standard library package ISQSpaceTime { | |
doc | |
/* | |
* International System of Quantities and Units | |
* Generated on 2022-08-07T14:44:27Z from standard ISO-80000-3:2019 "Space and Time" | |
* see also https://www.iso.org/obp/ui/#iso:std:iso:80000:-3:ed-2:v1:en | |
* | |
* Note 1: In documentation comments, AsciiMath notation (see http://asciimath.org/) is used for mathematical concepts, | |
* with Greek letters in Unicode encoding. In running text, AsciiMath is placed between backticks. | |
* Note 2: For vector and tensor quantities currently the unit and quantity value type for their (scalar) magnitude is | |
* defined, as well as their typical Cartesian 3d VectorMeasurementReference (i.e. coordinate system) | |
* or TensorMeasurementReference. | |
*/ | |
private import ScalarValues::Real; | |
private import ScalarValues::String; | |
private import Quantities::*; | |
private import MeasurementReferences::*; | |
private import ISQBase::*; | |
/* ISO-80000-3 item 3-1.1 length */ | |
/* See package ISQBase for the declarations of LengthValue and LengthUnit */ | |
/* ISO-80000-3 item 3-1.2 width, breadth */ | |
attribute width: LengthValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-1.2 width, breadth | |
* symbol(s): `b`, `B` | |
* application domain: generic | |
* name: Width (specializes Length) | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 0 | |
* definition: minimum length of a straight line segment between two parallel straight lines (in two dimensions) or planes (in three dimensions) that enclose a given geometrical shape | |
* remarks: This quantity is non-negative. | |
*/ | |
} | |
alias breadth for width; | |
/* ISO-80000-3 item 3-1.3 height, depth, altitude */ | |
attribute height: LengthValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-1.3 height, depth, altitude | |
* symbol(s): `h`, `H` | |
* application domain: generic | |
* name: Height (specializes Length) | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 0 | |
* definition: minimum length of a straight line segment between a point and a reference line or reference surface | |
* remarks: This quantity is usually signed. The sign expresses the position of the particular point with respect to the reference line or surface and is chosen by convention. The symbol `H` is often used to denote altitude, i.e. height above sea level. | |
*/ | |
} | |
alias depth for height; | |
alias altitude for height; | |
/* ISO-80000-3 item 3-1.4 thickness */ | |
attribute thickness: LengthValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-1.4 thickness | |
* symbol(s): `d`, `δ` | |
* application domain: generic | |
* name: Thickness (specializes Length) | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 0 | |
* definition: width (item 3-1.2) | |
* remarks: This quantity is non-negative. | |
*/ | |
} | |
/* ISO-80000-3 item 3-1.5 diameter */ | |
attribute diameter: LengthValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-1.5 diameter | |
* symbol(s): `d`, `D` | |
* application domain: generic | |
* name: Diameter (specializes Length) | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 0 | |
* definition: width (item 3-1.2) of a circle, cylinder or sphere | |
* remarks: This quantity is non-negative. | |
*/ | |
} | |
/* ISO-80000-3 item 3-1.6 radius */ | |
attribute radius: LengthValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-1.6 radius | |
* symbol(s): `r`, `R` | |
* application domain: generic | |
* name: Radius (specializes Length) | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 0 | |
* definition: half of a diameter (item 3-1.5) | |
* remarks: This quantity is non-negative. | |
*/ | |
} | |
/* ISO-80000-3 item 3-1.7 path length, arc length */ | |
attribute pathLength: LengthValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-1.7 path length, arc length | |
* symbol(s): `s` | |
* application domain: generic | |
* name: PathLength (specializes Length) | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 0 | |
* definition: length of a rectifiable curve between two of its points | |
* remarks: The differential path length at a given point of a curve is: `ds = sqrt(dx^2 + dy^2 + dz^2)` where `x`, `y`, and `z` denote the Cartesian coordinates (ISO 80000-2) of the particular point. There are curves which are not rectifiable, for example fractal curves. | |
*/ | |
} | |
alias arcLength for pathLength; | |
/* ISO-80000-3 item 3-1.8 distance */ | |
attribute distance: LengthValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-1.8 distance | |
* symbol(s): `d`, `r` | |
* application domain: generic | |
* name: Distance (specializes Length) | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 0 | |
* definition: shortest path length (item 3-1.7) between two points in a metric space | |
* remarks: A metric space might be curved. An example of a curved metric space is the surface of the Earth. In this case, distances are measured along great circles. A metric is not necessarily Euclidean. | |
*/ | |
} | |
/* ISO-80000-3 item 3-1.9 radial distance */ | |
attribute radialDistance: LengthValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-1.9 radial distance | |
* symbol(s): `r_Q`, `ρ` | |
* application domain: generic | |
* name: RadialDistance (specializes Length) | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 0 | |
* definition: distance (item 3-1.8), where one point is located on an axis or within a closed non self-intersecting curve or surface | |
* remarks: The subscript Q denotes the point from which the radial distance is measured. Examples of closed non self-intersecting curves are circles or ellipses. Examples of closed non self-intersecting surfaces are surfaces of spheres or egg-shaped objects. | |
*/ | |
} | |
attribute def Spatial3dCoordinateFrame :> '3dCoordinateFrame' { | |
doc | |
/* | |
* Most general spatial 3D coordinate frame | |
*/ | |
attribute :>> isBound = true; | |
} | |
attribute def CartesianSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame { | |
doc | |
/* | |
* Cartesian spatial 3D coordinate frame | |
* | |
* source: ISO 80000-2 item 2-17.1 Cartesian coordinates | |
* | |
* The components of a vector expressed on a Cartesian spatial coordinate frame are all LengthValues, and denoted with symbols `x`, `y`, `z`. | |
* | |
* Note 1: The Cartesian basis vectors `vec(e_x)`, `vec(e_y)` and `vec(e_z)` form an orthonormal right-handed coordinate frame. | |
* Note 2: The measurement units for the 3 dimensions are typically the same, but may be different. | |
*/ | |
attribute xUnit : LengthUnit = mRefs#(1); | |
attribute yUnit : LengthUnit = mRefs#(2); | |
attribute zUnit : LengthUnit = mRefs#(3); | |
attribute :>> mRefs : LengthUnit[3]; | |
attribute :>> isOrthogonal = true; | |
} | |
readonly attribute universalCartesianSpatial3dCoordinateFrame : CartesianSpatial3dCoordinateFrame[1] { | |
doc | |
/* | |
* A singleton CartesianSpatial3dCoordinateFrame that can be used as a default universal Cartesian 3D coordinate frame. | |
*/ | |
attribute :>> mRefs default (SI::m, SI::m, SI::m) { | |
doc /* | |
* By default, the universalCartesianSpatial3dCoordinateFrame uses meters as the units on all three axes. | |
*/ | |
} | |
attribute :>> transformation[0..0] { | |
doc /* | |
* The universalCartesianSpatial3dCoordinateFrame is the "top-level" coordinate frame, not nested in any other frame. | |
*/ | |
} | |
} | |
attribute def CylindricalSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame { | |
doc | |
/* | |
* Cylindrical spatial 3D coordinate frame | |
* | |
* source: ISO 80000-2 item 2-17.2 cylindrical coordinates | |
* | |
* The components of a (position) vector to a point P in a cylindrical coordinate frame are: | |
* - radialDistance (symbol `ρ`) defined by LengthValue, that is the radial distance from the cylinder axis to P | |
* - azimuth (symbol `φ`) defined by AngularMeasure, that is the angle between the azimuth reference direction and the line segment | |
* from the cylinder axis, in the plane that is orthogonal to the cylinder axis and intersects P | |
* - z coordinate (symbol `z`) defined by LengthValue, the coordinate along the clyinder axis. | |
* | |
* Note 1: The basis vectors `vec(e_ρ)(φ)`, `vec(e_φ)(φ)` and `vec(e_z)` form an orthonormal right-handed coordinate frame, where | |
* `vec(e_φ)` is tangent to the circular arc in the `φ` direction. | |
* Note 2: In order to enable transformation to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned | |
* with the `φ=0` direction in the cylindrical frame, and the `vec(e_z)` Cartesian basis vector is aligned with | |
* the `vec(e_z)` cylindrical basis vector. | |
* Note 3: If `z = 0`, then `ρ` and `φ` are polar coordinates in the XY-plane. | |
* Note 4: See also https://en.wikipedia.org/wiki/Cylindrical_coordinate_system . | |
*/ | |
attribute radialDistanceUnit : LengthUnit; | |
attribute azimuthUnit : AngularMeasureUnit; | |
attribute zUnit : LengthUnit; | |
attribute :>> mRefs = (radialDistanceUnit, azimuthUnit, zUnit); | |
attribute :>> isOrthogonal = true; | |
} | |
attribute def SphericalSpatial3dCoordinateFrame :> Spatial3dCoordinateFrame { | |
doc | |
/* | |
* Spherical spatial 3D coordinate frame | |
* | |
* source: ISO 80000-2 item 2-17.3 spherical coordinates | |
* | |
* The components of a (position) vector to a point P specified in a spherical coordinate frame are: | |
* - radialDistance (symbol `r`) defined by LengthValue, that is the distance from the origin to P | |
* - inclination (symbol `θ`) defined by AngularMeasure, that is the angle between the zenith direction and the line segment from origin to P | |
* - azimuth (symbol `φ`) defined by AngularMeasure, that is the angle between the azimuth reference direction and the line segment | |
* from the origin to the orthogonal projection of P on the reference plane, normal to the zenith direction. | |
* | |
* Note 1: The basis vectors `vec(e_r)(θ,φ)`, `vec(e_θ)(θ,φ)` and `vec(e_φ)(φ)` form an orthonormal right-handed frame, where | |
* `vec(e_θ)` and `vec(e_φ)` are tangent to the respective circular arcs in the `θ` and `φ` directions. | |
* Note 2: In order to transform to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned | |
* with the `θ=π/4` and `φ=0` direction in the spherical frame, and the `vec(e_z)` Cartesian basis vector is aligned | |
* with the `θ=0` zenith direction in the spherical frame. | |
* Note 3: If `θ = π/4`, then `ρ` and `φ` are polar coordinates in the XY-plane. | |
* Note 4: See also https://en.wikipedia.org/wiki/Spherical_coordinate_system . | |
*/ | |
attribute radialDistanceUnit : LengthUnit; | |
attribute inclinationUnit : AngularMeasureUnit; | |
attribute azimuthUnit : AngularMeasureUnit; | |
attribute :>> mRefs = (radialDistanceUnit, inclinationUnit, azimuthUnit); | |
attribute :>> isOrthogonal = true; | |
} | |
attribute def PlanetarySpatial3dCoordinateFrame :> Spatial3dCoordinateFrame { | |
doc | |
/* | |
* Planetary spatial 3D coordinate frame | |
* | |
* A planetary spatial 3D coordinate frame is a generalization for any planet of the geographic coordinate frame and geocentric coordinate | |
* for Earth. In such coordinate frames, typically the origin is located at the planet's centre of gravity, and the surface of the planet | |
* is approximated by a reference ellipsoid centred on the origin, with its major axes oriented along the south to north pole vector and | |
* the equatorial plane. | |
* | |
* The components of a (position) vector to a point P specified in a planetary coordinate frame are: | |
* - latitude (symbol `lat` or `φ`) defined by AngularMeasure, that is the angle between the equatorial plane and the vector from | |
* the origin to P, similar to the inclination in a spherical spatial coordinate frame. Typically, the zero reference latitude is chosen | |
* for positions in the equatorial plane, with positive latitude for positions in the northern hemisphere and negative latitude for positions | |
* in the southern hemisphere. | |
