file_path
stringlengths 11
79
| full_name
stringlengths 2
100
| traced_tactics
list | end
sequence | commit
stringclasses 4
values | url
stringclasses 4
values | start
sequence |
---|---|---|---|---|---|---|
Mathlib/Analysis/Calculus/FDerivAnalytic.lean | HasFPowerSeriesOnBall.hasFDerivAt | [] | [
81,
52
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
78,
1
] |
Mathlib/CategoryTheory/Products/Basic.lean | CategoryTheory.prod_id | [] | [
58,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
57,
1
] |
Mathlib/MeasureTheory/Function/ConvergenceInMeasure.lean | MeasureTheory.TendstoInMeasure.aeMeasurable | [
{
"state_after": "case intro\nα : Type u_2\nι : Type u_1\nE : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝⁴ : MeasurableSpace E\ninst✝³ : NormedAddCommGroup E\ninst✝² : BorelSpace E\nu : Filter ι\ninst✝¹ : NeBot u\ninst✝ : IsCountablyGenerated u\nf : ι → α → E\ng : α → E\nhf : ∀ (n : ι), AEMeasurable (f n)\nh_tendsto : TendstoInMeasure μ f u g\nns : ℕ → ι\nhns : ∀ᵐ (x : α) ∂μ, Tendsto (fun i => f (ns i) x) atTop (𝓝 (g x))\n⊢ AEMeasurable g",
"state_before": "α : Type u_2\nι : Type u_1\nE : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝⁴ : MeasurableSpace E\ninst✝³ : NormedAddCommGroup E\ninst✝² : BorelSpace E\nu : Filter ι\ninst✝¹ : NeBot u\ninst✝ : IsCountablyGenerated u\nf : ι → α → E\ng : α → E\nhf : ∀ (n : ι), AEMeasurable (f n)\nh_tendsto : TendstoInMeasure μ f u g\n⊢ AEMeasurable g",
"tactic": "obtain ⟨ns, hns⟩ := h_tendsto.exists_seq_tendsto_ae'"
},
{
"state_after": "no goals",
"state_before": "case intro\nα : Type u_2\nι : Type u_1\nE : Type u_3\nm : MeasurableSpace α\nμ : Measure α\ninst✝⁴ : MeasurableSpace E\ninst✝³ : NormedAddCommGroup E\ninst✝² : BorelSpace E\nu : Filter ι\ninst✝¹ : NeBot u\ninst✝ : IsCountablyGenerated u\nf : ι → α → E\ng : α → E\nhf : ∀ (n : ι), AEMeasurable (f n)\nh_tendsto : TendstoInMeasure μ f u g\nns : ℕ → ι\nhns : ∀ᵐ (x : α) ∂μ, Tendsto (fun i => f (ns i) x) atTop (𝓝 (g x))\n⊢ AEMeasurable g",
"tactic": "exact aemeasurable_of_tendsto_metrizable_ae atTop (fun n => hf (ns n)) hns"
}
] | [
273,
77
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
269,
1
] |
Mathlib/Logic/IsEmpty.lean | not_nonempty_iff | [] | [
136,
57
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
135,
1
] |
Mathlib/GroupTheory/Subsemigroup/Centralizer.lean | Set.zero_mem_centralizer | [
{
"state_after": "no goals",
"state_before": "M : Type u_1\nS T : Set M\ninst✝ : MulZeroClass M\n⊢ 0 ∈ centralizer S",
"tactic": "simp [mem_centralizer_iff]"
}
] | [
68,
29
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
67,
1
] |
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean | SimpleGraph.ConnectedComponent.ind₂ | [] | [
1995,
27
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1992,
11
] |
Mathlib/Algebra/Module/LocalizedModule.lean | LocalizedModule.mk_smul_mk | [
{
"state_after": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nr : R\nm : M\ns t : { x // x ∈ S }\n⊢ Localization.liftOn (Localization.mk r s)\n (fun r s =>\n liftOn (mk m t) (fun p => mk (SMul.smul r p.fst) (s * p.snd))\n (_ :\n ∀ (p p' : M × { x // x ∈ S }),\n p ≈ p' → (fun p => mk (r • p.fst) (s * p.snd)) p = (fun p => mk (r • p.fst) (s * p.snd)) p'))\n (_ :\n ∀ {a c : R} {b d : { x // x ∈ S }},\n ↑(Localization.r S) (a, b) (c, d) →\n (fun r s =>\n liftOn (mk m t) (fun p => mk (r • p.fst) (s * p.snd))\n (_ :\n ∀ (p p' : M × { x // x ∈ S }),\n p ≈ p' → (fun p => mk (r • p.fst) (s * p.snd)) p = (fun p => mk (r • p.fst) (s * p.snd)) p'))\n a b =\n (fun r s =>\n liftOn (mk m t) (fun p => mk (r • p.fst) (s * p.snd))\n (_ :\n ∀ (p p' : M × { x // x ∈ S }),\n p ≈ p' → (fun p => mk (r • p.fst) (s * p.snd)) p = (fun p => mk (r • p.fst) (s * p.snd)) p'))\n c d) =\n mk (SMul.smul r m) (s * t)",
"state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nr : R\nm : M\ns t : { x // x ∈ S }\n⊢ Localization.mk r s • mk m t = mk (r • m) (s * t)",
"tactic": "dsimp only [HSMul.hSMul, SMul.smul]"
},
{
"state_after": "no goals",
"state_before": "R : Type u\ninst✝² : CommSemiring R\nS : Submonoid R\nM : Type v\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nr : R\nm : M\ns t : { x // x ∈ S }\n⊢ Localization.liftOn (Localization.mk r s)\n (fun r s =>\n liftOn (mk m t) (fun p => mk (SMul.smul r p.fst) (s * p.snd))\n (_ :\n ∀ (p p' : M × { x // x ∈ S }),\n p ≈ p' → (fun p => mk (r • p.fst) (s * p.snd)) p = (fun p => mk (r • p.fst) (s * p.snd)) p'))\n (_ :\n ∀ {a c : R} {b d : { x // x ∈ S }},\n ↑(Localization.r S) (a, b) (c, d) →\n (fun r s =>\n liftOn (mk m t) (fun p => mk (r • p.fst) (s * p.snd))\n (_ :\n ∀ (p p' : M × { x // x ∈ S }),\n p ≈ p' → (fun p => mk (r • p.fst) (s * p.snd)) p = (fun p => mk (r • p.fst) (s * p.snd)) p'))\n a b =\n (fun r s =>\n liftOn (mk m t) (fun p => mk (r • p.fst) (s * p.snd))\n (_ :\n ∀ (p p' : M × { x // x ∈ S }),\n p ≈ p' → (fun p => mk (r • p.fst) (s * p.snd)) p = (fun p => mk (r • p.fst) (s * p.snd)) p'))\n c d) =\n mk (SMul.smul r m) (s * t)",
"tactic": "rw [Localization.liftOn_mk, liftOn_mk]"
}
] | [
338,
41
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
335,
1
] |
Mathlib/MeasureTheory/Function/SimpleFunc.lean | MeasureTheory.SimpleFunc.map_restrict_of_zero | [
{
"state_after": "no goals",
"state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.809158\ninst✝² : MeasurableSpace α\nK : Type ?u.809164\ninst✝¹ : Zero β\ninst✝ : Zero γ\ng : β → γ\nhg : g 0 = 0\nf : α →ₛ β\ns : Set α\nx : α\nhs : MeasurableSet s\n⊢ ↑(map g (restrict f s)) x = ↑(restrict (map g f) s) x",
"tactic": "simp [hs, Set.indicator_comp_of_zero hg]"
},
{
"state_after": "no goals",
"state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.809158\ninst✝² : MeasurableSpace α\nK : Type ?u.809164\ninst✝¹ : Zero β\ninst✝ : Zero γ\ng : β → γ\nhg : g 0 = 0\nf : α →ₛ β\ns : Set α\nx : α\nhs : ¬MeasurableSet s\n⊢ ↑(map g (restrict f s)) x = ↑(restrict (map g f) s) x",
"tactic": "simp [restrict_of_not_measurable hs, hg]"
}
] | [
770,
53
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
766,
1
] |
Mathlib/Data/Multiset/Bind.lean | Multiset.sigma_singleton | [] | [
334,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
332,
1
] |
Mathlib/Data/Finset/Image.lean | Finset.subset_image_iff | [
{
"state_after": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\n⊢ ↑t ⊆ f '' s → ∃ s', ↑s' ⊆ s ∧ image f s' = t\n\ncase mpr\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\n⊢ (∃ s', ↑s' ⊆ s ∧ image f s' = t) → ↑t ⊆ f '' s",
"state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\n⊢ ↑t ⊆ f '' s ↔ ∃ s', ↑s' ⊆ s ∧ image f s' = t",
"tactic": "constructor"
},
{
"state_after": "case mpr\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\n⊢ (∃ s', ↑s' ⊆ s ∧ image f s' = t) → ↑t ⊆ f '' s\n\ncase mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\n⊢ ↑t ⊆ f '' s → ∃ s', ↑s' ⊆ s ∧ image f s' = t",
"state_before": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\n⊢ ↑t ⊆ f '' s → ∃ s', ↑s' ⊆ s ∧ image f s' = t\n\ncase mpr\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\n⊢ (∃ s', ↑s' ⊆ s ∧ image f s' = t) → ↑t ⊆ f '' s",
"tactic": "swap"
},
{
"state_after": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\nh : ↑t ⊆ f '' s\n⊢ ∃ s', ↑s' ⊆ s ∧ image f s' = t",
"state_before": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\n⊢ ↑t ⊆ f '' s → ∃ s', ↑s' ⊆ s ∧ image f s' = t",
"tactic": "intro h"
},
{
"state_after": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\nh : ↑t ⊆ f '' s\nthis : CanLift β (↑s) (f ∘ Subtype.val) fun y => y ∈ f '' s :=\n { prf := (_ : ∀ (y : β), y ∈ f '' s → ∃ y_1, (f ∘ Subtype.val) y_1 = y) }\n⊢ ∃ s', ↑s' ⊆ s ∧ image f s' = t",
"state_before": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\nh : ↑t ⊆ f '' s\n⊢ ∃ s', ↑s' ⊆ s ∧ image f s' = t",
"tactic": "letI : CanLift β s (f ∘ (↑)) fun y => y ∈ f '' s := ⟨fun y ⟨x, hxt, hy⟩ => ⟨⟨x, hxt⟩, hy⟩⟩"
},
{
"state_after": "case mp.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nf : α → β\nthis : CanLift β (↑s) (f ∘ Subtype.val) fun y => y ∈ f '' s :=\n { prf := (_ : ∀ (y : β), y ∈ f '' s → ∃ y_1, (f ∘ Subtype.val) y_1 = y) }\nt : Finset ↑s\n⊢ ∃ s', ↑s' ⊆ s ∧ image f s' = image (f ∘ Subtype.val) t",
"state_before": "case mp\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\nh : ↑t ⊆ f '' s\nthis : CanLift β (↑s) (f ∘ Subtype.val) fun y => y ∈ f '' s :=\n { prf := (_ : ∀ (y : β), y ∈ f '' s → ∃ y_1, (f ∘ Subtype.val) y_1 = y) }\n⊢ ∃ s', ↑s' ⊆ s ∧ image f s' = t",
"tactic": "lift t to Finset s using h"
},
{
"state_after": "case mp.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nf : α → β\nthis : CanLift β (↑s) (f ∘ Subtype.val) fun y => y ∈ f '' s :=\n { prf := (_ : ∀ (y : β), y ∈ f '' s → ∃ y_1, (f ∘ Subtype.val) y_1 = y) }\nt : Finset ↑s\n⊢ image f (map (Embedding.subtype fun x => x ∈ s) t) = image (f ∘ Subtype.val) t",
"state_before": "case mp.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nf : α → β\nthis : CanLift β (↑s) (f ∘ Subtype.val) fun y => y ∈ f '' s :=\n { prf := (_ : ∀ (y : β), y ∈ f '' s → ∃ y_1, (f ∘ Subtype.val) y_1 = y) }\nt : Finset ↑s\n⊢ ∃ s', ↑s' ⊆ s ∧ image f s' = image (f ∘ Subtype.val) t",
"tactic": "refine' ⟨t.map (Embedding.subtype _), map_subtype_subset _, _⟩"
},
{
"state_after": "case mp.intro.a\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nf : α → β\nthis : CanLift β (↑s) (f ∘ Subtype.val) fun y => y ∈ f '' s :=\n { prf := (_ : ∀ (y : β), y ∈ f '' s → ∃ y_1, (f ∘ Subtype.val) y_1 = y) }\nt : Finset ↑s\ny : β\n⊢ y ∈ image f (map (Embedding.subtype fun x => x ∈ s) t) ↔ y ∈ image (f ∘ Subtype.val) t",
"state_before": "case mp.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nf : α → β\nthis : CanLift β (↑s) (f ∘ Subtype.val) fun y => y ∈ f '' s :=\n { prf := (_ : ∀ (y : β), y ∈ f '' s → ∃ y_1, (f ∘ Subtype.val) y_1 = y) }\nt : Finset ↑s\n⊢ image f (map (Embedding.subtype fun x => x ∈ s) t) = image (f ∘ Subtype.val) t",
"tactic": "ext y"
},
{
"state_after": "no goals",
"state_before": "case mp.intro.a\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nf : α → β\nthis : CanLift β (↑s) (f ∘ Subtype.val) fun y => y ∈ f '' s :=\n { prf := (_ : ∀ (y : β), y ∈ f '' s → ∃ y_1, (f ∘ Subtype.val) y_1 = y) }\nt : Finset ↑s\ny : β\n⊢ y ∈ image f (map (Embedding.subtype fun x => x ∈ s) t) ↔ y ∈ image (f ∘ Subtype.val) t",
"tactic": "simp"
},
{
"state_after": "case mpr.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nf : α → β\nt : Finset α\nht : ↑t ⊆ s\n⊢ ↑(image f t) ⊆ f '' s",
"state_before": "case mpr\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nt : Finset β\nf : α → β\n⊢ (∃ s', ↑s' ⊆ s ∧ image f s' = t) → ↑t ⊆ f '' s",
"tactic": "rintro ⟨t, ht, rfl⟩"
},
{
"state_after": "case mpr.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nf : α → β\nt : Finset α\nht : ↑t ⊆ s\n⊢ f '' ↑t ⊆ f '' s",
"state_before": "case mpr.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nf : α → β\nt : Finset α\nht : ↑t ⊆ s\n⊢ ↑(image f t) ⊆ f '' s",
"tactic": "rw [coe_image]"
},
{
"state_after": "no goals",
"state_before": "case mpr.intro.intro\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.140906\ninst✝ : DecidableEq β\ns : Set α\nf : α → β\nt : Finset α\nht : ↑t ⊆ s\n⊢ f '' ↑t ⊆ f '' s",
"tactic": "exact Set.image_subset f ht"
}
] | [
755,
14
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
745,
1
] |
Mathlib/Algebra/BigOperators/Basic.lean | Fintype.prod_eq_mul_prod_compl | [] | [
1569,
49
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1567,
1
] |
Mathlib/Algebra/Order/Group/OrderIso.lean | OrderIso.mulRight_symm | [
{
"state_after": "case h.h\nα : Type u\ninst✝² : Group α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na✝ b c d a x : α\n⊢ ↑(symm (mulRight a)) x = ↑(mulRight a⁻¹) x",
"state_before": "α : Type u\ninst✝² : Group α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na✝ b c d a : α\n⊢ symm (mulRight a) = mulRight a⁻¹",
"tactic": "ext x"
},
{
"state_after": "no goals",
"state_before": "case h.h\nα : Type u\ninst✝² : Group α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na✝ b c d a x : α\n⊢ ↑(symm (mulRight a)) x = ↑(mulRight a⁻¹) x",
"tactic": "rfl"
}
] | [
109,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
107,
1
] |
src/lean/Init/Data/Nat/Linear.lean | Nat.Linear.ExprCnstr.toPoly_norm_eq | [] | [
557,
6
] | d5348dfac847a56a4595fb6230fd0708dcb4e7e9 | https://github.com/leanprover/lean4 | [
556,
1
] |
Mathlib/Algebra/BigOperators/Associated.lean | Prime.exists_mem_multiset_dvd | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type ?u.8870\nγ : Type ?u.8873\nδ : Type ?u.8876\ninst✝ : CommMonoidWithZero α\np : α\nhp : Prime p\ns✝ : Multiset α\na : α\ns : Multiset α\nih : p ∣ Multiset.prod s → ∃ a, a ∈ s ∧ p ∣ a\nh : p ∣ Multiset.prod (a ::ₘ s)\n⊢ p ∣ a * Multiset.prod s",
"tactic": "simpa using h"
}
] | [
41,
43
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
34,
1
] |
Mathlib/GroupTheory/FreeAbelianGroupFinsupp.lean | Finsupp.toFreeAbelianGroup_comp_singleAddHom | [
{
"state_after": "case h1\nX : Type u_1\nx : X\n⊢ ↑(AddMonoidHom.comp toFreeAbelianGroup (singleAddHom x)) 1 =\n ↑(↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x)) 1",
"state_before": "X : Type u_1\nx : X\n⊢ AddMonoidHom.comp toFreeAbelianGroup (singleAddHom x) =\n ↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x)",
"tactic": "ext"
},
{
"state_after": "no goals",
"state_before": "case h1\nX : Type u_1\nx : X\n⊢ ↑(AddMonoidHom.comp toFreeAbelianGroup (singleAddHom x)) 1 =\n ↑(↑(AddMonoidHom.flip (smulAddHom ℤ (FreeAbelianGroup X))) (of x)) 1",
"tactic": "simp only [AddMonoidHom.coe_comp, Finsupp.singleAddHom_apply, Function.comp_apply, one_smul,\n toFreeAbelianGroup, Finsupp.liftAddHom_apply_single]"
}
] | [
57,
57
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
52,
1
] |
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean | Real.Angle.toReal_eq_zero_iff | [
{
"state_after": "θ : Angle\n⊢ toReal θ = toReal 0 ↔ θ = 0",
"state_before": "θ : Angle\n⊢ toReal θ = 0 ↔ θ = 0",
"tactic": "nth_rw 1 [← toReal_zero]"
},
{
"state_after": "no goals",
"state_before": "θ : Angle\n⊢ toReal θ = toReal 0 ↔ θ = 0",
"tactic": "exact toReal_inj"
}
] | [
594,
19
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
592,
1
] |
Mathlib/Algebra/Group/Commute.lean | Commute.refl | [] | [
58,
18
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
57,
11
] |
Mathlib/LinearAlgebra/CrossProduct.lean | cross_dot_cross | [
{
