sf, St | [
"def",
"_nln_constraints",
"(",
"self",
",",
"nb",
",",
"nl",
")",
":",
"Pmis",
"=",
"NonLinearConstraint",
"(",
"\"Pmis\"",
",",
"nb",
")",
"Qmis",
"=",
"NonLinearConstraint",
"(",
"\"Qmis\"",
",",
"nb",
")",
"Sf",
"=",
"NonLinearConstraint",
"(",
"\"Sf\"",
",",
"nl",
")",
"St",
"=",
"NonLinearConstraint",
"(",
"\"St\"",
",",
"nl",
")",
"return",
"Pmis",
",",
"Qmis",
",",
"Sf",
",",
"St"
] | Returns non-linear constraints for OPF. | [
"Returns",
"non",
"-",
"linear",
"constraints",
"for",
"OPF",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L283-L291 | train |
rwl/pylon | pylon/opf.py | OPF._const_pf_constraints | def _const_pf_constraints(self, gn, base_mva):
""" Returns a linear constraint enforcing constant power factor for
dispatchable loads.
The power factor is derived from the original value of Pmin and either
Qmin (for inductive loads) or Qmax (for capacitive loads). If both Qmin
and Qmax are zero, this implies a unity power factor without the need
for an additional constraint.
"""
ivl = array([i for i, g in enumerate(gn)
if g.is_load and (g.q_min != 0.0 or g.q_max != 0.0)])
vl = [gn[i] for i in ivl]
nvl = len(vl)
ng = len(gn)
Pg = array([g.p for g in vl]) / base_mva
Qg = array([g.q for g in vl]) / base_mva
Pmin = array([g.p_min for g in vl]) / base_mva
Qmin = array([g.q_min for g in vl]) / base_mva
Qmax = array([g.q_max for g in vl]) / base_mva
# At least one of the Q limits must be zero (corresponding to Pmax==0).
for g in vl:
if g.qmin != 0.0 and g.q_max != 0.0:
logger.error("Either Qmin or Qmax must be equal to zero for "
"each dispatchable load.")
# Initial values of PG and QG must be consistent with specified power
# factor. This is to prevent a user from unknowingly using a case file
# which would have defined a different power factor constraint under a
# previous version which used PG and QG to define the power factor.
Qlim = (Qmin == 0.0) * Qmax + (Qmax == 0.0) * Qmin
if any( abs(Qg - Pg * Qlim / Pmin) > 1e-6 ):
logger.error("For a dispatchable load, PG and QG must be "
"consistent with the power factor defined by "
"PMIN and the Q limits.")
# Make Avl, lvl, uvl, for lvl <= Avl * r_[Pg, Qg] <= uvl
if nvl > 0:
xx = Pmin
yy = Qlim
pftheta = arctan2(yy, xx)
pc = sin(pftheta)
qc = -cos(pftheta)
ii = array([range(nvl), range(nvl)])
jj = r_[ivl, ivl + ng]
Avl = csr_matrix(r_[pc, qc], (ii, jj), (nvl, 2 * ng))
lvl = zeros(nvl)
uvl = lvl
else:
Avl = zeros((0, 2 * ng))
lvl = array([])
uvl = array([])
return LinearConstraint("vl", Avl, lvl, uvl, ["Pg", "Qg"]) | python | def _const_pf_constraints(self, gn, base_mva):
""" Returns a linear constraint enforcing constant power factor for
dispatchable loads.
The power factor is derived from the original value of Pmin and either
Qmin (for inductive loads) or Qmax (for capacitive loads). If both Qmin
and Qmax are zero, this implies a unity power factor without the need
for an additional constraint.
"""
ivl = array([i for i, g in enumerate(gn)
if g.is_load and (g.q_min != 0.0 or g.q_max != 0.0)])
vl = [gn[i] for i in ivl]
nvl = len(vl)
ng = len(gn)
Pg = array([g.p for g in vl]) / base_mva
Qg = array([g.q for g in vl]) / base_mva
Pmin = array([g.p_min for g in vl]) / base_mva
Qmin = array([g.q_min for g in vl]) / base_mva
Qmax = array([g.q_max for g in vl]) / base_mva
# At least one of the Q limits must be zero (corresponding to Pmax==0).
for g in vl:
if g.qmin != 0.0 and g.q_max != 0.0:
logger.error("Either Qmin or Qmax must be equal to zero for "
"each dispatchable load.")
# Initial values of PG and QG must be consistent with specified power
# factor. This is to prevent a user from unknowingly using a case file
# which would have defined a different power factor constraint under a
# previous version which used PG and QG to define the power factor.
Qlim = (Qmin == 0.0) * Qmax + (Qmax == 0.0) * Qmin
if any( abs(Qg - Pg * Qlim / Pmin) > 1e-6 ):
logger.error("For a dispatchable load, PG and QG must be "
"consistent with the power factor defined by "
"PMIN and the Q limits.")
# Make Avl, lvl, uvl, for lvl <= Avl * r_[Pg, Qg] <= uvl
if nvl > 0:
xx = Pmin
yy = Qlim
pftheta = arctan2(yy, xx)
pc = sin(pftheta)
qc = -cos(pftheta)
ii = array([range(nvl), range(nvl)])
jj = r_[ivl, ivl + ng]
Avl = csr_matrix(r_[pc, qc], (ii, jj), (nvl, 2 * ng))
lvl = zeros(nvl)
uvl = lvl
else:
Avl = zeros((0, 2 * ng))
lvl = array([])
uvl = array([])
return LinearConstraint("vl", Avl, lvl, uvl, ["Pg", "Qg"]) | [
"def",
"_const_pf_constraints",
"(",
"self",
",",
"gn",
",",
"base_mva",
")",
":",
"ivl",
"=",
"array",
"(",
"[",
"i",
"for",
"i",
",",
"g",
"in",
"enumerate",
"(",
"gn",
")",
"if",
"g",
".",
"is_load",
"and",
"(",
"g",
".",
"q_min",
"!=",
"0.0",
"or",
"g",
".",
"q_max",
"!=",
"0.0",
")",
"]",
")",
"vl",
"=",
"[",
"gn",
"[",
"i",
"]",
"for",
"i",
"in",
"ivl",
"]",
"nvl",
"=",
"len",
"(",
"vl",
")",
"ng",
"=",
"len",
"(",
"gn",
")",
"Pg",
"=",
"array",
"(",
"[",
"g",
".",
"p",
"for",
"g",
"in",
"vl",
"]",
")",
"/",
"base_mva",
"Qg",
"=",
"array",
"(",
"[",
"g",
".",
"q",
"for",
"g",
"in",
"vl",
"]",
")",
"/",
"base_mva",
"Pmin",
"=",
"array",
"(",
"[",
"g",
".",
"p_min",
"for",
"g",
"in",
"vl",
"]",
")",
"/",
"base_mva",
"Qmin",
"=",
"array",
"(",
"[",
"g",
".",
"q_min",
"for",
"g",
"in",
"vl",
"]",
")",
"/",
"base_mva",
"Qmax",
"=",
"array",
"(",
"[",
"g",
".",
"q_max",
"for",
"g",
"in",
"vl",
"]",
")",
"/",
"base_mva",
"# At least one of the Q limits must be zero (corresponding to Pmax==0).",
"for",
"g",
"in",
"vl",
":",
"if",
"g",
".",
"qmin",
"!=",
"0.0",
"and",
"g",
".",
"q_max",
"!=",
"0.0",
":",
"logger",
".",
"error",
"(",
"\"Either Qmin or Qmax must be equal to zero for \"",
"\"each dispatchable load.\"",
")",
"# Initial values of PG and QG must be consistent with specified power",
"# factor. This is to prevent a user from unknowingly using a case file",
"# which would have defined a different power factor constraint under a",
"# previous version which used PG and QG to define the power factor.",
"Qlim",
"=",
"(",
"Qmin",
"==",
"0.0",
")",
"*",
"Qmax",
"+",
"(",
"Qmax",
"==",
"0.0",
")",
"*",
"Qmin",
"if",
"any",
"(",
"abs",
"(",
"Qg",
"-",
"Pg",
"*",
"Qlim",
"/",
"Pmin",
")",
">",
"1e-6",
")",
":",
"logger",
".",
"error",
"(",
"\"For a dispatchable load, PG and QG must be \"",
"\"consistent with the power factor defined by \"",
"\"PMIN and the Q limits.\"",
")",
"# Make Avl, lvl, uvl, for lvl <= Avl * r_[Pg, Qg] <= uvl",
"if",
"nvl",
">",
"0",
":",
"xx",
"=",
"Pmin",
"yy",
"=",
"Qlim",
"pftheta",
"=",
"arctan2",
"(",
"yy",
",",
"xx",
")",
"pc",
"=",
"sin",
"(",
"pftheta",
")",
"qc",
"=",
"-",
"cos",
"(",
"pftheta",
")",
"ii",
"=",
"array",
"(",
"[",
"range",
"(",
"nvl",
")",
",",
"range",
"(",
"nvl",
")",
"]",
")",
"jj",
"=",
"r_",
"[",
"ivl",
",",
"ivl",
"+",
"ng",
"]",
"Avl",
"=",
"csr_matrix",
"(",
"r_",
"[",
"pc",
",",
"qc",
"]",
",",
"(",
"ii",
",",
"jj",
")",
",",
"(",
"nvl",
",",
"2",
"*",
"ng",
")",
")",
"lvl",
"=",
"zeros",
"(",
"nvl",
")",
"uvl",
"=",
"lvl",
"else",
":",
"Avl",
"=",
"zeros",
"(",
"(",
"0",
",",
"2",
"*",
"ng",
")",
")",
"lvl",
"=",
"array",
"(",
"[",
"]",
")",
"uvl",
"=",
"array",
"(",
"[",
"]",
")",
"return",
"LinearConstraint",
"(",
"\"vl\"",
",",
"Avl",
",",
"lvl",
",",
"uvl",
",",
"[",
"\"Pg\"",
",",
"\"Qg\"",
"]",
")"
] | Returns a linear constraint enforcing constant power factor for
dispatchable loads.
The power factor is derived from the original value of Pmin and either
Qmin (for inductive loads) or Qmax (for capacitive loads). If both Qmin
and Qmax are zero, this implies a unity power factor without the need
for an additional constraint. | [
"Returns",
"a",
"linear",
"constraint",
"enforcing",
"constant",
"power",
"factor",
"for",
"dispatchable",
"loads",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L330-L384 | train |
rwl/pylon | pylon/opf.py | OPF._voltage_angle_diff_limit | def _voltage_angle_diff_limit(self, buses, branches):
""" Returns the constraint on the branch voltage angle differences.
"""
nb = len(buses)
if not self.ignore_ang_lim:
iang = [i for i, b in enumerate(branches)
if (b.ang_min and (b.ang_min > -360.0))
or (b.ang_max and (b.ang_max < 360.0))]
iangl = array([i for i, b in enumerate(branches)
if b.ang_min is not None])[iang]
iangh = array([i for i, b in enumerate(branches)
if b.ang_max is not None])[iang]
nang = len(iang)
if nang > 0:
ii = range(nang) + range(nang)
jjf = array([b.from_bus._i for b in branches])[iang]
jjt = array([b.to_bus._i for b in branches])[iang]
jj = r_[jjf, jjt]
Aang = csr_matrix(r_[ones(nang), -ones(nang)], (ii, jj))
uang = Inf * ones(nang)
lang = -uang
lang[iangl] = array([b.ang_min * (pi / 180.0)
for b in branches])[iangl]
uang[iangh] = array([b.ang_max * (pi / 180.0)
for b in branches])[iangh]
else:
# Aang = csr_matrix((0, nb), dtype=float64)
# lang = array([], dtype=float64)
# uang = array([], dtype=float64)
Aang = zeros((0, nb))
lang = array([])
uang = array([])
else:
# Aang = csr_matrix((0, nb), dtype=float64)
# lang = array([], dtype=float64)
# uang = array([], dtype=float64)
# iang = array([], dtype=float64)
Aang = zeros((0, nb))
lang = array([])
uang = array([])
return LinearConstraint("ang", Aang, lang, uang, ["Va"]) | python | def _voltage_angle_diff_limit(self, buses, branches):
""" Returns the constraint on the branch voltage angle differences.
"""
nb = len(buses)
if not self.ignore_ang_lim:
iang = [i for i, b in enumerate(branches)
if (b.ang_min and (b.ang_min > -360.0))
or (b.ang_max and (b.ang_max < 360.0))]
iangl = array([i for i, b in enumerate(branches)
if b.ang_min is not None])[iang]
iangh = array([i for i, b in enumerate(branches)
if b.ang_max is not None])[iang]
nang = len(iang)
if nang > 0:
ii = range(nang) + range(nang)
jjf = array([b.from_bus._i for b in branches])[iang]
jjt = array([b.to_bus._i for b in branches])[iang]
jj = r_[jjf, jjt]
Aang = csr_matrix(r_[ones(nang), -ones(nang)], (ii, jj))
uang = Inf * ones(nang)
lang = -uang
lang[iangl] = array([b.ang_min * (pi / 180.0)
for b in branches])[iangl]
uang[iangh] = array([b.ang_max * (pi / 180.0)
for b in branches])[iangh]
else:
# Aang = csr_matrix((0, nb), dtype=float64)
# lang = array([], dtype=float64)
# uang = array([], dtype=float64)
Aang = zeros((0, nb))
lang = array([])
uang = array([])
else:
# Aang = csr_matrix((0, nb), dtype=float64)
# lang = array([], dtype=float64)
# uang = array([], dtype=float64)
# iang = array([], dtype=float64)
Aang = zeros((0, nb))
lang = array([])
uang = array([])
return LinearConstraint("ang", Aang, lang, uang, ["Va"]) | [
"def",
"_voltage_angle_diff_limit",
"(",
"self",
",",
"buses",
",",
"branches",
")",
":",
"nb",
"=",
"len",
"(",
"buses",
")",
"if",
"not",
"self",
".",
"ignore_ang_lim",
":",
"iang",
"=",
"[",
"i",
"for",
"i",
",",
"b",
"in",
"enumerate",
"(",
"branches",
")",
"if",
"(",
"b",
".",
"ang_min",
"and",
"(",
"b",
".",
"ang_min",
">",
"-",
"360.0",
")",
")",
"or",
"(",
"b",
".",
"ang_max",
"and",
"(",
"b",
".",
"ang_max",
"<",
"360.0",
")",
")",
"]",
"iangl",
"=",
"array",
"(",
"[",
"i",
"for",
"i",
",",
"b",
"in",
"enumerate",
"(",
"branches",
")",
"if",
"b",
".",
"ang_min",
"is",
"not",
"None",
"]",
")",
"[",
"iang",
"]",
"iangh",
"=",
"array",
"(",
"[",
"i",
"for",
"i",
",",
"b",
"in",
"enumerate",
"(",
"branches",
")",
"if",
"b",
".",
"ang_max",
"is",
"not",
"None",
"]",
")",
"[",
"iang",
"]",
"nang",
"=",
"len",
"(",
"iang",
")",
"if",
"nang",
">",
"0",
":",
"ii",
"=",
"range",
"(",
"nang",
")",
"+",
"range",
"(",
"nang",
")",
"jjf",
"=",
"array",
"(",
"[",
"b",
".",
"from_bus",
".",
"_i",
"for",
"b",
"in",
"branches",
"]",
")",
"[",
"iang",
"]",
"jjt",
"=",
"array",
"(",
"[",
"b",
".",
"to_bus",
".",
"_i",
"for",
"b",
"in",
"branches",
"]",
")",
"[",
"iang",
"]",
"jj",
"=",
"r_",
"[",
"jjf",
",",
"jjt",
"]",
"Aang",
"=",
"csr_matrix",
"(",
"r_",
"[",
"ones",
"(",
"nang",
")",
",",
"-",
"ones",
"(",
"nang",
")",
"]",
",",
"(",
"ii",
",",
"jj",
")",
")",
"uang",
"=",
"Inf",
"*",
"ones",
"(",
"nang",
")",
"lang",
"=",
"-",
"uang",
"lang",
"[",
"iangl",
"]",
"=",
"array",
"(",
"[",
"b",
".",
"ang_min",
"*",
"(",
"pi",
"/",
"180.0",
")",
"for",
"b",
"in",
"branches",
"]",
")",
"[",
"iangl",
"]",
"uang",
"[",
"iangh",
"]",
"=",
"array",
"(",
"[",
"b",
".",
"ang_max",
"*",
"(",
"pi",
"/",
"180.0",
")",
"for",
"b",
"in",
"branches",
"]",
")",
"[",
"iangh",
"]",
"else",
":",
"# Aang = csr_matrix((0, nb), dtype=float64)",
"# lang = array([], dtype=float64)",
"# uang = array([], dtype=float64)",
"Aang",
"=",
"zeros",
"(",
"(",
"0",
",",
"nb",
")",
")",
"lang",
"=",
"array",
"(",
"[",
"]",
")",
"uang",
"=",
"array",
"(",
"[",
"]",
")",
"else",
":",
"# Aang = csr_matrix((0, nb), dtype=float64)",
"# lang = array([], dtype=float64)",
"# uang = array([], dtype=float64)",
"# iang = array([], dtype=float64)",
"Aang",
"=",
"zeros",
"(",
"(",
"0",
",",
"nb",
")",
")",
"lang",
"=",
"array",
"(",
"[",
"]",
")",
"uang",
"=",
"array",
"(",
"[",
"]",
")",
"return",
"LinearConstraint",
"(",
"\"ang\"",
",",
"Aang",
",",
"lang",
",",
"uang",
",",
"[",
"\"Va\"",
"]",
")"
] | Returns the constraint on the branch voltage angle differences. | [
"Returns",
"the",
"constraint",
"on",
"the",
"branch",
"voltage",
"angle",
"differences",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L387-L430 | train |
rwl/pylon | pylon/opf.py | OPFModel.add_var | def add_var(self, var):
""" Adds a variable to the model.
"""
if var.name in [v.name for v in self.vars]:
logger.error("Variable set named '%s' already exists." % var.name)
return
var.i1 = self.var_N
var.iN = self.var_N + var.N - 1
self.vars.append(var) | python | def add_var(self, var):
""" Adds a variable to the model.
"""
if var.name in [v.name for v in self.vars]:
logger.error("Variable set named '%s' already exists." % var.name)
return
var.i1 = self.var_N
var.iN = self.var_N + var.N - 1
self.vars.append(var) | [
"def",
"add_var",
"(",
"self",
",",
"var",
")",
":",
"if",
"var",
".",
"name",
"in",
"[",
"v",
".",
"name",
"for",
"v",
"in",
"self",
".",
"vars",
"]",
":",
"logger",
".",
"error",
"(",
"\"Variable set named '%s' already exists.\"",
"%",
"var",
".",
"name",
")",
"return",
"var",
".",
"i1",
"=",
"self",
".",
"var_N",
"var",
".",
"iN",
"=",
"self",
".",
"var_N",
"+",
"var",
".",
"N",
"-",
"1",
"self",
".",
"vars",
".",
"append",
"(",
"var",
")"
] | Adds a variable to the model. | [
"Adds",
"a",
"variable",
"to",
"the",
"model",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L731-L740 | train |
rwl/pylon | pylon/opf.py | OPFModel.get_var | def get_var(self, name):
""" Returns the variable set with the given name.
"""
for var in self.vars:
if var.name == name:
return var
else:
raise ValueError | python | def get_var(self, name):
""" Returns the variable set with the given name.
"""
for var in self.vars:
if var.name == name:
return var
else:
raise ValueError | [
"def",
"get_var",
"(",
"self",
",",
"name",
")",
":",
"for",
"var",
"in",
"self",
".",
"vars",
":",
"if",
"var",
".",
"name",
"==",
"name",
":",
"return",
"var",
"else",
":",
"raise",
"ValueError"
] | Returns the variable set with the given name. | [
"Returns",
"the",
"variable",
"set",
"with",
"the",
"given",
"name",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L750-L757 | train |
rwl/pylon | pylon/opf.py | OPFModel.linear_constraints | def linear_constraints(self):
""" Returns the linear constraints.
