Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Portuguese
Tags:
legal
DOI:
Libraries:
Datasets
Dask
License:
bidCorpus / README.md
vic35get's picture
Update README.md
65722d1 verified
|
raw
history blame
38.7 kB
metadata
language:
  - pt
license: apache-2.0
size_categories:
  - 10K<n<100K
task_categories:
  - text-classification
  - token-classification
  - sentence-similarity
pretty_name: BidCorpus
dataset_info:
  - config_name: bidCorpus_NER_keyphrase
    features:
      - name: tokens
        sequence: string
      - name: id
        dtype: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-LOCAL
              '2': I-LOCAL
              '3': B-OBJETO
              '4': I-OBJETO
    splits:
      - name: train
        num_bytes: 3657983
        num_examples: 1632
      - name: test
        num_bytes: 442382
        num_examples: 204
      - name: validation
        num_bytes: 464585
        num_examples: 204
    download_size: 514441
    dataset_size: 4564950
  - config_name: bidCorpus_gold
    features:
      - name: text
        dtype: string
      - name: certidao_protesto
        dtype: int64
      - name: certificado_boas_praticas
        dtype: int64
      - name: comprovante_localizacao
        dtype: int64
      - name: idoneidade_financeira
        dtype: int64
      - name: integralizado
        dtype: int64
      - name: licenca_ambiental
        dtype: int64
      - name: n_min_max_limitacao_atestados
        dtype: int64
    splits:
      - name: train
        num_bytes: 10979027
        num_examples: 1454
      - name: test
        num_bytes: 1499746
        num_examples: 182
      - name: validation
        num_bytes: 1460916
        num_examples: 182
    download_size: 5647239
    dataset_size: 13939689
  - config_name: bidCorpus_object_similarity
    features:
      - name: objeto1
        dtype: string
      - name: nerObjeto1
        dtype: string
      - name: objeto2
        dtype: string
      - name: nerObjeto2
        dtype: string
      - name: humanScore
        dtype: float64
      - name: nerObjeto1_words
        dtype: int64
      - name: objeto1_words
        dtype: int64
      - name: percentual_words
        dtype: float64
      - name: nerObjeto2_words
        dtype: int64
      - name: objeto2_words
        dtype: int64
      - name: bertscore_ner
        dtype: int64
      - name: bertscore_objs
        dtype: int64
    splits:
      - name: train
        num_bytes: 2682850
        num_examples: 1403
      - name: test
        num_bytes: 342301
        num_examples: 176
      - name: validation
        num_bytes: 364743
        num_examples: 175
    download_size: 911048
    dataset_size: 3389894
  - config_name: bidCorpus_objects_correct_allowed
    features:
      - name: text
        dtype: string
      - name: corretude
        dtype: int64
      - name: permitido
        dtype: int64
    splits:
      - name: train
        num_bytes: 1737590
        num_examples: 1089
      - name: test
        num_bytes: 278073
        num_examples: 137
      - name: validation
        num_bytes: 326285
        num_examples: 136
    download_size: 1108156
    dataset_size: 2341948
  - config_name: bidCorpus_objects_type
    features:
      - name: text
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 1024977
        num_examples: 1709
      - name: test
        num_bytes: 114336
        num_examples: 214
      - name: validation
        num_bytes: 135216
        num_examples: 214
    download_size: 484599
    dataset_size: 1274529
  - config_name: bidCorpus_objects_type_cased
    features:
      - name: text
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 1450428.9711141677
        num_examples: 2326
      - name: test
        num_bytes: 362919.0288858322
        num_examples: 582
    download_size: 770749
    dataset_size: 1813348
  - config_name: bidCorpus_qual_model
    features:
      - name: text
        dtype: string
      - name: certidao_protesto
        dtype: int64
      - name: certificado_boas_praticas
        dtype: int64
      - name: comprovante_localizacao
        dtype: int64
      - name: idoneidade_financeira
        dtype: int64
      - name: integralizado
        dtype: int64
      - name: licenca_ambiental
        dtype: int64
      - name: n_min_max_limitacao_atestados
        dtype: int64
    splits:
      - name: train
        num_bytes: 1567039880
        num_examples: 177133
      - name: test
        num_bytes: 195995975
        num_examples: 22142
      - name: validation
        num_bytes: 195098396
        num_examples: 22142
    download_size: 767641718
    dataset_size: 1958134251
  - config_name: bidCorpus_qual_weak_sup
    features:
      - name: text
        dtype: string
      - name: certidao_protesto
        dtype: int64
      - name: certificado_boas_praticas
        dtype: int64
      - name: comprovante_localizacao
        dtype: int64
      - name: idoneidade_financeira
        dtype: int64
      - name: integralizado
        dtype: int64
      - name: licenca_ambiental
        dtype: int64
      - name: n_min_max_limitacao_atestados
        dtype: int64
