set
dict |
---|
{
"query": "Identify all installed and activated apps by their id.",
"pos": [
"SELECT app_id FROM app_events WHERE is_active = 1 AND is_installed = 1"
],
"neg": [
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.gender = 'M' AND T2.phone_brand = 'HTC'",
"SELECT MAX(age) FROM gender_age",
"SELECT COUNT(T1.event_id) FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id WHERE SUBSTR(T2.`timestamp`, 1, 10) = '2016-05-06' AND T1.is_installed = '1'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'",
"SELECT MIN(age) FROM gender_age WHERE gender = 'F'",
"SELECT gender FROM gender_age WHERE age = ( SELECT MIN(age) FROM gender_age )",
"SELECT T1.phone_brand, T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T2.timestamp = '2016-05-07 06:03:22'",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.event_id WHERE T2.longitude = '113' AND T2.latitude = '28' AND T2.timestamp = '2016-05-07 23:55:16'",
"SELECT T.category FROM ( SELECT T2.category, COUNT(T1.app_id) AS num FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T2.label_id = T1.label_id GROUP BY T1.app_id, T2.category ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT SUM(IIF(is_installed = 1 AND is_active = 0, 1, 0)) / COUNT(app_id) AS perrcent FROM app_events WHERE event_id = 6"
]
} |
{
"query": "Among the users who use a Galaxy Note 2, how many of them are female?",
"pos": [
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T2.gender = 'F' AND T1.device_model = 'Galaxy Note 2'"
],
"neg": [
"SELECT category, label_id FROM label_categories WHERE category LIKE '%game%' LIMIT 5",
"SELECT IIF(SUM(IIF(T2.category = 'Securities', 1, 0)) - SUM(IIF(T2.category = 'Finance', 1, 0)) > 0, 'Securities', 'Finance') AS diff FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T1.label_id = T2.label_id",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id ORDER BY T2.age DESC LIMIT 1",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T2.longitude = 114 AND T1.gender = 'M'",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE device_model = 'A51'",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 7324884708820020000",
"SELECT T.num FROM ( SELECT `group`, COUNT(`group`) AS num FROM gender_age GROUP BY `group` ) T",
"SELECT gender FROM gender_age WHERE device_id = -9222956879900150000",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO' AND T1.gender = 'M'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'"
]
} |
{
"query": "Please provide the gender of at least one user who owns an HTC Desire 826 device.",
"pos": [
"SELECT T1.gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 826' AND T2.phone_brand = 'HTC'"
],
"neg": [
"SELECT timestamp FROM events WHERE event_id = 12",
"SELECT COUNT(T1.gender) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T2.device_id = T1.device_id WHERE T1.gender = 'F' AND T2.device_model = 'ZenFone 5'",
"SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 3",
"SELECT SUM(IIF(T2.phone_brand = 'vivo', 1, 0)) / COUNT(T1.device_id) AS per FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T1.event_id = '2'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.gender = 'M' AND T2.phone_brand = 'HTC'",
"SELECT category, label_id FROM label_categories WHERE category LIKE '%game%' LIMIT 5",
"SELECT DISTINCT T2.phone_brand, T2.device_model FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T2.device_id = T1.device_id WHERE T1.timestamp LIKE '2016-05-05%' AND T1.longitude = 112 AND T1.latitude = 44",
"SELECT longitude, latitude FROM events WHERE date(timestamp) = '2016-04-30'",
"SELECT T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26'",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo' AND T2.event_id = 2"
]
} |
{
"query": "What is the ID of the device used by the youngest user?",
"pos": [
"SELECT device_id FROM gender_age WHERE age = ( SELECT MIN(age) FROM gender_age )"
],
"neg": [
"SELECT COUNT(app_id) FROM app_labels WHERE label_id = 7",
"SELECT COUNT(device_id) FROM gender_age WHERE gender = 'M'",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 4955831798976240000",
"SELECT T3.category FROM app_all AS T1 INNER JOIN app_labels AS T2 ON T1.app_id = T2.app_id INNER JOIN label_categories AS T3 ON T2.label_id = T3.label_id WHERE T1.app_id = -9222198347540750000",
"SELECT T2.age, T2.gender FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'LG' AND T1.device_model = 'L70'",
"SELECT T1.gender FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id WHERE T2.timestamp = '2016-05-01 00:55:25'",
"SELECT T1.age, T1.gender FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.device_id = 29182687948017100 AND T2.event_id = 1",
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT app_id FROM app_events WHERE is_active = 1 AND is_installed = 1",
"SELECT T1.`group` FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'LG'"
]
} |
{
"query": "For the event which happened at 23:55:16 on 2016/5/7, in the location coordinate(113, 28), on what device did it happen? Give the name of the device model.",
"pos": [
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.event_id WHERE T2.longitude = '113' AND T2.latitude = '28' AND T2.timestamp = '2016-05-07 23:55:16'"
],
"neg": [
"SELECT T2.phone_brand, T2.device_model FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.event_id = 6701",
"SELECT COUNT(app_id) FROM app_events WHERE is_installed = 1 AND is_active = 0",
"SELECT T1.timestamp FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T2.phone_brand = 'vivo' AND T1.event_id = '2'",
"SELECT COUNT(T2.app_id) FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T1.category = 'comics'",
"SELECT SUM(IIF(latitude != 0 AND longitude != 0, 1, 0)) - SUM(IIF(latitude = 0 AND longitude = 0, 1, 0)) AS diff FROM events WHERE device_id = '-922956879900150000'",
"SELECT T.age, T.gender FROM ( SELECT T2.age, T2.gender, COUNT(T1.device_id) AS num FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T1.device_id BETWEEN -9215352913819630000 AND -9222956879900150000 GROUP BY T2.age, T2.gender ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo' AND T2.event_id = 2",
"SELECT T2.phone_brand, T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age < 10",
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F' GROUP BY T1.event_id, T2.age ORDER BY T2.age LIMIT 1",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'"
]
} |
{
"query": "Please list the location coordinates of all the Galaxy Note 2 devices when an event happened.",
"pos": [
"SELECT T1.longitude, T1.latitude FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2'"
],
"neg": [
"SELECT MIN(age) FROM gender_age WHERE gender = 'F'",
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'F29-32' AND T2.device_model = '魅蓝Note 2'",
"SELECT SUM(IIF(T1.phone_brand = 'OPPO', 1, 0)) / SUM(IIF(T1.device_id = 'R815T', 1, 0)) AS num FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT T.phone_brand FROM ( SELECT T2.phone_brand, COUNT(T2.phone_brand) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age BETWEEN 20 AND 30 GROUP BY T2.phone_brand ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT longitude, latitude FROM events WHERE date(timestamp) = '2016-04-30'",
"SELECT SUM(IIF(is_installed = 1 AND is_active = 0, 1, 0)) / COUNT(app_id) AS perrcent FROM app_events WHERE event_id = 6",
"SELECT T.gender FROM ( SELECT T1.gender, COUNT(T1.device_id) AS num FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE date(T2.timestamp) BETWEEN '2016-05-01' AND '2016-05-10' GROUP BY T1.gender ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT T2.phone_brand, T2.device_model FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.event_id = 6701",
"SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 15",
"SELECT COUNT(event_id) FROM app_events WHERE event_id = 2 AND is_active = 0"
]
} |
{
"query": "What is the ratio of female users to male users who uses a vivo device?",
"pos": [
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'"
],
"neg": [
"SELECT COUNT(device_id) FROM gender_age WHERE `group` = 'F27-28' AND gender = 'F'",
"SELECT T2.event_id FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id ORDER BY T1.age DESC LIMIT 1",
"SELECT DISTINCT T2.longitude, T2.latitude FROM app_events AS T1 INNER JOIN events AS T2 ON T2.event_id = T1.event_id WHERE T2.event_id = 2 AND T1.is_active = 0",
"SELECT T2.phone_brand, T2.device_model FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.event_id = 6701",
"SELECT T.`group` FROM ( SELECT T1.`group`, COUNT(T1.`group`) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO' GROUP BY T1.`group` ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'",
"SELECT AVG(T1.age) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo' AND T1.gender = 'F'",
"SELECT T1.age, T1.gender FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.device_id = 29182687948017100 AND T2.event_id = 1",
"SELECT timestamp FROM events WHERE event_id = '887711'",
"SELECT SUM(IIF(is_active = 1, 1, 0)) / SUM(IIF(is_active = 0, 1, 0)) AS per FROM app_events WHERE event_id = 58"
]
} |
{
"query": "How many apps are labeled 7?",
"pos": [
"SELECT COUNT(app_id) FROM app_labels WHERE label_id = 7"
],
"neg": [
"SELECT device_id FROM gender_age WHERE gender = 'F' LIMIT 3",
"SELECT T1.age, T1.gender FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.device_id = 29182687948017100 AND T2.event_id = 1",
"SELECT longitude, latitude FROM events WHERE date(timestamp) = '2016-04-30'",
"SELECT SUM(IIF(T1.age < 50, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO'",
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT T.category FROM ( SELECT T2.category, COUNT(T1.app_id) AS num FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T1.label_id = T2.label_id GROUP BY T2.category ) AS T ORDER BY T.num DESC LIMIT 3",
"SELECT COUNT(event_id) FROM `events` WHERE SUBSTR(`timestamp`, 1, 4) = '2016' AND device_id = 29182687948017100",
"SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 15",
"SELECT DISTINCT T1.phone_brand, T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T2.longitude = 80 AND T2.latitude = 44",
"SELECT SUM(IIF(T2.gender = 'F', 1, 0)) * 100 / COUNT(T2.device_id) AS perFemale , SUM(IIF(T2.gender = 'M', 1, 0)) * 100 / COUNT(T2.device_id) AS perMale FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'OPPO'"
]
} |
{
"query": "How many female users use ZenFone 5 devices?",
"pos": [
"SELECT COUNT(T1.gender) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T2.device_id = T1.device_id WHERE T1.gender = 'F' AND T2.device_model = 'ZenFone 5'"
],
"neg": [
"SELECT SUM(IIF(T1.phone_brand = 'OPPO', 1, 0)) / SUM(IIF(T1.device_id = 'R815T', 1, 0)) AS num FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T2.gender = 'F' AND T1.device_model = 'Galaxy Note 2'",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 1977658975649780000",
"SELECT T3.category FROM app_all AS T1 INNER JOIN app_labels AS T2 ON T1.app_id = T2.app_id INNER JOIN label_categories AS T3 ON T2.label_id = T3.label_id WHERE T1.app_id = -9222198347540750000",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 5902120154267990000",
"SELECT T1.timestamp FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T2.phone_brand = 'vivo' AND T1.event_id = '2'",
"SELECT AVG(T1.age) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo' AND T1.gender = 'F'",
"SELECT COUNT(T2.app_id) FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T1.category = 'comics'",
"SELECT SUM(IIF(gender = 'M', 1, 0)) / COUNT(device_id) AS per FROM gender_age",
"SELECT COUNT(device_model) FROM phone_brand_device_model2 WHERE phone_brand = 'HTC'"
]
} |
{
"query": "Please list the IDs of the events happened on all the vivo devices.",
"pos": [
"SELECT T2.event_id FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo'"
],
"neg": [
"SELECT longitude, latitude FROM events WHERE date(timestamp) = '2016-04-30'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'",
"SELECT COUNT(T1.event_id) FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id WHERE SUBSTR(T2.`timestamp`, 1, 10) = '2016-05-06' AND T1.is_installed = '1'",
"SELECT COUNT(event_id) FROM app_events WHERE event_id = 2 AND is_active = 0",
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE STRFTIME('%Y', T1.timestamp) = '2016' AND T2.phone_brand = 'vivo'",
"SELECT SUM(IIF(T1.gender IS NULL AND T1.age IS NULL AND T1.`group` IS NULL, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT SUM(IIF(T1.`group` = 'M23-26', 1.0, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT IIF(SUM(IIF(T2.category = 'Securities', 1, 0)) - SUM(IIF(T2.category = 'Finance', 1, 0)) > 0, 'Securities', 'Finance') AS diff FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T1.label_id = T2.label_id",
"SELECT COUNT(T2.app_id) FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T1.category = 'comics'"
]
} |
{
"query": "Among the users who use OPPO, calculate the percentage of those who are under 50 years old.",
"pos": [
"SELECT SUM(IIF(T1.age < 50, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO'"
],
"neg": [
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO' AND T1.gender = 'M'",
"SELECT COUNT(T1.gender) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T2.device_id = T1.device_id WHERE T1.gender = 'F' AND T2.device_model = 'ZenFone 5'",
"SELECT T1.gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 826' AND T2.phone_brand = 'HTC'",
"SELECT T1.age FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo' ORDER BY T1.age LIMIT 1",
"SELECT MAX(age) FROM gender_age",
"SELECT T.num FROM ( SELECT `group`, COUNT(`group`) AS num FROM gender_age GROUP BY `group` ) T",
"SELECT T1.timestamp FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T2.phone_brand = 'vivo' AND T1.event_id = '2'",
"SELECT DISTINCT T2.phone_brand, T2.device_model FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T2.device_id = T1.device_id WHERE T1.timestamp LIKE '2016-05-05%' AND T1.longitude = 112 AND T1.latitude = 44",
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'"
]
} |
{
"query": "What are the categories of the top 2 oldest events?",
"pos": [
"SELECT T4.category FROM events_relevant AS T1 INNER JOIN app_events_relevant AS T2 ON T1.event_id = T2.event_id INNER JOIN app_labels AS T3 ON T3.app_id = T2.app_id INNER JOIN label_categories AS T4 ON T3.label_id = T4.label_id ORDER BY T1.timestamp LIMIT 2"
],
"neg": [
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'",
"SELECT T.phone_brand FROM ( SELECT T2.phone_brand, COUNT(T2.phone_brand) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age BETWEEN 20 AND 30 GROUP BY T2.phone_brand ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT SUM(IIF(T2.gender = 'F', 1, 0)) * 100 / COUNT(T2.device_id) AS perFemale , SUM(IIF(T2.gender = 'M', 1, 0)) * 100 / COUNT(T2.device_id) AS perMale FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'OPPO'",
"SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 3",
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT SUM(IIF(T1.age > 20, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'SUGAR'",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo' AND T2.event_id = 2",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T2.gender = 'F' AND T1.device_model = 'Galaxy Note 2'",
"SELECT MIN(age) FROM gender_age WHERE gender = 'F'"
]
} |
{
"query": "List all females aged 24 to 26 devices' locations.",
"pos": [