"""
if self.lin_N == 0:
return None, array([]), array([])
A = lil_matrix((self.lin_N, self.var_N), dtype=float64)
l = -Inf * ones(self.lin_N)
u = -l
for lin in self.lin_constraints:
if lin.N: # non-zero number of rows to add
Ak = lin.A # A for kth linear constrain set
i1 = lin.i1 # starting row index
iN = lin.iN # ending row index
vsl = lin.vs # var set list
kN = -1 # initialize last col of Ak used
Ai = lil_matrix((lin.N, self.var_N), dtype=float64)
for v in vsl:
var = self.get_var(v)
j1 = var.i1 # starting column in A
jN = var.iN # ending column in A
k1 = kN + 1 # starting column in Ak
kN = kN + var.N # ending column in Ak
if j1 == jN:
# FIXME: Single column slicing broken in lil.
for i in range(Ai.shape[0]):
Ai[i, j1] = Ak[i, k1]
else:
Ai[:, j1:jN + 1] = Ak[:, k1:kN + 1]
A[i1:iN + 1, :] = Ai
l[i1:iN + 1] = lin.l
u[i1:iN + 1] = lin.u
return A.tocsr(), l, u | python | def linear_constraints(self):
""" Returns the linear constraints.
"""
if self.lin_N == 0:
return None, array([]), array([])
A = lil_matrix((self.lin_N, self.var_N), dtype=float64)
l = -Inf * ones(self.lin_N)
u = -l
for lin in self.lin_constraints:
if lin.N: # non-zero number of rows to add
Ak = lin.A # A for kth linear constrain set
i1 = lin.i1 # starting row index
iN = lin.iN # ending row index
vsl = lin.vs # var set list
kN = -1 # initialize last col of Ak used
Ai = lil_matrix((lin.N, self.var_N), dtype=float64)
for v in vsl:
var = self.get_var(v)
j1 = var.i1 # starting column in A
jN = var.iN # ending column in A
k1 = kN + 1 # starting column in Ak
kN = kN + var.N # ending column in Ak
if j1 == jN:
# FIXME: Single column slicing broken in lil.
for i in range(Ai.shape[0]):
Ai[i, j1] = Ak[i, k1]
else:
Ai[:, j1:jN + 1] = Ak[:, k1:kN + 1]
A[i1:iN + 1, :] = Ai
l[i1:iN + 1] = lin.l
u[i1:iN + 1] = lin.u
return A.tocsr(), l, u | [
"def",
"linear_constraints",
"(",
"self",
")",
":",
"if",
"self",
".",
"lin_N",
"==",
"0",
":",
"return",
"None",
",",
"array",
"(",
"[",
"]",
")",
",",
"array",
"(",
"[",
"]",
")",
"A",
"=",
"lil_matrix",
"(",
"(",
"self",
".",
"lin_N",
",",
"self",
".",
"var_N",
")",
",",
"dtype",
"=",
"float64",
")",
"l",
"=",
"-",
"Inf",
"*",
"ones",
"(",
"self",
".",
"lin_N",
")",
"u",
"=",
"-",
"l",
"for",
"lin",
"in",
"self",
".",
"lin_constraints",
":",
"if",
"lin",
".",
"N",
":",
"# non-zero number of rows to add",
"Ak",
"=",
"lin",
".",
"A",
"# A for kth linear constrain set",
"i1",
"=",
"lin",
".",
"i1",
"# starting row index",
"iN",
"=",
"lin",
".",
"iN",
"# ending row index",
"vsl",
"=",
"lin",
".",
"vs",
"# var set list",
"kN",
"=",
"-",
"1",
"# initialize last col of Ak used",
"Ai",
"=",
"lil_matrix",
"(",
"(",
"lin",
".",
"N",
",",
"self",
".",
"var_N",
")",
",",
"dtype",
"=",
"float64",
")",
"for",
"v",
"in",
"vsl",
":",
"var",
"=",
"self",
".",
"get_var",
"(",
"v",
")",
"j1",
"=",
"var",
".",
"i1",
"# starting column in A",
"jN",
"=",
"var",
".",
"iN",
"# ending column in A",
"k1",
"=",
"kN",
"+",
"1",
"# starting column in Ak",
"kN",
"=",
"kN",
"+",
"var",
".",
"N",
"# ending column in Ak",
"if",
"j1",
"==",
"jN",
":",
"# FIXME: Single column slicing broken in lil.",
"for",
"i",
"in",
"range",
"(",
"Ai",
".",
"shape",
"[",
"0",
"]",
")",
":",
"Ai",
"[",
"i",
",",
"j1",
"]",
"=",
"Ak",
"[",
"i",
",",
"k1",
"]",
"else",
":",
"Ai",
"[",
":",
",",
"j1",
":",
"jN",
"+",
"1",
"]",
"=",
"Ak",
"[",
":",
",",
"k1",
":",
"kN",
"+",
"1",
"]",
"A",
"[",
"i1",
":",
"iN",
"+",
"1",
",",
":",
"]",
"=",
"Ai",
"l",
"[",
"i1",
":",
"iN",
"+",
"1",
"]",
"=",
"lin",
".",
"l",
"u",
"[",
"i1",
":",
"iN",
"+",
"1",
"]",
"=",
"lin",
".",
"u",
"return",
"A",
".",
"tocsr",
"(",
")",
",",
"l",
",",
"u"
] | Returns the linear constraints. | [
"Returns",
"the",
"linear",
"constraints",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L782-L818 | train |
rwl/pylon | pylon/opf.py | OPFModel.add_constraint | def add_constraint(self, con):
""" Adds a constraint to the model.
"""
if isinstance(con, LinearConstraint):
N, M = con.A.shape
if con.name in [c.name for c in self.lin_constraints]:
logger.error("Constraint set named '%s' already exists."
% con.name)
return False
else:
con.i1 = self.lin_N# + 1
con.iN = self.lin_N + N - 1
nv = 0
for vs in con.vs:
nv = nv + self.get_var_N(vs)
if M != nv:
logger.error("Number of columns of A does not match number"
" of variables, A is %d x %d, nv = %d", N, M, nv)
self.lin_constraints.append(con)
elif isinstance(con, NonLinearConstraint):
N = con.N
if con.name in [c.name for c in self.nln_constraints]:
logger.error("Constraint set named '%s' already exists."
% con.name)
return False
else:
con.i1 = self.nln_N# + 1
con.iN = self.nln_N + N
self.nln_constraints.append(con)
else:
raise ValueError
return True | python | def add_constraint(self, con):
""" Adds a constraint to the model.
"""
if isinstance(con, LinearConstraint):
N, M = con.A.shape
if con.name in [c.name for c in self.lin_constraints]:
logger.error("Constraint set named '%s' already exists."
% con.name)
return False
else:
con.i1 = self.lin_N# + 1
con.iN = self.lin_N + N - 1
nv = 0
for vs in con.vs:
nv = nv + self.get_var_N(vs)
if M != nv:
logger.error("Number of columns of A does not match number"
" of variables, A is %d x %d, nv = %d", N, M, nv)
self.lin_constraints.append(con)
elif isinstance(con, NonLinearConstraint):
N = con.N
if con.name in [c.name for c in self.nln_constraints]:
logger.error("Constraint set named '%s' already exists."
% con.name)
return False
else:
con.i1 = self.nln_N# + 1
con.iN = self.nln_N + N
self.nln_constraints.append(con)
else:
raise ValueError
return True | [
"def",
"add_constraint",
"(",
"self",
",",
"con",
")",
":",
"if",
"isinstance",
"(",
"con",
",",
"LinearConstraint",
")",
":",
"N",
",",
"M",
"=",
"con",
".",
"A",
".",
"shape",
"if",
"con",
".",
"name",
"in",
"[",
"c",
".",
"name",
"for",
"c",
"in",
"self",
".",
"lin_constraints",
"]",
":",
"logger",
".",
"error",
"(",
"\"Constraint set named '%s' already exists.\"",
"%",
"con",
".",
"name",
")",
"return",
"False",
"else",
":",
"con",
".",
"i1",
"=",
"self",
".",
"lin_N",
"# + 1",
"con",
".",
"iN",
"=",
"self",
".",
"lin_N",
"+",
"N",
"-",
"1",
"nv",
"=",
"0",
"for",
"vs",
"in",
"con",
".",
"vs",
":",
"nv",
"=",
"nv",
"+",
"self",
".",
"get_var_N",
"(",
"vs",
")",
"if",
"M",
"!=",
"nv",
":",
"logger",
".",
"error",
"(",
"\"Number of columns of A does not match number\"",
"\" of variables, A is %d x %d, nv = %d\"",
",",
"N",
",",
"M",
",",
"nv",
")",
"self",
".",
"lin_constraints",
".",
"append",
"(",
"con",
")",
"elif",
"isinstance",
"(",
"con",
",",
"NonLinearConstraint",
")",
":",
"N",
"=",
"con",
".",
"N",
"if",
"con",
".",
"name",
"in",
"[",
"c",
".",
"name",
"for",
"c",
"in",
"self",
".",
"nln_constraints",
"]",
":",
"logger",
".",
"error",
"(",
"\"Constraint set named '%s' already exists.\"",
"%",
"con",
".",
"name",
")",
"return",
"False",
"else",
":",
"con",
".",
"i1",
"=",
"self",
".",
"nln_N",
"# + 1",
"con",
".",
"iN",
"=",
"self",
".",
"nln_N",
"+",
"N",
"self",
".",
"nln_constraints",
".",
"append",
"(",
"con",
")",
"else",
":",
"raise",
"ValueError",
"return",
"True"
] | Adds a constraint to the model. | [
"Adds",
"a",
"constraint",
"to",
"the",
"model",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/opf.py#L821-L854 | train |
rwl/pylon | pylon/ipopf.py | IPOPFSolver._solve | def _solve(self, x0, A, l, u, xmin, xmax):
""" Solves using the Interior Point OPTimizer.
"""
# Indexes of constrained lines.
il = [i for i,ln in enumerate(self._ln) if 0.0 < ln.rate_a < 1e10]
nl2 = len(il)
neqnln = 2 * self._nb # no. of non-linear equality constraints
niqnln = 2 * len(il) # no. of lines with constraints
user_data = {"A": A, "neqnln": neqnln, "niqnln": niqnln}
self._f(x0)
Jdata = self._dg(x0, False, user_data)
# Hdata = self._h(x0, ones(neqnln + niqnln), None, False, user_data)
lmbda = {"eqnonlin": ones(neqnln),
"ineqnonlin": ones(niqnln)}
H = tril(self._hessfcn(x0, lmbda), format="coo")
self._Hrow, self._Hcol = H.row, H.col
n = len(x0) # the number of variables
xl = xmin
xu = xmax
gl = r_[zeros(2 * self._nb), -Inf * ones(2 * nl2), l]
gu = r_[zeros(2 * self._nb), zeros(2 * nl2), u]
m = len(gl) # the number of constraints
nnzj = len(Jdata) # the number of nonzeros in Jacobian matrix
nnzh = 0#len(H.data) # the number of non-zeros in Hessian matrix
f_fcn, df_fcn, g_fcn, dg_fcn, h_fcn = \
self._f, self._df, self._g, self._dg, self._h
nlp = pyipopt.create(n, xl, xu, m, gl, gu, nnzj, nnzh,
f_fcn, df_fcn, g_fcn, dg_fcn)#, h_fcn)
# print dir(nlp)
# nlp.str_option("print_options_documentation", "yes")
# nlp.int_option("max_iter", 10)
# x, zl, zu, obj = nlp.solve(x0)
success = nlp.solve(x0, user_data)
nlp.close() | python | def _solve(self, x0, A, l, u, xmin, xmax):
""" Solves using the Interior Point OPTimizer.
"""
# Indexes of constrained lines.
il = [i for i,ln in enumerate(self._ln) if 0.0 < ln.rate_a < 1e10]
nl2 = len(il)
neqnln = 2 * self._nb # no. of non-linear equality constraints
niqnln = 2 * len(il) # no. of lines with constraints
user_data = {"A": A, "neqnln": neqnln, "niqnln": niqnln}
self._f(x0)
Jdata = self._dg(x0, False, user_data)
# Hdata = self._h(x0, ones(neqnln + niqnln), None, False, user_data)
lmbda = {"eqnonlin": ones(neqnln),
"ineqnonlin": ones(niqnln)}
H = tril(self._hessfcn(x0, lmbda), format="coo")
self._Hrow, self._Hcol = H.row, H.col
n = len(x0) # the number of variables
xl = xmin
xu = xmax
gl = r_[zeros(2 * self._nb), -Inf * ones(2 * nl2), l]
gu = r_[zeros(2 * self._nb), zeros(2 * nl2), u]
m = len(gl) # the number of constraints
nnzj = len(Jdata) # the number of nonzeros in Jacobian matrix
nnzh = 0#len(H.data) # the number of non-zeros in Hessian matrix
f_fcn, df_fcn, g_fcn, dg_fcn, h_fcn = \
self._f, self._df, self._g, self._dg, self._h
nlp = pyipopt.create(n, xl, xu, m, gl, gu, nnzj, nnzh,
f_fcn, df_fcn, g_fcn, dg_fcn)#, h_fcn)
# print dir(nlp)
# nlp.str_option("print_options_documentation", "yes")
# nlp.int_option("max_iter", 10)
# x, zl, zu, obj = nlp.solve(x0)
success = nlp.solve(x0, user_data)
nlp.close() | [
"def",
"_solve",
"(",
"self",
",",
"x0",
",",
"A",
",",
"l",
",",
"u",
",",
"xmin",
",",
"xmax",
")",
":",
"# Indexes of constrained lines.",
"il",
"=",
"[",
"i",
"for",
"i",
",",
"ln",
"in",
"enumerate",
"(",
"self",
".",
"_ln",
")",
"if",
"0.0",
"<",
"ln",
".",
"rate_a",
"<",
"1e10",
"]",
"nl2",
"=",
"len",
"(",
"il",
")",
"neqnln",
"=",
"2",
"*",
"self",
".",
"_nb",
"# no. of non-linear equality constraints",
"niqnln",
"=",
"2",
"*",
"len",
"(",
"il",
")",
"# no. of lines with constraints",
"user_data",
"=",
"{",
"\"A\"",
":",
"A",
",",
"\"neqnln\"",
":",
"neqnln",
",",
"\"niqnln\"",
":",
"niqnln",
"}",
"self",
".",
"_f",
"(",
"x0",
")",
"Jdata",
"=",
"self",
".",
"_dg",
"(",
"x0",
",",
"False",
",",
"user_data",
")",
"# Hdata = self._h(x0, ones(neqnln + niqnln), None, False, user_data)",
"lmbda",
"=",
"{",
"\"eqnonlin\"",
":",
"ones",
"(",
"neqnln",
")",
",",
"\"ineqnonlin\"",
":",
"ones",
"(",
"niqnln",
")",
"}",
"H",
"=",
"tril",
"(",
"self",
".",
"_hessfcn",
"(",
"x0",
",",
"lmbda",
")",
",",
"format",
"=",
"\"coo\"",
")",
"self",
".",
"_Hrow",
",",
"self",
".",
"_Hcol",
"=",
"H",
".",
"row",
",",
"H",
".",
"col",
"n",
"=",
"len",
"(",
"x0",
")",
"# the number of variables",
"xl",
"=",
"xmin",
"xu",
"=",
"xmax",
"gl",
"=",
"r_",
"[",
"zeros",
"(",
"2",
"*",
"self",
".",
"_nb",
")",
",",
"-",
"Inf",
"*",
"ones",
"(",
"2",
"*",
"nl2",
")",
",",
"l",
"]",
"gu",
"=",
"r_",
"[",
"zeros",
"(",
"2",
"*",
"self",
".",
"_nb",
")",
",",
"zeros",
"(",
"2",
"*",
"nl2",
")",
",",
"u",
"]",
"m",
"=",
"len",
"(",
"gl",
")",
"# the number of constraints",
"nnzj",
"=",
"len",
"(",
"Jdata",
")",
"# the number of nonzeros in Jacobian matrix",
"nnzh",
"=",
"0",
"#len(H.data) # the number of non-zeros in Hessian matrix",
"f_fcn",
",",
"df_fcn",
",",
"g_fcn",
",",
"dg_fcn",
",",
"h_fcn",
"=",
"self",
".",
"_f",
",",
"self",
".",
"_df",
",",
"self",
".",
"_g",
",",
"self",
".",
"_dg",
",",
"self",
".",
"_h",
"nlp",
"=",
"pyipopt",
".",
"create",
"(",
"n",
",",
"xl",
",",
"xu",
",",
"m",
",",
"gl",
",",
"gu",
",",
"nnzj",
",",
"nnzh",
",",
"f_fcn",
",",
"df_fcn",
",",
"g_fcn",
",",
"dg_fcn",
")",
"#, h_fcn)",
"# print dir(nlp)",
"# nlp.str_option(\"print_options_documentation\", \"yes\")",
"# nlp.int_option(\"max_iter\", 10)",
"# x, zl, zu, obj = nlp.solve(x0)",
"success",
"=",
"nlp",
".",
"solve",
"(",
"x0",
",",
"user_data",
")",
"nlp",
".",
"close",
"(",
")"
] | Solves using the Interior Point OPTimizer. | [
"Solves",
"using",
"the",
"Interior",
"Point",
"OPTimizer",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/ipopf.py#L44-L86 | train |
rwl/pylon | pyreto/continuous/experiment.py | MarketExperiment.doOutages | def doOutages(self):
""" Applies branch outtages.
"""
assert len(self.branchOutages) == len(self.market.case.branches)
weights = [[(False, r), (True, 1 - (r))] for r in self.branchOutages]
for i, ln in enumerate(self.market.case.branches):
ln.online = weighted_choice(weights[i])
if ln.online == False:
print "Branch outage [%s] in period %d." %(ln.name,self.stepid) | python | def doOutages(self):
""" Applies branch outtages.
"""
assert len(self.branchOutages) == len(self.market.case.branches)
weights = [[(False, r), (True, 1 - (r))] for r in self.branchOutages]
for i, ln in enumerate(self.market.case.branches):
ln.online = weighted_choice(weights[i])
if ln.online == False:
print "Branch outage [%s] in period %d." %(ln.name,self.stepid) | [
"def",
"doOutages",
"(",
"self",
")",
":",
"assert",
"len",
"(",
"self",
".",
"branchOutages",
")",
"==",
"len",
"(",
"self",
".",
"market",
".",
"case",
".",
"branches",
")",
"weights",
"=",
"[",
"[",
"(",
"False",
",",
"r",
")",
",",
"(",
"True",
",",
"1",
"-",
"(",
"r",
")",
")",
"]",
"for",
"r",
"in",
"self",
".",
"branchOutages",
"]",
"for",
"i",
",",
"ln",
"in",
"enumerate",
"(",
"self",
".",
"market",
".",
"case",
".",
"branches",
")",
":",
"ln",
".",
"online",
"=",
"weighted_choice",
"(",
"weights",
"[",
"i",
"]",
")",
"if",
"ln",
".",
"online",
"==",
"False",
":",
"print",
"\"Branch outage [%s] in period %d.\"",
"%",
"(",
"ln",
".",
"name",
",",
"self",
".",
"stepid",
")"
] | Applies branch outtages. | [
"Applies",
"branch",
"outtages",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/continuous/experiment.py#L133-L143 | train |
rwl/pylon | pyreto/continuous/experiment.py | MarketExperiment.reset_case | def reset_case(self):
""" Returns the case to its original state.
"""
for bus in self.market.case.buses:
bus.p_demand = self.pdemand[bus]
for task in self.tasks:
for g in task.env.generators:
g.p = task.env._g0[g]["p"]
g.p_max = task.env._g0[g]["p_max"]
g.p_min = task.env._g0[g]["p_min"]
g.q = task.env._g0[g]["q"]
g.q_max = task.env._g0[g]["q_max"]
g.q_min = task.env._g0[g]["q_min"]
g.p_cost = task.env._g0[g]["p_cost"]
g.pcost_model = task.env._g0[g]["pcost_model"]
g.q_cost = task.env._g0[g]["q_cost"]
g.qcost_model = task.env._g0[g]["qcost_model"]
g.c_startup = task.env._g0[g]["startup"]
g.c_shutdown = task.env._g0[g]["shutdown"] | python | def reset_case(self):
""" Returns the case to its original state.
