HansBug's picture
Sync raw source code, with 301 records, on 2024-08-14 05:51:28 CST
5070096 verified
raw
history blame
54.9 kB
standard library package ISQSpaceTime {
doc
/*
* International System of Quantities and Units
* Generated on 2022-08-07T14:44:27Z from standard ISO-80000-3:2019 "Space and Time"
* see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-3:ed-2:v1:en
*
* Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts,
* with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks.
* Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is
* defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system)
* or TensorMeasurementReference.
*/
private import ScalarValues::Real;
private import ScalarValues::String;
private import Quantities::*;
private import MeasurementReferences::*;
private import ISQBase::*;
/* ISO-80000-3 item 3-1.1 length */
/* See package ISQBase for the declarations of LengthValue and LengthUnit */
/* ISO-80000-3 item 3-1.2 width, breadth */
attribute width: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.2 width, breadth
* symbol(s): `b`, `B`
* application domain: generic
* name: Width (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: minimum length of a straight line segment between two parallel straight lines (in two dimensions) or planes (in three dimensions) that enclose a given geometrical shape
* remarks: This quantity is non-negative.
*/
}
alias breadth for width;
/* ISO-80000-3 item 3-1.3 height, depth, altitude */
attribute height: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.3 height, depth, altitude
* symbol(s): `h`, `H`
* application domain: generic
* name: Height (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: minimum length of a straight line segment between a point and a reference line or reference surface
* remarks: This quantity is usually signed. The sign expresses the position of the particular point with respect to the reference line or surface and is chosen by convention. The symbol `H` is often used to denote altitude, i.e. height above sea level.
*/
}
alias depth for height;
alias altitude for height;
/* ISO-80000-3 item 3-1.4 thickness */
attribute thickness: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.4 thickness
* symbol(s): `d`, `δ`
* application domain: generic
* name: Thickness (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: width (item 3-1.2)
* remarks: This quantity is non-negative.
*/
}
/* ISO-80000-3 item 3-1.5 diameter */
attribute diameter: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.5 diameter
* symbol(s): `d`, `D`
* application domain: generic
* name: Diameter (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: width (item 3-1.2) of a circle, cylinder or sphere
* remarks: This quantity is non-negative.
*/
}
/* ISO-80000-3 item 3-1.6 radius */
attribute radius: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.6 radius
* symbol(s): `r`, `R`
* application domain: generic
* name: Radius (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: half of a diameter (item 3-1.5)
* remarks: This quantity is non-negative.
*/
}
/* ISO-80000-3 item 3-1.7 path length, arc length */
attribute pathLength: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.7 path length, arc length
* symbol(s): `s`
* application domain: generic
* name: PathLength (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: length of a rectifiable curve between two of its points
* remarks: The differential path length at a given point of a curve is: `ds = sqrt(dx^2 + dy^2 + dz^2)` where `x`, `y`, and `z` denote the Cartesian coordinates (ISO 80000-2) of the particular point. There are curves which are not rectifiable, for example fractal curves.
*/
}
alias arcLength for pathLength;
/* ISO-80000-3 item 3-1.8 distance */
attribute distance: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.8 distance
* symbol(s): `d`, `r`
* application domain: generic
* name: Distance (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: shortest path length (item 3-1.7) between two points in a metric space
* remarks: A metric space might be curved. An example of a curved metric space is the surface of the Earth. In this case, distances are measured along great circles. A metric is not necessarily Euclidean.
*/
}
/* ISO-80000-3 item 3-1.9 radial distance */
attribute radialDistance: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.9 radial distance
* symbol(s): `r_Q`, `ρ`
* application domain: generic
* name: RadialDistance (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: distance (item 3-1.8), where one point is located on an axis or within a closed non self-intersecting curve or surface
* remarks: The subscript Q denotes the point from which the radial distance is measured. Examples of closed non self-intersecting curves are circles or ellipses. Examples of closed non self-intersecting surfaces are surfaces of spheres or egg-shaped objects.
*/
}
attribute def Spatial3dCoordinateFrame :> '3dCoordinateFrame' {
doc
/*
* Most general spatial 3D coordinate frame
*/
attribute :>> isBound = true;
}
attribute def CartesianSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
doc
/*
* Cartesian spatial 3D coordinate frame
*
* source: ISO 80000-2 item 2-17.1 Cartesian coordinates
*
* The components of a vector expressed on a Cartesian spatial coordinate frame are all LengthValues, and denoted with symbols `x`, `y`, `z`.
*
* Note 1: The Cartesian basis vectors `vec(e_x)`, `vec(e_y)` and `vec(e_z)` form an orthonormal right-handed coordinate frame.
* Note 2: The measurement units for the 3 dimensions are typically the same, but may be different.
*/
attribute xUnit : LengthUnit = mRefs#(1);
attribute yUnit : LengthUnit = mRefs#(2);
attribute zUnit : LengthUnit = mRefs#(3);
attribute :>> mRefs : LengthUnit[3];
attribute :>> isOrthogonal = true;
}
readonly attribute universalCartesianSpatial3dCoordinateFrame : CartesianSpatial3dCoordinateFrame[1] {
doc
/*
* A singleton CartesianSpatial3dCoordinateFrame that can be used as a default universal Cartesian 3D coordinate frame.
*/
attribute :>> mRefs default (SI::m, SI::m, SI::m) {
doc /*
* By default, the universalCartesianSpatial3dCoordinateFrame uses meters as the units on all three axes.