* - longitude (symbol `long` or `λ`) defined by AngularMeasure, that is the angle between a reference meridian and the meridian | |
* passing through P, similar to the azimuth of a spherical spatial coordinate frame. The convention is to connotate positive longitude | |
* with eastward direction and negative longitude with westward direction. The reference meridian for `long=0` is chosen to pass | |
* through a particular feature of the planet, e.g., for Earth typically the position of the British Royal Observatory in Greenwich, UK. | |
* - altitude (symbol `h`) defined by LengthValue, that is the distance between P and the reference ellipsoid | |
* in the normal direction to the ellipsoid. Positive altitude specifies a position above the reference ellipsoid surface, | |
* while a negative value specifies a position below. | |
* | |
* Note 1: The reference meridian is also called prime meridian. | |
* Note 2: The basis vectors `vec(e_φ)(φ)`, `vec(e_λ)(λ)` and `vec(e_h)(φ,λ)` form an orthonormal right-handed frame, where | |
* `vec(e_φ)` and `vec(e_λ)` are tangent to the reference ellipsoid in the respective latitude and longitude directions, | |
* and `vec(e_h)` is normal to the reference ellipsoid. | |
* Note 3: In order to transform to and from a CartesianSpatial3dCoordinateFrame the `vec(e_x)` Cartesian basis vector is aligned | |
* with the `φ=0` and `λ=0` direction in the planetary frame, and the `vec(e_z)` Cartesian basis vector is aligned | |
* with the `λ=π/2` (north pole) direction in the planetary frame. | |
* Note 4: See also https://en.wikipedia.org/wiki/Planetary_coordinate_system . | |
*/ | |
attribute latitudeUnit : AngularMeasureUnit; | |
attribute longitudeUnit : AngularMeasureUnit; | |
attribute altitudeUnit : LengthUnit; | |
attribute :>> mRefs = (longitudeUnit, latitudeUnit, altitudeUnit); | |
attribute :>> isOrthogonal = true; | |
} | |
attribute def Position3dVector :> '3dVectorQuantityValue' { | |
doc | |
/* | |
* source: item 3-1.10 position vector | |
* symbol(s): `vec(r)` | |
* application domain: generic | |
* name: PositionVector | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 1 | |
* definition: vector (ISO 80000-2) quantity from the origin of a coordinate system to a point in space | |
* remarks: Position vectors are so-called bounded vectors, i.e. their magnitude (ISO 80000-2) and direction depend on the particular coordinate system used. | |
*/ | |
attribute :>> isBound = true; | |
attribute :>> mRef: Spatial3dCoordinateFrame[1]; | |
} | |
attribute position3dVector: Position3dVector :> vectorQuantities; | |
attribute def CartesianPosition3dVector :> Position3dVector { | |
attribute x : LengthValue = num#(1) [mRef.mRefs#(1)]; | |
attribute y : LengthValue = num#(2) [mRef.mRefs#(2)]; | |
attribute z : LengthValue = num#(3) [mRef.mRefs#(3)]; | |
attribute :>> mRef : CartesianSpatial3dCoordinateFrame[1]; | |
} | |
attribute cartesianPosition3dVector : CartesianPosition3dVector :> position3dVector; | |
attribute def CylindricalPosition3dVector :> Position3dVector { | |
attribute <'ρ'> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)]; | |
attribute <'φ'> azimuth : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)]; | |
attribute <h> height : LengthValue = num#(3) [mRef.mRefs#(3)]; | |
attribute :>> mRef : CylindricalSpatial3dCoordinateFrame[1]; | |
} | |
attribute cylindricalPosition3dVector : CylindricalPosition3dVector :> position3dVector; | |
attribute def SphericalPosition3dVector :> Position3dVector { | |
attribute <r> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)]; | |
attribute <'θ'> inclination : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)]; | |
attribute <'φ'> azimuth : AngularMeasureUnit = num#(3) [mRef.mRefs#(3)]; | |
attribute :>> mRef : SphericalSpatial3dCoordinateFrame[1]; | |
} | |
attribute sphericalPosition3dVector : SphericalPosition3dVector :> position3dVector; | |
attribute def PlanetaryPosition3dVector :> Position3dVector { | |
attribute <lat> latitude : AngularMeasureUnit = num#(1) [mRef.mRefs#(1)]; | |
attribute <long> longitude : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)]; | |
attribute <h> altitude : LengthValue = num#(3) [mRef.mRefs#(3)]; | |
attribute :>> mRef : PlanetarySpatial3dCoordinateFrame[1]; | |
} | |
attribute planetaryPosition3dVector : PlanetaryPosition3dVector :> position3dVector; | |
/* ISO-80000-3 item 3-1.11 displacement */ | |
abstract attribute def Displacement3dVector :> '3dVectorQuantityValue' { | |
doc | |
/* | |
* source: item 3-1.11 displacement | |
* symbol(s): `vec(Δr)` | |
* application domain: generic | |
* name: Displacement | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 1 | |
* definition: vector (ISO 80000-2) quantity between any two points in space | |
* remarks: Displacement vectors are so-called free vectors, i.e. their magnitude (ISO 80000-2) and direction do not depend on a particular coordinate system. The magnitude of this vector is also called displacement. | |
*/ | |
attribute :>> isBound = false; | |
attribute :>> mRef: Spatial3dCoordinateFrame[1]; | |
} | |
attribute displacement3dVector: Displacement3dVector :> vectorQuantities; | |
attribute def CartesianDisplacement3dVector :> Displacement3dVector { | |
attribute x : LengthValue = num#(1) [mRef.mRefs#(1)]; | |
attribute y : LengthValue = num#(2) [mRef.mRefs#(2)]; | |
attribute z : LengthValue = num#(3) [mRef.mRefs#(3)]; | |
attribute :>> mRef: CartesianSpatial3dCoordinateFrame[1]; | |
} | |
attribute cartesianDisplacement3dVector: CartesianDisplacement3dVector :> displacement3dVector; | |
attribute def CylindricalDisplacement3dVector :> Displacement3dVector { | |
attribute <'ρ'> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)]; | |
attribute <'φ'> azimuth : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)]; | |
attribute <h> height : LengthValue = num#(3) [mRef.mRefs#(3)]; | |
attribute :>> mRef: CylindricalSpatial3dCoordinateFrame[1]; | |
} | |
attribute cylindricalDisplacement3dVector: CylindricalDisplacement3dVector :> displacement3dVector; | |
