url
stringlengths 13
5.21k
| text
stringlengths 100
512
| date
stringlengths 19
19
| metadata
stringlengths 1.05k
1.1k
| token_length
int64 11
539
|
---|---|---|---|---|
https://discourse.cataclysmdda.org/t/batch-crafting-seems-broken/19618 | # Batch crafting seems broken
#1
Not that I’m complaining but something is off with batch crafting.
45 mins to do 14 batches of pemmican, should of taken 10hour 30 mins.
1 hour to do 3 short ropes that should of taken 4 hours and 30 mins
edit: 1 hour 30mins I guess since the log isn’t that precise after 1 hour.
#2
Try to update to the last experimental, I think a fix got pushed recently.
#3
Just noticed my bad, I haven’t saved yet so I’ll be able to fix it so I’m not getting free time too. | 2019-04-25 16:45:20 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8303856253623962, "perplexity": 3574.5522545392096}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-18/segments/1555578727587.83/warc/CC-MAIN-20190425154024-20190425180024-00090.warc.gz"} | 135 |
https://gmw.globalmathproject.org/station/I5SO | 05 530 383
### Question 1
With pencil and paper, use dots-and-boxes to compute $2130 \div 10$.
Can you explain why, with unexplosions, the answer will be $213$? Do look for groups of ten in your picture.
Most people say that to divide a number that ends with zero by ten, just cross off the final zero from the number. Can you explain now why that action is sure to lead to the correct answer?
### Let's Go Wild!
Register NOW and unlock all islands! | 2021-03-08 06:22:55 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 2, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7508625984191895, "perplexity": 1279.747906271237}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-10/segments/1614178381989.92/warc/CC-MAIN-20210308052217-20210308082217-00283.warc.gz"} | 115 |
https://artofproblemsolving.com/wiki/index.php?title=1991_AHSME_Problems/Problem_1&diff=prev&oldid=56404 | # Difference between revisions of "1991 AHSME Problems/Problem 1"
If for any three distinct numbers $a$, $b$, and $c$ we define $f(a,b,c)=\frac{c+a}{c-b}$, then $f(1,-2,-3)$ is
(A) $-2$ (B) $-\frac{2}{5}$ (C) $-\frac{1}{4}$ (D) $\frac{2}{5}$ (E) $2$ The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. | 2021-09-17 03:35:19 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 10, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.366808146238327, "perplexity": 409.5872373130637}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-39/segments/1631780054023.35/warc/CC-MAIN-20210917024943-20210917054943-00633.warc.gz"} | 126 |
http://matematika.reseneulohy.cz/3172/attaining-a-maximum | ## Attaining a maximum
The function $$f\colon \space \mathbb R^2 \to \mathbb R$$ is defined as $f(x, y) = \frac{1}{x^2 + y^2 + (x\cos(y) - 2x - 3e^y)^2 + 2}.$
Prove that $$f$$ attains its maximum value on $$\mathbb R$$. | 2022-05-26 13:33:10 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9392158389091492, "perplexity": 161.30394625316328}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-21/segments/1652662606992.69/warc/CC-MAIN-20220526131456-20220526161456-00716.warc.gz"} | 93 |
http://flippedcoin.info/reference/find_congruent_models.html | Find congruent models to a simple binomial model This will find the parameter values for other models that equal the likelihood for a simple binomial model. This may not be the MLE for these other models
find_congruent_models(
) | 2023-03-30 15:02:06 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4174348711967468, "perplexity": 397.327130220166}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-14/segments/1679296949331.26/warc/CC-MAIN-20230330132508-20230330162508-00390.warc.gz"} | 49 |
https://www.esaral.com/q/using-binomial-theorem-determine-which-number-is-larger-1-2-56322 | # Using binomial theorem determine which number is larger (1.2)
Question:
Using binomial theorem determine which number is larger (1.2)4000 or 800?
Solution:
We have:
$(1.2)^{4000}=(1+0.2)^{4000}$
$={ }^{4000} C_{0}+{ }^{4000} C_{1} \times(0.2)^{1}+{ }^{4000} C_{2} \times(0.2)^{2}+\ldots{ }^{4000} C_{4000} \times(0.2)^{4000}$
$=1+4000 \times 0.2+$ other positive terms
$=1+800+$ other positive terms
$=801+$ other positive terms
$\because 801>800$
Hence, (1.2)4000 is greater than 800 | 2023-03-27 03:03:02 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7975769639015198, "perplexity": 5499.247392189353}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-14/segments/1679296946637.95/warc/CC-MAIN-20230327025922-20230327055922-00715.warc.gz"} | 201 |
http://ayotzinapasomostodos.com/lib/convergent_series.htm | # convergent series
Convergent Series
An infinite series for which the sequence of partial sumsconverges. For example, the sequence of partial sums of the series0.9 + 0.09 + 0.009 + 0.0009 + ··· is 0.9, 0.99, 0.999, 0.9999, .... This sequence converges to 1, so the series 0.9 + 0.09 + 0.009 + 0.0009 + ··· is convergent. | 2019-10-19 09:36:25 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9939625859260559, "perplexity": 295.78091888762117}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-43/segments/1570986692723.54/warc/CC-MAIN-20191019090937-20191019114437-00471.warc.gz"} | 118 |
https://homework.cpm.org/category/CON_FOUND/textbook/a2c/chapter/3/lesson/3.2.1/problem/3-99 | Home > A2C > Chapter 3 > Lesson 3.2.1 > Problem3-99
3-99.
Show two steps to simplify each of the following expressions, and then calculate the value of each expression.
1. $64^{2/3}$
$\left(64^{1/3}\right)^2$
$4^2$
$16$
1. $25^{5/2}$
See part (a).
1. $81^{7/4}$
See part (a). | 2021-09-20 19:25:28 | {"extraction_info": {"found_math": true, "script_math_tex": 6, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9842391014099121, "perplexity": 6082.651440023174}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-39/segments/1631780057091.31/warc/CC-MAIN-20210920191528-20210920221528-00342.warc.gz"} | 114 |
https://ch.gateoverflow.in/17/gate-chemical-2018-question-7 | Economy of evaporators used for concentrating sugarcane juice is
1. $\frac{kg\:of\:concentrated\:juice\:produced}{kg\:of\:steam\:supplied}$
2. $\frac{kg\:of\:steam\:supplied}{kg\:of\:sugarcane\:juice\:fed}$
3. $\frac{kg\:of\:water\:vaporized}{kg\:of\:steam\:supplied}$
4. $\frac{kg\:of\:sugarcane\:juice\:fed}{kg\:of\:water\:vaporized}$ | 2022-09-29 02:16:31 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5128834247589111, "perplexity": 13635.69567872043}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-40/segments/1664030335303.67/warc/CC-MAIN-20220929003121-20220929033121-00600.warc.gz"} | 126 |
https://www.gradesaver.com/textbooks/math/algebra/introductory-algebra-for-college-students-7th-edition/chapter-5-section-5-1-adding-and-subtracting-polynomials-exercise-set-page-348/3 | ## Introductory Algebra for College Students (7th Edition)
$x^{3}$ - 2x there are two terms, the polynomial is a binomial The degree of a polynomial is the greatest degree of all the terms of the polynomial so degree of the first term is 3 | 2018-06-24 15:06:24 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7267779111862183, "perplexity": 244.23783811077584}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-26/segments/1529267866965.84/warc/CC-MAIN-20180624141349-20180624161349-00395.warc.gz"} | 56 |
https://forum.math.toronto.edu/index.php?PHPSESSID=ifaosk7dpdv9uq1eh9qbp8im52&topic=2317.0;wap2 | MAT334--2020S > Quiz 2
TUT0301 Quiz2
(1/1)
Aoqi Xie:
Question: Find the limit of the function at the given point, or explain why it doesn't exsit.
f(z)=(1−Imz)-1 at z0=8 and then at z0=8+i.
* When z0 = 8, $$\lim_{z\to 8}f(z)=\lim_{z\to 8}(1- Im[8])^{-1} = \lim_{z\to 8}\frac{1}{1-0} = 1$$
* When z0 = 8+i, $$\lim_{z\to 8+i}f(z)=\lim_{z\to 8+i}(1- Im[8+i])^{-1} = \lim_{z\to 8+i}\frac{1}{1-1}$$, since the denominator cannot be zero, so the limit when z0 = 8+i does not exist. | 2021-10-22 10:51:18 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9502779245376587, "perplexity": 1661.5720258271326}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-43/segments/1634323585504.90/warc/CC-MAIN-20211022084005-20211022114005-00150.warc.gz"} | 221 |
https://www.gradesaver.com/textbooks/math/algebra/college-algebra-11th-edition/chapter-1-section-1-1-linear-equations-1-1-exercises-page-85/37 | ## College Algebra (11th Edition)
$5x=4x$ By subtracting 4x, you're left with the equation x=0 which also happens to be a solution (i.e. it satisfies the original equation). $x=0$ We can check this by replacing 0 with the variables of the original equation. $5(0)=4(0)$ The equation yields a true statement (0=0),and so we know that 0 is a correct solution. This also shows that the equation is a conditional equation which also refutes the student's original reasoning. $0=0$ | 2018-09-24 07:51:01 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8214144706726074, "perplexity": 328.4262619360622}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-39/segments/1537267160233.82/warc/CC-MAIN-20180924070508-20180924090908-00058.warc.gz"} | 126 |
https://www.transtutors.com/questions/the-inventory-valuation-method-that-tends-to-smooth-out-erratic-changes-in-costs-is--109730.htm | # The inventory valuation method that tends to smooth out erratic changes in costs is: 1 answer below »
a. WIFO
b. Weighted average
c. Specific identification
d. FIFO
e. LIFO
Option “B” Weighted Average method is the correct choice. The average cost per unit is calculated based on total units and the total cost of goods available under the Weighted Average method....