*/
}
attribute :>> transformation[0..0] {
doc /*
* The universalCartesianSpatial3dCoordinateFrame is the "top-level" coordinate frame, not nested in any other frame.
*/
}
}
attribute def CylindricalSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
doc
/*
* Cylindrical spatial 3D coordinate frame
*
* source: ISO 80000-2 item 2-17.2 cylindrical coordinates
*
* The components of a (position) vector to a point P in a cylindrical coordinate frame are:
* - radialDistance (symbol `ρ`) defined by LengthValue, that is the radial distance from the cylinder axis to P
* - azimuth (symbol `φ`) defined by AngularMeasure, that is the angle between the azimuth reference direction and the line segment
* from the cylinder axis, in the plane that is orthogonal to the cylinder axis and intersects P
* - z coordinate (symbol `z`) defined by LengthValue, the coordinate along the clyinder axis.
*
* Note 1: The basis vectors `vec(e_ρ)(φ)`, `vec(e_φ)(φ)` and `vec(e_z)` form an orthonormal right-handed coordinate frame, where
* `vec(e_φ)` is tangent to the circular arc in the `φ` direction.
* Note 2: In order to enable transformation to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned
* with the `φ=0` direction in the cylindrical frame, and the `vec(e_z)` Cartesian basis vector is aligned with
* the `vec(e_z)` cylindrical basis vector.
* Note 3: If `z = 0`, then `ρ` and `φ` are polar coordinates in the XY-plane.
* Note 4: See also https://en.wikipedia.org/wiki/Cylindrical_coordinate_system .
*/
attribute radialDistanceUnit : LengthUnit;
attribute azimuthUnit : AngularMeasureUnit;
attribute zUnit : LengthUnit;
attribute :>> mRefs = (radialDistanceUnit, azimuthUnit, zUnit);
attribute :>> isOrthogonal = true;
}
attribute def SphericalSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
doc
/*
* Spherical spatial 3D coordinate frame
*
* source: ISO 80000-2 item 2-17.3 spherical coordinates
*
* The components of a (position) vector to a point P specified in a spherical coordinate frame are:
* - radialDistance (symbol `r`) defined by LengthValue, that is the distance from the origin to P
* - inclination (symbol `θ`) defined by AngularMeasure, that is the angle between the zenith direction and the line segment from origin to P
* - azimuth (symbol `φ`) defined by AngularMeasure, that is the angle between the azimuth reference direction and the line segment
* from the origin to the orthogonal projection of P on the reference plane, normal to the zenith direction.
*
* Note 1: The basis vectors `vec(e_r)(θ,φ)`, `vec(e_θ)(θ,φ)` and `vec(e_φ)(φ)` form an orthonormal right-handed frame, where
* `vec(e_θ)` and `vec(e_φ)` are tangent to the respective circular arcs in the `θ` and `φ` directions.
* Note 2: In order to transform to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned
* with the `θ=π/4` and `φ=0` direction in the spherical frame, and the `vec(e_z)` Cartesian basis vector is aligned
* with the `θ=0` zenith direction in the spherical frame.
* Note 3: If `θ = π/4`, then `ρ` and `φ` are polar coordinates in the XY-plane.
* Note 4: See also https://en.wikipedia.org/wiki/Spherical_coordinate_system .
*/
attribute radialDistanceUnit : LengthUnit;
attribute inclinationUnit : AngularMeasureUnit;
attribute azimuthUnit : AngularMeasureUnit;
attribute :>> mRefs = (radialDistanceUnit, inclinationUnit, azimuthUnit);
attribute :>> isOrthogonal = true;
}
attribute def PlanetarySpatial3dCoordinateFrame :> Spatial3dCoordinateFrame {
doc
/*
* Planetary spatial 3D coordinate frame
*
* A planetary spatial 3D coordinate frame is a generalization for any planet of the geographic coordinate frame and geocentric coordinate
* for Earth. In such coordinate frames, typically the origin is located at the planet's centre of gravity, and the surface of the planet
* is approximated by a reference ellipsoid centred on the origin, with its major axes oriented along the south to north pole vector and
* the equatorial plane.
*
* The components of a (position) vector to a point P specified in a planetary coordinate frame are:
* - latitude (symbol `lat` or `φ`) defined by AngularMeasure, that is the angle between the equatorial plane and the vector from
* the origin to P, similar to the inclination in a spherical spatial coordinate frame. Typically, the zero reference latitude is chosen
* for positions in the equatorial plane, with positive latitude for positions in the northern hemisphere and negative latitude for positions
* in the southern hemisphere.
* - longitude (symbol `long` or `λ`) defined by AngularMeasure, that is the angle between a reference meridian and the meridian
* passing through P, similar to the azimuth of a spherical spatial coordinate frame. The convention is to connotate positive longitude
* with eastward direction and negative longitude with westward direction. The reference meridian for `long=0` is chosen to pass
* through a particular feature of the planet, e.g., for Earth typically the position of the British Royal Observatory in Greenwich, UK.
* - altitude (symbol `h`) defined by LengthValue, that is the distance between P and the reference ellipsoid
* in the normal direction to the ellipsoid. Positive altitude specifies a position above the reference ellipsoid surface,
* while a negative value specifies a position below.
*
* Note 1: The reference meridian is also called prime meridian.
