Dataset Viewer
Auto-converted to Parquet
video_id
string
start_time
float64
end_time
float64
filename
string
num_frames
int64
phrase
string
target_word
string
target_word_boundary
string
word_boundaries
string
stress_label
int64
lighting
string
speaker_pose
string
qzh74d1f4fE
143.51
146.23
qzh74d1f4fE_143.510000-146.230000/00000
70
walk like bass players like take a walk
walk
['walk', 60, 67]
[['walk', 0, 8], ['like', 9, 13], ['bass', 14, 19], ['players', 20, 26], ['like', 28, 33], ['take', 50, 55], ['a', 56, 57], ['walk', 60, 67]]
1
medium
frontal
e1XHLH1Fw3E
230.514433
233.794433
e1XHLH1Fw3E_230.514433-233.794433/00000
84
of the woodworks the experts who either thought
experts
['experts', 34, 47]
[['of', 0, 1], ['the', 2, 3], ['woodworks', 4, 16], ['the', 28, 30], ['experts', 34, 47], ['who', 68, 70], ['either', 72, 77], ['thought', 77, 81]]
0
medium
frontal
oXec4X4meHs
197.87
199.59
oXec4X4meHs_197.870000-199.590000/00000
45
it looks for the two strongest cores
strongest
['strongest', 22, 31]
[['it', 4, 5], ['looks', 6, 10], ['for', 11, 14], ['the', 14, 16], ['two', 17, 21], ['strongest', 22, 31], ['cores', 32, 37]]
0
medium
frontal
F7xjC_rV5dQ
254.72
258.72
F7xjC_rV5dQ_254.720000-258.720000/00000
101
so we should be able to retransform our energy
retransform
['retransform', 45, 76]
[['so', 0, 4], ['we', 7, 15], ['should', 24, 28], ['be', 29, 31], ['able', 33, 37], ['to', 38, 40], ['retransform', 45, 76], ['our', 86, 89], ['energy', 91, 99]]
1
medium
frontal
txUwQHpJOHc
10.94
13.56
txUwQHpJOHc_10.940000-13.560000/00001
64
hello my dear friend welcome to chillingo painting course
hello
['hello', 0, 7]
[['hello', 0, 7], ['my', 8, 10], ['dear', 11, 15], ['friend', 16, 22], ['welcome', 25, 35], ['to', 35, 38], ['chillingo', 38, 49], ['painting', 50, 56], ['course', 57, 63]]
0
medium
frontal
dknVbAs-1Jc
169.393333
173.273333
dknVbAs-1Jc_169.393333-173.273333/00000
100
horizontally under their cupboards so just from standing in the kitchen
horizontally
['horizontally', 0, 18]
[['horizontally', 0, 18], ['under', 21, 26], ['their', 27, 31], ['cupboards', 31, 41], ['so', 54, 58], ['just', 59, 63], ['from', 64, 70], ['standing', 79, 86], ['in', 87, 89], ['the', 89, 91], ['kitchen', 91, 98]]
0
medium
non-frontal
fSsCXnsYKRI
202.188967
205.268967
fSsCXnsYKRI_202.188967-205.268967/00000
79
if youre talking to them and implementing some receptive communication
youre
['youre', 2, 6]
[['if', 0, 1], ['youre', 2, 6], ['talking', 7, 18], ['to', 19, 21], ['them', 22, 26], ['and', 27, 29], ['implementing', 30, 43], ['some', 44, 47], ['receptive', 49, 60], ['communication', 61, 76]]
0
bright
frontal
8cdUYkAaU9I
256.162
259.402
8cdUYkAaU9I_256.162000-259.402000/00000
83
the rainbow connection the lovers the dreamers
rainbow
['rainbow', 3, 11]
[['the', 0, 2], ['rainbow', 3, 11], ['connection', 12, 27], ['the', 33, 35], ['lovers', 36, 46], ['the', 50, 52], ['dreamers', 53, 63]]
0
medium
frontal
Y4dojl8Qt7Q
297.559733
299.919733
Y4dojl8Qt7Q_297.559733-299.919733/00000
61
and depending on the height of your baby
height
['height', 20, 27]
[['and', 0, 1], ['depending', 2, 9], ['on', 12, 15], ['the', 16, 18], ['height', 20, 27], ['of', 29, 30], ['your', 31, 35], ['baby', 36, 41]]
1
medium
frontal
-HJpvbrr2SA
101.927767
103.847767
-HJpvbrr2SA_101.927767-103.847767/00000
51
that its accountability that causes both of
accountability
['accountability', 7, 21]
[['that', 0, 3], ['its', 3, 6], ['accountability', 7, 21], ['that', 21, 24], ['causes', 25, 35], ['both', 38, 45], ['of', 46, 47]]
0
medium
frontal
1lTY7w9NOYY
159.48
162.52
1lTY7w9NOYY_159.480000-162.520000/00000
77
to do is put in a balanced spacing for all the
balanced
['balanced', 25, 39]
[['to', 0, 2], ['do', 3, 8], ['is', 12, 14], ['put', 15, 18], ['in', 19, 22], ['a', 22, 23], ['balanced', 25, 39], ['spacing', 45, 60], ['for', 67, 72], ['all', 73, 75], ['the', 75, 77]]
0
medium
non-frontal
14IIFVpIMiQ
234.1669
236.4469
14IIFVpIMiQ_234.166900-236.446900/00000
60
hundred and twenty five dollars for a bottle and
bottle
['bottle', 35, 42]
[['hundred', 0, 5], ['and', 6, 7], ['twenty', 8, 14], ['five', 15, 19], ['dollars', 20, 27], ['for', 28, 32], ['a', 33, 33], ['bottle', 35, 42], ['and', 55, 57]]
1
medium
frontal
CkrxcxOiyh0
283
285
CkrxcxOiyh0_283.000000-285.000000/00001
51
charging loads and things that didnt exist before
loads
['loads', 10, 14]
