url
stringlengths 13
5.21k
| text
stringlengths 100
512
| date
stringlengths 19
19
| metadata
stringlengths 1.05k
1.1k
| token_length
int64 11
539
|
---|---|---|---|---|
https://brilliant.org/discussions/thread/vertical-angles/ | ×
# Vertical Angles
Vertical angles (also known as opposite angles) are the angled formed by two intersecting lines. The angles opposite from each other in any such pair of intersecting lines will always be equal.
Note by Arron Kau
2 years, 7 months ago | 2017-03-25 00:15:26 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.890777051448822, "perplexity": 1192.9416949450094}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-13/segments/1490218188717.24/warc/CC-MAIN-20170322212948-00422-ip-10-233-31-227.ec2.internal.warc.gz"} | 60 |
https://javalab.org/en/one_side_of_the_moon_en/ | # Why do we see only one side of the moon?
Why do we always see the same side of the moon?
The moon’s rate of rotation and rate of revolution is the same
Related Post | 2019-02-22 10:03:08 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8111334443092346, "perplexity": 722.0103047494805}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-09/segments/1550247515149.92/warc/CC-MAIN-20190222094419-20190222120419-00407.warc.gz"} | 40 |
https://alice-publications.web.cern.ch/node/7169 | # Figure 7
Blast-wave fits to the \vtwo(\pt) of pions, kaons, and protons~ and predictions of the deuterons \vtwo(\pt) for the centrality intervals 10--20$\%$ (left) and 40--50$\%$ (right). In the lower panels, the data-to-fit ratios are shown for pions, kaons, and protons as well as the ratio of the deuterons \vtwo to the \mbox{blast-wave} predictions. Vertical bars and boxes sent the statistical and systematic uncertainties, respectively. The dashed line at one is to guide the eye. | 2021-09-28 15:44:24 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6906067132949829, "perplexity": 2660.581394035897}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-39/segments/1631780060877.21/warc/CC-MAIN-20210928153533-20210928183533-00364.warc.gz"} | 136 |
https://amsi.org.au/ESA_middle_years/Year6/Year6_1aT/Year6_1aT_R2_pg3.html | ### Multiplication is the inverse of division
When working with multiplication and division it is useful to understand that they are the inverse of each other. That means that multiplication can be used to undo division and vice versa.
For example, 25 ÷ 5 = 5 and 5 × 5 = 25. | 2021-12-02 02:59:58 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9015247225761414, "perplexity": 119.11379638176477}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-49/segments/1637964361064.69/warc/CC-MAIN-20211202024322-20211202054322-00306.warc.gz"} | 65 |
https://socratic.org/questions/how-do-you-simplify-sqrt-27-rsqrt-75 | # How do you simplify sqrt.27 + rsqrt.75?
$= \sqrt{\frac{27}{100}} + r \sqrt{\frac{75}{100}} =$
$= \sqrt{\frac{3 \cdot 9}{100}} + r \sqrt{\frac{3 \cdot 25}{100}} =$
$= \frac{3}{10} \sqrt{3} + \frac{5}{10} r \sqrt{3} =$
$= \frac{\sqrt{3}}{10} \left(3 + 5 r\right)$ | 2019-11-16 01:59:30 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 4, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7621087431907654, "perplexity": 14457.170201431632}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-47/segments/1573496668716.69/warc/CC-MAIN-20191116005339-20191116033339-00120.warc.gz"} | 123 |
http://www.physicsforums.com/showthread.php?s=1ee60181b07f2ac84fdb2681bd292591&p=4658640 | # Temperature of dilution
by sout528
Tags: dilution, temperature
Admin P: 23,397 That's just a heat balance, but as you start close to critical point the main problem is that the heat capacity changes. Instead of using q=mcΔT you need to use $$q = m\int c dT$$ and integrate from Tstart to Tfinal. | 2014-07-31 23:48:56 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5935012698173523, "perplexity": 2161.9501954209964}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2014-23/segments/1406510273766.32/warc/CC-MAIN-20140728011753-00160-ip-10-146-231-18.ec2.internal.warc.gz"} | 81 |
https://webdesign.tutsplus.com/courses/understanding-responsive-images/lessons/other-solutions | FREELessons: 15Length: 1.3 hours
• Overview
• Transcript
# 3.6 Other Solutions
The solution we used in the last couple of lessons is probably the best one since it’s semantic and the elements are part of the official specification.