"SELECT T2.longitude, T2.latitude FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'F24-26' AND T1.gender = 'F'"
],
"neg": [
"SELECT T1.gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 826' AND T2.phone_brand = 'HTC'",
"SELECT COUNT(gender) FROM gender_age WHERE gender = 'M' AND `group` = 'M32-38'",
"SELECT T.`group` FROM ( SELECT T1.`group`, COUNT(T1.`group`) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO' GROUP BY T1.`group` ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T2.gender = 'F' AND T1.device_model = 'Galaxy Note 2'",
"SELECT T1.phone_brand, T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T2.timestamp = '2016-05-07 06:03:22'",
"SELECT IIF(SUM(IIF(T2.category = 'Securities', 1, 0)) - SUM(IIF(T2.category = 'Finance', 1, 0)) > 0, 'Securities', 'Finance') AS diff FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T1.label_id = T2.label_id",
"SELECT device_id FROM gender_age WHERE gender = 'F' LIMIT 3",
"SELECT SUM(IIF(is_active = 1, 1, 0)) / SUM(IIF(is_active = 0, 1, 0)) AS per FROM app_events WHERE event_id = 58",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'",
"SELECT device_model FROM phone_brand_device_model2 WHERE device_id IN ( SELECT device_id FROM gender_age WHERE age = ( SELECT MIN(age) FROM gender_age ) )"
]
} |
{
"query": "For the device with an event occurring on 2016/5/1 at 0:55:25, what is the gender of its user?",
"pos": [
"SELECT T1.gender FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id WHERE T2.timestamp = '2016-05-01 00:55:25'"
],
"neg": [
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT COUNT(gender) FROM gender_age WHERE gender = 'M' AND `group` = 'M32-38'",
"SELECT SUM(IIF(is_installed = 1 AND is_active = 0, 1, 0)) / COUNT(app_id) AS perrcent FROM app_events WHERE event_id = 6",
"SELECT COUNT(app_id) FROM app_events WHERE is_active = 1",
"SELECT T1.`group` FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'LG'",
"SELECT COUNT(event_id) FROM app_events WHERE event_id = 2 AND is_active = 0",
"SELECT timestamp FROM events WHERE event_id = 12",
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE STRFTIME('%Y', T1.timestamp) = '2016' AND T2.phone_brand = 'vivo'",
"SELECT T.num FROM ( SELECT `group`, COUNT(`group`) AS num FROM gender_age GROUP BY `group` ) T",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'"
]
} |
{
"query": "How many device users are male?",
"pos": [
"SELECT COUNT(device_id) FROM gender_age WHERE gender = 'M'"
],
"neg": [
"SELECT SUM(IIF(T1.phone_brand = 'OPPO', 1, 0)) / SUM(IIF(T1.device_id = 'R815T', 1, 0)) AS num FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 3",
"SELECT T2.timestamp FROM app_events AS T1 INNER JOIN events AS T2 ON T2.event_id = T1.event_id WHERE T1.is_active = 0 AND T2.event_id = 2 ORDER BY T2.timestamp LIMIT 1",
"SELECT T2.age, T2.gender FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'LG' AND T1.device_model = 'L70'",
"SELECT T3.age FROM app_events AS T1 INNER JOIN events_relevant AS T2 ON T1.event_id = T2.event_id INNER JOIN gender_age AS T3 ON T2.device_id = T3.device_id WHERE T1.is_active = 1 AND T2.longitude = 121 AND T2.latitude = 31 AND SUBSTR(T2.timestamp, 1, 10) = '2016-05-06' ORDER BY T3.age DESC LIMIT 1",
"SELECT COUNT(T1.event_id) FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id WHERE SUBSTR(T2.`timestamp`, 1, 10) = '2016-05-06' AND T1.is_installed = '1'",
"SELECT COUNT(T2.event_id) FROM gender_age AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.gender = 'M' AND SUBSTR(`timestamp`, 1, 10) = '2016-05-04' AND T1.age = 88",
"SELECT T2.longitude, T2.latitude FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'F24-26' AND T1.gender = 'F'",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'",
"SELECT IIF(SUM(IIF(T1.gender = 'M', 1, 0)) - SUM(IIF(T1.gender = 'F', 1, 0)) > 0, 'M', 'F') AS gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2'"
]
} |
{
"query": "How many users in user group M23-26 use a vivo device?",
"pos": [
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26' AND T2.phone_brand = 'vivo'"
],
"neg": [
"SELECT gender FROM gender_age WHERE age = ( SELECT MIN(age) FROM gender_age )",
"SELECT device_id FROM gender_age WHERE age = ( SELECT MIN(age) FROM gender_age )",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id WHERE STRFTIME('%Y', T2.timestamp) = '2016' AND T1.`group` = 'M23-26'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'",
"SELECT timestamp FROM events WHERE event_id = 12",
"SELECT longitude, latitude FROM events WHERE date(timestamp) = '2016-04-30'",
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT T1.phone_brand, T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T2.timestamp = '2016-05-07 06:03:22'",
"SELECT SUM(IIF(T2.phone_brand = 'vivo', 1, 0)) / COUNT(T1.device_id) AS per FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T1.event_id = '2'",
"SELECT T2.phone_brand, T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age < 10"
]
} |
{
"query": "Among all the users who use a vivo device, what is the percentage of the users in the M23-26 user group?",
"pos": [
"SELECT SUM(IIF(T1.`group` = 'M23-26', 1.0, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'"
],
"neg": [
"SELECT SUM(IIF(T1.gender IS NULL AND T1.age IS NULL AND T1.`group` IS NULL, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT COUNT(device_id) FROM gender_age WHERE gender = 'M'",
"SELECT SUM(IIF(T2.gender = 'F', 1, 0)) * 100 / COUNT(T2.device_id) AS perFemale , SUM(IIF(T2.gender = 'M', 1, 0)) * 100 / COUNT(T2.device_id) AS perMale FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'OPPO'",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id ORDER BY T2.age DESC LIMIT 1",
"SELECT T.phone_brand FROM ( SELECT T2.phone_brand, COUNT(T2.phone_brand) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age BETWEEN 20 AND 30 GROUP BY T2.phone_brand ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT IIF(SUM(IIF(T1.gender = 'M', 1, 0)) - SUM(IIF(T1.gender = 'F', 1, 0)) > 0, 'M', 'F') AS gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2'",
"SELECT T1.age, T1.gender FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.device_id = 29182687948017100 AND T2.event_id = 1",
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26' AND T2.phone_brand = 'vivo'",
"SELECT IIF(SUM(IIF(T2.category = 'Securities', 1, 0)) - SUM(IIF(T2.category = 'Finance', 1, 0)) > 0, 'Securities', 'Finance') AS diff FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T1.label_id = T2.label_id",
"SELECT SUM(IIF(phone_brand = 'vivo', 1, 0)) - SUM(IIF(phone_brand = 'LG', 1, 0)) AS num FROM phone_brand_device_model2"
]
} |
{
"query": "Which brand is most common among people in their twenties?",
"pos": [
"SELECT T.phone_brand FROM ( SELECT T2.phone_brand, COUNT(T2.phone_brand) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age BETWEEN 20 AND 30 GROUP BY T2.phone_brand ) AS T ORDER BY T.num DESC LIMIT 1"
],
"neg": [
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2' AND T1.age < 30",
"SELECT COUNT(app_id) FROM app_labels WHERE label_id = 7",
"SELECT COUNT(T1.app_id), T2.longitude, T2.latitude FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id WHERE T1.event_id = 79641 GROUP BY T2.longitude, T2.latitude",
"SELECT SUM(IIF(T1.phone_brand = 'OPPO', 1, 0)) / SUM(IIF(T1.device_id = 'R815T', 1, 0)) AS num FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT T2.phone_brand, T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age < 10",
"SELECT COUNT(T1.gender) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T2.device_id = T1.device_id WHERE T1.gender = 'F' AND T2.device_model = 'ZenFone 5'",
"SELECT T4.category FROM events_relevant AS T1 INNER JOIN app_events_relevant AS T2 ON T1.event_id = T2.event_id INNER JOIN app_labels AS T3 ON T3.app_id = T2.app_id INNER JOIN label_categories AS T4 ON T3.label_id = T4.label_id ORDER BY T1.timestamp LIMIT 2",
"SELECT T2.age, T2.gender FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'LG' AND T1.device_model = 'L70'",
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26' AND T2.phone_brand = 'vivo'",
"SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 15"
]
} |
{
"query": "Calculate the percentage of male users among all device users.",
"pos": [
"SELECT SUM(IIF(gender = 'M', 1, 0)) / COUNT(device_id) AS per FROM gender_age"
],
"neg": [
"SELECT T3.category FROM app_all AS T1 INNER JOIN app_labels AS T2 ON T1.app_id = T2.app_id INNER JOIN label_categories AS T3 ON T2.label_id = T3.label_id WHERE T1.app_id = -9222198347540750000",
"SELECT T1.gender FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id WHERE T2.timestamp = '2016-05-01 00:55:25'",
"SELECT SUM(IIF(phone_brand = 'vivo', 1, 0)) - SUM(IIF(phone_brand = 'LG', 1, 0)) AS num FROM phone_brand_device_model2",
"SELECT T3.age FROM app_events AS T1 INNER JOIN events_relevant AS T2 ON T1.event_id = T2.event_id INNER JOIN gender_age AS T3 ON T2.device_id = T3.device_id WHERE T1.is_active = 1 AND T2.longitude = 121 AND T2.latitude = 31 AND SUBSTR(T2.timestamp, 1, 10) = '2016-05-06' ORDER BY T3.age DESC LIMIT 1",
"SELECT COUNT(event_id) FROM events WHERE longitude = 80 AND latitude = 37",
"SELECT SUM(IIF(T2.phone_brand = 'vivo', 1, 0)) / COUNT(T1.device_id) AS per FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T1.event_id = '2'",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T2.gender = 'F' AND T1.device_model = 'Galaxy Note 2'",
"SELECT MIN(age) FROM gender_age WHERE gender = 'F'",
"SELECT SUM(IIF(T1.category = '80s Japanese comic', 1, 0)) / COUNT(T1.label_id) AS J8 , SUM(IIF(T1.category = '90s Japanese comic', 1, 0)) / COUNT(T1.label_id) AS J9 FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id",
"SELECT COUNT(app_id) FROM app_events WHERE is_installed = 1 AND is_active = 0"
]
} |
{
"query": "Among all the devices with event no.2 happening, what is the percentage of the device being a vivo phone?",
"pos": [
"SELECT SUM(IIF(T2.phone_brand = 'vivo', 1, 0)) / COUNT(T1.device_id) AS per FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T1.event_id = '2'"
],
"neg": [
"SELECT T1.age, T1.gender FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.device_id = 29182687948017100 AND T2.event_id = 1",
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F' GROUP BY T1.event_id, T2.age ORDER BY T2.age LIMIT 1",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo' AND T2.event_id = 2",
"SELECT DISTINCT T2.phone_brand, T2.device_model FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T2.device_id = T1.device_id WHERE T1.timestamp LIKE '2016-05-05%' AND T1.longitude = 112 AND T1.latitude = 44",
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE STRFTIME('%Y', T1.timestamp) = '2016' AND T2.phone_brand = 'vivo'",
"SELECT MIN(age) FROM gender_age WHERE gender = 'F'",
"SELECT T3.age FROM app_events AS T1 INNER JOIN events_relevant AS T2 ON T1.event_id = T2.event_id INNER JOIN gender_age AS T3 ON T2.device_id = T3.device_id WHERE T1.is_active = 1 AND T2.longitude = 121 AND T2.latitude = 31 AND SUBSTR(T2.timestamp, 1, 10) = '2016-05-06' ORDER BY T3.age DESC LIMIT 1",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 3' AND T1.gender = 'M'",
"SELECT COUNT(T1.event_id) FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id WHERE SUBSTR(T2.`timestamp`, 1, 10) = '2016-05-06' AND T1.is_installed = '1'"
]
} |
{
"query": "State the number of the \"魅蓝Note 2\" users who are in the \"F29-32\" group.",
"pos": [
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'F29-32' AND T2.device_model = '魅蓝Note 2'"
],
"neg": [
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'",
"SELECT SUM(IIF(T1.phone_brand = 'OPPO', 1, 0)) / SUM(IIF(T1.device_id = 'R815T', 1, 0)) AS num FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id WHERE STRFTIME('%Y', T2.timestamp) = '2016' AND T1.`group` = 'M23-26'",
"SELECT T2.age, T2.gender FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'LG' AND T1.device_model = 'L70'",
"SELECT SUM(IIF(T2.gender = 'F', 1, 0)) * 100 / COUNT(T2.device_id) AS perFemale , SUM(IIF(T2.gender = 'M', 1, 0)) * 100 / COUNT(T2.device_id) AS perMale FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'OPPO'",
"SELECT COUNT(T1.device_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T1.timestamp = '2016-05-01' AND T2.gender = 'M'",
"SELECT SUM(IIF(T1.age > 20, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'SUGAR'",
"SELECT T2.event_id FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id ORDER BY T1.age DESC LIMIT 1",
"SELECT app_id FROM app_events WHERE is_active = 1 AND is_installed = 1",
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'"
]
} |
{
"query": "Please list the device models of all the devices used by a user in the M23-26 user group.",
"pos": [
"SELECT T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26'"
],
"neg": [
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'",
"SELECT category, label_id FROM label_categories WHERE category LIKE '%game%' LIMIT 5",
"SELECT COUNT(event_id) FROM `events` WHERE SUBSTR(`timestamp`, 1, 4) = '2016' AND device_id = 29182687948017100",
"SELECT T1.phone_brand, T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T2.timestamp = '2016-05-07 06:03:22'",
"SELECT SUM(IIF(T2.phone_brand = 'vivo', 1, 0)) / COUNT(T1.device_id) AS per FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T1.event_id = '2'",
"SELECT COUNT(device_id) FROM gender_age WHERE `group` = 'F27-28' AND gender = 'F'",
"SELECT T1.gender FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id WHERE T2.timestamp = '2016-05-01 00:55:25'",
"SELECT DISTINCT T1.phone_brand, T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T2.longitude = 80 AND T2.latitude = 44",
"SELECT COUNT(T1.device_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T1.timestamp = '2016-05-01' AND T2.gender = 'M'",
"SELECT app_id FROM app_events WHERE is_active = 1 AND is_installed = 1"
]
} |
{
"query": "Among the male users, how many users use device model of Desire 820?",
"pos": [
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'"
],
"neg": [
"SELECT SUM(IIF(T2.phone_brand = 'vivo', 1, 0)) / COUNT(T1.device_id) AS per FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T1.event_id = '2'",
"SELECT timestamp FROM events WHERE event_id = '887711'",
"SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 3",
"SELECT SUM(IIF(T1.age < 50, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO'",
"SELECT COUNT(gender) FROM gender_age WHERE gender = 'M' AND `group` = 'M32-38'",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id ORDER BY T2.age DESC LIMIT 1",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.event_id WHERE T2.longitude = '113' AND T2.latitude = '28' AND T2.timestamp = '2016-05-07 23:55:16'",
"SELECT SUM(IIF(T2.gender = 'F', 1, 0)) * 100 / COUNT(T2.device_id) AS perFemale , SUM(IIF(T2.gender = 'M', 1, 0)) * 100 / COUNT(T2.device_id) AS perMale FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'OPPO'",
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26' AND T2.phone_brand = 'vivo'",
"SELECT SUM(IIF(T1.category = '80s Japanese comic', 1, 0)) / COUNT(T1.label_id) AS J8 , SUM(IIF(T1.category = '90s Japanese comic', 1, 0)) / COUNT(T1.label_id) AS J9 FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id"
]
} |
{
"query": "How many male users have a Galaxy Note 3?",
"pos": [
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 3' AND T1.gender = 'M'"
],
"neg": [