[['charging', 0, 9], ['loads', 10, 14], ['and', 15, 18], ['things', 19, 23], ['that', 24, 27], ['didnt', 28, 33], ['exist', 33, 40], ['before', 41, 46]]
0
medium
frontal
KckC349U7EI
11.216667
13.536667
KckC349U7EI_11.216667-13.536667/00000
61
if youre an audio freak and looking out
youre
['youre', 2, 5]
[['if', 0, 1], ['youre', 2, 5], ['an', 5, 7], ['audio', 10, 16], ['freak', 17, 24], ['and', 34, 36], ['looking', 38, 45], ['out', 48, 51]]
0
medium
frontal
gaVR84a7MZ4
43.0165
44.1065
gaVR84a7MZ4_43.016500-44.106500/00000
29
union between a man
union
['union', 2, 13]
[['union', 2, 13], ['between', 13, 21], ['a', 22, 22], ['man', 23, 27]]
0
medium
non-frontal
5E12Gan-Gs0
137.510067
139.550067
5E12Gan-Gs0_137.510067-139.550067/00000
53
his reaction to absorb heat or release heat
absorb
['absorb', 18, 27]
[['his', 0, 2], ['reaction', 4, 12], ['to', 13, 16], ['absorb', 18, 27], ['heat', 28, 35], ['or', 35, 37], ['release', 38, 46], ['heat', 47, 50]]
0
medium
frontal
ZgHUjKCTvwg
123.169
127.849
ZgHUjKCTvwg_123.169000-127.849000/00000
119
mails from viewers telling me that you have
viewers
['viewers', 19, 81]
[['mails', 0, 8], ['from', 11, 18], ['viewers', 19, 81], ['telling', 84, 91], ['me', 92, 96], ['that', 98, 104], ['you', 104, 106], ['have', 113, 117]]
0
medium
frontal
NSuWuYWcDvA
90.983267
95.063267
NSuWuYWcDvA_90.983267-95.063267/00000
105
we can process these proteins and ultimately the proteins then
process
['process', 5, 15]
[['we', 0, 1], ['can', 2, 3], ['process', 5, 15], ['these', 16, 21], ['proteins', 22, 35], ['and', 51, 54], ['ultimately', 57, 69], ['the', 70, 72], ['proteins', 73, 84], ['then', 84, 88]]
0
dim
non-frontal
oXec4X4meHs
187.926
189.566
oXec4X4meHs_187.926000-189.566000/00000
43
different results but thats why we do all this
we
['we', 29, 31]
[['different', 0, 5], ['results', 6, 13], ['but', 14, 16], ['thats', 16, 21], ['why', 23, 28], ['we', 29, 31], ['do', 32, 34], ['all', 35, 37], ['this', 38, 41]]
0
medium
non-frontal
GpcrwhV1_b0
263.32
266.84
GpcrwhV1_b0_263.320000-266.840000/00000
91
in four really cool segments the first segment
four
['four', 4, 13]
[['in', 0, 2], ['four', 4, 13], ['really', 18, 25], ['cool', 27, 33], ['segments', 35, 66], ['the', 67, 69], ['first', 71, 77], ['segment', 78, 87]]
0
medium
frontal
mTt7D2ww-0g
48.833333
50.953333
mTt7D2ww-0g_48.833333-50.953333/00000
56
amount of numbers inside the hat mixing the
mixing
['mixing', 42, 50]
[['amount', 0, 6], ['of', 7, 9], ['numbers', 9, 16], ['inside', 17, 24], ['the', 24, 27], ['hat', 27, 32], ['mixing', 42, 50], ['the', 51, 53]]
1
medium
frontal
7nxcP0Bjk9g
277.72
280.88
7nxcP0Bjk9g_277.720000-280.880000/00000
80
principle if we are close to the resonant
close
['close', 38, 45]
[['principle', 3, 18], ['if', 27, 29], ['we', 31, 33], ['are', 34, 37], ['close', 38, 45], ['to', 46, 62], ['the', 63, 64], ['resonant', 65, 77]]
0
medium
non-frontal
10s9g8aG1x0
120.086633
122.206633
10s9g8aG1x0_120.086633-122.206633/00000
55
location of one object with relations
object
['object', 26, 36]
[['location', 3, 14], ['of', 15, 17], ['one', 21, 24], ['object', 26, 36], ['with', 38, 42], ['relations', 43, 54]]
0
medium
frontal
_Erkln5WWLw
271.9114
275.1114
_Erkln5WWLw_271.911400-275.111400/00000
82
can take the document id hash find it where it belongs
find
['find', 48, 53]
[['can', 0, 3], ['take', 4, 10], ['the', 11, 14], ['document', 15, 23], ['id', 24, 29], ['hash', 30, 36], ['find', 48, 53], ['it', 54, 56], ['where', 57, 63], ['it', 66, 69], ['belongs', 70, 79]]
0
medium
frontal
OgLIW8jKdv4
186.113333
187.153333
OgLIW8jKdv4_186.113333-187.153333/00000
28
what kind of shapes do you want to have
shapes
['shapes', 12, 17]
[['what', 0, 2], ['kind', 3, 9], ['of', 9, 11], ['shapes', 12, 17], ['do', 18, 19], ['you', 19, 21], ['want', 22, 24], ['to', 24, 25], ['have', 26, 28]]
0
medium
frontal
K49rmobsPcY
277.853667
279.773667
K49rmobsPcY_277.853667-279.773667/00000
49
okay take it forward from newton then what
forward
['forward', 17, 26]
[['okay', 1, 6], ['take', 8, 13], ['it', 14, 16], ['forward', 17, 26], ['from', 27, 31], ['newton', 32, 40], ['then', 42, 46], ['what', 47, 49]]
0
dim
frontal
FyOCDAY6av4
265.198067
268.398067
FyOCDAY6av4_265.198067-268.398067/00001
82
angles and curves and curvatures i mean its pretty dynamic
angles
['angles', 0, 11]