* Note 2: The basis vectors `vec(e_φ)(φ)`, `vec(e_λ)(λ)` and `vec(e_h)(φ,λ)` form an orthonormal right-handed frame, where
* `vec(e_φ)` and `vec(e_λ)` are tangent to the reference ellipsoid in the respective latitude and longitude directions,
* and `vec(e_h)` is normal to the reference ellipsoid.
* Note 3: In order to transform to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned
* with the `φ=0` and `λ=0` direction in the planetary frame, and the `vec(e_z)` Cartesian basis vector is aligned
* with the `λ=π/2` (north pole) direction in the planetary frame.
* Note 4: See also https://en.wikipedia.org/wiki/Planetary_coordinate_system .
*/
attribute latitudeUnit : AngularMeasureUnit;
attribute longitudeUnit : AngularMeasureUnit;
attribute altitudeUnit : LengthUnit;
attribute :>> mRefs = (longitudeUnit, latitudeUnit, altitudeUnit);
attribute :>> isOrthogonal = true;
}
attribute def Position3dVector :> '3dVectorQuantityValue' {
doc
/*
* source: item 3-1.10 position vector
* symbol(s): `vec(r)`
* application domain: generic
* name: PositionVector
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 1
* definition: vector (ISO 80000-2) quantity from the origin of a coordinate system to a point in space
* remarks: Position vectors are so-called bounded vectors, i.e. their magnitude (ISO 80000-2) and direction depend on the particular coordinate system used.
*/
attribute :>> isBound = true;
attribute :>> mRef: Spatial3dCoordinateFrame[1];
}
attribute position3dVector: Position3dVector :> vectorQuantities;
attribute def CartesianPosition3dVector :> Position3dVector {
attribute x : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute y : LengthValue = num#(2) [mRef.mRefs#(2)];
attribute z : LengthValue = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef : CartesianSpatial3dCoordinateFrame[1];
}
attribute cartesianPosition3dVector : CartesianPosition3dVector :> position3dVector;
attribute def CylindricalPosition3dVector :> Position3dVector {
attribute <'ρ'> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute <'φ'> azimuth : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
attribute <h> height : LengthValue = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef : CylindricalSpatial3dCoordinateFrame[1];
}
attribute cylindricalPosition3dVector : CylindricalPosition3dVector :> position3dVector;
attribute def SphericalPosition3dVector :> Position3dVector {
attribute <r> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute <'θ'> inclination : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
attribute <'φ'> azimuth : AngularMeasureUnit = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef : SphericalSpatial3dCoordinateFrame[1];
}
attribute sphericalPosition3dVector : SphericalPosition3dVector :> position3dVector;
attribute def PlanetaryPosition3dVector :> Position3dVector {
attribute <lat> latitude : AngularMeasureUnit = num#(1) [mRef.mRefs#(1)];
attribute <long> longitude : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
attribute <h> altitude : LengthValue = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef : PlanetarySpatial3dCoordinateFrame[1];
}
attribute planetaryPosition3dVector : PlanetaryPosition3dVector :> position3dVector;
/* ISO-80000-3 item 3-1.11 displacement */
abstract attribute def Displacement3dVector :> '3dVectorQuantityValue' {
doc
/*
* source: item 3-1.11 displacement
* symbol(s): `vec(Δr)`
* application domain: generic
* name: Displacement
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 1
* definition: vector (ISO 80000-2) quantity between any two points in space
* remarks: Displacement vectors are so-called free vectors, i.e. their magnitude (ISO 80000-2) and direction do not depend on a particular coordinate system. The magnitude of this vector is also called displacement.
*/
attribute :>> isBound = false;
attribute :>> mRef: Spatial3dCoordinateFrame[1];
}
attribute displacement3dVector: Displacement3dVector :> vectorQuantities;
attribute def CartesianDisplacement3dVector :> Displacement3dVector {
attribute x : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute y : LengthValue = num#(2) [mRef.mRefs#(2)];
attribute z : LengthValue = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1];
}
attribute cartesianDisplacement3dVector: CartesianDisplacement3dVector :> displacement3dVector;
attribute def CylindricalDisplacement3dVector :> Displacement3dVector {
attribute <'ρ'> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute <'φ'> azimuth : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
attribute <h> height : LengthValue = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef: CylindricalSpatial3dCoordinateFrame[1];
}
attribute cylindricalDisplacement3dVector: CylindricalDisplacement3dVector :> displacement3dVector;
attribute def SphericalDisplacement3dVector :> Displacement3dVector {
attribute <r> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)];
attribute <'θ'> inclination : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)];
attribute <'φ'> azimuth : AngularMeasureUnit = num#(3) [mRef.mRefs#(3)];
attribute :>> mRef: SphericalSpatial3dCoordinateFrame[1];
}
attribute sphericalDisplacement3dVector: SphericalDisplacement3dVector :> displacement3dVector;
/* ISO-80000-3 item 3-1.12 radius of curvature */
attribute radiusOfCurvature: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-1.12 radius of curvature
* symbol(s): `ρ`
* application domain: generic
* name: RadiusOfCurvature (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: radius (item 3-1.6) of the osculating circle of a planar curve at a particular point of the curve
* remarks: The radius of curvature is only defined for curves which are at least twice continuously differentiable.