"state_after": "R : Type u_1\ninst✝ : CommRing R\nu v w x : Fin 3 → R\n⊢ vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 *\n vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 0 +\n vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 *\n vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 1 +\n vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 *\n vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 2 =\n (u 0 * w 0 + u 1 * w 1 + u 2 * w 2) * (v 0 * x 0 + v 1 * x 1 + v 2 * x 2) -\n (u 0 * x 0 + u 1 * x 1 + u 2 * x 2) * (v 0 * w 0 + v 1 * w 1 + v 2 * w 2)",
"state_before": "R : Type u_1\ninst✝ : CommRing R\nu v w x : Fin 3 → R\n⊢ ↑(↑crossProduct u) v ⬝ᵥ ↑(↑crossProduct w) x = u ⬝ᵥ w * v ⬝ᵥ x - u ⬝ᵥ x * v ⬝ᵥ w",
"tactic": "simp_rw [cross_apply, vec3_dotProduct]"
},
{
"state_after": "R : Type u_1\ninst✝ : CommRing R\nu v w x : Fin 3 → R\n⊢ (u 1 * v 2 - u 2 * v 1) * (w 1 * x 2 - w 2 * x 1) + (u 2 * v 0 - u 0 * v 2) * (w 2 * x 0 - w 0 * x 2) +\n (u 0 * v 1 - u 1 * v 0) * (w 0 * x 1 - w 1 * x 0) =\n (u 0 * w 0 + u 1 * w 1 + u 2 * w 2) * (v 0 * x 0 + v 1 * x 1 + v 2 * x 2) -\n (u 0 * x 0 + u 1 * x 1 + u 2 * x 2) * (v 0 * w 0 + v 1 * w 1 + v 2 * w 2)",
"state_before": "R : Type u_1\ninst✝ : CommRing R\nu v w x : Fin 3 → R\n⊢ vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 0 *\n vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 0 +\n vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 1 *\n vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 1 +\n vecCons (u 1 * v 2 - u 2 * v 1) ![u 2 * v 0 - u 0 * v 2, u 0 * v 1 - u 1 * v 0] 2 *\n vecCons (w 1 * x 2 - w 2 * x 1) ![w 2 * x 0 - w 0 * x 2, w 0 * x 1 - w 1 * x 0] 2 =\n (u 0 * w 0 + u 1 * w 1 + u 2 * w 2) * (v 0 * x 0 + v 1 * x 1 + v 2 * x 2) -\n (u 0 * x 0 + u 1 * x 1 + u 2 * x 2) * (v 0 * w 0 + v 1 * w 1 + v 2 * w 2)",
"tactic": "norm_num"
},
{
"state_after": "no goals",
"state_before": "R : Type u_1\ninst✝ : CommRing R\nu v w x : Fin 3 → R\n⊢ (u 1 * v 2 - u 2 * v 1) * (w 1 * x 2 - w 2 * x 1) + (u 2 * v 0 - u 0 * v 2) * (w 2 * x 0 - w 0 * x 2) +\n (u 0 * v 1 - u 1 * v 0) * (w 0 * x 1 - w 1 * x 0) =\n (u 0 * w 0 + u 1 * w 1 + u 2 * w 2) * (v 0 * x 0 + v 1 * x 1 + v 2 * x 2) -\n (u 0 * x 0 + u 1 * x 1 + u 2 * x 2) * (v 0 * w 0 + v 1 * w 1 + v 2 * w 2)",
"tactic": "ring"
}
] | [
132,
7
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
128,
1
] |
Mathlib/Algebra/Order/Monoid/Lemmas.lean | StrictMonoOn.mul_monotone' | [] | [
1530,
73
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1528,
1
] |
Mathlib/Analysis/NormedSpace/QuaternionExponential.lean | Quaternion.hasSum_expSeries_of_imaginary | [
{
"state_after": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhs : HasSum (fun n => (-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)!) s\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\n⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)",
"state_before": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun n => (-1) ^ n * ‖q‖ ^ (2 * n) / ↑(2 * n)!) c\nhs : HasSum (fun n => (-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)!) s\n⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)",
"tactic": "replace hc := hasSum_coe.mpr hc"
},
{
"state_after": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\n⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)",
"state_before": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhs : HasSum (fun n => (-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)!) s\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\n⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)",
"tactic": "replace hs := (hs.div_const ‖q‖).smul_const q"
},
{
"state_after": "case inl\nc s : ℝ\nhq : 0.re = 0\nhc : HasSum (fun a => ↑((-1) ^ a * ‖0‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\n⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => 0) (↑c + (s / ‖0‖) • 0)\n\ncase inr\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\n⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)",
"state_before": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\n⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)",
"tactic": "obtain rfl | hq0 := eq_or_ne q 0"
},
{
"state_after": "case inr\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\n⊢ HasSum (fun n => (↑n !)⁻¹ • q ^ n) (↑c + (s / ‖q‖) • q)",
"state_before": "case inr\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\n⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => q) (↑c + (s / ‖q‖) • q)",
"tactic": "simp_rw [expSeries_apply_eq]"
},
{
"state_after": "case inr\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\n⊢ HasSum (fun n => (↑n !)⁻¹ • q ^ n) (↑c + (s / ‖q‖) • q)",
"state_before": "case inr\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\n⊢ HasSum (fun n => (↑n !)⁻¹ • q ^ n) (↑c + (s / ‖q‖) • q)",
"tactic": "have hq2 : q ^ 2 = -normSq q := sq_eq_neg_normSq.mpr hq"
},
{
"state_after": "case inr\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\n⊢ HasSum (fun n => (↑n !)⁻¹ • q ^ n) (↑c + (s / ‖q‖) • q)",
"state_before": "case inr\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\n⊢ HasSum (fun n => (↑n !)⁻¹ • q ^ n) (↑c + (s / ‖q‖) • q)",
"tactic": "have hqn := norm_ne_zero_iff.mpr hq0"
},
{
"state_after": "case inr.refine'_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\n⊢ HasSum (fun k => (↑(2 * k)!)⁻¹ • q ^ (2 * k)) ↑c\n\ncase inr.refine'_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\n⊢ HasSum (fun k => (↑(2 * k + 1)!)⁻¹ • q ^ (2 * k + 1)) ((s / ‖q‖) • q)",
"state_before": "case inr\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\n⊢ HasSum (fun n => (↑n !)⁻¹ • q ^ n) (↑c + (s / ‖q‖) • q)",
"tactic": "refine' HasSum.even_add_odd _ _"
},
{
"state_after": "case inl\nc s : ℝ\nhq : 0.re = 0\nhc : HasSum (fun a => ↑((-1) ^ a * ‖0‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\n⊢ HasSum (fun n => Pi.single 0 1 n) ↑c",
"state_before": "case inl\nc s : ℝ\nhq : 0.re = 0\nhc : HasSum (fun a => ↑((-1) ^ a * ‖0‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\n⊢ HasSum (fun n => ↑(expSeries ℝ ℍ n) fun x => 0) (↑c + (s / ‖0‖) • 0)",
"tactic": "simp_rw [expSeries_apply_zero, norm_zero, div_zero, zero_smul, add_zero]"
},
{
"state_after": "case inl\nc s : ℝ\nhq : 0.re = 0\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\nhc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c\n⊢ HasSum (fun n => Pi.single 0 1 n) ↑c",
"state_before": "case inl\nc s : ℝ\nhq : 0.re = 0\nhc : HasSum (fun a => ↑((-1) ^ a * ‖0‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\n⊢ HasSum (fun n => Pi.single 0 1 n) ↑c",
"tactic": "simp_rw [norm_zero] at hc"
},
{
"state_after": "case h.e'_5\nc s : ℝ\nhq : 0.re = 0\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\nhc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c\n⊢ (fun n => Pi.single 0 1 n) = fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)",
"state_before": "case inl\nc s : ℝ\nhq : 0.re = 0\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\nhc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c\n⊢ HasSum (fun n => Pi.single 0 1 n) ↑c",
"tactic": "convert hc using 1"
},
{
"state_after": "case h.e'_5.h.zero\nc s : ℝ\nhq : 0.re = 0\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\nhc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c\n⊢ Pi.single 0 1 Nat.zero = ↑((-1) ^ Nat.zero * 0 ^ (2 * Nat.zero) / ↑(2 * Nat.zero)!)\n\ncase h.e'_5.h.succ\nc s : ℝ\nhq : 0.re = 0\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\nhc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c\nn : ℕ\n⊢ Pi.single 0 1 (Nat.succ n) = ↑((-1) ^ Nat.succ n * 0 ^ (2 * Nat.succ n) / ↑(2 * Nat.succ n)!)",
"state_before": "case h.e'_5\nc s : ℝ\nhq : 0.re = 0\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\nhc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c\n⊢ (fun n => Pi.single 0 1 n) = fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)",
"tactic": "ext (_ | n) : 1"
},
{
"state_after": "no goals",
"state_before": "case h.e'_5.h.zero\nc s : ℝ\nhq : 0.re = 0\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\nhc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c\n⊢ Pi.single 0 1 Nat.zero = ↑((-1) ^ Nat.zero * 0 ^ (2 * Nat.zero) / ↑(2 * Nat.zero)!)",
"tactic": "rw [pow_zero, Nat.zero_eq, MulZeroClass.mul_zero, pow_zero, Nat.factorial_zero, Nat.cast_one,\n div_one, one_mul, Pi.single_eq_same, coe_one]"
},
{
"state_after": "no goals",
"state_before": "case h.e'_5.h.succ\nc s : ℝ\nhq : 0.re = 0\nhs : HasSum (fun z => ((-1) ^ z * ‖0‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖0‖) • 0) ((s / ‖0‖) • 0)\nhc : HasSum (fun a => ↑((-1) ^ a * 0 ^ (2 * a) / ↑(2 * a)!)) ↑c\nn : ℕ\n⊢ Pi.single 0 1 (Nat.succ n) = ↑((-1) ^ Nat.succ n * 0 ^ (2 * Nat.succ n) / ↑(2 * Nat.succ n)!)",
"tactic": "rw [zero_pow (mul_pos two_pos (Nat.succ_pos _)), MulZeroClass.mul_zero, zero_div,\n Pi.single_eq_of_ne n.succ_ne_zero, coe_zero]"
},
{
"state_after": "case h.e'_5\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\n⊢ (fun k => (↑(2 * k)!)⁻¹ • q ^ (2 * k)) = fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)",
"state_before": "case inr.refine'_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\n⊢ HasSum (fun k => (↑(2 * k)!)⁻¹ • q ^ (2 * k)) ↑c",
"tactic": "convert hc using 1"
},
{
"state_after": "case h.e'_5.h\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\n⊢ (↑(2 * n)!)⁻¹ • q ^ (2 * n) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) / ↑(2 * n)!)",
"state_before": "case h.e'_5\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\n⊢ (fun k => (↑(2 * k)!)⁻¹ • q ^ (2 * k)) = fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)",
"tactic": "ext n : 1"
},
{
"state_after": "case h.e'_5.h\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ (↑(2 * n)!)⁻¹ • q ^ (2 * n) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) / ↑(2 * n)!)",
"state_before": "case h.e'_5.h\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\n⊢ (↑(2 * n)!)⁻¹ • q ^ (2 * n) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) / ↑(2 * n)!)",
"tactic": "letI k : ℝ := ↑(2 * n)!"
},
{
"state_after": "case h.e'_5.h.calc_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ ↑(k⁻¹ • (-↑normSq q) ^ n) = k⁻¹ • ↑((-1) ^ n * ‖q‖ ^ (2 * n))\n\ncase h.e'_5.h.calc_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ k⁻¹ • ↑((-1) ^ n * ‖q‖ ^ (2 * n)) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) / k)",
"state_before": "case h.e'_5.h\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ (↑(2 * n)!)⁻¹ • q ^ (2 * n) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) / ↑(2 * n)!)",
"tactic": "calc\n k⁻¹ • q ^ (2 * n) = k⁻¹ • (-normSq q) ^ n := by rw [pow_mul, hq2]; norm_cast\n _ = k⁻¹ • ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) := ?_\n _ = ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n) / k) := ?_"
},
{
"state_after": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ k⁻¹ • (-↑(↑normSq q)) ^ n = ↑(k⁻¹ • (-↑normSq q) ^ n)",
"state_before": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ k⁻¹ • q ^ (2 * n) = ↑(k⁻¹ • (-↑normSq q) ^ n)",
"tactic": "rw [pow_mul, hq2]"
},
{
"state_after": "no goals",
"state_before": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ k⁻¹ • (-↑(↑normSq q)) ^ n = ↑(k⁻¹ • (-↑normSq q) ^ n)",
"tactic": "norm_cast"
},
{
"state_after": "case h.e'_5.h.calc_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ ↑(k⁻¹ • (-↑normSq q) ^ n) = k⁻¹ • ↑((-1) ^ n * ‖q‖ ^ (2 * n))",
"state_before": "case h.e'_5.h.calc_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ ↑(k⁻¹ • (-↑normSq q) ^ n) = k⁻¹ • ↑((-1) ^ n * ‖q‖ ^ (2 * n))",
"tactic": "congr 1"
},
{
"state_after": "case h.e'_5.h.calc_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ ↑(k⁻¹ • ((-1) ^ n * (‖q‖ * ‖q‖) ^ n)) = k⁻¹ • ↑((-1) ^ n * (‖q‖ * ‖q‖) ^ n)",
"state_before": "case h.e'_5.h.calc_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ ↑(k⁻¹ • (-↑normSq q) ^ n) = k⁻¹ • ↑((-1) ^ n * ‖q‖ ^ (2 * n))",
"tactic": "rw [neg_pow, normSq_eq_norm_mul_self, pow_mul, sq]"
},
{
"state_after": "case h.e'_5.h.calc_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ (↑(2 * n)!)⁻¹ • ((-1) ^ n * (↑‖q‖ * ↑‖q‖) ^ n) = (↑(2 * n)!)⁻¹ • ((-1) ^ n * (↑‖q‖ * ↑‖q‖) ^ n)",
"state_before": "case h.e'_5.h.calc_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ ↑(k⁻¹ • ((-1) ^ n * (‖q‖ * ‖q‖) ^ n)) = k⁻¹ • ↑((-1) ^ n * (‖q‖ * ‖q‖) ^ n)",
"tactic": "push_cast"
},
{
"state_after": "no goals",
"state_before": "case h.e'_5.h.calc_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ (↑(2 * n)!)⁻¹ • ((-1) ^ n * (↑‖q‖ * ↑‖q‖) ^ n) = (↑(2 * n)!)⁻¹ • ((-1) ^ n * (↑‖q‖ * ↑‖q‖) ^ n)",
"tactic": "rfl"
},
{
"state_after": "case h.e'_5.h.calc_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ ↑k⁻¹ * ↑((-1) ^ n * ‖q‖ ^ (2 * n)) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) * k⁻¹)",
"state_before": "case h.e'_5.h.calc_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ k⁻¹ • ↑((-1) ^ n * ‖q‖ ^ (2 * n)) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) / k)",
"tactic": "rw [← coe_mul_eq_smul, div_eq_mul_inv]"
},
{
"state_after": "case h.e'_5.h.calc_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ ↑(k⁻¹ * (↑(Int.negSucc 0 ^ n) * ‖q‖ ^ (2 * n))) = ↑(↑(Int.negSucc 0 ^ n) * ‖q‖ ^ (2 * n) * k⁻¹)",
"state_before": "case h.e'_5.h.calc_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ ↑k⁻¹ * ↑((-1) ^ n * ‖q‖ ^ (2 * n)) = ↑((-1) ^ n * ‖q‖ ^ (2 * n) * k⁻¹)",
"tactic": "norm_cast"
},
{
"state_after": "no goals",
"state_before": "case h.e'_5.h.calc_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n)!\n⊢ ↑(k⁻¹ * (↑(Int.negSucc 0 ^ n) * ‖q‖ ^ (2 * n))) = ↑(↑(Int.negSucc 0 ^ n) * ‖q‖ ^ (2 * n) * k⁻¹)",
"tactic": "ring_nf"
},
{
"state_after": "case h.e'_5\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\n⊢ (fun k => (↑(2 * k + 1)!)⁻¹ • q ^ (2 * k + 1)) = fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q",
"state_before": "case inr.refine'_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\n⊢ HasSum (fun k => (↑(2 * k + 1)!)⁻¹ • q ^ (2 * k + 1)) ((s / ‖q‖) • q)",
"tactic": "convert hs using 1"
},
{
"state_after": "case h.e'_5.h\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\n⊢ (↑(2 * n + 1)!)⁻¹ • q ^ (2 * n + 1) = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)! / ‖q‖) • q",
"state_before": "case h.e'_5\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\n⊢ (fun k => (↑(2 * k + 1)!)⁻¹ • q ^ (2 * k + 1)) = fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q",
"tactic": "ext n : 1"
},
{
"state_after": "case h.e'_5.h\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ (↑(2 * n + 1)!)⁻¹ • q ^ (2 * n + 1) = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)! / ‖q‖) • q",
"state_before": "case h.e'_5.h\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\n⊢ (↑(2 * n + 1)!)⁻¹ • q ^ (2 * n + 1) = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)! / ‖q‖) • q",
"tactic": "let k : ℝ := ↑(2 * n + 1)!"
