|
standard library package ISQCondensedMatter { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
private import ScalarValues::Real; |
|
private import Quantities::*; |
|
private import MeasurementReferences::*; |
|
private import ISQBase::*; |
|
|
|
|
|
private import ISQElectromagnetism::ElectricPotentialDifferenceValue; |
|
private import ISQElectromagnetism::MagneticFluxDensityValue; |
|
private import ISQElectromagnetism::ResistivityValue; |
|
private import ISQSpaceTime::CartesianSpatial3dCoordinateFrame; |
|
private import ISQSpaceTime::AngularFrequencyValue; |
|
private import ISQSpaceTime::AngularMeasureValue; |
|
private import ISQSpaceTime::RepetencyValue; |
|
private import ISQThermodynamics::EnergyValue; |
|
|
|
|
|
attribute def Cartesian3dLatticeVector :> VectorQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> isBound = false; |
|
attribute :>> num: Real[3]; |
|
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1]; |
|
} |
|
|
|
attribute latticeVector: Cartesian3dLatticeVector :> vectorQuantities; |
|
|
|
|
|
attribute def Cartesian3dFundamentalLatticeVector :> VectorQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> isBound = false; |
|
attribute :>> num: Real[3]; |
|
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1]; |
|
} |
|
|
|
attribute fundamentalLatticeVector: Cartesian3dFundamentalLatticeVector :> vectorQuantities; |
|
|
|
|
|
attribute def AngularReciprocalLatticeVectorMagnitudeValue :> ScalarQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> num: Real; |
|
attribute :>> mRef: AngularReciprocalLatticeVectorMagnitudeUnit[1]; |
|
} |
|
|
|
attribute angularReciprocalLatticeVectorMagnitude: AngularReciprocalLatticeVectorMagnitudeValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def AngularReciprocalLatticeVectorMagnitudeUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } |
|
} |
|
|
|
attribute def Cartesian3dAngularReciprocalLatticeVector :> VectorQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> isBound = false; |
|
attribute :>> num: Real[3]; |
|
attribute :>> mRef: Cartesian3dAngularReciprocalLatticeCoordinateFrame[1]; |
|
} |
|
|
|
attribute angularReciprocalLatticeVector: Cartesian3dAngularReciprocalLatticeVector :> vectorQuantities; |
|
|
|
attribute def Cartesian3dAngularReciprocalLatticeCoordinateFrame :> VectorMeasurementReference { |
|
attribute :>> dimensions = 3; |
|
attribute :>> isBound = false; |
|
attribute :>> isOrthogonal = true; |
|
attribute :>> mRefs: AngularReciprocalLatticeVectorMagnitudeUnit[3]; |
|
} |
|
|
|
|
|
attribute def FundamentalReciprocalLatticeVectorMagnitudeValue :> ScalarQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> num: Real; |
|
attribute :>> mRef: FundamentalReciprocalLatticeVectorMagnitudeUnit[1]; |
|
} |
|
|
|
attribute fundamentalReciprocalLatticeVectorMagnitude: FundamentalReciprocalLatticeVectorMagnitudeValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def FundamentalReciprocalLatticeVectorMagnitudeUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } |
|
} |
|
|
|
attribute def Cartesian3dFundamentalReciprocalLatticeVector :> VectorQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> isBound = false; |
|
attribute :>> num: Real[3]; |
|
attribute :>> mRef: Cartesian3dFundamentalReciprocalLatticeCoordinateFrame[1]; |
|
} |
|
|
|
attribute fundamentalReciprocalLatticeVector: Cartesian3dFundamentalReciprocalLatticeVector :> vectorQuantities; |
|
|
|
attribute def Cartesian3dFundamentalReciprocalLatticeCoordinateFrame :> VectorMeasurementReference { |
|
attribute :>> dimensions = 3; |
|
attribute :>> isBound = false; |
|
attribute :>> isOrthogonal = true; |
|
attribute :>> mRefs: FundamentalReciprocalLatticeVectorMagnitudeUnit[3]; |
|
} |
|
|
|
|
|
attribute latticePlaneSpacing: LengthValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute braggAngle: AngularMeasureValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute def ShortRangeOrderParameterValue :> DimensionOneValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
attribute shortRangeOrderParameter: ShortRangeOrderParameterValue :> scalarQuantities; |
|
|
|
|
|
attribute def LongRangeOrderParameterValue :> DimensionOneValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
attribute longRangeOrderParameter: LongRangeOrderParameterValue :> scalarQuantities; |
|
|
|
|
|