Looking for Something Else? Ask a Similar Question | 2021-07-27 08:25:56 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8844112157821655, "perplexity": 2177.3167791873875}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-31/segments/1627046153223.30/warc/CC-MAIN-20210727072531-20210727102531-00305.warc.gz"} | 93 |
https://realanswers-ph.com/math/what-is-the-least-four-digit-even-n-2383863 | , 28.10.2019 15:29 elaineeee
# What is the least four digit even number with no reapeted digits
### Another question on Math
Math, 28.10.2019 17:29
What is the quotient of 3 3/4 and 2 2/5
Math, 28.10.2019 18:29
$${6x}^{2} \sqrt{x} - 2x \sqrt{ {x}^{3} }$$ | 2023-03-31 22:27:37 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5649399757385254, "perplexity": 10927.587203388932}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-14/segments/1679296949689.58/warc/CC-MAIN-20230331210803-20230401000803-00523.warc.gz"} | 113 |
https://brilliant.org/problems/not-what-it-seems/ | # Not What It Seems
Geometry Level 2
2 circles intersect at $A$ and $B$.
The tangent to the first circle at $A$ intersects the second circle at $C$.
The tangent to the second circle at $A$ intersects the first circle at $D$.
If $B, C, D$ lie on a line, what can we say about $\angle DAC$?
× | 2020-07-05 04:47:05 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 10, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.901618242263794, "perplexity": 219.65890272528182}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-29/segments/1593655886865.30/warc/CC-MAIN-20200705023910-20200705053910-00402.warc.gz"} | 85 |
http://www.numericalmethod.com/javadoc/suanshu/com/numericalmethod/suanshu/stats/random/rng/univariate/beta/package-summary.html | # Package com.numericalmethod.suanshu.stats.random.rng.univariate.beta
• Interface Summary
Interface Description
RandomBetaGenerator
This is a random number generator that generates random deviates according to the Beta distribution.
• Class Summary
Class Description
Cheng1978
Cheng, 1978, is a new rejection method for generating beta variates.
VanDerWaerden1969 Deprecated
Cheng1978 is a much better algorithm. | 2018-01-23 08:04:35 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.31868693232536316, "perplexity": 4000.4989790601317}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-05/segments/1516084891791.95/warc/CC-MAIN-20180123072105-20180123092105-00006.warc.gz"} | 97 |
https://notepad.mmakowski.com/ | One way would be to consider the true mislabelling rates to follow a certain probability distribution, and caculate the posterior based on the available evidence. Beta distribution again looks like a good candidate, seeing that it can be used to describe the probability of success – “success” meaning a given example being mislabelled, in our case. Again, we will assume uninformative prior, i.e. $$Beta(1,1)$$. | 2018-08-17 19:01:14 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7190655469894409, "perplexity": 369.51409258903976}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-34/segments/1534221212768.50/warc/CC-MAIN-20180817182657-20180817202657-00330.warc.gz"} | 89 |
https://www.gradesaver.com/textbooks/math/calculus/calculus-3rd-edition/chapter-12-parametric-equations-polar-coordinates-and-conic-sections-12-1-parametric-equations-preliminary-questions-page-602/7 | ## Calculus (3rd Edition)
(a) The derivative $\frac{d x}{d t}$ is the horizontal rate of change with respect to time. (b) The derivative $\frac{d y}{d t}$ is the vertical rate of change with respect to time. (c) The derivative $\frac{d y}{d x}$ is the slope of the tangent line to the curve. | 2022-08-09 07:38:50 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9074308276176453, "perplexity": 97.50542084766386}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-33/segments/1659882570913.16/warc/CC-MAIN-20220809064307-20220809094307-00447.warc.gz"} | 82 |
https://www.sarthaks.com/399838/what-is-the-value-of-young-s-modulus-for-a-perfectly-rigid-body | # What is the value of youngs modulus for a perfectly rigid body?
22 views
in Physics
What is the value of youngs modulus for a perfectly rigid body?
+1 vote
by (69.6k points)
selected
Infinity value of young`s modulus for a perfectly rigid body. | 2020-07-12 12:08:54 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.27572962641716003, "perplexity": 3157.827800424468}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-29/segments/1593657138718.61/warc/CC-MAIN-20200712113546-20200712143546-00359.warc.gz"} | 61 |
https://www.ies.org/definitions/air-mass-optical-air-mass/ | # air mass (optical air mass)
[10.5.10.8] Ratio of the path length of radiation through the atmosphere (lm) at any given angle, Z degrees, to the sea level path length toward the zenith (lz).*
$AM = l_{m}/l_{z} \cong \sec Z, or 1/\cos Z, for Z \leq 62^{\circ}$
Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, ASTM E490-00a. West Conshohocken, PA: ASTM International; 2014.
« Back to Definitions Index | 2020-01-20 16:27:48 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 1, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7667766809463501, "perplexity": 13297.988567814615}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-05/segments/1579250598800.30/warc/CC-MAIN-20200120135447-20200120164447-00485.warc.gz"} | 133 |
https://www.esaral.com/q/show-that-the-function-53362 | # Show that the function
Question:
Show that the function $f$ given by $f(x)=10^{x}$ is increasing for all $x$ ?
Solution:
we have,
$f(x)=10^{x}$
$\therefore f^{\prime}(x)=10^{x} \log 10$
Now,
$X \in R$
$\Rightarrow 10^{x}>0$
$\Rightarrow 10^{x} \log 10>0$
$\Rightarrow f^{\prime}(x)>0$
Hence, $f(x)$ in an increasing function for all $x$ | 2023-02-06 22:59:13 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4828788638114929, "perplexity": 286.9213226405183}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-06/segments/1674764500365.52/warc/CC-MAIN-20230206212647-20230207002647-00343.warc.gz"} | 123 |
https://brilliant.org/problems/the-equivalence-principle/ | The Equivalence Principle
Which of the following is the most correct statement of the equivalence principle?
× | 2019-10-21 21:40:24 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 1, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.26935961842536926, "perplexity": 763.0358842783146}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-43/segments/1570987787444.85/warc/CC-MAIN-20191021194506-20191021222006-00473.warc.gz"} | 20 |
https://brilliant.org/problems/i-dont-even-have-this-cube/ | # I don't even have this cube!
Computer Science Level pending
This is a $$\displaystyle 4\times 4\times 4$$ Rubik's cube. It has $$\displaystyle 401 196 841 564 901 869 874 093 974 498 574 336 000 000 000$$ combinations! It has 9 trailing zeroes.
Find the number of trailing zeroes in the number of combinations of the $$\displaystyle 25\times25\times25$$ Rubik's cube.
Details:
• Do not disassemble the cube, it's expensive.
• Calculators are allowed.
× | 2018-01-18 06:20:06 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5858899354934692, "perplexity": 1996.7161196340899}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-05/segments/1516084887067.27/warc/CC-MAIN-20180118051833-20180118071833-00332.warc.gz"} | 135 |
https://socratic.org/questions/why-can-nh-4-form-an-ionic-bond-with-cl | # Why can NH_4^+ form an ionic bond with Cl^-?
Ions of opposite charge will form an ionic bond. Since $\text{NH"_4^+}$ and $\text{Cl"^(-)}$ have opposite charges, they will combine through ionic bonding to produce the neutral ionic compound $\text{NH"_4"Cl}$, which is ammonium chloride. | 2019-08-17 22:36:45 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 3, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8072329163551331, "perplexity": 1653.8774136199415}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-35/segments/1566027313501.0/warc/CC-MAIN-20190817222907-20190818004907-00111.warc.gz"} | 82 |
https://www.albert.io/ie/sat-math-1-and-2-subject-test/ambiguous-case-scenario | Free Version
Easy
# Ambiguous Case Scenario
SATSTM-WQJWVX
Which one of the following triangle scenarios is the Ambiguous Case?