    splits:
      - name: train
        num_bytes: 1566000515
        num_examples: 177133
      - name: test
        num_bytes: 195502355
        num_examples: 22142
      - name: validation
        num_bytes: 196631381
        num_examples: 22142
    download_size: 767927678
    dataset_size: 1958134251
  - config_name: bidCorpus_raw
    features:
      - name: ID-LICITACAO
        dtype: float64
      - name: ID-ARQUIVO
        dtype: float64
      - name: OBJETO
        dtype: string
      - name: JULGAMENTO
        dtype: string
      - name: CONDICAO_PARTICIPACAO
        dtype: string
      - name: HABILITACAO
        dtype: string
      - name: CREDENCIAMENTO
        dtype: string
    splits:
      - name: train
        num_bytes: 4248532882
        num_examples: 373650
    download_size: 1787451169
    dataset_size: 4248532882
  - config_name: bidCorpus_sections_type
    features:
      - name: text
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 3141390
        num_examples: 1224
      - name: test
        num_bytes: 387562
        num_examples: 153
      - name: validation
        num_bytes: 477489
        num_examples: 153
    download_size: 2010213
    dataset_size: 4006441
  - config_name: bidCorpus_sections_type_cleaned
    features:
      - name: text
        dtype: string
      - name: label
        dtype: int64
    splits:
      - name: train
        num_bytes: 4006441
        num_examples: 1530
    download_size: 1873797
    dataset_size: 4006441
  - config_name: bidCorpus_synthetic
    features:
      - name: text
        dtype: string
      - name: certidao_protesto
        dtype: int64
      - name: certificado_boas_praticas
        dtype: int64
      - name: comprovante_localizacao
        dtype: int64
      - name: idoneidade_financeira
        dtype: int64
      - name: integralizado
        dtype: int64
      - name: licenca_ambiental
        dtype: int64
      - name: n_min_max_limitacao_atestados
        dtype: int64
    splits:
      - name: train
        num_bytes: 11104985
        num_examples: 1454
      - name: test
        num_bytes: 1400000
        num_examples: 182
      - name: validation
        num_bytes: 1438114
        num_examples: 182
    download_size: 5673825
    dataset_size: 13943099
configs:
  - config_name: bidCorpus_NER_keyphrase
    data_files:
      - split: train
        path: bidCorpus_NER_keyphrase/train-*
      - split: test
        path: bidCorpus_NER_keyphrase/test-*
      - split: validation
        path: bidCorpus_NER_keyphrase/validation-*
  - config_name: bidCorpus_gold
    data_files:
      - split: train
        path: bidCorpus_gold/train-*
      - split: test
        path: bidCorpus_gold/test-*
      - split: validation
        path: bidCorpus_gold/validation-*
  - config_name: bidCorpus_object_similarity
    data_files:
      - split: train
        path: bidCorpus_object_similarity/train-*
      - split: test
        path: bidCorpus_object_similarity/test-*
      - split: validation
        path: bidCorpus_object_similarity/validation-*
  - config_name: bidCorpus_objects_correct_allowed
    data_files:
      - split: train
        path: bidCorpus_objects_correct_allowed/train-*
      - split: test
        path: bidCorpus_objects_correct_allowed/test-*
      - split: validation
        path: bidCorpus_objects_correct_allowed/validation-*
  - config_name: bidCorpus_objects_type
    data_files:
      - split: train
        path: bidCorpus_objects_type/train-*
      - split: test
        path: bidCorpus_objects_type/test-*
      - split: validation
        path: bidCorpus_objects_type/validation-*
  - config_name: bidCorpus_objects_type_cased
    data_files:
      - split: train
        path: bidCorpus_objects_type_cased/train-*
      - split: test
        path: bidCorpus_objects_type_cased/test-*
  - config_name: bidCorpus_qual_model
    data_files:
      - split: train
        path: bidCorpus_qual_model/train-*
      - split: test
        path: bidCorpus_qual_model/test-*
      - split: validation
        path: bidCorpus_qual_model/validation-*
  - config_name: bidCorpus_qual_weak_sup
    data_files:
      - split: train
        path: bidCorpus_qual_weak_sup/train-*
      - split: test
        path: bidCorpus_qual_weak_sup/test-*
      - split: validation
        path: bidCorpus_qual_weak_sup/validation-*
  - config_name: bidCorpus_raw
    data_files:
      - split: train
        path: bidCorpus_raw/train-*
  - config_name: bidCorpus_sections_type
    data_files:
      - split: train
        path: bidCorpus_sections_type/train-*
      - split: test
        path: bidCorpus_sections_type/test-*
      - split: validation
        path: bidCorpus_sections_type/validation-*
  - config_name: bidCorpus_sections_type_cleaned
    data_files:
      - split: train
        path: bidCorpus_sections_type_cleaned/train-*
  - config_name: bidCorpus_synthetic
    data_files:
      - split: train
        path: bidCorpus_synthetic/train-*
      - split: test
        path: bidCorpus_synthetic/test-*
      - split: validation
        path: bidCorpus_synthetic/validation-*
tags:
  - legal