attribute def AtomicScatteringFactorValue :> DimensionOneValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
attribute atomicScatteringFactor: AtomicScatteringFactorValue :> scalarQuantities; |
|
|
|
|
|
attribute def StructureFactorValue :> DimensionOneValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
attribute structureFactor: StructureFactorValue :> scalarQuantities; |
|
|
|
|
|
attribute def Cartesian3dBurgersVector :> VectorQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> isBound = false; |
|
attribute :>> num: Real[3]; |
|
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1]; |
|
} |
|
|
|
attribute burgersVector: Cartesian3dBurgersVector :> vectorQuantities; |
|
|
|
|
|
attribute def Cartesian3dParticlePositionVector :> VectorQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> isBound = true; |
|
attribute :>> num: Real[3]; |
|
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1]; |
|
} |
|
|
|
attribute particlePositionVector: Cartesian3dParticlePositionVector :> vectorQuantities; |
|
|
|
|
|
attribute def Cartesian3dEquilibriumPositionVector :> VectorQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> isBound = true; |
|
attribute :>> num: Real[3]; |
|
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1]; |
|
} |
|
|
|
attribute equilibriumPositionVector: Cartesian3dEquilibriumPositionVector :> vectorQuantities; |
|
|
|
|
|
attribute def Cartesian3dDisplacementVector :> VectorQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> isBound = false; |
|
attribute :>> num: Real[3]; |
|
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1]; |
|
} |
|
|
|
attribute displacementVector: Cartesian3dDisplacementVector :> vectorQuantities; |
|
|
|
|
|
attribute def DebyeWallerFactorValue :> DimensionOneValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
attribute debyeWallerFactor: DebyeWallerFactorValue :> scalarQuantities; |
|
|
|
|
|
attribute angularWavenumber: RepetencyValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
alias angularRepetency for angularWavenumber; |
|
|
|
|
|
attribute fermiAngularWavenumber: RepetencyValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
alias fermiAngularRepetency for fermiAngularWavenumber; |
|
|
|
|
|
attribute debyeAngularWavenumber: RepetencyValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
alias debyeAngularRepetency for debyeAngularWavenumber; |
|
|
|
|
|
attribute debyeAngularFrequency: AngularFrequencyValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute debyeTemperature: ThermodynamicTemperatureValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute def DensityOfVibrationalStatesValue :> ScalarQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> num: Real; |
|
attribute :>> mRef: DensityOfVibrationalStatesUnit[1]; |
|
} |
|
|
|
attribute densityOfVibrationalStates: DensityOfVibrationalStatesValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def DensityOfVibrationalStatesUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } |
|
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 1; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } |
|
} |
|
|
|
|
|
attribute def 'ThermodynamicGrüneisenParameterValue' :> DimensionOneValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
attribute 'thermodynamicGrüneisenParameter': 'ThermodynamicGrüneisenParameterValue' :> scalarQuantities; |
|
|
|
|
|
attribute def 'GrüneisenParameterValue' :> DimensionOneValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
attribute 'grüneisenParameter': 'GrüneisenParameterValue' :> scalarQuantities; |
|
|
|
|
|
attribute meanFreePathOfPhonons: LengthValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute meanFreePathOfElectrons: LengthValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute def EnergyDensityOfStatesValue :> ScalarQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> num: Real; |
|
attribute :>> mRef: EnergyDensityOfStatesUnit[1]; |
|
} |
|
|
|
attribute energyDensityOfStates: EnergyDensityOfStatesValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def EnergyDensityOfStatesUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -5; } |
|
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = -1; } |
|
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = 2; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF); } |
|
} |
|
|
|
|
|