},
{
"state_after": "case h.e'_5.h.calc_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ k⁻¹ • (↑((-↑normSq q) ^ n) * q) = k⁻¹ • ((-1) ^ n * ‖q‖ ^ (2 * n)) • q\n\ncase h.e'_5.h.calc_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ k⁻¹ • ((-1) ^ n * ‖q‖ ^ (2 * n)) • q = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q",
"state_before": "case h.e'_5.h\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ (↑(2 * n + 1)!)⁻¹ • q ^ (2 * n + 1) = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1)! / ‖q‖) • q",
"tactic": "calc\n k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • ((-normSq q) ^ n * q) := by\n rw [pow_succ', pow_mul, hq2]\n norm_cast\n _ = k⁻¹ • ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) • q := ?_\n _ = ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q := ?_"
},
{
"state_after": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ k⁻¹ • ((-↑(↑normSq q)) ^ n * q) = k⁻¹ • (↑((-↑normSq q) ^ n) * q)",
"state_before": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • (↑((-↑normSq q) ^ n) * q)",
"tactic": "rw [pow_succ', pow_mul, hq2]"
},
{
"state_after": "no goals",
"state_before": "q : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ k⁻¹ • ((-↑(↑normSq q)) ^ n * q) = k⁻¹ • (↑((-↑normSq q) ^ n) * q)",
"tactic": "norm_cast"
},
{
"state_after": "case h.e'_5.h.calc_1.e_a\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ ↑((-↑normSq q) ^ n) * q = ((-1) ^ n * ‖q‖ ^ (2 * n)) • q",
"state_before": "case h.e'_5.h.calc_1\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ k⁻¹ • (↑((-↑normSq q) ^ n) * q) = k⁻¹ • ((-1) ^ n * ‖q‖ ^ (2 * n)) • q",
"tactic": "congr 1"
},
{
"state_after": "no goals",
"state_before": "case h.e'_5.h.calc_1.e_a\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ ↑((-↑normSq q) ^ n) * q = ((-1) ^ n * ‖q‖ ^ (2 * n)) • q",
"tactic": "rw [neg_pow, normSq_eq_norm_mul_self, pow_mul, sq, ← coe_mul_eq_smul]"
},
{
"state_after": "case h.e'_5.h.calc_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ (k⁻¹ * ((-1) ^ n * ‖q‖ ^ (2 * n))) • q = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q",
"state_before": "case h.e'_5.h.calc_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ k⁻¹ • ((-1) ^ n * ‖q‖ ^ (2 * n)) • q = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q",
"tactic": "rw [smul_smul]"
},
{
"state_after": "case h.e'_5.h.calc_2.e_a\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ k⁻¹ * ((-1) ^ n * ‖q‖ ^ (2 * n)) = (-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖",
"state_before": "case h.e'_5.h.calc_2\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ (k⁻¹ * ((-1) ^ n * ‖q‖ ^ (2 * n))) • q = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q",
"tactic": "congr 1"
},
{
"state_after": "case h.e'_5.h.calc_2.e_a\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ (↑(2 * n + 1)!)⁻¹ * ((-1) ^ n * ‖q‖ ^ (2 * n)) = (-1) ^ n * (‖q‖ ^ (2 * n) * (↑(2 * n + 1)!)⁻¹)",
"state_before": "case h.e'_5.h.calc_2.e_a\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ k⁻¹ * ((-1) ^ n * ‖q‖ ^ (2 * n)) = (-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖",
"tactic": "simp_rw [pow_succ', mul_div_assoc, div_div_cancel_left' hqn]"
},
{
"state_after": "no goals",
"state_before": "case h.e'_5.h.calc_2.e_a\nq : ℍ\nhq : q.re = 0\nc s : ℝ\nhc : HasSum (fun a => ↑((-1) ^ a * ‖q‖ ^ (2 * a) / ↑(2 * a)!)) ↑c\nhs : HasSum (fun z => ((-1) ^ z * ‖q‖ ^ (2 * z + 1) / ↑(2 * z + 1)! / ‖q‖) • q) ((s / ‖q‖) • q)\nhq0 : q ≠ 0\nhq2 : q ^ 2 = -↑(↑normSq q)\nhqn : ‖q‖ ≠ 0\nn : ℕ\nk : ℝ := ↑(2 * n + 1)!\n⊢ (↑(2 * n + 1)!)⁻¹ * ((-1) ^ n * ‖q‖ ^ (2 * n)) = (-1) ^ n * (‖q‖ ^ (2 * n) * (↑(2 * n + 1)!)⁻¹)",
"tactic": "ring"
}
] | [
92,
11
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
45,
1
] |
Mathlib/Data/Set/Intervals/OrdConnected.lean | Set.ordConnected_Ici | [] | [
136,
42
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
135,
1
] |
Mathlib/CategoryTheory/NatIso.lean | CategoryTheory.NatIso.cancel_natIso_inv_left | [
{
"state_after": "no goals",
"state_before": "C : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF G : C ⥤ D\nα : F ≅ G\nX : C\nZ : D\ng g' : F.obj X ⟶ Z\n⊢ α.inv.app X ≫ g = α.inv.app X ≫ g' ↔ g = g'",
"tactic": "simp only [cancel_epi, refl]"
}
] | [
137,
83
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
136,
1
] |
Mathlib/Data/ULift.lean | PLift.exists | [] | [
76,
23
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
75,
1
] |
Mathlib/MeasureTheory/Integral/Lebesgue.lean | NNReal.count_const_le_le_of_tsum_le | [
{
"state_after": "α : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\n⊢ ↑↑count {i | ↑ε ≤ (ENNReal.some ∘ a) i} ≤ ↑c / ↑ε",
"state_before": "α : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\n⊢ ↑↑count {i | ε ≤ a i} ≤ ↑c / ↑ε",
"tactic": "rw [show (fun i => ε ≤ a i) = fun i => (ε : ℝ≥0∞) ≤ ((↑) ∘ a) i by\n funext i\n simp only [ENNReal.coe_le_coe, Function.comp]]"
},
{
"state_after": "α : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\n⊢ (∑' (i : α), (ENNReal.some ∘ a) i) ≤ ↑c",
"state_before": "α : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\n⊢ ↑↑count {i | ↑ε ≤ (ENNReal.some ∘ a) i} ≤ ↑c / ↑ε",
"tactic": "apply\n ENNReal.count_const_le_le_of_tsum_le (measurable_coe_nnreal_ennreal.comp a_mble) _\n (by exact_mod_cast ε_ne_zero) (@ENNReal.coe_ne_top ε)"
},
{
"state_after": "case h.e'_3\nα : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\n⊢ (∑' (i : α), (ENNReal.some ∘ a) i) = ↑(∑' (i : α), a i)",
"state_before": "α : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\n⊢ (∑' (i : α), (ENNReal.some ∘ a) i) ≤ ↑c",
"tactic": "convert ENNReal.coe_le_coe.mpr tsum_le_c"
},
{
"state_after": "no goals",
"state_before": "case h.e'_3\nα : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\n⊢ (∑' (i : α), (ENNReal.some ∘ a) i) = ↑(∑' (i : α), a i)",
"tactic": "erw [ENNReal.tsum_coe_eq a_summable.hasSum]"
},
{
"state_after": "case h\nα : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\ni : α\n⊢ (ε ≤ a i) = (↑ε ≤ (ENNReal.some ∘ a) i)",
"state_before": "α : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\n⊢ (fun i => ε ≤ a i) = fun i => ↑ε ≤ (ENNReal.some ∘ a) i",
"tactic": "funext i"
},
{
"state_after": "no goals",
"state_before": "case h\nα : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\ni : α\n⊢ (ε ≤ a i) = (↑ε ≤ (ENNReal.some ∘ a) i)",
"tactic": "simp only [ENNReal.coe_le_coe, Function.comp]"
},
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type ?u.1696412\nγ : Type ?u.1696415\nδ : Type ?u.1696418\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝¹ : MeasurableSpace α\ninst✝ : MeasurableSingletonClass α\na : α → ℝ≥0\na_mble : Measurable a\na_summable : Summable a\nc : ℝ≥0\ntsum_le_c : (∑' (i : α), a i) ≤ c\nε : ℝ≥0\nε_ne_zero : ε ≠ 0\n⊢ ↑ε ≠ 0",
"tactic": "exact_mod_cast ε_ne_zero"
}
] | [
1432,
46
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1422,
1
] |
Mathlib/MeasureTheory/Measure/ProbabilityMeasure.lean | MeasureTheory.ProbabilityMeasure.toFiniteMeasure_continuous | [] | [
227,
25
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
225,
1
] |
Mathlib/Analysis/NormedSpace/lpSpace.lean | nat_cast_memℓp_infty | [] | [
892,
35
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
891,
1
] |
Mathlib/Data/Nat/Bitwise.lean | Nat.bit_eq_zero | [
{
"state_after": "no goals",
"state_before": "n : ℕ\nb : Bool\n⊢ bit b n = 0 ↔ n = 0 ∧ b = false",
"tactic": "cases b <;> simp [Nat.bit0_eq_zero, Nat.bit1_ne_zero]"
}
] | [
62,
56
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
61,
1
] |
Mathlib/Algebra/Algebra/Unitization.lean | Unitization.snd_add | [] | [
229,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
228,
1
] |
Mathlib/Topology/Maps.lean | openEmbedding_iff_continuous_injective_open | [] | [
606,
64
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
603,
1
] |
Mathlib/Data/Nat/Set.lean | Nat.range_succ | [
{
"state_after": "no goals",
"state_before": "⊢ range succ = {i | 0 < i}",
"tactic": "ext (_ | i) <;> simp [succ_pos, succ_ne_zero, Set.mem_setOf]"
}
] | [
31,
63
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
30,
11
] |
Mathlib/GroupTheory/Subgroup/Basic.lean | Subgroup.codisjoint_subgroupOf_sup | [
{
"state_after": "case hH\nG : Type u_1\nG' : Type ?u.612020\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.612029\ninst✝¹ : AddGroup A\nN : Type ?u.612035\ninst✝ : Group N\nf : G →* N\nH K : Subgroup G\n⊢ H ≤ H ⊔ K\n\ncase hK\nG : Type u_1\nG' : Type ?u.612020\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.612029\ninst✝¹ : AddGroup A\nN : Type ?u.612035\ninst✝ : Group N\nf : G →* N\nH K : Subgroup G\n⊢ K ≤ H ⊔ K",
"state_before": "G : Type u_1\nG' : Type ?u.612020\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.612029\ninst✝¹ : AddGroup A\nN : Type ?u.612035\ninst✝ : Group N\nf : G →* N\nH K : Subgroup G\n⊢ Codisjoint (subgroupOf H (H ⊔ K)) (subgroupOf K (H ⊔ K))",
"tactic": "rw [codisjoint_iff, sup_subgroupOf_eq, subgroupOf_self]"
},
{
"state_after": "no goals",
"state_before": "case hH\nG : Type u_1\nG' : Type ?u.612020\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.612029\ninst✝¹ : AddGroup A\nN : Type ?u.612035\ninst✝ : Group N\nf : G →* N\nH K : Subgroup G\n⊢ H ≤ H ⊔ K\n\ncase hK\nG : Type u_1\nG' : Type ?u.612020\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.612029\ninst✝¹ : AddGroup A\nN : Type ?u.612035\ninst✝ : Group N\nf : G →* N\nH K : Subgroup G\n⊢ K ≤ H ⊔ K",
"tactic": "exacts [le_sup_left, le_sup_right]"
}
] | [
3174,
37
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
3171,
1
] |
Mathlib/Data/Set/Finite.lean | Set.finite_image_fst_and_snd_iff | [] | [
1100,
37
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1097,
1
] |
Std/Data/List/Lemmas.lean | List.isInfix.subset | [] | [
1604,
20
] | e68aa8f5fe47aad78987df45f99094afbcb5e936 | https://github.com/leanprover/std4 | [
1603,
11
] |
Mathlib/Topology/MetricSpace/Basic.lean | Metric.uniformity_basis_dist_inv_nat_succ | [] | [
753,
71
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
750,
1
] |
Mathlib/Algebra/MonoidAlgebra/Basic.lean | MonoidAlgebra.one_def | [] | [
242,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
241,
1
] |
Mathlib/Data/Finset/Basic.lean | Finset.update_piecewise_of_mem | [
{
"state_after": "α : Type u_1\nβ : Type ?u.308183\nγ : Type ?u.308186\nδ : α → Sort u_2\ns : Finset α\nf g : (i : α) → δ i\ninst✝¹ : (j : α) → Decidable (j ∈ s)\ninst✝ : DecidableEq α\ni : α\nhi : i ∈ s\nv : δ i\n⊢ piecewise s (update f i v) (update g i v) = piecewise s (update f i v) g",
"state_before": "α : Type u_1\nβ : Type ?u.308183\nγ : Type ?u.308186\nδ : α → Sort u_2\ns : Finset α\nf g : (i : α) → δ i\ninst✝¹ : (j : α) → Decidable (j ∈ s)\ninst✝ : DecidableEq α\ni : α\nhi : i ∈ s\nv : δ i\n⊢ update (piecewise s f g) i v = piecewise s (update f i v) g",
"tactic": "rw [update_piecewise]"
},
{
"state_after": "α : Type u_1\nβ : Type ?u.308183\nγ : Type ?u.308186\nδ : α → Sort u_2\ns : Finset α\nf g : (i : α) → δ i\ninst✝¹ : (j : α) → Decidable (j ∈ s)\ninst✝ : DecidableEq α\ni : α\nhi : i ∈ s\nv : δ i\nj : α\nhj : ¬j ∈ s\n⊢ j ≠ i",
"state_before": "α : Type u_1\nβ : Type ?u.308183\nγ : Type ?u.308186\nδ : α → Sort u_2\ns : Finset α\nf g : (i : α) → δ i\ninst✝¹ : (j : α) → Decidable (j ∈ s)\ninst✝ : DecidableEq α\ni : α\nhi : i ∈ s\nv : δ i\n⊢ piecewise s (update f i v) (update g i v) = piecewise s (update f i v) g",
"tactic": "refine' s.piecewise_congr (fun _ _ => rfl) fun j hj => update_noteq _ _ _"
},
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type ?u.308183\nγ : Type ?u.308186\nδ : α → Sort u_2\ns : Finset α\nf g : (i : α) → δ i\ninst✝¹ : (j : α) → Decidable (j ∈ s)\ninst✝ : DecidableEq α\ni : α\nhi : i ∈ s\nv : δ i\nj : α\nhj : ¬j ∈ s\n⊢ j ≠ i",
"tactic": "exact fun h => hj (h.symm ▸ hi)"
}
] | [
2547,
34
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
2543,
1
] |
Mathlib/MeasureTheory/Measure/FiniteMeasure.lean | MeasureTheory.FiniteMeasure.val_eq_toMeasure | [] | [
145,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
144,
1
] |
Mathlib/SetTheory/Ordinal/Arithmetic.lean | Ordinal.lt_mul_of_limit | [
{
"state_after": "no goals",
"state_before": "α : Type ?u.211340\nβ : Type ?u.211343\nγ : Type ?u.211346\nr : α → α → Prop\ns : β → β → Prop\nt : γ → γ → Prop\na b c : Ordinal\nh : IsLimit c\n⊢ a < b * c ↔ ∃ c', c' < c ∧ a < b * c'",
"tactic": "simpa only [not_ball, not_le, bex_def] using not_congr (@mul_le_of_limit b c a h)"
}
] | [
817,
84
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
815,
1
] |
Mathlib/Data/Finset/Lattice.lean | Multiset.count_finset_sup | [
{
"state_after": "F : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns : Finset α\nf : α → Multiset β\nb : β\nthis : DecidableEq α := Classical.decEq α\n⊢ count b (Finset.sup s f) = Finset.sup s fun a => count b (f a)",
"state_before": "F : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns : Finset α\nf : α → Multiset β\nb : β\n⊢ count b (Finset.sup s f) = Finset.sup s fun a => count b (f a)",
"tactic": "letI := Classical.decEq α"
},
{
"state_after": "case refine'_1\nF : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns : Finset α\nf : α → Multiset β\nb : β\nthis : DecidableEq α := Classical.decEq α\n⊢ count b (Finset.sup ∅ f) = Finset.sup ∅ fun a => count b (f a)\n\ncase refine'_2\nF : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns : Finset α\nf : α → Multiset β\nb : β\nthis : DecidableEq α := Classical.decEq α\n⊢ ∀ ⦃a : α⦄ {s : Finset α},\n ¬a ∈ s →\n (count b (Finset.sup s f) = Finset.sup s fun a => count b (f a)) →\n count b (Finset.sup (insert a s) f) = Finset.sup (insert a s) fun a => count b (f a)",
"state_before": "F : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns : Finset α\nf : α → Multiset β\nb : β\nthis : DecidableEq α := Classical.decEq α\n⊢ count b (Finset.sup s f) = Finset.sup s fun a => count b (f a)",
"tactic": "refine' s.induction _ _"
},
{
"state_after": "no goals",
"state_before": "case refine'_1\nF : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns : Finset α\nf : α → Multiset β\nb : β\nthis : DecidableEq α := Classical.decEq α\n⊢ count b (Finset.sup ∅ f) = Finset.sup ∅ fun a => count b (f a)",
"tactic": "exact count_zero _"
},
{
"state_after": "case refine'_2\nF : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns✝ : Finset α\nf : α → Multiset β\nb : β\nthis : DecidableEq α := Classical.decEq α\ni : α\ns : Finset α\na✝ : ¬i ∈ s\nih : count b (Finset.sup s f) = Finset.sup s fun a => count b (f a)\n⊢ count b (Finset.sup (insert i s) f) = Finset.sup (insert i s) fun a => count b (f a)",
"state_before": "case refine'_2\nF : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns : Finset α\nf : α → Multiset β\nb : β\nthis : DecidableEq α := Classical.decEq α\n⊢ ∀ ⦃a : α⦄ {s : Finset α},\n ¬a ∈ s →\n (count b (Finset.sup s f) = Finset.sup s fun a => count b (f a)) →\n count b (Finset.sup (insert a s) f) = Finset.sup (insert a s) fun a => count b (f a)",
"tactic": "intro i s _ ih"
},
{
"state_after": "case refine'_2\nF : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns✝ : Finset α\nf : α → Multiset β\nb : β\nthis : DecidableEq α := Classical.decEq α\ni : α\ns : Finset α\na✝ : ¬i ∈ s\nih : count b (Finset.sup s f) = Finset.sup s fun a => count b (f a)\n⊢ max (count b (f i)) (Finset.sup s fun a => count b (f a)) = count b (f i) ⊔ Finset.sup s fun a => count b (f a)",
"state_before": "case refine'_2\nF : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns✝ : Finset α\nf : α → Multiset β\nb : β\nthis : DecidableEq α := Classical.decEq α\ni : α\ns : Finset α\na✝ : ¬i ∈ s\nih : count b (Finset.sup s f) = Finset.sup s fun a => count b (f a)\n⊢ count b (Finset.sup (insert i s) f) = Finset.sup (insert i s) fun a => count b (f a)",
"tactic": "rw [Finset.sup_insert, sup_eq_union, count_union, Finset.sup_insert, ih]"
},
{
"state_after": "no goals",