Dataset Card for "BidCorpus"

Table of Contents

Dataset Description

  • Homepage:
  • Repository:
  • Paper:
  • Leaderboard:
  • Point of Contact:

How to load the datasets

To load one of the datasets, simply provide the tcepi/bidCorpus argument as the first parameter, followed by the name of the desired dataset, such as bid_corpus_raw.

from datasets import load_dataset
dataset = load_dataset("tcepi/bidCorpus", "bidCorpus_raw")

The csv format version of the datasets is available in the bidCorpus_csvs folder.

Dataset Summary

The BidCorpus dataset consists of various configurations related to bidding documents. It includes datasets for Named Entity Recognition, Multi-label Classification, Sentence Similarity, and more. Each configuration focuses on different aspects of bidding documents and is designed for specific tasks.

Supported Tasks and Leaderboards

The supported tasks are the following:

DatasetSourceSub-domainTask TypeClasses
bidCorpus_NER_keyphrase-Seção Objeto de Editais de LicitaçãoNamed Entity Recognition4
bidCorpus_gold-Seção de Habilitação de Editais de LicitaçãoMulti-label Classification7
bidCorpus_object_similarity-Seção Objeto de Editais de LicitaçãoSentence Similarity2
bidCorpus_objects_correct_allowed-Seção Objeto de Editais de LicitaçãoMulti-class Classification4
bidCorpus_objects_type-Seção Objeto de Editais de LicitaçãoMulti-class Classification4
bidCorpus_qual_model-Seção de Habilitação de Editais de LicitaçãoMulti-label Classification7
bidCorpus_qual_weak_sup-Seção de Habilitação de Editais de LicitaçãoMulti-label Classification7
bidCorpus_synthetic-Seção de Habilitação de Editais de LicitaçãoMulti-label Classification7
bidCorpus_sections_type-Seções de Editais de LicitaçãoMulti-label Classification5
bidCorpus_raw-Seções de Editais de Licitaçãon/an/a

bidCorpus_NER_keyphrase

This dataset is composed of texts from the "object" section of bidding notices. The dataset is labeled with two types of named entities, following the IOB (Inside-Outside-Beginning) format.