*/
}
/* ISO-80000-3 item 3-2 curvature */
attribute def CurvatureValue :> ScalarQuantityValue {
doc
/*
* source: item 3-2 curvature
* symbol(s): `κ`
* application domain: generic
* name: Curvature
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: inverse of the radius of curvature (item 3-1.12)
* remarks: The curvature is given by: `κ = 1/ρ` where `ρ` denotes the radius of curvature (item 3-1.12).
*/
attribute :>> num: Real;
attribute :>> mRef: CurvatureUnit[1];
}
attribute curvature: CurvatureValue[*] nonunique :> scalarQuantities;
attribute def CurvatureUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-3 item 3-3 area */
attribute def AreaValue :> ScalarQuantityValue {
doc
/*
* source: item 3-3 area
* symbol(s): `A`, `S`
* application domain: generic
* name: Area
* quantity dimension: L^2
* measurement unit(s): m^2
* tensor order: 0
* definition: extent of a two-dimensional geometrical shape
* remarks: The surface element at a given point of a surface is given by: `dA = g du dv` where `u` and `v` denote the Gaussian surface coordinates and `g` denotes the determinant of the metric tensor (ISO 80000-2) at the particular point. The symbol `dσ` is also used for the surface element.
*/
attribute :>> num: Real;
attribute :>> mRef: AreaUnit[1];
}
attribute area: AreaValue[*] nonunique :> scalarQuantities;
attribute def AreaUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-3 item 3-4 volume */
attribute def VolumeValue :> ScalarQuantityValue {
doc
/*
* source: item 3-4 volume
* symbol(s): `V`, `(S)`
* application domain: generic
* name: Volume
* quantity dimension: L^3
* measurement unit(s): m^3
* tensor order: 0
* definition: extent of a three-dimensional geometrical shape
* remarks: The volume element in Euclidean space is given by: `dV = dx dy dz` where `dx`, `dy`, and `dz` denote the differentials of the Cartesian coordinates (ISO 80000-2). The symbol `dτ` is also used for the volume element.
*/
attribute :>> num: Real;
attribute :>> mRef: VolumeUnit[1];
}
attribute volume: VolumeValue[*] nonunique :> scalarQuantities;
attribute def VolumeUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-3 item 3-5 angular measure, plane angle */
attribute def AngularMeasureValue :> ScalarQuantityValue {
doc
/*
* source: item 3-5 angular measure, plane angle
* symbol(s): `α`, `β`, `γ`
* application domain: generic
* name: AngularMeasure
* quantity dimension: 1
* measurement unit(s): rad, 1
* tensor order: 0
* definition: measure of a geometric figure, called plane angle, formed by two rays, called the sides of the plane angle, emanating from a common point, called the vertex of the plane angle
* remarks: The angular measure is given by: `α = s/r` where `s` denotes the arc length (item 3-1.7) of the included arc of a circle, centred at the vertex of the plane angle, and `r` the radius (item 3-1.6) of that circle. Other symbols are also used.
*/
attribute :>> num: Real;
attribute :>> mRef: AngularMeasureUnit[1];
}
attribute angularMeasure: AngularMeasureValue[*] nonunique :> scalarQuantities;
attribute def AngularMeasureUnit :> DimensionOneUnit {
}
alias PlaneAngleUnit for AngularMeasureUnit;
alias PlaneAngleValue for AngularMeasureValue;
alias planeAngle for angularMeasure;
/* ISO-80000-3 item 3-6 rotational displacement, angular displacement */
attribute rotationalDisplacement: AngularMeasureValue :> scalarQuantities {
doc
/*
* source: item 3-6 rotational displacement, angular displacement
* symbol(s): `ϑ`, `φ`
* application domain: generic
* name: RotationalDisplacement (specializes AngularMeasure)
* quantity dimension: 1
* measurement unit(s): rad, 1
* tensor order: 0
* definition: quotient of the traversed circular path length (item 3-1.7) of a point in space during a rotation and its distance (item 3-1.8) from the axis or centre of rotation
* remarks: The rotational displacement is given by: `φ = s/r` where `s` denotes the traversed path length (item 3-1.7) along the periphery of a circle, centred at the vertex of the plane angle, and `r` the radius (item 3-1.6) of that circle. The rotational displacement is signed. The sign denotes the direction of rotation and is chosen by convention. Other symbols are also used.
*/
}
alias angularDisplacement for rotationalDisplacement;
/* ISO-80000-3 item 3-7 phase angle */
attribute phaseAngle: AngularMeasureValue :> scalarQuantities {
doc
/*
* source: item 3-7 phase angle
* symbol(s): `φ`, `ϕ`
* application domain: generic
* name: PhaseAngle (specializes AngularMeasure)
* quantity dimension: 1
* measurement unit(s): rad, 1
* tensor order: 0
* definition: angular measure (item 3-5) between the positive real axis and the radius of the polar representation of the complex number in the complex plane
* remarks: The phase angle (often imprecisely referred to as the "phase") is the argument of a complex number. Other symbols are also used.
*/
}
/* ISO-80000-3 item 3-8 solid angular measure */
attribute def SolidAngularMeasureValue :> ScalarQuantityValue {
doc
/*
* source: item 3-8 solid angular measure
* symbol(s): `Ω`
* application domain: generic
* name: SolidAngularMeasure
* quantity dimension: 1
* measurement unit(s): sr, 1
* tensor order: 0
* definition: measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface
* remarks: The differential solid angular measure expressed in spherical coordinates (ISO 80000-2) is given by: `dΩ = A/r^2 * sin(θ * dθ * dφ)` where `A` is area, `r` is radius, `θ` and `φ` are spherical coordinates.