attribute def SphericalDisplacement3dVector :> Displacement3dVector { | |
attribute <r> radialDistance : LengthValue = num#(1) [mRef.mRefs#(1)]; | |
attribute <'θ'> inclination : AngularMeasureUnit = num#(2) [mRef.mRefs#(2)]; | |
attribute <'φ'> azimuth : AngularMeasureUnit = num#(3) [mRef.mRefs#(3)]; | |
attribute :>> mRef: SphericalSpatial3dCoordinateFrame[1]; | |
} | |
attribute sphericalDisplacement3dVector: SphericalDisplacement3dVector :> displacement3dVector; | |
/* ISO-80000-3 item 3-1.12 radius of curvature */ | |
attribute radiusOfCurvature: LengthValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-1.12 radius of curvature | |
* symbol(s): `ρ` | |
* application domain: generic | |
* name: RadiusOfCurvature (specializes Length) | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 0 | |
* definition: radius (item 3-1.6) of the osculating circle of a planar curve at a particular point of the curve | |
* remarks: The radius of curvature is only defined for curves which are at least twice continuously differentiable. | |
*/ | |
} | |
/* ISO-80000-3 item 3-2 curvature */ | |
attribute def CurvatureValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-2 curvature | |
* symbol(s): `κ` | |
* application domain: generic | |
* name: Curvature | |
* quantity dimension: L^-1 | |
* measurement unit(s): m^-1 | |
* tensor order: 0 | |
* definition: inverse of the radius of curvature (item 3-1.12) | |
* remarks: The curvature is given by: `κ = 1/ρ` where `ρ` denotes the radius of curvature (item 3-1.12). | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: CurvatureUnit[1]; | |
} | |
attribute curvature: CurvatureValue[*] nonunique :> scalarQuantities; | |
attribute def CurvatureUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } | |
} | |
/* ISO-80000-3 item 3-3 area */ | |
attribute def AreaValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-3 area | |
* symbol(s): `A`, `S` | |
* application domain: generic | |
* name: Area | |
* quantity dimension: L^2 | |
* measurement unit(s): m^2 | |
* tensor order: 0 | |
* definition: extent of a two-dimensional geometrical shape | |
* remarks: The surface element at a given point of a surface is given by: `dA = g du dv` where `u` and `v` denote the Gaussian surface coordinates and `g` denotes the determinant of the metric tensor (ISO 80000-2) at the particular point. The symbol `dσ` is also used for the surface element. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: AreaUnit[1]; | |
} | |
attribute area: AreaValue[*] nonunique :> scalarQuantities; | |
attribute def AreaUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 2; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } | |
} | |
/* ISO-80000-3 item 3-4 volume */ | |
attribute def VolumeValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-4 volume | |
* symbol(s): `V`, `(S)` | |
* application domain: generic | |
* name: Volume | |
* quantity dimension: L^3 | |
* measurement unit(s): m^3 | |
* tensor order: 0 | |
* definition: extent of a three-dimensional geometrical shape | |
* remarks: The volume element in Euclidean space is given by: `dV = dx dy dz` where `dx`, `dy`, and `dz` denote the differentials of the Cartesian coordinates (ISO 80000-2). The symbol `dτ` is also used for the volume element. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: VolumeUnit[1]; | |
} | |
attribute volume: VolumeValue[*] nonunique :> scalarQuantities; | |
attribute def VolumeUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 3; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } | |
} | |
/* ISO-80000-3 item 3-5 angular measure, plane angle */ | |
attribute def AngularMeasureValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-5 angular measure, plane angle | |
* symbol(s): `α`, `β`, `γ` | |
* application domain: generic | |
* name: AngularMeasure | |
* quantity dimension: 1 | |
* measurement unit(s): rad, 1 | |
* tensor order: 0 | |
* definition: measure of a geometric figure, called plane angle, formed by two rays, called the sides of the plane angle, emanating from a common point, called the vertex of the plane angle | |
* remarks: The angular measure is given by: `α = s/r` where `s` denotes the arc length (item 3-1.7) of the included arc of a circle, centred at the vertex of the plane angle, and `r` the radius (item 3-1.6) of that circle. Other symbols are also used. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: AngularMeasureUnit[1]; | |
} | |
attribute angularMeasure: AngularMeasureValue[*] nonunique :> scalarQuantities; | |
attribute def AngularMeasureUnit :> DimensionOneUnit { | |
} | |
alias PlaneAngleUnit for AngularMeasureUnit; | |
alias PlaneAngleValue for AngularMeasureValue; | |
alias planeAngle for angularMeasure; | |
/* ISO-80000-3 item 3-6 rotational displacement, angular displacement */ | |
attribute rotationalDisplacement: AngularMeasureValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-6 rotational displacement, angular displacement | |
* symbol(s): `ϑ`, `φ` | |
* application domain: generic | |
* name: RotationalDisplacement (specializes AngularMeasure) | |
* quantity dimension: 1 | |
* measurement unit(s): rad, 1 | |
* tensor order: 0 | |
* definition: quotient of the traversed circular path length (item 3-1.7) of a point in space during a rotation and its distance (item 3-1.8) from the axis or centre of rotation | |
* remarks: The rotational displacement is given by: `φ = s/r` where `s` denotes the traversed path length (item 3-1.7) along the periphery of a circle, centred at the vertex of the plane angle, and `r` the radius (item 3-1.6) of that circle. The rotational displacement is signed. The sign denotes the direction of rotation and is chosen by convention. Other symbols are also used. | |
*/ | |
} | |
alias angularDisplacement for rotationalDisplacement; | |
/* ISO-80000-3 item 3-7 phase angle */ | |
attribute phaseAngle: AngularMeasureValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-7 phase angle | |
* symbol(s): `φ`, `ϕ` | |