attribute residualResistivity: ResistivityValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute def LorenzCoefficientValue :> ScalarQuantityValue { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attribute :>> num: Real; |
|
attribute :>> mRef: LorenzCoefficientUnit[1]; |
|
} |
|
|
|
attribute lorenzCoefficient: LorenzCoefficientValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def LorenzCoefficientUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 4; } |
|
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 2; } |
|
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -6; } |
|
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -2; } |
|
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -2; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF, thermodynamicTemperaturePF); } |
|
} |
|
|
|
/* ISO-80000-12 item 12-19 Hall coefficient */ |
|
attribute def HallCoefficientValue :> ScalarQuantityValue { |
|
doc |
|
/* |
|
* source: item 12-19 Hall coefficient |
|
* symbol(s): `R_H`, `A_H` |
|
* application domain: generic |
|
* name: HallCoefficient |
|
* quantity dimension: 1 |
|
* measurement unit(s): m^3/C*m^3*s^-1*A^-1 |
|
* tensor order: 0 |
|
* definition: in an isotropic conductor, relation between electric field strength, `vec(E)`, (IEC 80000-6) and electric current density, `vec(J)`, (IEC 80000-6) expressed as: `vec(E) = ρ vec(J) + R_H (vec(B) xx vec(J))`, where `ρ` is resistivity (IEC 80000-6), and `vec(B)` is magnetic flux density (IEC 80000-6) |
|
* remarks: None. |
|
*/ |
|
attribute :>> num: Real; |
|
attribute :>> mRef: HallCoefficientUnit[1]; |
|
} |
|
|
|
attribute hallCoefficient: HallCoefficientValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def HallCoefficientUnit :> DimensionOneUnit { |
|
} |
|
|
|
/* ISO-80000-12 item 12-20 thermoelectric voltage (between substances a and b) */ |
|
attribute thermoelectricVoltageBetweenSubstancesAAndB: ElectricPotentialDifferenceValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-20 thermoelectric voltage (between substances a and b) |
|
* symbol(s): `E_(ab)` |
|
* application domain: generic |
|
* name: ThermoelectricVoltageBetweenSubstancesAAndB (specializes ElectricPotentialDifference) |
|
* quantity dimension: L^2*M^1*T^-3*I^-1 |
|
* measurement unit(s): V, kg*m^2*s^-3*A^-1 |
|
* tensor order: 0 |
|
* definition: voltage (IEC 80000-6) between substances `a` and `b` caused by the thermoelectric effect |
|
* remarks: None. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-21 Seebeck coefficient (for substances a and b) */ |
|
attribute def SeebeckCoefficientForSubstancesAAndBValue :> ScalarQuantityValue { |
|
doc |
|
/* |
|
* source: item 12-21 Seebeck coefficient (for substances a and b) |
|
* symbol(s): `S_(ab)` |
|
* application domain: generic |
|
* name: SeebeckCoefficientForSubstancesAAndB |
|
* quantity dimension: L^2*M^1*T^-3*I^-1*Θ^-1 |
|
* measurement unit(s): V/K, kg*m^2*s^-3*A^-1*K^-1 |
|
* tensor order: 0 |
|
* definition: differential quotient of thermoelectric voltage with respect to thermodynamic temperature: `S_(ab) = (dE_(ab))/(dT)`, where `E_(ab)` is the thermoelectric voltage between substances `a` and `b` (item 12-20) and `T` is thermodynamic temperature (ISO 80000-5) |
|
* remarks: This term is also called "thermoelectric power". |
|
*/ |
|
attribute :>> num: Real; |
|
attribute :>> mRef: SeebeckCoefficientForSubstancesAAndBUnit[1]; |
|
} |
|
|
|
attribute seebeckCoefficientForSubstancesAAndB: SeebeckCoefficientForSubstancesAAndBValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def SeebeckCoefficientForSubstancesAAndBUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } |
|
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } |
|
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } |
|
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } |
|
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF, thermodynamicTemperaturePF); } |
|
} |
|
|
|
/* ISO-80000-12 item 12-22 Peltier coefficient (for substances a and b) */ |
|
attribute peltierCoefficientForSubstancesAAndB: ElectricPotentialDifferenceValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-22 Peltier coefficient (for substances a and b) |
|
* symbol(s): `Π_(ab)` |
|
* application domain: generic |
|
* name: PeltierCoefficientForSubstancesAAndB (specializes ElectricPotentialDifference) |
|
* quantity dimension: L^2*M^1*T^-3*I^-1 |
|
* measurement unit(s): V, kg*m^2*s^-3*A^-1 |
|
