zero-shot-label-nli / README.md
sileod's picture
Upload README.md with huggingface_hub
00e3665
|
raw
history blame
1.89 kB
---
license: apache-2.0
task_categories:
- zero-shot-classification
- text-classification
task_ids:
- natural-language-inference
language:
- en
dataset_info:
features:
- name: labels
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: task
dtype: string
splits:
- name: train
num_bytes: 551422306.0
num_examples: 1090333
- name: validation
num_bytes: 10824484.0
num_examples: 14419
- name: test
num_bytes: 9739005.0
num_examples: 14680
download_size: 302501186
dataset_size: 571985795.0
---
[tasksource](https://github.com/sileod/tasksource) classification tasks recasted as natural language inference.
This dataset is intended to improve label understanding in [zero-shot classification HF pipelines](https://huggingface.co/docs/transformers/main/main_classes/pipelines#transformers.ZeroShotClassificationPipeline
).
Inputs that are text pairs are separated by a newline (\n).
```python
from transformers import pipeline
classifier = pipeline(model="sileod/deberta-v3-base-tasksource-nli")
classifier(
"I have a problem with my iphone that needs to be resolved asap!!",
candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"],
)
```
[deberta-v3-base-tasksource-nli](https://huggingface.co/sileod/deberta-v3-base-tasksource-nli) will include `label-nli` in its training mix (a relatively small portion, to keep the model general, but note that nli models work for label-like zero shot classification without specific supervision (https://aclanthology.org/D19-1404.pdf).
```
@article{sileo2023tasksource,
title={tasksource: A Dataset Harmonization Framework for Streamlined NLP Multi-Task Learning and Evaluation},
author={Sileo, Damien},
year={2023}
}
```