Datasets:
task_categories:
- text-classification
task_ids:
- sentiment-analysis
- sentiment-classification
- sentiment-scoring
- semantic-similarity-classification
- semantic-similarity-scoring
tags:
- twitter:sentiment analysis, africa:sentiment analysis
multilinguality:
- monolingual
- multilingual
size_categories:
- 100K<n<1M
language:
- am
- ha
- ig
- yo
- sw
- rw
- om
- ti
- ar
- pt
- ama
- kin
- pcm
- tso
- arq
- ary
pretty_name: AfriSenti
Dataset Card for AfriSenti Dataset
Dataset Summary
AfriSenti is the largest sentiment analysis dataset for under-represented African languages, covering 110,000+ annotated tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yoruba).
The datasets are used in the first Afrocentric SemEval shared task, SemEval 2023 Task 12: Sentiment analysis for African languages (AfriSenti-SemEval). AfriSenti allows the research community to build sentiment analysis systems for various African languages and enables the study of sentiment and contemporary language use in African languages.
Repository:
Paper:
Leaderboard:
Point of Contact:
Dataset Summary
Supported Tasks and Leaderboards
SemEval 2023 Task 12 : Sentiment Analysis for African Languages
Languages
14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yoruba).
Dataset Structure
Data Instances
For each instance, there is a string for the tweet and a string for the label. See the AfriSenti dataset viewer to explore more examples.
{
"tweet": "string",
"label": "string"
}
Data Fields
The data fields are:
tweet: a string feature.
label: a classification label, with possible values including positive, negative and neutral.
Data Splits
The AfriSenti dataset has 3 splits: train, validation, and test. Below are the statistics for Version 1.0.0 of the dataset.
ama | arq | hau | ibo | ary | orm | pcm | pt-MZ | kin | swa | tir | tso | twi | yo | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
train | 5,982 | 1,652 | 14,173 | 10,193 | 5,584 | - | 5,122 | 3,064 | 3,303 | 1,811 | - | 805 | 3,482 | 8,523 |
dev | 1,498 | 415 | 2,678 | 1,842 | 1,216 | 397 | 1,282 | 768 | 828 | 454 | 399 | 204 | 389 | 2,091 |
test | 2,000 | 959 | 5,304 | 3,683 | 2,962 | 2,097 | 4,155 | 3,663 | 1,027 | 749 | 2,001 | 255 | 950 | 4,516 |
total | 9,483 | 3,062 | 22,155 | 15,718 | 9,762 | 2,494 | 10,559 | 7,495 | 5,158 | 3,014 | 2,400 | 1,264 | 4,821 | 15,130 |
Dataset Creation
Curation Rationale
AfriSenti Version 1.0.0 aimed to be used in the first Afrocentric SemEval shared task SemEval 2023 Task 12: Sentiment analysis for African languages (AfriSenti-SemEval).
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
We anonymized the tweets by replacing all @mentions by @user and removed all URLs.
Considerations for Using the Data
Social Impact of Dataset
The Afrisenti dataset has the potential to improve sentiment analysis for African languages, which is essential for understanding and analyzing the diverse perspectives of people in the African continent. This dataset can enable researchers and developers to create sentiment analysis models that are specific to African languages, which can be used to gain insights into the social, cultural, and political views of people in African countries. Furthermore, this dataset can help address the issue of underrepresentation of African languages in natural language processing, paving the way for more equitable and inclusive AI technologies.
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
The dataset was orginally created for four Nigerian languages (Hausa, Yoruba, Igbo and Nigerian-Pidgin) in NaijaSenti paper and Amharic languages in .. paper. The dataset is expanded to other African languages. The following team help in in curating the dataset in each languages
Language | Dataset Curators |
---|---|
Algerian Arabic (arq) | Nedjma Ousidhoum |
Amharic (ama) | Abinew Ali Ayele, Seid Muhie Yimam |
Hausa (hau) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello |
Igbo (ibo) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello |
Kinyarwanda (kin) | Samuel Rutund |
Moroccan Arabic/Darija (ary) | Oumaima Hourran |
Mozambique Portuguese (pt-MZ) | Felermino Dário Mário António Ali |
Nigerian Pidgin (pcm) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello |
Oromo (orm) | Abinew Ali Ayele, Seid Muhie Yimam, Hagos Tesfahun Gebremichael, Sisay Adugna Chala, Hailu Beshada Balcha, Wendimu Baye Messell,Tadesse Belay |
Swahili (swa) | Davis Davis |
Tigrinya (tir) | Abinew Ali Ayele, Seid Muhie Yimam, Hagos Tesfahun Gebremichael, Sisay Adugna Chala, Hailu Beshada Balcha, Wendimu Baye Messell,Tadesse Belay |
Twi (twi) | Salomey Osei, Bernard Opoku, Steven Arthur |
Xithonga (tso) | Felermino Dário Mário António Ali |
Yoruba (yor) | Shamsuddeen Hassan Muhammad, Idris Abdulmumin, Ibrahim Said, Bello Shehu Bello |
Licensing Information
This AfriSenti is licensed under a Creative Commons Attribution 4.0 International License
Citation Information
@inproceedings{muhammad-etal-2023-semeval,
title="{S}em{E}val-2023 Task 12: Sentiment Analysis for African Languages ({A}fri{S}enti-{S}em{E}val)",
author="Muhammad, Shamsuddeen Hassan and
Yimam, Seid and
Abdulmumin, Idris and
Ahmad, Ibrahim Sa'id and
Ousidhoum, Nedjma, and
Ayele, Abinew, and
Adelani, David and
Ruder, Sebastian and
Beloucif, Meriem and
Bello, Shehu Bello and
Mohammad, Saif M.",
booktitle="Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month=jul,
year="2023",
}
Contributions
[More Information Needed]