* tensor order: 0 |
|
* definition: quotient of Peltier heat power (ISO 80000-5) developed at a junction, and the electric current (IEC 80000-6) flowing from substance `a` to substance `b` |
|
* remarks: `Π_(ab) = Π_a - Π_b`, where `Π_a` and `Π_b` are the Peltier coefficients of substances `a` and `b`, respectively. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-23 Thomson coefficient */ |
|
attribute def ThomsonCoefficientValue :> ScalarQuantityValue { |
|
doc |
|
/* |
|
* source: item 12-23 Thomson coefficient |
|
* symbol(s): `μ` |
|
* application domain: generic |
|
* name: ThomsonCoefficient |
|
* quantity dimension: L^2*M^1*T^-3*I^-1*Θ^-1 |
|
* measurement unit(s): V/K, kg*m^2*s^-3*A^-1*K^-1 |
|
* tensor order: 0 |
|
* definition: quotient of Thomson heat power (ISO 80000-5) developed, and the electric current (IEC 80000-6) and temperature (ISO 80000-5) difference |
|
* remarks: `μ` is positive if heat is developed when the temperature decreases in the direction of the electric current. |
|
*/ |
|
attribute :>> num: Real; |
|
attribute :>> mRef: ThomsonCoefficientUnit[1]; |
|
} |
|
|
|
attribute thomsonCoefficient: ThomsonCoefficientValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def ThomsonCoefficientUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } |
|
private attribute massPF: QuantityPowerFactor[1] { :>> quantity = isq.M; :>> exponent = 1; } |
|
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -3; } |
|
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = -1; } |
|
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -1; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, massPF, durationPF, electricCurrentPF, thermodynamicTemperaturePF); } |
|
} |
|
|
|
/* ISO-80000-12 item 12-24.1 work function */ |
|
attribute workFunction: EnergyValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-24.1 work function |
|
* symbol(s): `ϕ` |
|
* application domain: generic |
|
* name: WorkFunction (specializes Energy) |
|
* quantity dimension: L^2*M^1*T^-2 |
|
* measurement unit(s): J, eV, kg*m^2*s^-2 |
|
* tensor order: 0 |
|
* definition: difference between energy (ISO 80000-5) of an electron at rest at infinity and the Fermi energy (item 12-27.1) |
|
* remarks: The term "energy level" is often used for the state of the electron, not only for its energy. The contact potential difference between substances `a` and `b` is given by `V_a - V_b = (ϕ_a - ϕ_b)/e`, where `e` is the elementary charge (ISO 80000-1). A set of energy levels, the energies of which occupy an interval practically continuously, is called an energy band. In semi-conductors `E_d` and `E_a` are used for donors and acceptors, respectively. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-24.2 ionization energy */ |
|
attribute ionizationEnergy: EnergyValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-24.2 ionization energy |
|
* symbol(s): `E_i` |
|
* application domain: generic |
|
* name: IonizationEnergy (specializes Energy) |
|
* quantity dimension: L^2*M^1*T^-2 |
|
* measurement unit(s): J, eV, kg*m^2*s^-2 |
|
* tensor order: 0 |
|
* definition: difference between energy (ISO 80000-5) of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance |
|
* remarks: None. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-25 electron affinity */ |
|
attribute electronAffinity: EnergyValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-25 electron affinity |
|
* symbol(s): `χ` |
|
* application domain: condensed matter physics |
|
* name: ElectronAffinity (specializes Energy) |
|
* quantity dimension: L^2*M^1*T^-2 |
|
* measurement unit(s): J, eV, kg*m^2*s^-2 |
|
* tensor order: 0 |
|
* definition: energy (ISO 80000-5) difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor |
|
* remarks: None. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-26 Richardson constant */ |
|
attribute def RichardsonConstantValue :> ScalarQuantityValue { |
|
doc |
|
/* |
|
* source: item 12-26 Richardson constant |
|
* symbol(s): `A` |
|
* application domain: generic |
|
* name: RichardsonConstant |
|
* quantity dimension: L^-2*I^1*Θ^-2 |
|
* measurement unit(s): A*m^-2*K^-2 |
|
* tensor order: 0 |
|
* definition: parameter in the expression for the thermionic emission current density `J` (IEC 80000-6) for a metal in terms of the thermodynamic temperature `T` (ISO 80000-5) and work function `ϕ`, (item 12-24.1): `J = AT^2 exp(ϕ/(kT))`, where `k` is the Boltzmann constant (ISO 80000-1) |