"""
for bus in self.market.case.buses:
bus.p_demand = self.pdemand[bus]
for task in self.tasks:
for g in task.env.generators:
g.p = task.env._g0[g]["p"]
g.p_max = task.env._g0[g]["p_max"]
g.p_min = task.env._g0[g]["p_min"]
g.q = task.env._g0[g]["q"]
g.q_max = task.env._g0[g]["q_max"]
g.q_min = task.env._g0[g]["q_min"]
g.p_cost = task.env._g0[g]["p_cost"]
g.pcost_model = task.env._g0[g]["pcost_model"]
g.q_cost = task.env._g0[g]["q_cost"]
g.qcost_model = task.env._g0[g]["qcost_model"]
g.c_startup = task.env._g0[g]["startup"]
g.c_shutdown = task.env._g0[g]["shutdown"] | [
"def",
"reset_case",
"(",
"self",
")",
":",
"for",
"bus",
"in",
"self",
".",
"market",
".",
"case",
".",
"buses",
":",
"bus",
".",
"p_demand",
"=",
"self",
".",
"pdemand",
"[",
"bus",
"]",
"for",
"task",
"in",
"self",
".",
"tasks",
":",
"for",
"g",
"in",
"task",
".",
"env",
".",
"generators",
":",
"g",
".",
"p",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"p\"",
"]",
"g",
".",
"p_max",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"p_max\"",
"]",
"g",
".",
"p_min",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"p_min\"",
"]",
"g",
".",
"q",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"q\"",
"]",
"g",
".",
"q_max",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"q_max\"",
"]",
"g",
".",
"q_min",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"q_min\"",
"]",
"g",
".",
"p_cost",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"p_cost\"",
"]",
"g",
".",
"pcost_model",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"pcost_model\"",
"]",
"g",
".",
"q_cost",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"q_cost\"",
"]",
"g",
".",
"qcost_model",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"qcost_model\"",
"]",
"g",
".",
"c_startup",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"startup\"",
"]",
"g",
".",
"c_shutdown",
"=",
"task",
".",
"env",
".",
"_g0",
"[",
"g",
"]",
"[",
"\"shutdown\"",
"]"
] | Returns the case to its original state. | [
"Returns",
"the",
"case",
"to",
"its",
"original",
"state",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/continuous/experiment.py#L146-L164 | train |
rwl/pylon | pyreto/continuous/experiment.py | MarketExperiment.doEpisodes | def doEpisodes(self, number=1):
""" Do the given numer of episodes, and return the rewards of each
step as a list.
"""
for episode in range(number):
print "Starting episode %d." % episode
# Initialise the profile cycle.
if len(self.profile.shape) == 1: # 1D array
self._pcycle = cycle(self.profile)
else:
assert self.profile.shape[0] >= number
self._pcycle = cycle(self.profile[episode, :])
# Scale the initial load.
c = self._pcycle.next()
for bus in self.market.case.buses:
bus.p_demand = self.pdemand[bus] * c
# Initialise agents and their tasks.
for task, agent in zip(self.tasks, self.agents):
agent.newEpisode()
task.reset()
while False in [task.isFinished() for task in self.tasks]:
if True in [task.isFinished() for task in self.tasks]:
raise ValueError
self._oneInteraction()
self.reset_case() | python | def doEpisodes(self, number=1):
""" Do the given numer of episodes, and return the rewards of each
step as a list.
"""
for episode in range(number):
print "Starting episode %d." % episode
# Initialise the profile cycle.
if len(self.profile.shape) == 1: # 1D array
self._pcycle = cycle(self.profile)
else:
assert self.profile.shape[0] >= number
self._pcycle = cycle(self.profile[episode, :])
# Scale the initial load.
c = self._pcycle.next()
for bus in self.market.case.buses:
bus.p_demand = self.pdemand[bus] * c
# Initialise agents and their tasks.
for task, agent in zip(self.tasks, self.agents):
agent.newEpisode()
task.reset()
while False in [task.isFinished() for task in self.tasks]:
if True in [task.isFinished() for task in self.tasks]:
raise ValueError
self._oneInteraction()
self.reset_case() | [
"def",
"doEpisodes",
"(",
"self",
",",
"number",
"=",
"1",
")",
":",
"for",
"episode",
"in",
"range",
"(",
"number",
")",
":",
"print",
"\"Starting episode %d.\"",
"%",
"episode",
"# Initialise the profile cycle.",
"if",
"len",
"(",
"self",
".",
"profile",
".",
"shape",
")",
"==",
"1",
":",
"# 1D array",
"self",
".",
"_pcycle",
"=",
"cycle",
"(",
"self",
".",
"profile",
")",
"else",
":",
"assert",
"self",
".",
"profile",
".",
"shape",
"[",
"0",
"]",
">=",
"number",
"self",
".",
"_pcycle",
"=",
"cycle",
"(",
"self",
".",
"profile",
"[",
"episode",
",",
":",
"]",
")",
"# Scale the initial load.",
"c",
"=",
"self",
".",
"_pcycle",
".",
"next",
"(",
")",
"for",
"bus",
"in",
"self",
".",
"market",
".",
"case",
".",
"buses",
":",
"bus",
".",
"p_demand",
"=",
"self",
".",
"pdemand",
"[",
"bus",
"]",
"*",
"c",
"# Initialise agents and their tasks.",
"for",
"task",
",",
"agent",
"in",
"zip",
"(",
"self",
".",
"tasks",
",",
"self",
".",
"agents",
")",
":",
"agent",
".",
"newEpisode",
"(",
")",
"task",
".",
"reset",
"(",
")",
"while",
"False",
"in",
"[",
"task",
".",
"isFinished",
"(",
")",
"for",
"task",
"in",
"self",
".",
"tasks",
"]",
":",
"if",
"True",
"in",
"[",
"task",
".",
"isFinished",
"(",
")",
"for",
"task",
"in",
"self",
".",
"tasks",
"]",
":",
"raise",
"ValueError",
"self",
".",
"_oneInteraction",
"(",
")",
"self",
".",
"reset_case",
"(",
")"
] | Do the given numer of episodes, and return the rewards of each
step as a list. | [
"Do",
"the",
"given",
"numer",
"of",
"episodes",
"and",
"return",
"the",
"rewards",
"of",
"each",
"step",
"as",
"a",
"list",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/continuous/experiment.py#L170-L199 | train |
rwl/pylon | pyreto/continuous/experiment.py | MarketExperiment.reset | def reset(self):
""" Sets initial conditions for the experiment.
"""
self.stepid = 0
for task, agent in zip(self.tasks, self.agents):
task.reset()
agent.module.reset()
agent.history.reset() | python | def reset(self):
""" Sets initial conditions for the experiment.
"""
self.stepid = 0
for task, agent in zip(self.tasks, self.agents):
task.reset()
agent.module.reset()
agent.history.reset() | [
"def",
"reset",
"(",
"self",
")",
":",
"self",
".",
"stepid",
"=",
"0",
"for",
"task",
",",
"agent",
"in",
"zip",
"(",
"self",
".",
"tasks",
",",
"self",
".",
"agents",
")",
":",
"task",
".",
"reset",
"(",
")",
"agent",
".",
"module",
".",
"reset",
"(",
")",
"agent",
".",
"history",
".",
"reset",
"(",
")"
] | Sets initial conditions for the experiment. | [
"Sets",
"initial",
"conditions",
"for",
"the",
"experiment",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/continuous/experiment.py#L249-L258 | train |
rwl/pylon | pyreto/roth_erev.py | RothErev._updatePropensities | def _updatePropensities(self, lastState, lastAction, reward):
""" Update the propensities for all actions. The propensity for last
action chosen will be updated using the feedback value that resulted
from performing the action.
If j is the index of the last action chosen, r_j is the reward received
for performing j, i is the current action being updated, q_i is the
propensity for i, and phi is the recency parameter, then this update
function can be expressed as::
q_i = (1-phi) * q_i + E(i, r_j)
"""
phi = self.recency
for action in range(self.module.numActions):
carryOver = (1 - phi) * self.module.getValue(lastState, action)
experience = self._experience(lastState, action, lastAction,reward)
self.module.updateValue(lastState, action, carryOver + experience) | python | def _updatePropensities(self, lastState, lastAction, reward):
""" Update the propensities for all actions. The propensity for last
action chosen will be updated using the feedback value that resulted
from performing the action.
If j is the index of the last action chosen, r_j is the reward received
for performing j, i is the current action being updated, q_i is the
propensity for i, and phi is the recency parameter, then this update
function can be expressed as::
q_i = (1-phi) * q_i + E(i, r_j)
"""
phi = self.recency
for action in range(self.module.numActions):
carryOver = (1 - phi) * self.module.getValue(lastState, action)
experience = self._experience(lastState, action, lastAction,reward)
self.module.updateValue(lastState, action, carryOver + experience) | [
"def",
"_updatePropensities",
"(",
"self",
",",
"lastState",
",",
"lastAction",
",",
"reward",
")",
":",
"phi",
"=",
"self",
".",
"recency",
"for",
"action",
"in",
"range",
"(",
"self",
".",
"module",
".",
"numActions",
")",
":",
"carryOver",
"=",
"(",
"1",
"-",
"phi",
")",
"*",
"self",
".",
"module",
".",
"getValue",
"(",
"lastState",
",",
"action",
")",
"experience",
"=",
"self",
".",
"_experience",
"(",
"lastState",
",",
"action",
",",
"lastAction",
",",
"reward",
")",
"self",
".",
"module",
".",
"updateValue",
"(",
"lastState",
",",
"action",
",",
"carryOver",
"+",
"experience",
")"
] | Update the propensities for all actions. The propensity for last
action chosen will be updated using the feedback value that resulted
from performing the action.
If j is the index of the last action chosen, r_j is the reward received
for performing j, i is the current action being updated, q_i is the
propensity for i, and phi is the recency parameter, then this update
function can be expressed as::
q_i = (1-phi) * q_i + E(i, r_j) | [
"Update",
"the",
"propensities",
"for",
"all",
"actions",
".",
"The",
"propensity",
"for",
"last",
"action",
"chosen",
"will",
"be",
"updated",
"using",
"the",
"feedback",
"value",
"that",
"resulted",
"from",
"performing",
"the",
"action",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/roth_erev.py#L136-L154 | train |
rwl/pylon | pyreto/roth_erev.py | ProportionalExplorer._forwardImplementation | def _forwardImplementation(self, inbuf, outbuf):
""" Proportional probability method.
"""
assert self.module
propensities = self.module.getActionValues(0)
summedProps = sum(propensities)
probabilities = propensities / summedProps
action = eventGenerator(probabilities)
# action = drawIndex(probabilities)
outbuf[:] = scipy.array([action]) | python | def _forwardImplementation(self, inbuf, outbuf):
""" Proportional probability method.
"""
assert self.module
propensities = self.module.getActionValues(0)
summedProps = sum(propensities)
probabilities = propensities / summedProps
action = eventGenerator(probabilities)
# action = drawIndex(probabilities)
outbuf[:] = scipy.array([action]) | [
"def",
"_forwardImplementation",
"(",
"self",
",",
"inbuf",
",",
"outbuf",
")",
":",
"assert",
"self",
".",
"module",
"propensities",
"=",
"self",
".",
"module",
".",
"getActionValues",
"(",
"0",
")",
"summedProps",
"=",
"sum",
"(",
"propensities",
")",
"probabilities",
"=",
"propensities",
"/",
"summedProps",
"action",
"=",
"eventGenerator",
"(",
"probabilities",
")",
"# action = drawIndex(probabilities)",
"outbuf",
"[",
":",
"]",
"=",
"scipy",
".",
"array",
"(",
"[",
"action",
"]",
")"
] | Proportional probability method. | [
"Proportional",
"probability",
"method",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/roth_erev.py#L254-L267 | train |
rwl/pylon | pylon/io/excel.py | ExcelWriter.write | def write(self, file_or_filename):
""" Writes case data to file in Excel format.
"""
self.book = Workbook()
self._write_data(None)
self.book.save(file_or_filename) | python | def write(self, file_or_filename):
""" Writes case data to file in Excel format.
"""
self.book = Workbook()
self._write_data(None)
self.book.save(file_or_filename) | [
"def",
"write",
"(",
"self",
",",
"file_or_filename",
")",
":",
"self",
".",
"book",
"=",
"Workbook",
"(",
")",
"self",
".",
"_write_data",
"(",
"None",
")",
"self",
".",
"book",
".",
"save",
"(",
"file_or_filename",
")"
] | Writes case data to file in Excel format. | [
"Writes",
"case",
"data",
"to",
"file",
"in",
"Excel",
"format",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/excel.py#L38-L43 | train |
rwl/pylon | pylon/io/excel.py | ExcelWriter.write_bus_data | def write_bus_data(self, file):
""" Writes bus data to an Excel spreadsheet.
"""
bus_sheet = self.book.add_sheet("Buses")
for i, bus in enumerate(self.case.buses):
for j, attr in enumerate(BUS_ATTRS):
bus_sheet.write(i, j, getattr(bus, attr)) | python | def write_bus_data(self, file):
""" Writes bus data to an Excel spreadsheet.
"""
bus_sheet = self.book.add_sheet("Buses")
for i, bus in enumerate(self.case.buses):
for j, attr in enumerate(BUS_ATTRS):
bus_sheet.write(i, j, getattr(bus, attr)) | [
"def",
"write_bus_data",
"(",
"self",
",",
"file",
")",
":",
"bus_sheet",
"=",
"self",
".",
"book",
".",
"add_sheet",
"(",
"\"Buses\"",
")",
"for",
"i",
",",
"bus",
"in",
"enumerate",
"(",
"self",
".",
"case",
".",
"buses",
")",
":",
"for",
"j",
",",
"attr",
"in",
"enumerate",
"(",
"BUS_ATTRS",
")",
":",
"bus_sheet",
".",
"write",
"(",
"i",
",",
"j",
",",
"getattr",
"(",
"bus",
",",
"attr",
")",
")"
] | Writes bus data to an Excel spreadsheet. | [
"Writes",
"bus",
"data",
"to",
"an",
"Excel",
"spreadsheet",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/excel.py#L56-L63 | train |
rwl/pylon | pylon/io/excel.py | ExcelWriter.write_branch_data | def write_branch_data(self, file):
""" Writes branch data to an Excel spreadsheet.
"""
branch_sheet = self.book.add_sheet("Branches")
for i, branch in enumerate(self.case.branches):
for j, attr in enumerate(BRANCH_ATTRS):
branch_sheet.write(i, j, getattr(branch, attr)) | python | def write_branch_data(self, file):
""" Writes branch data to an Excel spreadsheet.
"""
branch_sheet = self.book.add_sheet("Branches")
for i, branch in enumerate(self.case.branches):
for j, attr in enumerate(BRANCH_ATTRS):
branch_sheet.write(i, j, getattr(branch, attr)) | [
"def",
"write_branch_data",
"(",
"self",
",",
"file",
")",
":",
"branch_sheet",
"=",
"self",
".",
"book",
".",
"add_sheet",
"(",
"\"Branches\"",
")",
"for",
"i",
",",
"branch",
"in",
"enumerate",
"(",
"self",
".",
"case",
".",
"branches",
")",
":",
"for",
"j",
",",
"attr",
"in",
"enumerate",
"(",
"BRANCH_ATTRS",
")",
":",
"branch_sheet",
".",
"write",
"(",
"i",
",",
"j",
",",
"getattr",
"(",
"branch",
",",
"attr",
")",
")"
] | Writes branch data to an Excel spreadsheet. | [
"Writes",
"branch",
"data",
"to",
"an",
"Excel",
"spreadsheet",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/excel.py#L66-L73 | train |
rwl/pylon | pylon/io/excel.py | ExcelWriter.write_generator_data | def write_generator_data(self, file):
""" Write generator data to file.
"""
generator_sheet = self.book.add_sheet("Generators")
for j, generator in enumerate(self.case.generators):
i = generator.bus._i
for k, attr in enumerate(GENERATOR_ATTRS):
generator_sheet.write(j, 0, i) | python | def write_generator_data(self, file):
""" Write generator data to file.
"""
generator_sheet = self.book.add_sheet("Generators")
for j, generator in enumerate(self.case.generators):
i = generator.bus._i
for k, attr in enumerate(GENERATOR_ATTRS):
generator_sheet.write(j, 0, i) | [
"def",
"write_generator_data",
"(",
"self",
",",
"file",
")",
":",
"generator_sheet",
"=",
"self",
".",
"book",
".",
"add_sheet",
"(",
"\"Generators\"",
")",
"for",
"j",
",",
"generator",
"in",
"enumerate",
"(",
"self",
".",
"case",
".",
"generators",
")",
":",
"i",
"=",
"generator",
".",
"bus",
".",
"_i",
"for",
"k",
",",
"attr",
"in",
"enumerate",
"(",
"GENERATOR_ATTRS",
")",
":",
"generator_sheet",
".",
"write",
"(",
"j",
",",
"0",
",",
"i",
")"
] | Write generator data to file. | [
"Write",
"generator",
"data",
"to",
"file",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/excel.py#L76-L84 | train |
rwl/pylon | pylon/io/excel.py | CSVWriter.write | def write(self, file_or_filename):
""" Writes case data as CSV.
"""
if isinstance(file_or_filename, basestring):
file = open(file_or_filename, "wb")
else:
file = file_or_filename
self.writer = csv.writer(file)
super(CSVWriter, self).write(file) | python | def write(self, file_or_filename):
""" Writes case data as CSV.
"""
if isinstance(file_or_filename, basestring):
file = open(file_or_filename, "wb")
else:
file = file_or_filename
self.writer = csv.writer(file)
super(CSVWriter, self).write(file) | [
"def",
"write",
"(",
"self",
",",
"file_or_filename",
")",
":",
"if",
"isinstance",
"(",
"file_or_filename",
",",
"basestring",
")",
":",
"file",
"=",
"open",
"(",
"file_or_filename",
",",
"\"wb\"",
")",
"else",
":",
"file",
"=",
"file_or_filename",
"self",
".",
"writer",
"=",
"csv",
".",
"writer",
"(",
"file",
")",
"super",
"(",
"CSVWriter",
",",
"self",
")",
".",
"write",
"(",
"file",
")"
] | Writes case data as CSV. | [
"Writes",
"case",
"data",
"as",
"CSV",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/excel.py#L112-L122 | train |
rwl/pylon | pylon/io/excel.py | CSVWriter.write_case_data | def write_case_data(self, file):
""" Writes the case data as CSV.
"""
writer = self._get_writer(file)
writer.writerow(["Name", "base_mva"])
writer.writerow([self.case.name, self.case.base_mva]) | python | def write_case_data(self, file):
""" Writes the case data as CSV.
"""
writer = self._get_writer(file)
writer.writerow(["Name", "base_mva"])
writer.writerow([self.case.name, self.case.base_mva]) | [
"def",
"write_case_data",
"(",
"self",
",",
"file",
")",
":",
"writer",
"=",
"self",
".",
"_get_writer",
"(",
"file",
")",
"writer",
".",
"writerow",
"(",
"[",
"\"Name\"",
",",
"\"base_mva\"",
"]",
")",
"writer",
".",
"writerow",
"(",
"[",
"self",
".",
"case",
".",
"name",
",",
"self",
".",
"case",
".",
"base_mva",
"]",
")"
] | Writes the case data as CSV. | [
"Writes",
"the",
"case",
"data",
"as",
"CSV",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/excel.py#L125-L130 | train |
rwl/pylon | pylon/io/excel.py | CSVWriter.write_bus_data | def write_bus_data(self, file):
""" Writes bus data as CSV.
"""
writer = self._get_writer(file)
writer.writerow(BUS_ATTRS)
for bus in self.case.buses:
writer.writerow([getattr(bus, attr) for attr in BUS_ATTRS]) | python | def write_bus_data(self, file):
""" Writes bus data as CSV.