*/
attribute :>> num: Real;
attribute :>> mRef: SolidAngularMeasureUnit[1];
}
attribute solidAngularMeasure: SolidAngularMeasureValue[*] nonunique :> scalarQuantities;
attribute def SolidAngularMeasureUnit :> DimensionOneUnit {
}
/* ISO-80000-3 item 3-9 duration, time */
/* See package ISQBase for the declarations of DurationValue and DurationUnit */
alias TimeUnit for DurationUnit;
alias TimeValue for DurationValue;
alias time for duration;
/* ISO-80000-3 item 3-10.1 velocity */
attribute def CartesianVelocity3dVector :> '3dVectorQuantityValue' {
doc
/*
* source: item 3-10.1 velocity
* symbol(s): `vec(v)`, `u,v,w`
* application domain: generic
* name: Velocity
* quantity dimension: L^1*T^-1
* measurement unit(s): m/s, m*s^-1
* tensor order: 1
* definition: vector (ISO 80000-2) quantity giving the rate of change of a position vector (item 3-1.10)
* remarks: The velocity vector is given by: `vec(v) = (d vec(r)) / (dt)` where `vec(r)` denotes the position vector (item 3-1.10) and `t` the duration (item 3-9). When the general symbol `vec(v)` is not used for the velocity, the symbols `u`, `v`, `w` may be used for the components (ISO 80000-2) of the velocity.
*/
attribute :>> isBound = false;
attribute :>> mRef: CartesianVelocity3dCoordinateFrame[1];
}
attribute cartesianVelocity3dVector: CartesianVelocity3dVector :> vectorQuantities;
attribute def CartesianVelocity3dCoordinateFrame :> '3dCoordinateFrame' {
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: SpeedUnit[3];
}
/* ISO-80000-3 item 3-10.2 speed */
attribute def SpeedValue :> ScalarQuantityValue {
doc
/*
* source: item 3-10.2 speed
* symbol(s): `v`
* application domain: generic
* name: Speed
* quantity dimension: L^1*T^-1
* measurement unit(s): m/s, m*s^-1
* tensor order: 0
* definition: magnitude (ISO 80000-2) of the velocity (item 3-10.1)
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: SpeedUnit[1];
}
attribute speed: SpeedValue[*] nonunique :> scalarQuantities;
attribute def SpeedUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
/* ISO-80000-3 item 3-11 acceleration */
attribute def AccelerationValue :> ScalarQuantityValue {
doc
/*
* source: item 3-11 acceleration (magnitude)
* symbol(s): `a`
* application domain: generic
* name: Acceleration
* quantity dimension: L^1*T^-2
* measurement unit(s): m*s^-2
* tensor order: 0
* definition: vector (ISO 80000-2) quantity giving the rate of change of velocity (item 3-10)
* remarks: The acceleration vector is given by: `vec(a) = (d vec(v))/(dt)` where `vec(v)` denotes the velocity (item 3-10.1) and `t` the duration (item 3-9). The magnitude (ISO 80000-2) of the acceleration of free fall is usually denoted by `g`.
*/
attribute :>> num: Real;
attribute :>> mRef: AccelerationUnit[1];
}
attribute acceleration: AccelerationValue[*] nonunique :> scalarQuantities;
attribute def AccelerationUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
attribute def CartesianAcceleration3dVector :> '3dVectorQuantityValue' {
doc
/*
* source: item 3-11 acceleration (vector)
* symbol(s): `vec(a)`
* application domain: generic
* name: Acceleration
* quantity dimension: L^1*T^-2
* measurement unit(s): m*s^-2
* tensor order: 1
* definition: vector (ISO 80000-2) quantity giving the rate of change of velocity (item 3-10)
* remarks: The acceleration vector is given by: `vec(a) = (d vec(v))/(dt)` where `vec(v)` denotes the velocity (item 3-10.1) and `t` the duration (item 3-9). The magnitude (ISO 80000-2) of the acceleration of free fall is usually denoted by `g`.
*/
attribute :>> isBound = false;
attribute :>> mRef: CartesianAcceleration3dCoordinateFrame[1];
}
attribute cartesianAcceleration3dVector: CartesianAcceleration3dVector :> vectorQuantities;
attribute def CartesianAcceleration3dCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: AccelerationUnit[3];
}
/* ISO-80000-3 item 3-12 angular velocity */
attribute def AngularVelocityValue :> ScalarQuantityValue {
doc
/*
* source: item 3-12 angular velocity (magnitude)
* symbol(s): `ω`
* application domain: generic
* name: AngularVelocity
* quantity dimension: T^-1
* measurement unit(s): rad*s^-1, s^-1
* tensor order: 0
* definition: vector (ISO 80000-2) quantity giving the rate of change of the rotational displacement (item 3-6) as its magnitude (ISO 80000-2) and with a direction equal to the direction of the axis of rotation
* remarks: The angular velocity vector is given by: `vec(ω) = (d φ) / (dt) vec(u)` where `φ` denotes the angular displacement (item 3-6), `t` the duration (item 3-9), and `vec(u)` the unit vector (ISO 80000-2) along the axis of rotation in the direction for which the rotation corresponds to a right-hand spiral.