"state_before": "case refine'_2\nF : Type ?u.410886\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.410895\nι : Type ?u.410898\nκ : Type ?u.410901\ninst✝ : DecidableEq β\ns✝ : Finset α\nf : α → Multiset β\nb : β\nthis : DecidableEq α := Classical.decEq α\ni : α\ns : Finset α\na✝ : ¬i ∈ s\nih : count b (Finset.sup s f) = Finset.sup s fun a => count b (f a)\n⊢ max (count b (f i)) (Finset.sup s fun a => count b (f a)) = count b (f i) ⊔ Finset.sup s fun a => count b (f a)",
"tactic": "rfl"
}
] | [
1752,
8
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1745,
1
] |
Mathlib/CategoryTheory/Idempotents/FunctorExtension.lean | CategoryTheory.Idempotents.functorExtension₁_comp_whiskeringLeft_toKaroubi | [
{
"state_after": "case refine'_1\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\n⊢ ∀ (X : C ⥤ Karoubi D),\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj X =\n (𝟭 (C ⥤ Karoubi D)).obj X\n\ncase refine'_2\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\n⊢ ∀ (X Y : C ⥤ Karoubi D) (f : X ⟶ Y),\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).map f =\n eqToHom (_ : ?m.30774.obj X = ?m.30775.obj X) ≫\n (𝟭 (C ⥤ Karoubi D)).map f ≫\n eqToHom\n (_ :\n (𝟭 (C ⥤ Karoubi D)).obj Y =\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj Y)",
"state_before": "C : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\n⊢ functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C) = 𝟭 (C ⥤ Karoubi D)",
"tactic": "refine' Functor.ext _ _"
},
{
"state_after": "case refine'_1\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\n⊢ (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F =\n (𝟭 (C ⥤ Karoubi D)).obj F",
"state_before": "case refine'_1\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\n⊢ ∀ (X : C ⥤ Karoubi D),\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj X =\n (𝟭 (C ⥤ Karoubi D)).obj X",
"tactic": "intro F"
},
{
"state_after": "case refine'_1.refine'_1\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\n⊢ ∀ (X : C),\n ((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X =\n ((𝟭 (C ⥤ Karoubi D)).obj F).obj X\n\ncase refine'_1.refine'_2\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\n⊢ ∀ (X Y : C) (f : X ⟶ Y),\n ((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).map f =\n eqToHom (_ : ?m.31081.obj X = ?m.31082.obj X) ≫\n ((𝟭 (C ⥤ Karoubi D)).obj F).map f ≫\n eqToHom\n (_ :\n ((𝟭 (C ⥤ Karoubi D)).obj F).obj Y =\n ((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj Y)",
"state_before": "case refine'_1\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\n⊢ (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F =\n (𝟭 (C ⥤ Karoubi D)).obj F",
"tactic": "refine' Functor.ext _ _"
},
{
"state_after": "case refine'_1.refine'_1\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\nX : C\n⊢ ((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X =\n ((𝟭 (C ⥤ Karoubi D)).obj F).obj X",
"state_before": "case refine'_1.refine'_1\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\n⊢ ∀ (X : C),\n ((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X =\n ((𝟭 (C ⥤ Karoubi D)).obj F).obj X",
"tactic": "intro X"
},
{
"state_after": "case refine'_1.refine'_1.h_p\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\nX : C\n⊢ (((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X).p ≫\n eqToHom ?refine'_1.refine'_1.h_X =\n eqToHom ?refine'_1.refine'_1.h_X ≫ (((𝟭 (C ⥤ Karoubi D)).obj F).obj X).p\n\ncase refine'_1.refine'_1.h_X\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\nX : C\n⊢ (((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X).X =\n (((𝟭 (C ⥤ Karoubi D)).obj F).obj X).X",
"state_before": "case refine'_1.refine'_1\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\nX : C\n⊢ ((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X =\n ((𝟭 (C ⥤ Karoubi D)).obj F).obj X",
"tactic": "ext"
},
{
"state_after": "case refine'_1.refine'_1.h_X\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\nX : C\n⊢ (((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X).X =\n (((𝟭 (C ⥤ Karoubi D)).obj F).obj X).X",
"state_before": "case refine'_1.refine'_1.h_p\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\nX : C\n⊢ (((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X).p ≫\n eqToHom ?refine'_1.refine'_1.h_X =\n eqToHom ?refine'_1.refine'_1.h_X ≫ (((𝟭 (C ⥤ Karoubi D)).obj F).obj X).p\n\ncase refine'_1.refine'_1.h_X\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\nX : C\n⊢ (((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X).X =\n (((𝟭 (C ⥤ Karoubi D)).obj F).obj X).X",
"tactic": ". simp"
},
{
"state_after": "no goals",
"state_before": "case refine'_1.refine'_1.h_X\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\nX : C\n⊢ (((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X).X =\n (((𝟭 (C ⥤ Karoubi D)).obj F).obj X).X",
"tactic": ". simp"
},
{
"state_after": "no goals",
"state_before": "case refine'_1.refine'_1.h_p\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\nX : C\n⊢ (((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X).p ≫\n eqToHom ?refine'_1.refine'_1.h_X =\n eqToHom ?refine'_1.refine'_1.h_X ≫ (((𝟭 (C ⥤ Karoubi D)).obj F).obj X).p",
"tactic": "simp"
},
{
"state_after": "no goals",
"state_before": "case refine'_1.refine'_1.h_X\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\nX : C\n⊢ (((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X).X =\n (((𝟭 (C ⥤ Karoubi D)).obj F).obj X).X",
"tactic": "simp"
},
{
"state_after": "no goals",
"state_before": "case refine'_1.refine'_2\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C ⥤ Karoubi D\n⊢ ∀ (X Y : C) (f : X ⟶ Y),\n ((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).map f =\n eqToHom\n (_ :\n ((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj X =\n ((𝟭 (C ⥤ Karoubi D)).obj F).obj X) ≫\n ((𝟭 (C ⥤ Karoubi D)).obj F).map f ≫\n eqToHom\n (_ :\n ((𝟭 (C ⥤ Karoubi D)).obj F).obj Y =\n ((functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F).obj Y)",
"tactic": "aesop_cat"
},
{
"state_after": "case refine'_2\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF G : C ⥤ Karoubi D\nφ : F ⟶ G\n⊢ (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).map φ =\n eqToHom\n (_ :\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F =\n (𝟭 (C ⥤ Karoubi D)).obj F) ≫\n (𝟭 (C ⥤ Karoubi D)).map φ ≫\n eqToHom\n (_ :\n (𝟭 (C ⥤ Karoubi D)).obj G =\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj G)",
"state_before": "case refine'_2\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\n⊢ ∀ (X Y : C ⥤ Karoubi D) (f : X ⟶ Y),\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).map f =\n eqToHom\n (_ :\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj X =\n (𝟭 (C ⥤ Karoubi D)).obj X) ≫\n (𝟭 (C ⥤ Karoubi D)).map f ≫\n eqToHom\n (_ :\n (𝟭 (C ⥤ Karoubi D)).obj Y =\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj Y)",
"tactic": "intro F G φ"
},
{
"state_after": "no goals",
"state_before": "case refine'_2\nC : Type u_1\nD : Type u_2\nE : Type ?u.30040\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF G : C ⥤ Karoubi D\nφ : F ⟶ G\n⊢ (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).map φ =\n eqToHom\n (_ :\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj F =\n (𝟭 (C ⥤ Karoubi D)).obj F) ≫\n (𝟭 (C ⥤ Karoubi D)).map φ ≫\n eqToHom\n (_ :\n (𝟭 (C ⥤ Karoubi D)).obj G =\n (functorExtension₁ C D ⋙ (whiskeringLeft C (Karoubi C) (Karoubi D)).obj (toKaroubi C)).obj G)",
"tactic": "aesop_cat"
}
] | [
128,
14
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
116,
1
] |
Mathlib/Algebra/GroupWithZero/Semiconj.lean | SemiconjBy.inv_symm_left_iff₀ | [
{
"state_after": "no goals",
"state_before": "α : Type ?u.637\nM₀ : Type ?u.640\nG₀ : Type u_1\nM₀' : Type ?u.646\nG₀' : Type ?u.649\nF : Type ?u.652\nF' : Type ?u.655\ninst✝ : GroupWithZero G₀\na x y x' y' : G₀\nha : a = 0\n⊢ SemiconjBy a⁻¹ x y ↔ SemiconjBy a y x",
"tactic": "simp only [ha, inv_zero, SemiconjBy.zero_left]"
}
] | [
40,
54
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
38,
1
] |
Mathlib/Data/Set/Function.lean | Set.SurjOn.congr | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.40788\nι : Sort ?u.40791\nπ : α → Type ?u.40796\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\np : Set γ\nf f₁ f₂ f₃ : α → β\ng g₁ g₂ : β → γ\nf' f₁' f₂' : β → α\ng' : γ → β\na : α\nb : β\nh : SurjOn f₁ s t\nH : EqOn f₁ f₂ s\n⊢ SurjOn f₂ s t",
"tactic": "rwa [SurjOn, ← H.image_eq]"
}
] | [
785,
29
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
784,
1
] |
Mathlib/Order/Hom/Lattice.lean | BoundedLatticeHom.coe_id | [] | [
1275,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1274,
1
] |
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean | Real.tan_add_int_mul_pi | [] | [
1039,
27
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1038,
1
] |
Mathlib/Analysis/Calculus/FDeriv/RestrictScalars.lean | DifferentiableAt.restrictScalars | [] | [
76,
53
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
75,
1
] |
Mathlib/GroupTheory/Congruence.lean | Con.quot_mk_eq_coe | [] | [
291,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
290,
1
] |
Mathlib/Analysis/NormedSpace/AffineIsometry.lean | AffineIsometryEquiv.toAffineEquiv_symm | [] | [
539,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
538,
1
] |
Mathlib/Topology/PathConnected.lean | pathConnectedSpace_iff_univ | [
{
"state_after": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\n⊢ PathConnectedSpace X → IsPathConnected univ\n\ncase mpr\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\n⊢ IsPathConnected univ → PathConnectedSpace X",
"state_before": "X : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\n⊢ PathConnectedSpace X ↔ IsPathConnected univ",
"tactic": "constructor"
},
{
"state_after": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : PathConnectedSpace X\n⊢ IsPathConnected univ",
"state_before": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\n⊢ PathConnectedSpace X → IsPathConnected univ",
"tactic": "intro h"
},
{
"state_after": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : PathConnectedSpace X\nthis : Nonempty X\n⊢ IsPathConnected univ",
"state_before": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : PathConnectedSpace X\n⊢ IsPathConnected univ",
"tactic": "haveI := @PathConnectedSpace.Nonempty X _ _"
},
{
"state_after": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : PathConnectedSpace X\nthis : Nonempty X\ninhabited_h : Inhabited X\n⊢ IsPathConnected univ",
"state_before": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : PathConnectedSpace X\nthis : Nonempty X\n⊢ IsPathConnected univ",
"tactic": "inhabit X"
},
{
"state_after": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : PathConnectedSpace X\nthis : Nonempty X\ninhabited_h : Inhabited X\n⊢ ∀ {y : X}, y ∈ univ → JoinedIn univ default y",
"state_before": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : PathConnectedSpace X\nthis : Nonempty X\ninhabited_h : Inhabited X\n⊢ IsPathConnected univ",
"tactic": "refine' ⟨default, mem_univ _, _⟩"
},
{
"state_after": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y✝ z : X\nι : Type ?u.689194\nF : Set X\nh : PathConnectedSpace X\nthis : Nonempty X\ninhabited_h : Inhabited X\ny : X\n_hy : y ∈ univ\n⊢ JoinedIn univ default y",
"state_before": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : PathConnectedSpace X\nthis : Nonempty X\ninhabited_h : Inhabited X\n⊢ ∀ {y : X}, y ∈ univ → JoinedIn univ default y",
"tactic": "intros y _hy"
},
{
"state_after": "no goals",
"state_before": "case mp\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y✝ z : X\nι : Type ?u.689194\nF : Set X\nh : PathConnectedSpace X\nthis : Nonempty X\ninhabited_h : Inhabited X\ny : X\n_hy : y ∈ univ\n⊢ JoinedIn univ default y",
"tactic": "simpa using PathConnectedSpace.Joined default y"
},
{
"state_after": "case mpr\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : IsPathConnected univ\n⊢ PathConnectedSpace X",
"state_before": "case mpr\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\n⊢ IsPathConnected univ → PathConnectedSpace X",
"tactic": "intro h"
},
{
"state_after": "case mpr\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : IsPathConnected univ\nh' : ∀ (x : X), x ∈ univ → ∀ (y : X), y ∈ univ → JoinedIn univ x y\n⊢ PathConnectedSpace X",
"state_before": "case mpr\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : IsPathConnected univ\n⊢ PathConnectedSpace X",
"tactic": "have h' := h.joinedIn"
},
{
"state_after": "case mpr.intro\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type ?u.689194\nF : Set X\nh' : ∀ (x : X), x ∈ univ → ∀ (y : X), y ∈ univ → JoinedIn univ x y\nx : X\nh : x ∈ univ ∧ ∀ {y : X}, y ∈ univ → JoinedIn univ x y\n⊢ PathConnectedSpace X",
"state_before": "case mpr\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.689194\nF : Set X\nh : IsPathConnected univ\nh' : ∀ (x : X), x ∈ univ → ∀ (y : X), y ∈ univ → JoinedIn univ x y\n⊢ PathConnectedSpace X",
"tactic": "cases' h with x h"
},
{
"state_after": "no goals",
"state_before": "case mpr.intro\nX : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type ?u.689194\nF : Set X\nh' : ∀ (x : X), x ∈ univ → ∀ (y : X), y ∈ univ → JoinedIn univ x y\nx : X\nh : x ∈ univ ∧ ∀ {y : X}, y ∈ univ → JoinedIn univ x y\n⊢ PathConnectedSpace X",
"tactic": "exact ⟨⟨x⟩, by simpa using h'⟩"
},
{
"state_after": "no goals",
"state_before": "X : Type u_1\nY : Type ?u.689179\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx✝ y z : X\nι : Type ?u.689194\nF : Set X\nh' : ∀ (x : X), x ∈ univ → ∀ (y : X), y ∈ univ → JoinedIn univ x y\nx : X\nh : x ∈ univ ∧ ∀ {y : X}, y ∈ univ → JoinedIn univ x y\n⊢ ∀ (x y : X), Joined x y",
"tactic": "simpa using h'"
}
] | [
1145,
35
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1134,
1
] |
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean | Real.Angle.abs_sin_eq_of_two_zsmul_eq | [
{
"state_after": "θ ψ : Angle\nh : 2 • θ = 2 • ψ\n⊢ abs (sin θ) = abs (sin ψ)",
"state_before": "θ ψ : Angle\nh : 2 • θ = 2 • ψ\n⊢ abs (sin θ) = abs (sin ψ)",
"tactic": "simp_rw [two_zsmul, ← two_nsmul] at h"
},
{
"state_after": "no goals",
"state_before": "θ ψ : Angle\nh : 2 • θ = 2 • ψ\n⊢ abs (sin θ) = abs (sin ψ)",
"tactic": "exact abs_sin_eq_of_two_nsmul_eq h"
}
] | [
490,
37
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
487,
1
] |
Mathlib/CategoryTheory/Conj.lean | CategoryTheory.Iso.conjAut_pow | [] | [
162,
36
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
161,
1
] |
Mathlib/Order/Concept.lean | intentClosure_extentClosure_intentClosure | [] | [
150,
50
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
148,
1
] |
Mathlib/RingTheory/LaurentSeries.lean | PowerSeries.coe_pow | [] | [
254,
34
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
253,
1
] |
Mathlib/Algebra/Hom/Equiv/Basic.lean | MulEquiv.coe_trans | [] | [
382,
80
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
382,
1
] |
Mathlib/Algebra/Order/Rearrangement.lean | Monovary.sum_comp_perm_mul_lt_sum_mul_iff | [] | [
496,
41
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
494,
1
] |
Mathlib/Algebra/Order/Group/Defs.lean | inv_mul_le_iff_le_mul | [
{
"state_after": "no goals",
"state_before": "α : Type u\ninst✝² : Group α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na b c d : α\n⊢ b⁻¹ * a ≤ c ↔ a ≤ b * c",
"tactic": "rw [← mul_le_mul_iff_left b, mul_inv_cancel_left]"
}
] | [
124,
52
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
123,
1
] |
Std/Data/Int/Lemmas.lean | Int.max_comm | [
{
"state_after": "a b : Int\n⊢ (if a ≤ b then b else a) = if b ≤ a then a else b",
"state_before": "a b : Int\n⊢ max a b = max b a",
"tactic": "simp only [Int.max_def]"
},
{
"state_after": "case pos\na b : Int\nh₁ : a ≤ b\nh₂ : b ≤ a\n⊢ b = a\n\ncase neg\na b : Int\nh₁ : ¬a ≤ b\nh₂ : ¬b ≤ a\n⊢ a = b",
"state_before": "a b : Int\n⊢ (if a ≤ b then b else a) = if b ≤ a then a else b",
"tactic": "by_cases h₁ : a ≤ b <;> by_cases h₂ : b ≤ a <;> simp [h₁, h₂]"
},
{
"state_after": "no goals",
"state_before": "case pos\na b : Int\nh₁ : a ≤ b\nh₂ : b ≤ a\n⊢ b = a",
"tactic": "exact Int.le_antisymm h₂ h₁"
},
{
"state_after": "no goals",
"state_before": "case neg\na b : Int\nh₁ : ¬a ≤ b\nh₂ : ¬b ≤ a\n⊢ a = b",
"tactic": "cases not_or_intro h₁ h₂ <| Int.le_total .."