[['angles', 0, 11], ['and', 12, 14], ['curves', 16, 30], ['and', 32, 34], ['curvatures', 35, 51], ['i', 53, 55], ['mean', 55, 58], ['its', 59, 62], ['pretty', 63, 68], ['dynamic', 69, 80]]
0
medium
frontal
yFEb4BME4tE
139.48
143.08
yFEb4BME4tE_139.480000-143.080000/00000
91
number one network in terms of traffic on the
network
['network', 40, 51]
[['number', 0, 7], ['one', 12, 15], ['network', 40, 51], ['in', 58, 61], ['terms', 63, 70], ['of', 72, 73], ['traffic', 74, 84], ['on', 86, 88], ['the', 89, 90]]
0
medium
frontal
7TVqoNlPKT8
39.043833
43.723833
7TVqoNlPKT8_39.043833-43.723833/00000
119
academy of pediatrics recommendations for exclusive breastfeeding
recommendations
['recommendations', 55, 78]
[['academy', 0, 11], ['of', 11, 13], ['pediatrics', 15, 36], ['recommendations', 55, 78], ['for', 81, 88], ['exclusive', 92, 103], ['breastfeeding', 104, 117]]
0
medium
frontal
5AqgMo1P05E
285.538
288.538
5AqgMo1P05E_285.538000-288.538000/00000
77
the brain actually gets stronger bigger its called
bigger
['bigger', 46, 57]
[['the', 1, 2], ['brain', 3, 9], ['actually', 11, 17], ['gets', 18, 22], ['stronger', 27, 41], ['bigger', 46, 57], ['its', 60, 68], ['called', 70, 74]]
1
medium
non-frontal
IOF-hp9gqao
41.9705
44.5305
IOF-hp9gqao_41.970500-44.530500/00000
66
like a bundle pack so the bundle that i found
bundle
['bundle', 5, 12]
[['like', 0, 3], ['a', 4, 5], ['bundle', 5, 12], ['pack', 13, 20], ['so', 23, 30], ['the', 42, 45], ['bundle', 45, 52], ['that', 53, 56], ['i', 57, 58], ['found', 59, 63]]
0
medium
frontal
FqM92yZ8w1g
122.4048
124.4448
FqM92yZ8w1g_122.404800-124.444800/00000
53
just one two three youre up and running the next day
running
['running', 40, 45]
[['just', 0, 3], ['one', 6, 9], ['two', 10, 15], ['three', 19, 27], ['youre', 27, 33], ['up', 34, 36], ['and', 37, 39], ['running', 40, 45], ['the', 46, 47], ['next', 48, 50], ['day', 50, 52]]
0
medium
frontal
yFEb4BME4tE
298.2
299.96
yFEb4BME4tE_298.200000-299.960000/00000
45
you have to develop new methods
develop
['develop', 17, 25]
[['you', 0, 3], ['have', 12, 15], ['to', 15, 17], ['develop', 17, 25], ['new', 27, 30], ['methods', 31, 40]]
0
medium
frontal
atxtQBahe_c
265.699
267.499
atxtQBahe_c_265.699000-267.499000/00000
46
that was happening on this side of the border
side
['side', 24, 30]
[['that', 0, 2], ['was', 3, 5], ['happening', 6, 15], ['on', 17, 18], ['this', 19, 23], ['side', 24, 30], ['of', 30, 32], ['the', 32, 35], ['border', 36, 43]]
0
medium
frontal
7xiP7VRw8lU
129.4199
131.5799
7xiP7VRw8lU_129.419900-131.579900/00000
56
these are aligned in all different directions
all
['all', 24, 28]
[['these', 0, 3], ['are', 3, 5], ['aligned', 8, 19], ['in', 20, 21], ['all', 24, 28], ['different', 29, 36], ['directions', 37, 50]]
0
medium
frontal
8JlLBgISzTM
163.34
166.02
8JlLBgISzTM_163.340000-166.020000/00000
69
of x demanded is going to decrease right
decrease
['decrease', 41, 53]
[['of', 0, 4], ['x', 6, 9], ['demanded', 10, 23], ['is', 30, 32], ['going', 33, 36], ['to', 37, 38], ['decrease', 41, 53], ['right', 63, 67]]
1
medium
non-frontal
70uGdeD_fZ0
128.08
129.48
70uGdeD_fZ0_128.080000-129.480000/00000
36
every two women here in the room
two
['two', 6, 9]
[['every', 0, 4], ['two', 6, 9], ['women', 11, 17], ['here', 19, 24], ['in', 25, 27], ['the', 28, 30], ['room', 31, 35]]
0
dim
frontal
MBmwRILGZwA
244.6
247.6
MBmwRILGZwA_244.600000-247.600000/00001
76
in the moment they just get no attention whatsoever and
moment
['moment', 6, 17]
[['in', 0, 2], ['the', 3, 5], ['moment', 6, 17], ['they', 25, 29], ['just', 30, 34], ['get', 40, 45], ['no', 47, 51], ['attention', 52, 60], ['whatsoever', 61, 72], ['and', 73, 74]]
0
bright
non-frontal
ZgHUjKCTvwg
289.852
292.052
ZgHUjKCTvwg_289.852000-292.052000/00000
57
know my day job is im a radio host
my
['my', 11, 14]
[['know', 4, 10], ['my', 11, 14], ['day', 15, 20], ['job', 20, 26], ['is', 27, 30], ['im', 33, 37], ['a', 39, 40], ['radio', 41, 49], ['host', 49, 54]]
0
medium
frontal
nfhncEmRXlY
70.971667
73.531667
nfhncEmRXlY_70.971667-73.531667/00000
61
its over and thats a very important concept
over
['over', 4, 9]
[['its', 0, 2], ['over', 4, 9], ['and', 21, 24], ['thats', 24, 28], ['a', 29, 30], ['very', 32, 38], ['important', 41, 53], ['concept', 54, 61]]
0
medium
frontal
5Y2QVOAlFak
194.8171
197.2171
5Y2QVOAlFak_194.817100-197.217100/00000
62
just on a broad brush level what
broad
['broad', 11, 21]
[['just', 0, 4], ['on', 5, 8], ['a', 8, 9], ['broad', 11, 21], ['brush', 33, 40], ['level', 42, 50], ['what', 54, 58]]