"""
writer = self._get_writer(file)
writer.writerow(BUS_ATTRS)
for bus in self.case.buses:
writer.writerow([getattr(bus, attr) for attr in BUS_ATTRS]) | [
"def",
"write_bus_data",
"(",
"self",
",",
"file",
")",
":",
"writer",
"=",
"self",
".",
"_get_writer",
"(",
"file",
")",
"writer",
".",
"writerow",
"(",
"BUS_ATTRS",
")",
"for",
"bus",
"in",
"self",
".",
"case",
".",
"buses",
":",
"writer",
".",
"writerow",
"(",
"[",
"getattr",
"(",
"bus",
",",
"attr",
")",
"for",
"attr",
"in",
"BUS_ATTRS",
"]",
")"
] | Writes bus data as CSV. | [
"Writes",
"bus",
"data",
"as",
"CSV",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/excel.py#L133-L139 | train |
rwl/pylon | pylon/io/excel.py | CSVWriter.write_branch_data | def write_branch_data(self, file):
""" Writes branch data as CSV.
"""
writer = self._get_writer(file)
writer.writerow(BRANCH_ATTRS)
for branch in self.case.branches:
writer.writerow([getattr(branch, a) for a in BRANCH_ATTRS]) | python | def write_branch_data(self, file):
""" Writes branch data as CSV.
"""
writer = self._get_writer(file)
writer.writerow(BRANCH_ATTRS)
for branch in self.case.branches:
writer.writerow([getattr(branch, a) for a in BRANCH_ATTRS]) | [
"def",
"write_branch_data",
"(",
"self",
",",
"file",
")",
":",
"writer",
"=",
"self",
".",
"_get_writer",
"(",
"file",
")",
"writer",
".",
"writerow",
"(",
"BRANCH_ATTRS",
")",
"for",
"branch",
"in",
"self",
".",
"case",
".",
"branches",
":",
"writer",
".",
"writerow",
"(",
"[",
"getattr",
"(",
"branch",
",",
"a",
")",
"for",
"a",
"in",
"BRANCH_ATTRS",
"]",
")"
] | Writes branch data as CSV. | [
"Writes",
"branch",
"data",
"as",
"CSV",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/excel.py#L142-L148 | train |
rwl/pylon | pylon/io/excel.py | CSVWriter.write_generator_data | def write_generator_data(self, file):
""" Write generator data as CSV.
"""
writer = self._get_writer(file)
writer.writerow(["bus"] + GENERATOR_ATTRS)
for g in self.case.generators:
i = g.bus._i
writer.writerow([i] + [getattr(g,a) for a in GENERATOR_ATTRS]) | python | def write_generator_data(self, file):
""" Write generator data as CSV.
"""
writer = self._get_writer(file)
writer.writerow(["bus"] + GENERATOR_ATTRS)
for g in self.case.generators:
i = g.bus._i
writer.writerow([i] + [getattr(g,a) for a in GENERATOR_ATTRS]) | [
"def",
"write_generator_data",
"(",
"self",
",",
"file",
")",
":",
"writer",
"=",
"self",
".",
"_get_writer",
"(",
"file",
")",
"writer",
".",
"writerow",
"(",
"[",
"\"bus\"",
"]",
"+",
"GENERATOR_ATTRS",
")",
"for",
"g",
"in",
"self",
".",
"case",
".",
"generators",
":",
"i",
"=",
"g",
".",
"bus",
".",
"_i",
"writer",
".",
"writerow",
"(",
"[",
"i",
"]",
"+",
"[",
"getattr",
"(",
"g",
",",
"a",
")",
"for",
"a",
"in",
"GENERATOR_ATTRS",
"]",
")"
] | Write generator data as CSV. | [
"Write",
"generator",
"data",
"as",
"CSV",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/excel.py#L151-L159 | train |
rwl/pylon | pyreto/smart_market.py | SmartMarket.run | def run(self):
""" Computes cleared offers and bids.
"""
# Start the clock.
t0 = time.time()
# Manage reactive power offers/bids.
haveQ = self._isReactiveMarket()
# Withhold offers/bids outwith optional price limits.
self._withholdOffbids()
# Convert offers/bids to pwl functions and update limits.
self._offbidToCase()
# Compute dispatch points and LMPs using OPF.
success = self._runOPF()
if success:
# Get nodal marginal prices from OPF.
gteeOfferPrice, gteeBidPrice = self._nodalPrices(haveQ)
# Determine quantity and price for each offer/bid.
self._runAuction(gteeOfferPrice, gteeBidPrice, haveQ)
logger.info("SmartMarket cleared in %.3fs" % (time.time() - t0))
else:
for offbid in self.offers + self.bids:
offbid.clearedQuantity = 0.0
offbid.clearedPrice = 0.0
offbid.accepted = False
offbid.generator.p = 0.0
logger.error("Non-convergent market OPF. Blackout!")
return self.offers, self.bids | python | def run(self):
""" Computes cleared offers and bids.
"""
# Start the clock.
t0 = time.time()
# Manage reactive power offers/bids.
haveQ = self._isReactiveMarket()
# Withhold offers/bids outwith optional price limits.
self._withholdOffbids()
# Convert offers/bids to pwl functions and update limits.
self._offbidToCase()
# Compute dispatch points and LMPs using OPF.
success = self._runOPF()
if success:
# Get nodal marginal prices from OPF.
gteeOfferPrice, gteeBidPrice = self._nodalPrices(haveQ)
# Determine quantity and price for each offer/bid.
self._runAuction(gteeOfferPrice, gteeBidPrice, haveQ)
logger.info("SmartMarket cleared in %.3fs" % (time.time() - t0))
else:
for offbid in self.offers + self.bids:
offbid.clearedQuantity = 0.0
offbid.clearedPrice = 0.0
offbid.accepted = False
offbid.generator.p = 0.0
logger.error("Non-convergent market OPF. Blackout!")
return self.offers, self.bids | [
"def",
"run",
"(",
"self",
")",
":",
"# Start the clock.",
"t0",
"=",
"time",
".",
"time",
"(",
")",
"# Manage reactive power offers/bids.",
"haveQ",
"=",
"self",
".",
"_isReactiveMarket",
"(",
")",
"# Withhold offers/bids outwith optional price limits.",
"self",
".",
"_withholdOffbids",
"(",
")",
"# Convert offers/bids to pwl functions and update limits.",
"self",
".",
"_offbidToCase",
"(",
")",
"# Compute dispatch points and LMPs using OPF.",
"success",
"=",
"self",
".",
"_runOPF",
"(",
")",
"if",
"success",
":",
"# Get nodal marginal prices from OPF.",
"gteeOfferPrice",
",",
"gteeBidPrice",
"=",
"self",
".",
"_nodalPrices",
"(",
"haveQ",
")",
"# Determine quantity and price for each offer/bid.",
"self",
".",
"_runAuction",
"(",
"gteeOfferPrice",
",",
"gteeBidPrice",
",",
"haveQ",
")",
"logger",
".",
"info",
"(",
"\"SmartMarket cleared in %.3fs\"",
"%",
"(",
"time",
".",
"time",
"(",
")",
"-",
"t0",
")",
")",
"else",
":",
"for",
"offbid",
"in",
"self",
".",
"offers",
"+",
"self",
".",
"bids",
":",
"offbid",
".",
"clearedQuantity",
"=",
"0.0",
"offbid",
".",
"clearedPrice",
"=",
"0.0",
"offbid",
".",
"accepted",
"=",
"False",
"offbid",
".",
"generator",
".",
"p",
"=",
"0.0",
"logger",
".",
"error",
"(",
"\"Non-convergent market OPF. Blackout!\"",
")",
"return",
"self",
".",
"offers",
",",
"self",
".",
"bids"
] | Computes cleared offers and bids. | [
"Computes",
"cleared",
"offers",
"and",
"bids",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/smart_market.py#L131-L166 | train |
rwl/pylon | pyreto/smart_market.py | SmartMarket._runOPF | def _runOPF(self):
""" Computes dispatch points and LMPs using OPF.
"""
if self.decommit:
solver = UDOPF(self.case, dc=(self.locationalAdjustment == "dc"))
elif self.locationalAdjustment == "dc":
solver = OPF(self.case, dc=True)
else:
solver = OPF(self.case, dc=False, opt={"verbose": True})
self._solution = solver.solve()
# for ob in self.offers + self.bids:
# ob.f = solution["f"]
return self._solution["converged"] | python | def _runOPF(self):
""" Computes dispatch points and LMPs using OPF.
"""
if self.decommit:
solver = UDOPF(self.case, dc=(self.locationalAdjustment == "dc"))
elif self.locationalAdjustment == "dc":
solver = OPF(self.case, dc=True)
else:
solver = OPF(self.case, dc=False, opt={"verbose": True})
self._solution = solver.solve()
# for ob in self.offers + self.bids:
# ob.f = solution["f"]
return self._solution["converged"] | [
"def",
"_runOPF",
"(",
"self",
")",
":",
"if",
"self",
".",
"decommit",
":",
"solver",
"=",
"UDOPF",
"(",
"self",
".",
"case",
",",
"dc",
"=",
"(",
"self",
".",
"locationalAdjustment",
"==",
"\"dc\"",
")",
")",
"elif",
"self",
".",
"locationalAdjustment",
"==",
"\"dc\"",
":",
"solver",
"=",
"OPF",
"(",
"self",
".",
"case",
",",
"dc",
"=",
"True",
")",
"else",
":",
"solver",
"=",
"OPF",
"(",
"self",
".",
"case",
",",
"dc",
"=",
"False",
",",
"opt",
"=",
"{",
"\"verbose\"",
":",
"True",
"}",
")",
"self",
".",
"_solution",
"=",
"solver",
".",
"solve",
"(",
")",
"# for ob in self.offers + self.bids:",
"# ob.f = solution[\"f\"]",
"return",
"self",
".",
"_solution",
"[",
"\"converged\"",
"]"
] | Computes dispatch points and LMPs using OPF. | [
"Computes",
"dispatch",
"points",
"and",
"LMPs",
"using",
"OPF",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/smart_market.py#L266-L281 | train |
rwl/pylon | contrib/public/services/simplejson/encoder.py | JSONEncoder.encode | def encode(self, o):
"""
Return a JSON string representation of a Python data structure.
>>> JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo":["bar", "baz"]}'
"""
# This doesn't pass the iterator directly to ''.join() because it
# sucks at reporting exceptions. It's going to do this internally
# anyway because it uses PySequence_Fast or similar.
chunks = list(self.iterencode(o))
return ''.join(chunks) | python | def encode(self, o):
"""
Return a JSON string representation of a Python data structure.
>>> JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo":["bar", "baz"]}'
"""
# This doesn't pass the iterator directly to ''.join() because it
# sucks at reporting exceptions. It's going to do this internally
# anyway because it uses PySequence_Fast or similar.
chunks = list(self.iterencode(o))
return ''.join(chunks) | [
"def",
"encode",
"(",
"self",
",",
"o",
")",
":",
"# This doesn't pass the iterator directly to ''.join() because it",
"# sucks at reporting exceptions. It's going to do this internally",
"# anyway because it uses PySequence_Fast or similar.",
"chunks",
"=",
"list",
"(",
"self",
".",
"iterencode",
"(",
"o",
")",
")",
"return",
"''",
".",
"join",
"(",
"chunks",
")"
] | Return a JSON string representation of a Python data structure.
>>> JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo":["bar", "baz"]}' | [
"Return",
"a",
"JSON",
"string",
"representation",
"of",
"a",
"Python",
"data",
"structure",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/contrib/public/services/simplejson/encoder.py#L278-L289 | train |
finklabs/metrics | metrics/compute.py | compute_file_metrics | def compute_file_metrics(processors, language, key, token_list):
"""use processors to compute file metrics."""
# multiply iterator
tli = itertools.tee(token_list, len(processors))
metrics = OrderedDict()
# reset all processors
for p in processors:
p.reset()
# process all tokens
for p, tl in zip(processors, tli):
p.process_file(language, key, tl)
# collect metrics from all processors
for p in processors:
metrics.update(p.metrics)
return metrics | python | def compute_file_metrics(processors, language, key, token_list):
"""use processors to compute file metrics."""
# multiply iterator
tli = itertools.tee(token_list, len(processors))
metrics = OrderedDict()
# reset all processors
for p in processors:
p.reset()
# process all tokens
for p, tl in zip(processors, tli):
p.process_file(language, key, tl)
# collect metrics from all processors
for p in processors:
metrics.update(p.metrics)
return metrics | [
"def",
"compute_file_metrics",
"(",
"processors",
",",
"language",
",",
"key",
",",
"token_list",
")",
":",
"# multiply iterator",
"tli",
"=",
"itertools",
".",
"tee",
"(",
"token_list",
",",
"len",
"(",
"processors",
")",
")",
"metrics",
"=",
"OrderedDict",
"(",
")",
"# reset all processors",
"for",
"p",
"in",
"processors",
":",
"p",
".",
"reset",
"(",
")",
"# process all tokens",
"for",
"p",
",",
"tl",
"in",
"zip",
"(",
"processors",
",",
"tli",
")",
":",
"p",
".",
"process_file",
"(",
"language",
",",
"key",
",",
"tl",
")",
"# collect metrics from all processors",
"for",
"p",
"in",
"processors",
":",
"metrics",
".",
"update",
"(",
"p",
".",
"metrics",
")",
"return",
"metrics"
] | use processors to compute file metrics. | [
"use",
"processors",
"to",
"compute",
"file",
"metrics",
"."
] | fd9974af498831664b9ae8e8f3834e1ec2e8a699 | https://github.com/finklabs/metrics/blob/fd9974af498831664b9ae8e8f3834e1ec2e8a699/metrics/compute.py#L8-L26 | train |
Liebeck/IWNLP-py | iwnlp/iwnlp_wrapper.py | IWNLPWrapper.load | def load(self, lemmatizer_path):
"""
This methods load the IWNLP.Lemmatizer json file and creates a dictionary
of lowercased forms which maps each form to its possible lemmas.
"""
self.lemmatizer = {}
with io.open(lemmatizer_path, encoding='utf-8') as data_file:
raw = json.load(data_file)
for entry in raw:
self.lemmatizer[entry["Form"]] = entry["Lemmas"]
self.apply_blacklist() | python | def load(self, lemmatizer_path):
"""
This methods load the IWNLP.Lemmatizer json file and creates a dictionary
of lowercased forms which maps each form to its possible lemmas.
"""
self.lemmatizer = {}
with io.open(lemmatizer_path, encoding='utf-8') as data_file:
raw = json.load(data_file)
for entry in raw:
self.lemmatizer[entry["Form"]] = entry["Lemmas"]
self.apply_blacklist() | [
"def",
"load",
"(",
"self",
",",
"lemmatizer_path",
")",
":",
"self",
".",
"lemmatizer",
"=",
"{",
"}",
"with",
"io",
".",
"open",
"(",
"lemmatizer_path",
",",
"encoding",
"=",
"'utf-8'",
")",
"as",
"data_file",
":",
"raw",
"=",
"json",
".",
"load",
"(",
"data_file",
")",
"for",
"entry",
"in",
"raw",
":",
"self",
".",
"lemmatizer",
"[",
"entry",
"[",
"\"Form\"",
"]",
"]",
"=",
"entry",
"[",
"\"Lemmas\"",
"]",
"self",
".",
"apply_blacklist",
"(",
")"
] | This methods load the IWNLP.Lemmatizer json file and creates a dictionary
of lowercased forms which maps each form to its possible lemmas. | [
"This",
"methods",
"load",
"the",
"IWNLP",
".",
"Lemmatizer",
"json",
"file",
"and",
"creates",
"a",
"dictionary",
"of",
"lowercased",
"forms",
"which",
"maps",
"each",
"form",
"to",
"its",
"possible",
"lemmas",
"."
] | fd4b81769317476eac0487396cce0faf482a1913 | https://github.com/Liebeck/IWNLP-py/blob/fd4b81769317476eac0487396cce0faf482a1913/iwnlp/iwnlp_wrapper.py#L14-L24 | train |
rwl/pylon | pylon/io/common.py | _CaseWriter.write | def write(self, file_or_filename):
""" Writes the case data to file.
"""
if isinstance(file_or_filename, basestring):
file = None
try:
file = open(file_or_filename, "wb")
except Exception, detail:
logger.error("Error opening %s." % detail)
finally:
if file is not None:
self._write_data(file)
file.close()
else:
file = file_or_filename
self._write_data(file)
return file | python | def write(self, file_or_filename):
""" Writes the case data to file.
"""
if isinstance(file_or_filename, basestring):
file = None
try:
file = open(file_or_filename, "wb")
except Exception, detail:
logger.error("Error opening %s." % detail)
finally:
if file is not None:
self._write_data(file)
file.close()
else:
file = file_or_filename
self._write_data(file)
return file | [
"def",
"write",
"(",
"self",
",",
"file_or_filename",
")",
":",
"if",
"isinstance",
"(",
"file_or_filename",
",",
"basestring",
")",
":",
"file",
"=",
"None",
"try",
":",
"file",
"=",
"open",
"(",
"file_or_filename",
",",
"\"wb\"",
")",
"except",
"Exception",
",",
"detail",
":",
"logger",
".",
"error",
"(",
"\"Error opening %s.\"",
"%",
"detail",
")",
"finally",
":",
"if",
"file",
"is",
"not",
"None",
":",
"self",
".",
"_write_data",
"(",
"file",
")",
"file",
".",
"close",
"(",
")",
"else",
":",
"file",
"=",
"file_or_filename",
"self",
".",
"_write_data",
"(",
"file",
")",
"return",
"file"
] | Writes the case data to file. | [
"Writes",
"the",
"case",
"data",
"to",
"file",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/io/common.py#L64-L81 | train |
rwl/pylon | pyreto/discrete/task.py | ProfitTask.performAction | def performAction(self, action):
""" The action vector is stripped and the only element is cast to
integer and given to the super class.
"""
self.t += 1
super(ProfitTask, self).performAction(int(action[0]))
self.samples += 1 | python | def performAction(self, action):
""" The action vector is stripped and the only element is cast to
integer and given to the super class.
"""
self.t += 1
super(ProfitTask, self).performAction(int(action[0]))
self.samples += 1 | [
"def",
"performAction",
"(",
"self",
",",
"action",
")",
":",
"self",
".",
"t",
"+=",
"1",
"super",
"(",
"ProfitTask",
",",
"self",
")",
".",
"performAction",
"(",
"int",
"(",
"action",
"[",
"0",
"]",
")",
")",
"self",
".",
"samples",
"+=",
"1"
] | The action vector is stripped and the only element is cast to
integer and given to the super class. | [
"The",
"action",
"vector",
"is",
"stripped",
"and",
"the",
"only",
"element",
"is",
"cast",
"to",
"integer",
"and",
"given",
"to",
"the",
"super",
"class",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/discrete/task.py#L120-L126 | train |
rwl/pylon | pyreto/discrete/task.py | ProfitTask.addReward | def addReward(self, r=None):
""" A filtered mapping towards performAction of the underlying
environment.
"""
r = self.getReward() if r is None else r
# by default, the cumulative reward is just the sum over the episode
if self.discount:
self.cumulativeReward += power(self.discount, self.samples) * r
else:
self.cumulativeReward += r | python | def addReward(self, r=None):
""" A filtered mapping towards performAction of the underlying
environment.
"""
r = self.getReward() if r is None else r
# by default, the cumulative reward is just the sum over the episode
if self.discount:
self.cumulativeReward += power(self.discount, self.samples) * r
else:
self.cumulativeReward += r | [
"def",
"addReward",
"(",
"self",
",",
"r",
"=",
"None",
")",
":",
"r",
"=",
"self",
".",
"getReward",
"(",
")",
"if",
"r",
"is",
"None",
"else",
"r",
"# by default, the cumulative reward is just the sum over the episode",
"if",
"self",
".",
"discount",
":",
"self",
".",
"cumulativeReward",
"+=",
"power",
"(",
"self",
".",
"discount",
",",
"self",
".",
"samples",
")",
"*",
"r",
"else",
":",
"self",
".",
"cumulativeReward",
"+=",
"r"
] | A filtered mapping towards performAction of the underlying
environment. | [
"A",
"filtered",
"mapping",
"towards",
"performAction",
"of",
"the",
"underlying",
"environment",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/discrete/task.py#L156-L166 | train |
rwl/pylon | pylon/estimator.py | StateEstimator.getV0 | def getV0(self, v_mag_guess, buses, generators, type=CASE_GUESS):
""" Returns the initial voltage profile.