  1. Object of the bid: Refers to the item to be acquired or the service to be contracted. The tags can be "B-OBJECT" (beginning of the entity) and "I-OBJECT" (continuation of the entity).
  2. Municipality of the managing unit: Indicates the location of the entity responsible for the bid. The tags can be "B-MUNICIPALITY" (beginning of the entity) and "I-MUNICIPALITY" (continuation of the entity).

This dataset is intended for training named entity recognition (NER) models, which are used to automatically identify and classify these entities within the texts. The labeled structure of the dataset facilitates the task of teaching models to distinguish between different types of relevant information in the bidding notices. The dataset follows the IOB format for named entity recognition, with entities labeled as either part of the object of the bid or the municipality of the managing unit.

bidCorpus_gold

This dataset consists of texts from the qualification section of bidding notices. Annotated by experts in public procurement, the dataset is multilabel and contains seven labels that indicate possible signs of fraud in public contracts.

  1. Certidão de Protesto: Verification of any protests in the company's name.
  2. Certificado de Boas Práticas: Assessment of adherence to recommended practices in the sector.
  3. Comprovante de Localização: Confirmation of the company's physical address.
  4. Idoneidade Financeira: Analysis of the company's financial health.
  5. Integralização de Capital: Verification of the company's capital stock integration.
  6. Licença Ambiental: Evaluation of compliance with environmental regulations.
  7. Limitação de Atestados: Verification of the minimum and maximum number of certificates required.

This dataset is used for training machine learning models to detect signs of fraud in public procurement processes. The multilabel structure allows the models to learn to identify multiple suspicious characteristics simultaneously, providing a valuable tool for the analysis and prevention of fraud in public contracts.

bidCorpus_object_similarity

This dataset is designed to assess text similarity in the "object" section of bidding notices by comparing pairs of distinct notices. Annotated by experts in public procurement, each entry consists of a pair of "object" sections labeled with:

  • 1: The sections are similar.
  • 0: The sections are not similar.

The dataset supports tasks such as document comparison, clustering, and retrieval. It provides a valuable resource for training and evaluating models on how effectively they can determine similarities between bidding notices.

The pairs are annotated with expert labels to ensure high-quality data, making this dataset ideal for developing and testing algorithms for text similarity analysis. It helps improve the efficiency and accuracy of managing and analyzing bidding documents.

bidCorpus_objects_correct_allowed

This dataset focuses on two classifications related to the "object" section of bidding notices:

  1. Object Classification: Determines whether a section is the "object" section of a bidding notice.
  2. Permissivity Classification: Assesses whether the object requires permissivity, meaning whether the contract involves areas such as the purchase of medications, cleaning services, or fuels, which might necessitate a certificate of location and an environmental license from regulatory institutions overseeing these activities.

The dataset provides labels for these classifications to support the analysis of compliance and requirements in bidding documents.

bidCorpus_objects_type

This dataset focuses on classifying the type of procurement found in the "object" section of bidding notices. Specifically, it categorizes the type of product or service being bid on into one of the following categories:

  • Consumables: Items that are used up or consumed during use, such as office supplies or food products.
  • Permanent Assets: Items with a longer lifespan that are intended for repeated use, such as machinery or equipment.
  • Services: Non-tangible activities provided to fulfill a need, such as consulting or maintenance services.
  • Engineering Works: Projects related to construction, infrastructure, or other engineering tasks.