}
] | [
712,
48
] | e68aa8f5fe47aad78987df45f99094afbcb5e936 | https://github.com/leanprover/std4 | [
708,
11
] |
Mathlib/Topology/Instances/Matrix.lean | Continuous.matrix_conjTranspose | [] | [
97,
49
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
95,
1
] |
Mathlib/Geometry/Euclidean/Angle/Unoriented/Affine.lean | EuclideanGeometry.angle_midpoint_eq_pi | [
{
"state_after": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\np1 p2 : P\nhp1p2 : p1 ≠ p2\n⊢ InnerProductGeometry.angle (p1 -ᵥ p2) (p2 -ᵥ p1) = π",
"state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\np1 p2 : P\nhp1p2 : p1 ≠ p2\n⊢ ∠ p1 (midpoint ℝ p1 p2) p2 = π",
"tactic": "simp [angle, hp1p2, -zero_lt_one]"
},
{
"state_after": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\np1 p2 : P\nhp1p2 : p1 ≠ p2\n⊢ InnerProductGeometry.angle (p1 -ᵥ p2) (-(p1 -ᵥ p2)) = π",
"state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\np1 p2 : P\nhp1p2 : p1 ≠ p2\n⊢ InnerProductGeometry.angle (p1 -ᵥ p2) (p2 -ᵥ p1) = π",
"tactic": "rw [← neg_vsub_eq_vsub_rev p1 p2]"
},
{
"state_after": "case hx\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\np1 p2 : P\nhp1p2 : p1 ≠ p2\n⊢ p1 -ᵥ p2 ≠ 0",
"state_before": "V : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\np1 p2 : P\nhp1p2 : p1 ≠ p2\n⊢ InnerProductGeometry.angle (p1 -ᵥ p2) (-(p1 -ᵥ p2)) = π",
"tactic": "apply angle_self_neg_of_nonzero"
},
{
"state_after": "no goals",
"state_before": "case hx\nV : Type u_2\nP : Type u_1\ninst✝³ : NormedAddCommGroup V\ninst✝² : InnerProductSpace ℝ V\ninst✝¹ : MetricSpace P\ninst✝ : NormedAddTorsor V P\np1 p2 : P\nhp1p2 : p1 ≠ p2\n⊢ p1 -ᵥ p2 ≠ 0",
"tactic": "simpa only [ne_eq, vsub_eq_zero_iff_eq]"
}
] | [
257,
42
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
253,
1
] |
Mathlib/Algebra/GroupRingAction/Invariant.lean | IsInvariantSubring.coe_subtypeHom | [] | [
61,
70
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
60,
1
] |
Mathlib/Data/Prod/Basic.lean | Prod_map | [] | [
27,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
26,
1
] |
Mathlib/Data/Nat/Factorization/Basic.lean | Nat.factorizationEquiv_apply | [
{
"state_after": "case mk\nval✝ : ℕ\nproperty✝ : 0 < val✝\n⊢ ↑(↑factorizationEquiv { val := val✝, property := property✝ }) = factorization ↑{ val := val✝, property := property✝ }",
"state_before": "n : ℕ+\n⊢ ↑(↑factorizationEquiv n) = factorization ↑n",
"tactic": "cases n"
},
{
"state_after": "no goals",
"state_before": "case mk\nval✝ : ℕ\nproperty✝ : 0 < val✝\n⊢ ↑(↑factorizationEquiv { val := val✝, property := property✝ }) = factorization ↑{ val := val✝, property := property✝ }",
"tactic": "rfl"
}
] | [
335,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
333,
1
] |
Mathlib/CategoryTheory/Sites/Types.lean | CategoryTheory.yoneda'_comp | [] | [
79,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
78,
1
] |
Mathlib/Algebra/Order/Sub/Canonical.lean | tsub_add_tsub_comm | [] | [
230,
91
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
229,
1
] |
Mathlib/Data/Num/Lemmas.lean | ZNum.zneg_neg | [] | [
1076,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1075,
1
] |
Mathlib/Probability/Independence/Basic.lean | ProbabilityTheory.IndepSets.indep | [
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\n⊢ Indep m1 m2",
"tactic": "intro t1 t2 ht1 ht2"
},
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2",
"tactic": "let μ_inter := μ.restrict t2"
},
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2",
"tactic": "let ν := μ t2 • μ"
},
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2",
"tactic": "have h_univ : μ_inter Set.univ = ν Set.univ := by\n rw [Measure.restrict_apply_univ, Measure.smul_apply, smul_eq_mul, measure_univ, mul_one]"
},
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2",
"tactic": "haveI : IsFiniteMeasure μ_inter := @Restrict.isFiniteMeasure Ω _ t2 μ ⟨measure_lt_top μ t2⟩"
},
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\n⊢ ↑↑(Measure.restrict μ t2) t1 = ↑↑μ t2 * ↑↑μ t1",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\n⊢ ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2",
"tactic": "rw [mul_comm, ← Measure.restrict_apply (h1 t1 ht1)]"
},
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\n⊢ ↑↑μ_inter t = ↑↑ν t",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\n⊢ ↑↑(Measure.restrict μ t2) t1 = ↑↑μ t2 * ↑↑μ t1",
"tactic": "refine' ext_on_measurableSpace_of_generate_finite m p1 (fun t ht => _) h1 hpm1 hp1 h_univ ht1"
},
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1✝ : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\nht1 : MeasurableSet t\n⊢ ↑↑μ_inter t = ↑↑ν t",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\n⊢ ↑↑μ_inter t = ↑↑ν t",
"tactic": "have ht1 : MeasurableSet[m] t := by\n refine' h1 _ _\n rw [hpm1]\n exact measurableSet_generateFrom ht"
},
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1✝ : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\nht1 : MeasurableSet t\n⊢ ↑↑μ (t ∩ t2) = ↑↑μ t * ↑↑μ t2",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1✝ : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\nht1 : MeasurableSet t\n⊢ ↑↑μ_inter t = ↑↑ν t",
"tactic": "rw [Measure.restrict_apply ht1, Measure.smul_apply, smul_eq_mul, mul_comm]"
},
{
"state_after": "no goals",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1✝ : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\nht1 : MeasurableSet t\n⊢ ↑↑μ (t ∩ t2) = ↑↑μ t * ↑↑μ t2",
"tactic": "exact IndepSets.indep_aux h2 hp2 hpm2 hyp ht ht2"
},
{
"state_after": "no goals",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\n⊢ ↑↑μ_inter Set.univ = ↑↑ν Set.univ",
"tactic": "rw [Measure.restrict_apply_univ, Measure.smul_apply, smul_eq_mul, measure_univ, mul_one]"
},
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\n⊢ MeasurableSet t",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\n⊢ MeasurableSet t",
"tactic": "refine' h1 _ _"
},
{
"state_after": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\n⊢ MeasurableSet t",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\n⊢ MeasurableSet t",
"tactic": "rw [hpm1]"
},
{
"state_after": "no goals",
"state_before": "Ω : Type u_1\nι : Type ?u.1736711\nm1 m2 m : MeasurableSpace Ω\nμ : MeasureTheory.Measure Ω\ninst✝ : IsProbabilityMeasure μ\np1 p2 : Set (Set Ω)\nh1 : m1 ≤ m\nh2 : m2 ≤ m\nhp1 : IsPiSystem p1\nhp2 : IsPiSystem p2\nhpm1 : m1 = generateFrom p1\nhpm2 : m2 = generateFrom p2\nhyp : IndepSets p1 p2\nt1 t2 : Set Ω\nht1 : t1 ∈ {s | MeasurableSet s}\nht2 : t2 ∈ {s | MeasurableSet s}\nμ_inter : MeasureTheory.Measure Ω := Measure.restrict μ t2\nν : MeasureTheory.Measure Ω := ↑↑μ t2 • μ\nh_univ : ↑↑μ_inter Set.univ = ↑↑ν Set.univ\nthis : IsFiniteMeasure μ_inter\nt : Set Ω\nht : t ∈ p1\n⊢ MeasurableSet t",
"tactic": "exact measurableSet_generateFrom ht"
}
] | [
378,
51
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
361,
1
] |
Mathlib/Order/Hom/Lattice.lean | BoundedLatticeHom.coe_comp | [] | [
1293,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1291,
1
] |
Mathlib/Data/PFun.lean | PFun.comp_id | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.54011\nδ : Type ?u.54014\nε : Type ?u.54017\nι : Type ?u.54020\nf✝ f : α →. β\nx✝¹ : α\nx✝ : β\n⊢ x✝ ∈ comp f (PFun.id α) x✝¹ ↔ x✝ ∈ f x✝¹",
"tactic": "simp"
}
] | [
593,
25
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
592,
1
] |
Mathlib/GroupTheory/Nilpotent.lean | comap_center_subst | [
{
"state_after": "G : Type u_1\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nH₁ : Subgroup G\ninst✝¹ inst✝ : Normal H₁\n⊢ comap (mk' H₁) (center (G ⧸ H₁)) = comap (mk' H₁) (center (G ⧸ H₁))",
"state_before": "G : Type u_1\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nH₁ H₂ : Subgroup G\ninst✝¹ : Normal H₁\ninst✝ : Normal H₂\nh : H₁ = H₂\n⊢ comap (mk' H₁) (center (G ⧸ H₁)) = comap (mk' H₂) (center (G ⧸ H₂))",
"tactic": "subst h"
},
{
"state_after": "no goals",
"state_before": "G : Type u_1\ninst✝³ : Group G\nH : Subgroup G\ninst✝² : Normal H\nH₁ : Subgroup G\ninst✝¹ inst✝ : Normal H₁\n⊢ comap (mk' H₁) (center (G ⧸ H₁)) = comap (mk' H₁) (center (G ⧸ H₁))",
"tactic": "rfl"
}
] | [
593,
91
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
592,
9
] |
Mathlib/MeasureTheory/Measure/NullMeasurable.lean | MeasureTheory.measure_inter_add_diff₀ | [
{
"state_after": "case refine'_1\nι : Type ?u.14279\nα : Type u_1\nβ : Type ?u.14285\nγ : Type ?u.14288\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t s : Set α\nht : NullMeasurableSet t\n⊢ ↑↑μ (s ∩ t) + ↑↑μ (s \\ t) ≤ ↑↑μ s\n\ncase refine'_2\nι : Type ?u.14279\nα : Type u_1\nβ : Type ?u.14285\nγ : Type ?u.14288\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t s : Set α\nht : NullMeasurableSet t\n⊢ ↑↑μ s ≤ ↑↑μ (s ∩ t) + ↑↑μ (s \\ t)",
"state_before": "ι : Type ?u.14279\nα : Type u_1\nβ : Type ?u.14285\nγ : Type ?u.14288\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t s : Set α\nht : NullMeasurableSet t\n⊢ ↑↑μ (s ∩ t) + ↑↑μ (s \\ t) = ↑↑μ s",
"tactic": "refine' le_antisymm _ _"
},
{
"state_after": "case refine'_1.intro.intro.intro\nι : Type ?u.14279\nα : Type u_1\nβ : Type ?u.14285\nγ : Type ?u.14288\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t s : Set α\nht : NullMeasurableSet t\ns' : Set α\nhsub : s ⊆ s'\nhs'm : MeasurableSet s'\nhs' : ↑↑μ s' = ↑↑μ s\n⊢ ↑↑μ (s ∩ t) + ↑↑μ (s \\ t) ≤ ↑↑μ s",
"state_before": "case refine'_1\nι : Type ?u.14279\nα : Type u_1\nβ : Type ?u.14285\nγ : Type ?u.14288\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t s : Set α\nht : NullMeasurableSet t\n⊢ ↑↑μ (s ∩ t) + ↑↑μ (s \\ t) ≤ ↑↑μ s",
"tactic": "rcases exists_measurable_superset μ s with ⟨s', hsub, hs'm, hs'⟩"
},
{
"state_after": "case refine'_1.intro.intro.intro\nι : Type ?u.14279\nα : Type u_1\nβ : Type ?u.14285\nγ : Type ?u.14288\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t s : Set α\nht : NullMeasurableSet t\ns' : Set α\nhsub : s ⊆ s'\nhs' : ↑↑μ s' = ↑↑μ s\nhs'm : NullMeasurableSet s'\n⊢ ↑↑μ (s ∩ t) + ↑↑μ (s \\ t) ≤ ↑↑μ s",
"state_before": "case refine'_1.intro.intro.intro\nι : Type ?u.14279\nα : Type u_1\nβ : Type ?u.14285\nγ : Type ?u.14288\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t s : Set α\nht : NullMeasurableSet t\ns' : Set α\nhsub : s ⊆ s'\nhs'm : MeasurableSet s'\nhs' : ↑↑μ s' = ↑↑μ s\n⊢ ↑↑μ (s ∩ t) + ↑↑μ (s \\ t) ≤ ↑↑μ s",
"tactic": "replace hs'm : NullMeasurableSet s' μ := hs'm.nullMeasurableSet"
},
{
"state_after": "no goals",
"state_before": "case refine'_1.intro.intro.intro\nι : Type ?u.14279\nα : Type u_1\nβ : Type ?u.14285\nγ : Type ?u.14288\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t s : Set α\nht : NullMeasurableSet t\ns' : Set α\nhsub : s ⊆ s'\nhs' : ↑↑μ s' = ↑↑μ s\nhs'm : NullMeasurableSet s'\n⊢ ↑↑μ (s ∩ t) + ↑↑μ (s \\ t) ≤ ↑↑μ s",
"tactic": "calc\n μ (s ∩ t) + μ (s \\ t) ≤ μ (s' ∩ t) + μ (s' \\ t) :=\n add_le_add (measure_mono <| inter_subset_inter_left _ hsub)\n (measure_mono <| diff_subset_diff_left hsub)\n _ = μ (s' ∩ t ∪ s' \\ t) :=\n (measure_union₀_aux (hs'm.inter ht) (hs'm.diff ht) <|\n (@disjoint_inf_sdiff _ s' t _).aedisjoint).symm\n _ = μ s' := (congr_arg μ (inter_union_diff _ _))\n _ = μ s := hs'"
},
{
"state_after": "no goals",
"state_before": "case refine'_2\nι : Type ?u.14279\nα : Type u_1\nβ : Type ?u.14285\nγ : Type ?u.14288\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t s : Set α\nht : NullMeasurableSet t\n⊢ ↑↑μ s ≤ ↑↑μ (s ∩ t) + ↑↑μ (s \\ t)",
"tactic": "calc\n μ s = μ (s ∩ t ∪ s \\ t) := by rw [inter_union_diff]\n _ ≤ μ (s ∩ t) + μ (s \\ t) := measure_union_le _ _"
},
{
"state_after": "no goals",
"state_before": "ι : Type ?u.14279\nα : Type u_1\nβ : Type ?u.14285\nγ : Type ?u.14288\nm0 : MeasurableSpace α\nμ : Measure α\ns✝ t s : Set α\nht : NullMeasurableSet t\n⊢ ↑↑μ s = ↑↑μ (s ∩ t ∪ s \\ t)",
"tactic": "rw [inter_union_diff]"
}
] | [
320,
56
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
303,
1
] |
Mathlib/Data/Int/Div.lean | Int.natAbs_le_of_dvd_ne_zero | [] | [
60,
61
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
59,
1
] |
Mathlib/Data/Set/Prod.lean | Set.offDiag_univ | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\ns t : Set α\nx : α × α\na : α\n⊢ ∀ (x : α × α), x ∈ offDiag univ ↔ x ∈ diagonal αᶜ",
"tactic": "simp"
}
] | [
583,
17
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
582,
1
] |
Mathlib/RingTheory/AlgebraicIndependent.lean | algebraicIndependent_iff | [] | [
83,
30
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
80,
1
] |
Mathlib/RingTheory/Localization/Integral.lean | isIntegral_localization | [
{
"state_after": "R : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\n⊢ RingHom.IsIntegralElem\n (IsLocalization.map Sₘ (algebraMap R S)\n (_ : M ≤ Submonoid.comap (algebraMap R S) (Algebra.algebraMapSubmonoid S M)))\n x",
"state_before": "R : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\n⊢ RingHom.IsIntegral\n (IsLocalization.map Sₘ (algebraMap R S)\n (_ : M ≤ Submonoid.comap (algebraMap R S) (Algebra.algebraMapSubmonoid S M)))",
"tactic": "intro x"
},
{
"state_after": "case intro.mk.mk\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nhu : u ∈ Algebra.algebraMapSubmonoid S M\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := hu }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := hu }).fst\n⊢ RingHom.IsIntegralElem\n (IsLocalization.map Sₘ (algebraMap R S)\n (_ : M ≤ Submonoid.comap (algebraMap R S) (Algebra.algebraMapSubmonoid S M)))\n x",
"state_before": "R : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\n⊢ RingHom.IsIntegralElem\n (IsLocalization.map Sₘ (algebraMap R S)\n (_ : M ≤ Submonoid.comap (algebraMap R S) (Algebra.algebraMapSubmonoid S M)))\n x",
