text
stringlengths
0
83
@Switch01
A_Rog
Aakanksha Agrawal
Abhinav Sagar
ABHYUDAY PRATAP SINGH
abs51295
AceGentile
Adam Chainz
Adam Tse
Adam Wentz
admin
Adrien Morison
ahayrapetyan
Ahilya
AinsworthK
Akash Srivastava
Alan Yee
Albert Tugushev
Albert-Guan
albertg
Alberto Sottile
Aleks Bunin
Ales Erjavec
Alethea Flowers
Alex Gaynor
Alex Grönholm
Alex Hedges
Alex Loosley
Alex Morega
Alex Stachowiak
Alexander Shtyrov
Alexandre Conrad
Alexey Popravka
Aleš Erjavec
Alli
Ami Fischman
Ananya Maiti
Anatoly Techtonik
Anders Kaseorg
Andre Aguiar
Andreas Lutro
Andrei Geacar
Andrew Gaul
Andrew Shymanel
Andrey Bienkowski
Andrey Bulgakov
Andrés Delfino
Andy Freeland
Andy Kluger
Ani Hayrapetyan
Aniruddha Basak
Anish Tambe
Anrs Hu
Anthony Sottile
Antoine Musso
Anton Ovchinnikov
Anton Patrushev
Antonio Alvarado Hernandez
Antony Lee
Antti Kaihola
Anubhav Patel
Anudit Nagar
Anuj Godase
AQNOUCH Mohammed
AraHaan
Arindam Choudhury
Armin Ronacher
Artem
Arun Babu Neelicattu
Ashley Manton
Ashwin Ramaswami
atse
Atsushi Odagiri
Avinash Karhana
Avner Cohen
Awit (Ah-Wit) Ghirmai
Baptiste Mispelon
Barney Gale
barneygale
Bartek Ogryczak
Bastian Venthur
Ben Bodenmiller
Ben Darnell
Ben Hoyt
Ben Mares
Ben Rosser
Bence Nagy
Benjamin Peterson
Benjamin VanEvery
Benoit Pierre
Berker Peksag
Bernard
Bernard Tyers
Bernardo B. Marques
Bernhard M. Wiedemann
Bertil Hatt
Bhavam Vidyarthi
Blazej Michalik
Bogdan Opanchuk
BorisZZZ

nanoLLaVA - Sub 1B Vision-Language Model

Logo

Description

nanoLLaVA is a "small but mighty" 1B vision-language model designed to run efficiently on edge devices.

Model VQA v2 TextVQA ScienceQA POPE MMMU (Test) MMMU (Eval) GQA MM-VET
Score 70.84 46.71 58.97 84.1 28.6 30.4 54.79 23.9

Training Data

Training Data will be released later as I am still writing a paper on this. Expect the final final to be much more powerful than the current one.

Finetuning Code

Coming Soon!!!

Usage

You can use with transformers with the following script:

pip install -U transformers accelerate flash_attn
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings

# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')

# set device
torch.set_default_device('cuda')  # or 'cpu'

# create model
model = AutoModelForCausalLM.from_pretrained(
    'qnguyen3/nanoLLaVA',
    torch_dtype=torch.float16,
    device_map='auto',
    trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
    'qnguyen3/nanoLLaVA',
    trust_remote_code=True)

# text prompt
prompt = 'Describe this image in detail'

messages = [
    {"role": "user", "content": f'<image>\n{prompt}'}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

print(text)

text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)

# image, sample images can be found in images folder
image = Image.open('/path/to/image.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)

# generate
output_ids = model.generate(
    input_ids,
    images=image_tensor,
    max_new_tokens=2048,
    use_cache=True)[0]

print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())

Prompt Format

The model follow the ChatML standard, however, without \n at the end of <|im_end|>:

<|im_start|>system
Answer the question<|im_end|><|im_start|>user
<image>
What is the picture about?<|im_end|><|im_start|>assistant

Image Example
small What is the text saying?
"Small but mighty".
How does the text correlate to the context of the image?
The text seems to be a playful or humorous representation of a small but mighty figure, possibly a mouse or a mouse toy, holding a weightlifting bar.

Downloads last month
91