The dataset provides labels for these classifications to assist in the analysis and organization of bidding documents, facilitating a better understanding of procurement types and aiding in the efficient management of bidding processes.

bidCorpus_qual_model

This dataset consists of texts from the qualification section of bidding notices and is annotated using a model trained on the original fraud detection dataset. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes.

  1. Certidão de Protesto: Verification of any protests in the company's name.
  2. Certificado de Boas Práticas: Assessment of adherence to recommended practices in the sector.
  3. Comprovante de Localização: Confirmation of the company's physical address.
  4. Idoneidade Financeira: Analysis of the company's financial health.
  5. Integralização de Capital: Verification of the company's capital stock integration.
  6. Licença Ambiental: Evaluation of compliance with environmental regulations.
  7. Limitação de Atestados: Verification of the minimum and maximum number of certificates required.

Unlike the expert-annotated previous dataset, this dataset has been annotated by a model trained on that data. This automated process ensures consistency and scalability while utilizing insights from the original expert annotations.

The dataset is intended for training and evaluating machine learning models to detect fraud in public procurement. The automated annotation enhances research and development in fraud detection, aiming to improve the accuracy and efficiency of identifying suspicious activities in bidding notices. Its multilabel structure supports the identification and classification of multiple fraud indicators simultaneously, aiding in the ongoing analysis and prevention of fraudulent practices in public contracts.

bidCorpus_qual_weak_sup

This dataset consists of texts from the qualification section of bidding notices and is annotated using weak supervision techniques, specifically through regular expressions. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes.

  1. Certidão de Protesto: Verification of any protests in the company's name.
  2. Certificado de Boas Práticas: Assessment of adherence to recommended practices in the sector.
  3. Comprovante de Localização: Confirmation of the company's physical address.
  4. Idoneidade Financeira: Analysis of the company's financial health.
  5. Integralização de Capital: Verification of the company's capital stock integration.
  6. Licença Ambiental: Evaluation of compliance with environmental regulations.
  7. Limitação de Atestados: Verification of the minimum and maximum number of certificates required.

Unlike the previous expert-annotated dataset, this dataset has been annotated using weak supervision techniques, specifically regular expressions. This approach provides a scalable method for labeling data by applying patterns to identify potential fraud indicators, although it may lack the precision of expert annotations.

The dataset is designed for training and evaluating machine learning models to detect fraud in public procurement. The use of weak supervision through regular expressions facilitates the creation of large annotated datasets, supporting research and development in fraud detection. The multilabel structure allows models to classify multiple fraud indicators simultaneously, improving the efficiency of identifying and preventing fraudulent practices in public contracts.

bidCorpus_synthetic

This dataset consists of texts from the qualification section of bidding notices and is annotated using a model trained on the original fraud detection dataset. It follows a multilabel format similar to the bidCorpus_gold dataset, with labels indicating possible signs of fraud in public procurement processes. This dataset underwent modifications to its keywords by incorporating synonyms to evaluate the model's accuracy in handling words different from those it was previously accustomed to.

  1. Certidão de Protesto: Verification of any protests in the company's name.
  2. Certificado de Boas Práticas: Assessment of adherence to recommended practices in the sector.
  3. Comprovante de Localização: Confirmation of the company's physical address.
  4. Idoneidade Financeira: Analysis of the company's financial health.
  5. Integralização de Capital: Verification of the company's capital stock integration.
  6. Licença Ambiental: Evaluation of compliance with environmental regulations.
  7. Limitação de Atestados: Verification of the minimum and maximum number of certificates required.

The dataset is intended for training and evaluating machine learning models to detect fraud in public procurement. Its multilabel structure supports the identification and classification of multiple fraud indicators simultaneously, aiding in the ongoing analysis and prevention of fraudulent practices in public contracts.

bidCorpus_sections_type

This dataset classifies different types of sections in bidding notices. The sections are categorized into the following labels:

  • Habilitação: Qualification section, where eligibility criteria and requirements are outlined.
  • Julgamento: Evaluation section, detailing the criteria and process for assessing bids.
  • Objeto: Object section, specifying the item or service being procured.
  • Outros: Other sections that do not fall into the categories above.
  • Credenciamento: Accreditation section, where the process for validating and registering vendors is described.