"tactic": "obtain ⟨⟨s, ⟨u, hu⟩⟩, hx⟩ := surj (Algebra.algebraMapSubmonoid S M) x"
},
{
"state_after": "case intro.mk.mk.intro\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\n⊢ RingHom.IsIntegralElem\n (IsLocalization.map Sₘ (algebraMap R S)\n (_ : M ≤ Submonoid.comap (algebraMap R S) (Algebra.algebraMapSubmonoid S M)))\n x",
"state_before": "case intro.mk.mk\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nhu : u ∈ Algebra.algebraMapSubmonoid S M\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := hu }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := hu }).fst\n⊢ RingHom.IsIntegralElem\n (IsLocalization.map Sₘ (algebraMap R S)\n (_ : M ≤ Submonoid.comap (algebraMap R S) (Algebra.algebraMapSubmonoid S M)))\n x",
"tactic": "obtain ⟨v, hv⟩ := hu"
},
{
"state_after": "case intro.mk.mk.intro.intro\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' : v' * ↑(algebraMap R Rₘ) ↑{ val := v, property := (_ : v ∈ ↑M) } = 1\n⊢ RingHom.IsIntegralElem\n (IsLocalization.map Sₘ (algebraMap R S)\n (_ : M ≤ Submonoid.comap (algebraMap R S) (Algebra.algebraMapSubmonoid S M)))\n x",
"state_before": "case intro.mk.mk.intro\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\n⊢ RingHom.IsIntegralElem\n (IsLocalization.map Sₘ (algebraMap R S)\n (_ : M ≤ Submonoid.comap (algebraMap R S) (Algebra.algebraMapSubmonoid S M)))\n x",
"tactic": "obtain ⟨v', hv'⟩ := isUnit_iff_exists_inv'.1 (map_units Rₘ ⟨v, hv.1⟩)"
},
{
"state_after": "case intro.mk.mk.intro.intro.refine'_1\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' : v' * ↑(algebraMap R Rₘ) ↑{ val := v, property := (_ : v ∈ ↑M) } = 1\n⊢ ↑(algebraMap Rₘ Sₘ) v' * ↑(algebraMap S Sₘ) u = 1\n\ncase intro.mk.mk.intro.intro.refine'_2\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' : v' * ↑(algebraMap R Rₘ) ↑{ val := v, property := (_ : v ∈ ↑M) } = 1\n⊢ IsIntegral Rₘ (x * ↑(algebraMap S Sₘ) u)",
"state_before": "case intro.mk.mk.intro.intro\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' : v' * ↑(algebraMap R Rₘ) ↑{ val := v, property := (_ : v ∈ ↑M) } = 1\n⊢ RingHom.IsIntegralElem\n (IsLocalization.map Sₘ (algebraMap R S)\n (_ : M ≤ Submonoid.comap (algebraMap R S) (Algebra.algebraMapSubmonoid S M)))\n x",
"tactic": "refine'\n @isIntegral_of_isIntegral_mul_unit Rₘ _ _ _ (localizationAlgebra M S) x (algebraMap S Sₘ u) v' _\n _"
},
{
"state_after": "case intro.mk.mk.intro.intro.refine'_1\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' : ↑(algebraMap Rₘ Sₘ) (v' * ↑(algebraMap R Rₘ) ↑{ val := v, property := (_ : v ∈ ↑M) }) = ↑(algebraMap Rₘ Sₘ) 1\n⊢ ↑(algebraMap Rₘ Sₘ) v' * ↑(algebraMap S Sₘ) u = 1",
"state_before": "case intro.mk.mk.intro.intro.refine'_1\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' : v' * ↑(algebraMap R Rₘ) ↑{ val := v, property := (_ : v ∈ ↑M) } = 1\n⊢ ↑(algebraMap Rₘ Sₘ) v' * ↑(algebraMap S Sₘ) u = 1",
"tactic": "replace hv' := congr_arg (@algebraMap Rₘ Sₘ _ _ (localizationAlgebra M S)) hv'"
},
{
"state_after": "case intro.mk.mk.intro.intro.refine'_1\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' :\n ↑(algebraMap Rₘ Sₘ) v' *\n ↑(RingHom.comp (algebraMap Rₘ Sₘ) (algebraMap R Rₘ)) ↑{ val := v, property := (_ : v ∈ ↑M) } =\n 1\n⊢ ↑(algebraMap Rₘ Sₘ) v' * ↑(algebraMap S Sₘ) u = 1",
"state_before": "case intro.mk.mk.intro.intro.refine'_1\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' : ↑(algebraMap Rₘ Sₘ) (v' * ↑(algebraMap R Rₘ) ↑{ val := v, property := (_ : v ∈ ↑M) }) = ↑(algebraMap Rₘ Sₘ) 1\n⊢ ↑(algebraMap Rₘ Sₘ) v' * ↑(algebraMap S Sₘ) u = 1",
"tactic": "rw [RingHom.map_mul, RingHom.map_one, ← RingHom.comp_apply _ (algebraMap R Rₘ)] at hv'"
},
{
"state_after": "case intro.mk.mk.intro.intro.refine'_1\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' :\n ↑(algebraMap Rₘ Sₘ) v' * ↑(RingHom.comp (algebraMap S Sₘ) (algebraMap R S)) ↑{ val := v, property := (_ : v ∈ ↑M) } =\n 1\n⊢ ↑(algebraMap Rₘ Sₘ) v' * ↑(algebraMap S Sₘ) u = 1",
"state_before": "case intro.mk.mk.intro.intro.refine'_1\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' :\n ↑(algebraMap Rₘ Sₘ) v' *\n ↑(RingHom.comp (algebraMap Rₘ Sₘ) (algebraMap R Rₘ)) ↑{ val := v, property := (_ : v ∈ ↑M) } =\n 1\n⊢ ↑(algebraMap Rₘ Sₘ) v' * ↑(algebraMap S Sₘ) u = 1",
"tactic": "erw [IsLocalization.map_comp\n (show _ ≤ (Algebra.algebraMapSubmonoid S M).comap _ from M.le_comap_map)] at hv'"
},
{
"state_after": "no goals",
"state_before": "case intro.mk.mk.intro.intro.refine'_1\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' :\n ↑(algebraMap Rₘ Sₘ) v' * ↑(RingHom.comp (algebraMap S Sₘ) (algebraMap R S)) ↑{ val := v, property := (_ : v ∈ ↑M) } =\n 1\n⊢ ↑(algebraMap Rₘ Sₘ) v' * ↑(algebraMap S Sₘ) u = 1",
"tactic": "exact hv.2 ▸ hv'"
},
{
"state_after": "case intro.mk.mk.intro.intro.refine'_2.intro\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' : v' * ↑(algebraMap R Rₘ) ↑{ val := v, property := (_ : v ∈ ↑M) } = 1\np : R[X]\nhp : Monic p ∧ eval₂ (algebraMap R S) s p = 0\n⊢ IsIntegral Rₘ (x * ↑(algebraMap S Sₘ) u)",
"state_before": "case intro.mk.mk.intro.intro.refine'_2\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' : v' * ↑(algebraMap R Rₘ) ↑{ val := v, property := (_ : v ∈ ↑M) } = 1\n⊢ IsIntegral Rₘ (x * ↑(algebraMap S Sₘ) u)",
"tactic": "obtain ⟨p, hp⟩ := H s"
},
{
"state_after": "no goals",
"state_before": "case intro.mk.mk.intro.intro.refine'_2.intro\nR : Type u_1\ninst✝⁹ : CommRing R\nM : Submonoid R\nS : Type u_2\ninst✝⁸ : CommRing S\ninst✝⁷ : Algebra R S\nP : Type ?u.284769\ninst✝⁶ : CommRing P\nRₘ : Type u_3\nSₘ : Type u_4\ninst✝⁵ : CommRing Rₘ\ninst✝⁴ : CommRing Sₘ\ninst✝³ : Algebra R Rₘ\ninst✝² : IsLocalization M Rₘ\ninst✝¹ : Algebra S Sₘ\ninst✝ : IsLocalization (Algebra.algebraMapSubmonoid S M) Sₘ\nH : Algebra.IsIntegral R S\nx : Sₘ\ns u : S\nv : R\nhv : v ∈ ↑M ∧ ↑(algebraMap R S) v = u\nhx :\n x * ↑(algebraMap S Sₘ) ↑(s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).snd =\n ↑(algebraMap S Sₘ) (s, { val := u, property := (_ : ∃ a, a ∈ ↑M ∧ ↑(algebraMap R S) a = u) }).fst\nv' : Rₘ\nhv' : v' * ↑(algebraMap R Rₘ) ↑{ val := v, property := (_ : v ∈ ↑M) } = 1\np : R[X]\nhp : Monic p ∧ eval₂ (algebraMap R S) s p = 0\n⊢ IsIntegral Rₘ (x * ↑(algebraMap S Sₘ) u)",
"tactic": "exact hx.symm ▸ is_integral_localization_at_leadingCoeff p hp.2 (hp.1.symm ▸ M.one_mem)"
}
] | [
249,
92
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
231,
1
] |
Mathlib/Data/Real/Basic.lean | Real.isLUB_sSup | [
{
"state_after": "x y : ℝ\nS : Set ℝ\nh₁ : Set.Nonempty S\nh₂ : BddAbove S\n⊢ IsLUB S (choose (_ : ∃ x, IsLUB S x))",
"state_before": "x y : ℝ\nS : Set ℝ\nh₁ : Set.Nonempty S\nh₂ : BddAbove S\n⊢ IsLUB S (sSup S)",
"tactic": "simp only [sSup_def, dif_pos (And.intro h₁ h₂)]"
},
{
"state_after": "no goals",
"state_before": "x y : ℝ\nS : Set ℝ\nh₁ : Set.Nonempty S\nh₂ : BddAbove S\n⊢ IsLUB S (choose (_ : ∃ x, IsLUB S x))",
"tactic": "apply Classical.choose_spec"
}
] | [
744,
30
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
741,
11
] |
Mathlib/RingTheory/GradedAlgebra/HomogeneousLocalization.lean | HomogeneousLocalization.NumDenSameDeg.den_pow | [] | [
254,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
253,
1
] |
Mathlib/MeasureTheory/Function/L1Space.lean | MeasureTheory.integrable_of_forall_fin_meas_le | [
{
"state_after": "no goals",
"state_before": "α : Type u_1\nβ : Type ?u.1261185\nγ : Type ?u.1261188\nδ : Type ?u.1261191\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝⁴ : MeasurableSpace δ\ninst✝³ : NormedAddCommGroup β\ninst✝² : NormedAddCommGroup γ\nE : Type u_2\nm0 : MeasurableSpace α\ninst✝¹ : NormedAddCommGroup E\ninst✝ : SigmaFinite μ\nC : ℝ≥0∞\nhC : C < ⊤\nf : α → E\nhf_meas : AEStronglyMeasurable f μ\nhf : ∀ (s : Set α), MeasurableSet s → ↑↑μ s ≠ ⊤ → (∫⁻ (x : α) in s, ↑‖f x‖₊ ∂μ) ≤ C\n⊢ SigmaFinite (Measure.trim μ (_ : m ≤ m))",
"tactic": "rwa [@trim_eq_self _ m]"
}
] | [
1194,
98
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1190,
1
] |
Mathlib/CategoryTheory/Limits/HasLimits.lean | CategoryTheory.Limits.colimit.post_desc | [
{
"state_after": "case w\nJ : Type u₁\ninst✝⁵ : Category J\nK : Type u₂\ninst✝⁴ : Category K\nC : Type u\ninst✝³ : Category C\nF : J ⥤ C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasColimit F\nG : C ⥤ D\ninst✝ : HasColimit (F ⋙ G)\nc : Cocone F\nj✝ : J\n⊢ ι (F ⋙ G) j✝ ≫ post F G ≫ G.map (desc F c) = ι (F ⋙ G) j✝ ≫ desc (F ⋙ G) (G.mapCocone c)",
"state_before": "J : Type u₁\ninst✝⁵ : Category J\nK : Type u₂\ninst✝⁴ : Category K\nC : Type u\ninst✝³ : Category C\nF : J ⥤ C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasColimit F\nG : C ⥤ D\ninst✝ : HasColimit (F ⋙ G)\nc : Cocone F\n⊢ post F G ≫ G.map (desc F c) = desc (F ⋙ G) (G.mapCocone c)",
"tactic": "ext"
},
{
"state_after": "case w\nJ : Type u₁\ninst✝⁵ : Category J\nK : Type u₂\ninst✝⁴ : Category K\nC : Type u\ninst✝³ : Category C\nF : J ⥤ C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasColimit F\nG : C ⥤ D\ninst✝ : HasColimit (F ⋙ G)\nc : Cocone F\nj✝ : J\n⊢ G.map (c.ι.app j✝) = (G.mapCocone c).ι.app j✝",
"state_before": "case w\nJ : Type u₁\ninst✝⁵ : Category J\nK : Type u₂\ninst✝⁴ : Category K\nC : Type u\ninst✝³ : Category C\nF : J ⥤ C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasColimit F\nG : C ⥤ D\ninst✝ : HasColimit (F ⋙ G)\nc : Cocone F\nj✝ : J\n⊢ ι (F ⋙ G) j✝ ≫ post F G ≫ G.map (desc F c) = ι (F ⋙ G) j✝ ≫ desc (F ⋙ G) (G.mapCocone c)",
"tactic": "rw [← assoc, colimit.ι_post, ← G.map_comp, colimit.ι_desc, colimit.ι_desc]"
},
{
"state_after": "no goals",
"state_before": "case w\nJ : Type u₁\ninst✝⁵ : Category J\nK : Type u₂\ninst✝⁴ : Category K\nC : Type u\ninst✝³ : Category C\nF : J ⥤ C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasColimit F\nG : C ⥤ D\ninst✝ : HasColimit (F ⋙ G)\nc : Cocone F\nj✝ : J\n⊢ G.map (c.ι.app j✝) = (G.mapCocone c).ι.app j✝",
"tactic": "rfl"
}
] | [
1039,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1035,
1
] |
Mathlib/Data/Set/Intervals/Basic.lean | Set.nonempty_Ioi | [] | [
301,
14
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
300,
1
] |
Mathlib/MeasureTheory/Function/AEEqFun.lean | MeasureTheory.AEEqFun.smul_toGerm | [] | [
610,
20
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
609,
1
] |
Mathlib/Algebra/Algebra/Operations.lean | Submodule.map_div | [
{
"state_after": "case h\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\n⊢ x ∈ map (AlgEquiv.toLinearMap h) (I / J) ↔ x ∈ map (AlgEquiv.toLinearMap h) I / map (AlgEquiv.toLinearMap h) J",
"state_before": "ι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\n⊢ map (AlgEquiv.toLinearMap h) (I / J) = map (AlgEquiv.toLinearMap h) I / map (AlgEquiv.toLinearMap h) J",
"tactic": "ext x"
},
{
"state_after": "case h\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\n⊢ (∃ y, (∀ (y_1 : A), y_1 ∈ J → y * y_1 ∈ I) ∧ ↑(AlgEquiv.toLinearMap h) y = x) ↔\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y",
"state_before": "case h\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\n⊢ x ∈ map (AlgEquiv.toLinearMap h) (I / J) ↔ x ∈ map (AlgEquiv.toLinearMap h) I / map (AlgEquiv.toLinearMap h) J",
"tactic": "simp only [mem_map, mem_div_iff_forall_mul_mem]"
},
{
"state_after": "case h.mp\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\n⊢ (∃ y, (∀ (y_1 : A), y_1 ∈ J → y * y_1 ∈ I) ∧ ↑(AlgEquiv.toLinearMap h) y = x) →\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\n\ncase h.mpr\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\n⊢ (∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y) →\n ∃ y, (∀ (y_1 : A), y_1 ∈ J → y * y_1 ∈ I) ∧ ↑(AlgEquiv.toLinearMap h) y = x",
"state_before": "case h\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\n⊢ (∃ y, (∀ (y_1 : A), y_1 ∈ J → y * y_1 ∈ I) ∧ ↑(AlgEquiv.toLinearMap h) y = x) ↔\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y",
"tactic": "constructor"
},
{
"state_after": "case h.mp.intro.intro.intro.intro\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : A\nhx : ∀ (y : A), y ∈ J → x * y ∈ I\ny : A\nhy : y ∈ J\n⊢ ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = ↑(AlgEquiv.toLinearMap h) x * ↑(AlgEquiv.toLinearMap h) y",
"state_before": "case h.mp\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\n⊢ (∃ y, (∀ (y_1 : A), y_1 ∈ J → y * y_1 ∈ I) ∧ ↑(AlgEquiv.toLinearMap h) y = x) →\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y",
"tactic": "rintro ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩"
},
{
"state_after": "no goals",
"state_before": "case h.mp.intro.intro.intro.intro\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : A\nhx : ∀ (y : A), y ∈ J → x * y ∈ I\ny : A\nhy : y ∈ J\n⊢ ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = ↑(AlgEquiv.toLinearMap h) x * ↑(AlgEquiv.toLinearMap h) y",
"tactic": "exact ⟨x * y, hx _ hy, h.map_mul x y⟩"
},
{
"state_after": "case h.mpr\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\nhx :\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\n⊢ ∃ y, (∀ (y_1 : A), y_1 ∈ J → y * y_1 ∈ I) ∧ ↑(AlgEquiv.toLinearMap h) y = x",
"state_before": "case h.mpr\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\n⊢ (∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y) →\n ∃ y, (∀ (y_1 : A), y_1 ∈ J → y * y_1 ∈ I) ∧ ↑(AlgEquiv.toLinearMap h) y = x",
"tactic": "rintro hx"
},
{
"state_after": "case h.mpr\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\nhx :\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\nz : A\nhz : z ∈ J\n⊢ ↑(AlgEquiv.symm h) x * z ∈ I",
"state_before": "case h.mpr\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\nhx :\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\n⊢ ∃ y, (∀ (y_1 : A), y_1 ∈ J → y * y_1 ∈ I) ∧ ↑(AlgEquiv.toLinearMap h) y = x",