A
$\text{SSS}$
B
$\text{AAA}$
C
$\text{SSA}$
D
$\text{SAS}$
E
$\text{ASA}$ | 2017-01-18 06:07:00 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8813777565956116, "perplexity": 13144.463937199336}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-04/segments/1484560280239.54/warc/CC-MAIN-20170116095120-00366-ip-10-171-10-70.ec2.internal.warc.gz"} | 75 |
https://cracku.in/6-aei-bfj-cgk-x-2012-rrb-ahmedabad | ### 2012 RRB Ahmedabad Question 6
Instructions
A sequence is given in which one term (or more terms) is missing. From the given options, choose the correct one that can complete the sequence--
Question 6 | 2020-08-09 07:09:54 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.874174952507019, "perplexity": 3122.346426913435}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-34/segments/1596439738425.43/warc/CC-MAIN-20200809043422-20200809073422-00216.warc.gz"} | 48 |
https://proofwiki.org/wiki/Definition:Constant_(Category_Theory) | # Definition:Constant (Category Theory)
## Definition
Let $\mathbf C$ be a metacategory, and let $1$ be a terminal object of $\mathbf C$.
A constant of $\mathbf C$ is a morphism $f: 1 \to C$ of $\mathbf C$ which has $1$ as its domain.
## Also known as
Among the various other names for this concept are global element (of $C$) and point (of $C$).
Compare variable element. | 2022-01-24 23:01:09 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8868955969810486, "perplexity": 771.5601550040665}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-05/segments/1642320304686.15/warc/CC-MAIN-20220124220008-20220125010008-00093.warc.gz"} | 109 |
https://mathsgee.com/2059/what-the-formula-finding-average-mean-binomial-distribution | MathsGee is Zero-Rated (You do not need data to access) on: Telkom |Dimension Data | Rain | MWEB
0 like 0 dislike
516 views
What is the formula of finding the average (mean) of a binomial distribution?
| 516 views
0 like 0 dislike
The formula for the mean of binomial distribution is: μ = n *p Where “n” is the number of trials and “p” is the probability of success.
by Wooden (150 points)
0 like 0 dislike | 2021-06-22 23:16:54 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8382017016410828, "perplexity": 4905.951585036619}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-25/segments/1623488525399.79/warc/CC-MAIN-20210622220817-20210623010817-00317.warc.gz"} | 113 |
https://socratic.org/questions/590a40087c01491a7ff53dfe | # What is the equation of a parabola, whose vertex is (0,0) and directrix is x=-3?
Equation of parabola is ${y}^{2} = 12 x$
As directrix is $x = - 3$ and vertex is $\left(0 , 0\right)$, the equation is of type ${y}^{2} = 4 a x$
In such an equation of parabola, directrix is $x = - a$. Hence $a = 3$ and equation of parabola is ${y}^{2} = 12 x$ | 2019-09-16 20:39:47 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 7, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8110027313232422, "perplexity": 273.33250666264723}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-39/segments/1568514572934.73/warc/CC-MAIN-20190916200355-20190916222355-00076.warc.gz"} | 130 |
https://www.gradesaver.com/textbooks/math/precalculus/precalculus-6th-edition-blitzer/chapter-6-review-exercises-page-798/44 | Precalculus (6th Edition) Blitzer
$(x-1.5)^2+y^2=2.25$ See graph.
Step 1. Multiply the equation with $r$; we have $r^2=3r\ cos\theta$. Step 2. Using $r^2=x^2+y^2$ and $r\ cos\theta=x$, we have $x^2+y^2=3x$ which gives $x^2+y^2-3x=0$ and $(x-1.5)^2+y^2=1.5^2$ or $(x-1.5)^2+y^2=2.25$ Step 3. We can identify the above equation as a circle with center $(1.5,0)$ and radius $r=1.5$ Step 4. See graph. | 2021-06-24 18:40:59 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9448428750038147, "perplexity": 119.96246167755493}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-25/segments/1623488556482.89/warc/CC-MAIN-20210624171713-20210624201713-00406.warc.gz"} | 183 |
http://semantic-portal.net/concept:1794 | # The ::selection
//the following example makes the selected text red on a yellow background:
::selection {
color: red;
background: yellow;
}
Matches the portion of an element that is selected by a user.
The following CSS properties can be applied to ::selection: color, background, cursor, and outline.
The ::selection
## The ::selection — Structure map
Clickable & Draggable! | 2021-09-17 10:51:18 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.3852325677871704, "perplexity": 13935.79402931942}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-39/segments/1631780055632.65/warc/CC-MAIN-20210917090202-20210917120202-00417.warc.gz"} | 81 |
https://www.khanacademy.org/math/geometry-home/similarity/solving-problems-with-similar-and-congruent-triangles/e/solving-problems-with-similar-and-congruent-triangles | # Use similar & congruent triangles
Solve geometry problems with various polygons by using all you know about similarity and congruence.
You might need: Calculator
### Problem
In the diagram below, start overline, R, A, end overline is parallel to start overline, E, T, end overline.
Find the length of start overline, S, T, end overline. | 2016-09-25 02:10:43 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 11, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 2, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4207695424556732, "perplexity": 12077.28506554902}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-40/segments/1474738659753.31/warc/CC-MAIN-20160924173739-00254-ip-10-143-35-109.ec2.internal.warc.gz"} | 83 |
http://tex.stackexchange.com/tags/unicode/info | # Tag Info
is for questions about Unicode (an international standard for character encoding) and its implementations. XeTeX and LuaTeX provide Unicode support, thus ConTeXt as well if using one of these engines. For LaTeX, the UTF-8 implementation is the most common, provided by the `inputenc` package:
``````\usepackage[utf8]{inputenc} | 2016-05-28 20:23:17 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9568364024162292, "perplexity": 7444.908133745888}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-22/segments/1464049278091.17/warc/CC-MAIN-20160524002118-00049-ip-10-185-217-139.ec2.internal.warc.gz"} | 79 |
http://projecteuclid.org/euclid.hha | ## Homology, Homotopy and Applications
Homology, Homotopy and Applications (HHA) is a fully refereed international journal dealing with homology and homotopy in algebra and topology and their applications to the mathematical sciences.
The Taylor towers for rational algebraic {$K$}-theory and Hochschild homologyVolume 4, Number 1 (2002)
Classification of di-embeddings of the $n$-cube into $\mathbb {R}^n$Volume 9, Number 1 (2007) | 2014-08-01 13:54:00 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6102442145347595, "perplexity": 3693.3884118964297}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2014-23/segments/1406510274987.43/warc/CC-MAIN-20140728011754-00138-ip-10-146-231-18.ec2.internal.warc.gz"} | 112 |
http://mathoverflow.net/revisions/48814/list | My favorite example from algebraic topology is Rene Thom's work on cobordism theory. The problem of classifying manifolds up to cobordism looks totally intractable at first glance. In low dimensions ($0,1,2$), it is easy, because manifolds of these dimensions are completely known. With hard manual labor, one can maybe treat dimensions 3 and 4. But in higher dimensions, there is no chance to proceed by geometric methods. | 2013-05-24 17:50:05 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6876145601272583, "perplexity": 349.05478410220695}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2013-20/segments/1368704933573/warc/CC-MAIN-20130516114853-00034-ip-10-60-113-184.ec2.internal.warc.gz"} | 97 |
https://ec.gateoverflow.in/3144/gate-ece-2000-question-2-2 | 18 views
Use the data of the figure. The current $i$ in the circuit of the figure is
1. $-2 \mathrm{~A}$
2. $2 \mathrm{~A}$
3. $-4 \mathrm{~A}$
4. $+4 \mathrm{~A}$ | 2022-12-09 11:33:23 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6955088973045349, "perplexity": 261.48034664351627}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-49/segments/1669446711396.19/warc/CC-MAIN-20221209112528-20221209142528-00687.warc.gz"} | 69 |
https://brilliant.org/problems/circular-motion-without-physics/ | Circular Motion without Physics
Geometry Level 5
Let $$ABC$$ be a triangle. Let $$I$$ be its incenter. Let $$L, M, N$$ be the circumcenters of triangles $$BIC, AIC, AIB$$, respectively. What is the sum of the powers of $$L, M, N$$ with respect to the circumcircle of $$\triangle ABC$$?
Note:The power of point P to circle $$\omega$$ with radius $$r$$ and center $$O$$ is $$OP^2 - r^2$$.
× | 2018-01-21 10:53:09 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8669934868812561, "perplexity": 107.2209913785}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-05/segments/1516084890514.66/warc/CC-MAIN-20180121100252-20180121120252-00671.warc.gz"} | 116 |
http://clay6.com/qa/6436/in-a-set-a-if-a-1-a-2-in-r-rightarrow-a-2-a-1-in-r-for-a-1-a-2-in-a-then-wh | Browse Questions
# In a set $A$, if $(a_1,a_2) \in R\;\Rightarrow\; (a_2,a_1)\in R \; for \;a_1,a_2 \in A$, then what is the relation $R$ called?
Can you answer this question?
ANSWER: A relation R in a set A is called $\mathbf{symmetric}$, if $(a_1,a_2) \in R\;\Rightarrow\; (a_2,a_1)\in R \; for \;a_1,a_2 \in A$
answered Mar 8, 2013 | 2017-06-28 21:05:00 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9901831150054932, "perplexity": 1559.2242032113686}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-26/segments/1498128323801.5/warc/CC-MAIN-20170628204133-20170628224133-00364.warc.gz"} | 140 |
https://brilliant.org/problems/is-it-a-factor/ | # Is it a factor?