"SELECT device_model FROM phone_brand_device_model2 WHERE device_id IN ( SELECT device_id FROM gender_age WHERE age = ( SELECT MIN(age) FROM gender_age ) )",
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F' GROUP BY T1.event_id, T2.age ORDER BY T2.age LIMIT 1",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 5902120154267990000",
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'F29-32' AND T2.device_model = '魅蓝Note 2'",
"SELECT COUNT(T2.event_id) FROM gender_age AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.gender = 'M' AND SUBSTR(`timestamp`, 1, 10) = '2016-05-04' AND T1.age = 88",
"SELECT COUNT(T1.device_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T1.timestamp = '2016-05-01' AND T2.gender = 'M'",
"SELECT T2.phone_brand, T2.device_model FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.event_id = 6701",
"SELECT SUM(IIF(T2.gender = 'F', 1, 0)) * 100 / COUNT(T2.device_id) AS perFemale , SUM(IIF(T2.gender = 'M', 1, 0)) * 100 / COUNT(T2.device_id) AS perMale FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'OPPO'",
"SELECT timestamp FROM events WHERE event_id = 12",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo' AND T2.event_id = 2"
]
} |
{
"query": "Please list all the models of the devices used by a female user.",
"pos": [
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'"
],
"neg": [
"SELECT T1.longitude, T1.latitude FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2'",
"SELECT timestamp FROM events WHERE event_id = '887711'",
"SELECT T3.age FROM app_events AS T1 INNER JOIN events_relevant AS T2 ON T1.event_id = T2.event_id INNER JOIN gender_age AS T3 ON T2.device_id = T3.device_id WHERE T1.is_active = 1 AND T2.longitude = 121 AND T2.latitude = 31 AND SUBSTR(T2.timestamp, 1, 10) = '2016-05-06' ORDER BY T3.age DESC LIMIT 1",
"SELECT SUM(IIF(T1.age < 50, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2' AND T1.age < 30",
"SELECT DISTINCT T2.longitude, T2.latitude FROM app_events AS T1 INNER JOIN events AS T2 ON T2.event_id = T1.event_id WHERE T2.event_id = 2 AND T1.is_active = 0",
"SELECT SUM(IIF(is_installed = 1 AND is_active = 0, 1, 0)) / COUNT(app_id) AS perrcent FROM app_events WHERE event_id = 6",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 4955831798976240000",
"SELECT T.category FROM ( SELECT T1.category, COUNT(T2.app_id) AS num FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id GROUP BY T1.label_id ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT COUNT(device_id) FROM gender_age WHERE `group` = 'F27-28' AND gender = 'F'"
]
} |
{
"query": "Among all the users who use a vivo device, what is the age of the youngest user?",
"pos": [
"SELECT T1.age FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo' ORDER BY T1.age LIMIT 1"
],
"neg": [
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 7324884708820020000",
"SELECT DISTINCT T2.longitude, T2.latitude FROM app_events AS T1 INNER JOIN events AS T2 ON T2.event_id = T1.event_id WHERE T2.event_id = 2 AND T1.is_active = 0",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2' AND T1.age < 30",
"SELECT SUM(IIF(T2.gender = 'F', 1, 0)) * 100 / COUNT(T2.device_id) AS perFemale , SUM(IIF(T2.gender = 'M', 1, 0)) * 100 / COUNT(T2.device_id) AS perMale FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'OPPO'",
"SELECT SUM(IIF(phone_brand = 'vivo', 1, 0)) - SUM(IIF(phone_brand = 'LG', 1, 0)) AS num FROM phone_brand_device_model2",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo' AND T2.event_id = 2",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT T1.timestamp FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T2.phone_brand = 'vivo' AND T1.event_id = '2'",
"SELECT T2.phone_brand, T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age < 10",
"SELECT T2.phone_brand, T2.device_model FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.event_id = 6701"
]
} |
{
"query": "What is the model of the oldest user's device?",
"pos": [
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id ORDER BY T2.age DESC LIMIT 1"
],
"neg": [
"SELECT COUNT(device_model) FROM phone_brand_device_model2 WHERE phone_brand = 'HTC'",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'",
"SELECT category, label_id FROM label_categories WHERE category LIKE '%game%' LIMIT 5",
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT SUM(IIF(is_active = 1, 1, 0)) / SUM(IIF(is_active = 0, 1, 0)) AS per FROM app_events WHERE event_id = 58",
"SELECT T1.gender FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id WHERE T2.timestamp = '2016-05-01 00:55:25'",
"SELECT MAX(age) FROM gender_age",
"SELECT T.category FROM ( SELECT T2.category, COUNT(T1.app_id) AS num FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T1.label_id = T2.label_id GROUP BY T2.category ) AS T ORDER BY T.num DESC LIMIT 3",
"SELECT T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26'"
]
} |
{
"query": "Please list any five app categories that are related to games, along with their label ID.",
"pos": [
"SELECT category, label_id FROM label_categories WHERE category LIKE '%game%' LIMIT 5"
],
"neg": [
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2' AND T1.age < 30",
"SELECT SUM(IIF(latitude != 0 AND longitude != 0, 1, 0)) - SUM(IIF(latitude = 0 AND longitude = 0, 1, 0)) AS diff FROM events WHERE device_id = '-922956879900150000'",
"SELECT COUNT(T2.event_id) FROM gender_age AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.gender = 'M' AND SUBSTR(`timestamp`, 1, 10) = '2016-05-04' AND T1.age = 88",
"SELECT T3.category FROM app_all AS T1 INNER JOIN app_labels AS T2 ON T1.app_id = T2.app_id INNER JOIN label_categories AS T3 ON T2.label_id = T3.label_id WHERE T1.app_id = -9222198347540750000",
"SELECT T.num FROM ( SELECT `group`, COUNT(`group`) AS num FROM gender_age GROUP BY `group` ) T",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'",
"SELECT COUNT(T2.app_id) FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T1.category = 'comics'",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE device_model = 'A51'",
"SELECT T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26'",
"SELECT SUM(IIF(T1.age > 20, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'SUGAR'"
]
} |
{
"query": "Among the devices with an event occurring in 2016, how many of them are owned by a user in the M23-26 user group?",
"pos": [
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id WHERE STRFTIME('%Y', T2.timestamp) = '2016' AND T1.`group` = 'M23-26'"
],
"neg": [
"SELECT T.`group` FROM ( SELECT T1.`group`, COUNT(T1.`group`) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO' GROUP BY T1.`group` ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT SUM(IIF(gender = 'M', 1, 0)) / COUNT(device_id) AS per FROM gender_age",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT T.category FROM ( SELECT T2.category, COUNT(T1.app_id) AS num FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T1.label_id = T2.label_id GROUP BY T2.category ) AS T ORDER BY T.num DESC LIMIT 3",
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'F29-32' AND T2.device_model = '魅蓝Note 2'",
"SELECT SUM(IIF(T1.`group` = 'M23-26', 1.0, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT T1.gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 826' AND T2.phone_brand = 'HTC'",
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE STRFTIME('%Y', T1.timestamp) = '2016' AND T2.phone_brand = 'vivo'",
"SELECT T1.age FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo' ORDER BY T1.age LIMIT 1",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE device_model = 'A51'"
]
} |
{
"query": "Between device ID of \"-9215352913819630000\" and \"-9222956879900150000\", mention the age and gender of device user who participated more events.",
"pos": [
"SELECT T.age, T.gender FROM ( SELECT T2.age, T2.gender, COUNT(T1.device_id) AS num FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T1.device_id BETWEEN -9215352913819630000 AND -9222956879900150000 GROUP BY T2.age, T2.gender ) AS T ORDER BY T.num DESC LIMIT 1"
],
"neg": [
"SELECT T1.age, T1.gender FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.device_id = 29182687948017100 AND T2.event_id = 1",
"SELECT gender FROM gender_age WHERE age = ( SELECT MIN(age) FROM gender_age )",
"SELECT T.category FROM ( SELECT T2.category, COUNT(T1.app_id) AS num FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T1.label_id = T2.label_id GROUP BY T2.category ) AS T ORDER BY T.num DESC LIMIT 3",
"SELECT T2.age FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.device_model = 'Galaxy Note 2'",
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE STRFTIME('%Y', T1.timestamp) = '2016' AND T2.phone_brand = 'vivo'",
"SELECT T1.longitude, T1.latitude FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2'",
"SELECT COUNT(event_id) FROM `events` WHERE SUBSTR(`timestamp`, 1, 4) = '2016' AND device_id = 29182687948017100",
"SELECT DISTINCT T2.phone_brand, T2.device_model FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T2.device_id = T1.device_id WHERE T1.timestamp LIKE '2016-05-05%' AND T1.longitude = 112 AND T1.latitude = 44",
"SELECT COUNT(T2.app_id) FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T1.category = 'comics'",
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'F29-32' AND T2.device_model = '魅蓝Note 2'"
]
} |
{
"query": "Which gender owned more of the Galaxy Note 2 device model?",
"pos": [
"SELECT IIF(SUM(IIF(T1.gender = 'M', 1, 0)) - SUM(IIF(T1.gender = 'F', 1, 0)) > 0, 'M', 'F') AS gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2'"
],
"neg": [
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T1.device_model = 'Galaxy S5' AND T2.gender = 'M'",
"SELECT COUNT(event_id) FROM `events` WHERE SUBSTR(`timestamp`, 1, 4) = '2016' AND device_id = 29182687948017100",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 4955831798976240000",
"SELECT T.`group` FROM ( SELECT T1.`group`, COUNT(T1.`group`) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO' GROUP BY T1.`group` ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT SUM(IIF(T1.gender IS NULL AND T1.age IS NULL AND T1.`group` IS NULL, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT COUNT(app_id) FROM app_events WHERE is_active = 1",
"SELECT T1.device_id FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.gender = 'F' AND T1.age < 30",
"SELECT device_id FROM gender_age WHERE age = ( SELECT MIN(age) FROM gender_age )",
"SELECT T1.timestamp FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.event_id = T2.device_id WHERE T2.phone_brand = 'vivo' AND T1.event_id = '2'",
"SELECT T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26'"
]
} |
{
"query": "Provide the number of events participated by the device users at coordinates of (80,37).",
"pos": [
"SELECT COUNT(event_id) FROM events WHERE longitude = 80 AND latitude = 37"
],
"neg": [
"SELECT SUM(IIF(is_installed = 1 AND is_active = 0, 1, 0)) / COUNT(app_id) AS perrcent FROM app_events WHERE event_id = 6",
"SELECT SUM(IIF(T1.age < 50, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO'",
"SELECT T2.event_id FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id ORDER BY T1.age DESC LIMIT 1",
"SELECT COUNT(T1.device_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T1.timestamp = '2016-05-01' AND T2.gender = 'M'",
"SELECT T.num FROM ( SELECT `group`, COUNT(`group`) AS num FROM gender_age GROUP BY `group` ) T",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'",
"SELECT T1.`group` FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'LG'",
"SELECT SUM(IIF(gender = 'M', 1, 0)) / COUNT(device_id) AS per FROM gender_age",
"SELECT T.category FROM ( SELECT T2.category, COUNT(T1.app_id) AS num FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T1.label_id = T2.label_id GROUP BY T2.category ) AS T ORDER BY T.num DESC LIMIT 3",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'"
]
} |
{
"query": "For the event which happened at 23:33:34 on 2016/5/6, how many installed apps were involved?",
"pos": [
"SELECT COUNT(T1.event_id) FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id WHERE SUBSTR(T2.`timestamp`, 1, 10) = '2016-05-06' AND T1.is_installed = '1'"
],
"neg": [
"SELECT SUM(IIF(T1.phone_brand = 'OPPO', 1, 0)) / SUM(IIF(T1.device_id = 'R815T', 1, 0)) AS num FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 3",
"SELECT COUNT(T2.app_id) FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T1.category = 'comics'",
"SELECT T2.timestamp FROM app_events AS T1 INNER JOIN events AS T2 ON T2.event_id = T1.event_id WHERE T1.is_active = 0 AND T2.event_id = 2 ORDER BY T2.timestamp LIMIT 1",
"SELECT SUM(IIF(T2.gender = 'F', 1, 0)) * 100 / COUNT(T2.device_id) AS perFemale , SUM(IIF(T2.gender = 'M', 1, 0)) * 100 / COUNT(T2.device_id) AS perMale FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'OPPO'",
"SELECT COUNT(device_id) FROM gender_age WHERE `group` = 'F27-28' AND gender = 'F'",
"SELECT MIN(age) FROM gender_age WHERE gender = 'F'",
"SELECT COUNT(event_id) FROM events WHERE longitude = 80 AND latitude = 37",
"SELECT SUM(IIF(T1.age < 50, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO'",
"SELECT AVG(T1.age) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo' AND T1.gender = 'F'"
]
} |
{
"query": "Give the number of 30-year-old users who were active in the events on 2016/5/2.",
"pos": [
"SELECT COUNT(T3.device_id) FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id INNER JOIN gender_age AS T3 ON T2.device_id = T3.device_id WHERE SUBSTR(`timestamp`, 1, 10) = '2016-05-02' AND T1.is_active = 1 AND T3.age = '30'"
],
"neg": [
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 3' AND T1.gender = 'M'",
"SELECT COUNT(event_id) FROM `events` WHERE SUBSTR(`timestamp`, 1, 4) = '2016' AND device_id = 29182687948017100",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'",
"SELECT COUNT(T2.event_id) FROM gender_age AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.gender = 'M' AND SUBSTR(`timestamp`, 1, 10) = '2016-05-04' AND T1.age = 88",
"SELECT T2.timestamp FROM app_events AS T1 INNER JOIN events AS T2 ON T2.event_id = T1.event_id WHERE T1.is_active = 0 AND T2.event_id = 2 ORDER BY T2.timestamp LIMIT 1",
"SELECT COUNT(app_id) FROM app_events WHERE is_active = 1",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'",
"SELECT T.num FROM ( SELECT `group`, COUNT(`group`) AS num FROM gender_age GROUP BY `group` ) T",
"SELECT COUNT(device_model) FROM phone_brand_device_model2 WHERE phone_brand = 'HTC'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2' AND T1.age < 30"
]
} |
{
"query": "List out the time of the event id 12.",
"pos": [
"SELECT timestamp FROM events WHERE event_id = 12"
],
"neg": [
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 1977658975649780000",
"SELECT COUNT(gender) FROM gender_age WHERE gender = 'M' AND `group` = 'M32-38'",
"SELECT SUM(IIF(T1.category = '80s Japanese comic', 1, 0)) / COUNT(T1.label_id) AS J8 , SUM(IIF(T1.category = '90s Japanese comic', 1, 0)) / COUNT(T1.label_id) AS J9 FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id",
"SELECT gender FROM gender_age WHERE device_id = -9222956879900150000",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 5902120154267990000",
"SELECT IIF(SUM(IIF(T1.gender = 'M', 1, 0)) - SUM(IIF(T1.gender = 'F', 1, 0)) > 0, 'M', 'F') AS gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2'",