"tactic": "refine' ⟨h.symm x, fun z hz => _, h.apply_symm_apply x⟩"
},
{
"state_after": "case h.mpr.intro.intro\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\nhx :\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\nz : A\nhz : z ∈ J\nxz : A\nxz_mem : xz ∈ I\nhxz : ↑(AlgEquiv.toLinearMap h) xz = x * ↑h z\n⊢ ↑(AlgEquiv.symm h) x * z ∈ I",
"state_before": "case h.mpr\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\nhx :\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\nz : A\nhz : z ∈ J\n⊢ ↑(AlgEquiv.symm h) x * z ∈ I",
"tactic": "obtain ⟨xz, xz_mem, hxz⟩ := hx (h z) ⟨z, hz, rfl⟩"
},
{
"state_after": "case h.e'_4\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\nhx :\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\nz : A\nhz : z ∈ J\nxz : A\nxz_mem : xz ∈ I\nhxz : ↑(AlgEquiv.toLinearMap h) xz = x * ↑h z\n⊢ ↑(AlgEquiv.symm h) x * z = xz",
"state_before": "case h.mpr.intro.intro\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\nhx :\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\nz : A\nhz : z ∈ J\nxz : A\nxz_mem : xz ∈ I\nhxz : ↑(AlgEquiv.toLinearMap h) xz = x * ↑h z\n⊢ ↑(AlgEquiv.symm h) x * z ∈ I",
"tactic": "convert xz_mem"
},
{
"state_after": "case h.e'_4.a\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\nhx :\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\nz : A\nhz : z ∈ J\nxz : A\nxz_mem : xz ∈ I\nhxz : ↑(AlgEquiv.toLinearMap h) xz = x * ↑h z\n⊢ ↑h (↑(AlgEquiv.symm h) x * z) = ↑h xz",
"state_before": "case h.e'_4\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\nhx :\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\nz : A\nhz : z ∈ J\nxz : A\nxz_mem : xz ∈ I\nhxz : ↑(AlgEquiv.toLinearMap h) xz = x * ↑h z\n⊢ ↑(AlgEquiv.symm h) x * z = xz",
"tactic": "apply h.injective"
},
{
"state_after": "no goals",
"state_before": "case h.e'_4.a\nι : Sort uι\nR : Type u\ninst✝⁴ : CommSemiring R\nA : Type v\ninst✝³ : CommSemiring A\ninst✝² : Algebra R A\nM N : Submodule R A\nm n : A\nB : Type u_1\ninst✝¹ : CommSemiring B\ninst✝ : Algebra R B\nI J : Submodule R A\nh : A ≃ₐ[R] B\nx : B\nhx :\n ∀ (y : B),\n (∃ y_1, y_1 ∈ J ∧ ↑(AlgEquiv.toLinearMap h) y_1 = y) → ∃ y_1, y_1 ∈ I ∧ ↑(AlgEquiv.toLinearMap h) y_1 = x * y\nz : A\nhz : z ∈ J\nxz : A\nxz_mem : xz ∈ I\nhxz : ↑(AlgEquiv.toLinearMap h) xz = x * ↑h z\n⊢ ↑h (↑(AlgEquiv.symm h) x * z) = ↑h xz",
"tactic": "erw [h.map_mul, h.apply_symm_apply, hxz]"
}
] | [
741,
45
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
729,
11
] |
Mathlib/CategoryTheory/Adjunction/Opposites.lean | CategoryTheory.Adjunction.leftAdjointUniq_refl | [
{
"state_after": "case w.h\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\nx✝ : C\n⊢ (leftAdjointUniq adj1 adj1).hom.app x✝ = (𝟙 F).app x✝",
"state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\n⊢ (leftAdjointUniq adj1 adj1).hom = 𝟙 F",
"tactic": "ext"
},
{
"state_after": "case w.h.a\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\nx✝ : C\n⊢ ((leftAdjointUniq adj1 adj1).hom.app x✝).op = ((𝟙 F).app x✝).op",
"state_before": "case w.h\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\nx✝ : C\n⊢ (leftAdjointUniq adj1 adj1).hom.app x✝ = (𝟙 F).app x✝",
"tactic": "apply Quiver.Hom.op_inj"
},
{
"state_after": "case w.h.a.a\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\nx✝ : C\n⊢ coyoneda.map ((leftAdjointUniq adj1 adj1).hom.app x✝).op = coyoneda.map ((𝟙 F).app x✝).op",
"state_before": "case w.h.a\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\nx✝ : C\n⊢ ((leftAdjointUniq adj1 adj1).hom.app x✝).op = ((𝟙 F).app x✝).op",
"tactic": "apply coyoneda.map_injective"
},
{
"state_after": "case w.h.a.a.w.h.h\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\nx✝¹ : C\nx✝ : D\na✝ : (coyoneda.obj (F.obj x✝¹).op).obj x✝\n⊢ (coyoneda.map ((leftAdjointUniq adj1 adj1).hom.app x✝¹).op).app x✝ a✝ = (coyoneda.map ((𝟙 F).app x✝¹).op).app x✝ a✝",
"state_before": "case w.h.a.a\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\nx✝ : C\n⊢ coyoneda.map ((leftAdjointUniq adj1 adj1).hom.app x✝).op = coyoneda.map ((𝟙 F).app x✝).op",
"tactic": "ext"
},
{
"state_after": "case w.h.a.a.w.h.h\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\nx✝¹ : C\nx✝ : D\na✝ : (coyoneda.obj (F.obj x✝¹).op).obj x✝\n⊢ (coyoneda.map ((leftAdjointUniq adj1 adj1).hom.app x✝¹).op).app x✝ a✝ = (coyoneda.map ((𝟙 F).app x✝¹).op).app x✝ a✝",
"state_before": "case w.h.a.a.w.h.h\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\nx✝¹ : C\nx✝ : D\na✝ : (coyoneda.obj (F.obj x✝¹).op).obj x✝\n⊢ (coyoneda.map ((leftAdjointUniq adj1 adj1).hom.app x✝¹).op).app x✝ a✝ = (coyoneda.map ((𝟙 F).app x✝¹).op).app x✝ a✝",
"tactic": "funext"
},
{
"state_after": "no goals",
"state_before": "case w.h.a.a.w.h.h\nC : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nadj1 : F ⊣ G\nx✝¹ : C\nx✝ : D\na✝ : (coyoneda.obj (F.obj x✝¹).op).obj x✝\n⊢ (coyoneda.map ((leftAdjointUniq adj1 adj1).hom.app x✝¹).op).app x✝ a✝ = (coyoneda.map ((𝟙 F).app x✝¹).op).app x✝ a✝",
"tactic": "simp [leftAdjointsCoyonedaEquiv, leftAdjointUniq]"
}
] | [
213,
52
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
206,
1
] |
Mathlib/Topology/Algebra/Monoid.lean | continuousOn_list_prod | [
{
"state_after": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nh : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t\nx : X\nhx : x ∈ t\n⊢ ContinuousWithinAt (fun a => List.prod (List.map (fun i => f i a) l)) t x",
"state_before": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nh : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t\n⊢ ContinuousOn (fun a => List.prod (List.map (fun i => f i a) l)) t",
"tactic": "intro x hx"
},
{
"state_after": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nh : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t\nx : X\nhx : x ∈ t\n⊢ ContinuousAt (restrict t fun a => List.prod (List.map (fun i => f i a) l)) { val := x, property := hx }",
"state_before": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nh : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t\nx : X\nhx : x ∈ t\n⊢ ContinuousWithinAt (fun a => List.prod (List.map (fun i => f i a) l)) t x",
"tactic": "rw [continuousWithinAt_iff_continuousAt_restrict _ hx]"
},
{
"state_after": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nh : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t\nx : X\nhx : x ∈ t\ni : ι\nhi : i ∈ l\n⊢ Tendsto (fun b => f i ↑b) (𝓝 { val := x, property := hx }) (𝓝 (f i ↑{ val := x, property := hx }))",
"state_before": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nh : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t\nx : X\nhx : x ∈ t\n⊢ ContinuousAt (restrict t fun a => List.prod (List.map (fun i => f i a) l)) { val := x, property := hx }",
"tactic": "refine' tendsto_list_prod _ fun i hi => _"
},
{
"state_after": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nx : X\nhx : x ∈ t\ni : ι\nhi : i ∈ l\nh : ContinuousWithinAt (f i) t x\n⊢ Tendsto (fun b => f i ↑b) (𝓝 { val := x, property := hx }) (𝓝 (f i ↑{ val := x, property := hx }))",
"state_before": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nh : ∀ (i : ι), i ∈ l → ContinuousOn (f i) t\nx : X\nhx : x ∈ t\ni : ι\nhi : i ∈ l\n⊢ Tendsto (fun b => f i ↑b) (𝓝 { val := x, property := hx }) (𝓝 (f i ↑{ val := x, property := hx }))",
"tactic": "specialize h i hi x hx"
},
{
"state_after": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nx : X\nhx : x ∈ t\ni : ι\nhi : i ∈ l\nh : ContinuousAt (restrict t (f i)) { val := x, property := hx }\n⊢ Tendsto (fun b => f i ↑b) (𝓝 { val := x, property := hx }) (𝓝 (f i ↑{ val := x, property := hx }))",
"state_before": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nx : X\nhx : x ∈ t\ni : ι\nhi : i ∈ l\nh : ContinuousWithinAt (f i) t x\n⊢ Tendsto (fun b => f i ↑b) (𝓝 { val := x, property := hx }) (𝓝 (f i ↑{ val := x, property := hx }))",
"tactic": "rw [continuousWithinAt_iff_continuousAt_restrict _ hx] at h"
},
{
"state_after": "no goals",
"state_before": "ι : Type u_1\nα : Type ?u.175300\nX : Type u_2\nM : Type u_3\nN : Type ?u.175309\ninst✝³ : TopologicalSpace X\ninst✝² : TopologicalSpace M\ninst✝¹ : Monoid M\ninst✝ : ContinuousMul M\nf : ι → X → M\nl : List ι\nt : Set X\nx : X\nhx : x ∈ t\ni : ι\nhi : i ∈ l\nh : ContinuousAt (restrict t (f i)) { val := x, property := hx }\n⊢ Tendsto (fun b => f i ↑b) (𝓝 { val := x, property := hx }) (𝓝 (f i ↑{ val := x, property := hx }))",
"tactic": "exact h"
}
] | [
555,
10
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
547,
1
] |
Mathlib/Order/FixedPoints.lean | OrderHom.map_lfp_comp | [] | [
161,
49
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
159,
1
] |
Mathlib/RingTheory/Adjoin/Basic.lean | Algebra.mem_adjoin_of_map_mul | [
{
"state_after": "R : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\nr : R\n⊢ (fun a => ↑f a ∈ adjoin R (↑f '' (s ∪ {1}))) (↑(algebraMap R A) r)",
"state_before": "R : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\n⊢ ↑f x ∈ adjoin R (↑f '' (s ∪ {1}))",
"tactic": "refine'\n @adjoin_induction R A _ _ _ _ (fun a => f a ∈ adjoin R (f '' (s ∪ {1}))) x h\n (fun a ha => subset_adjoin ⟨a, ⟨Set.subset_union_left _ _ ha, rfl⟩⟩) (fun r => _)\n (fun y z hy hz => by simpa [hy, hz] using Subalgebra.add_mem _ hy hz) fun y z hy hz => by\n simpa [hy, hz, hf y z] using Subalgebra.mul_mem _ hy hz"
},
{
"state_after": "R : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\nr : R\nthis : ↑f 1 ∈ adjoin R (↑f '' (s ∪ {1}))\n⊢ (fun a => ↑f a ∈ adjoin R (↑f '' (s ∪ {1}))) (↑(algebraMap R A) r)",
"state_before": "R : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\nr : R\n⊢ (fun a => ↑f a ∈ adjoin R (↑f '' (s ∪ {1}))) (↑(algebraMap R A) r)",
"tactic": "have : f 1 ∈ adjoin R (f '' (s ∪ {1})) :=\n subset_adjoin ⟨1, ⟨Set.subset_union_right _ _ <| Set.mem_singleton 1, rfl⟩⟩"
},
{
"state_after": "case h.e'_4\nR : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\nr : R\nthis : ↑f 1 ∈ adjoin R (↑f '' (s ∪ {1}))\n⊢ ↑f (↑(algebraMap R A) r) = r • ↑f 1",
"state_before": "R : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\nr : R\nthis : ↑f 1 ∈ adjoin R (↑f '' (s ∪ {1}))\n⊢ (fun a => ↑f a ∈ adjoin R (↑f '' (s ∪ {1}))) (↑(algebraMap R A) r)",
"tactic": "convert Subalgebra.smul_mem (adjoin R (f '' (s ∪ {1}))) this r"
},
{
"state_after": "case h.e'_4\nR : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\nr : R\nthis : ↑f 1 ∈ adjoin R (↑f '' (s ∪ {1}))\n⊢ ↑f (r • 1) = r • ↑f 1",
"state_before": "case h.e'_4\nR : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\nr : R\nthis : ↑f 1 ∈ adjoin R (↑f '' (s ∪ {1}))\n⊢ ↑f (↑(algebraMap R A) r) = r • ↑f 1",
"tactic": "rw [algebraMap_eq_smul_one]"
},
{
"state_after": "no goals",
"state_before": "case h.e'_4\nR : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\nr : R\nthis : ↑f 1 ∈ adjoin R (↑f '' (s ∪ {1}))\n⊢ ↑f (r • 1) = r • ↑f 1",
"tactic": "exact f.map_smul _ _"
},
{
"state_after": "no goals",
"state_before": "R : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\ny z : A\nhy : (fun a => ↑f a ∈ adjoin R (↑f '' (s ∪ {1}))) y\nhz : (fun a => ↑f a ∈ adjoin R (↑f '' (s ∪ {1}))) z\n⊢ (fun a => ↑f a ∈ adjoin R (↑f '' (s ∪ {1}))) (y + z)",
"tactic": "simpa [hy, hz] using Subalgebra.add_mem _ hy hz"
},
{
"state_after": "no goals",
"state_before": "R : Type u\nA : Type v\nB : Type w\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Semiring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\ns✝ t s : Set A\nx : A\nf : A →ₗ[R] B\nhf : ∀ (a₁ a₂ : A), ↑f (a₁ * a₂) = ↑f a₁ * ↑f a₂\nh : x ∈ adjoin R s\ny z : A\nhy : (fun a => ↑f a ∈ adjoin R (↑f '' (s ∪ {1}))) y\nhz : (fun a => ↑f a ∈ adjoin R (↑f '' (s ∪ {1}))) z\n⊢ (fun a => ↑f a ∈ adjoin R (↑f '' (s ∪ {1}))) (y * z)",
"tactic": "simpa [hy, hz, hf y z] using Subalgebra.mul_mem _ hy hz"
}
] | [
249,
23
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
238,
1
] |
Mathlib/Order/LiminfLimsup.lean | Filter.HasBasis.limsInf_eq_iSup_sInf | [] | [
671,
45
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
669,
1
] |
Mathlib/MeasureTheory/Function/L1Space.lean | MeasureTheory.HasFiniteIntegral.left_of_add_measure | [] | [
203,
51
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
201,
1
] |
Mathlib/GroupTheory/Subgroup/Basic.lean | Subgroup.closure_iUnion | [] | [
1260,
28
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1259,
1
] |
Mathlib/Order/Lattice.lean | max_max_max_comm | [] | [
890,
27
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
889,
1
] |
Mathlib/Analysis/Complex/Basic.lean | Complex.dist_self_conj | [
{
"state_after": "no goals",
"state_before": "E : Type ?u.101139\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℂ E\nz : ℂ\n⊢ dist z (↑(starRingEnd ℂ) z) = 2 * Abs.abs z.im",
"tactic": "rw [dist_comm, dist_conj_self]"
}
] | [
139,
99
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
139,
1
] |
Mathlib/MeasureTheory/Group/Measure.lean | MeasureTheory.measure_univ_of_isMulLeftInvariant | [
{
"state_after": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\n⊢ ↑↑μ univ = ⊤",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\n⊢ ↑↑μ univ = ⊤",
"tactic": "obtain ⟨K, hK, Kclosed, Kint⟩ : ∃ K : Set G, IsCompact K ∧ IsClosed K ∧ (1 : G) ∈ interior K := by\n rcases local_isCompact_isClosed_nhds_of_group (isOpen_univ.mem_nhds (mem_univ (1 : G))) with\n ⟨K, hK⟩\n exact ⟨K, hK.1, hK.2.1, hK.2.2.2⟩"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\n⊢ ↑↑μ univ = ⊤",
"state_before": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\n⊢ ↑↑μ univ = ⊤",
"tactic": "have K_pos : 0 < μ K := measure_pos_of_nonempty_interior _ ⟨_, Kint⟩"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\nA : ∀ (L : Set G), IsCompact L → ∃ g, Disjoint L (g • K)\n⊢ ↑↑μ univ = ⊤",