0
medium
non-frontal
8ncukC9QlZo
228.56
230.24
8ncukC9QlZo_228.560000-230.240000/00000
43
predator it cant grab it cant tear
grab
['grab', 20, 29]
[['predator', 1, 11], ['it', 12, 13], ['cant', 14, 19], ['grab', 20, 29], ['it', 30, 31], ['cant', 32, 36], ['tear', 37, 41]]
0
medium
frontal
EYs03xxU_0c
116.388
119.588
EYs03xxU_0c_116.388000-119.588000/00000
82
i couldnt find an instrumental version anywhere
couldnt
['couldnt', 27, 35]
[['i', 24, 26], ['couldnt', 27, 35], ['find', 37, 45], ['an', 46, 48], ['instrumental', 49, 60], ['version', 61, 68], ['anywhere', 72, 79]]
0
medium
frontal
h_0TAXWt8hY
267.6
269.68
h_0TAXWt8hY_267.600000-269.680000/00000
53
position and has a uniform so hes very proud
uniform
['uniform', 23, 34]
[['position', 0, 9], ['and', 10, 12], ['has', 14, 18], ['a', 19, 20], ['uniform', 23, 34], ['so', 35, 37], ['hes', 38, 40], ['very', 40, 44], ['proud', 46, 51]]
0
medium
non-frontal
QOv_aKoAmSg
40.874167
42.994167
QOv_aKoAmSg_40.874167-42.994167/00000
56
i can focus up my boxers and
my
['my', 17, 21]
[['i', 0, 2], ['can', 3, 4], ['focus', 5, 8], ['up', 11, 14], ['my', 17, 21], ['boxers', 22, 30], ['and', 33, 36]]
0
medium
frontal
QYmso74dxQ8
272.596633
273.756633
QYmso74dxQ8_272.596633-273.756633/00000
31
if you try to avoid that area
avoid
['avoid', 11, 16]
[['if', 0, 1], ['you', 2, 3], ['try', 4, 6], ['to', 8, 9], ['avoid', 11, 16], ['that', 17, 20], ['area', 21, 27]]
0
medium
frontal
aUKU1sV51vI
20.249767
22.409767
aUKU1sV51vI_20.249767-22.409767/00000
56
we went to such great lengths to prove its
great
['great', 30, 35]
[['we', 0, 3], ['went', 16, 20], ['to', 21, 22], ['such', 24, 29], ['great', 30, 35], ['lengths', 36, 41], ['to', 42, 44], ['prove', 45, 51], ['its', 52, 54]]
0
medium
frontal
zcVwuyMlU7Y
230.363567
235.983567
zcVwuyMlU7Y_230.363567-235.983567/00000
140
a gigantic business card of putting all my principles
gigantic
['gigantic', 1, 11]
[['a', 0, 1], ['gigantic', 1, 11], ['business', 12, 21], ['card', 22, 35], ['of', 52, 54], ['putting', 58, 63], ['all', 64, 70], ['my', 71, 75], ['principles', 76, 82]]
0
medium
frontal
cikluDJADJ8
292.54
295.18
cikluDJADJ8_292.540000-295.180000/00000
67
cold surface they condense and become a liquid again
condense
['condense', 31, 43]
[['cold', 0, 6], ['surface', 7, 20], ['they', 27, 30], ['condense', 31, 43], ['and', 45, 48], ['become', 49, 55], ['a', 56, 57], ['liquid', 58, 63], ['again', 64, 66]]
1
medium
frontal
zzrsFCzESLc
216.65
219.53
zzrsFCzESLc_216.650000-219.530000/00000
74
gotta swipe up to get a specific
up
['up', 26, 52]
[['gotta', 0, 6], ['swipe', 8, 18], ['up', 26, 52], ['to', 52, 53], ['get', 55, 58], ['a', 58, 59], ['specific', 60, 70]]
1
medium
frontal
ASjXGH3CjEw
295.861
298.901
ASjXGH3CjEw_295.861000-298.901000/00000
79
tshaped person has been introduced by ibm
tshaped
['tshaped', 2, 12]
[['tshaped', 2, 12], ['person', 15, 28], ['has', 36, 39], ['been', 40, 44], ['introduced', 45, 55], ['by', 56, 59], ['ibm', 62, 74]]
0
medium
non-frontal
jJScEph21OQ
114.118267
116.958267
jJScEph21OQ_114.118267-116.958267/00000
73
they take and then the various interventions and
various
['various', 32, 44]
[['they', 2, 5], ['take', 6, 12], ['and', 21, 23], ['then', 24, 28], ['the', 29, 32], ['various', 32, 44], ['interventions', 50, 67], ['and', 69, 70]]
0
medium
frontal
1He7shdHYnM
35.15
38.75
1He7shdHYnM_35.150000-38.750000/00000
92
one square inch tile and today were
one
['one', 0, 5]
[['one', 0, 5], ['square', 8, 18], ['inch', 22, 27], ['tile', 29, 39], ['and', 51, 55], ['today', 57, 71], ['were', 81, 85]]
1
medium
frontal
nFd2ruAsk8g
139.139
142.259
nFd2ruAsk8g_139.139000-142.259000/00000
81
grown a lot when you back
grown
['grown', 2, 6]
[['grown', 2, 6], ['a', 7, 8], ['lot', 8, 49], ['when', 65, 68], ['you', 69, 72], ['back', 73, 77]]
0
bright
frontal
_1NZnypGpvg
95.640133
99.440133
_1NZnypGpvg_95.640133-99.440133/00000
97
my virtues whats my life matter say nothing
my
['my', 0, 3]
[['my', 0, 3], ['virtues', 4, 14], ['whats', 14, 20], ['my', 21, 26], ['life', 28, 36], ['matter', 45, 59], ['say', 81, 86], ['nothing', 87, 95]]
1
bright
frontal
cslnyHGMjo4
79.785933
82.505933
cslnyHGMjo4_79.785933-82.505933/00000
69
this slants okay that shows that were talking
slants
['slants', 15, 26]
[['this', 0, 6], ['slants', 15, 26], ['okay', 29, 38], ['that', 39, 45], ['shows', 46, 52], ['that', 54, 56], ['were', 57, 60], ['talking', 61, 68]]