"SELECT T1.longitude, T1.latitude FROM events AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T2.longitude = 114 AND T1.gender = 'M'",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T2.gender = 'F' AND T1.device_model = 'Galaxy Note 2'",
"SELECT SUM(IIF(T1.age < 50, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO'"
]
} |
{
"query": "What are the categories that app user ID7324884708820020000 belongs to?",
"pos": [
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 7324884708820020000"
],
"neg": [
"SELECT T2.timestamp FROM app_events AS T1 INNER JOIN events AS T2 ON T2.event_id = T1.event_id WHERE T1.is_active = 0 AND T2.event_id = 2 ORDER BY T2.timestamp LIMIT 1",
"SELECT T.timestamp FROM ( SELECT T2.timestamp, COUNT(T2.event_id) AS num FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.gender = 'M' AND T1.age = 40 GROUP BY T2.timestamp ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT COUNT(app_id) FROM app_events WHERE is_active = 1",
"SELECT COUNT(gender) FROM gender_age WHERE age > 50 AND gender = 'F'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2' AND T1.age < 30",
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT T4.category FROM events_relevant AS T1 INNER JOIN app_events_relevant AS T2 ON T1.event_id = T2.event_id INNER JOIN app_labels AS T3 ON T3.app_id = T2.app_id INNER JOIN label_categories AS T4 ON T3.label_id = T4.label_id ORDER BY T1.timestamp LIMIT 2",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T2.gender = 'F' AND T1.device_model = 'Galaxy Note 2'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T2.longitude = 114 AND T1.gender = 'M'",
"SELECT device_id FROM gender_age WHERE gender = 'F' LIMIT 3"
]
} |
{
"query": "What is the percentage of female OPPO users against the male OPPO users?",
"pos": [
"SELECT SUM(IIF(T2.gender = 'F', 1, 0)) * 100 / COUNT(T2.device_id) AS perFemale , SUM(IIF(T2.gender = 'M', 1, 0)) * 100 / COUNT(T2.device_id) AS perMale FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'OPPO'"
],
"neg": [
"SELECT T1.`group` FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'LG'",
"SELECT COUNT(T3.device_id) FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id INNER JOIN gender_age AS T3 ON T2.device_id = T3.device_id WHERE SUBSTR(`timestamp`, 1, 10) = '2016-05-02' AND T1.is_active = 1 AND T3.age = '30'",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 1977658975649780000",
"SELECT SUM(IIF(T1.phone_brand = 'OPPO', 1, 0)) / SUM(IIF(T1.device_id = 'R815T', 1, 0)) AS num FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT DISTINCT T1.phone_brand, T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T2.longitude = 80 AND T2.latitude = 44",
"SELECT longitude, latitude FROM events WHERE date(timestamp) = '2016-04-30'",
"SELECT SUM(IIF(T1.age < 50, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO'",
"SELECT T3.category FROM app_all AS T1 INNER JOIN app_labels AS T2 ON T1.app_id = T2.app_id INNER JOIN label_categories AS T3 ON T2.label_id = T3.label_id WHERE T1.app_id = -9222198347540750000",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo' AND T2.event_id = 2",
"SELECT T.gender FROM ( SELECT T1.gender, COUNT(T1.device_id) AS num FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE date(T2.timestamp) BETWEEN '2016-05-01' AND '2016-05-10' GROUP BY T1.gender ) AS T ORDER BY T.num DESC LIMIT 1"
]
} |
{
"query": "Describe the number of app IDs and location of the event ID \"79641\".",
"pos": [
"SELECT COUNT(T1.app_id), T2.longitude, T2.latitude FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id WHERE T1.event_id = 79641 GROUP BY T2.longitude, T2.latitude"
],
"neg": [
"SELECT SUM(IIF(is_installed = 1 AND is_active = 0, 1, 0)) / COUNT(app_id) AS perrcent FROM app_events WHERE event_id = 6",
"SELECT T.num FROM ( SELECT `group`, COUNT(`group`) AS num FROM gender_age GROUP BY `group` ) T",
"SELECT T2.event_id FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo'",
"SELECT T1.gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 826' AND T2.phone_brand = 'HTC'",
"SELECT COUNT(T1.gender) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T2.device_id = T1.device_id WHERE T1.gender = 'F' AND T2.device_model = 'ZenFone 5'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Desire 820' AND T1.gender = 'M'",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 1977658975649780000",
"SELECT T2.app_id FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T1.category = 'game-stress reliever'",
"SELECT SUM(IIF(T2.gender = 'F', 1, 0)) * 100 / COUNT(T2.device_id) AS perFemale , SUM(IIF(T2.gender = 'M', 1, 0)) * 100 / COUNT(T2.device_id) AS perMale FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'OPPO'",
"SELECT device_id FROM gender_age WHERE gender = 'F' LIMIT 3"
]
} |
{
"query": "What is the ratio of active and inactive app users of the event ID \"58\"?",
"pos": [
"SELECT SUM(IIF(is_active = 1, 1, 0)) / SUM(IIF(is_active = 0, 1, 0)) AS per FROM app_events WHERE event_id = 58"
],
"neg": [
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT SUM(IIF(T1.phone_brand = 'OPPO', 1, 0)) / SUM(IIF(T1.device_id = 'R815T', 1, 0)) AS num FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'",
"SELECT T1.category FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T2.app_id = 5902120154267990000",
"SELECT timestamp FROM events WHERE event_id = '887711'",
"SELECT COUNT(device_id) FROM gender_age WHERE `group` = 'F27-28' AND gender = 'F'",
"SELECT T2.event_id FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo'",
"SELECT T2.age, T2.gender FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'LG' AND T1.device_model = 'L70'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO' AND T1.gender = 'M'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.device_id WHERE STRFTIME('%Y', T2.timestamp) = '2016' AND T1.`group` = 'M23-26'",
"SELECT COUNT(app_id) FROM app_labels WHERE label_id = 7"
]
} |
{
"query": "How many events have happened on device no.29182687948017100 in 2016?",
"pos": [
"SELECT COUNT(event_id) FROM `events` WHERE SUBSTR(`timestamp`, 1, 4) = '2016' AND device_id = 29182687948017100"
],
"neg": [
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F' GROUP BY T1.event_id, T2.age ORDER BY T2.age LIMIT 1",
"SELECT T1.`group` FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'LG'",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo' AND T2.event_id = 2",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T1.device_id = T2.event_id WHERE T2.longitude = '113' AND T2.latitude = '28' AND T2.timestamp = '2016-05-07 23:55:16'",
"SELECT T1.device_id FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.gender = 'F' AND T1.age < 30",
"SELECT COUNT(T1.app_id), T2.longitude, T2.latitude FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id WHERE T1.event_id = 79641 GROUP BY T2.longitude, T2.latitude",
"SELECT T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26'",
"SELECT COUNT(T1.device_id) FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T1.device_model = 'Galaxy S5' AND T2.gender = 'M'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO' AND T1.gender = 'M'",
"SELECT T2.longitude, T2.latitude FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'F24-26' AND T1.gender = 'F'"
]
} |
{
"query": "Identify by their id all the apps that belong to the game-stress reliever category.",
"pos": [
"SELECT T2.app_id FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T1.category = 'game-stress reliever'"
],
"neg": [
"SELECT COUNT(device_id) FROM gender_age WHERE gender = 'M'",
"SELECT T2.event_id FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo'",
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F' GROUP BY T1.event_id, T2.age ORDER BY T2.age LIMIT 1",
"SELECT T2.phone_brand, T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age < 10",
"SELECT COUNT(T2.app_id) FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T1.category = 'comics'",
"SELECT SUM(IIF(T1.`group` = 'M23-26', 1.0, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT SUM(IIF(T1.gender IS NULL AND T1.age IS NULL AND T1.`group` IS NULL, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT COUNT(event_id) FROM `events` WHERE SUBSTR(`timestamp`, 1, 4) = '2016' AND device_id = 29182687948017100",
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'F29-32' AND T2.device_model = '魅蓝Note 2'",
"SELECT T1.device_model FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'"
]
} |
{
"query": "Among the female users that uses OPPO as their phone brand, what is the percentage of them of the user that uses R815T model to install the app?",
"pos": [
"SELECT SUM(IIF(T1.phone_brand = 'OPPO', 1, 0)) / SUM(IIF(T1.device_id = 'R815T', 1, 0)) AS num FROM phone_brand_device_model2 AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F'"
],
"neg": [
"SELECT MIN(age) FROM gender_age WHERE gender = 'F'",
"SELECT IIF(SUM(IIF(T1.gender = 'M', 1, 0)) - SUM(IIF(T1.gender = 'F', 1, 0)) > 0, 'M', 'F') AS gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2'",
"SELECT COUNT(T1.event_id) FROM app_events AS T1 INNER JOIN events AS T2 ON T1.event_id = T2.event_id WHERE SUBSTR(T2.`timestamp`, 1, 10) = '2016-05-06' AND T1.is_installed = '1'",
"SELECT T1.device_id FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.gender = 'F' AND T1.age < 30",
"SELECT T.timestamp FROM ( SELECT T2.timestamp, COUNT(T2.event_id) AS num FROM gender_age AS T1 INNER JOIN events_relevant AS T2 ON T1.device_id = T2.device_id WHERE T1.gender = 'M' AND T1.age = 40 GROUP BY T2.timestamp ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT SUM(IIF(T1.gender = 'M', 1, 0)) / SUM(IIF(T1.gender = 'F', 1, 0)) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'",
"SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 3",
"SELECT COUNT(T2.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.`group` = 'M23-26' AND T2.phone_brand = 'vivo'",
"SELECT COUNT(device_id) FROM phone_brand_device_model2 WHERE phone_brand = 'vivo'",
"SELECT SUM(IIF(T1.gender IS NULL AND T1.age IS NULL AND T1.`group` IS NULL, 1, 0)) / COUNT(T1.device_id) AS per FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'vivo'"
]
} |
{
"query": "What are the top 3 categories with the most app users?",
"pos": [
"SELECT T.category FROM ( SELECT T2.category, COUNT(T1.app_id) AS num FROM app_labels AS T1 INNER JOIN label_categories AS T2 ON T1.label_id = T2.label_id GROUP BY T2.category ) AS T ORDER BY T.num DESC LIMIT 3"
],
"neg": [
"SELECT SUM(IIF(latitude != 0 AND longitude != 0, 1, 0)) - SUM(IIF(latitude = 0 AND longitude = 0, 1, 0)) AS diff FROM events WHERE device_id = '-922956879900150000'",
"SELECT T.phone_brand FROM ( SELECT T2.phone_brand, COUNT(T2.phone_brand) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age BETWEEN 20 AND 30 GROUP BY T2.phone_brand ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT T2.event_id FROM phone_brand_device_model2 AS T1 INNER JOIN events AS T2 ON T2.device_id = T1.device_id WHERE T1.phone_brand = 'vivo'",
"SELECT T3.age FROM app_events AS T1 INNER JOIN events_relevant AS T2 ON T1.event_id = T2.event_id INNER JOIN gender_age AS T3 ON T2.device_id = T3.device_id WHERE T1.is_active = 1 AND T2.longitude = 121 AND T2.latitude = 31 AND SUBSTR(T2.timestamp, 1, 10) = '2016-05-06' ORDER BY T3.age DESC LIMIT 1",
"SELECT COUNT(T2.app_id) FROM label_categories AS T1 INNER JOIN app_labels AS T2 ON T1.label_id = T2.label_id WHERE T1.category = 'comics'",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 3' AND T1.gender = 'M'",
"SELECT T1.`group` FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'LG'",
"SELECT timestamp FROM events WHERE event_id = 12",
"SELECT COUNT(T1.device_id) FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO' AND T1.gender = 'M'",
"SELECT device_model FROM phone_brand_device_model2 WHERE phone_brand = 'OPPO' LIMIT 3"
]
} |
{
"query": "When did event number 7 happen for user number -8022267440849930000?",
"pos": [
"SELECT T1.timestamp FROM events_relevant AS T1 INNER JOIN app_events AS T2 ON T1.event_id = T2.event_id WHERE T2.app_id = -8022267440849930000 AND T1.event_id = 7"
],
"neg": [
"SELECT T2.timestamp FROM app_events AS T1 INNER JOIN events AS T2 ON T2.event_id = T1.event_id WHERE T1.is_active = 0 AND T2.event_id = 2 ORDER BY T2.timestamp LIMIT 1",
"SELECT COUNT(T1.event_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T2.gender = 'F' GROUP BY T1.event_id, T2.age ORDER BY T2.age LIMIT 1",
"SELECT T.phone_brand FROM ( SELECT T2.phone_brand, COUNT(T2.phone_brand) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age BETWEEN 20 AND 30 GROUP BY T2.phone_brand ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT COUNT(app_id) FROM app_labels WHERE label_id = 7",
"SELECT T.`group` FROM ( SELECT T1.`group`, COUNT(T1.`group`) AS num FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.phone_brand = 'OPPO' GROUP BY T1.`group` ) AS T ORDER BY T.num DESC LIMIT 1",
"SELECT COUNT(T1.device_id) FROM events AS T1 INNER JOIN gender_age AS T2 ON T1.device_id = T2.device_id WHERE T1.timestamp = '2016-05-01' AND T2.gender = 'M'",
"SELECT IIF(SUM(IIF(T1.gender = 'M', 1, 0)) - SUM(IIF(T1.gender = 'F', 1, 0)) > 0, 'M', 'F') AS gender FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T2.device_model = 'Galaxy Note 2'",
"SELECT timestamp FROM events WHERE event_id = 12",
"SELECT T2.phone_brand, T2.device_model FROM gender_age AS T1 INNER JOIN phone_brand_device_model2 AS T2 ON T1.device_id = T2.device_id WHERE T1.age < 10",
"SELECT T4.category FROM events_relevant AS T1 INNER JOIN app_events_relevant AS T2 ON T1.event_id = T2.event_id INNER JOIN app_labels AS T3 ON T3.app_id = T2.app_id INNER JOIN label_categories AS T4 ON T3.label_id = T4.label_id ORDER BY T1.timestamp LIMIT 2"
]
} |
{
"query": "Please list the directions in which the trains with 4 short cars run.",
"pos": [
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.len = 'short' AND T1.position = 4"
],
"neg": [
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' ",
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4",
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T",
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT SUM(wheels) FROM cars WHERE len = 'long'",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction"
]
} |
{
"query": "List all the load shapes of all head cars of each train and identify which load shape has the highest number. Calculate the percentage of the trains with the said head car that are running eas",
"pos": [
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )"
],
"neg": [
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'",
"SELECT direction FROM trains GROUP BY direction ORDER BY COUNT(id) DESC",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction",
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS trailPosi FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.trailPosi <= 2"
]
} |
{
"query": "How many trains are running west?",
"pos": [
"SELECT COUNT(id) FROM trains WHERE direction = 'west'"
],
"neg": [
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'rectangle' GROUP BY T2.direction ORDER BY COUNT(T2.id) DESC LIMIT 1",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS trailPosi FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.trailPosi <= 2",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )",
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4",
"SELECT SUM(wheels) FROM cars WHERE len = 'long'",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' "