"state_before": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\n⊢ ↑↑μ univ = ⊤",
"tactic": "have A : ∀ L : Set G, IsCompact L → ∃ g : G, Disjoint L (g • K) := fun L hL =>\n exists_disjoint_smul_of_isCompact hL hK"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\n⊢ ↑↑μ univ = ⊤",
"state_before": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\nA : ∀ (L : Set G), IsCompact L → ∃ g, Disjoint L (g • K)\n⊢ ↑↑μ univ = ⊤",
"tactic": "choose! g hg using A"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\n⊢ ↑↑μ univ = ⊤",
"state_before": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\n⊢ ↑↑μ univ = ⊤",
"tactic": "set L : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\nN : Tendsto (fun n => ↑↑μ (L n)) atTop (𝓝 (⊤ * ↑↑μ K))\n⊢ ↑↑μ univ = ⊤",
"state_before": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ ↑↑μ univ = ⊤",
"tactic": "have N : Tendsto (fun n => μ (L n)) atTop (𝓝 (∞ * μ K)) := by\n simp_rw [M]\n apply ENNReal.Tendsto.mul_const _ (Or.inl ENNReal.top_ne_zero)\n exact ENNReal.tendsto_nat_nhds_top.comp (tendsto_add_atTop_nat _)"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\nN : Tendsto (fun n => ↑↑μ (((fun T => T ∪ g T • K)^[n]) K)) atTop (𝓝 ⊤)\n⊢ ↑↑μ univ = ⊤",
"state_before": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\nN : Tendsto (fun n => ↑↑μ (L n)) atTop (𝓝 (⊤ * ↑↑μ K))\n⊢ ↑↑μ univ = ⊤",
"tactic": "simp only [ENNReal.top_mul', K_pos.ne', if_false] at N"
},
{
"state_after": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\nN : Tendsto (fun n => ↑↑μ (((fun T => T ∪ g T • K)^[n]) K)) atTop (𝓝 ⊤)\n⊢ ⊤ ≤ ↑↑μ univ",
"state_before": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\nN : Tendsto (fun n => ↑↑μ (((fun T => T ∪ g T • K)^[n]) K)) atTop (𝓝 ⊤)\n⊢ ↑↑μ univ = ⊤",
"tactic": "apply top_le_iff.1"
},
{
"state_after": "no goals",
"state_before": "case intro.intro.intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\nN : Tendsto (fun n => ↑↑μ (((fun T => T ∪ g T • K)^[n]) K)) atTop (𝓝 ⊤)\n⊢ ⊤ ≤ ↑↑μ univ",
"tactic": "exact le_of_tendsto' N fun n => measure_mono (subset_univ _)"
},
{
"state_after": "case intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K ∧ IsClosed K ∧ K ⊆ univ ∧ 1 ∈ interior K\n⊢ ∃ K, IsCompact K ∧ IsClosed K ∧ 1 ∈ interior K",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\n⊢ ∃ K, IsCompact K ∧ IsClosed K ∧ 1 ∈ interior K",
"tactic": "rcases local_isCompact_isClosed_nhds_of_group (isOpen_univ.mem_nhds (mem_univ (1 : G))) with\n ⟨K, hK⟩"
},
{
"state_after": "no goals",
"state_before": "case intro\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K ∧ IsClosed K ∧ K ⊆ univ ∧ 1 ∈ interior K\n⊢ ∃ K, IsCompact K ∧ IsClosed K ∧ 1 ∈ interior K",
"tactic": "exact ⟨K, hK.1, hK.2.1, hK.2.2.2⟩"
},
{
"state_after": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nn : ℕ\n⊢ IsCompact (L n)",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\n⊢ ∀ (n : ℕ), IsCompact (L n)",
"tactic": "intro n"
},
{
"state_after": "case zero\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\n⊢ IsCompact (L Nat.zero)\n\ncase succ\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nn : ℕ\nIH : IsCompact (L n)\n⊢ IsCompact (L (Nat.succ n))",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nn : ℕ\n⊢ IsCompact (L n)",
"tactic": "induction' n with n IH"
},
{
"state_after": "no goals",
"state_before": "case zero\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\n⊢ IsCompact (L Nat.zero)",
"tactic": "exact hK"
},
{
"state_after": "case succ\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nn : ℕ\nIH : IsCompact (L n)\n⊢ IsCompact (((fun T => T ∪ g T • K) ∘ (fun T => T ∪ g T • K)^[n]) K)",
"state_before": "case succ\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nn : ℕ\nIH : IsCompact (L n)\n⊢ IsCompact (L (Nat.succ n))",
"tactic": "simp_rw [iterate_succ']"
},
{
"state_after": "no goals",
"state_before": "case succ\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nn : ℕ\nIH : IsCompact (L n)\n⊢ IsCompact (((fun T => T ∪ g T • K) ∘ (fun T => T ∪ g T • K)^[n]) K)",
"tactic": "apply IsCompact.union IH (hK.smul (g (L n)))"
},
{
"state_after": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nn : ℕ\n⊢ IsClosed (L n)",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\n⊢ ∀ (n : ℕ), IsClosed (L n)",
"tactic": "intro n"
},
{
"state_after": "case zero\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\n⊢ IsClosed (L Nat.zero)\n\ncase succ\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nn : ℕ\nIH : IsClosed (L n)\n⊢ IsClosed (L (Nat.succ n))",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nn : ℕ\n⊢ IsClosed (L n)",
"tactic": "induction' n with n IH"
},
{
"state_after": "no goals",
"state_before": "case zero\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\n⊢ IsClosed (L Nat.zero)",
"tactic": "exact Kclosed"
},
{
"state_after": "case succ\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nn : ℕ\nIH : IsClosed (L n)\n⊢ IsClosed (((fun T => T ∪ g T • K) ∘ (fun T => T ∪ g T • K)^[n]) K)",
"state_before": "case succ\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nn : ℕ\nIH : IsClosed (L n)\n⊢ IsClosed (L (Nat.succ n))",
"tactic": "simp_rw [iterate_succ']"
},
{
"state_after": "no goals",
"state_before": "case succ\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nn : ℕ\nIH : IsClosed (L n)\n⊢ IsClosed (((fun T => T ∪ g T • K) ∘ (fun T => T ∪ g T • K)^[n]) K)",
"tactic": "apply IsClosed.union IH (Kclosed.smul (g (L n)))"
},
{
"state_after": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nn : ℕ\n⊢ ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\n⊢ ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K",
"tactic": "intro n"
},
{
"state_after": "case zero\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\n⊢ ↑↑μ (L Nat.zero) = ↑(Nat.zero + 1) * ↑↑μ K\n\ncase succ\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nn : ℕ\nIH : ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ ↑↑μ (L (Nat.succ n)) = ↑(Nat.succ n + 1) * ↑↑μ K",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nn : ℕ\n⊢ ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K",
"tactic": "induction' n with n IH"
},
{
"state_after": "no goals",
"state_before": "case zero\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\n⊢ ↑↑μ (L Nat.zero) = ↑(Nat.zero + 1) * ↑↑μ K",
"tactic": "simp only [one_mul, Nat.cast_one, iterate_zero, id.def, Nat.zero_eq, Nat.zero_add]"
},
{
"state_after": "no goals",
"state_before": "case succ\n𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nn : ℕ\nIH : ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ ↑↑μ (L (Nat.succ n)) = ↑(Nat.succ n + 1) * ↑↑μ K",
"tactic": "calc\n μ (L (n + 1)) = μ (L n) + μ (g (L n) • K) := by\n simp_rw [iterate_succ']\n exact measure_union' (hg _ (Lcompact _)) (Lclosed _).measurableSet\n _ = (n + 1 + 1 : ℕ) * μ K := by\n simp only [IH, measure_smul, add_mul, Nat.cast_add, Nat.cast_one, one_mul]"
},
{
"state_after": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nn : ℕ\nIH : ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ ↑↑μ (((fun T => T ∪ g T • K) ∘ (fun T => T ∪ g T • K)^[n]) K) =\n ↑↑μ (((fun T => T ∪ g T • K)^[n]) K) + ↑↑μ (g (((fun T => T ∪ g T • K)^[n]) K) • K)",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nn : ℕ\nIH : ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ ↑↑μ (L (n + 1)) = ↑↑μ (L n) + ↑↑μ (g (L n) • K)",
"tactic": "simp_rw [iterate_succ']"
},
{
"state_after": "no goals",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nn : ℕ\nIH : ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ ↑↑μ (((fun T => T ∪ g T • K) ∘ (fun T => T ∪ g T • K)^[n]) K) =\n ↑↑μ (((fun T => T ∪ g T • K)^[n]) K) + ↑↑μ (g (((fun T => T ∪ g T • K)^[n]) K) • K)",
"tactic": "exact measure_union' (hg _ (Lcompact _)) (Lclosed _).measurableSet"
},
{
"state_after": "no goals",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nn : ℕ\nIH : ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ ↑↑μ (L n) + ↑↑μ (g (L n) • K) = ↑(n + 1 + 1) * ↑↑μ K",
"tactic": "simp only [IH, measure_smul, add_mul, Nat.cast_add, Nat.cast_one, one_mul]"
},
{
"state_after": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ Tendsto (fun n => ↑(n + 1) * ↑↑μ K) atTop (𝓝 (⊤ * ↑↑μ K))",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ Tendsto (fun n => ↑↑μ (L n)) atTop (𝓝 (⊤ * ↑↑μ K))",
"tactic": "simp_rw [M]"
},
{
"state_after": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ Tendsto (fun x => ↑(x + 1)) atTop (𝓝 ⊤)",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ Tendsto (fun n => ↑(n + 1) * ↑↑μ K) atTop (𝓝 (⊤ * ↑↑μ K))",
"tactic": "apply ENNReal.Tendsto.mul_const _ (Or.inl ENNReal.top_ne_zero)"
},
{
"state_after": "no goals",
"state_before": "𝕜 : Type ?u.542119\nG : Type u_1\nH : Type ?u.542125\ninst✝¹⁰ : MeasurableSpace G\ninst✝⁹ : MeasurableSpace H\ninst✝⁸ : TopologicalSpace G\ninst✝⁷ : BorelSpace G\nμ✝ : Measure G\ninst✝⁶ : Group G\ninst✝⁵ : TopologicalGroup G\ninst✝⁴ : IsMulLeftInvariant μ✝\ninst✝³ : LocallyCompactSpace G\ninst✝² : NoncompactSpace G\nμ : Measure G\ninst✝¹ : IsOpenPosMeasure μ\ninst✝ : IsMulLeftInvariant μ\nK : Set G\nhK : IsCompact K\nKclosed : IsClosed K\nKint : 1 ∈ interior K\nK_pos : 0 < ↑↑μ K\ng : Set G → G\nhg : ∀ (L : Set G), IsCompact L → Disjoint L (g L • K)\nL : ℕ → Set G := fun n => ((fun T => T ∪ g T • K)^[n]) K\nLcompact : ∀ (n : ℕ), IsCompact (L n)\nLclosed : ∀ (n : ℕ), IsClosed (L n)\nM : ∀ (n : ℕ), ↑↑μ (L n) = ↑(n + 1) * ↑↑μ K\n⊢ Tendsto (fun x => ↑(x + 1)) atTop (𝓝 ⊤)",
"tactic": "exact ENNReal.tendsto_nat_nhds_top.comp (tendsto_add_atTop_nat _)"
}
] | [
655,
63
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
612,
1
] |
Mathlib/Data/Int/Cast/Lemmas.lean | map_intCast | [] | [
320,
56
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
319,
1
] |
Mathlib/GroupTheory/SchurZassenhaus.lean | Subgroup.exists_right_complement'_of_coprime_aux | [] | [
133,
86
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
131,
9
] |
Mathlib/Analysis/Calculus/ContDiffDef.lean | HasFTaylorSeriesUpTo.contDiff | [] | [
1404,
11
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
1402,
1
] |
Mathlib/Analysis/NormedSpace/PiLp.lean | PiLp.dist_eq_card | [] | [
210,
13
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
209,
1
] |
Std/Data/Int/DivMod.lean | Int.ediv_emod_unique | [
{
"state_after": "case mp\na b r q : Int\nh : 0 < b\n⊢ a / b = q ∧ a % b = r → r + b * q = a ∧ 0 ≤ r ∧ r < b\n\ncase mpr\na b r q : Int\nh : 0 < b\n⊢ r + b * q = a ∧ 0 ≤ r ∧ r < b → a / b = q ∧ a % b = r",
"state_before": "a b r q : Int\nh : 0 < b\n⊢ a / b = q ∧ a % b = r ↔ r + b * q = a ∧ 0 ≤ r ∧ r < b",
"tactic": "constructor"
},
{
"state_after": "case mp\na b r q : Int\nh : 0 < b\n⊢ a % b + b * (a / b) = a ∧ 0 ≤ a % b ∧ a % b < b",
"state_before": "case mp\na b r q : Int\nh : 0 < b\n⊢ a / b = q ∧ a % b = r → r + b * q = a ∧ 0 ≤ r ∧ r < b",
"tactic": "intro ⟨rfl, rfl⟩"
},
{
"state_after": "no goals",
"state_before": "case mp\na b r q : Int\nh : 0 < b\n⊢ a % b + b * (a / b) = a ∧ 0 ≤ a % b ∧ a % b < b",
"tactic": "exact ⟨emod_add_ediv a b, emod_nonneg _ (Int.ne_of_gt h), emod_lt_of_pos _ h⟩"
},
{
"state_after": "case mpr\na b r q : Int\nh : 0 < b\nhz : 0 ≤ r\nhb : r < b\n⊢ (r + b * q) / b = q ∧ (r + b * q) % b = r",
"state_before": "case mpr\na b r q : Int\nh : 0 < b\n⊢ r + b * q = a ∧ 0 ≤ r ∧ r < b → a / b = q ∧ a % b = r",
"tactic": "intro ⟨rfl, hz, hb⟩"
},
{
"state_after": "case mpr.left\na b r q : Int\nh : 0 < b\nhz : 0 ≤ r\nhb : r < b\n⊢ (r + b * q) / b = q\n\ncase mpr.right\na b r q : Int\nh : 0 < b\nhz : 0 ≤ r\nhb : r < b\n⊢ (r + b * q) % b = r",
"state_before": "case mpr\na b r q : Int\nh : 0 < b\nhz : 0 ≤ r\nhb : r < b\n⊢ (r + b * q) / b = q ∧ (r + b * q) % b = r",
"tactic": "constructor"
},
{
"state_after": "case mpr.left\na b r q : Int\nh : 0 < b\nhz : 0 ≤ r\nhb : r < b\n⊢ 0 + q = q",
"state_before": "case mpr.left\na b r q : Int\nh : 0 < b\nhz : 0 ≤ r\nhb : r < b\n⊢ (r + b * q) / b = q",
"tactic": "rw [Int.add_mul_ediv_left r q (Int.ne_of_gt h), ediv_eq_zero_of_lt hz hb]"
},
{
"state_after": "no goals",
"state_before": "case mpr.left\na b r q : Int\nh : 0 < b\nhz : 0 ≤ r\nhb : r < b\n⊢ 0 + q = q",
"tactic": "simp [Int.zero_add]"
},
{
"state_after": "no goals",
"state_before": "case mpr.right\na b r q : Int\nh : 0 < b\nhz : 0 ≤ r\nhb : r < b\n⊢ (r + b * q) % b = r",
"tactic": "rw [add_mul_emod_self_left, emod_eq_of_lt hz hb]"
}
] | [
510,
55
] | e68aa8f5fe47aad78987df45f99094afbcb5e936 | https://github.com/leanprover/std4 | [
501,
11
] |
Mathlib/Logic/Equiv/LocalEquiv.lean | LocalEquiv.refl_target | [] | [
614,
6
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
613,
1
] |
Mathlib/Topology/SubsetProperties.lean | Filter.cocompact_eq_cofinite | [
{
"state_after": "no goals",
"state_before": "α✝ : Type u\nβ : Type v\nι : Type ?u.47137\nπ : ι → Type ?u.47142\ninst✝³ : TopologicalSpace α✝\ninst✝² : TopologicalSpace β\ns t : Set α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : DiscreteTopology α\n⊢ cocompact α = cofinite",
"tactic": "simp only [cocompact, hasBasis_cofinite.eq_biInf, isCompact_iff_finite]"
}
] | [
547,
74
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
545,
1
] |
Mathlib/Data/Real/EReal.lean | EReal.induction₂_neg_left | [] | [
1008,
62
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
997,
1
] |
Mathlib/Analysis/Convex/Hull.lean | Convex.convexHull_subset_iff | [] | [
80,
64
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
79,
1
] |
Mathlib/Algebra/Lie/Submodule.lean | LieSubmodule.coe_toSubmodule_eq_iff | [] | [
146,
32
] | 5a919533f110b7d76410134a237ee374f24eaaad | https://github.com/leanprover-community/mathlib4 | [
145,
1
] |