* application domain: generic | |
* name: PhaseAngle (specializes AngularMeasure) | |
* quantity dimension: 1 | |
* measurement unit(s): rad, 1 | |
* tensor order: 0 | |
* definition: angular measure (item 3-5) between the positive real axis and the radius of the polar representation of the complex number in the complex plane | |
* remarks: The phase angle (often imprecisely referred to as the "phase") is the argument of a complex number. Other symbols are also used. | |
*/ | |
} | |
/* ISO-80000-3 item 3-8 solid angular measure */ | |
attribute def SolidAngularMeasureValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-8 solid angular measure | |
* symbol(s): `Ω` | |
* application domain: generic | |
* name: SolidAngularMeasure | |
* quantity dimension: 1 | |
* measurement unit(s): sr, 1 | |
* tensor order: 0 | |
* definition: measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface | |
* remarks: The differential solid angular measure expressed in spherical coordinates (ISO 80000-2) is given by: `dΩ = A/r^2 * sin(θ * dθ * dφ)` where `A` is area, `r` is radius, `θ` and `φ` are spherical coordinates. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: SolidAngularMeasureUnit[1]; | |
} | |
attribute solidAngularMeasure: SolidAngularMeasureValue[*] nonunique :> scalarQuantities; | |
attribute def SolidAngularMeasureUnit :> DimensionOneUnit { | |
} | |
/* ISO-80000-3 item 3-9 duration, time */ | |
/* See package ISQBase for the declarations of DurationValue and DurationUnit */ | |
alias TimeUnit for DurationUnit; | |
alias TimeValue for DurationValue; | |
alias time for duration; | |
/* ISO-80000-3 item 3-10.1 velocity */ | |
attribute def CartesianVelocity3dVector :> '3dVectorQuantityValue' { | |
doc | |
/* | |
* source: item 3-10.1 velocity | |
* symbol(s): `vec(v)`, `u,v,w` | |
* application domain: generic | |
* name: Velocity | |
* quantity dimension: L^1*T^-1 | |
* measurement unit(s): m/s, m*s^-1 | |
* tensor order: 1 | |
* definition: vector (ISO 80000-2) quantity giving the rate of change of a position vector (item 3-1.10) | |
* remarks: The velocity vector is given by: `vec(v) = (d vec(r)) / (dt)` where `vec(r)` denotes the position vector (item 3-1.10) and `t` the duration (item 3-9). When the general symbol `vec(v)` is not used for the velocity, the symbols `u`, `v`, `w` may be used for the components (ISO 80000-2) of the velocity. | |
*/ | |
attribute :>> isBound = false; | |
attribute :>> mRef: CartesianVelocity3dCoordinateFrame[1]; | |
} | |
attribute cartesianVelocity3dVector: CartesianVelocity3dVector :> vectorQuantities; | |
attribute def CartesianVelocity3dCoordinateFrame :> '3dCoordinateFrame' { | |
attribute :>> isBound = false; | |
attribute :>> isOrthogonal = true; | |
attribute :>> mRefs: SpeedUnit[3]; | |
} | |
/* ISO-80000-3 item 3-10.2 speed */ | |
attribute def SpeedValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-10.2 speed | |
* symbol(s): `v` | |
* application domain: generic | |
* name: Speed | |
* quantity dimension: L^1*T^-1 | |
* measurement unit(s): m/s, m*s^-1 | |
* tensor order: 0 | |
* definition: magnitude (ISO 80000-2) of the velocity (item 3-10.1) | |
* remarks: None. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: SpeedUnit[1]; | |
} | |
attribute speed: SpeedValue[*] nonunique :> scalarQuantities; | |
attribute def SpeedUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } | |
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } | |
} | |
/* ISO-80000-3 item 3-11 acceleration */ | |
attribute def AccelerationValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-11 acceleration (magnitude) | |
* symbol(s): `a` | |
* application domain: generic | |
* name: Acceleration | |
* quantity dimension: L^1*T^-2 | |
* measurement unit(s): m*s^-2 | |
* tensor order: 0 | |
* definition: vector (ISO 80000-2) quantity giving the rate of change of velocity (item 3-10) | |
* remarks: The acceleration vector is given by: `vec(a) = (d vec(v))/(dt)` where `vec(v)` denotes the velocity (item 3-10.1) and `t` the duration (item 3-9). The magnitude (ISO 80000-2) of the acceleration of free fall is usually denoted by `g`. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: AccelerationUnit[1]; | |
} | |
attribute acceleration: AccelerationValue[*] nonunique :> scalarQuantities; | |
attribute def AccelerationUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } | |
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } | |
} | |
attribute def CartesianAcceleration3dVector :> '3dVectorQuantityValue' { | |
doc | |
/* | |
* source: item 3-11 acceleration (vector) | |
* symbol(s): `vec(a)` | |
* application domain: generic | |
* name: Acceleration | |
* quantity dimension: L^1*T^-2 | |
* measurement unit(s): m*s^-2 | |
* tensor order: 1 | |
* definition: vector (ISO 80000-2) quantity giving the rate of change of velocity (item 3-10) | |
* remarks: The acceleration vector is given by: `vec(a) = (d vec(v))/(dt)` where `vec(v)` denotes the velocity (item 3-10.1) and `t` the duration (item 3-9). The magnitude (ISO 80000-2) of the acceleration of free fall is usually denoted by `g`. | |
*/ | |
attribute :>> isBound = false; | |
attribute :>> mRef: CartesianAcceleration3dCoordinateFrame[1]; | |
} | |
attribute cartesianAcceleration3dVector: CartesianAcceleration3dVector :> vectorQuantities; | |
attribute def CartesianAcceleration3dCoordinateFrame :> VectorMeasurementReference { | |
attribute :>> dimensions = 3; | |
attribute :>> isBound = false; | |
attribute :>> isOrthogonal = true; | |
attribute :>> mRefs: AccelerationUnit[3]; | |
} | |
/* ISO-80000-3 item 3-12 angular velocity */ | |
attribute def AngularVelocityValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-12 angular velocity (magnitude) | |
* symbol(s): `ω` | |
* application domain: generic | |
* name: AngularVelocity | |
* quantity dimension: T^-1 | |
* measurement unit(s): rad*s^-1, s^-1 | |
* tensor order: 0 | |