]
} |
{
"query": "How many wheels do the long cars have?",
"pos": [
"SELECT SUM(wheels) FROM cars WHERE len = 'long'"
],
"neg": [
"SELECT COUNT(DISTINCT T1.train_id) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_num = 3",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'",
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT COUNT(id) FROM trains WHERE direction = 'east'",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0",
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4"
]
} |
{
"query": "How many trains with fully loaded head cars are running east?",
"pos": [
"SELECT COUNT(DISTINCT T1.train_id) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_num = 3"
],
"neg": [
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T",
"SELECT SUM(wheels) FROM cars WHERE len = 'long'",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'",
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0",
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4",
"SELECT COUNT(id) FROM trains WHERE direction = 'east'"
]
} |
{
"query": "Please list the IDs of all the trains that run in the east direction and have less than 4 cars.",
"pos": [
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4"
],
"neg": [
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )",
"SELECT COUNT(id) FROM cars WHERE shape = 'hexagon' AND len = 'short'",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'rectangle' GROUP BY T2.direction ORDER BY COUNT(T2.id) DESC LIMIT 1",
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' ",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction",
"SELECT COUNT(id) FROM trains WHERE direction = 'east'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.len = 'short' AND T1.position = 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0"
]
} |
{
"query": "How many short cars are in the shape of hexagon?",
"pos": [
"SELECT COUNT(id) FROM cars WHERE shape = 'hexagon' AND len = 'short'"
],
"neg": [
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' ",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'",
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS trailPosi FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.trailPosi <= 2",
"SELECT COUNT(id) FROM trains WHERE direction = 'east'",
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4"
]
} |
{
"query": "Please list the shapes of all the head cars on the trains that run in the east direction.",
"pos": [
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape"
],
"neg": [
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T",
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'",
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' ",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS trailPosi FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.trailPosi <= 2",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4",
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4",
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )"
]
} |
{
"query": "Which direction do most of the trains with rectangle-shaped second cars run?",
"pos": [
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'rectangle' GROUP BY T2.direction ORDER BY COUNT(T2.id) DESC LIMIT 1"
],
"neg": [
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' ",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction",
"SELECT COUNT(DISTINCT T1.train_id) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_num = 3",
"SELECT direction FROM trains GROUP BY direction ORDER BY COUNT(id) DESC",
"SELECT COUNT(id) FROM trains WHERE direction = 'east'",
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'"
]
} |
{
"query": "In which direction does the train with an ellipse-shape car run?",
"pos": [
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'"
],
"neg": [
"SELECT SUM(wheels) FROM cars WHERE len = 'long'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'rectangle' GROUP BY T2.direction ORDER BY COUNT(T2.id) DESC LIMIT 1",
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' ",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS trailPosi FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.trailPosi <= 2",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4",
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape"
]
} |
{
"query": "How many trains are there that run in the east direction?",
"pos": [
"SELECT COUNT(id) FROM trains WHERE direction = 'east'"
],
"neg": [
"SELECT direction FROM trains GROUP BY direction ORDER BY COUNT(id) DESC",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.len = 'short' AND T1.position = 4",
"SELECT COUNT(id) FROM cars WHERE shape = 'hexagon' AND len = 'short'",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'"
]
} |
{
"query": "What is the shape of the tail car on train no.1?",
"pos": [
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4"
],
"neg": [
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4",
"SELECT SUM(wheels) FROM cars WHERE len = 'long'",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape",
"SELECT COUNT(id) FROM trains WHERE direction = 'east'",
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT COUNT(id) FROM cars WHERE shape = 'hexagon' AND len = 'short'"
]
} |
{
"query": "Which direction do the majority of the trains are running?",
"pos": [
"SELECT direction FROM trains GROUP BY direction ORDER BY COUNT(id) DESC"
],
"neg": [
"SELECT COUNT(id) FROM trains WHERE direction = 'east'",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'",
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4",
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.len = 'short' AND T1.position = 4",
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )",
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction"
]
} |
{
"query": "How many cars on a train that runs in the east direction have a flat roof?",
"pos": [
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'"
],
"neg": [
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.len = 'short' AND T1.position = 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'rectangle' GROUP BY T2.direction ORDER BY COUNT(T2.id) DESC LIMIT 1",
"SELECT COUNT(id) FROM cars WHERE shape = 'hexagon' AND len = 'short'",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS trailPosi FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.trailPosi <= 2",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'"
]
} |
{
"query": "Provide the directions for all the trains that have 2 or less cars.",
"pos": [
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS trailPosi FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.trailPosi <= 2"
],
"neg": [
"SELECT COUNT(id) FROM trains WHERE direction = 'east'",
"SELECT SUM(wheels) FROM cars WHERE len = 'long'",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape",
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'rectangle' GROUP BY T2.direction ORDER BY COUNT(T2.id) DESC LIMIT 1",
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT COUNT(DISTINCT T1.train_id) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_num = 3",
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T"
]
} |
{
"query": "Which direction does the majority of the trains that have 3 cars are running?",
"pos": [
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction"
],
"neg": [
"SELECT COUNT(DISTINCT T1.train_id) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_num = 3",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT COUNT(id) FROM trains WHERE direction = 'east'",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS trailPosi FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.trailPosi <= 2",
"SELECT SUM(wheels) FROM cars WHERE len = 'long'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape"
]
} |
{
"query": "List all the directions of the trains that have empty cars.",
"pos": [
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0"
],
"neg": [
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction",
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4",
"SELECT COUNT(id) FROM trains WHERE direction = 'east'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'rectangle' GROUP BY T2.direction ORDER BY COUNT(T2.id) DESC LIMIT 1",
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )",
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T",
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' ",
"SELECT COUNT(id) FROM cars WHERE shape = 'hexagon' AND len = 'short'"
]
} |
{
"query": "Among the trains running east, how many trains have at least 4 cars?",
"pos": [
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4"
],
"neg": [
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4",
"SELECT COUNT(id) FROM cars WHERE shape = 'hexagon' AND len = 'short'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.len = 'short' AND T1.position = 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0",
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape",
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' "
]
} |
{
"query": "Please list the directions in which the trains with at least one empty-loaded car run.",
"pos": [
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0"
],
"neg": [
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT SUM(wheels) FROM cars WHERE len = 'long'",
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'",
"SELECT COUNT(id) FROM cars WHERE shape = 'hexagon' AND len = 'short'",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape",
"SELECT direction FROM trains GROUP BY direction ORDER BY COUNT(id) DESC",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction",
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4"
]
} |
{
"query": "What are the load shapes of all the short ellipse cars?",
"pos": [
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'"
],
"neg": [
"SELECT COUNT(id) FROM cars WHERE shape = 'hexagon' AND len = 'short'",
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.len = 'short' AND T1.position = 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'rectangle' GROUP BY T2.direction ORDER BY COUNT(T2.id) DESC LIMIT 1",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0",
"SELECT COUNT(DISTINCT T1.train_id) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_num = 3",
"SELECT direction FROM trains GROUP BY direction ORDER BY COUNT(id) DESC",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction",
"SELECT SUM(wheels) FROM cars WHERE len = 'long'"
]
} |
{
"query": "How many eastbound trains have rectangular-shaped head cars?",
"pos": [
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T"
],
"neg": [
"SELECT direction FROM trains GROUP BY direction ORDER BY COUNT(id) DESC",
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT COUNT(id) FROM cars WHERE shape = 'hexagon' AND len = 'short'",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape",
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0"
]
} |
{
"query": "What is the direction of the train with a diamond-shaped load in its 2nd car?",
"pos": [
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'"
],
"neg": [
"SELECT T1.id FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T1.direction = 'east' AND T2.carsNum < 4",
"SELECT SUM(wheels) FROM cars WHERE len = 'long'",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0",
"SELECT direction FROM trains GROUP BY direction ORDER BY COUNT(id) DESC",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS trailPosi FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.trailPosi <= 2",
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )",
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' "
]
} |
{
"query": "Among the trains running west, how many trains have no more than one car with an open roof?",
"pos": [
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id "
],
"neg": [
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, MAX(position) AS trailPosi FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.trailPosi <= 2",
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T",
"SELECT T1.shape FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.position = 1 GROUP BY T1.shape",
"SELECT COUNT(id) FROM trains WHERE direction = 'west'",
"SELECT load_shape FROM cars WHERE shape = 'ellipse' AND len = 'short'",
"SELECT SUM(CASE WHEN T1.direction = 'east' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id ) AS T2 ON T1.id = T2.train_id WHERE T2.carsNum >= 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'rectangle' GROUP BY T2.direction ORDER BY COUNT(T2.id) DESC LIMIT 1",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.len = 'short' AND T1.position = 4",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT SUM(CASE WHEN T1.roof = 'flat' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east'"
]
} |
{
"query": "Among the cars on a train that runs in the east direction, how many of them have a flat roof and a circle load shape?",
"pos": [
"SELECT SUM(CASE WHEN T1.load_shape = 'circle' THEN 1 ELSE 0 END)as count FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T2.direction = 'east' AND T1.roof = 'flat' "
],
"neg": [
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'rectangle' GROUP BY T2.direction ORDER BY COUNT(T2.id) DESC LIMIT 1",
"SELECT direction FROM trains GROUP BY direction ORDER BY COUNT(id) DESC",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 2 AND T1.shape = 'diamond'",
"SELECT shape FROM cars WHERE train_id = 1 AND position = 4",
"SELECT T1.direction FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) AS carsNum FROM cars GROUP BY train_id HAVING carsNum = 3 ) AS T2 ON T1.id = T2.train_id GROUP BY T1.direction",
"SELECT DISTINCT T3.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC ) AS T3 UNION ALL SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 UNION ALL SELECT (CAST(COUNT(DISTINCT CASE WHEN T2.direction = 'east' THEN T2.id ELSE NULL END) AS REAL) * 100 / COUNT(DISTINCT T2.id)) FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T1.load_shape = ( SELECT T4.load_shape FROM ( SELECT load_shape, train_id FROM cars AS T WHERE position = 1 ORDER BY train_id DESC LIMIT 1 ) AS T4 )",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.shape = 'ellipse'",
"SELECT SUM(CASE WHEN T1.direction = 'west' THEN 1 ELSE 0 END)as count FROM trains AS T1 INNER JOIN ( SELECT train_id, COUNT(id) FROM cars WHERE roof = 'none' GROUP BY train_id HAVING COUNT(id) = 1 ) AS T2 ON T1.id = T2.train_id ",
"SELECT T2.direction FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.load_num = 0",
"SELECT COUNT(T.train_id) FROM (SELECT T1.train_id FROM cars AS T1 INNER JOIN trains AS T2 ON T1.train_id = T2.id WHERE T1.position = 1 AND T2.direction = 'east' AND T1.shape = 'rectangle' GROUP BY T1.train_id)as T"
]
} |
{
"query": "For the university id 268, show its number of students in 2013.",
"pos": [
"SELECT num_students FROM university_year WHERE university_id = 268 AND year = 2013"
],
"neg": [
"SELECT SUM(CAST(num_students * pct_female_students AS REAL) / 100) FROM university_year WHERE year BETWEEN 2011 AND 2013 AND university_id = 40",
"SELECT MAX(student_staff_ratio) FROM university_year ORDER BY student_staff_ratio DESC LIMIT 1",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id WHERE T1.university_name = 'University of Michigan' AND T2.year = 2011",