However, there are a few solutions that address the problem of responsive images from a different angle. Let’s see what those are. | 2022-08-16 01:51:07 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.22588975727558136, "perplexity": 876.7983098521531}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-33/segments/1659882572215.27/warc/CC-MAIN-20220815235954-20220816025954-00565.warc.gz"} | 85 |
https://mathspace.co/textbooks/syllabuses/Syllabus-408/topics/Topic-7234/subtopics/Subtopic-96661/?activeTab=interactive | # Simplify numerical square and cube root expressions
## Interactive practice questions
What is the largest square number that divides exactly into $75$75?
$\editable{}$
Easy
Approx a minute
Consider the expression $\sqrt{19}$19. | 2022-01-28 23:06:16 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.21872730553150177, "perplexity": 4876.270137394506}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-05/segments/1642320306346.64/warc/CC-MAIN-20220128212503-20220129002503-00277.warc.gz"} | 50 |
http://www.jiskha.com/display.cgi?id=1364399894 | # Geometry
posted by .
The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as \frac{a}{b} where a and b are coprime positive integers. Find a + b
• Geometry -
38 | 2017-06-25 22:52:05 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9635511040687561, "perplexity": 645.0492072438444}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-26/segments/1498128320593.91/warc/CC-MAIN-20170625221343-20170626001343-00344.warc.gz"} | 73 |
https://jmservera.com/find-the-mean-arithmetic-find-the-average-54-58-78-42-86/ | # Find the Mean (Arithmetic) find the average 54 , 58 , 78 , 42 , 86
find the average 54 , 58 , 78 , 42 , 86
The mean of a set of numbers is the sum divided by the number of terms.
54+58+78+42+865
Simplify the numerator.
112+78+42+865
190+42+865
232+865
3185
3185
Divide.
63.6
Find the Mean (Arithmetic) find the average 54 , 58 , 78 , 42 , 86
## Our Professionals
### Lydia Fran
#### We are MathExperts
Solve all your Math Problems: https://elanyachtselection.com/
Scroll to top | 2023-01-28 06:30:47 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9273694753646851, "perplexity": 567.5945515196549}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-06/segments/1674764499524.28/warc/CC-MAIN-20230128054815-20230128084815-00860.warc.gz"} | 164 |
http://mfat.imath.kiev.ua/authors/name/?author_id=125 | # Z. D. Arova
Search this author in Google Scholar
Articles: 1
### $J$-unitary nodes with strongly regular $J$-inner characteristic matrix functions
Zoya D. Arova
Methods Funct. Anal. Topology 6 (2000), no. 3, 9-23 | 2018-07-16 06:19:40 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.3458380401134491, "perplexity": 14055.40808874252}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-30/segments/1531676589222.18/warc/CC-MAIN-20180716060836-20180716080836-00274.warc.gz"} | 72 |
http://www.chegg.com/homework-help/questions-and-answers/1-use-node-voltage-analysis-solve-forall-branch-currents-circuit-diagram--q1959811 | ## Use Node Voltage Analysis to solve forall branch currents in the circuit of the diagram
1.) Use Node Voltage Analysis to solve forall branch currents in the circuit of the diagram above. | 2013-05-19 10:59:50 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8034017086029053, "perplexity": 1465.655281961875}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2013-20/segments/1368697420704/warc/CC-MAIN-20130516094340-00053-ip-10-60-113-184.ec2.internal.warc.gz"} | 36 |
https://socratic.org/questions/how-do-you-solve-the-inequality-abs-x-7-3 | # How do you solve the inequality abs(x+7)>3?
##### 1 Answer
Apr 14, 2017
$x < - 10 \text{ or } x > - 4$
#### Explanation:
Inequalities of the form | x| > a have solutions of the form.