1
medium
frontal
NhiN4J2LFKs
103.137033
104.897033
NhiN4J2LFKs_103.137033-104.897033/00000
46
it really didnt cause anything to happen
didnt
['didnt', 8, 18]
[['it', 0, 1], ['really', 2, 7], ['didnt', 8, 18], ['cause', 19, 23], ['anything', 24, 31], ['to', 32, 37], ['happen', 38, 42]]
0
medium
frontal
zEwT2lPVU3s
56.48
59.12
zEwT2lPVU3s_56.480000-59.120000/00000
67
in this classroom we have certain standards
classroom
['classroom', 12, 27]
[['in', 0, 2], ['this', 4, 9], ['classroom', 12, 27], ['we', 29, 32], ['have', 33, 37], ['certain', 39, 47], ['standards', 49, 65]]
0
medium
frontal
BfqxM-idz2k
291.642567
293.762567
BfqxM-idz2k_291.642567-293.762567/00000
56
to see how is the weather going to evolve in the
evolve
['evolve', 40, 48]
[['to', 0, 1], ['see', 2, 8], ['how', 18, 22], ['is', 23, 25], ['the', 26, 28], ['weather', 28, 33], ['going', 34, 37], ['to', 38, 39], ['evolve', 40, 48], ['in', 51, 52], ['the', 53, 54]]
0
medium
frontal
MGb9fN1C4UE
241.646633
243.526633
MGb9fN1C4UE_241.646633-243.526633/00000
49
upon it because of our own transgressions
own
['own', 24, 28]
[['upon', 0, 5], ['it', 6, 7], ['because', 8, 14], ['of', 14, 16], ['our', 18, 21], ['own', 24, 28], ['transgressions', 29, 47]]
0
medium
frontal
bB23UX1zB4s
244.265
246.705
bB23UX1zB4s_244.265000-246.705000/00001
64
share in the description below this video
below
['below', 39, 45]
[['share', 0, 7], ['in', 11, 14], ['the', 15, 25], ['description', 26, 38], ['below', 39, 45], ['this', 46, 50], ['video', 52, 61]]
0
medium
frontal
B1XMH8_i7Ic
211.276533
215.236533
B1XMH8_i7Ic_211.276533-215.236533/00000
102
and another to coordinate customer orders returns
another
['another', 7, 18]
[['and', 0, 2], ['another', 7, 18], ['to', 26, 29], ['coordinate', 30, 48], ['customer', 49, 60], ['orders', 64, 72], ['returns', 80, 92]]
1
medium
frontal
FPizTNvBEzY
116.6521
118.8921
FPizTNvBEzY_116.652100-118.892100/00000
58
she was doing her work she was staring straight
straight
['straight', 45, 53]
[['she', 0, 2], ['was', 2, 4], ['doing', 5, 9], ['her', 10, 13], ['work', 15, 22], ['she', 24, 26], ['was', 27, 29], ['staring', 32, 43], ['straight', 45, 53]]
0
medium
frontal
1RIA3xdBOl4
63.99
65.79
1RIA3xdBOl4_63.990000-65.790000/00000
47
so it gives us just a bigger picture
bigger
['bigger', 28, 34]
[['so', 4, 5], ['it', 11, 12], ['gives', 13, 17], ['us', 18, 20], ['just', 21, 25], ['a', 26, 27], ['bigger', 28, 34], ['picture', 36, 42]]
0
medium
frontal
_lx_D8fasKE
172.474133
175.354133
_lx_D8fasKE_172.474133-175.354133/00000
74
not just in verbs and words
verbs
['verbs', 20, 34]
[['not', 0, 4], ['just', 4, 11], ['in', 13, 15], ['verbs', 20, 34], ['and', 36, 39], ['words', 41, 54]]
1
medium
frontal
ankZrReOgzo
169.88
173.16
ankZrReOgzo_169.880000-173.160000/00000
84
me about cal maritime every student here
every
['every', 53, 60]
[['me', 0, 4], ['about', 5, 11], ['cal', 13, 20], ['maritime', 21, 37], ['every', 53, 60], ['student', 62, 72], ['here', 73, 80]]
1
medium
frontal
vYtGH7fRcsQ
257.013
259.013
vYtGH7fRcsQ_257.013000-259.013000/00000
52
because i had so many friends
many
['many', 22, 26]
[['because', 0, 9], ['i', 10, 12], ['had', 13, 17], ['so', 18, 21], ['many', 22, 26], ['friends', 28, 36]]
0
medium
frontal
LsmFkm22UT0
167.44
169.84
LsmFkm22UT0_167.440000-169.840000/00000
61
about what to expect in those evening
expect
['expect', 17, 30]
[['about', 0, 5], ['what', 6, 10], ['to', 11, 15], ['expect', 17, 30], ['in', 40, 42], ['those', 43, 49], ['evening', 53, 59]]
0
bright
frontal
1He7shdHYnM
152.284067
156.844067
1He7shdHYnM_152.284067-156.844067/00000
116
three tiles so its three inches long remember
three
['three', 50, 58]
[['three', 0, 5], ['tiles', 6, 18], ['so', 36, 40], ['its', 42, 46], ['three', 50, 58], ['inches', 62, 71], ['long', 73, 81], ['remember', 101, 113]]
1
medium
frontal
jQhdBgMkQFU
146.71
148.91
jQhdBgMkQFU_146.710000-148.910000/00000
57
in your conditioning making you as fast as
you
['you', 38, 41]
[['in', 0, 1], ['your', 2, 5], ['conditioning', 5, 19], ['making', 30, 38], ['you', 38, 41], ['as', 42, 44], ['fast', 45, 52], ['as', 54, 55]]
0
medium
frontal
7STcaWjJoww
155.581333
159.461333
7STcaWjJoww_155.581333-159.461333/00000
100
cell phones right while im talking because i might get interrupted
im
['im', 47, 50]