Algebra Level 2
If $f(x) = x^3 + 3x^2 - 5x + 2$, is $x - 2$ a factor of $f(x)$?
× | 2021-06-20 14:01:36 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 3, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.3450779318809509, "perplexity": 2995.2931946369486}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-25/segments/1623487662882.61/warc/CC-MAIN-20210620114611-20210620144611-00268.warc.gz"} | 51 |
https://www.gradesaver.com/textbooks/math/applied-mathematics/elementary-technical-mathematics/chapter-1-section-1-8-multiplication-and-division-of-fractions-exercise-page-49/69 | ## Elementary Technical Mathematics
given a $\frac{1}{20}$ acre plot produces 448 lb shelled corn Therefore we need to find the yield in bushels per acre first convert the weight into bu = 448 lb $\div$ 56 = 8 bu Now the yield = 8 bu $\div$ $\frac{1}{20}$ 8 bu x 20 = 160 bu/acre | 2021-03-01 20:14:08 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4392932653427124, "perplexity": 3629.4245552133257}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-10/segments/1614178362899.14/warc/CC-MAIN-20210301182445-20210301212445-00237.warc.gz"} | 83 |
http://yifanqian.com/publication/qian-2019-quantifying/ | # Quantifying the alignment of graph and features in deep learning
Type
Publication
arXiv preprint arXiv:1905.12921 | 2020-10-31 15:56:00 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9418148994445801, "perplexity": 5477.39920986564}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 5, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-45/segments/1603107919459.92/warc/CC-MAIN-20201031151830-20201031181830-00141.warc.gz"} | 31 |
http://mathhelpforum.com/calculus/15666-exponential-integral.html | # Math Help - exponential integral
1. ## exponential integral
not quite sure how to do this one:
$\int^2_1 e^{lnu}\frac{1}{u}du$
2. Originally Posted by viet
not quite sure how to do this one:
$\int^2_1 e^{lnu}\frac{1}{u}du$
substitution. let t = ln(u)
3. Note,
$e^{\ln u}=u$
So,
$e^{\ln u}\cdot \frac{1}{u} = \frac{u}{u}=1$
4. Originally Posted by ThePerfectHacker
Note,
$e^{\ln u}=u$
So,
$e^{\ln u}\cdot \frac{1}{u} = \frac{u}{u}=1$
yeah, i missed that. thanks | 2014-07-25 16:05:12 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 6, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.988271176815033, "perplexity": 6166.970470659348}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2014-23/segments/1405997894319.36/warc/CC-MAIN-20140722025814-00158-ip-10-33-131-23.ec2.internal.warc.gz"} | 180 |
https://socratic.org/questions/how-do-you-solve-2-5n-5-2-75 | # How do you solve 2^(5n-5)+2=75?
Sep 12, 2016
${2}^{5 n - 5} = 73$
$\log \left({2}^{5 n - 5}\right) = \log 73$
$\left(5 n - 5\right) \log 2 = \log 73$
$5 n \log 2 - 5 \log 2 = \log 73$
$5 n \log 2 = \log 73 + \log 32$
$n = \log \frac{2336}{\log} 32$
The decimal approximation will be $n \cong 2.24$.
Hopefully this helps! | 2019-07-19 20:38:14 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 7, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4183264672756195, "perplexity": 2723.818222010945}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-30/segments/1563195526359.16/warc/CC-MAIN-20190719202605-20190719224605-00156.warc.gz"} | 156 |
https://ai.stackexchange.com/tags/markov-decision-process/new | # Tag Info
1 vote
### $E_{\pi}[R_{t+1}|S_t=s,A_t=a] = E[R_{t+1}|S_t=s,A_t=a]$?
Question: Can I write it without the subscript? So $$E_{\pi}[R_{t+1}|S_t=s,A_t=a] = E[R_{t+1}|S_t=s,A_t=a]$$ Yes, your reasoning is sound, there is no need to condition the expectation on the policy, ...
• 23.8k
Please look at line 5: If $P(a_{i,j}|s_i)$ is equal to the policy that is used for generating the demonstrated trajectories, then it could be the same. However, in inverse RL you don't know \$P(a_{i,j}|... | 2022-06-28 03:38:46 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7719781398773193, "perplexity": 755.2001835403503}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-27/segments/1656103347800.25/warc/CC-MAIN-20220628020322-20220628050322-00697.warc.gz"} | 172 |
http://mathoverflow.net/questions/116352/silly-question-on-complete-intersections | # Silly question on complete intersections
Let $X_s = \bigcap_{i=1}^s H_i \subset \mathbb{P}^N$ be a complete intersection, where each $H_i$ is a hypersurface of degree $d_i$.
Is $X_{s-1}$ also a complete intersection? Is the conormal sheaf of $X_s$ in $X_{s-1}$ isomorphic to $\mathcal{O}_{X_s}(-d_s)$?
-
Yes for the first question. For the second replace $d_i$ with $d_s$, then the answer is positive as well. – Sasha Dec 14 '12 at 7:33 | 2015-04-01 10:56:01 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.957679033279419, "perplexity": 181.73619803583216}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2015-14/segments/1427131304444.86/warc/CC-MAIN-20150323172144-00009-ip-10-168-14-71.ec2.internal.warc.gz"} | 148 |
https://www.gradesaver.com/textbooks/math/geometry/CLONE-df935a18-ac27-40be-bc9b-9bee017916c2/appendix-a-a-1-algebraic-expressions-exercises-page-541/27 | ## Elementary Geometry for College Students (7th Edition)
$= 10x + 5y$
Let $l =$ total length of wood strips $l = 10x + 5y$ (Count the number of $x$'s and $y$'s present) $= 10x + 5y$ | 2021-03-08 10:05:18 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9860881567001343, "perplexity": 1606.7754499103667}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-10/segments/1614178383355.93/warc/CC-MAIN-20210308082315-20210308112315-00508.warc.gz"} | 69 |
https://gateoverflow.in/338409/kenneth-rosen-edition-7-exercise-6-1-question-46-page-no-397 | 216 views
In how many ways can a photographer at a wedding arrange $6$ people in a row from a group of $10$ people, where the bride and the groom are among these $10$ people, if
1. the bride must be in the picture?
2. both the bride and groom must be in the picture?
3. exactly one of the bride and the groom is in the picture? | 2023-02-04 08:09:34 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4402589499950409, "perplexity": 176.3168357348433}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-06/segments/1674764500095.4/warc/CC-MAIN-20230204075436-20230204105436-00841.warc.gz"} | 84 |
http://www.chegg.com/homework-help/questions-and-answers/average-number-persons-per-household-united-states-shrinking-steadily-long-statistics-kept-q1326700 | the average number of a persons per household in the united states has been shrinking steadily for as long as statistics have been kept and is approximately linear with respect to time. in 1980 there were about 2.76 persons per household , and in 2008 about 2.55 persons per household . assume that this trend continues.
answer the following questions:1
1. estimate the household size in 2019. persons per household?
2.when will the household size be 2.15 persons per household? in the year of? | 2014-09-22 11:49:31 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8285247087478638, "perplexity": 1206.8863008588232}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2014-41/segments/1410657136966.6/warc/CC-MAIN-20140914011216-00187-ip-10-234-18-248.ec2.internal.warc.gz"} | 110 |
https://www.ti.com/document-viewer/ja-jp/lit/html/SBAA347/GUID-FDD00C38-D792-4A5F-8984-A2CC040CEDDC | SBAA347 June 2022
Closed-Loop AC Simulation Results
The following AC sweep shows the AC transfer characteristics of the single-ended output. Using the previously-calculated cutoff frequency illustrated in the last equation, shows that the simulation closely matches the simulation. Since the AMC3301 has a gain of 8.2 V/V and a gain of 0.778 V/V is applied with the differential to single-ended conversion, the gain of 16.11 dB shown in the following image is expected. | 2022-11-28 02:32:42 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9051153063774109, "perplexity": 4113.783947258154}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-49/segments/1669446710462.59/warc/CC-MAIN-20221128002256-20221128032256-00795.warc.gz"} | 104 |
http://mathhelpforum.com/advanced-algebra/71325-modules.html | Math Help - Modules
1. Modules
Let R be a ring. prove that if M is a free R-module, then Ann_R M =0.