"""
if type == CASE_GUESS:
Va = array([b.v_angle * (pi / 180.0) for b in buses])
Vm = array([b.v_magnitude for b in buses])
V0 = Vm * exp(1j * Va)
elif type == FLAT_START:
V0 = ones(len(buses))
elif type == FROM_INPUT:
V0 = v_mag_guess
else:
raise ValueError
# Set the voltages of PV buses and the reference bus in the guess.
# online = [g for g in self.case.generators if g.online]
gbus = [g.bus._i for g in generators]
Vg = array([g.v_magnitude for g in generators])
V0[gbus] = Vg * abs(V0[gbus]) / V0[gbus]
return V0 | python | def getV0(self, v_mag_guess, buses, generators, type=CASE_GUESS):
""" Returns the initial voltage profile.
"""
if type == CASE_GUESS:
Va = array([b.v_angle * (pi / 180.0) for b in buses])
Vm = array([b.v_magnitude for b in buses])
V0 = Vm * exp(1j * Va)
elif type == FLAT_START:
V0 = ones(len(buses))
elif type == FROM_INPUT:
V0 = v_mag_guess
else:
raise ValueError
# Set the voltages of PV buses and the reference bus in the guess.
# online = [g for g in self.case.generators if g.online]
gbus = [g.bus._i for g in generators]
Vg = array([g.v_magnitude for g in generators])
V0[gbus] = Vg * abs(V0[gbus]) / V0[gbus]
return V0 | [
"def",
"getV0",
"(",
"self",
",",
"v_mag_guess",
",",
"buses",
",",
"generators",
",",
"type",
"=",
"CASE_GUESS",
")",
":",
"if",
"type",
"==",
"CASE_GUESS",
":",
"Va",
"=",
"array",
"(",
"[",
"b",
".",
"v_angle",
"*",
"(",
"pi",
"/",
"180.0",
")",
"for",
"b",
"in",
"buses",
"]",
")",
"Vm",
"=",
"array",
"(",
"[",
"b",
".",
"v_magnitude",
"for",
"b",
"in",
"buses",
"]",
")",
"V0",
"=",
"Vm",
"*",
"exp",
"(",
"1j",
"*",
"Va",
")",
"elif",
"type",
"==",
"FLAT_START",
":",
"V0",
"=",
"ones",
"(",
"len",
"(",
"buses",
")",
")",
"elif",
"type",
"==",
"FROM_INPUT",
":",
"V0",
"=",
"v_mag_guess",
"else",
":",
"raise",
"ValueError",
"# Set the voltages of PV buses and the reference bus in the guess.",
"# online = [g for g in self.case.generators if g.online]",
"gbus",
"=",
"[",
"g",
".",
"bus",
".",
"_i",
"for",
"g",
"in",
"generators",
"]",
"Vg",
"=",
"array",
"(",
"[",
"g",
".",
"v_magnitude",
"for",
"g",
"in",
"generators",
"]",
")",
"V0",
"[",
"gbus",
"]",
"=",
"Vg",
"*",
"abs",
"(",
"V0",
"[",
"gbus",
"]",
")",
"/",
"V0",
"[",
"gbus",
"]",
"return",
"V0"
] | Returns the initial voltage profile. | [
"Returns",
"the",
"initial",
"voltage",
"profile",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/estimator.py#L300-L321 | train |
rwl/pylon | pylon/estimator.py | StateEstimator.output_solution | def output_solution(self, fd, z, z_est, error_sqrsum):
""" Prints comparison of measurements and their estimations.
"""
col_width = 11
sep = ("=" * col_width + " ") * 4 + "\n"
fd.write("State Estimation\n")
fd.write("-" * 16 + "\n")
fd.write(sep)
fd.write("Type".center(col_width) + " ")
fd.write("Name".center(col_width) + " ")
fd.write("Measurement".center(col_width) + " ")
fd.write("Estimation".center(col_width) + " ")
fd.write("\n")
fd.write(sep)
c = 0
for t in [PF, PT, QF, QT, PG, QG, VM, VA]:
for meas in self.measurements:
if meas.type == t:
n = meas.b_or_l.name[:col_width].ljust(col_width)
fd.write(t.ljust(col_width) + " ")
fd.write(n + " ")
fd.write("%11.5f " % z[c])
fd.write("%11.5f\n" % z_est[c])
# fd.write("%s\t%s\t%.3f\t%.3f\n" % (t, n, z[c], z_est[c]))
c += 1
fd.write("\nWeighted sum of error squares = %.4f\n" % error_sqrsum) | python | def output_solution(self, fd, z, z_est, error_sqrsum):
""" Prints comparison of measurements and their estimations.
"""
col_width = 11
sep = ("=" * col_width + " ") * 4 + "\n"
fd.write("State Estimation\n")
fd.write("-" * 16 + "\n")
fd.write(sep)
fd.write("Type".center(col_width) + " ")
fd.write("Name".center(col_width) + " ")
fd.write("Measurement".center(col_width) + " ")
fd.write("Estimation".center(col_width) + " ")
fd.write("\n")
fd.write(sep)
c = 0
for t in [PF, PT, QF, QT, PG, QG, VM, VA]:
for meas in self.measurements:
if meas.type == t:
n = meas.b_or_l.name[:col_width].ljust(col_width)
fd.write(t.ljust(col_width) + " ")
fd.write(n + " ")
fd.write("%11.5f " % z[c])
fd.write("%11.5f\n" % z_est[c])
# fd.write("%s\t%s\t%.3f\t%.3f\n" % (t, n, z[c], z_est[c]))
c += 1
fd.write("\nWeighted sum of error squares = %.4f\n" % error_sqrsum) | [
"def",
"output_solution",
"(",
"self",
",",
"fd",
",",
"z",
",",
"z_est",
",",
"error_sqrsum",
")",
":",
"col_width",
"=",
"11",
"sep",
"=",
"(",
"\"=\"",
"*",
"col_width",
"+",
"\" \"",
")",
"*",
"4",
"+",
"\"\\n\"",
"fd",
".",
"write",
"(",
"\"State Estimation\\n\"",
")",
"fd",
".",
"write",
"(",
"\"-\"",
"*",
"16",
"+",
"\"\\n\"",
")",
"fd",
".",
"write",
"(",
"sep",
")",
"fd",
".",
"write",
"(",
"\"Type\"",
".",
"center",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"fd",
".",
"write",
"(",
"\"Name\"",
".",
"center",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"fd",
".",
"write",
"(",
"\"Measurement\"",
".",
"center",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"fd",
".",
"write",
"(",
"\"Estimation\"",
".",
"center",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"fd",
".",
"write",
"(",
"\"\\n\"",
")",
"fd",
".",
"write",
"(",
"sep",
")",
"c",
"=",
"0",
"for",
"t",
"in",
"[",
"PF",
",",
"PT",
",",
"QF",
",",
"QT",
",",
"PG",
",",
"QG",
",",
"VM",
",",
"VA",
"]",
":",
"for",
"meas",
"in",
"self",
".",
"measurements",
":",
"if",
"meas",
".",
"type",
"==",
"t",
":",
"n",
"=",
"meas",
".",
"b_or_l",
".",
"name",
"[",
":",
"col_width",
"]",
".",
"ljust",
"(",
"col_width",
")",
"fd",
".",
"write",
"(",
"t",
".",
"ljust",
"(",
"col_width",
")",
"+",
"\" \"",
")",
"fd",
".",
"write",
"(",
"n",
"+",
"\" \"",
")",
"fd",
".",
"write",
"(",
"\"%11.5f \"",
"%",
"z",
"[",
"c",
"]",
")",
"fd",
".",
"write",
"(",
"\"%11.5f\\n\"",
"%",
"z_est",
"[",
"c",
"]",
")",
"# fd.write(\"%s\\t%s\\t%.3f\\t%.3f\\n\" % (t, n, z[c], z_est[c]))",
"c",
"+=",
"1",
"fd",
".",
"write",
"(",
"\"\\nWeighted sum of error squares = %.4f\\n\"",
"%",
"error_sqrsum",
")"
] | Prints comparison of measurements and their estimations. | [
"Prints",
"comparison",
"of",
"measurements",
"and",
"their",
"estimations",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pylon/estimator.py#L324-L352 | train |
rwl/pylon | pyreto/auction.py | Auction.run | def run(self):
""" Clears a set of bids and offers.
"""
# Compute cleared offer/bid quantities from total dispatched quantity.
self._clearQuantities()
# Compute shift values to add to lam to get desired pricing.
# lao, fro, lab, frb = self._first_rejected_last_accepted()
# Clear offer/bid prices according to auction type.
self._clearPrices()
# self._clear_prices(lao, fro, lab, frb)
# Clip cleared prices according to guarantees and limits.
self._clipPrices()
self._logClearances()
return self.offers, self.bids | python | def run(self):
""" Clears a set of bids and offers.
"""
# Compute cleared offer/bid quantities from total dispatched quantity.
self._clearQuantities()
# Compute shift values to add to lam to get desired pricing.
# lao, fro, lab, frb = self._first_rejected_last_accepted()
# Clear offer/bid prices according to auction type.
self._clearPrices()
# self._clear_prices(lao, fro, lab, frb)
# Clip cleared prices according to guarantees and limits.
self._clipPrices()
self._logClearances()
return self.offers, self.bids | [
"def",
"run",
"(",
"self",
")",
":",
"# Compute cleared offer/bid quantities from total dispatched quantity.",
"self",
".",
"_clearQuantities",
"(",
")",
"# Compute shift values to add to lam to get desired pricing.",
"# lao, fro, lab, frb = self._first_rejected_last_accepted()",
"# Clear offer/bid prices according to auction type.",
"self",
".",
"_clearPrices",
"(",
")",
"# self._clear_prices(lao, fro, lab, frb)",
"# Clip cleared prices according to guarantees and limits.",
"self",
".",
"_clipPrices",
"(",
")",
"self",
".",
"_logClearances",
"(",
")",
"return",
"self",
".",
"offers",
",",
"self",
".",
"bids"
] | Clears a set of bids and offers. | [
"Clears",
"a",
"set",
"of",
"bids",
"and",
"offers",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/auction.py#L85-L103 | train |
rwl/pylon | pyreto/auction.py | Auction._clearQuantity | def _clearQuantity(self, offbids, gen):
""" Computes the cleared bid quantity from total dispatched quantity.
"""
# Filter out offers/bids not applicable to the generator in question.
gOffbids = [offer for offer in offbids if offer.generator == gen]
# Offers/bids within valid price limits (not withheld).
valid = [ob for ob in gOffbids if not ob.withheld]
# Sort offers by price in ascending order and bids in decending order.
valid.sort(key=lambda ob: ob.price, reverse=[False, True][gen.is_load])
acceptedQty = 0.0
for ob in valid:
# Compute the fraction of the block accepted.
accepted = (ob.totalQuantity - acceptedQty) / ob.quantity
# Clip to the range 0-1.
if accepted > 1.0:
accepted = 1.0
elif accepted < 1.0e-05:
accepted = 0.0
ob.clearedQuantity = accepted * ob.quantity
ob.accepted = (accepted > 0.0)
# Log the event.
# if ob.accepted:
# logger.info("%s [%s, %.3f, %.3f] accepted at %.2f MW." %
# (ob.__class__.__name__, ob.generator.name, ob.quantity,
# ob.price, ob.clearedQuantity))
# else:
# logger.info("%s [%s, %.3f, %.3f] rejected." %
# (ob.__class__.__name__, ob.generator.name, ob.quantity,
# ob.price))
# Increment the accepted quantity.
acceptedQty += ob.quantity | python | def _clearQuantity(self, offbids, gen):
""" Computes the cleared bid quantity from total dispatched quantity.
"""
# Filter out offers/bids not applicable to the generator in question.
gOffbids = [offer for offer in offbids if offer.generator == gen]
# Offers/bids within valid price limits (not withheld).
valid = [ob for ob in gOffbids if not ob.withheld]
# Sort offers by price in ascending order and bids in decending order.
valid.sort(key=lambda ob: ob.price, reverse=[False, True][gen.is_load])
acceptedQty = 0.0
for ob in valid:
# Compute the fraction of the block accepted.
accepted = (ob.totalQuantity - acceptedQty) / ob.quantity
# Clip to the range 0-1.
if accepted > 1.0:
accepted = 1.0
elif accepted < 1.0e-05:
accepted = 0.0
ob.clearedQuantity = accepted * ob.quantity
ob.accepted = (accepted > 0.0)
# Log the event.
# if ob.accepted:
# logger.info("%s [%s, %.3f, %.3f] accepted at %.2f MW." %
# (ob.__class__.__name__, ob.generator.name, ob.quantity,
# ob.price, ob.clearedQuantity))
# else:
# logger.info("%s [%s, %.3f, %.3f] rejected." %
# (ob.__class__.__name__, ob.generator.name, ob.quantity,
# ob.price))
# Increment the accepted quantity.
acceptedQty += ob.quantity | [
"def",
"_clearQuantity",
"(",
"self",
",",
"offbids",
",",
"gen",
")",
":",
"# Filter out offers/bids not applicable to the generator in question.",
"gOffbids",
"=",
"[",
"offer",
"for",
"offer",
"in",
"offbids",
"if",
"offer",
".",
"generator",
"==",
"gen",
"]",
"# Offers/bids within valid price limits (not withheld).",
"valid",
"=",
"[",
"ob",
"for",
"ob",
"in",
"gOffbids",
"if",
"not",
"ob",
".",
"withheld",
"]",
"# Sort offers by price in ascending order and bids in decending order.",
"valid",
".",
"sort",
"(",
"key",
"=",
"lambda",
"ob",
":",
"ob",
".",
"price",
",",
"reverse",
"=",
"[",
"False",
",",
"True",
"]",
"[",
"gen",
".",
"is_load",
"]",
")",
"acceptedQty",
"=",
"0.0",
"for",
"ob",
"in",
"valid",
":",
"# Compute the fraction of the block accepted.",
"accepted",
"=",
"(",
"ob",
".",
"totalQuantity",
"-",
"acceptedQty",
")",
"/",
"ob",
".",
"quantity",
"# Clip to the range 0-1.",
"if",
"accepted",
">",
"1.0",
":",
"accepted",
"=",
"1.0",
"elif",
"accepted",
"<",
"1.0e-05",
":",
"accepted",
"=",
"0.0",
"ob",
".",
"clearedQuantity",
"=",
"accepted",
"*",
"ob",
".",
"quantity",
"ob",
".",
"accepted",
"=",
"(",
"accepted",
">",
"0.0",
")",
"# Log the event.",
"# if ob.accepted:",
"# logger.info(\"%s [%s, %.3f, %.3f] accepted at %.2f MW.\" %",
"# (ob.__class__.__name__, ob.generator.name, ob.quantity,",
"# ob.price, ob.clearedQuantity))",
"# else:",
"# logger.info(\"%s [%s, %.3f, %.3f] rejected.\" %",
"# (ob.__class__.__name__, ob.generator.name, ob.quantity,",
"# ob.price))",
"# Increment the accepted quantity.",
"acceptedQty",
"+=",
"ob",
".",
"quantity"
] | Computes the cleared bid quantity from total dispatched quantity. | [
"Computes",
"the",
"cleared",
"bid",
"quantity",
"from",
"total",
"dispatched",
"quantity",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/auction.py#L120-L158 | train |
rwl/pylon | pyreto/auction.py | Auction._clearPrices | def _clearPrices(self):
""" Clears prices according to auction type.
"""
for offbid in self.offers + self.bids:
if self.auctionType == DISCRIMINATIVE:
offbid.clearedPrice = offbid.price
elif self.auctionType == FIRST_PRICE:
offbid.clearedPrice = offbid.lmbda
else:
raise ValueError | python | def _clearPrices(self):
""" Clears prices according to auction type.
"""
for offbid in self.offers + self.bids:
if self.auctionType == DISCRIMINATIVE:
offbid.clearedPrice = offbid.price
elif self.auctionType == FIRST_PRICE:
offbid.clearedPrice = offbid.lmbda
else:
raise ValueError | [
"def",
"_clearPrices",
"(",
"self",
")",
":",
"for",
"offbid",
"in",
"self",
".",
"offers",
"+",
"self",
".",
"bids",
":",
"if",
"self",
".",
"auctionType",
"==",
"DISCRIMINATIVE",
":",
"offbid",
".",
"clearedPrice",
"=",
"offbid",
".",
"price",
"elif",
"self",
".",
"auctionType",
"==",
"FIRST_PRICE",
":",
"offbid",
".",
"clearedPrice",
"=",
"offbid",
".",
"lmbda",
"else",
":",
"raise",
"ValueError"
] | Clears prices according to auction type. | [
"Clears",
"prices",
"according",
"to",
"auction",
"type",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/auction.py#L219-L228 | train |
rwl/pylon | pyreto/auction.py | Auction._clipPrices | def _clipPrices(self):
""" Clip cleared prices according to guarantees and limits.
"""
# Guarantee that cleared offer prices are >= offers.
if self.guaranteeOfferPrice:
for offer in self.offers:
if offer.accepted and offer.clearedPrice < offer.price:
offer.clearedPrice = offer.price
# Guarantee that cleared bid prices are <= bids.
if self.guaranteeBidPrice:
for bid in self.bids:
if bid.accepted and bid.clearedPrice > bid.price:
bid.clearedPrice = bid.price
# Clip cleared offer prices.
if self.limits.has_key("maxClearedOffer"):
maxClearedOffer = self.limits["maxClearedOffer"]
for offer in self.offers:
if offer.clearedPrice > maxClearedOffer:
offer.clearedPrice = maxClearedOffer
# Clip cleared bid prices.
if self.limits.has_key("minClearedBid"):
minClearedBid = self.limits["minClearedBid"]
for bid in self.bids:
if bid.clearedPrice < minClearedBid:
bid.clearedPrice = minClearedBid
# Make prices uniform across all offers/bids for each generator after
# clipping (except for discrim auction) since clipping may only affect
# a single block of a multi-block generator.
if self.auctionType != DISCRIMINATIVE:
for g in self.case.generators:
gOffers = [of for of in self.offers if of.generator == g]
if gOffers:
uniformPrice = max([of.clearedPrice for of in gOffers])
for of in gOffers:
of.clearedPrice = uniformPrice
gBids = [bid for bid in self.bids if bid.vLoad == g]
if gBids:
uniformPrice = min([bid.cleared_price for bid in gBids])
for bid in gBids:
bid.clearedPrice = uniformPrice | python | def _clipPrices(self):
""" Clip cleared prices according to guarantees and limits.