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year BETWEEN 2011 AND 2014 AND T2.university_name = 'University of Tokyo'",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.pct_international_students DESC LIMIT 1",
"SELECT country_id FROM university WHERE university_name = 'University of Veterinary Medicine Vienna'",
"SELECT T1.ranking_criteria_id FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' AND T1.year = 2014",
"SELECT T1.university_name, T3.country_name FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2015 ORDER BY T2.num_students DESC LIMIT 1",
"SELECT T1.university_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Argentina' GROUP BY T1.university_name ORDER BY SUM(T2.score) DESC LIMIT 1",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.num_students > 50000 AND T1.year = 2012"
]
} |
{
"query": "How many universities had above 30% of international students in 2013?",
"pos": [
"SELECT COUNT(*) FROM university_year WHERE pct_international_students > 30 AND year = 2013"
],
"neg": [
"SELECT T1.student_staff_ratio FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year = 2012",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id INNER JOIN country AS T4 ON T4.id = T3.country_id WHERE T4.country_name = 'United States of America' AND T2.year = 2011 AND T2.score < 60 AND T1.criteria_name = 'Teaching'",
"SELECT COUNT(*) , SUM(CASE WHEN T3.country_name = 'United States of America' THEN 1 ELSE 0 END) AS nums_in_usa FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2016 AND T2.num_students * T2.pct_female_students / 100 > 20000",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id WHERE T1.university_name = 'University of Michigan' AND T2.year = 2011",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.num_students DESC LIMIT 1",
"SELECT COUNT(*) FROM university_year WHERE year = 2011 AND num_students > 50000 AND pct_international_students > 10",
"SELECT T1.criteria_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Harvard University' AND T2.year = 2011",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Argentina'",
"SELECT country_id FROM university WHERE university_name = 'University of Tokyo'",
"SELECT CAST(SUM(CASE WHEN T2.score > 80 THEN 1 ELSE 0 END) AS REAL) / COUNT(*), ( SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'International' AND T2.year = 2016 AND T2.score > 80 ORDER BY T2.score DESC LIMIT 1 ) AS max FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'International' AND T2.year = 2016"
]
} |
{
"query": "In Argentina, how many universities are there?",
"pos": [
"SELECT COUNT(*) FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Argentina'"
],
"neg": [
"SELECT T1.ranking_criteria_id FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' AND T1.year = 2014",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id GROUP BY T2.country_name ORDER BY COUNT(T1.university_name) DESC LIMIT 1",
"SELECT id FROM university WHERE university_name = 'Harvard University'",
"SELECT DISTINCT T3.country_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.score < 70 AND T2.year = 2016",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.num_students DESC LIMIT 1",
"SELECT CAST(T1.num_students * T1.pct_international_students AS REAL) / 100 FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2013 AND T2.university_name = 'University of Wisconsin-Madison'",
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Center for World University Rankings'",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.pct_international_students DESC LIMIT 1",
"SELECT pct_international_students * num_students, num_students FROM university_year WHERE year = 2013 AND university_id = 20",
"SELECT T1.pct_international_students FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 AND T2.university_name = 'Harvard University'"
]
} |
{
"query": "What is the name of the university that had the highest number of international students for 6 consecutive years?",
"pos": [
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY T1.pct_international_students DESC LIMIT 1"
],
"neg": [
"SELECT CAST(SUM(CASE WHEN T2.score > 80 THEN 1 ELSE 0 END) AS REAL) / COUNT(*), ( SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'International' AND T2.year = 2016 AND T2.score > 80 ORDER BY T2.score DESC LIMIT 1 ) AS max FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'International' AND T2.year = 2016",
"SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Quality of Education Rank'",
"SELECT university_id FROM university_year WHERE year = 2011 ORDER BY num_students DESC LIMIT 1",
"SELECT AVG(T1.score) FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Emory University' AND T1.year BETWEEN 2011 AND 2016",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Australia' AND T2.year = 2011 AND T2.num_students > 15000",
"SELECT id FROM university WHERE university_name = 'Harvard University'",
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year BETWEEN 2011 AND 2012",
"SELECT DISTINCT T3.country_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.score < 70 AND T2.year = 2016",
"SELECT T1.university_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Argentina' GROUP BY T1.university_name ORDER BY SUM(T2.score) DESC LIMIT 1",
"SELECT T2.university_name FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2012 ORDER BY T1.score DESC LIMIT 1"
]
} |
{
"query": "Give the name of the country that has the most universities.",
"pos": [
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id GROUP BY T2.country_name ORDER BY COUNT(T1.university_name) DESC LIMIT 1"
],
"neg": [
"SELECT T2.score FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Chosun University' AND T1.criteria_name = 'Influence Rank' AND T2.year = 2015",
"SELECT id FROM ranking_system WHERE system_name = 'Center for World University Rankings'",
"SELECT AVG(T1.score) FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Emory University' AND T1.year BETWEEN 2011 AND 2016",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id INNER JOIN country AS T4 ON T4.id = T3.country_id WHERE T4.country_name = 'United States of America' AND T2.year = 2011 AND T2.score < 60 AND T1.criteria_name = 'Teaching'",
"SELECT T1.criteria_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'University of Southampton' AND T2.year = 2015 ORDER BY T2.score DESC LIMIT 1",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.num_students > 50000 AND T1.year = 2012",
"SELECT university_id FROM university_year ORDER BY pct_international_students DESC LIMIT 1",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2015 ORDER BY T1.num_students DESC LIMIT 1",
"SELECT country_id FROM university WHERE university_name = 'University of Tokyo'",
"SELECT SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Sweden'"
]
} |
{
"query": "Name the most famous university in Argentina.",
"pos": [
"SELECT T1.university_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Argentina' GROUP BY T1.university_name ORDER BY SUM(T2.score) DESC LIMIT 1"
],
"neg": [
"SELECT COUNT(*) FROM university_year WHERE year = 2011 AND pct_international_students > 25 AND num_students > 20000",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Teaching' AND T2.year = 2011 AND T2.score = 98",
"SELECT COUNT(*) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Yale University' AND T2.score >= 10 AND T1.criteria_name = 'Quality of Education Rank'",
"SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Quality of Education Rank'",
"SELECT T1.num_students FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year = 2011",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.num_students DESC LIMIT 1",
"SELECT id FROM country WHERE country_name = 'Cyprus'",
"SELECT university_id FROM university_year WHERE year = 2011 ORDER BY num_students DESC LIMIT 1",
"SELECT country_id FROM university WHERE university_name = 'University of Veterinary Medicine Vienna'",
"SELECT id FROM university WHERE university_name = 'Harvard University'"
]
} |
{
"query": "Show the name of the university with the lowest number of students in 2015.",
"pos": [
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2015 ORDER BY T1.num_students ASC LIMIT 1"
],
"neg": [
"SELECT CAST(T1.num_students * T1.pct_international_students AS REAL) / 100 FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2013 AND T2.university_name = 'University of Wisconsin-Madison'",
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Center for World University Rankings'",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Harvard University'",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Teaching' AND T2.year = 2011 ORDER BY T2.score DESC LIMIT 1",
"SELECT T2.university_name FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2012 ORDER BY T1.score DESC LIMIT 1",
"SELECT T1.student_staff_ratio FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year = 2012",
"SELECT SUM(CAST(T2.pct_female_students * T2.num_students AS REAL) / 100) * 100 / SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'United States of America' AND T2.year = 2016",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 AND T1.num_students > 100000",
"SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Total Shanghai'",
"SELECT id FROM ranking_criteria WHERE criteria_name = 'Citations Rank'"
]
} |
{
"query": "How many universities have no less than 20,000 female students in 2016? Identify how many of the said universities are located in the United States of America.",
"pos": [
"SELECT COUNT(*) , SUM(CASE WHEN T3.country_name = 'United States of America' THEN 1 ELSE 0 END) AS nums_in_usa FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2016 AND T2.num_students * T2.pct_female_students / 100 > 20000"
],
"neg": [
"SELECT T1.num_students FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year = 2011",
"SELECT id FROM ranking_criteria WHERE criteria_name = 'Citations Rank'",
"SELECT CAST(SUM(T1.num_students) AS REAL) / SUM(T1.student_staff_ratio) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'University of Auckland' AND T1.year = 2015",
"SELECT SUM(T1.num_students) FROM university_year AS T1 INNER JOIN university_ranking_year AS T2 ON T1.university_id = T2.university_id WHERE T2.score = 98 AND T1.year = 2013",
"SELECT SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Sweden'",
"SELECT SUM(CAST(T2.pct_female_students * T2.num_students AS REAL) / 100) * 100 / SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'United States of America' AND T2.year = 2016",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id GROUP BY T2.country_name ORDER BY COUNT(T1.university_name) DESC LIMIT 1",
"SELECT COUNT(*) FROM university_year WHERE year = 2011 AND num_students > 30000",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Japan'",
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year BETWEEN 2011 AND 2014 AND T2.university_name = 'University of Tokyo'"
]
} |
{
"query": "What is the student staff ratio of the university with the highest student staff ratio of all time?",
"pos": [
"SELECT MAX(student_staff_ratio) FROM university_year WHERE student_staff_ratio = ( SELECT MAX(student_staff_ratio) FROM university_year )"
],
"neg": [
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Shanghai Ranking'",
"SELECT id FROM ranking_criteria WHERE criteria_name = 'Citations Rank'",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Japan'",
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.num_students BETWEEN 400 AND 1000",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.id = 112",
"SELECT SUM(T1.num_students) FROM university_year AS T1 INNER JOIN university_ranking_year AS T2 ON T1.university_id = T2.university_id WHERE T2.score = 98 AND T1.year = 2013",
"SELECT T1.university_name, T3.country_name FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2015 ORDER BY T2.num_students DESC LIMIT 1",
"SELECT id FROM university WHERE university_name = 'Harvard University'",
"SELECT SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Sweden'",
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Center for World University Rankings'"
]
} |
{
"query": "Calculate the total number of students in universities located in Sweden.",
"pos": [
"SELECT SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Sweden'"
],
"neg": [
"SELECT COUNT(*) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Australia' AND T2.year = 2011 AND T2.num_students > 15000",
"SELECT T1.ranking_criteria_id FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' AND T1.year = 2014",
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Center for World University Rankings'",
"SELECT COUNT(*) FROM university_year WHERE num_students > 80000 AND year = 2011",
"SELECT T1.university_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Argentina' GROUP BY T1.university_name ORDER BY SUM(T2.score) DESC LIMIT 1",
"SELECT AVG(T2.score) FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Brazil'",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Teaching' AND T2.year = 2011 ORDER BY T2.score DESC LIMIT 1",
"SELECT year FROM university_year ORDER BY num_students ASC LIMIT 1",
"SELECT country_id FROM university WHERE university_name = 'University of Tokyo'",
"SELECT MAX(student_staff_ratio) FROM university_year WHERE student_staff_ratio = ( SELECT MAX(student_staff_ratio) FROM university_year )"
]
} |
{
"query": "How many percent of universities got a score above 80 under International criteria in 2016? Among them, name the university which got the highest score.",
"pos": [
"SELECT CAST(SUM(CASE WHEN T2.score > 80 THEN 1 ELSE 0 END) AS REAL) / COUNT(*), ( SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'International' AND T2.year = 2016 AND T2.score > 80 ORDER BY T2.score DESC LIMIT 1 ) AS max FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'International' AND T2.year = 2016"
],
"neg": [
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Shanghai Ranking'",
"SELECT COUNT(*) , SUM(CASE WHEN T3.country_name = 'United States of America' THEN 1 ELSE 0 END) AS nums_in_usa FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2016 AND T2.num_students * T2.pct_female_students / 100 > 20000",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Harvard University'",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Teaching' AND T2.year = 2011 AND T2.score = 98",
"SELECT SUM(T1.num_students) FROM university_year AS T1 INNER JOIN university_ranking_year AS T2 ON T1.university_id = T2.university_id WHERE T2.score = 98 AND T1.year = 2013",
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.num_students BETWEEN 400 AND 1000",
"SELECT SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Sweden'",
"SELECT AVG(T1.score) FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Emory University' AND T1.year BETWEEN 2011 AND 2016",
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY (CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) DESC LIMIT 5",
"SELECT T1.year FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' ORDER BY T1.score DESC LIMIT 1"
]
} |
{
"query": "What are the names of the universities that got 98 in teaching in 2011?",
"pos": [
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Teaching' AND T2.year = 2011 AND T2.score = 98"
],
"neg": [