$x < - a \textcolor{red}{\text{ or }} x > a$
$\Rightarrow x + 7 < - 3 \textcolor{red}{\text{ or }} x + 7 > 3$
subtract 7 from both sides of both inequalities.
$\Rightarrow x < - 10 \textcolor{red}{\text{ or }} x > - 4$ | 2020-03-31 14:18:31 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 4, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9520358443260193, "perplexity": 3512.710637941999}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": false}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-16/segments/1585370500482.27/warc/CC-MAIN-20200331115844-20200331145844-00361.warc.gz"} | 145 |
https://brilliant.org/problems/more-logic-than-math/ | # More logic than math
Geometry Level 1
I have a 30 centimeter-long fishing line that weighs 7 grams, and a 30 centimeter-long string (like yarn) that weighs 10 grams. If I grab both of the ends of both objects and bring my hands closer, then which vertex would be closer to the ground?
Note: By vertex, I mean the lowest point of the "droop" the two objects make as shown below:
Bonus: Why?
×
Problem Loading...
Note Loading...
Set Loading... | 2018-03-24 08:33:32 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4592549800872803, "perplexity": 3337.647183797049}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 5, "enable": false}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-13/segments/1521257649961.11/warc/CC-MAIN-20180324073738-20180324093738-00697.warc.gz"} | 109 |
https://learn.ra.org/mod/data/view.php?d=69&mode=single&page=1 | ## Planned courses / E-courses
Page: () 1 2 3 4 5 6 7 8 9 10 ()
Code and subject: IPM101 - Introduction to IPM
Course: Manejo Integral de Control de Plagas
Type of course: E-Course
Language: es
Country: --Global--
Venue:
Course manager:
Start date: 2019 01 from to
Planned by: Federica Marra
Date entry: Monday, 14 January 2019, 4:44 PM
Page: () 1 2 3 4 5 6 7 8 9 10 () | 2021-01-18 00:15:41 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8398792743682861, "perplexity": 8471.807784933768}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-04/segments/1610703514046.20/warc/CC-MAIN-20210117235743-20210118025743-00297.warc.gz"} | 140 |
https://proofwiki.org/wiki/Boundedness_of_Sine_X_over_X | Boundedness of Sine X over X
Theorem
Let $x \in \R$.
Then:
$\size {\dfrac {\sin x} x} \le 1$
Proof
From Derivative of Sine Function, we have:
$D_x \paren {\sin x} = \cos x$
So by the Mean Value Theorem, there exists $\xi \in \R$ between $0$ and $x$ such that:
$\dfrac {\sin x - \sin 0} {x - 0} = \cos \xi$
From Real Cosine Function is Bounded we have that:
$\size {\cos \xi} \le 1$
$\blacksquare$ | 2022-06-29 08:53:01 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9900178909301758, "perplexity": 242.8515509200052}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-27/segments/1656103626162.35/warc/CC-MAIN-20220629084939-20220629114939-00115.warc.gz"} | 148 |
https://cadabra.science/manual/collect_terms.html | Collect terms in a sum that differ only by their numerical pre-factor. This is part of the default post_process function, so does not need to be called by hand. Note that this command only collects terms which are identical, it does not collect terms which are different but mathematically equivalent. See sort_sum for an example. | 2019-04-23 19:56:32 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.642247200012207, "perplexity": 397.5536562411565}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-18/segments/1555578613603.65/warc/CC-MAIN-20190423194825-20190423220825-00445.warc.gz"} | 66 |
https://www.gradesaver.com/textbooks/math/algebra/college-algebra-7th-edition/chapter-1-equations-and-graphs-section-1-6-solving-other-types-of-equations-1-6-exercises-page-139/39 | ## College Algebra 7th Edition
$x=4$
$\sqrt{2x-1}=\sqrt{3x-5}$ $(\sqrt{2x-1})^{2}=(\sqrt{3x-5})^{2}$ $2x-1=3x-5$ $-1+5=3x-2x$ $x=4$ We need to confirm that $x=4$ works in the original equation: Left side=$\sqrt{2(4)-1}=\sqrt{8-1}=\sqrt{7}$ Right side=$\sqrt{3(4)-5}=\sqrt{12-5}=\sqrt{7}$ Both sides agree, so the solutions works. | 2018-07-22 16:50:14 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.2362881451845169, "perplexity": 909.8980676555923}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-30/segments/1531676593378.85/warc/CC-MAIN-20180722155052-20180722175052-00085.warc.gz"} | 153 |
https://competitive-exam.in/questions/discuss/they-lt-b-gt-sent-out-lt-b-gt-the | Direction.