|
* remarks: None. |
|
*/ |
|
attribute :>> num: Real; |
|
attribute :>> mRef: RichardsonConstantUnit[1]; |
|
} |
|
|
|
attribute richardsonConstant: RichardsonConstantValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def RichardsonConstantUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -2; } |
|
private attribute electricCurrentPF: QuantityPowerFactor[1] { :>> quantity = isq.I; :>> exponent = 1; } |
|
private attribute thermodynamicTemperaturePF: QuantityPowerFactor[1] { :>> quantity = isq.'Θ'; :>> exponent = -2; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, electricCurrentPF, thermodynamicTemperaturePF); } |
|
} |
|
|
|
/* ISO-80000-12 item 12-27.1 Fermi energy */ |
|
attribute fermiEnergy: EnergyValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-27.1 Fermi energy |
|
* symbol(s): `E_F` |
|
* application domain: generic |
|
* name: FermiEnergy (specializes Energy) |
|
* quantity dimension: L^2*M^1*T^-2 |
|
* measurement unit(s): J, eV, kg*m^2*s^-2 |
|
* tensor order: 0 |
|
* definition: in a metal, highest occupied energy level at zero thermodynamic temperature (ISO 80000-5), where energy level means the energy (ISO 80000-5) of an electron in the interior of a substance |
|
* remarks: The term "energy level" is often used for the state of the electron, not only for its energy. At `T = 0 [K]`, `E_F` is equal to the chemical potential per electron. In condensed matter physics, the reference level for the energy is sometimes chosen so that, for instance, `E_F = 0`. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-27.2 gap energy */ |
|
attribute gapEnergy: EnergyValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-27.2 gap energy |
|
* symbol(s): `E_g` |
|
* application domain: generic |
|
* name: GapEnergy (specializes Energy) |
|
* quantity dimension: L^2*M^1*T^-2 |
|
* measurement unit(s): J, eV, kg*m^2*s^-2 |
|
* tensor order: 0 |
|
* definition: difference in energy (ISO 80000-5) between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature (ISO 80000-5) |
|
* remarks: None. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-28 Fermi temperature */ |
|
attribute fermiTemperature: ThermodynamicTemperatureValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-28 Fermi temperature |
|
* symbol(s): `T_F` |
|
* application domain: generic |
|
* name: FermiTemperature (specializes ThermodynamicTemperature) |
|
* quantity dimension: Θ^1 |
|
* measurement unit(s): K |
|
* tensor order: 0 |
|
* definition: in the free electron model, the Fermi energy (item 12-27.1) divided by the Boltzmann constant (ISO 80000-1) |
|
* remarks: The Fermi temperature is expressed by: `T_F = E_F/k`, where `E_F` is Fermi energy (item 12-27.1) and `k` is the Boltzmann constant (ISO 80000-1). `E_F` is relative to the lowest occupied state. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-29.1 electron density */ |
|
attribute def ElectronDensityValue :> ScalarQuantityValue { |
|
doc |
|
/* |
|
* source: item 12-29.1 electron density |
|
* symbol(s): `n` |
|
* application domain: generic |
|
* name: ElectronDensity |
|
* quantity dimension: L^-3 |
|
* measurement unit(s): m^-3 |
|
* tensor order: 0 |
|
* definition: quotient of number of electrons in conduction band and volume (ISO 80000-3) |
|
* remarks: Subscripts `n` and `p` or `-` and `+` are often used to denote electrons and holes, respectively. `n_n` and `n_p` are also used for electron densities, and `p_n` and `p_p` for hole densities, in `n`-type and `p`-type regions, respectively, of a `n`-`p` junction. |
|
*/ |
|
attribute :>> num: Real; |
|
attribute :>> mRef: ElectronDensityUnit[1]; |
|
} |
|
|
|
attribute electronDensity: ElectronDensityValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def ElectronDensityUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } |
|
} |
|
|
|
/* ISO-80000-12 item 12-29.2 hole density */ |
|
attribute def HoleDensityValue :> ScalarQuantityValue { |
|
doc |
|
/* |
|
* source: item 12-29.2 hole density |
|
* symbol(s): `p` |
|
* application domain: generic |
|
* name: HoleDensity |
|
* quantity dimension: L^-3 |
|
* measurement unit(s): m^-3 |
|
* tensor order: 0 |
|
* definition: quotient of number of holes in valence band and volume (ISO 80000-3) |
|