2. Originally Posted by peteryellow
Let R be a ring. prove that if M is a free R-module, then Ann_R M =0.
let $r \in \text{ann}_R M$ and choose $x \in M$ to be in a basis of $M.$ then $rx=0$ and thus $r=0.$ | 2016-07-25 06:18:40 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 5, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8954792618751526, "perplexity": 454.57928207391615}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-30/segments/1469257824204.68/warc/CC-MAIN-20160723071024-00088-ip-10-185-27-174.ec2.internal.warc.gz"} | 107 |
https://www.gradesaver.com/textbooks/math/algebra/college-algebra-6th-edition/chapter-4-exponential-and-logarithmic-functions-exercise-set-4-1-page-452/38 | ## College Algebra (6th Edition)
please see graph (blue curve), asymptote of $g$:$\quad\quad y=-1$ domain of $g=(-\infty,\infty)$ range of $g=(-1,\infty)$
Graph $f(x)=e^{x}\qquad$ (red, dashed) by plotting the points from the table and connecting with a smooth curve. $g(x)=e^{x}+2= f(x)+2$ so the graph of $g(x)$ (blue) is obtained by shifting the graph of f(x) (red) down by 1 unit. Reading the graph, asymptote of $g$:$\quad\quad y=-1$ domain of $g=(-\infty,\infty)$ range of $g=(-1,\infty)$ | 2019-11-20 11:30:13 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5569360852241516, "perplexity": 814.151268776353}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-47/segments/1573496670558.91/warc/CC-MAIN-20191120111249-20191120135249-00263.warc.gz"} | 171 |
https://brilliant.org/problems/3-rectangles-1-triangle/ | # 3 Rectangles + 1 Triangle = ?
Geometry Level 5
Triangle $ABC$ has integer side lengths. Rectangles $BCDE, ACFG, ABHJ$ are constructed so that $CD = AC + AB$, $CF = AB + BC$, and $BH = (AC + BC)^2$. If $[ABHJ] = [BCDE] + [ACFG]$, how many different values can $[ABC]$ have?
Details and assumptions
$[PQRS]$ refers to the area of figure $PQRS$.
× | 2020-06-06 05:07:47 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 9, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9004418849945068, "perplexity": 717.2372818073775}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-24/segments/1590348509972.80/warc/CC-MAIN-20200606031557-20200606061557-00477.warc.gz"} | 117 |
http://mathhelpforum.com/advanced-algebra/117497-cyclic-isomorphic.html | your map, $\Lambda,$ is injective. so $G$ can be considered as a subgroup of $\text{Sym}(G) \cong S_4.$ now what are the subgroups of order $4$ in $S_4$? | 2017-07-23 09:27:58 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 5, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.814649760723114, "perplexity": 34.543674305722526}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-30/segments/1500549424296.90/warc/CC-MAIN-20170723082652-20170723102652-00701.warc.gz"} | 53 |
https://socratic.org/questions/why-is-the-nernst-equation-important | # Why is the Nernst equation important?
Apr 29, 2015
The Nernst equation ${E}^{0} = {E}^{\theta} + \frac{R T}{n F} \ln \left(\text{Oxidants"/"Reductant}\right)$
It has other forms; but basically, it shows us the relationship between Electrode potential of a half cell and Temperature.
It is a direct relationship. That is, increasing the temperature if half cell, leads to a rise in electrode potential. | 2022-08-19 02:51:15 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 1, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5485261082649231, "perplexity": 1204.6144916995281}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 5, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-33/segments/1659882573540.20/warc/CC-MAIN-20220819005802-20220819035802-00563.warc.gz"} | 115 |
https://www.gradesaver.com/textbooks/math/precalculus/precalculus-6th-edition-blitzer/chapter-11-section-11-1-finding-limits-using-tables-and-graphs-exercise-set-page-1140/54 | ## Precalculus (6th Edition) Blitzer
$\lim_{x \to 0 }f(x)$ does not exist.
To find $\lim_{x\to 0 }f(x)$, examine the graph of $f$ near $x=0$. As $x$ gets closer to $0$ from the left, the values of $f(x)$ get closer to $0$. As $x$ gets closer to $0$ from the right, the values of $f(x)$ get closer to $1$. We conclude from the graph that $\lim_{x \to 0 }f(x)$ does not exist because the left- and right-hand limits are unequal. | 2021-05-17 13:33:11 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9218153357505798, "perplexity": 56.85057591459699}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-21/segments/1620243991772.66/warc/CC-MAIN-20210517115207-20210517145207-00211.warc.gz"} | 142 |
https://www.gradesaver.com/textbooks/math/algebra/intermediate-algebra-6th-edition/chapter-5-section-5-4-multiplying-polynomials-exercise-set-page-290/98 | ## Intermediate Algebra (6th Edition)
$(3x+2)^2 \ne 9x^2+4$ because the square of $3x+2$ is $9x^2+12x+4$.
RECALL: $(a+b)^2=a^2 + 2ab+b^2$ $(3x+2)^2$ does not equal $9x^2+4$ because the square of a binomial is a trinomial. Squaring the binomial gives: $(3x+2)^2 \\=(3x)^2+2(3x)(2)+2^2 \\=9x^2+12x+4$ | 2018-12-12 04:47:23 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.841251015663147, "perplexity": 496.1163980387833}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-51/segments/1544376823738.9/warc/CC-MAIN-20181212044022-20181212065522-00121.warc.gz"} | 142 |
https://socratic.org/questions/how-do-you-convert-45-centimeters-to-kilometers | How do you convert 45 centimeters to kilometers?
$54$ cm $= 5.4 \times {10}^{- 4}$ km
$100$ cm $= 1$ m $\rightarrow 1$ cm$= {10}^{- 2}$ m
$1000$ m $= 1$ km $\rightarrow 1$ m $= {10}^{- 3}$ km $\rightarrow 1$ cm $= {10}^{- 5}$ km
$54$ cm $= 54 \times {10}^{- 5}$ km $= 5.4 \times {10}^{- 4}$ km | 2020-09-26 22:17:13 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 15, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.573988139629364, "perplexity": 3409.1886528663244}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-40/segments/1600400245109.69/warc/CC-MAIN-20200926200523-20200926230523-00425.warc.gz"} | 137 |
https://math.stackexchange.com/questions/3204070/writing-beta-function-in-terms-of-gamma-functions-by-substitution | # Writing beta function in terms of gamma functions (by substitution)
I'm going over my note and try to write the Beta function in terms of gamma functions. However, I just can't get (1.73) from (1.72).
Even if I substitute t/(1-t) with u, I can't remove t. Can anyone shed some light on this? Thanks.
Hint: If $$u = \frac{t}{1-t}$$, then $$u(1-t)=t$$, that is, \begin{align*} u-ut &=t \\ \Rightarrow u &= ut+t \\ \Rightarrow u &=t(1+u).\end{align*} So $$t= \frac{u}{1+u}$$. Try substituting this now. | 2019-06-26 04:11:10 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 4, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 1.0000097751617432, "perplexity": 350.69390365272153}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-26/segments/1560628000164.31/warc/CC-MAIN-20190626033520-20190626055520-00536.warc.gz"} | 161 |
https://www.gradesaver.com/textbooks/science/physics/essential-university-physics-volume-1-3rd-edition/chapter-14-for-thought-and-discussion-page-262/8 | ## Essential University Physics: Volume 1 (3rd Edition)
We know that the human ear's hearing range is 20 Hz -20 KHz. Ultra sound frequencies are $10^7$ Hz . The difference between these two frequencies is $10^7Hz-20KHz=0.998\times 10^3Hz$. Thus, these ultra sound frequencies are very high as compared to the human ear range. Ultra sound is a sound having all the physical properties of sound but the only difference is that the human ear cannot hear it. | 2018-08-20 21:39:44 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5952647924423218, "perplexity": 742.1094013534366}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-34/segments/1534221217006.78/warc/CC-MAIN-20180820195652-20180820215652-00068.warc.gz"} | 112 |
http://isabelle.systems/zulip-archive/stream/202968-quantum-computing/topic/project.20ideas.html | ## Stream: quantum computing
### Topic: project ideas
#### Anthony Bordg (Oct 17 2019 at 17:27):
One could formalize the following result: for any quantum states $|\psi\rangle$, $|\varphi\rangle$, there exists a unitary matrix $U$ such that $U|\psi\rangle = |\varphi\rangle$.
Last updated: Sep 25 2022 at 23:25 UTC | 2022-09-25 23:51:05 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 4, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5128324627876282, "perplexity": 2613.9975654174145}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-40/segments/1664030334620.49/warc/CC-MAIN-20220925225000-20220926015000-00083.warc.gz"} | 94 |
https://codeforces.com/blog/From_ITK18_With_Love | ### From_ITK18_With_Love's blog
By From_ITK18_With_Love, history, 3 months ago,
Today, I get a problem.
Sum of greatest odd divisor of numbers in range $[a, b]$ with $a, b <= 10^9$
I found solution here : https://www.geeksforgeeks.org/sum-of-greatest-odd-divisor-of-numbers-in-given-range/
But I think the solution is not clear for the even number case.