The dataset provides a systematic approach to categorize the various sections found in bidding notices, facilitating better organization and analysis of procurement documents.

bidCorpus_raw

This dataset consists of raw, unlabeled texts from sections of bidding notices. The sections included are:

  • Objeto: Describes the item or service being procured.
  • Julgamento: Outlines the criteria and process for evaluating bids.
  • Credenciamento: Details the procedures for vendor registration and validation.
  • Condições de Participação: Specifies the conditions required for participation in the bidding process.
  • Habilitação: Provides information on the qualifications and eligibility criteria for bidders.

This dataset offers a collection of unprocessed text from various sections of bidding notices, suitable for tasks such as text analysis, feature extraction, and the development of classification models.

Languages

We considered only datasets in Portuguese.

Dataset Structure

Data Instances

bidCorpus_NER_keyphrase

An example of 'train' looks as follows.

{
  "tokens": ["constitui", "objeto", "do", "presente", "edital", "a", "contratacao", "de", "empresa", "de", "engenharia", "para", "execucao", "da", "obra", "e", "/", "ou", "servico", "de", "elaboracao", "de", "plano", "diretor", "de", "arborizacao", "urbana", "de", "teresina", "-", "pi", ".", "a", "forma", "pela", "qual", "deverao", "ser", "executados", "os", "servicos", "licitados", "e", "as", "diversas", "obrigacoes", "dos", "licitantes", "e", "do", "adjudicatario", "do", "objeto", "desta", "licitacao", "estao", "registradas", "neste", "edital", ",", "no", "termo", "de", "referencia", "e", "minuta", "do", "contrato", "e", "demais", "anexos", "que", ",", "igualmente", ",", "integram", "as", "de", "informacoes", "sobre", "a", "licitacao", "."]
  "ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
}

bidCorpus_gold

An example of 'train' looks as follows.

{
  "text": ["para se habilitarem ao presente convite, os interessados deverao apresentar os documentos abaixo relacionados, nos termos dos artigos 27 a 31 e 32, paragrafo 1, da lei numero 666/93, atraves de seus representantes, no local, data e horario indicados no preambulo deste edital, em envelope inteiramente fechado, contendo em sua parte externa, alem da razao social e endereco da licitante, os seguintes dizeres: prefeitura municipal de angical ..."]
  "labels": "certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}

bidCorpus_object_similarity

An example of 'train' looks as follows.

{
  "nerObjeto1": ["execucao dos servicos de reforma e ampliacao da escola reunida francisco"],
  "nerObjeto2": ["execucao dos servicos de reforma da escola municipal"],
  "humanScore": 1.0,
  "bertscore_ner": 1
}

bidCorpus_objects_correct_allowed

An example of 'train' looks as follows.

{
  "text": ["A presente licitação tem por objeto, selecionar empresas do ramo pertinente, Fornecimento de Lanches, marmitas para atender necessidade das Secretarias e Programa do Município com entrega parcelada ..."],
  "corretude": 1,
  "permitido": 0
}

bidCorpus_objects_type

An example of 'train' looks as follows.

{
  "text": ["destina - se a presente licitacao a prestacao de servicos de pavimentacao em paralelepipedo, conforme especificacoes e quantidades constantes do anexo <numero> sao ..."],
  "label": 0
}

bidCorpus_qual_model

An example of 'train' looks as follows.

{
  "text": ["regras gerais. 1 os documentos de habilitacao deverao ser enviados concomitantemente com o envio da proposta, conforme item 9 deste edital 2 havendo a necessidade de envio de documentos de habilitacao complementares ..."],
  "certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}

bidCorpus_qual_weak_sup

An example of 'train' looks as follows.

