Dataset Viewer
Full Screen
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    EmptyDataError
Message:      No columns to parse from file
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 322, in compute
                  compute_first_rows_from_parquet_response(
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 88, in compute_first_rows_from_parquet_response
                  rows_index = indexer.get_rows_index(
                File "/src/libs/libcommon/src/libcommon/parquet_utils.py", line 640, in get_rows_index
                  return RowsIndex(
                File "/src/libs/libcommon/src/libcommon/parquet_utils.py", line 521, in __init__
                  self.parquet_index = self._init_parquet_index(
                File "/src/libs/libcommon/src/libcommon/parquet_utils.py", line 538, in _init_parquet_index
                  response = get_previous_step_or_raise(
                File "/src/libs/libcommon/src/libcommon/simple_cache.py", line 591, in get_previous_step_or_raise
                  raise CachedArtifactError(
              libcommon.simple_cache.CachedArtifactError: The previous step failed.
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 240, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2216, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1239, in _head
                  return _examples_to_batch(list(self.take(n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1389, in __iter__
                  for key, example in ex_iterable:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1044, in __iter__
                  yield from islice(self.ex_iterable, self.n)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 282, in __iter__
                  for key, pa_table in self.generate_tables_fn(**self.kwargs):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 193, in _generate_tables
                  csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.pd_read_csv_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/streaming.py", line 75, in wrapper
                  return function(*args, download_config=download_config, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 1491, in xpandas_read_csv
                  return pd.read_csv(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1026, in read_csv
                  return _read(filepath_or_buffer, kwds)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 620, in _read
                  parser = TextFileReader(filepath_or_buffer, **kwds)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1620, in __init__
                  self._engine = self._make_engine(f, self.engine)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1898, in _make_engine
                  return mapping[engine](f, **self.options)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 93, in __init__
                  self._reader = parsers.TextReader(src, **kwds)
                File "parsers.pyx", line 581, in pandas._libs.parsers.TextReader.__cinit__
              pandas.errors.EmptyDataError: No columns to parse from file

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

NER Fine-Tuning

We use Flair for fine-tuning NER models on HIPE-2022 datasets from HIPE-2022 Shared Task.

All models are fine-tuned on A10 (24GB) and A100 (40GB) instances from Lambda Cloud using Flair:

$ git clone https://github.com/flairNLP/flair.git
$ cd flair && git checkout 419f13a05d6b36b2a42dd73a551dc3ba679f820c
$ pip3 install -e .
$ cd ..

Clone this repo for fine-tuning NER models:

$ git clone https://github.com/stefan-it/hmTEAMS.git
$ cd hmTEAMS/bench

Authorize via Hugging Face CLI (needed because hmTEAMS is currently only available after approval):

# Use access token from https://huggingface.co/settings/tokens
$ huggingface-cli login login

We use a config-driven hyper-parameter search. The script flair-fine-tuner.py can be used to fine-tune NER models from our Model Zoo.

Benchmark

We test our pretrained language models on various datasets from HIPE-2020, HIPE-2022 and Europeana. The following table shows an overview of used datasets.

Language Datasets
English AjMC - TopRes19th
German AjMC - NewsEye
French AjMC - ICDAR-Europeana - LeTemps - NewsEye
Finnish NewsEye
Swedish NewsEye
Dutch ICDAR-Europeana

Results

We report averaged F1-score over 5 runs with different seeds on development set:

Model English AjMC German AjMC French AjMC German NewsEye French NewsEye Finnish NewsEye Swedish NewsEye Dutch ICDAR French ICDAR French LeTemps English TopRes19th Avg.
hmBERT (32k) Schweter et al. 85.36 ± 0.94 89.08 ± 0.09 85.10 ± 0.60 39.65 ± 1.01 81.47 ± 0.36 77.28 ± 0.37 82.85 ± 0.83 82.11 ± 0.61 77.21 ± 0.16 65.73 ± 0.56 80.94 ± 0.86 76.98
hmTEAMS (Ours) 86.41 ± 0.36 88.64 ± 0.42 85.41 ± 0.67 41.51 ± 2.82 83.20 ± 0.79 79.27 ± 1.88 82.78 ± 0.60 88.21 ± 0.39 78.03 ± 0.39 66.71 ± 0.46 81.36 ± 0.59 78.32
Downloads last month
134