"""
# Guarantee that cleared offer prices are >= offers.
if self.guaranteeOfferPrice:
for offer in self.offers:
if offer.accepted and offer.clearedPrice < offer.price:
offer.clearedPrice = offer.price
# Guarantee that cleared bid prices are <= bids.
if self.guaranteeBidPrice:
for bid in self.bids:
if bid.accepted and bid.clearedPrice > bid.price:
bid.clearedPrice = bid.price
# Clip cleared offer prices.
if self.limits.has_key("maxClearedOffer"):
maxClearedOffer = self.limits["maxClearedOffer"]
for offer in self.offers:
if offer.clearedPrice > maxClearedOffer:
offer.clearedPrice = maxClearedOffer
# Clip cleared bid prices.
if self.limits.has_key("minClearedBid"):
minClearedBid = self.limits["minClearedBid"]
for bid in self.bids:
if bid.clearedPrice < minClearedBid:
bid.clearedPrice = minClearedBid
# Make prices uniform across all offers/bids for each generator after
# clipping (except for discrim auction) since clipping may only affect
# a single block of a multi-block generator.
if self.auctionType != DISCRIMINATIVE:
for g in self.case.generators:
gOffers = [of for of in self.offers if of.generator == g]
if gOffers:
uniformPrice = max([of.clearedPrice for of in gOffers])
for of in gOffers:
of.clearedPrice = uniformPrice
gBids = [bid for bid in self.bids if bid.vLoad == g]
if gBids:
uniformPrice = min([bid.cleared_price for bid in gBids])
for bid in gBids:
bid.clearedPrice = uniformPrice | [
"def",
"_clipPrices",
"(",
"self",
")",
":",
"# Guarantee that cleared offer prices are >= offers.",
"if",
"self",
".",
"guaranteeOfferPrice",
":",
"for",
"offer",
"in",
"self",
".",
"offers",
":",
"if",
"offer",
".",
"accepted",
"and",
"offer",
".",
"clearedPrice",
"<",
"offer",
".",
"price",
":",
"offer",
".",
"clearedPrice",
"=",
"offer",
".",
"price",
"# Guarantee that cleared bid prices are <= bids.",
"if",
"self",
".",
"guaranteeBidPrice",
":",
"for",
"bid",
"in",
"self",
".",
"bids",
":",
"if",
"bid",
".",
"accepted",
"and",
"bid",
".",
"clearedPrice",
">",
"bid",
".",
"price",
":",
"bid",
".",
"clearedPrice",
"=",
"bid",
".",
"price",
"# Clip cleared offer prices.",
"if",
"self",
".",
"limits",
".",
"has_key",
"(",
"\"maxClearedOffer\"",
")",
":",
"maxClearedOffer",
"=",
"self",
".",
"limits",
"[",
"\"maxClearedOffer\"",
"]",
"for",
"offer",
"in",
"self",
".",
"offers",
":",
"if",
"offer",
".",
"clearedPrice",
">",
"maxClearedOffer",
":",
"offer",
".",
"clearedPrice",
"=",
"maxClearedOffer",
"# Clip cleared bid prices.",
"if",
"self",
".",
"limits",
".",
"has_key",
"(",
"\"minClearedBid\"",
")",
":",
"minClearedBid",
"=",
"self",
".",
"limits",
"[",
"\"minClearedBid\"",
"]",
"for",
"bid",
"in",
"self",
".",
"bids",
":",
"if",
"bid",
".",
"clearedPrice",
"<",
"minClearedBid",
":",
"bid",
".",
"clearedPrice",
"=",
"minClearedBid",
"# Make prices uniform across all offers/bids for each generator after",
"# clipping (except for discrim auction) since clipping may only affect",
"# a single block of a multi-block generator.",
"if",
"self",
".",
"auctionType",
"!=",
"DISCRIMINATIVE",
":",
"for",
"g",
"in",
"self",
".",
"case",
".",
"generators",
":",
"gOffers",
"=",
"[",
"of",
"for",
"of",
"in",
"self",
".",
"offers",
"if",
"of",
".",
"generator",
"==",
"g",
"]",
"if",
"gOffers",
":",
"uniformPrice",
"=",
"max",
"(",
"[",
"of",
".",
"clearedPrice",
"for",
"of",
"in",
"gOffers",
"]",
")",
"for",
"of",
"in",
"gOffers",
":",
"of",
".",
"clearedPrice",
"=",
"uniformPrice",
"gBids",
"=",
"[",
"bid",
"for",
"bid",
"in",
"self",
".",
"bids",
"if",
"bid",
".",
"vLoad",
"==",
"g",
"]",
"if",
"gBids",
":",
"uniformPrice",
"=",
"min",
"(",
"[",
"bid",
".",
"cleared_price",
"for",
"bid",
"in",
"gBids",
"]",
")",
"for",
"bid",
"in",
"gBids",
":",
"bid",
".",
"clearedPrice",
"=",
"uniformPrice"
] | Clip cleared prices according to guarantees and limits. | [
"Clip",
"cleared",
"prices",
"according",
"to",
"guarantees",
"and",
"limits",
"."
] | 916514255db1ae1661406f0283df756baf960d14 | https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/auction.py#L265-L311 | train |
praekeltfoundation/seaworthy | seaworthy/client.py | wait_for_response | def wait_for_response(client, timeout, path='/', expected_status_code=None):
"""
Try make a GET request with an HTTP client against a certain path and
return once any response has been received, ignoring any errors.
:param ContainerHttpClient client:
The HTTP client to use to connect to the container.
:param timeout:
Timeout value in seconds.
:param path:
HTTP path to request.
:param int expected_status_code:
If set, wait until a response with this status code is received. If not
set, the status code will not be checked.
:raises TimeoutError:
If a request fails to be made within the timeout period.
"""
# We want time.monotonic on Pythons that have it, otherwise time.time will
# have to do.
get_time = getattr(time, 'monotonic', time.time)
deadline = get_time() + timeout
while True:
try:
# Don't care what the response is, as long as we get one
time_left = deadline - get_time()
response = client.get(
path, timeout=max(time_left, 0.001), allow_redirects=False)
if (expected_status_code is None
or response.status_code == expected_status_code):
return
except requests.exceptions.Timeout:
# Requests timed out, our time must be up
break
except Exception:
# Ignore other exceptions
pass
if get_time() >= deadline:
break
time.sleep(0.1)
raise TimeoutError('Timeout waiting for HTTP response.') | python | def wait_for_response(client, timeout, path='/', expected_status_code=None):
"""
Try make a GET request with an HTTP client against a certain path and
return once any response has been received, ignoring any errors.
:param ContainerHttpClient client:
The HTTP client to use to connect to the container.
:param timeout:
Timeout value in seconds.
:param path:
HTTP path to request.
:param int expected_status_code:
If set, wait until a response with this status code is received. If not
set, the status code will not be checked.
:raises TimeoutError:
If a request fails to be made within the timeout period.
"""
# We want time.monotonic on Pythons that have it, otherwise time.time will
# have to do.
get_time = getattr(time, 'monotonic', time.time)
deadline = get_time() + timeout
while True:
try:
# Don't care what the response is, as long as we get one
time_left = deadline - get_time()
response = client.get(
path, timeout=max(time_left, 0.001), allow_redirects=False)
if (expected_status_code is None
or response.status_code == expected_status_code):
return
except requests.exceptions.Timeout:
# Requests timed out, our time must be up
break
except Exception:
# Ignore other exceptions
pass
if get_time() >= deadline:
break
time.sleep(0.1)
raise TimeoutError('Timeout waiting for HTTP response.') | [
"def",
"wait_for_response",
"(",
"client",
",",
"timeout",
",",
"path",
"=",
"'/'",
",",
"expected_status_code",
"=",
"None",
")",
":",
"# We want time.monotonic on Pythons that have it, otherwise time.time will",
"# have to do.",
"get_time",
"=",
"getattr",
"(",
"time",
",",
"'monotonic'",
",",
"time",
".",
"time",
")",
"deadline",
"=",
"get_time",
"(",
")",
"+",
"timeout",
"while",
"True",
":",
"try",
":",
"# Don't care what the response is, as long as we get one",
"time_left",
"=",
"deadline",
"-",
"get_time",
"(",
")",
"response",
"=",
"client",
".",
"get",
"(",
"path",
",",
"timeout",
"=",
"max",
"(",
"time_left",
",",
"0.001",
")",
",",
"allow_redirects",
"=",
"False",
")",
"if",
"(",
"expected_status_code",
"is",
"None",
"or",
"response",
".",
"status_code",
"==",
"expected_status_code",
")",
":",
"return",
"except",
"requests",
".",
"exceptions",
".",
"Timeout",
":",
"# Requests timed out, our time must be up",
"break",
"except",
"Exception",
":",
"# Ignore other exceptions",
"pass",
"if",
"get_time",
"(",
")",
">=",
"deadline",
":",
"break",
"time",
".",
"sleep",
"(",
"0.1",
")",
"raise",
"TimeoutError",
"(",
"'Timeout waiting for HTTP response.'",
")"
] | Try make a GET request with an HTTP client against a certain path and
return once any response has been received, ignoring any errors.
:param ContainerHttpClient client:
The HTTP client to use to connect to the container.
:param timeout:
Timeout value in seconds.
:param path:
HTTP path to request.
:param int expected_status_code:
If set, wait until a response with this status code is received. If not
set, the status code will not be checked.
:raises TimeoutError:
If a request fails to be made within the timeout period. | [
"Try",
"make",
"a",
"GET",
"request",
"with",
"an",
"HTTP",
"client",
"against",
"a",
"certain",
"path",
"and",
"return",
"once",
"any",
"response",
"has",
"been",
"received",
"ignoring",
"any",
"errors",
"."
] | 6f10a19b45d4ea1dc3bd0553cc4d0438696c079c | https://github.com/praekeltfoundation/seaworthy/blob/6f10a19b45d4ea1dc3bd0553cc4d0438696c079c/seaworthy/client.py#L205-L248 | train |
praekeltfoundation/seaworthy | seaworthy/client.py | ContainerHttpClient.request | def request(self, method, path=None, url_kwargs=None, **kwargs):
"""
Make a request against a container.
:param method:
The HTTP method to use.
:param list path:
The HTTP path (either absolute or relative).
:param dict url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param kwargs:
Any other parameters to pass to Requests.
"""
return self._session.request(
method, self._url(path, url_kwargs), **kwargs) | python | def request(self, method, path=None, url_kwargs=None, **kwargs):
"""
Make a request against a container.
:param method:
The HTTP method to use.
:param list path:
The HTTP path (either absolute or relative).
:param dict url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param kwargs:
Any other parameters to pass to Requests.
"""
return self._session.request(
method, self._url(path, url_kwargs), **kwargs) | [
"def",
"request",
"(",
"self",
",",
"method",
",",
"path",
"=",
"None",
",",
"url_kwargs",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"_session",
".",
"request",
"(",
"method",
",",
"self",
".",
"_url",
"(",
"path",
",",
"url_kwargs",
")",
",",
"*",
"*",
"kwargs",
")"
] | Make a request against a container.
:param method:
The HTTP method to use.
:param list path:
The HTTP path (either absolute or relative).
:param dict url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param kwargs:
Any other parameters to pass to Requests. | [
"Make",
"a",
"request",
"against",
"a",
"container",
"."
] | 6f10a19b45d4ea1dc3bd0553cc4d0438696c079c | https://github.com/praekeltfoundation/seaworthy/blob/6f10a19b45d4ea1dc3bd0553cc4d0438696c079c/seaworthy/client.py#L90-L104 | train |
praekeltfoundation/seaworthy | seaworthy/client.py | ContainerHttpClient.options | def options(self, path=None, url_kwargs=None, **kwargs):
"""
Sends an OPTIONS request.
:param path:
The HTTP path (either absolute or relative).
:param url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param **kwargs:
Optional arguments that ``request`` takes.
:return: response object
"""
return self._session.options(self._url(path, url_kwargs), **kwargs) | python | def options(self, path=None, url_kwargs=None, **kwargs):
"""
Sends an OPTIONS request.
:param path:
The HTTP path (either absolute or relative).
:param url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param **kwargs:
Optional arguments that ``request`` takes.
:return: response object
"""
return self._session.options(self._url(path, url_kwargs), **kwargs) | [
"def",
"options",
"(",
"self",
",",
"path",
"=",
"None",
",",
"url_kwargs",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"_session",
".",
"options",
"(",
"self",
".",
"_url",
"(",
"path",
",",
"url_kwargs",
")",
",",
"*",
"*",
"kwargs",
")"
] | Sends an OPTIONS request.
:param path:
The HTTP path (either absolute or relative).
:param url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param **kwargs:
Optional arguments that ``request`` takes.
:return: response object | [
"Sends",
"an",
"OPTIONS",
"request",
"."
] | 6f10a19b45d4ea1dc3bd0553cc4d0438696c079c | https://github.com/praekeltfoundation/seaworthy/blob/6f10a19b45d4ea1dc3bd0553cc4d0438696c079c/seaworthy/client.py#L120-L132 | train |
praekeltfoundation/seaworthy | seaworthy/client.py | ContainerHttpClient.head | def head(self, path=None, url_kwargs=None, **kwargs):
"""
Sends a HEAD request.
:param path:
The HTTP path (either absolute or relative).
:param url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param **kwargs:
Optional arguments that ``request`` takes.
:return: response object
"""
return self._session.head(self._url(path, url_kwargs), **kwargs) | python | def head(self, path=None, url_kwargs=None, **kwargs):
"""
Sends a HEAD request.
:param path:
The HTTP path (either absolute or relative).
:param url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param **kwargs:
Optional arguments that ``request`` takes.
:return: response object
"""
return self._session.head(self._url(path, url_kwargs), **kwargs) | [
"def",
"head",
"(",
"self",
",",
"path",
"=",
"None",
",",
"url_kwargs",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"_session",
".",
"head",
"(",
"self",
".",
"_url",
"(",
"path",
",",
"url_kwargs",
")",
",",
"*",
"*",
"kwargs",
")"
] | Sends a HEAD request.
:param path:
The HTTP path (either absolute or relative).
:param url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param **kwargs:
Optional arguments that ``request`` takes.
:return: response object | [
"Sends",
"a",
"HEAD",
"request",
"."
] | 6f10a19b45d4ea1dc3bd0553cc4d0438696c079c | https://github.com/praekeltfoundation/seaworthy/blob/6f10a19b45d4ea1dc3bd0553cc4d0438696c079c/seaworthy/client.py#L134-L146 | train |
praekeltfoundation/seaworthy | seaworthy/client.py | ContainerHttpClient.post | def post(self, path=None, url_kwargs=None, **kwargs):
"""
Sends a POST request.
:param path:
The HTTP path (either absolute or relative).
:param url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param **kwargs:
Optional arguments that ``request`` takes.
:return: response object
"""
return self._session.post(self._url(path, url_kwargs), **kwargs) | python | def post(self, path=None, url_kwargs=None, **kwargs):
"""
Sends a POST request.
:param path:
The HTTP path (either absolute or relative).
:param url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param **kwargs:
Optional arguments that ``request`` takes.
:return: response object
"""
return self._session.post(self._url(path, url_kwargs), **kwargs) | [
"def",
"post",
"(",
"self",
",",
"path",
"=",
"None",
",",
"url_kwargs",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"_session",
".",
"post",
"(",
"self",
".",
"_url",
"(",
"path",
",",
"url_kwargs",
")",
",",
"*",
"*",
"kwargs",
")"
] | Sends a POST request.
:param path:
The HTTP path (either absolute or relative).
:param url_kwargs:
Parameters to override in the generated URL. See `~hyperlink.URL`.
:param **kwargs:
Optional arguments that ``request`` takes.
:return: response object | [
"Sends",
"a",
"POST",
"request",
"."
] | 6f10a19b45d4ea1dc3bd0553cc4d0438696c079c | https://github.com/praekeltfoundation/seaworthy/blob/6f10a19b45d4ea1dc3bd0553cc4d0438696c079c/seaworthy/client.py#L148-L160 | train |
ratt-ru/PyMORESANE | pymoresane/iuwt.py | iuwt_decomposition | def iuwt_decomposition(in1, scale_count, scale_adjust=0, mode='ser', core_count=2, store_smoothed=False,
store_on_gpu=False):
"""
This function serves as a handler for the different implementations of the IUWT decomposition. It allows the
different methods to be used almost interchangeably.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_count (no default): Maximum scale to be considered.
scale_adjust (default=0): Adjustment to scale value if first scales are of no interest.
mode (default='ser'): Implementation of the IUWT to be used - 'ser', 'mp' or 'gpu'.
core_count (default=1): Additional option for multiprocessing - specifies core count.
store_smoothed (default=False): Boolean specifier for whether the smoothed image is stored or not.
store_on_gpu (default=False): Boolean specifier for whether the decomposition is stored on the gpu or not.
OUTPUTS:
Returns the decomposition with the additional smoothed coefficients if specified.
"""
if mode=='ser':
return ser_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed)
elif mode=='mp':
return mp_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed, core_count)
elif mode=='gpu':
return gpu_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed, store_on_gpu) | python | def iuwt_decomposition(in1, scale_count, scale_adjust=0, mode='ser', core_count=2, store_smoothed=False,
store_on_gpu=False):
"""
This function serves as a handler for the different implementations of the IUWT decomposition. It allows the
different methods to be used almost interchangeably.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_count (no default): Maximum scale to be considered.
scale_adjust (default=0): Adjustment to scale value if first scales are of no interest.
mode (default='ser'): Implementation of the IUWT to be used - 'ser', 'mp' or 'gpu'.
core_count (default=1): Additional option for multiprocessing - specifies core count.
store_smoothed (default=False): Boolean specifier for whether the smoothed image is stored or not.
store_on_gpu (default=False): Boolean specifier for whether the decomposition is stored on the gpu or not.
OUTPUTS:
Returns the decomposition with the additional smoothed coefficients if specified.
"""
if mode=='ser':
return ser_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed)
elif mode=='mp':
return mp_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed, core_count)
elif mode=='gpu':
return gpu_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed, store_on_gpu) | [
"def",
"iuwt_decomposition",
"(",
"in1",
",",
"scale_count",
",",
"scale_adjust",
"=",
"0",
",",
"mode",
"=",
"'ser'",
",",
"core_count",
"=",
"2",
",",
"store_smoothed",
"=",
"False",
",",
"store_on_gpu",
"=",
"False",
")",
":",
"if",
"mode",
"==",
"'ser'",
":",
"return",
"ser_iuwt_decomposition",
"(",
"in1",
",",
"scale_count",
",",
"scale_adjust",
",",
"store_smoothed",
")",
"elif",
"mode",
"==",
"'mp'",
":",
"return",
"mp_iuwt_decomposition",
"(",
"in1",
",",
"scale_count",
",",
"scale_adjust",
",",
"store_smoothed",
",",
"core_count",
")",
"elif",
"mode",
"==",
"'gpu'",
":",
"return",
"gpu_iuwt_decomposition",
"(",
"in1",
",",
"scale_count",
",",
"scale_adjust",
",",
"store_smoothed",
",",
"store_on_gpu",
")"
] | This function serves as a handler for the different implementations of the IUWT decomposition. It allows the
different methods to be used almost interchangeably.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_count (no default): Maximum scale to be considered.
scale_adjust (default=0): Adjustment to scale value if first scales are of no interest.
mode (default='ser'): Implementation of the IUWT to be used - 'ser', 'mp' or 'gpu'.
core_count (default=1): Additional option for multiprocessing - specifies core count.
store_smoothed (default=False): Boolean specifier for whether the smoothed image is stored or not.
store_on_gpu (default=False): Boolean specifier for whether the decomposition is stored on the gpu or not.
OUTPUTS:
Returns the decomposition with the additional smoothed coefficients if specified. | [
"This",
"function",
"serves",
"as",
"a",
"handler",
"for",
"the",
"different",
"implementations",
"of",
"the",
"IUWT",
"decomposition",
".",
"It",
"allows",
"the",
"different",
"methods",
"to",
"be",
"used",
"almost",
"interchangeably",
"."
] | b024591ad0bbb69320d08841f28a2c27f62ae1af | https://github.com/ratt-ru/PyMORESANE/blob/b024591ad0bbb69320d08841f28a2c27f62ae1af/pymoresane/iuwt.py#L17-L41 | train |
ratt-ru/PyMORESANE | pymoresane/iuwt.py | iuwt_recomposition | def iuwt_recomposition(in1, scale_adjust=0, mode='ser', core_count=1, store_on_gpu=False, smoothed_array=None):
"""
This function serves as a handler for the different implementations of the IUWT recomposition. It allows the
different methods to be used almost interchangeably.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_adjust (no default): Number of omitted scales.
mode (default='ser') Implementation of the IUWT to be used - 'ser', 'mp' or 'gpu'.
core_count (default=1) Additional option for multiprocessing - specifies core count.
store_on_gpu (default=False): Boolean specifier for whether the decomposition is stored on the gpu or not.
OUTPUTS:
Returns the recomposition.
"""
if mode=='ser':
return ser_iuwt_recomposition(in1, scale_adjust, smoothed_array)
elif mode=='mp':
return mp_iuwt_recomposition(in1, scale_adjust, core_count, smoothed_array)
elif mode=='gpu':
return gpu_iuwt_recomposition(in1, scale_adjust, store_on_gpu, smoothed_array) | python | def iuwt_recomposition(in1, scale_adjust=0, mode='ser', core_count=1, store_on_gpu=False, smoothed_array=None):
"""
This function serves as a handler for the different implementations of the IUWT recomposition. It allows the
different methods to be used almost interchangeably.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_adjust (no default): Number of omitted scales.
mode (default='ser') Implementation of the IUWT to be used - 'ser', 'mp' or 'gpu'.
core_count (default=1) Additional option for multiprocessing - specifies core count.
store_on_gpu (default=False): Boolean specifier for whether the decomposition is stored on the gpu or not.