* definition: vector (ISO 80000-2) quantity giving the rate of change of the rotational displacement (item 3-6) as its magnitude (ISO 80000-2) and with a direction equal to the direction of the axis of rotation | |
* remarks: The angular velocity vector is given by: `vec(ω) = (d φ) / (dt) vec(u)` where `φ` denotes the angular displacement (item 3-6), `t` the duration (item 3-9), and `vec(u)` the unit vector (ISO 80000-2) along the axis of rotation in the direction for which the rotation corresponds to a right-hand spiral. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: AngularVelocityUnit[1]; | |
} | |
attribute angularVelocity: AngularVelocityValue[*] nonunique :> scalarQuantities; | |
attribute def AngularVelocityUnit :> DerivedUnit { | |
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; } | |
} | |
attribute def Cartesian3dAngularVelocityVector :> VectorQuantityValue { | |
doc | |
/* | |
* source: item 3-12 angular velocity (vector) | |
* symbol(s): `vec(ω)` | |
* application domain: generic | |
* name: AngularVelocity | |
* quantity dimension: T^-1 | |
* measurement unit(s): rad*s^-1, s^-1 | |
* tensor order: 1 | |
* definition: vector (ISO 80000-2) quantity giving the rate of change of the rotational displacement (item 3-6) as its magnitude (ISO 80000-2) and with a direction equal to the direction of the axis of rotation | |
* remarks: The angular velocity vector is given by: `vec(ω) = (d φ) / (dt) vec(u)` where `φ` denotes the angular displacement (item 3-6), `t` the duration (item 3-9), and `vec(u)` the unit vector (ISO 80000-2) along the axis of rotation in the direction for which the rotation corresponds to a right-hand spiral. | |
*/ | |
attribute :>> isBound = false; | |
attribute :>> num: Real[3]; | |
attribute :>> mRef: Cartesian3dAngularVelocityCoordinateFrame[1]; | |
} | |
attribute angularVelocityVector: Cartesian3dAngularVelocityVector :> vectorQuantities; | |
attribute def Cartesian3dAngularVelocityCoordinateFrame :> VectorMeasurementReference { | |
attribute :>> dimensions = 3; | |
attribute :>> isBound = false; | |
attribute :>> isOrthogonal = true; | |
attribute :>> mRefs: AngularVelocityUnit[3]; | |
} | |
/* ISO-80000-3 item 3-13 angular acceleration */ | |
attribute def AngularAccelerationValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-13 angular acceleration (magnitude) | |
* symbol(s): `α` | |
* application domain: generic | |
* name: AngularAcceleration | |
* quantity dimension: T^-2 | |
* measurement unit(s): rad*s^-2, s^-2 | |
* tensor order: 0 | |
* definition: vector (ISO 80000-2) quantity giving the rate of change of angular velocity (item 3-12) | |
* remarks: The angular acceleration vector is given by: `vec α = (d vec(ω))/(dt)` Where `vec(ω)` denotes the angular velocity (item 3-12) and `t` the duration (item 3-9). | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: AngularAccelerationUnit[1]; | |
} | |
attribute angularAcceleration: AngularAccelerationValue[*] nonunique :> scalarQuantities; | |
attribute def AngularAccelerationUnit :> DerivedUnit { | |
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -2; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; } | |
} | |
attribute def Cartesian3dAngularAccelerationVector :> VectorQuantityValue { | |
doc | |
/* | |
* source: item 3-13 angular acceleration (vector) | |
* symbol(s): `vec(α)` | |
* application domain: generic | |
* name: AngularAcceleration | |
* quantity dimension: T^-2 | |
* measurement unit(s): rad*s^-2, s^-2 | |
* tensor order: 1 | |
* definition: vector (ISO 80000-2) quantity giving the rate of change of angular velocity (item 3-12) | |
* remarks: The angular acceleration vector is given by: `vec α = (d vec(ω))/(dt)` Where `vec(ω)` denotes the angular velocity (item 3-12) and `t` the duration (item 3-9). | |
*/ | |
attribute :>> isBound = false; | |
attribute :>> num: Real[3]; | |
attribute :>> mRef: Cartesian3dAngularAccelerationCoordinateFrame[1]; | |
} | |
attribute angularAccelerationVector: Cartesian3dAngularAccelerationVector :> vectorQuantities; | |
attribute def Cartesian3dAngularAccelerationCoordinateFrame :> VectorMeasurementReference { | |
attribute :>> dimensions = 3; | |
attribute :>> isBound = false; | |
attribute :>> isOrthogonal = true; | |
attribute :>> mRefs: AngularAccelerationUnit[3]; | |
} | |
/* ISO-80000-3 item 3-14 period duration, period */ | |
attribute periodDuration: DurationValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-14 period duration, period | |
* symbol(s): `T` | |
* application domain: generic | |
* name: PeriodDuration (specializes Duration) | |
* quantity dimension: T^1 | |
* measurement unit(s): s | |
* tensor order: 0 | |
* definition: duration (item 3-9) of one cycle of a periodic event | |
* remarks: A periodic event is an event that occurs regularly with a fixed time interval. | |
*/ | |
} | |
alias period for periodDuration; | |
/* ISO-80000-3 item 3-15 time constant */ | |
attribute timeConstant: DurationValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-15 time constant | |
* symbol(s): `τ`, `T` | |
* application domain: generic | |
* name: TimeConstant (specializes Duration) | |
* quantity dimension: T^1 | |
* measurement unit(s): s | |
* tensor order: 0 | |
* definition: parameter characterizing the response to a step input of a first-order, linear time-invariant system | |
* remarks: If a quantity is a function of the duration (item 3-9) expressed by: `F(t) prop e^(-t/τ)` where `t` denotes the duration (item 3-9), then `τ` denotes the time constant. Here the time constant `τ` applies to an exponentially decaying quantity. | |
*/ | |
} | |
/* ISO-80000-3 item 3-16 rotation */ | |
attribute rotation: CountValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-16 rotation | |
* symbol(s): `N` | |
* application domain: generic | |
* name: Rotation (specializes Count) | |
* quantity dimension: 1 | |
* measurement unit(s): 1 | |
* tensor order: 0 | |
* definition: number of revolutions | |
* remarks: `N` is the number (not necessarily an integer) of revolutions, for example, of a rotating body about a given axis. Its value is given by: `N = φ/(2 π)` where `φ` denotes the measure of rotational displacement (item 3-6). | |