* remarks: Subscripts `n` and `p` or `-` and `+` are often used to denote electrons and holes, respectively. `n_n` and `n_p` are also used for electron densities, and `p_n` and `p_p` for hole densities, in `n`-type and `p`-type regions, respectively, of a `n`-`p` junction. |
|
*/ |
|
attribute :>> num: Real; |
|
attribute :>> mRef: HoleDensityUnit[1]; |
|
} |
|
|
|
attribute holeDensity: HoleDensityValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def HoleDensityUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } |
|
} |
|
|
|
/* ISO-80000-12 item 12-29.3 intrinsic carrier density */ |
|
attribute def IntrinsicCarrierDensityValue :> ScalarQuantityValue { |
|
doc |
|
/* |
|
* source: item 12-29.3 intrinsic carrier density |
|
* symbol(s): `n_i` |
|
* application domain: generic |
|
* name: IntrinsicCarrierDensity |
|
* quantity dimension: L^-3 |
|
* measurement unit(s): m^-3 |
|
* tensor order: 0 |
|
* definition: quantity given by: `n_i = sqrt(n p)`, where `n` is electron density (item 12-29.1), and `p` is hole |
|
* remarks: Subscripts `n` and `p` or `-` and `+` are often used to denote electrons and holes, respectively. `n_n` and `n_p` are also used for electron densities, and `p_n` and `p_p` for hole densities, in `n`-type and `p`-type regions, respectively, of a `n`-`p` junction. |
|
*/ |
|
attribute :>> num: Real; |
|
attribute :>> mRef: IntrinsicCarrierDensityUnit[1]; |
|
} |
|
|
|
attribute intrinsicCarrierDensity: IntrinsicCarrierDensityValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def IntrinsicCarrierDensityUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } |
|
} |
|
|
|
/* ISO-80000-12 item 12-29.4 donor density */ |
|
attribute def DonorDensityValue :> ScalarQuantityValue { |
|
doc |
|
/* |
|
* source: item 12-29.4 donor density |
|
* symbol(s): `n_d` |
|
* application domain: generic |
|
* name: DonorDensity |
|
* quantity dimension: L^-3 |
|
* measurement unit(s): m^-3 |
|
* tensor order: 0 |
|
* definition: quotient of number of donor levels and volume (ISO 80000-3) |
|
* remarks: None. |
|
*/ |
|
attribute :>> num: Real; |
|
attribute :>> mRef: DonorDensityUnit[1]; |
|
} |
|
|
|
attribute donorDensity: DonorDensityValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def DonorDensityUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } |
|
} |
|
|
|
/* ISO-80000-12 item 12-29.5 acceptor density */ |
|
attribute def AcceptorDensityValue :> ScalarQuantityValue { |
|
doc |
|
/* |
|
* source: item 12-29.5 acceptor density |
|
* symbol(s): `n_a` |
|
* application domain: generic |
|
* name: AcceptorDensity |
|
* quantity dimension: L^-3 |
|
* measurement unit(s): m^-3 |
|
* tensor order: 0 |
|
* definition: quotient of number of acceptor levels and volume (ISO 80000-3) |
|
* remarks: None. |
|
*/ |
|
attribute :>> num: Real; |
|
attribute :>> mRef: AcceptorDensityUnit[1]; |
|
} |
|
|
|
attribute acceptorDensity: AcceptorDensityValue[*] nonunique :> scalarQuantities; |
|
|
|
attribute def AcceptorDensityUnit :> DerivedUnit { |
|
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -3; } |
|
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } |
|
} |
|
|
|
/* ISO-80000-12 item 12-30 effective mass */ |
|
attribute effectiveMass: MassValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-30 effective mass |
|
* symbol(s): `m"*"` |
|
* application domain: generic |
|
* name: EffectiveMass (specializes Mass) |
|
* quantity dimension: M^1 |
|
* measurement unit(s): kg |
|
* tensor order: 0 |
|
* definition: quantity given by: `m^"*" = (ħ^2 k) / ((dε)/(dk))`, where `k` is wavenumber (ISO 80000-3), `ε` is the energy (ISO 80000-5) of an electron in the interior of a substance, and `ħ` is the reduced Planck constant (ISO 80000-1) |
|
* remarks: When `k` refers to a state where `ε` has an extremum, `m"*" = (ħ^2 k) / ((d^2ε)/(dk^2))`. The effective mass can be generalized to refer to an anisotropic system with `ε = ε(k)`. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-31 mobility ratio */ |
|
attribute def MobilityRatioValue :> DimensionOneValue { |
|
doc |
|
/* |
|
* source: item 12-31 mobility ratio |
|
* symbol(s): `b` |
|
* application domain: generic |
|
* name: MobilityRatio (specializes DimensionOneQuantity) |
|
* quantity dimension: 1 |
|
* measurement unit(s): 1 |
|
* tensor order: 0 |
|
* definition: quotient of mobilities (ISO 80000-10) of electrons and holes, respectively |
|