*/
attribute :>> num: Real;
attribute :>> mRef: AngularVelocityUnit[1];
}
attribute angularVelocity: AngularVelocityValue[*] nonunique :> scalarQuantities;
attribute def AngularVelocityUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
attribute def Cartesian3dAngularVelocityVector :> VectorQuantityValue {
doc
/*
* source: item 3-12 angular velocity (vector)
* symbol(s): `vec(ω)`
* application domain: generic
* name: AngularVelocity
* quantity dimension: T^-1
* measurement unit(s): rad*s^-1, s^-1
* tensor order: 1
* definition: vector (ISO 80000-2) quantity giving the rate of change of the rotational displacement (item 3-6) as its magnitude (ISO 80000-2) and with a direction equal to the direction of the axis of rotation
* remarks: The angular velocity vector is given by: `vec(ω) = (d φ) / (dt) vec(u)` where `φ` denotes the angular displacement (item 3-6), `t` the duration (item 3-9), and `vec(u)` the unit vector (ISO 80000-2) along the axis of rotation in the direction for which the rotation corresponds to a right-hand spiral.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dAngularVelocityCoordinateFrame[1];
}
attribute angularVelocityVector: Cartesian3dAngularVelocityVector :> vectorQuantities;
attribute def Cartesian3dAngularVelocityCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: AngularVelocityUnit[3];
}
/* ISO-80000-3 item 3-13 angular acceleration */
attribute def AngularAccelerationValue :> ScalarQuantityValue {
doc
/*
* source: item 3-13 angular acceleration (magnitude)
* symbol(s): `α`
* application domain: generic
* name: AngularAcceleration
* quantity dimension: T^-2
* measurement unit(s): rad*s^-2, s^-2
* tensor order: 0
* definition: vector (ISO 80000-2) quantity giving the rate of change of angular velocity (item 3-12)
* remarks: The angular acceleration vector is given by: `vec α = (d vec(ω))/(dt)` Where `vec(ω)` denotes the angular velocity (item 3-12) and `t` the duration (item 3-9).
*/
attribute :>> num: Real;
attribute :>> mRef: AngularAccelerationUnit[1];
}
attribute angularAcceleration: AngularAccelerationValue[*] nonunique :> scalarQuantities;
attribute def AngularAccelerationUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
attribute def Cartesian3dAngularAccelerationVector :> VectorQuantityValue {
doc
/*
* source: item 3-13 angular acceleration (vector)
* symbol(s): `vec(α)`
* application domain: generic
* name: AngularAcceleration
* quantity dimension: T^-2
* measurement unit(s): rad*s^-2, s^-2
* tensor order: 1
* definition: vector (ISO 80000-2) quantity giving the rate of change of angular velocity (item 3-12)
* remarks: The angular acceleration vector is given by: `vec α = (d vec(ω))/(dt)` Where `vec(ω)` denotes the angular velocity (item 3-12) and `t` the duration (item 3-9).
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dAngularAccelerationCoordinateFrame[1];
}
attribute angularAccelerationVector: Cartesian3dAngularAccelerationVector :> vectorQuantities;
attribute def Cartesian3dAngularAccelerationCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: AngularAccelerationUnit[3];
}
/* ISO-80000-3 item 3-14 period duration, period */
attribute periodDuration: DurationValue :> scalarQuantities {
doc
/*
* source: item 3-14 period duration, period
* symbol(s): `T`
* application domain: generic
* name: PeriodDuration (specializes Duration)
* quantity dimension: T^1
* measurement unit(s): s
* tensor order: 0
* definition: duration (item 3-9) of one cycle of a periodic event
* remarks: A periodic event is an event that occurs regularly with a fixed time interval.
*/
}
alias period for periodDuration;
/* ISO-80000-3 item 3-15 time constant */
attribute timeConstant: DurationValue :> scalarQuantities {
doc
/*
* source: item 3-15 time constant
* symbol(s): `τ`, `T`
* application domain: generic
* name: TimeConstant (specializes Duration)
* quantity dimension: T^1
* measurement unit(s): s
* tensor order: 0
* definition: parameter characterizing the response to a step input of a first-order, linear time-invariant system
* remarks: If a quantity is a function of the duration (item 3-9) expressed by: `F(t) prop e^(-t/τ)` where `t` denotes the duration (item 3-9), then `τ` denotes the time constant. Here the time constant `τ` applies to an exponentially decaying quantity.
*/
}
/* ISO-80000-3 item 3-16 rotation */
attribute rotation: CountValue :> scalarQuantities {
doc
/*
* source: item 3-16 rotation
* symbol(s): `N`
* application domain: generic
* name: Rotation (specializes Count)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: number of revolutions
* remarks: `N` is the number (not necessarily an integer) of revolutions, for example, of a rotating body about a given axis. Its value is given by: `N = φ/(2 π)` where `φ` denotes the measure of rotational displacement (item 3-6).
*/
}
/* ISO-80000-3 item 3-17.1 frequency */
attribute def FrequencyValue :> ScalarQuantityValue {
doc
/*
* source: item 3-17.1 frequency
* symbol(s): `f`, `ν`
* application domain: generic
* name: Frequency
* quantity dimension: T^-1
* measurement unit(s): Hz, s^-1
* tensor order: 0
* definition: inverse of period duration (item 3-14)
* remarks: The frequency is given by: `f = 1/T` where `T` denotes the period duration (item 3-14).