Can find a better solution or more detailed explanation ? | 2021-12-07 09:22:23 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6964616179466248, "perplexity": 1058.647345487831}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-49/segments/1637964363337.27/warc/CC-MAIN-20211207075308-20211207105308-00436.warc.gz"} | 117 |
http://life.inspirho.in/joblessness/day-1-polarization-of-the-light/ | # DAY 1: Polarization of the Light
One of the basic kinds qubits are displayed by polarizing photons. So, I just started off by making sure I remember the basic polarizing stuff(which I have had done with the last year)…
Do you remember the wave equations?…
Yes I do!.. 🙂 And most of the basic stuff on polarization. | 2023-01-27 20:02:01 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8601484298706055, "perplexity": 1683.6993237543336}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-06/segments/1674764495012.84/warc/CC-MAIN-20230127195946-20230127225946-00434.warc.gz"} | 75 |
https://socratic.org/questions/what-is-crystallization | # What is crystallization?
A good example of a chemical which readily undergoes sublimation and crystallization is carbon dioxide. ($C {O}_{2}$).
Sublimation : $C {O}_{2 \left(s\right)} \to C {O}_{2 \left(g\right)}$.
Crystallization : $C {O}_{2 \left(g\right)} \to C {O}_{2 \left(s\right)}$ | 2019-07-19 06:53:10 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 3, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.26341482996940613, "perplexity": 10047.084011632684}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-30/segments/1563195526064.11/warc/CC-MAIN-20190719053856-20190719075856-00065.warc.gz"} | 96 |
http://www.ams.org/mathscinet-getitem?mr=1045143 | MathSciNet bibliographic data MR1045143 (92d:43003) 43A07 Miao, Tianxuan Amenability of locally compact groups and subspaces of $L\sp \infty(G)$$L\sp \infty(G)$. Proc. Amer. Math. Soc. 111 (1991), no. 4, 1075–1084. Article
For users without a MathSciNet license , Relay Station allows linking from MR numbers in online mathematical literature directly to electronic journals and original articles. Subscribers receive the added value of full MathSciNet reviews. | 2014-04-19 00:26:11 | {"extraction_info": {"found_math": true, "script_math_tex": 1, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9963476657867432, "perplexity": 4112.0505765524285}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2014-15/segments/1397609535535.6/warc/CC-MAIN-20140416005215-00645-ip-10-147-4-33.ec2.internal.warc.gz"} | 125 |
http://nrich.maths.org/5636/clue | Euler's Squares
Euler found four whole numbers such that the sum of any two of the numbers is a perfect square...
Odd Differences
The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.
Substitution Cipher
Find the frequency distribution for ordinary English, and use it to help you crack the code.
What would you need to multiply by to do the same job as calculating $10\%$ and then adding it on ? | 2016-10-23 03:17:28 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6899508237838745, "perplexity": 216.29440698947008}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-44/segments/1476988719139.8/warc/CC-MAIN-20161020183839-00164-ip-10-171-6-4.ec2.internal.warc.gz"} | 120 |
https://www.quantamagazine.org/tag/modular-forms/ | ### The Oracle of Arithmetic
At 28, Peter Scholze is uncovering deep connections between number theory and geometry.
### Sphere Packing Solved in Higher Dimensions
The Ukrainian mathematician Maryna Viazovska has solved the centuries-old sphere-packing problem in dimensions eight and 24. | 2017-02-23 09:26:15 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.831138014793396, "perplexity": 5131.429972182167}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-09/segments/1487501171163.39/warc/CC-MAIN-20170219104611-00440-ip-10-171-10-108.ec2.internal.warc.gz"} | 65 |
https://competitive-exam.in/questions/discuss/the-critical-radius-is-the-insulation-radius-at | # The critical radius is the insulation radius at which the resistance to heat flow is
Maximum
Minimum
Zero
None of these
Please do not use chat terms. Example: avoid using "grt" instead of "great". | 2021-03-06 14:54:06 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8203742504119873, "perplexity": 3825.777209488162}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-10/segments/1614178375096.65/warc/CC-MAIN-20210306131539-20210306161539-00333.warc.gz"} | 47 |
https://tr.overleaf.com/articles/single-precision-barrett-reduction/tgytknpxmfxz | AbstractModular Reduction of a 2N Bit Integer using two N-Bit multiplications and a few subtractions. Examples and Proof are included. | 2022-11-28 05:47:40 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 1, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7511699199676514, "perplexity": 3733.335460323749}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-49/segments/1669446710473.38/warc/CC-MAIN-20221128034307-20221128064307-00019.warc.gz"} | 31 |
https://yutsumura.com/question/hw-1-5/ | Yu Staff asked 2 years ago
Share your proof of HW 1 problem 5.
(Poincaré’s Theorem) If $G$ is a group and $H_1$ and $H_2$ are two subgroups of finite index in $G$, show $H_1 \cap H_2$ also has finite index in $G$. | 2018-05-23 12:54:58 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7062936425209045, "perplexity": 194.09718158644645}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": false}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-22/segments/1526794865651.2/warc/CC-MAIN-20180523121803-20180523141803-00614.warc.gz"} | 76 |
https://brilliant.org/problems/a-trigonometric-problem-for-jee-aspirants/ | # A Trigonometric problem for JEE Aspirants
Geometry Level 4
$E = \tan(A) \tan(2A) + \tan(2A) \tan(4A) + \tan(4A) \tan(A)$
Find the value of $$E$$ where $$A = \dfrac{2\pi}7$$.
× | 2018-10-17 23:49:26 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9275837540626526, "perplexity": 8443.812764314864}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-43/segments/1539583511314.51/warc/CC-MAIN-20181017220358-20181018001858-00383.warc.gz"} | 79 |
https://socratic.org/questions/how-do-you-find-the-domain-and-range-of-f-x-1-2-abs-x-2 | # How do you find the domain and range of f(x)=(1/2)abs(x-2)?
$x$ can have any value, $f \left(x\right)$ can only be positive or zero | 2019-11-17 19:54:38 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 2, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.39486679434776306, "perplexity": 121.79585195170367}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-47/segments/1573496669276.41/warc/CC-MAIN-20191117192728-20191117220728-00392.warc.gz"} | 43 |
https://www.transtutors.com/questions/a-56-kg-bungee-jumper-jumps-off-a-bridge-and-undergoes-simple-harmonic-motion-if-the-1469334.htm | a 56 kg bungee jumper jumps off a bridge and undergoes simple harmonic motion. if the period of osci 1 answer below »
a 56 kg bungee jumper jumps off a bridge and undergoes simple harmonic motion. if the period of oscillations is 11.2 s, what is the spring constant of the bungee cord?
First, we calculate the angular frequency $$\omega=\frac2\piT=\frac2\times3.1411.2=0.561 rad/s$$ Beside, $$\omega=\sqrt\frackm$$ k is the spring constant. m... | 2021-03-02 14:53:48 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6300628185272217, "perplexity": 582.3747493134626}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-10/segments/1614178364008.55/warc/CC-MAIN-20210302125936-20210302155936-00386.warc.gz"} | 129 |
https://dsp.stackexchange.com/tags/deconvolution/new | We’re rewarding the question askers & reputations are being recalculated! Read more.
# Tag Info
How can I justify the expression of G′(ν)? That's easy enough. Denominator is the sum of the signal energy $|X(\omega)|^2$ and the noise energy $\lambda ^2$. If the signal energy is significantly larger, then the whole expression simplifies to $G(\omega)$. If the noise is larger, we can't do a anything useful with the information and the $1/ \lambda ^2$ ... | 2019-11-17 12:34:53 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8814416527748108, "perplexity": 773.5599935628162}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-47/segments/1573496668954.85/warc/CC-MAIN-20191117115233-20191117143233-00512.warc.gz"} | 114 |
https://math.stackexchange.com/questions/2255228/how-to-solve-this-y-y-2-sec3x-differential-equation | # How to solve this $y'' +y = 2 \sec(3x)$ differential equation?
I am having trouble with differential equations. $$y'' +y = 2 \sec(3x)$$
I really appreciate if you help me.
I assume you know the homogeneous solution $y'' + y = 0$ leads to $y(x) = c_1 \sin x + c_2 \cos x$. The particular solution is probably easiest to solve using variation of parameters. The guess of $\sec (3x)$ or $\tan (3x)$ does not work. Guessing is usually only done with $x^n,e^{ct},\sin, \cos$. | 2020-01-27 09:24:29 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.640670120716095, "perplexity": 132.45563585163933}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-05/segments/1579251696046.73/warc/CC-MAIN-20200127081933-20200127111933-00120.warc.gz"} | 144 |
https://brilliant.org/problems/quadratika-2/ | Find the positive value of $$p$$ such that the quadratic equation $$px^2 - 12x + 4 = 0$$ has only one solution. | 2017-10-23 08:13:23 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.817932665348053, "perplexity": 18.712607317213426}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-43/segments/1508187825812.89/warc/CC-MAIN-20171023073607-20171023093607-00296.warc.gz"} | 33 |
http://math.stackexchange.com/questions/170330/is-there-a-special-name-for-matrices-consist-of-repeated-unit-vectors | # Is there a special name for matrices consist of repeated unit vectors?
For example this one: $$Q=\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$
-
## 1 Answer
You might call'em a Kronecker product: $\pmatrix{1 &0&0\\0&1&0\\0&0&1}\otimes\pmatrix{1 &1&1}$ of matrices with entries from the Boolean domain B = {0, 1}.