* remarks: The mobility ratio can be expressed by: `b = μ_n/μ_p`, where `μ_n` and `μ_p` are mobilities (ISO 80000-10) for electrons and holes, respectively. |
|
*/ |
|
} |
|
attribute mobilityRatio: MobilityRatioValue :> scalarQuantities; |
|
|
|
/* ISO-80000-12 item 12-32.1 relaxation time */ |
|
attribute relaxationTime: DurationValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-32.1 relaxation time |
|
* symbol(s): `τ` |
|
* application domain: condensed matter physics |
|
* name: RelaxationTime (specializes Duration) |
|
* quantity dimension: T^1 |
|
* measurement unit(s): s |
|
* tensor order: 0 |
|
* definition: time constant (ISO 80000-3) for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles |
|
* remarks: For electrons in metals, `τ = l/v_F`, where `l` is mean free path (item 12-15.2) and `v_F` is speed (ISO 80000-3) of electrons on the Fermi surface. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-32.2 carrier lifetime */ |
|
attribute carrierLifetime: DurationValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-32.2 carrier lifetime |
|
* symbol(s): `τ`, `τ_n`, `τ_p` |
|
* application domain: semiconductors |
|
* name: CarrierLifetime (specializes Duration) |
|
* quantity dimension: T^1 |
|
* measurement unit(s): s |
|
* tensor order: 0 |
|
* definition: time constant (ISO 80000-3) for recombination or trapping of minority charge carriers in semiconductors |
|
* remarks: Indices "n" and "p" denote negative and positive charge carriers, respectively. Positive charge carriers can also be holes. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-33 diffusion length */ |
|
attribute diffusionLengthForCondensedMatterPhysics: LengthValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-33 diffusion length |
|
* symbol(s): `L`, `L_n`, `L_p` |
|
* application domain: condensed matter physics |
|
* name: DiffusionLength (specializes Length) |
|
* quantity dimension: L^1 |
|
* measurement unit(s): m |
|
* tensor order: 0 |
|
* definition: square root of the product of diffusion coefficient (ISO 80000-10) and lifetime (ISO 80000-10) |
|
* remarks: The diffusion length can be expressed by: `L = sqrt(Dτ)`, where `D` is the diffusion coefficient (ISO 80000-9) and `τ` is lifetime (ISO 80000-3). |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-34 exchange integral */ |
|
attribute exchangeIntegral: EnergyValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-34 exchange integral |
|
* symbol(s): `K`, `J` |
|
* application domain: generic |
|
* name: ExchangeIntegral (specializes Energy) |
|
* quantity dimension: L^2*M^1*T^-2 |
|
* measurement unit(s): J, eV, kg*m^2*s^-2 |
|
* tensor order: 0 |
|
* definition: constituent of the interaction energy (ISO 80000-5) between the spins of adjacent electrons in matter arising from the overlap of electron state functions |
|
* remarks: None. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-35.1 Curie temperature */ |
|
attribute curieTemperature: ThermodynamicTemperatureValue :> scalarQuantities { |
|
doc |
|
/* |
|
* source: item 12-35.1 Curie temperature |
|
* symbol(s): `T_C` |
|
* application domain: generic |
|
* name: CurieTemperature (specializes ThermodynamicTemperature) |
|
* quantity dimension: Θ^1 |
|
* measurement unit(s): K |
|
* tensor order: 0 |
|
* definition: critical thermodynamic temperature (ISO 80000-5) of a ferromagnet |
|
* remarks: `T_(cr)` is used for critical thermodynamic temperature in general. |
|
*/ |
|
} |
|
|
|
/* ISO-80000-12 item 12-35.2 Néel temperature */ |
|
attribute 'néelTemperature': ThermodynamicTemperatureValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute superconductionTransitionTemperature: ThermodynamicTemperatureValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute thermodynamicCriticalMagneticFluxDensity: MagneticFluxDensityValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute lowerCriticalMagneticFluxDensity: MagneticFluxDensityValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute upperCriticalMagneticFluxDensity: MagneticFluxDensityValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute superconductorEnergyGap: EnergyValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute londonPenetrationDepth: LengthValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
attribute coherenceLength: LengthValue :> scalarQuantities { |
|
doc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|