*/
attribute :>> num: Real;
attribute :>> mRef: FrequencyUnit[1];
}
attribute frequency: FrequencyValue[*] nonunique :> scalarQuantities;
attribute def FrequencyUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
/* ISO-80000-3 item 3-17.2 rotational frequency */
attribute rotationalFrequency: FrequencyValue :> scalarQuantities {
doc
/*
* source: item 3-17.2 rotational frequency
* symbol(s): `n`
* application domain: generic
* name: RotationalFrequency (specializes Frequency)
* quantity dimension: T^-1
* measurement unit(s): s^-1
* tensor order: 0
* definition: duration (item 3-9) of one cycle of a periodic event
* remarks: The rotational frequency is given by: `n = (dN) / (dt)` where `N` denotes the rotation (item 3-16) and `t` is the duration (item 3-9).
*/
}
/* ISO-80000-3 item 3-18 angular frequency */
attribute def AngularFrequencyValue :> ScalarQuantityValue {
doc
/*
* source: item 3-18 angular frequency
* symbol(s): `ω`
* application domain: generic
* name: AngularFrequency
* quantity dimension: T^-1
* measurement unit(s): rad*s^-1, s^-1
* tensor order: 0
* definition: rate of change of the phase angle (item 3-7)
* remarks: The angular frequency is given by: `ω = 2 π f` where `f` denotes the frequency (item 3-17.1).
*/
attribute :>> num: Real;
attribute :>> mRef: AngularFrequencyUnit[1];
}
attribute angularFrequency: AngularFrequencyValue[*] nonunique :> scalarQuantities;
attribute def AngularFrequencyUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
/* ISO-80000-3 item 3-19 wavelength */
attribute wavelength: LengthValue :> scalarQuantities {
doc
/*
* source: item 3-19 wavelength
* symbol(s): `λ`
* application domain: generic
* name: Wavelength (specializes Length)
* quantity dimension: L^1
* measurement unit(s): m
* tensor order: 0
* definition: length (item 3-1.1) of the repetition interval of a wave
* remarks: None.
*/
}
/* ISO-80000-3 item 3-20 repetency, wavenumber */
attribute def RepetencyValue :> ScalarQuantityValue {
doc
/*
* source: item 3-20 repetency, wavenumber
* symbol(s): `σ`, `ṽ`
* application domain: generic
* name: Repetency
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: inverse of the wavelength (item 3-19)
* remarks: The repetency is given by: `σ = 1 / λ` where `λ` denotes the wavelength (item 3-19).
*/
attribute :>> num: Real;
attribute :>> mRef: RepetencyUnit[1];
}
attribute repetency: RepetencyValue[*] nonunique :> scalarQuantities;
attribute def RepetencyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
alias WavenumberUnit for RepetencyUnit;
alias WavenumberValue for RepetencyValue;
alias wavenumber for repetency;
/* ISO-80000-3 item 3-21 wave vector */
attribute def Cartesian3dWaveVector :> VectorQuantityValue {
doc
/*
* source: item 3-21 wave vector
* symbol(s): `vec(k)`
* application domain: generic
* name: WaveVector
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 1
* definition: vector normal to the surfaces of constant phase angle (item 3-7) of a wave, with the magnitude (ISO 80000-2) of repetency (item 3-20)
* remarks: None.
*/
attribute :>> isBound = false;
attribute :>> num: Real[3];
attribute :>> mRef: Cartesian3dWaveCoordinateFrame[1];
}
attribute waveVector: Cartesian3dWaveVector :> vectorQuantities;
attribute def Cartesian3dWaveCoordinateFrame :> VectorMeasurementReference {
attribute :>> dimensions = 3;
attribute :>> isBound = false;
attribute :>> isOrthogonal = true;
attribute :>> mRefs: RepetencyUnit[3];
}
/* ISO-80000-3 item 3-22 angular repetency, angular wavenumber */
attribute def AngularRepetencyValue :> ScalarQuantityValue {
doc
/*
* source: item 3-22 angular repetency, angular wavenumber
* symbol(s): `k`
* application domain: generic
* name: AngularRepetency
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: magnitude (ISO 80000-2) of the wave vector (item 3-21)
* remarks: The angular repetency is given by: `κ = (2 π)/λ` where `λ` denotes the wavelength (item 3-19).
*/
attribute :>> num: Real;
attribute :>> mRef: AngularRepetencyUnit[1];
}
attribute angularRepetency: AngularRepetencyValue[*] nonunique :> scalarQuantities;
attribute def AngularRepetencyUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
alias AngularWavenumberUnit for AngularRepetencyUnit;
alias AngularWavenumberValue for AngularRepetencyValue;
alias angularWavenumber for angularRepetency;
/* ISO-80000-3 item 3-23.1 phase velocity, phase speed */
attribute def PhaseVelocityValue :> ScalarQuantityValue {
doc
/*
* source: item 3-23.1 phase velocity, phase speed
* symbol(s): `c`, `v`, `(ν)`, `c_φ`, `v_φ`, `(ν_φ)`
* application domain: generic
* name: PhaseVelocity
* quantity dimension: L^1*T^-1
* measurement unit(s): m*s^-1
* tensor order: 0
* definition: speed with which the phase angle (item 3-7) of a wave propagates in space
* remarks: The phase velocity is given by: `c = ω/κ` where `ω` denotes the angular frequency (item 3-18) and `k` the angular repetency (item 3-22). If phase velocities of electromagnetic waves and other phase velocities are both involved, then `c` should be used for the former and `υ` for the latter. Phase velocity can also be written as `c = λ f`.