"SELECT T1.year FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' ORDER BY T1.score DESC LIMIT 1",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Harvard University'",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Argentina'",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Japan'",
"SELECT year FROM university_year ORDER BY num_students ASC LIMIT 1",
"SELECT (SUM(CASE WHEN T1.system_name = 'Center for World University Rankings' THEN 1 ELSE 0 END) + SUM(CASE WHEN T1.system_name = 'Shanghai Ranking' THEN 1 ELSE 0 END) + SUM(CASE WHEN T1.system_name = 'Times Higher Education World University Ranking' THEN 1 ELSE 0 END)) / 3 FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id",
"SELECT COUNT(*) , SUM(CASE WHEN T3.country_name = 'United States of America' THEN 1 ELSE 0 END) AS nums_in_usa FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2016 AND T2.num_students * T2.pct_female_students / 100 > 20000",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Publications Rank' AND T2.year = 2014 AND T1.id = 17 ORDER BY T2.score DESC LIMIT 1",
"SELECT country_id FROM university WHERE university_name = 'University of Veterinary Medicine Vienna'",
"SELECT COUNT(*) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Yale University' AND T2.score >= 10 AND T1.criteria_name = 'Quality of Education Rank'"
]
} |
{
"query": "How many universities scored 40 in teaching criteria?",
"pos": [
"SELECT COUNT(*) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id WHERE T2.score = 40 AND T1.criteria_name = 'Teaching' AND T2.score = 40"
],
"neg": [
"SELECT pct_international_students * num_students, num_students FROM university_year WHERE year = 2013 AND university_id = 20",
"SELECT COUNT(*) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Yale University' AND T2.score >= 10 AND T1.criteria_name = 'Quality of Education Rank'",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Harvard University'",
"SELECT MAX(student_staff_ratio) FROM university_year ORDER BY student_staff_ratio DESC LIMIT 1",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.num_students > 50000 AND T1.year = 2012",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2015 ORDER BY T1.num_students ASC LIMIT 1",
"SELECT T1.criteria_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'University of Southampton' AND T2.year = 2015 ORDER BY T2.score DESC LIMIT 1",
"SELECT T1.student_staff_ratio FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year = 2012",
"SELECT DISTINCT T3.country_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.score < 70 AND T2.year = 2016",
"SELECT DISTINCT T3.country_name FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2013 AND T2.num_students * 100 > ( SELECT AVG(num_students) FROM university_year ) * 98"
]
} |
{
"query": "Give the names of universities with number of students ranges from 400 to 1000.",
"pos": [
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.num_students BETWEEN 400 AND 1000"
],
"neg": [
"SELECT T1.university_name, T3.country_name FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2015 ORDER BY T2.num_students DESC LIMIT 1",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY T1.num_students * T1.pct_female_students / 100 - T1.num_students DESC LIMIT 1",
"SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Total Shanghai'",
"SELECT AVG(score) FROM university_ranking_year WHERE year BETWEEN 2013 AND 2015 AND university_id = 79",
"SELECT MAX(student_staff_ratio) FROM university_year WHERE student_staff_ratio = ( SELECT MAX(student_staff_ratio) FROM university_year )",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Publications Rank' AND T2.year = 2014 AND T1.id = 17 ORDER BY T2.score DESC LIMIT 1",
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY (CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) DESC LIMIT 5",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.id = 112",
"SELECT T1.university_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN ranking_criteria AS T3 ON T3.id = T2.ranking_criteria_id WHERE T3.criteria_name = 'Teaching' ORDER BY T2.score DESC LIMIT 1",
"SELECT id FROM university WHERE university_name = 'Harvard University'"
]
} |
{
"query": "Calculate the average score of Emory University from 2011 to 2016.",
"pos": [
"SELECT AVG(T1.score) FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Emory University' AND T1.year BETWEEN 2011 AND 2016"
],
"neg": [
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Center for World University Rankings'",
"SELECT T1.criteria_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'University of Southampton' AND T2.year = 2015 ORDER BY T2.score DESC LIMIT 1",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY T1.num_students * T1.pct_female_students / 100 - T1.num_students DESC LIMIT 1",
"SELECT SUM(CAST(T2.pct_female_students * T2.num_students AS REAL) / 100) * 100 / SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'United States of America' AND T2.year = 2016",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Johns Hopkins University'",
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Shanghai Ranking'",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2015 ORDER BY T1.num_students ASC LIMIT 1",
"SELECT id FROM ranking_system WHERE system_name = 'Center for World University Rankings'",
"SELECT T2.score FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Chosun University' AND T1.criteria_name = 'Influence Rank' AND T2.year = 2015",
"SELECT COUNT(*) FROM university_year WHERE year = 2011 AND pct_international_students > 25 AND num_students > 20000"
]
} |
{
"query": "Among the universities in United States of America, what is the percentage of female students in year 2016?",
"pos": [
"SELECT SUM(CAST(T2.pct_female_students * T2.num_students AS REAL) / 100) * 100 / SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'United States of America' AND T2.year = 2016"
],
"neg": [
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Shanghai Ranking'",
"SELECT AVG(T2.score) FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Brazil'",
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY (CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) DESC LIMIT 5",
"SELECT id FROM ranking_system WHERE system_name = 'Center for World University Rankings'",
"SELECT T1.pct_international_students FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 AND T2.university_name = 'Harvard University'",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.num_students > 50000 AND T1.year = 2012",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY T1.num_students LIMIT 1",
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year BETWEEN 2011 AND 2012",
"SELECT COUNT(*) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id WHERE T2.score = 40 AND T1.criteria_name = 'Teaching' AND T2.score = 40",
"SELECT SUM(T1.num_students) FROM university_year AS T1 INNER JOIN university_ranking_year AS T2 ON T1.university_id = T2.university_id WHERE T2.score = 98 AND T1.year = 2013"
]
} |
{
"query": "What are the names of the top 5 universities with the highest number of international students?",
"pos": [
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY (CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) DESC LIMIT 5"
],
"neg": [
"SELECT T1.num_students FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year = 2011",
"SELECT DISTINCT T3.country_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.score < 70 AND T2.year = 2016",
"SELECT AVG(score) FROM university_ranking_year WHERE year BETWEEN 2013 AND 2015 AND university_id = 79",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY T1.pct_international_students DESC LIMIT 1",
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Center for World University Rankings'",
"SELECT DISTINCT T3.criteria_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN ranking_criteria AS T3 ON T3.id = T2.ranking_criteria_id WHERE T1.university_name = 'Harvard University' AND T2.score = 100",
"SELECT CAST(SUM(CASE WHEN T2.score > 80 THEN 1 ELSE 0 END) AS REAL) / COUNT(*), ( SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'International' AND T2.year = 2016 AND T2.score > 80 ORDER BY T2.score DESC LIMIT 1 ) AS max FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'International' AND T2.year = 2016",
"SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Quality of Education Rank'",
"SELECT CAST(T1.num_students * T1.pct_international_students AS REAL) / 100 FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2013 AND T2.university_name = 'University of Wisconsin-Madison'",
"SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Total Shanghai'"
]
} |
{
"query": "In what year does the Brown University score the highest?",
"pos": [
"SELECT T1.year FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' ORDER BY T1.score DESC LIMIT 1"
],
"neg": [
"SELECT COUNT(*) FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Japan'",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Johns Hopkins University'",
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY (CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) DESC LIMIT 5",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.id = 112",
"SELECT T1.university_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN ranking_criteria AS T3 ON T3.id = T2.ranking_criteria_id WHERE T3.criteria_name = 'Teaching' ORDER BY T2.score DESC LIMIT 1",
"SELECT DISTINCT T3.criteria_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN ranking_criteria AS T3 ON T3.id = T2.ranking_criteria_id WHERE T1.university_name = 'Harvard University' AND T2.score = 100",
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Shanghai Ranking'",
"SELECT MAX(student_staff_ratio) FROM university_year ORDER BY student_staff_ratio DESC LIMIT 1",
"SELECT T1.num_students FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year = 2011",
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id GROUP BY T2.university_name ORDER BY SUM(T1.num_students * T1.pct_international_students / 100) DESC LIMIT 3"
]
} |
{
"query": "Which universities have more than 100,000 students in 2011?",
"pos": [
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 AND T1.num_students > 100000"
],
"neg": [
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.num_students DESC LIMIT 1",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id INNER JOIN country AS T4 ON T4.id = T3.country_id WHERE T4.country_name = 'United States of America' AND T2.year = 2011 AND T2.score < 60 AND T1.criteria_name = 'Teaching'",
"SELECT MAX(student_staff_ratio) FROM university_year ORDER BY student_staff_ratio DESC LIMIT 1",
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year BETWEEN 2011 AND 2012",
"SELECT university_id FROM university_year WHERE year = 2011 AND student_staff_ratio > 15",
"SELECT id FROM ranking_system WHERE system_name = 'Center for World University Rankings'",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id GROUP BY T2.country_name ORDER BY COUNT(T1.university_name) DESC LIMIT 1",
"SELECT T1.university_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Australia'",
"SELECT CAST(T1.num_students * T1.pct_international_students AS REAL) / 100 FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2013 AND T2.university_name = 'University of Wisconsin-Madison'",
"SELECT MAX(student_staff_ratio) FROM university_year WHERE student_staff_ratio = ( SELECT MAX(student_staff_ratio) FROM university_year )"
]
} |
{
"query": "In which year did university ID 1 have the most students?",
"pos": [
"SELECT year FROM university_year WHERE university_id = 1 ORDER BY num_students DESC LIMIT 1"
],
"neg": [
"SELECT COUNT(*) , SUM(CASE WHEN T3.country_name = 'United States of America' THEN 1 ELSE 0 END) AS nums_in_usa FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2016 AND T2.num_students * T2.pct_female_students / 100 > 20000",
"SELECT COUNT(*) FROM university_year WHERE year = 2011 AND pct_international_students > 25 AND num_students > 20000",
"SELECT MAX(student_staff_ratio) FROM university_year ORDER BY student_staff_ratio DESC LIMIT 1",
"SELECT SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Sweden'",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id INNER JOIN country AS T4 ON T4.id = T3.country_id WHERE T4.country_name = 'United States of America' AND T2.year = 2011 AND T2.score < 60 AND T1.criteria_name = 'Teaching'",
"SELECT T2.university_name FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2015 AND T1.score * 100 < ( SELECT AVG(score) * 28 FROM university_ranking_year WHERE year = 2015 )",
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year BETWEEN 2011 AND 2012",
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year BETWEEN 2011 AND 2014 AND T2.university_name = 'University of Tokyo'",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.num_students DESC LIMIT 1",
"SELECT university_id FROM university_year WHERE year = 2011 ORDER BY num_students DESC LIMIT 1"
]
} |
{
"query": "What are the top three universities with the most international students?",
"pos": [
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id GROUP BY T2.university_name ORDER BY SUM(T1.num_students * T1.pct_international_students / 100) DESC LIMIT 3"
],
"neg": [
"SELECT university_id FROM university_year ORDER BY pct_international_students DESC LIMIT 1",
"SELECT T1.num_students FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year = 2011",
"SELECT DISTINCT T3.country_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.score < 70 AND T2.year = 2016",
"SELECT AVG(T2.score) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id WHERE T1.criteria_name = 'Alumni' AND T2.year = 2008",
"SELECT T1.ranking_criteria_id FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' AND T1.year = 2014",
"SELECT university_id FROM university_year WHERE year = 2011 ORDER BY num_students DESC LIMIT 1",
"SELECT COUNT(*) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Yale University' AND T2.score >= 10 AND T1.criteria_name = 'Quality of Education Rank'",
"SELECT year FROM university_year WHERE university_id = 1 ORDER BY num_students DESC LIMIT 1",
"SELECT num_students FROM university_year WHERE university_id = 268 AND year = 2013",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Japan'"
]
} |
{
"query": "Please list the names of all the universities that scored under 60 in teaching in 2011 and are in the United States of America.",
"pos": [
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id INNER JOIN country AS T4 ON T4.id = T3.country_id WHERE T4.country_name = 'United States of America' AND T2.year = 2011 AND T2.score < 60 AND T1.criteria_name = 'Teaching'"
],
"neg": [
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Center for World University Rankings'",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY T1.num_students * T1.pct_female_students / 100 - T1.num_students DESC LIMIT 1",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Teaching' AND T2.year = 2011 AND T2.score = 98",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Publications Rank' AND T2.year = 2014 AND T1.id = 17 ORDER BY T2.score DESC LIMIT 1",
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.num_students BETWEEN 400 AND 1000",
"SELECT T1.university_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN ranking_criteria AS T3 ON T3.id = T2.ranking_criteria_id WHERE T3.criteria_name = 'Teaching' ORDER BY T2.score DESC LIMIT 1",