OUTPUTS:
Returns the recomposition.
"""
if mode=='ser':
return ser_iuwt_recomposition(in1, scale_adjust, smoothed_array)
elif mode=='mp':
return mp_iuwt_recomposition(in1, scale_adjust, core_count, smoothed_array)
elif mode=='gpu':
return gpu_iuwt_recomposition(in1, scale_adjust, store_on_gpu, smoothed_array) | [
"def",
"iuwt_recomposition",
"(",
"in1",
",",
"scale_adjust",
"=",
"0",
",",
"mode",
"=",
"'ser'",
",",
"core_count",
"=",
"1",
",",
"store_on_gpu",
"=",
"False",
",",
"smoothed_array",
"=",
"None",
")",
":",
"if",
"mode",
"==",
"'ser'",
":",
"return",
"ser_iuwt_recomposition",
"(",
"in1",
",",
"scale_adjust",
",",
"smoothed_array",
")",
"elif",
"mode",
"==",
"'mp'",
":",
"return",
"mp_iuwt_recomposition",
"(",
"in1",
",",
"scale_adjust",
",",
"core_count",
",",
"smoothed_array",
")",
"elif",
"mode",
"==",
"'gpu'",
":",
"return",
"gpu_iuwt_recomposition",
"(",
"in1",
",",
"scale_adjust",
",",
"store_on_gpu",
",",
"smoothed_array",
")"
] | This function serves as a handler for the different implementations of the IUWT recomposition. It allows the
different methods to be used almost interchangeably.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_adjust (no default): Number of omitted scales.
mode (default='ser') Implementation of the IUWT to be used - 'ser', 'mp' or 'gpu'.
core_count (default=1) Additional option for multiprocessing - specifies core count.
store_on_gpu (default=False): Boolean specifier for whether the decomposition is stored on the gpu or not.
OUTPUTS:
Returns the recomposition. | [
"This",
"function",
"serves",
"as",
"a",
"handler",
"for",
"the",
"different",
"implementations",
"of",
"the",
"IUWT",
"recomposition",
".",
"It",
"allows",
"the",
"different",
"methods",
"to",
"be",
"used",
"almost",
"interchangeably",
"."
] | b024591ad0bbb69320d08841f28a2c27f62ae1af | https://github.com/ratt-ru/PyMORESANE/blob/b024591ad0bbb69320d08841f28a2c27f62ae1af/pymoresane/iuwt.py#L43-L64 | train |
ratt-ru/PyMORESANE | pymoresane/iuwt.py | ser_iuwt_decomposition | def ser_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed):
"""
This function calls the a trous algorithm code to decompose the input into its wavelet coefficients. This is
the isotropic undecimated wavelet transform implemented for a single CPU core.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_count (no default): Maximum scale to be considered.
scale_adjust (default=0): Adjustment to scale value if first scales are of no interest.
store_smoothed (default=False):Boolean specifier for whether the smoothed image is stored or not.
OUTPUTS:
detail_coeffs Array containing the detail coefficients.
C0 (optional): Array containing the smoothest version of the input.
"""
wavelet_filter = (1./16)*np.array([1,4,6,4,1]) # Filter-bank for use in the a trous algorithm.
# Initialises an empty array to store the coefficients.
detail_coeffs = np.empty([scale_count-scale_adjust, in1.shape[0], in1.shape[1]])
C0 = in1 # Sets the initial value to be the input array.
# The following loop, which iterates up to scale_adjust, applies the a trous algorithm to the scales which are
# considered insignificant. This is important as each set of wavelet coefficients depends on the last smoothed
# version of the input.
if scale_adjust>0:
for i in range(0, scale_adjust):
C0 = ser_a_trous(C0, wavelet_filter, i)
# The meat of the algorithm - two sequential applications fo the a trous followed by determination and storing of
# the detail coefficients. C0 is reassigned the value of C on each loop - C0 is always the smoothest version of the
# input image.
for i in range(scale_adjust,scale_count):
C = ser_a_trous(C0, wavelet_filter, i) # Approximation coefficients.
C1 = ser_a_trous(C, wavelet_filter, i) # Approximation coefficients.
detail_coeffs[i-scale_adjust,:,:] = C0 - C1 # Detail coefficients.
C0 = C
if store_smoothed:
return detail_coeffs, C0
else:
return detail_coeffs | python | def ser_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed):
"""
This function calls the a trous algorithm code to decompose the input into its wavelet coefficients. This is
the isotropic undecimated wavelet transform implemented for a single CPU core.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_count (no default): Maximum scale to be considered.
scale_adjust (default=0): Adjustment to scale value if first scales are of no interest.
store_smoothed (default=False):Boolean specifier for whether the smoothed image is stored or not.
OUTPUTS:
detail_coeffs Array containing the detail coefficients.
C0 (optional): Array containing the smoothest version of the input.
"""
wavelet_filter = (1./16)*np.array([1,4,6,4,1]) # Filter-bank for use in the a trous algorithm.
# Initialises an empty array to store the coefficients.
detail_coeffs = np.empty([scale_count-scale_adjust, in1.shape[0], in1.shape[1]])
C0 = in1 # Sets the initial value to be the input array.
# The following loop, which iterates up to scale_adjust, applies the a trous algorithm to the scales which are
# considered insignificant. This is important as each set of wavelet coefficients depends on the last smoothed
# version of the input.
if scale_adjust>0:
for i in range(0, scale_adjust):
C0 = ser_a_trous(C0, wavelet_filter, i)
# The meat of the algorithm - two sequential applications fo the a trous followed by determination and storing of
# the detail coefficients. C0 is reassigned the value of C on each loop - C0 is always the smoothest version of the
# input image.
for i in range(scale_adjust,scale_count):
C = ser_a_trous(C0, wavelet_filter, i) # Approximation coefficients.
C1 = ser_a_trous(C, wavelet_filter, i) # Approximation coefficients.
detail_coeffs[i-scale_adjust,:,:] = C0 - C1 # Detail coefficients.
C0 = C
if store_smoothed:
return detail_coeffs, C0
else:
return detail_coeffs | [
"def",
"ser_iuwt_decomposition",
"(",
"in1",
",",
"scale_count",
",",
"scale_adjust",
",",
"store_smoothed",
")",
":",
"wavelet_filter",
"=",
"(",
"1.",
"/",
"16",
")",
"*",
"np",
".",
"array",
"(",
"[",
"1",
",",
"4",
",",
"6",
",",
"4",
",",
"1",
"]",
")",
"# Filter-bank for use in the a trous algorithm.",
"# Initialises an empty array to store the coefficients.",
"detail_coeffs",
"=",
"np",
".",
"empty",
"(",
"[",
"scale_count",
"-",
"scale_adjust",
",",
"in1",
".",
"shape",
"[",
"0",
"]",
",",
"in1",
".",
"shape",
"[",
"1",
"]",
"]",
")",
"C0",
"=",
"in1",
"# Sets the initial value to be the input array.",
"# The following loop, which iterates up to scale_adjust, applies the a trous algorithm to the scales which are",
"# considered insignificant. This is important as each set of wavelet coefficients depends on the last smoothed",
"# version of the input.",
"if",
"scale_adjust",
">",
"0",
":",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"scale_adjust",
")",
":",
"C0",
"=",
"ser_a_trous",
"(",
"C0",
",",
"wavelet_filter",
",",
"i",
")",
"# The meat of the algorithm - two sequential applications fo the a trous followed by determination and storing of",
"# the detail coefficients. C0 is reassigned the value of C on each loop - C0 is always the smoothest version of the",
"# input image.",
"for",
"i",
"in",
"range",
"(",
"scale_adjust",
",",
"scale_count",
")",
":",
"C",
"=",
"ser_a_trous",
"(",
"C0",
",",
"wavelet_filter",
",",
"i",
")",
"# Approximation coefficients.",
"C1",
"=",
"ser_a_trous",
"(",
"C",
",",
"wavelet_filter",
",",
"i",
")",
"# Approximation coefficients.",
"detail_coeffs",
"[",
"i",
"-",
"scale_adjust",
",",
":",
",",
":",
"]",
"=",
"C0",
"-",
"C1",
"# Detail coefficients.",
"C0",
"=",
"C",
"if",
"store_smoothed",
":",
"return",
"detail_coeffs",
",",
"C0",
"else",
":",
"return",
"detail_coeffs"
] | This function calls the a trous algorithm code to decompose the input into its wavelet coefficients. This is
the isotropic undecimated wavelet transform implemented for a single CPU core.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_count (no default): Maximum scale to be considered.
scale_adjust (default=0): Adjustment to scale value if first scales are of no interest.
store_smoothed (default=False):Boolean specifier for whether the smoothed image is stored or not.
OUTPUTS:
detail_coeffs Array containing the detail coefficients.
C0 (optional): Array containing the smoothest version of the input. | [
"This",
"function",
"calls",
"the",
"a",
"trous",
"algorithm",
"code",
"to",
"decompose",
"the",
"input",
"into",
"its",
"wavelet",
"coefficients",
".",
"This",
"is",
"the",
"isotropic",
"undecimated",
"wavelet",
"transform",
"implemented",
"for",
"a",
"single",
"CPU",
"core",
"."
] | b024591ad0bbb69320d08841f28a2c27f62ae1af | https://github.com/ratt-ru/PyMORESANE/blob/b024591ad0bbb69320d08841f28a2c27f62ae1af/pymoresane/iuwt.py#L66-L111 | train |
ratt-ru/PyMORESANE | pymoresane/iuwt.py | ser_iuwt_recomposition | def ser_iuwt_recomposition(in1, scale_adjust, smoothed_array):
"""
This function calls the a trous algorithm code to recompose the input into a single array. This is the
implementation of the isotropic undecimated wavelet transform recomposition for a single CPU core.
INPUTS:
in1 (no default): Array containing wavelet coefficients.
scale_adjust (no default): Indicates the number of truncated array pages.
smoothed_array (default=None): For a complete inverse transform, this must be the smoothest approximation.
OUTPUTS:
recomposition Array containing the reconstructed image.
"""
wavelet_filter = (1./16)*np.array([1,4,6,4,1]) # Filter-bank for use in the a trous algorithm.
# Determines scale with adjustment and creates a zero array to store the output, unless smoothed_array is given.
max_scale = in1.shape[0] + scale_adjust
if smoothed_array is None:
recomposition = np.zeros([in1.shape[1], in1.shape[2]])
else:
recomposition = smoothed_array
# The following loops call the a trous algorithm code to recompose the input. The first loop assumes that there are
# non-zero wavelet coefficients at scales above scale_adjust, while the second loop completes the recomposition
# on the scales less than scale_adjust.
for i in range(max_scale-1, scale_adjust-1, -1):
recomposition = ser_a_trous(recomposition, wavelet_filter, i) + in1[i-scale_adjust,:,:]
if scale_adjust>0:
for i in range(scale_adjust-1, -1, -1):
recomposition = ser_a_trous(recomposition, wavelet_filter, i)
return recomposition | python | def ser_iuwt_recomposition(in1, scale_adjust, smoothed_array):
"""
This function calls the a trous algorithm code to recompose the input into a single array. This is the
implementation of the isotropic undecimated wavelet transform recomposition for a single CPU core.
INPUTS:
in1 (no default): Array containing wavelet coefficients.
scale_adjust (no default): Indicates the number of truncated array pages.
smoothed_array (default=None): For a complete inverse transform, this must be the smoothest approximation.
OUTPUTS:
recomposition Array containing the reconstructed image.
"""
wavelet_filter = (1./16)*np.array([1,4,6,4,1]) # Filter-bank for use in the a trous algorithm.
# Determines scale with adjustment and creates a zero array to store the output, unless smoothed_array is given.
max_scale = in1.shape[0] + scale_adjust
if smoothed_array is None:
recomposition = np.zeros([in1.shape[1], in1.shape[2]])
else:
recomposition = smoothed_array
# The following loops call the a trous algorithm code to recompose the input. The first loop assumes that there are
# non-zero wavelet coefficients at scales above scale_adjust, while the second loop completes the recomposition
# on the scales less than scale_adjust.
for i in range(max_scale-1, scale_adjust-1, -1):
recomposition = ser_a_trous(recomposition, wavelet_filter, i) + in1[i-scale_adjust,:,:]
if scale_adjust>0:
for i in range(scale_adjust-1, -1, -1):
recomposition = ser_a_trous(recomposition, wavelet_filter, i)
return recomposition | [
"def",
"ser_iuwt_recomposition",
"(",
"in1",
",",
"scale_adjust",
",",
"smoothed_array",
")",
":",
"wavelet_filter",
"=",
"(",
"1.",
"/",
"16",
")",
"*",
"np",
".",
"array",
"(",
"[",
"1",
",",
"4",
",",
"6",
",",
"4",
",",
"1",
"]",
")",
"# Filter-bank for use in the a trous algorithm.",
"# Determines scale with adjustment and creates a zero array to store the output, unless smoothed_array is given.",
"max_scale",
"=",
"in1",
".",
"shape",
"[",
"0",
"]",
"+",
"scale_adjust",
"if",
"smoothed_array",
"is",
"None",
":",
"recomposition",
"=",
"np",
".",
"zeros",
"(",
"[",
"in1",
".",
"shape",
"[",
"1",
"]",
",",
"in1",
".",
"shape",
"[",
"2",
"]",
"]",
")",
"else",
":",
"recomposition",
"=",
"smoothed_array",
"# The following loops call the a trous algorithm code to recompose the input. The first loop assumes that there are",
"# non-zero wavelet coefficients at scales above scale_adjust, while the second loop completes the recomposition",
"# on the scales less than scale_adjust.",
"for",
"i",
"in",
"range",
"(",
"max_scale",
"-",
"1",
",",
"scale_adjust",
"-",
"1",
",",
"-",
"1",
")",
":",
"recomposition",
"=",
"ser_a_trous",
"(",
"recomposition",
",",
"wavelet_filter",
",",
"i",
")",
"+",
"in1",
"[",
"i",
"-",
"scale_adjust",
",",
":",
",",
":",
"]",
"if",
"scale_adjust",
">",
"0",
":",
"for",
"i",
"in",
"range",
"(",
"scale_adjust",
"-",
"1",
",",
"-",
"1",
",",
"-",
"1",
")",
":",
"recomposition",
"=",
"ser_a_trous",
"(",
"recomposition",
",",
"wavelet_filter",
",",
"i",
")",
"return",
"recomposition"
] | This function calls the a trous algorithm code to recompose the input into a single array. This is the
implementation of the isotropic undecimated wavelet transform recomposition for a single CPU core.
INPUTS:
in1 (no default): Array containing wavelet coefficients.
scale_adjust (no default): Indicates the number of truncated array pages.
smoothed_array (default=None): For a complete inverse transform, this must be the smoothest approximation.
OUTPUTS:
recomposition Array containing the reconstructed image. | [
"This",
"function",
"calls",
"the",
"a",
"trous",
"algorithm",
"code",
"to",
"recompose",
"the",
"input",
"into",
"a",
"single",
"array",
".",
"This",
"is",
"the",
"implementation",
"of",
"the",
"isotropic",
"undecimated",
"wavelet",
"transform",
"recomposition",
"for",
"a",
"single",
"CPU",
"core",
"."
] | b024591ad0bbb69320d08841f28a2c27f62ae1af | https://github.com/ratt-ru/PyMORESANE/blob/b024591ad0bbb69320d08841f28a2c27f62ae1af/pymoresane/iuwt.py#L113-L149 | train |
ratt-ru/PyMORESANE | pymoresane/iuwt.py | mp_iuwt_recomposition | def mp_iuwt_recomposition(in1, scale_adjust, core_count, smoothed_array):
"""
This function calls the a trous algorithm code to recompose the input into a single array. This is the
implementation of the isotropic undecimated wavelet transform recomposition for multiple CPU cores.
INPUTS:
in1 (no default): Array containing wavelet coefficients.
scale_adjust (no default): Indicates the number of omitted array pages.
core_count (no default): Indicates the number of cores to be used.
smoothed_array (default=None): For a complete inverse transform, this must be the smoothest approximation.
OUTPUTS:
recomposiiton Array containing the reconstructed image.
"""
wavelet_filter = (1./16)*np.array([1,4,6,4,1]) # Filter-bank for use in the a trous algorithm.
# Determines scale with adjustment and creates a zero array to store the output, unless smoothed_array is given.
max_scale = in1.shape[0] + scale_adjust
if smoothed_array is None:
recomposition = np.zeros([in1.shape[1], in1.shape[2]])
else:
recomposition = smoothed_array
# The following loops call the a trous algorithm code to recompose the input. The first loop assumes that there are
# non-zero wavelet coefficients at scales above scale_adjust, while the second loop completes the recomposition
# on the scales less than scale_adjust.
for i in range(max_scale-1, scale_adjust-1, -1):
recomposition = mp_a_trous(recomposition, wavelet_filter, i, core_count) + in1[i-scale_adjust,:,:]
if scale_adjust>0:
for i in range(scale_adjust-1, -1, -1):
recomposition = mp_a_trous(recomposition, wavelet_filter, i, core_count)
return recomposition | python | def mp_iuwt_recomposition(in1, scale_adjust, core_count, smoothed_array):
"""
This function calls the a trous algorithm code to recompose the input into a single array. This is the
implementation of the isotropic undecimated wavelet transform recomposition for multiple CPU cores.
INPUTS:
in1 (no default): Array containing wavelet coefficients.
scale_adjust (no default): Indicates the number of omitted array pages.
core_count (no default): Indicates the number of cores to be used.
smoothed_array (default=None): For a complete inverse transform, this must be the smoothest approximation.
OUTPUTS:
recomposiiton Array containing the reconstructed image.
"""
wavelet_filter = (1./16)*np.array([1,4,6,4,1]) # Filter-bank for use in the a trous algorithm.
# Determines scale with adjustment and creates a zero array to store the output, unless smoothed_array is given.
max_scale = in1.shape[0] + scale_adjust
if smoothed_array is None:
recomposition = np.zeros([in1.shape[1], in1.shape[2]])
else:
recomposition = smoothed_array
# The following loops call the a trous algorithm code to recompose the input. The first loop assumes that there are
# non-zero wavelet coefficients at scales above scale_adjust, while the second loop completes the recomposition
# on the scales less than scale_adjust.
for i in range(max_scale-1, scale_adjust-1, -1):
recomposition = mp_a_trous(recomposition, wavelet_filter, i, core_count) + in1[i-scale_adjust,:,:]
if scale_adjust>0:
for i in range(scale_adjust-1, -1, -1):
recomposition = mp_a_trous(recomposition, wavelet_filter, i, core_count)
return recomposition | [
"def",
"mp_iuwt_recomposition",
"(",
"in1",
",",
"scale_adjust",
",",
"core_count",
",",
"smoothed_array",
")",
":",
"wavelet_filter",
"=",
"(",
"1.",
"/",
"16",
")",
"*",
"np",
".",
"array",
"(",
"[",
"1",
",",
"4",
",",
"6",
",",
"4",
",",
"1",
"]",
")",
"# Filter-bank for use in the a trous algorithm.",
"# Determines scale with adjustment and creates a zero array to store the output, unless smoothed_array is given.",
"max_scale",
"=",
"in1",
".",
"shape",
"[",
"0",
"]",
"+",
"scale_adjust",
"if",
"smoothed_array",
"is",
"None",
":",
"recomposition",
"=",
"np",
".",
"zeros",
"(",
"[",
"in1",
".",
"shape",
"[",
"1",
"]",
",",
"in1",
".",
"shape",
"[",
"2",
"]",
"]",
")",
"else",
":",
"recomposition",
"=",
"smoothed_array",
"# The following loops call the a trous algorithm code to recompose the input. The first loop assumes that there are",
"# non-zero wavelet coefficients at scales above scale_adjust, while the second loop completes the recomposition",
"# on the scales less than scale_adjust.",
"for",
"i",
"in",
"range",
"(",
"max_scale",
"-",
"1",
",",
"scale_adjust",
"-",
"1",
",",
"-",
"1",
")",
":",
"recomposition",
"=",
"mp_a_trous",
"(",
"recomposition",
",",
"wavelet_filter",
",",
"i",
",",
"core_count",
")",
"+",
"in1",
"[",
"i",
"-",
"scale_adjust",
",",
":",
",",
":",
"]",
"if",
"scale_adjust",
">",
"0",
":",
"for",
"i",
"in",
"range",
"(",
"scale_adjust",
"-",
"1",
",",
"-",
"1",
",",
"-",
"1",
")",
":",
"recomposition",
"=",
"mp_a_trous",
"(",
"recomposition",
",",
"wavelet_filter",
",",
"i",
",",
"core_count",
")",
"return",
"recomposition"
] | This function calls the a trous algorithm code to recompose the input into a single array. This is the
implementation of the isotropic undecimated wavelet transform recomposition for multiple CPU cores.