Which of the phrases (a), (b), (c) and (d) given below should replace the phrase given in bold in the following sentence to make the sentence grammatically meaningful and correct ? If the sentence is correct as it is and No correction is required, mark (e) as the answer. | 2022-11-27 19:18:09 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8697225451469421, "perplexity": 394.2126247433786}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-49/segments/1669446710417.25/warc/CC-MAIN-20221127173917-20221127203917-00840.warc.gz"} | 64 |
https://awsm.dvlprz.com/tag:https | # The Awsm Dvlprz Blog
Letsencrypt, the free, automated, and open Certificate Authority has revolutionized the way servers of all sorts are secured to use SSL/TLS. Usually the entire process is quite smooth, but under certain circumstances requires some additional configuration. This short note explains how to configure Apache2 to use a virtual host in a user directory and redirect all http traffic to https. | 2021-10-28 09:04:50 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.33328044414520264, "perplexity": 5252.972192239845}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-43/segments/1634323588282.80/warc/CC-MAIN-20211028065732-20211028095732-00715.warc.gz"} | 82 |
https://puzzling.stackexchange.com/questions/10645/male-and-female-functions/10647 | # Male and Female functions
You are given two goniometric functions:
• Male: $g(\rho, \Theta) = \rho \, \cos\Theta \sin\Theta$
• Female: $f(\rho, \Theta) = \rho \, \cos^2\Theta$
Why are these two functions labeled "male" and "female"?
• Now explain me why the female's value at 90° is 0... – leoll2 Mar 22 '15 at 14:25
• @leoll2 that's a good point ahaha, it should actually be cos²(π-Θ) – Marco Bonelli Mar 22 '15 at 14:33 | 2020-05-25 05:19:17 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.3799595236778259, "perplexity": 5830.189528025008}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-24/segments/1590347387219.0/warc/CC-MAIN-20200525032636-20200525062636-00102.warc.gz"} | 149 |
https://www.gradesaver.com/textbooks/math/algebra/algebra-1-common-core-15th-edition/chapter-1-foundations-for-algebra-common-core-cumulative-standards-review-selected-response-page-75/4 | # Chapter 1 - Foundations for Algebra - Common Core Cumulative Standards Review - Selected Response - Page 75: 4
D
#### Work Step by Step
$12+8(.85)$ Now, we simplify $12+6.80=18.80$
After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback. | 2020-02-18 18:36:12 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5433341264724731, "perplexity": 2565.9616151058717}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 5, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-10/segments/1581875143805.13/warc/CC-MAIN-20200218180919-20200218210919-00177.warc.gz"} | 89 |
https://brilliant.org/problems/quad-rat-roots/ | Algebra Level 3
$$\text{The Quadratic equation}$$, $\large x^2 + [a^2 -5a + b + 4]x + b = 0$ $$\text{has roots -5 and 1 , then number of integral values of}$$ a $$\text{are}$$
Note: [.] denotes the greatest integer function.
× | 2017-01-17 23:39:35 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9995071887969971, "perplexity": 3069.470623183626}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-04/segments/1484560280128.70/warc/CC-MAIN-20170116095120-00499-ip-10-171-10-70.ec2.internal.warc.gz"} | 83 |
https://www.cdt21.com/faq/what-are-the-frequencies-of-the-intermediate-frequency-if-stages-in-the-cdp-rx-02e-ep-cdp-rx-02f-cdp-rx-07m-mp-cdp-rx-05m-r/ | ## What are the frequencies of the intermediate frequency (IF) stages in the CDP-RX-02E/EP, CDP-RX-02F, CDP-RX-07M/MP, CDP-RX-05M-R?