{
  "text": ["os licitantes encaminharao, exclusivamente por meio do sistema, concomitantemente com os documentos de habilitacao. exigidos no edital, proposta com a descricao ..."],
  "certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}

bidCorpus_synthetic

An example of 'train' looks as follows.

{
  "text": ["os licitantes encaminharao, exclusivamente por meio do sistema, concomitantemente com os documentos de habilitacao. exigidos no edital, proposta com a descricao ..."],
  "certidao_protesto": 0, "certificado_boas_praticas": 0, "comprovante_localizacao": 0, "idoneidade_financeira": 0, "integralizado": 0, "licenca_ambiental": 0, "n_min_max_limitacao_atestados": 0
}

bidCorpus_sections_type

An example of 'train' looks as follows.

{
  "text": ["IMPUGNAÇÃO DO ATO CONVOCATÓRIO 5.1 No prazo de até 03 (três) dias úteis, antes da data fixada para abertura da Sessão Pública, qualquer pessoa poderá solicitar esclarecimentos e providências sobre o ato convocatório deste pregão ..."],
  "label": "outros"
}

bidCorpus_raw

An example of 'train' looks as follows.

{
  "ID-LICITACAO": 910809.0,
  "ID-ARQUIVO": 745202022.0,
  "OBJETO": "Artigo 20 Definição do Objeto\n1 – O objeto da licitação deve ser definido pela unidade ...",
  "JULGAMENTO":"Artigo 46 Disposições gerais 1 – As licitações podem adotar os modos de disputa aberto, fechado ou combinado, que deve ...",
  "CONDICAO_PARTICIPACAO": "5.1 - A participação no certame se dará por meio da digitação da senha pessoal e intransferível do representante ...",
  "HABILITACAO": "6.1 - Os proponentes encaminharão, exclusivamente por meio do sistema eletrônico, os documentos de habilitação exigidos no edital, proposta ...",
  "CREDENCIAMENTO": "4.1 - O credenciamento é o nível básico do registro cadastral no SICAF, que permite a participação dos interessados na modalidade licitatória ..."
}

Data Fields

bidCorpus_NER_keyphrase

  • tokens: a list of string features (list of tokens in a text).
  • ner_tags: a list of classification labels (a list of named entity recognition tags).
    List of NER tags `O`, `B-LOCAL`, `I-LOCAL`, `B-OBJETO`, `I-OBJETO`

bidCorpus_gold

  • text: a string feature (string of factual paragraphs from the case description).
  • certidao_protesto: a 'int64` feature (indicates the presence or absence of a protest certificate).
  • certificado_boas_praticas: a 'int64` feature (indicates the presence or absence of a good practices certificate).
  • comprovante_localizacao: a 'int64` feature (indicates the presence or absence of a location proof).
  • idoneidade_financeira: a 'int64` feature (indicates the presence or absence of financial soundness).
  • integralizado: a 'int64` feature (indicates the presence or absence of full completion).
  • licenca_ambiental: a 'int64` feature (indicates the presence or absence of an environmental license).
  • n_min_max_limitacao_atestados: a 'int64` feature (indicates the presence or absence of limitation of certificates).

bidCorpus_object_similarity

  • objeto1: a string feature (first object for comparison).
  • nerObjeto1: a string feature (NER tags for the first object).
  • objeto2: a string feature (second object for comparison).
  • nerObjeto2: a string feature (NER tags for the second object).
  • humanScore: a float64 feature (human-provided similarity score).
  • nerObjeto1_words: a int64 feature (number of words in the first object with NER tags).
  • objeto1_words: a int64 feature (number of words in the first object).
  • percentual_words: a float64 feature (percentage of similar words).
  • nerObjeto2_words: a 'int64` feature (number of words in the second object with NER tags).
  • objeto2_words: a int64 feature (number of words in the second object).
  • bertscore_ner: a 'int64` feature (BERT score for NER).
  • bertscore_objs: a 'int64` feature (BERT score for objects).