"SELECT T1.criteria_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'University of Southampton' AND T2.year = 2015 ORDER BY T2.score DESC LIMIT 1",
"SELECT COUNT(*) FROM university_year WHERE num_students > 80000 AND year = 2011",
"SELECT id FROM ranking_criteria WHERE criteria_name = 'Citations Rank'",
"SELECT AVG(T2.score) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id WHERE T1.criteria_name = 'Alumni' AND T2.year = 2008"
]
} |
{
"query": "Which ranking system is criteria \"Total Shanghai\" in?",
"pos": [
"SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Total Shanghai'"
],
"neg": [
"SELECT num_students FROM university_year WHERE university_id = 268 AND year = 2013",
"SELECT country_id FROM university WHERE university_name = 'University of Tokyo'",
"SELECT COUNT(*) FROM university_year WHERE year = 2011 AND num_students > 30000",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY T1.num_students * T1.pct_female_students / 100 - T1.num_students DESC LIMIT 1",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2015 ORDER BY T1.num_students ASC LIMIT 1",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.num_students > 50000 AND T1.year = 2012",
"SELECT university_id FROM university_year ORDER BY pct_international_students DESC LIMIT 1",
"SELECT country_id FROM university WHERE university_name = 'University of Veterinary Medicine Vienna'",
"SELECT AVG(T2.score) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id WHERE T1.criteria_name = 'Alumni' AND T2.year = 2008",
"SELECT year FROM university_year WHERE university_id = 1 ORDER BY num_students DESC LIMIT 1"
]
} |
{
"query": "What is the country ID of the University of Tokyo?",
"pos": [
"SELECT country_id FROM university WHERE university_name = 'University of Tokyo'"
],
"neg": [
"SELECT T1.ranking_criteria_id FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' AND T1.year = 2014",
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Center for World University Rankings'",
"SELECT id FROM country WHERE country_name = 'Cyprus'",
"SELECT COUNT(*) FROM university_year WHERE year = 2011 AND num_students > 50000 AND pct_international_students > 10",
"SELECT CAST(T1.num_students * T1.pct_international_students AS REAL) / 100 FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2013 AND T2.university_name = 'University of Wisconsin-Madison'",
"SELECT COUNT(*) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Yale University' AND T2.score >= 10 AND T1.criteria_name = 'Quality of Education Rank'",
"SELECT MAX(student_staff_ratio) FROM university_year ORDER BY student_staff_ratio DESC LIMIT 1",
"SELECT T1.criteria_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'University of Southampton' AND T2.year = 2015 ORDER BY T2.score DESC LIMIT 1",
"SELECT AVG(T1.score) FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Emory University' AND T1.year BETWEEN 2011 AND 2016",
"SELECT COUNT(*) , SUM(CASE WHEN T3.country_name = 'United States of America' THEN 1 ELSE 0 END) AS nums_in_usa FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2016 AND T2.num_students * T2.pct_female_students / 100 > 20000"
]
} |
{
"query": "Give the location of the university ID 112.",
"pos": [
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.id = 112"
],
"neg": [
"SELECT T1.year FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' ORDER BY T1.score DESC LIMIT 1",
"SELECT SUM(T1.num_students) FROM university_year AS T1 INNER JOIN university_ranking_year AS T2 ON T1.university_id = T2.university_id WHERE T2.score = 98 AND T1.year = 2013",
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Center for World University Rankings'",
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year BETWEEN 2011 AND 2014 AND T2.university_name = 'University of Tokyo'",
"SELECT T1.criteria_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Harvard University' AND T2.year = 2011",
"SELECT COUNT(*) FROM university_year WHERE year = 2011 AND pct_international_students > 25 AND num_students > 20000",
"SELECT DISTINCT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id GROUP BY T2.university_name ORDER BY SUM(T1.num_students * T1.pct_international_students / 100) DESC LIMIT 3",
"SELECT SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Sweden'",
"SELECT id FROM ranking_criteria WHERE criteria_name = 'Citations Rank'",
"SELECT T1.criteria_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'University of Southampton' AND T2.year = 2015 ORDER BY T2.score DESC LIMIT 1"
]
} |
{
"query": "Calculate the difference between the total number of students and the number of international international students in Univeristy of Tokyo from 2011 to 2014.",
"pos": [
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year BETWEEN 2011 AND 2014 AND T2.university_name = 'University of Tokyo'"
],
"neg": [
"SELECT AVG(T2.score) FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Brazil'",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.pct_international_students DESC LIMIT 1",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Publications Rank' AND T2.year = 2014 AND T1.id = 17 ORDER BY T2.score DESC LIMIT 1",
"SELECT id FROM country WHERE country_name = 'Cyprus'",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Johns Hopkins University'",
"SELECT T1.criteria_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'University of Southampton' AND T2.year = 2015 ORDER BY T2.score DESC LIMIT 1",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Harvard University'",
"SELECT CAST(SUM(CASE WHEN T2.score > 80 THEN 1 ELSE 0 END) AS REAL) / COUNT(*), ( SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'International' AND T2.year = 2016 AND T2.score > 80 ORDER BY T2.score DESC LIMIT 1 ) AS max FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'International' AND T2.year = 2016",
"SELECT T1.year FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' ORDER BY T1.score DESC LIMIT 1",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.num_students DESC LIMIT 1"
]
} |
{
"query": "Name the university and country which had the highest number of international students in 2015.",
"pos": [
"SELECT T1.university_name, T3.country_name FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2015 ORDER BY T2.num_students DESC LIMIT 1"
],
"neg": [
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year BETWEEN 2011 AND 2012",
"SELECT COUNT(*) FROM university_ranking_year WHERE ranking_criteria_id = 6 AND year = 2011 AND score < 50",
"SELECT DISTINCT T3.country_name FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2013 AND T2.num_students * 100 > ( SELECT AVG(num_students) FROM university_year ) * 98",
"SELECT CAST(T1.num_students * T1.pct_international_students AS REAL) / 100 FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2013 AND T2.university_name = 'University of Wisconsin-Madison'",
"SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Total Shanghai'",
"SELECT COUNT(*) FROM university_year WHERE num_students > 80000 AND year = 2011",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY T1.num_students * T1.pct_female_students / 100 - T1.num_students DESC LIMIT 1",
"SELECT T1.year FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' ORDER BY T1.score DESC LIMIT 1",
"SELECT T2.university_name FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2015 AND T1.score * 100 < ( SELECT AVG(score) * 28 FROM university_ranking_year WHERE year = 2015 )",
"SELECT T1.ranking_criteria_id FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' AND T1.year = 2014"
]
} |
{
"query": "What is the name of the university with the most international students in 2011?",
"pos": [
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.pct_international_students DESC LIMIT 1"
],
"neg": [
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Johns Hopkins University'",
"SELECT COUNT(*) FROM university_year WHERE num_students > 80000 AND year = 2011",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id ORDER BY T1.num_students LIMIT 1",
"SELECT university_id FROM university_year WHERE year = 2011 AND student_staff_ratio > 15",
"SELECT DISTINCT T3.country_name FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2013 AND T2.num_students * 100 > ( SELECT AVG(num_students) FROM university_year ) * 98",
"SELECT id FROM ranking_system WHERE system_name = 'Center for World University Rankings'",
"SELECT T1.year FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' ORDER BY T1.score DESC LIMIT 1",
"SELECT AVG(T2.score) FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Brazil'",
"SELECT SUM(T1.num_students) FROM university_year AS T1 INNER JOIN university_ranking_year AS T2 ON T1.university_id = T2.university_id WHERE T2.score = 98 AND T1.year = 2013",
"SELECT COUNT(*) , SUM(CASE WHEN T3.country_name = 'United States of America' THEN 1 ELSE 0 END) AS nums_in_usa FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2016 AND T2.num_students * T2.pct_female_students / 100 > 20000"
]
} |
{
"query": "Which university had the highest reputation in 2012?",
"pos": [
"SELECT T2.university_name FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2012 ORDER BY T1.score DESC LIMIT 1"
],
"neg": [
"SELECT SUM(T2.num_students) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Sweden'",
"SELECT SUM(T1.num_students) FROM university_year AS T1 INNER JOIN university_ranking_year AS T2 ON T1.university_id = T2.university_id WHERE T2.score = 98 AND T1.year = 2013",
"SELECT DISTINCT T3.country_name FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2013 AND T2.num_students * 100 > ( SELECT AVG(num_students) FROM university_year ) * 98",
"SELECT T2.criteria_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T1.system_name = 'Center for World University Rankings'",
"SELECT COUNT(*) FROM university_year WHERE pct_international_students > 30 AND year = 2013",
"SELECT AVG(T2.score) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id WHERE T1.criteria_name = 'Alumni' AND T2.year = 2008",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.id = 112",
"SELECT AVG(score) FROM university_ranking_year WHERE year BETWEEN 2013 AND 2015 AND university_id = 79",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Harvard University'",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.num_students DESC LIMIT 1"
]
} |
{
"query": "Provide the number of staff at the University of Auckland in 2015.",
"pos": [
"SELECT CAST(SUM(T1.num_students) AS REAL) / SUM(T1.student_staff_ratio) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'University of Auckland' AND T1.year = 2015"
],
"neg": [
"SELECT T2.university_name FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2015 AND T1.score * 100 < ( SELECT AVG(score) * 28 FROM university_ranking_year WHERE year = 2015 )",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Argentina'",
"SELECT SUM(T1.num_students) - SUM(CAST(T1.num_students * T1.pct_international_students AS REAL) / 100) FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year BETWEEN 2011 AND 2012",
"SELECT id FROM ranking_system WHERE system_name = 'Center for World University Rankings'",
"SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Quality of Education Rank'",
"SELECT T1.university_name FROM university AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.university_id INNER JOIN ranking_criteria AS T3 ON T3.id = T2.ranking_criteria_id WHERE T3.criteria_name = 'Teaching' ORDER BY T2.score DESC LIMIT 1",
"SELECT COUNT(*) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Yale University' AND T2.score >= 10 AND T1.criteria_name = 'Quality of Education Rank'",
"SELECT COUNT(*) FROM university_ranking_year WHERE ranking_criteria_id = 6 AND year = 2011 AND score < 50",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Publications Rank' AND T2.year = 2014 AND T1.id = 17 ORDER BY T2.score DESC LIMIT 1",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.pct_international_students DESC LIMIT 1"
]
} |
{
"query": "Name the university that had the most students in 2011.",
"pos": [
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.num_students DESC LIMIT 1"
],
"neg": [
"SELECT T1.system_name FROM ranking_system AS T1 INNER JOIN ranking_criteria AS T2 ON T1.id = T2.ranking_system_id WHERE T2.criteria_name = 'Total Shanghai'",
"SELECT num_students FROM university_year WHERE university_id = 268 AND year = 2013",
"SELECT T1.year FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Brown University' ORDER BY T1.score DESC LIMIT 1",
"SELECT T2.country_name FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T1.university_name = 'Johns Hopkins University'",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T3.country_name = 'Australia' AND T2.year = 2011 AND T2.num_students > 15000",
"SELECT COUNT(*) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T3.university_name = 'Yale University' AND T2.score >= 10 AND T1.criteria_name = 'Quality of Education Rank'",
"SELECT T2.university_name FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2015 AND T1.score * 100 < ( SELECT AVG(score) * 28 FROM university_ranking_year WHERE year = 2015 )",
"SELECT COUNT(*) FROM university_year WHERE year = 2011 AND num_students > 50000 AND pct_international_students > 10",
"SELECT SUM(CAST(num_students * pct_female_students AS REAL) / 100) FROM university_year WHERE year BETWEEN 2011 AND 2013 AND university_id = 40",
"SELECT year FROM university_year ORDER BY num_students ASC LIMIT 1"
]
} |
{
"query": "In 2014, what is the name of the university which was considered a leader in the publications rank?",
"pos": [
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Publications Rank' AND T2.year = 2014 AND T1.id = 17 ORDER BY T2.score DESC LIMIT 1"
],
"neg": [
"SELECT T1.num_students FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Harvard University' AND T1.year = 2011",
"SELECT COUNT(*) FROM university AS T1 INNER JOIN country AS T2 ON T1.country_id = T2.id WHERE T2.country_name = 'Argentina'",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 AND T1.num_students > 100000",
"SELECT num_students FROM university_year WHERE university_id = 268 AND year = 2013",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id WHERE T1.criteria_name = 'Teaching' AND T2.year = 2011 ORDER BY T2.score DESC LIMIT 1",
"SELECT DISTINCT T3.country_name FROM university AS T1 INNER JOIN university_year AS T2 ON T1.id = T2.university_id INNER JOIN country AS T3 ON T3.id = T1.country_id WHERE T2.year = 2013 AND T2.num_students * 100 > ( SELECT AVG(num_students) FROM university_year ) * 98",
"SELECT AVG(T2.score) FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id WHERE T1.criteria_name = 'Alumni' AND T2.year = 2008",
"SELECT AVG(T1.score) FROM university_ranking_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T2.university_name = 'Emory University' AND T1.year BETWEEN 2011 AND 2016",
"SELECT T2.university_name FROM university_year AS T1 INNER JOIN university AS T2 ON T1.university_id = T2.id WHERE T1.year = 2011 ORDER BY T1.num_students DESC LIMIT 1",
"SELECT T3.university_name FROM ranking_criteria AS T1 INNER JOIN university_ranking_year AS T2 ON T1.id = T2.ranking_criteria_id INNER JOIN university AS T3 ON T3.id = T2.university_id INNER JOIN country AS T4 ON T4.id = T3.country_id WHERE T4.country_name = 'United States of America' AND T2.year = 2011 AND T2.score < 60 AND T1.criteria_name = 'Teaching'"
]
} |