- | 2015-05-28 04:14:13 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.48531410098075867, "perplexity": 946.0264500876305}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": false}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2015-22/segments/1432207929230.43/warc/CC-MAIN-20150521113209-00001-ip-10-180-206-219.ec2.internal.warc.gz"} | 183 |
https://www.studyadda.com/question-bank/fractions-and-decimals_q36/4570/361644 | • # question_answer Shyamlal had $\frac{5}{6}$ of a cake. He ate $\frac{2}{3}$of it. What part of the total cake did not he not eat? A) $\frac{4}{9}$ B) $\frac{10}{12}$C) $\frac{10}{6}$ D) $\frac{10}{3}$
(a) Part of the cake eaten $=\frac{5}{6}\times \frac{2}{3}=\frac{10}{18}=\frac{5}{9}$ $\therefore$ Not eaten$=1-\frac{5}{9}=\frac{4}{9}$ | 2019-10-18 00:32:35 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.43512988090515137, "perplexity": 11399.462759999356}, "config": {"markdown_headings": true, "markdown_code": false, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-43/segments/1570986677230.18/warc/CC-MAIN-20191017222820-20191018010320-00477.warc.gz"} | 155 |
https://www.gradesaver.com/textbooks/science/physics/college-physics-4th-edition/chapter-1-problems-page-23/87 | College Physics (4th Edition)
$2.6N$
The weight is prorportional to the mass and inversely proportional to the square of the radius, so W is proportional to $\frac{m}{r^{2}}$ Forming a proportion, we have $\frac{Wj}{We}=\frac{mj}{me}\times (\frac{re}{rj})^{2}=320\times\frac{1}{11^{2}}=\frac{320}{121}$ On Jupiter, the apple would weigh = $\frac{320}{121}\times1N=2.6N$ | 2022-05-17 09:04:25 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5009930729866028, "perplexity": 394.440499489941}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-21/segments/1652662517018.29/warc/CC-MAIN-20220517063528-20220517093528-00638.warc.gz"} | 126 |
https://finalfit.org/reference/colon_s.html | This is a modified version of survival::colon.These are data from one of the first successful trials of adjuvant chemotherapy for colon cancer. Levamisole is a low-toxicity compound previously used to treat worm infestations in animals; 5-FU is a moderately toxic (as these things go) chemotherapy agent. There are two records per person, one for recurrence and one for death
data(colon_s)
## Format
A data frame with 929 rows and 33 variables
## Source
colon | 2020-09-19 15:31:15 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.2894846200942993, "perplexity": 6796.434570906196}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-40/segments/1600400192778.51/warc/CC-MAIN-20200919142021-20200919172021-00472.warc.gz"} | 107 |
https://www.neetprep.com/question/56043-will-angular-width-central-maxima-Fraunhoffer-diffraction-whenlight-wavelength--used-slit-width--cm--rad--rad--rad--rad/126-Physics--Wave-Optics/700-Wave-Optics | # NEET Physics Wave Optics Questions Solved
What will be the angular width of central maxima in Fraunhoffer diffraction when light of wavelength $6000\text{\hspace{0.17em}}Å$ is used and slit width is 12×10–5 cm | 2019-10-22 23:48:35 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 1, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8794847726821899, "perplexity": 2335.4551568923994}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-43/segments/1570987826436.88/warc/CC-MAIN-20191022232751-20191023020251-00354.warc.gz"} | 62 |
http://www.chegg.com/homework-help/questions-and-answers/small-bead-slide-without-friction-circular-hoop-vertical-plane-radius-0100-rm-m--hoop-rota-q3084552 | A small bead can slide without friction on a circular hoop that is in a vertical plane and has a radius of 0.100 {\rm m}. The hoop rotates at a constant rate of 3.70{\rm rev/s} about a vertical diameter (the figure (Figure 1) ). a)Find the angle \beta at which the bead is in vertical equilibrium. (Of course, it has a radial acceleration toward the axis.) b)Is it possible for the bead to "ride" at the same elevation as the center of the hoop? | 2015-08-01 17:26:38 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9877082705497742, "perplexity": 735.7423243012993}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2015-32/segments/1438042988840.31/warc/CC-MAIN-20150728002308-00122-ip-10-236-191-2.ec2.internal.warc.gz"} | 112 |
https://www.gradesaver.com/textbooks/math/algebra/algebra-2-1st-edition/chapter-9-quadratic-relations-and-conic-sections-9-7-solve-quadratic-systems-9-7-exercises-skill-practice-page-662/27 | ## Algebra 2 (1st Edition)
Adding twice the first and negative one times the second equation we get: $2x^2-20-x-8=0\\2x^2-x-28=0\\(2x+7)(x-4)=0$ Thus $x=-3.5$ or $x=4$ Plugging this into the first equation we get: if $x=-3.5$: $12.25+2y^2-10=0$ but this has no solution. if $x=4$: $16+2y^2-10=0$, but this has no solution Thus there are no solutions. | 2021-04-18 05:52:30 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9648188948631287, "perplexity": 148.96995790445115}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-17/segments/1618038468066.58/warc/CC-MAIN-20210418043500-20210418073500-00580.warc.gz"} | 139 |
https://homework.cpm.org/category/CC/textbook/cc1/chapter/6/lesson/6.1.1/problem/6-5 | ### Home > CC1 > Chapter 6 > Lesson 6.1.1 > Problem6-5
6-5.
If you had $2$ pieces of licorice to share equally among $3$ people, how much licorice would each person get? Show your thinking clearly. Homework Help ✎
How could you use the diagrams below to solve this problem? | 2019-12-14 08:48:09 | {"extraction_info": {"found_math": true, "script_math_tex": 2, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4185948967933655, "perplexity": 3886.7411839374868}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-51/segments/1575540585566.60/warc/CC-MAIN-20191214070158-20191214094158-00193.warc.gz"} | 79 |
http://mathhelpforum.com/number-theory/31788-sets-without-squares.html | Let $S_i$ be the set of all integers $n$ such that $100i\leq n < 100(i + 1)$. For example, $S_4$ is the set $\{400,401,402,\ldots,499\}$. How many of the sets $S_0, S_1, S_2, \ldots, S_{999}$ do not contain a perfect square?
Let $S_i$ be the set of all integers $n$ such that $100i\leq n < 100(i + 1)$. For example, $S_4$ is the set $\{400,401,402,\ldots,499\}$. How many of the sets $S_0, S_1, S_2, \ldots, S_{999}$ do not contain a perfect square? | 2016-09-29 09:07:46 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 12, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9123833775520325, "perplexity": 17.234866389612314}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-40/segments/1474738661780.47/warc/CC-MAIN-20160924173741-00185-ip-10-143-35-109.ec2.internal.warc.gz"} | 182 |
http://openstudy.com/updates/4f94a3bee4b000ae9ecad80b | ## Mcurtis71 Group Title The distance between two charged objects is doubled. What happens to the electrostatic force between the two? 2 years ago 2 years ago
• This Question is Open
1. RaphaelFilgueiras Group Title
|dw:1335141437944:dw|
2. .Sam. Group Title
$F=k\frac{q_{1}q_{2}}{r^2}$ So if double the distance, $F=k\frac{q_{1}q_{2}}{2^2}$ $F=k\frac{q_{1}q_{2}}{4}$ Force is 4 times as low | 2014-07-23 18:16:13 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5070363879203796, "perplexity": 1945.96684697258}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2014-23/segments/1405997882928.29/warc/CC-MAIN-20140722025802-00158-ip-10-33-131-23.ec2.internal.warc.gz"} | 139 |
https://www.gradesaver.com/textbooks/math/geometry/geometry-common-core-15th-edition/chapter-10-area-10-2-areas-of-trapezoids-rhombuses-and-kites-lesson-check-page-625/10 | ## Geometry: Common Core (15th Edition)
No, you do not need to know the lengths of the sides to find the area of a kite. You only need to know the lengths of the diagonals. The formula for the area of a kite is A=$\frac{1}{2}$$d_{1}$$d_{2}$ | 2022-05-27 02:12:03 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5833483934402466, "perplexity": 191.32936497656462}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-21/segments/1652662631064.64/warc/CC-MAIN-20220527015812-20220527045812-00535.warc.gz"} | 71 |
https://socratic.org/questions/100-of-what-number-is-70 | # 100% of what number is 70?
100% " of " 70 = 70
100% means that same as $\frac{100}{100} = 1$
100% means the full amount, or the whole total.
So 100% " of " 70 = 70 | 2019-12-12 06:36:11 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 5, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5648831129074097, "perplexity": 4353.456136207371}, "config": {"markdown_headings": true, "markdown_code": false, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-51/segments/1575540537212.96/warc/CC-MAIN-20191212051311-20191212075311-00442.warc.gz"} | 63 |
https://www.doubtnut.com/question-answer/show-that-addition-subtraction-and-multiplication-are-binary-operations-on-r-but-division-is-not-a-b-642782957 | # Show that addition, subtraction and multiplication are binary operations on R, but division is not a binary operation on R. Further, show that division is a binary operation on the set R^(**) of nonzero real numbers.