bidCorpus_objects_correct_allowed

  • text: a list of string features (list of factual paragraphs from the case description).
  • corretude: a list of int64 features (correctness score).
  • permitido: a list of int64 features (allowed score).

bidCorpus_objects_type

  • text: a list of string features (list of factual paragraphs from the case description).
  • label: a list of int64 features (classification labels for object types).

bidCorpus_qual_model

  • text: a list of string features (list of factual paragraphs from the case description).
  • certidao_protesto: a list of int64 features (presence or absence of protest certificate).
  • certificado_boas_praticas: a list of int64 features (presence or absence of good practices certificate).
  • comprovante_localizacao: a list of int64 features (presence or absence of location proof).
  • idoneidade_financeira: a list of int64 features (presence or absence of financial soundness).
  • integralizado: a list of int64 features (presence or absence of full completion).
  • licenca_ambiental: a list of int64 features (presence or absence of environmental license).
  • n_min_max_limitacao_atestados: a list of int64 features (presence or absence of limitation of certificates).

bidCorpus_qual_weak_sup

  • text: a list of string features (list of factual paragraphs from the case description).
  • certidao_protesto: a list of int64 features (presence or absence of protest certificate).
  • certificado_boas_praticas: a list of int64 features (presence or absence of good practices certificate).
  • comprovante_localizacao: a list of int64 features (presence or absence of location proof).
  • idoneidade_financeira: a list of int64 features (presence or absence of financial soundness).
  • integralizado: a list of int64 features (presence or absence of full completion).
  • licenca_ambiental: a list of int64 features (presence or absence of environmental license).
  • n_min_max_limitacao_atestados: a list of int64 features (presence or absence of limitation of certificates).

bidCorpus_synthetic

  • text: a list of string features (list of factual paragraphs from the case description).
  • certidao_protesto: a list of int64 features (presence or absence of protest certificate).
  • certificado_boas_praticas: a list of int64 features (presence or absence of good practices certificate).
  • comprovante_localizacao: a list of int64 features (presence or absence of location proof).
  • idoneidade_financeira: a list of int64 features (presence or absence of financial soundness).
  • integralizado: a list of int64 features (presence or absence of full completion).
  • licenca_ambiental: a list of int64 features (presence or absence of environmental license).
  • n_min_max_limitacao_atestados: a list of int64 features (presence or absence of limitation of certificates).

bidCorpus_sections_type

  • text: a list of string features (list of factual paragraphs from the case description).
  • label: a list of string features (classification labels for sections types).

bidCorpus_raw

  • ID-LICITACAO: a list of float64 features (auction ID).
  • ID-ARQUIVO: a list of float64 features (file ID).
  • OBJETO: a list of string features (object of the auction).
  • JULGAMENTO: a list of string features (judgment details).
  • CONDICAO_PARTICIPACAO: a list of string features (participation conditions).
  • HABILITACAO: a list of string features (qualification details).
  • CREDENCIAMENTO: a list of string features (accreditation details).

Data Splits

Dataset Training Development Test Total
bidCorpus_NER_keyphrase 1.632 204 204 2.040
bidCorpus_gold 1.454 182 182 1.818
bidCorpus_object_similarity 1.403 175 176 1.754
bidCorpus_objects_correct_allowed 1.089 136 137 1.362
bidCorpus_objects_type 1.709 214 214 2.137
bidCorpus_qual_model 177.133 22.142 22.142 221.417
bidCorpus_qual_weak_sup 177.133 22.142 22.142 221.417
bidCorpus_synthetic 1.454 182 182 1.818
bidCorpus_sections_type 1.224 153 153 1.530

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed

Annotations

Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

More Information Needed

Dataset Curators

Licensing Information

More Information Needed

Citation Information

Contributions