[['cell', 0, 5], ['phones', 7, 16], ['right', 17, 24], ['while', 41, 45], ['im', 47, 50], ['talking', 51, 60], ['because', 62, 68], ['i', 70, 72], ['might', 73, 77], ['get', 78, 82], ['interrupted', 83, 96]]
0
medium
frontal
R1aF8L-NY8E
163.32
164.6
R1aF8L-NY8E_163.320000-164.600000/00000
33
find the link in the description
link
['link', 7, 12]
[['find', 0, 4], ['the', 5, 6], ['link', 7, 12], ['in', 15, 17], ['the', 18, 20], ['description', 20, 29]]
0
medium
frontal
ZgHUjKCTvwg
294.02
295.74
ZgHUjKCTvwg_294.020000-295.740000/00001
46
to do the radio host voice which is like
host
['host', 19, 26]
[['to', 0, 3], ['do', 4, 7], ['the', 8, 9], ['radio', 11, 18], ['host', 19, 26], ['voice', 26, 32], ['which', 33, 36], ['is', 37, 39], ['like', 40, 43]]
0
medium
frontal
OaeidSf76X8
3.2
5.88
OaeidSf76X8_3.200000-5.880000/00000
68
chapter three this is a lecture on
three
['three', 14, 20]
[['chapter', 0, 11], ['three', 14, 20], ['this', 28, 32], ['is', 34, 37], ['a', 41, 43], ['lecture', 51, 61], ['on', 65, 67]]
0
medium
frontal
RTIktB0GqIs
240.846633
242.926633
RTIktB0GqIs_240.846633-242.926633/00000
54
go in the right direction and you paint the
direction
['direction', 15, 29]
[['go', 0, 4], ['in', 5, 6], ['the', 6, 8], ['right', 10, 14], ['direction', 15, 29], ['and', 33, 35], ['you', 36, 39], ['paint', 41, 49], ['the', 50, 53]]
0
medium
frontal
px1EVwsKvqo
198.102933
200.462933
px1EVwsKvqo_198.102933-200.462933/00001
60
techniques can help you model and extract those
model
['model', 27, 38]
[['techniques', 0, 10], ['can', 12, 17], ['help', 18, 22], ['you', 23, 25], ['model', 27, 38], ['and', 42, 45], ['extract', 46, 55], ['those', 55, 58]]
0
medium
frontal
89r2ROuKvwc
40.958289
43.198289
89r2ROuKvwc_40.958289-43.198289/00000
54
i bet youre a keeper a thousand times
youre
['youre', 7, 11]
[['i', 0, 1], ['bet', 2, 6], ['youre', 7, 11], ['a', 12, 12], ['keeper', 13, 22], ['a', 23, 23], ['thousand', 24, 44], ['times', 44, 51]]
0
medium
frontal
UELuPDgJK8Q
137.793333
141.553333
UELuPDgJK8Q_137.793333-141.553333/00000
96
third tip is to make sure you have
third
['third', 5, 12]
[['third', 5, 12], ['tip', 13, 20], ['is', 31, 35], ['to', 43, 50], ['make', 50, 53], ['sure', 81, 85], ['you', 86, 89], ['have', 90, 93]]
1
medium
frontal
prlK_QL_qOA
247.04
248.12
prlK_QL_qOA_247.040000-248.120000/00000
28
we got a phone call from
call
['call', 18, 26]
[['we', 5, 7], ['got', 8, 12], ['a', 12, 13], ['phone', 14, 17], ['call', 18, 26], ['from', 21, 24]]
0
medium
frontal
qfWMtXJ00Ks
211.2098
214.0498
qfWMtXJ00Ks_211.209800-214.049800/00000
73
the lessons are around you whether theyre good or
around
['around', 20, 30]
[['the', 0, 2], ['lessons', 4, 14], ['are', 16, 18], ['around', 20, 30], ['you', 36, 37], ['whether', 50, 56], ['theyre', 57, 61], ['good', 62, 67], ['or', 69, 70]]
0
medium
frontal
NllflFFChLE
131.128
134.128
NllflFFChLE_131.128000-134.128000/00000
77
and its painting a picture and
painting
['painting', 22, 30]
[['and', 0, 14], ['its', 17, 21], ['painting', 22, 30], ['a', 31, 32], ['picture', 34, 45], ['and', 63, 66]]
0
medium
non-frontal
O3W8llNlr8s
146.5065
149.1265
O3W8llNlr8s_146.506500-149.126500/00000
61
light travels in straight lines that is
travels
['travels', 5, 14]
[['light', 0, 4], ['travels', 5, 14], ['in', 15, 17], ['straight', 18, 24], ['lines', 25, 31], ['that', 54, 58], ['is', 60, 62]]
0
medium
frontal
ANLG0N8QYTc
165.378467
167.338467
ANLG0N8QYTc_165.378467-167.338467/00000
51
and as soon as you leave the place
leave
['leave', 15, 21]
[['and', 0, 2], ['as', 2, 3], ['soon', 4, 7], ['as', 8, 10], ['you', 11, 14], ['leave', 15, 21], ['the', 22, 24], ['place', 25, 31]]
0
medium
frontal
KP7Bm3KaStY
174.76
177.4
KP7Bm3KaStY_174.760000-177.400000/00000
67
the most basic motion but i also believe
i
['i', 46, 47]
[['the', 0, 2], ['most', 3, 10], ['basic', 21, 31], ['motion', 33, 42], ['but', 43, 45], ['i', 46, 47], ['also', 49, 55], ['believe', 56, 61]]
0
medium
frontal
teyJEE6KvHg
275.073
277.913
teyJEE6KvHg_275.073000-277.913000/00000
72
the world true passion cannot be tamed
true
['true', 24, 30]
[['the', 0, 3], ['world', 3, 9], ['true', 24, 30], ['passion', 31, 42], ['cannot', 51, 59], ['be', 60, 62], ['tamed', 64, 70]]
0
medium
frontal
oXec4X4meHs
294.167
296.207
oXec4X4meHs_294.167000-296.207000/00000
53
is when you are ingesting your
ingesting
['ingesting', 24, 37]
[['is', 0, 4], ['when', 10, 14], ['you', 15, 18], ['are', 20, 23], ['ingesting', 24, 37], ['your', 38, 42]]