*/ | |
} | |
/* ISO-80000-3 item 3-17.1 frequency */ | |
attribute def FrequencyValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-17.1 frequency | |
* symbol(s): `f`, `ν` | |
* application domain: generic | |
* name: Frequency | |
* quantity dimension: T^-1 | |
* measurement unit(s): Hz, s^-1 | |
* tensor order: 0 | |
* definition: inverse of period duration (item 3-14) | |
* remarks: The frequency is given by: `f = 1/T` where `T` denotes the period duration (item 3-14). | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: FrequencyUnit[1]; | |
} | |
attribute frequency: FrequencyValue[*] nonunique :> scalarQuantities; | |
attribute def FrequencyUnit :> DerivedUnit { | |
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; } | |
} | |
/* ISO-80000-3 item 3-17.2 rotational frequency */ | |
attribute rotationalFrequency: FrequencyValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-17.2 rotational frequency | |
* symbol(s): `n` | |
* application domain: generic | |
* name: RotationalFrequency (specializes Frequency) | |
* quantity dimension: T^-1 | |
* measurement unit(s): s^-1 | |
* tensor order: 0 | |
* definition: duration (item 3-9) of one cycle of a periodic event | |
* remarks: The rotational frequency is given by: `n = (dN) / (dt)` where `N` denotes the rotation (item 3-16) and `t` is the duration (item 3-9). | |
*/ | |
} | |
/* ISO-80000-3 item 3-18 angular frequency */ | |
attribute def AngularFrequencyValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-18 angular frequency | |
* symbol(s): `ω` | |
* application domain: generic | |
* name: AngularFrequency | |
* quantity dimension: T^-1 | |
* measurement unit(s): rad*s^-1, s^-1 | |
* tensor order: 0 | |
* definition: rate of change of the phase angle (item 3-7) | |
* remarks: The angular frequency is given by: `ω = 2 π f` where `f` denotes the frequency (item 3-17.1). | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: AngularFrequencyUnit[1]; | |
} | |
attribute angularFrequency: AngularFrequencyValue[*] nonunique :> scalarQuantities; | |
attribute def AngularFrequencyUnit :> DerivedUnit { | |
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; } | |
} | |
/* ISO-80000-3 item 3-19 wavelength */ | |
attribute wavelength: LengthValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-19 wavelength | |
* symbol(s): `λ` | |
* application domain: generic | |
* name: Wavelength (specializes Length) | |
* quantity dimension: L^1 | |
* measurement unit(s): m | |
* tensor order: 0 | |
* definition: length (item 3-1.1) of the repetition interval of a wave | |
* remarks: None. | |
*/ | |
} | |
/* ISO-80000-3 item 3-20 repetency, wavenumber */ | |
attribute def RepetencyValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-20 repetency, wavenumber | |
* symbol(s): `σ`, `ṽ` | |
* application domain: generic | |
* name: Repetency | |
* quantity dimension: L^-1 | |
* measurement unit(s): m^-1 | |
* tensor order: 0 | |
* definition: inverse of the wavelength (item 3-19) | |
* remarks: The repetency is given by: `σ = 1 / λ` where `λ` denotes the wavelength (item 3-19). | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: RepetencyUnit[1]; | |
} | |
attribute repetency: RepetencyValue[*] nonunique :> scalarQuantities; | |
attribute def RepetencyUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } | |
} | |
alias WavenumberUnit for RepetencyUnit; | |
alias WavenumberValue for RepetencyValue; | |
alias wavenumber for repetency; | |
/* ISO-80000-3 item 3-21 wave vector */ | |
attribute def Cartesian3dWaveVector :> VectorQuantityValue { | |
doc | |
/* | |
* source: item 3-21 wave vector | |
* symbol(s): `vec(k)` | |
* application domain: generic | |
* name: WaveVector | |
* quantity dimension: L^-1 | |
* measurement unit(s): m^-1 | |
* tensor order: 1 | |
* definition: vector normal to the surfaces of constant phase angle (item 3-7) of a wave, with the magnitude (ISO 80000-2) of repetency (item 3-20) | |
* remarks: None. | |
*/ | |
attribute :>> isBound = false; | |
attribute :>> num: Real[3]; | |
attribute :>> mRef: Cartesian3dWaveCoordinateFrame[1]; | |
} | |
attribute waveVector: Cartesian3dWaveVector :> vectorQuantities; | |
attribute def Cartesian3dWaveCoordinateFrame :> VectorMeasurementReference { | |
attribute :>> dimensions = 3; | |
attribute :>> isBound = false; | |
attribute :>> isOrthogonal = true; | |
attribute :>> mRefs: RepetencyUnit[3]; | |
} | |
/* ISO-80000-3 item 3-22 angular repetency, angular wavenumber */ | |
attribute def AngularRepetencyValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-22 angular repetency, angular wavenumber | |
* symbol(s): `k` | |
* application domain: generic | |
* name: AngularRepetency | |
* quantity dimension: L^-1 | |
* measurement unit(s): m^-1 | |
* tensor order: 0 | |
* definition: magnitude (ISO 80000-2) of the wave vector (item 3-21) | |
* remarks: The angular repetency is given by: `κ = (2 π)/λ` where `λ` denotes the wavelength (item 3-19). | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: AngularRepetencyUnit[1]; | |
} | |
attribute angularRepetency: AngularRepetencyValue[*] nonunique :> scalarQuantities; | |
attribute def AngularRepetencyUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } | |
} | |
alias AngularWavenumberUnit for AngularRepetencyUnit; | |
alias AngularWavenumberValue for AngularRepetencyValue; | |
alias angularWavenumber for angularRepetency; | |
/* ISO-80000-3 item 3-23.1 phase velocity, phase speed */ | |
attribute def PhaseVelocityValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-23.1 phase velocity, phase speed | |
* symbol(s): `c`, `v`, `(ν)`, `c_φ`, `v_φ`, `(ν_φ)` | |
* application domain: generic | |
* name: PhaseVelocity | |
* quantity dimension: L^1*T^-1 | |
* measurement unit(s): m*s^-1 | |
* tensor order: 0 | |
* definition: speed with which the phase angle (item 3-7) of a wave propagates in space | |