INPUTS:
in1 (no default): Array containing wavelet coefficients.
scale_adjust (no default): Indicates the number of omitted array pages.
core_count (no default): Indicates the number of cores to be used.
smoothed_array (default=None): For a complete inverse transform, this must be the smoothest approximation.
OUTPUTS:
recomposiiton Array containing the reconstructed image. | [
"This",
"function",
"calls",
"the",
"a",
"trous",
"algorithm",
"code",
"to",
"recompose",
"the",
"input",
"into",
"a",
"single",
"array",
".",
"This",
"is",
"the",
"implementation",
"of",
"the",
"isotropic",
"undecimated",
"wavelet",
"transform",
"recomposition",
"for",
"multiple",
"CPU",
"cores",
"."
] | b024591ad0bbb69320d08841f28a2c27f62ae1af | https://github.com/ratt-ru/PyMORESANE/blob/b024591ad0bbb69320d08841f28a2c27f62ae1af/pymoresane/iuwt.py#L242-L279 | train |
ratt-ru/PyMORESANE | pymoresane/iuwt.py | gpu_iuwt_decomposition | def gpu_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed, store_on_gpu):
"""
This function calls the a trous algorithm code to decompose the input into its wavelet coefficients. This is
the isotropic undecimated wavelet transform implemented for a GPU.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_count (no default): Maximum scale to be considered.
scale_adjust (no default): Adjustment to scale value if first scales are of no interest.
store_smoothed (no default): Boolean specifier for whether the smoothed image is stored or not.
store_on_gpu (no default): Boolean specifier for whether the decomposition is stored on the gpu or not.
OUTPUTS:
detail_coeffs Array containing the detail coefficients.
C0 (optional): Array containing the smoothest version of the input.
"""
# The following simple kernel just allows for the construction of a 3D decomposition on the GPU.
ker = SourceModule("""
__global__ void gpu_store_detail_coeffs(float *in1, float *in2, float* out1, int *scale, int *adjust)
{
const int len = gridDim.x*blockDim.x;
const int i = (blockDim.x * blockIdx.x + threadIdx.x);
const int j = (blockDim.y * blockIdx.y + threadIdx.y)*len;
const int k = (blockDim.z * blockIdx.z + threadIdx.z)*(len*len);
const int tid2 = i + j;
const int tid3 = i + j + k;
if ((blockIdx.z + adjust[0])==scale[0])
{ out1[tid3] = in1[tid2] - in2[tid2]; }
}
""")
wavelet_filter = (1./16)*np.array([1,4,6,4,1], dtype=np.float32) # Filter-bank for use in the a trous algorithm.
wavelet_filter = gpuarray.to_gpu_async(wavelet_filter)
# Initialises an empty array to store the detail coefficients.
detail_coeffs = gpuarray.empty([scale_count-scale_adjust, in1.shape[0], in1.shape[1]], np.float32)
# Determines whether the array is already on the GPU or not. If not, moves it to the GPU.
try:
gpu_in1 = gpuarray.to_gpu_async(in1.astype(np.float32))
except:
gpu_in1 = in1
# Sets up some working arrays on the GPU to prevent memory transfers.
gpu_tmp = gpuarray.empty_like(gpu_in1)
gpu_out1 = gpuarray.empty_like(gpu_in1)
gpu_out2 = gpuarray.empty_like(gpu_in1)
# Sets up some parameters required by the algorithm on the GPU.
gpu_scale = gpuarray.zeros([1], np.int32)
gpu_adjust = gpuarray.zeros([1], np.int32)
gpu_adjust += scale_adjust
# Fetches the a trous kernels and sets up the unique storing kernel.
gpu_a_trous_row_kernel, gpu_a_trous_col_kernel = gpu_a_trous()
gpu_store_detail_coeffs = ker.get_function("gpu_store_detail_coeffs")
grid_rows = int(in1.shape[0]//32)
grid_cols = int(in1.shape[1]//32)
# The following loop, which iterates up to scale_adjust, applies the a trous algorithm to the scales which are
# considered insignificant. This is important as each set of wavelet coefficients depends on the last smoothed
# version of the input.
if scale_adjust>0:
for i in range(0, scale_adjust):
gpu_a_trous_row_kernel(gpu_in1, gpu_tmp, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows))
gpu_a_trous_col_kernel(gpu_tmp, gpu_out1, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows))
gpu_in1, gpu_out1 = gpu_out1, gpu_in1
gpu_scale += 1
# The meat of the algorithm - two sequential applications fo the a trous followed by determination and storing of
# the detail coefficients. C0 is reassigned the value of C on each loop - C0 is always the smoothest version of the
# input image.
for i in range(scale_adjust, scale_count):
gpu_a_trous_row_kernel(gpu_in1, gpu_tmp, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows))
gpu_a_trous_col_kernel(gpu_tmp, gpu_out1, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows)) # Approximation coefficients.
gpu_a_trous_row_kernel(gpu_out1, gpu_tmp, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows))
gpu_a_trous_col_kernel(gpu_tmp, gpu_out2, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows)) # Approximation coefficients.
gpu_store_detail_coeffs(gpu_in1, gpu_out2, detail_coeffs, gpu_scale, gpu_adjust,
block=(32,32,1), grid=(grid_cols, grid_rows, int(scale_count))) # Detail coefficients.
gpu_in1, gpu_out1 = gpu_out1, gpu_in1
gpu_scale += 1
# Return values depend on mode. NOTE: store_smoothed does not work if the result stays on the gpu.
if store_on_gpu:
return detail_coeffs
elif store_smoothed:
return detail_coeffs.get(), gpu_in1.get()
else:
return detail_coeffs.get() | python | def gpu_iuwt_decomposition(in1, scale_count, scale_adjust, store_smoothed, store_on_gpu):
"""
This function calls the a trous algorithm code to decompose the input into its wavelet coefficients. This is
the isotropic undecimated wavelet transform implemented for a GPU.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_count (no default): Maximum scale to be considered.
scale_adjust (no default): Adjustment to scale value if first scales are of no interest.
store_smoothed (no default): Boolean specifier for whether the smoothed image is stored or not.
store_on_gpu (no default): Boolean specifier for whether the decomposition is stored on the gpu or not.
OUTPUTS:
detail_coeffs Array containing the detail coefficients.
C0 (optional): Array containing the smoothest version of the input.
"""
# The following simple kernel just allows for the construction of a 3D decomposition on the GPU.
ker = SourceModule("""
__global__ void gpu_store_detail_coeffs(float *in1, float *in2, float* out1, int *scale, int *adjust)
{
const int len = gridDim.x*blockDim.x;
const int i = (blockDim.x * blockIdx.x + threadIdx.x);
const int j = (blockDim.y * blockIdx.y + threadIdx.y)*len;
const int k = (blockDim.z * blockIdx.z + threadIdx.z)*(len*len);
const int tid2 = i + j;
const int tid3 = i + j + k;
if ((blockIdx.z + adjust[0])==scale[0])
{ out1[tid3] = in1[tid2] - in2[tid2]; }
}
""")
wavelet_filter = (1./16)*np.array([1,4,6,4,1], dtype=np.float32) # Filter-bank for use in the a trous algorithm.
wavelet_filter = gpuarray.to_gpu_async(wavelet_filter)
# Initialises an empty array to store the detail coefficients.
detail_coeffs = gpuarray.empty([scale_count-scale_adjust, in1.shape[0], in1.shape[1]], np.float32)
# Determines whether the array is already on the GPU or not. If not, moves it to the GPU.
try:
gpu_in1 = gpuarray.to_gpu_async(in1.astype(np.float32))
except:
gpu_in1 = in1
# Sets up some working arrays on the GPU to prevent memory transfers.
gpu_tmp = gpuarray.empty_like(gpu_in1)
gpu_out1 = gpuarray.empty_like(gpu_in1)
gpu_out2 = gpuarray.empty_like(gpu_in1)
# Sets up some parameters required by the algorithm on the GPU.
gpu_scale = gpuarray.zeros([1], np.int32)
gpu_adjust = gpuarray.zeros([1], np.int32)
gpu_adjust += scale_adjust
# Fetches the a trous kernels and sets up the unique storing kernel.
gpu_a_trous_row_kernel, gpu_a_trous_col_kernel = gpu_a_trous()
gpu_store_detail_coeffs = ker.get_function("gpu_store_detail_coeffs")
grid_rows = int(in1.shape[0]//32)
grid_cols = int(in1.shape[1]//32)
# The following loop, which iterates up to scale_adjust, applies the a trous algorithm to the scales which are
# considered insignificant. This is important as each set of wavelet coefficients depends on the last smoothed
# version of the input.
if scale_adjust>0:
for i in range(0, scale_adjust):
gpu_a_trous_row_kernel(gpu_in1, gpu_tmp, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows))
gpu_a_trous_col_kernel(gpu_tmp, gpu_out1, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows))
gpu_in1, gpu_out1 = gpu_out1, gpu_in1
gpu_scale += 1
# The meat of the algorithm - two sequential applications fo the a trous followed by determination and storing of
# the detail coefficients. C0 is reassigned the value of C on each loop - C0 is always the smoothest version of the
# input image.
for i in range(scale_adjust, scale_count):
gpu_a_trous_row_kernel(gpu_in1, gpu_tmp, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows))
gpu_a_trous_col_kernel(gpu_tmp, gpu_out1, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows)) # Approximation coefficients.
gpu_a_trous_row_kernel(gpu_out1, gpu_tmp, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows))
gpu_a_trous_col_kernel(gpu_tmp, gpu_out2, wavelet_filter, gpu_scale,
block=(32,32,1), grid=(grid_cols, grid_rows)) # Approximation coefficients.
gpu_store_detail_coeffs(gpu_in1, gpu_out2, detail_coeffs, gpu_scale, gpu_adjust,
block=(32,32,1), grid=(grid_cols, grid_rows, int(scale_count))) # Detail coefficients.
gpu_in1, gpu_out1 = gpu_out1, gpu_in1
gpu_scale += 1
# Return values depend on mode. NOTE: store_smoothed does not work if the result stays on the gpu.
if store_on_gpu:
return detail_coeffs
elif store_smoothed:
return detail_coeffs.get(), gpu_in1.get()
else:
return detail_coeffs.get() | [
"def",
"gpu_iuwt_decomposition",
"(",
"in1",
",",
"scale_count",
",",
"scale_adjust",
",",
"store_smoothed",
",",
"store_on_gpu",
")",
":",
"# The following simple kernel just allows for the construction of a 3D decomposition on the GPU.",
"ker",
"=",
"SourceModule",
"(",
"\"\"\"\n __global__ void gpu_store_detail_coeffs(float *in1, float *in2, float* out1, int *scale, int *adjust)\n {\n const int len = gridDim.x*blockDim.x;\n const int i = (blockDim.x * blockIdx.x + threadIdx.x);\n const int j = (blockDim.y * blockIdx.y + threadIdx.y)*len;\n const int k = (blockDim.z * blockIdx.z + threadIdx.z)*(len*len);\n const int tid2 = i + j;\n const int tid3 = i + j + k;\n\n if ((blockIdx.z + adjust[0])==scale[0])\n { out1[tid3] = in1[tid2] - in2[tid2]; }\n\n }\n \"\"\"",
")",
"wavelet_filter",
"=",
"(",
"1.",
"/",
"16",
")",
"*",
"np",
".",
"array",
"(",
"[",
"1",
",",
"4",
",",
"6",
",",
"4",
",",
"1",
"]",
",",
"dtype",
"=",
"np",
".",
"float32",
")",
"# Filter-bank for use in the a trous algorithm.",
"wavelet_filter",
"=",
"gpuarray",
".",
"to_gpu_async",
"(",
"wavelet_filter",
")",
"# Initialises an empty array to store the detail coefficients.",
"detail_coeffs",
"=",
"gpuarray",
".",
"empty",
"(",
"[",
"scale_count",
"-",
"scale_adjust",
",",
"in1",
".",
"shape",
"[",
"0",
"]",
",",
"in1",
".",
"shape",
"[",
"1",
"]",
"]",
",",
"np",
".",
"float32",
")",
"# Determines whether the array is already on the GPU or not. If not, moves it to the GPU.",
"try",
":",
"gpu_in1",
"=",
"gpuarray",
".",
"to_gpu_async",
"(",
"in1",
".",
"astype",
"(",
"np",
".",
"float32",
")",
")",
"except",
":",
"gpu_in1",
"=",
"in1",
"# Sets up some working arrays on the GPU to prevent memory transfers.",
"gpu_tmp",
"=",
"gpuarray",
".",
"empty_like",
"(",
"gpu_in1",
")",
"gpu_out1",
"=",
"gpuarray",
".",
"empty_like",
"(",
"gpu_in1",
")",
"gpu_out2",
"=",
"gpuarray",
".",
"empty_like",
"(",
"gpu_in1",
")",
"# Sets up some parameters required by the algorithm on the GPU.",
"gpu_scale",
"=",
"gpuarray",
".",
"zeros",
"(",
"[",
"1",
"]",
",",
"np",
".",
"int32",
")",
"gpu_adjust",
"=",
"gpuarray",
".",
"zeros",
"(",
"[",
"1",
"]",
",",
"np",
".",
"int32",
")",
"gpu_adjust",
"+=",
"scale_adjust",
"# Fetches the a trous kernels and sets up the unique storing kernel.",
"gpu_a_trous_row_kernel",
",",
"gpu_a_trous_col_kernel",
"=",
"gpu_a_trous",
"(",
")",
"gpu_store_detail_coeffs",
"=",
"ker",
".",
"get_function",
"(",
"\"gpu_store_detail_coeffs\"",
")",
"grid_rows",
"=",
"int",
"(",
"in1",
".",
"shape",
"[",
"0",
"]",
"//",
"32",
")",
"grid_cols",
"=",
"int",
"(",
"in1",
".",
"shape",
"[",
"1",
"]",
"//",
"32",
")",
"# The following loop, which iterates up to scale_adjust, applies the a trous algorithm to the scales which are",
"# considered insignificant. This is important as each set of wavelet coefficients depends on the last smoothed",
"# version of the input.",
"if",
"scale_adjust",
">",
"0",
":",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"scale_adjust",
")",
":",
"gpu_a_trous_row_kernel",
"(",
"gpu_in1",
",",
"gpu_tmp",
",",
"wavelet_filter",
",",
"gpu_scale",
",",
"block",
"=",
"(",
"32",
",",
"32",
",",
"1",
")",
",",
"grid",
"=",
"(",
"grid_cols",
",",
"grid_rows",
")",
")",
"gpu_a_trous_col_kernel",
"(",
"gpu_tmp",
",",
"gpu_out1",
",",
"wavelet_filter",
",",
"gpu_scale",
",",
"block",
"=",
"(",
"32",
",",
"32",
",",
"1",
")",
",",
"grid",
"=",
"(",
"grid_cols",
",",
"grid_rows",
")",
")",
"gpu_in1",
",",
"gpu_out1",
"=",
"gpu_out1",
",",
"gpu_in1",
"gpu_scale",
"+=",
"1",
"# The meat of the algorithm - two sequential applications fo the a trous followed by determination and storing of",
"# the detail coefficients. C0 is reassigned the value of C on each loop - C0 is always the smoothest version of the",
"# input image.",
"for",
"i",
"in",
"range",
"(",
"scale_adjust",
",",
"scale_count",
")",
":",
"gpu_a_trous_row_kernel",
"(",
"gpu_in1",
",",
"gpu_tmp",
",",
"wavelet_filter",
",",
"gpu_scale",
",",
"block",
"=",
"(",
"32",
",",
"32",
",",
"1",
")",
",",
"grid",
"=",
"(",
"grid_cols",
",",
"grid_rows",
")",
")",
"gpu_a_trous_col_kernel",
"(",
"gpu_tmp",
",",
"gpu_out1",
",",
"wavelet_filter",
",",
"gpu_scale",
",",
"block",
"=",
"(",
"32",
",",
"32",
",",
"1",
")",
",",
"grid",
"=",
"(",
"grid_cols",
",",
"grid_rows",
")",
")",
"# Approximation coefficients.",
"gpu_a_trous_row_kernel",
"(",
"gpu_out1",
",",
"gpu_tmp",
",",
"wavelet_filter",
",",
"gpu_scale",
",",
"block",
"=",
"(",
"32",
",",
"32",
",",
"1",
")",
",",
"grid",
"=",
"(",
"grid_cols",
",",
"grid_rows",
")",
")",
"gpu_a_trous_col_kernel",
"(",
"gpu_tmp",
",",
"gpu_out2",
",",
"wavelet_filter",
",",
"gpu_scale",
",",
"block",
"=",
"(",
"32",
",",
"32",
",",
"1",
")",
",",
"grid",
"=",
"(",
"grid_cols",
",",
"grid_rows",
")",
")",
"# Approximation coefficients.",
"gpu_store_detail_coeffs",
"(",
"gpu_in1",
",",
"gpu_out2",
",",
"detail_coeffs",
",",
"gpu_scale",
",",
"gpu_adjust",
",",
"block",
"=",
"(",
"32",
",",
"32",
",",
"1",
")",
",",
"grid",
"=",
"(",
"grid_cols",
",",
"grid_rows",
",",
"int",
"(",
"scale_count",
")",
")",
")",
"# Detail coefficients.",
"gpu_in1",
",",
"gpu_out1",
"=",
"gpu_out1",
",",
"gpu_in1",
"gpu_scale",
"+=",
"1",
"# Return values depend on mode. NOTE: store_smoothed does not work if the result stays on the gpu.",
"if",
"store_on_gpu",
":",
"return",
"detail_coeffs",
"elif",
"store_smoothed",
":",
"return",
"detail_coeffs",
".",
"get",
"(",
")",
",",
"gpu_in1",
".",
"get",
"(",
")",
"else",
":",
"return",
"detail_coeffs",
".",
"get",
"(",
")"
] | This function calls the a trous algorithm code to decompose the input into its wavelet coefficients. This is
the isotropic undecimated wavelet transform implemented for a GPU.
INPUTS:
in1 (no default): Array on which the decomposition is to be performed.
scale_count (no default): Maximum scale to be considered.
scale_adjust (no default): Adjustment to scale value if first scales are of no interest.
store_smoothed (no default): Boolean specifier for whether the smoothed image is stored or not.
store_on_gpu (no default): Boolean specifier for whether the decomposition is stored on the gpu or not.
OUTPUTS:
detail_coeffs Array containing the detail coefficients.
C0 (optional): Array containing the smoothest version of the input. | [
"This",
"function",
"calls",
"the",
"a",
"trous",
"algorithm",
"code",
"to",
"decompose",
"the",
"input",
"into",
"its",
"wavelet",
"coefficients",
".",
"This",
"is",
"the",
"isotropic",
"undecimated",
"wavelet",
"transform",
"implemented",
"for",
"a",
"GPU",
"."
] | b024591ad0bbb69320d08841f28a2c27f62ae1af | https://github.com/ratt-ru/PyMORESANE/blob/b024591ad0bbb69320d08841f28a2c27f62ae1af/pymoresane/iuwt.py#L384-L499 | train |