0
medium
frontal
fk7GlDixYgI
103.926667
107.406667
fk7GlDixYgI_103.926667-107.406667/00000
89
allow you to track and find our
track
['track', 21, 29]
[['allow', 0, 6], ['you', 7, 11], ['to', 12, 16], ['track', 21, 29], ['and', 30, 33], ['find', 35, 42], ['our', 65, 69]]
0
medium
frontal
sMIiBUyZgTo
279.693
282.133
sMIiBUyZgTo_279.693000-282.133000/00000
63
of text messaging in a helpful way
helpful
['helpful', 40, 52]
[['of', 0, 1], ['text', 2, 9], ['messaging', 10, 24], ['in', 35, 37], ['a', 38, 39], ['helpful', 40, 52], ['way', 54, 59]]
0
medium
frontal
XtcTlcvnums
292.2449
295.3049
XtcTlcvnums_292.244900-295.304900/00000
79
theory is the least accredited of them all
theory
['theory', 0, 10]
[['theory', 0, 10], ['is', 15, 18], ['the', 20, 22], ['least', 24, 28], ['accredited', 30, 45], ['of', 53, 56], ['them', 59, 63], ['all', 66, 69]]
0
medium
frontal
69IiN_DnXzQ
218.04
220.88
69IiN_DnXzQ_218.040000-220.880000/00000
72
slide so he went up the steps and
up
['up', 41, 43]
[['slide', 0, 11], ['so', 25, 29], ['he', 30, 32], ['went', 33, 36], ['up', 41, 43], ['the', 44, 46], ['steps', 48, 57], ['and', 68, 70]]
1
medium
frontal
U52dD0tegsA
202.528
204.568
U52dD0tegsA_202.528000-204.568000/00000
53
progressive web apps is actually broadening across all
broadening
['broadening', 23, 32]
[['progressive', 0, 6], ['web', 7, 10], ['apps', 10, 13], ['is', 14, 15], ['actually', 16, 23], ['broadening', 23, 32], ['across', 33, 43], ['all', 48, 51]]
0
medium
non-frontal
AugIttXiijQ
286.24
287.64
AugIttXiijQ_286.240000-287.640000/00000
36
because its kind of forcing me to think in
forcing
['forcing', 14, 22]
[['because', 0, 4], ['its', 4, 6], ['kind', 7, 10], ['of', 10, 11], ['forcing', 14, 22], ['me', 23, 25], ['to', 25, 27], ['think', 28, 32], ['in', 33, 35]]
0
medium
non-frontal
NhiN4J2LFKs
114.7653
119.2453
NhiN4J2LFKs_114.765300-119.245300/00000
114
a soft solid theyre called cohesive gel implants
soft
['soft', 4, 13]
[['a', 0, 1], ['soft', 4, 13], ['solid', 19, 31], ['theyre', 37, 42], ['called', 44, 54], ['cohesive', 69, 87], ['gel', 89, 98], ['implants', 100, 112]]
0
medium
frontal
DLhv1X4VryA
55.4
57.84
DLhv1X4VryA_55.400000-57.840000/00000
62
the term because they just get kicked out
kicked
['kicked', 49, 55]
[['the', 0, 1], ['term', 2, 10], ['because', 10, 29], ['they', 29, 32], ['just', 33, 36], ['get', 37, 42], ['kicked', 49, 55], ['out', 58, 60]]
0
medium
frontal
W1xE9qLol0o
228.139
230.939
W1xE9qLol0o_228.139000-230.939000/00001
72
that perfect balance now heres what happens
perfect
['perfect', 6, 16]
[['that', 0, 3], ['perfect', 6, 16], ['balance', 18, 26], ['now', 27, 30], ['heres', 39, 43], ['what', 44, 47], ['happens', 49, 58]]
0
medium
frontal
zC0IhZDSqAw
40.416067
42.576067
zC0IhZDSqAw_40.416067-42.576067/00001
56
moving along here talking about the patent process
moving
['moving', 0, 5]
[['moving', 0, 5], ['along', 6, 12], ['here', 13, 18], ['talking', 20, 27], ['about', 28, 32], ['the', 33, 34], ['patent', 35, 42], ['process', 43, 53]]
0
medium
frontal
yNe6vUo4Low
275.623167
278.423167
yNe6vUo4Low_275.623167-278.423167/00000
72
and irma bombeck i always feel funny calling writers
i
['i', 33, 35]
[['and', 0, 2], ['irma', 15, 20], ['bombeck', 21, 32], ['i', 33, 35], ['always', 36, 40], ['feel', 40, 45], ['funny', 46, 52], ['calling', 53, 61], ['writers', 62, 69]]
0
medium
frontal
cN4C5oWv8RE
196.106667
199.826667
cN4C5oWv8RE_196.106667-199.826667/00000
95
other sides turn meeting i went in there and im
turn
['turn', 19, 26]
[['other', 0, 5], ['sides', 6, 13], ['turn', 19, 26], ['meeting', 28, 36], ['i', 71, 76], ['went', 77, 81], ['in', 82, 84], ['there', 84, 88], ['and', 89, 91], ['im', 91, 93]]
0
medium
non-frontal
0Yg_394WLaw
114.580933
117.900933
0Yg_394WLaw_114.580933-117.900933/00000
86
the dimensions stacked in each person
stacked
['stacked', 22, 36]
[['the', 0, 3], ['dimensions', 5, 20], ['stacked', 22, 36], ['in', 44, 45], ['each', 47, 51], ['person', 53, 62]]
0
medium
frontal
5E12Gan-Gs0
152.7518
155.1118
5E12Gan-Gs0_152.751800-155.111800/00000
61
shes saying is endothermic it absorbs heat pooled heat
absorbs
['absorbs', 24, 36]
[['shes', 0, 3], ['saying', 4, 9], ['is', 9, 10], ['endothermic', 12, 21], ['it', 22, 24], ['absorbs', 24, 36], ['heat', 37, 43], ['pooled', 45, 53], ['heat', 54, 59]]
1
medium
frontal
End of preview. Expand in Data Studio