* remarks: The phase velocity is given by: `c = ω/κ` where `ω` denotes the angular frequency (item 3-18) and `k` the angular repetency (item 3-22). If phase velocities of electromagnetic waves and other phase velocities are both involved, then `c` should be used for the former and `υ` for the latter. Phase velocity can also be written as `c = λ f`. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: PhaseVelocityUnit[1]; | |
} | |
attribute phaseVelocity: PhaseVelocityValue[*] nonunique :> scalarQuantities; | |
attribute def PhaseVelocityUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = 1; } | |
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = (lengthPF, durationPF); } | |
} | |
alias PhaseSpeedUnit for PhaseVelocityUnit; | |
alias PhaseSpeedValue for PhaseVelocityValue; | |
alias phaseSpeed for phaseVelocity; | |
/* ISO-80000-3 item 3-23.2 group velocity, group speed */ | |
attribute groupVelocity: SpeedValue :> scalarQuantities { | |
doc | |
/* | |
* source: item 3-23.2 group velocity, group speed | |
* symbol(s): `c_g`, `v_g`, `(ν_g)` | |
* application domain: generic | |
* name: GroupVelocity (specializes Speed) | |
* quantity dimension: L^1*T^-1 | |
* measurement unit(s): m*s^-1 | |
* tensor order: 0 | |
* definition: speed with which the envelope of a wave propagates in space | |
* remarks: The group velocity is given by: `c_g = (d ω)/ (dk)` where `ω` denotes the angular frequency (item 3-18) and `k` the angular repetency (item 3-22). | |
*/ | |
} | |
alias groupSpeed for groupVelocity; | |
/* ISO-80000-3 item 3-24 damping coefficient */ | |
attribute def DampingCoefficientValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-24 damping coefficient | |
* symbol(s): `δ` | |
* application domain: generic | |
* name: DampingCoefficient | |
* quantity dimension: T^-1 | |
* measurement unit(s): s^-1 | |
* tensor order: 0 | |
* definition: inverse of the time constant (item 3-15) of an exponentially varying quantity | |
* remarks: None. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: DampingCoefficientUnit[1]; | |
} | |
attribute dampingCoefficient: DampingCoefficientValue[*] nonunique :> scalarQuantities; | |
attribute def DampingCoefficientUnit :> DerivedUnit { | |
private attribute durationPF: QuantityPowerFactor[1] { :>> quantity = isq.T; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = durationPF; } | |
} | |
/* ISO-80000-3 item 3-25 logarithmic decrement */ | |
attribute def LogarithmicDecrementValue :> DimensionOneValue { | |
doc | |
/* | |
* source: item 3-25 logarithmic decrement | |
* symbol(s): `Λ` | |
* application domain: generic | |
* name: LogarithmicDecrement (specializes DimensionOneQuantity) | |
* quantity dimension: 1 | |
* measurement unit(s): 1 | |
* tensor order: 0 | |
* definition: product of damping coefficient (item 3-24) and period duration (item 3-14) | |
* remarks: None. | |
*/ | |
} | |
attribute logarithmicDecrement: LogarithmicDecrementValue :> scalarQuantities; | |
/* ISO-80000-3 item 3-26.1 attenuation, extinction */ | |
attribute def AttenuationValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-26.1 attenuation, extinction | |
* symbol(s): `α` | |
* application domain: generic | |
* name: Attenuation | |
* quantity dimension: L^-1 | |
* measurement unit(s): m^-1 | |
* tensor order: 0 | |
* definition: gradual decrease in magnitude (ISO 80000-2) of any kind of flux through a medium | |
* remarks: If a quantity is a function of distance (item 3-1.8) expressed by: `f(x) prop e^(-α x)` where `x` denotes distance (item 3-1.8), then `α` denotes attenuation. The inverse of attenuation is called attenuation length. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: AttenuationUnit[1]; | |
} | |
attribute attenuation: AttenuationValue[*] nonunique :> scalarQuantities; | |
attribute def AttenuationUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } | |
} | |
alias ExtinctionUnit for AttenuationUnit; | |
alias ExtinctionValue for AttenuationValue; | |
alias extinction for attenuation; | |
/* ISO-80000-3 item 3-26.2 phase coefficient */ | |
attribute def PhaseCoefficientValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-26.2 phase coefficient | |
* symbol(s): `β` | |
* application domain: generic | |
* name: PhaseCoefficient | |
* quantity dimension: L^-1 | |
* measurement unit(s): rad/m, m^-1 | |
* tensor order: 0 | |
* definition: change of phase angle (item 3-7) with the length (item 3-1.1) along the path travelled by a plane wave | |
* remarks: If a quantity is a function of distance expressed by: `f(x) prop cos(β(x-x_0))` where `x` denotes distance (item 3-1.8), then `β` denotes the phase coefficient. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: PhaseCoefficientUnit[1]; | |
} | |
attribute phaseCoefficient: PhaseCoefficientValue[*] nonunique :> scalarQuantities; | |
attribute def PhaseCoefficientUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } | |
} | |
/* ISO-80000-3 item 3-26.3 propagation coefficient */ | |
attribute def PropagationCoefficientValue :> ScalarQuantityValue { | |
doc | |
/* | |
* source: item 3-26.3 propagation coefficient | |
* symbol(s): `γ` | |
* application domain: generic | |
* name: PropagationCoefficient | |
* quantity dimension: L^-1 | |
* measurement unit(s): m^-1 | |
* tensor order: 0 | |
* definition: measure of the change of amplitude and phase angle (item 3-7) of a plane wave propagating in a given direction | |
* remarks: The propagation coefficient is given by: `γ = α + iβ` where `α` denotes attenuation (item 3-26.1) and `β` the phase coefficient (item 3-26.2) of a plane wave. | |
*/ | |
attribute :>> num: Real; | |
attribute :>> mRef: PropagationCoefficientUnit[1]; | |
} | |
attribute propagationCoefficient: PropagationCoefficientValue[*] nonunique :> scalarQuantities; | |
attribute def PropagationCoefficientUnit :> DerivedUnit { | |
private attribute lengthPF: QuantityPowerFactor[1] { :>> quantity = isq.L; :>> exponent = -1; } | |
attribute :>> quantityDimension { :>> quantityPowerFactors = lengthPF; } | |
} | |
} | |