Updated On: 17-04-2022
Get Answer to any question, just click a photo and upload the photo
and get the answer completely free, | 2022-05-27 15:50:20 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5935094952583313, "perplexity": 807.2833928373384}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-21/segments/1652662658761.95/warc/CC-MAIN-20220527142854-20220527172854-00462.warc.gz"} | 77 |
https://webwork.libretexts.org/webwork2/html2xml?answersSubmitted=0&sourceFilePath=Library/Hope/Calc1/00-00-Essays/GQ_Limits_05.pg&problemSeed=1234567&courseID=anonymous&userID=anonymous&course_password=anonymous&showSummary=1&displayMode=MathJax&problemIdentifierPrefix=102&language=en&outputformat=libretexts | True or False: As $x$ increases to $100$, $f(x)=1/x$ gets closer and closer to $0$, so the limit of $f(x)$ as $x$ increases to $100$ is $0$.
In the answer box below, explain your reasoning for the choice of true or false you made above. Use complete sentences and correct grammar, spelling, and punctuation. Be specific and detailed. Write as if you were explaining the answer to someone else in class. | 2022-07-07 17:41:39 | {"extraction_info": {"found_math": true, "script_math_tex": 8, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9006627202033997, "perplexity": 170.72391255808972}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-27/segments/1656104495692.77/warc/CC-MAIN-20220707154329-20220707184329-00671.warc.gz"} | 101 |
https://socratic.org/questions/how-do-you-solve-5x-2-x-3-using-the-quadratic-formula | # How do you solve 5x^2 + x = 3 using the quadratic formula?
Mar 24, 2016
$x = \frac{- 1 \pm \sqrt{61}}{10}$
#### Explanation:
Given
$a {x}^{2} + b x + c = 0$
$\implies x = \frac{- b \pm \sqrt{{b}^{2} - 4 a c}}{2 a}$
$5 {x}^{2} + x = 3 \implies 5 {x}^{2} + x - 3 = 0$
$\implies a = 5$
$\implies b = 1$
$\implies c = - 3$
$x = \frac{- 1 \pm \sqrt{{1}^{2} - 4 \cdot 5 \cdot - 3}}{2 \cdot 5}$
$x = \frac{- 1 \pm \sqrt{1 + 60}}{10}$
$x = \frac{- 1 \pm \sqrt{61}}{10}$ | 2021-01-15 23:19:39 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 10, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6512000560760498, "perplexity": 3333.8243270292705}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-04/segments/1610703497681.4/warc/CC-MAIN-20210115224908-20210116014908-00678.warc.gz"} | 231 |
http://mathhelpforum.com/advanced-algebra/45071-amalgams.html | ## amalgams
Can u help me to prove this.
Determine the number of isomorphism types of amalgams (S_n, S_n, S_(n-1).
(Using the Goldschmidt's lemma.) | 2014-03-17 07:26:28 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9338058233261108, "perplexity": 11674.419930088578}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2014-10/segments/1394678704953/warc/CC-MAIN-20140313024504-00049-ip-10-183-142-35.ec2.internal.warc.gz"} | 46 |
http://physics.stackexchange.com/tags/mssm/new | # Tag Info
Maybe I've understood the problem. In the minimum we have (only one scalar field for simplicity): $$\frac{dV}{d\phi}=0=\phi [ m^2 + -kgq+g^2q^2 \phi^2]$$ If $m=0$ we are we are forced to choose a mexican hat potential with one maximum in $\phi=0$ and two degenerate minima. So we are forced to have a non zero vev for the scalar fields. If these scalar ... | 2015-04-21 01:56:00 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7835336923599243, "perplexity": 285.06381239095936}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2015-18/segments/1429246639674.12/warc/CC-MAIN-20150417045719-00022-ip-10-235-10-82.ec2.internal.warc.gz"} | 113 |
http://answerparty.com/question/answer/why-is-marginal-utility-more-useful-than-total-utility-in-consumer-decision-making | Question:
# Why is marginal utility more useful than total utility in consumer decision making?
## Marginal utility decreases as you get more of something. A consumer is less likely to buy something he already has a lot of.
Tags:
marginal utility
Utility
Marginal concepts
Economics
Consumer theory
Microeconomics
Welfare economics
Decision theory
Cardinal utility
Marginalism
Technology Internet
16 | 2014-03-12 19:52:37 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 3, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.49272164702415466, "perplexity": 7187.349601307133}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2014-10/segments/1394023865238/warc/CC-MAIN-20140305125105-00058-ip-10-183-142-35.ec2.internal.warc.gz"} | 86 |
https://brilliant.org/problems/number-of-sets-2/ | Number of Sets
Algebra Level 2
Consider the following subsets of the integers: $A=\{1, 2, 3, 4, 5, 6\} \mbox{ and } B=\{4, 5, 6, 7, 8\}.$ How many subsets $$X$$ of integers satisfy $X\cap {A}^{c}=\emptyset, \quad (A-B)\cup X=X?$
× | 2018-01-17 15:17:56 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9175800681114197, "perplexity": 1014.3170039998284}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-05/segments/1516084886946.21/warc/CC-MAIN-20180117142113-20180117162113-00638.warc.gz"} | 100 |
https://illustrativemathematics.blog/tag/equations/ | Select Page
## Truth and consequences: talking about solving equations
By William McCallum The language we use when we talk about solving equations can be a bit of a minefield. It seems obvious to talk about an equation such as $3x + 2 = x + 5$ as saying that $3x+2$ is equal to $x + 5$, and that’s probably a good place to start.... | 2021-04-13 07:26:03 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.3134271502494812, "perplexity": 293.4718655729763}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-17/segments/1618038072175.30/warc/CC-MAIN-20210413062409-20210413092409-00130.warc.gz"} | 87 |
https://www.bartleby.com/questions-and-answers/find-the-missing-numerator-that-will-make-the-rational-expressions-equivalent.-8-2x4-16x4x4-82x416x4/bf3653a7-b0f5-4ae2-92b3-6e5482d3999b | Question
Find the missing numerator that will make the rational expressions equivalent.
8
2(x−4)
=
?
16(x−4)(x+4)
82(x−4)=?16(x−4)(x+4) | 2020-11-27 00:29:17 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9688761830329895, "perplexity": 5339.128801694623}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-50/segments/1606141189030.27/warc/CC-MAIN-20201126230216-20201127020216-00597.warc.gz"} | 47 |
http://mathhelpforum.com/algebra/204264-please-help-me-solve.html | solve the equation 1n x + 1n(X+2) =1...thank u
Hey sharmala.
Is Inx meant to be ln(x) where ln is the natural logarithm?
yes....
Well here is the main hint: ln(x) + ln(y) = ln(x*y).
i tried but the answer is incorrect
Show us what you tried.
ln(x)+ln(x+2) = ln(x*(x+2)) | 2017-11-18 04:54:42 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8916424512863159, "perplexity": 11888.503233266929}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-47/segments/1510934804610.37/warc/CC-MAIN-20171118040756-20171118060756-00431.warc.gz"} | 94 |
https://www.reddit.com/r/math/comments/eoujqh/software_to_host_math_competition/ | ×
Have your contest be a google form (or one for each question, if you want to update results live as people submit answers). In the "results" tab, open up the spreadsheet corresponding to answers, and create a "Score" tab in the same sheet which uses some spreadsheet magic to convert survey results into scores using a bit of VLOOKUP() (or INDEX + MATCH) and adding together every correct answer. | 2020-01-22 03:29:48 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.23972781002521515, "perplexity": 2625.609549270867}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-05/segments/1579250606269.37/warc/CC-MAIN-20200122012204-20200122041204-00061.warc.gz"} | 86 |
http://www.physicsforums.com/showthread.php?t=446921 | ## deriving lorentz transformations from maxwells equations or em field tensor?
electromagnetic eqn and tensor are invariant under lorentz group but is it possible to derive lorentz transformations from them?
Tags electromagnetism, lorentz | 2013-05-25 18:01:29 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.992671012878418, "perplexity": 1223.2678255214926}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2013-20/segments/1368706009988/warc/CC-MAIN-20130516120649-00018-ip-10-60-113-184.ec2.internal.warc.gz"} | 51 |
https://mymathforum.com/threads/divergence-time.347669/ | # Divergence time
#### idontknow
Which one diverges faster ?
$$\displaystyle s_1 =\sum_{i=1}^{\infty } \dfrac{1}{i}$$ and $$\displaystyle s_2 =\sum_{i=1}^{ \infty } \dfrac{1}{\sqrt{i}}$$.
Last edited:
#### romsek
Math Team
The magnitude of each sum is identical for every index. They diverge at the same rate.
idontknow | 2020-02-17 15:18:54 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8570199012756348, "perplexity": 13782.39629037323}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-10/segments/1581875142603.80/warc/CC-MAIN-20200217145609-20200217175609-00303.warc.gz"} | 111 |