Dataset Card for AVS-Spot Benchmark

This dataset is associated with the paper: "Understanding Co-Speech Gestures in-the-wild"

We present JEGAL, a Joint Embedding space for Gestures, Audio and Language. Our semantic gesture representations can be used to perform multiple downstream tasks such as cross-modal retrieval, spotting gestured words, and identifying who is speaking solely using gestures.

πŸ“‹ Table of Contents

πŸ“š What is the AVS-Spot Benchmark?

Summary

AVS-Spot is a benchmark for evaluating the task of gestured word-spotting. It contains 500 videos, sampled from the AVSpeech official test dataset. Each video contains at least one clearly gestured word, annotated as the "target word". Additionally, we provide other annotations, including the text phrase, word boundaries, and speech-stress labels for each sample.

Task: Given a target word, an input gesture video with a transcript/speech, the goal is to localize the occurrence of the target word in the video based on gestures.

Other tasks: The benchmark can also be used for evaluating tasks such as gesture recognition, cross-modal gestured word retrieval, and gesture segmentation.

Some examples from the dataset are shown below. Note: the green highlight box in the video is for visualization purposes only. The actual dataset does not contain these boxes; instead, we provide the target word's start and end frames as part of the annotations.

Download instructions

Run the following scripts to download and pre-process the dataset:

from datasets import load_dataset

# Load the dataset csv file with annotations
dataset = load_dataset("sindhuhegde/avs-spot")

The csv file contains the video-ids and annotations.

Please refer to the preprocessing scripts to prepare the AVS-Spot benchmark.

Once the dataset is downloaded and pre-processed, the structure of the folders will be as follows:

video_root (path of the downloaded videos) 
β”œβ”€β”€ *.mp4 (videos)
preprocessed_root (path of the pre-processed videos) 
β”œβ”€β”€ list of video-ids
β”‚   β”œβ”€β”€ *.avi (extracted person track video for each sample)
|	β”œβ”€β”€ *.wav (extracted person track audio for each sample)
merge_dir (path of the merged videos) 
β”œβ”€β”€ *.mp4 (target-speaker videos with audio)

πŸ“ Dataset Structure

Data Fields

  • video_id: YouTube video ID
  • start_time: Start time (in seconds)
  • end_time: End time (in seconds)
  • filename: Filename along with the target-speaker crop number (obtained after pre-processing)
  • num_frames: Number of frames in the video after pre-processing
  • phrase: Text trasncript of the video
  • target_word: Target word (the word to be spotted)
  • target_word_boundary: Word boundary of the target word. Format: [target-word, start_frame, end_frame]
  • word_boundaries: Word boundaries for all the words in the video. Format: [[word-1, start_frame, end_frame], [word-2, start_frame, end_frame], ..., [word-n, start_frame, end_frame]]
  • stress_label: Binary label indicating whether the target-word has been stressed in the corresponding speech
  • lighting: Indicates the lighting condition of the video. Possible values:
    • dim: Low light, difficult to see details.
    • medium: Moderate light, clear but not very bright.
    • bright: Well-lit, high visibility.
  • speaker_pose: Indicates the speaker's pose. Possible values:
    • frontal: Speaker facing the camera.
    • non-frontal: Speaker not directly facing the camera.

Data Instances

Each instance in the dataset contains the above fields. An example instance is shown below.

{
    "video_id": "jnsuH9_qYyA",
    "start_time": 26.562700,
    "end_time": 29.802700,
    "filename": "jnsuH9_qYyA_26.562700-29.802700/00000",
    "num_frames": 83,
    "phrase": "app is beautiful it just is streamlined it",
    "target_word": "beautiful",
    "target_word_boundary": "['beautiful', 21, 37]",
    "word_boundaries": "[['app', 0, 11], ['is', 12, 13], ['beautiful', 21, 37], ['it', 45, 47], ['just', 48, 53], ['is', 60, 63], ['streamlined', 65, 81], ['it', 82, 83]]",
    "stress_label": 1,
  "lighting": "medium",
  "speaker_pose": "frontal"
}

See the AVS-Spot dataset viewer to explore more examples.

πŸ“¦ Dataset Curation

AVS-Spot is a dataset of video clips where a specific word is distinctly gestured. We begin with the full English test set from the AVSpeech dataset and extract word-aligned transcripts using the WhisperX ASR model. Short phrases containing 4 to 12 words are then selected, ensuring that the clips exhibit distinct gesture movements. We then manually review and annotate clips with a target-word, where the word is visibly gestured. This process results in $500$ curated clips, each containing a well-defined gestured word. The manual annotation ensures minimal label noise, enabling a reliable evaluation of the gesture spotting task. Additionally, we provide binary stress/emphasis labels for target words, capturing key gesture-related cues. We also provide lighting and speaker_pose labels, which indicate the video's lighting conditions and the speaker's pose, respectively. Summarized dataset information is given below:

  • Source: AVSpeech
  • Language: English
  • Modalities: Video, audio, text
  • Labels: Target-word, word-boundaries, speech-stress binary label, lighting label, speaker pose label
  • Task: Gestured word spotting

Statistics

Dataset Split # Hours # Speakers Avg. clip duration # Videos
AVS-Spot test 0.38 384 2.76 500

Below, we show some additional statistics for the dataset: (i) Duration of videos in terms of number of frames, (ii) Wordcloud of most gestured words in the dataset, illustrating the diversity of the different words present, and (iii) The distribution of target-word occurences in the video.

πŸ”– Citation

If you find this dataset helpful, please consider starring ⭐ the repository and citing our work.

@article{Hegde_ArXiv_2025,
      title={Understanding Co-speech Gestures in-the-wild},
      author={Hegde, Sindhu and Prajwal, K R, Kwon, Taein and Zisserman, Andrew},
      booktitle={arXiv},
      year={2025}
}

πŸ™ Acknowledgements

The authors would like to thank Piyush Bagad, Ragav Sachdeva, Jaesung Hugh, Paul Engstler for their valuable discussions. The authors are further grateful to Alyosha Efros, Jitendra Malik, and Justine Cassell for their insightful inputs and suggestions. They also extend their thanks to David Pinto for setting up the data annotation tool and to Ashish Thandavan for his support with the infrastructure. This research is funded by EPSRC Programme Grant VisualAI EP/T028572/1, an SNSF Postdoc.Mobility Fellowship P500PT_225450 and a Royal Society Research Professorship RSRP\textbackslash R\textbackslash 241003.

Downloads last month
136