*/
attribute :>> num: Real;
attribute :>> mRef: PhaseVelocityUnit[1];
}
attribute phaseVelocity: PhaseVelocityValue[*] nonunique :> scalarQuantities;
attribute def PhaseVelocityUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; }
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); }
}
alias PhaseSpeedUnit for PhaseVelocityUnit;
alias PhaseSpeedValue for PhaseVelocityValue;
alias phaseSpeed for phaseVelocity;
/* ISO-80000-3 item 3-23.2 group velocity, group speed */
attribute groupVelocity: SpeedValue :> scalarQuantities {
doc
/*
* source: item 3-23.2 group velocity, group speed
* symbol(s): `c_g`, `v_g`, `(ν_g)`
* application domain: generic
* name: GroupVelocity (specializes Speed)
* quantity dimension: L^1*T^-1
* measurement unit(s): m*s^-1
* tensor order: 0
* definition: speed with which the envelope of a wave propagates in space
* remarks: The group velocity is given by: `c_g = (d ω)/ (dk)` where `ω` denotes the angular frequency (item 3-18) and `k` the angular repetency (item 3-22).
*/
}
alias groupSpeed for groupVelocity;
/* ISO-80000-3 item 3-24 damping coefficient */
attribute def DampingCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 3-24 damping coefficient
* symbol(s): `δ`
* application domain: generic
* name: DampingCoefficient
* quantity dimension: T^-1
* measurement unit(s): s^-1
* tensor order: 0
* definition: inverse of the time constant (item 3-15) of an exponentially varying quantity
* remarks: None.
*/
attribute :>> num: Real;
attribute :>> mRef: DampingCoefficientUnit[1];
}
attribute dampingCoefficient: DampingCoefficientValue[*] nonunique :> scalarQuantities;
attribute def DampingCoefficientUnit :> DerivedUnit {
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; }
}
/* ISO-80000-3 item 3-25 logarithmic decrement */
attribute def LogarithmicDecrementValue :> DimensionOneValue {
doc
/*
* source: item 3-25 logarithmic decrement
* symbol(s): `Λ`
* application domain: generic
* name: LogarithmicDecrement (specializes DimensionOneQuantity)
* quantity dimension: 1
* measurement unit(s): 1
* tensor order: 0
* definition: product of damping coefficient (item 3-24) and period duration (item 3-14)
* remarks: None.
*/
}
attribute logarithmicDecrement: LogarithmicDecrementValue :> scalarQuantities;
/* ISO-80000-3 item 3-26.1 attenuation, extinction */
attribute def AttenuationValue :> ScalarQuantityValue {
doc
/*
* source: item 3-26.1 attenuation, extinction
* symbol(s): `α`
* application domain: generic
* name: Attenuation
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: gradual decrease in magnitude (ISO 80000-2) of any kind of flux through a medium
* remarks: If a quantity is a function of distance (item 3-1.8) expressed by: `f(x) prop e^(-α x)` where `x` denotes distance (item 3-1.8), then `α` denotes attenuation. The inverse of attenuation is called attenuation length.
*/
attribute :>> num: Real;
attribute :>> mRef: AttenuationUnit[1];
}
attribute attenuation: AttenuationValue[*] nonunique :> scalarQuantities;
attribute def AttenuationUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
alias ExtinctionUnit for AttenuationUnit;
alias ExtinctionValue for AttenuationValue;
alias extinction for attenuation;
/* ISO-80000-3 item 3-26.2 phase coefficient */
attribute def PhaseCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 3-26.2 phase coefficient
* symbol(s): `β`
* application domain: generic
* name: PhaseCoefficient
* quantity dimension: L^-1
* measurement unit(s): rad/m, m^-1
* tensor order: 0
* definition: change of phase angle (item 3-7) with the length (item 3-1.1) along the path travelled by a plane wave
* remarks: If a quantity is a function of distance expressed by: `f(x) prop cos(β(x-x_0))` where `x` denotes distance (item 3-1.8), then `β` denotes the phase coefficient.
*/
attribute :>> num: Real;
attribute :>> mRef: PhaseCoefficientUnit[1];
}
attribute phaseCoefficient: PhaseCoefficientValue[*] nonunique :> scalarQuantities;
attribute def PhaseCoefficientUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
/* ISO-80000-3 item 3-26.3 propagation coefficient */
attribute def PropagationCoefficientValue :> ScalarQuantityValue {
doc
/*
* source: item 3-26.3 propagation coefficient
* symbol(s): `γ`
* application domain: generic
* name: PropagationCoefficient
* quantity dimension: L^-1
* measurement unit(s): m^-1
* tensor order: 0
* definition: measure of the change of amplitude and phase angle (item 3-7) of a plane wave propagating in a given direction
* remarks: The propagation coefficient is given by: `γ = α + iβ` where `α` denotes attenuation (item 3-26.1) and `β` the phase coefficient (item 3-26.2) of a plane wave.
*/
attribute :>> num: Real;
attribute :>> mRef: PropagationCoefficientUnit[1];
}
attribute propagationCoefficient: PropagationCoefficientValue[*] nonunique :> scalarQuantities;
attribute def PropagationCoefficientUnit :> DerivedUnit {
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; }
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; }
}
}