The 1st IF is 21.7 MHz and the 2nd IF is 450 kHz. | 2021-03-02 17:52:45 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8242868185043335, "perplexity": 4327.20085655603}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-10/segments/1614178364027.59/warc/CC-MAIN-20210302160319-20210302190319-00400.warc.gz"} | 74 |
https://datascience.stackexchange.com/questions/19840/rs-mice-imputation-alternative-in-python | # R's mice imputation alternative in Python
What is Python's alternative to missing data imputation with mice in R? Imputation using median/mean seems pretty lame, I'm looking for other methods of imputation, something like randomForest.
• You might want to take a look at fancyimpute – chainD Jun 30 '17 at 3:19 | 2020-10-22 03:52:07 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.3840792775154114, "perplexity": 3660.0261800036133}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-45/segments/1603107878879.33/warc/CC-MAIN-20201022024236-20201022054236-00222.warc.gz"} | 76 |
https://www.hsfzxjy.site/2019-03-10-correlation-matrix/ | Say we have a matrix A of shape N x M, which can be viewed as a collection of N vectors of shape 1 x M. The code below gives us the correlation matrix of A:
To visualize it, just use plt.matshow(A_corr).
If N is so large that the figure could not provide a clear insight, we might alternatively use histograms like this: | 2019-11-18 21:02:05 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4544970393180847, "perplexity": 335.4406992194872}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-47/segments/1573496669847.1/warc/CC-MAIN-20191118205402-20191118233402-00547.warc.gz"} | 75 |
https://physweb.bgu.ac.il/COURSES/PHYSICS_ExercisesPool/22_Rigid_body/e_22_1_023.html | ### Rigid Body
A massless dancer holds two identical masses ($m$) at a distance $R$ from the body
and spinning at a constant angular velocity $\omega_0$.
Suddenly the dancer move the masses to the distance of $R/2$ from the body.
What will be the the new angular velocity? | 2019-02-19 19:40:27 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 4, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9179725646972656, "perplexity": 1718.1673430399553}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-09/segments/1550247491141.23/warc/CC-MAIN-20190219183054-20190219205054-00160.warc.gz"} | 70 |
https://academy.vertabelo.com/course/ms-sql-recursive-queries/final-quiz/introduction/the-project-table | Introduction
2. The Project table
Quiz
Summary
## Instruction
Good. Before we start, let's discuss the tables you're going to work with. They are used by a company to track their projects and the time employees spend on a given project.
## Exercise
Select all the information from the table Project.
The table is quite simple: each project has an Id, a ClientId, and a Name. | 2018-12-10 02:22:46 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.3128255307674408, "perplexity": 1420.6991666280387}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-51/segments/1544376823236.2/warc/CC-MAIN-20181210013115-20181210034615-00574.warc.gz"} | 85 |
http://www.ams.org/mathscinet-getitem?mr=501370 | MathSciNet bibliographic data MR501370 14J10 (49F10) Horikawa, Eiji Algebraic surfaces of general type with small \$c\sp{2}\sb{1}\$$c\sp{2}\sb{1}$. III. Invent. Math. 47 (1978), no. 3, 209–248. Article
For users without a MathSciNet license , Relay Station allows linking from MR numbers in online mathematical literature directly to electronic journals and original articles. Subscribers receive the added value of full MathSciNet reviews. | 2016-10-25 03:31:23 | {"extraction_info": {"found_math": true, "script_math_tex": 1, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9985554218292236, "perplexity": 5739.819584645593}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-44/segments/1476988719877.27/warc/CC-MAIN-20161020183839-00308-ip-10-171-6-4.ec2.internal.warc.gz"} | 120 |
https://collegephysicsanswers.com/openstax-solutions/how-many-239textrmpu-nuclei-must-fission-produce-200-kt-yield-assuming-200-mev-0 | Change the chapter
Question
(a) How many ${}^{239}\textrm{Pu}$ nuclei must fission to produce a 20.0-kT yield, assuming 200 MeV per fission? (b) What is the mass of this much ${}^{239}\textrm{Pu}$?
1. $2.62\times 10^{24}\textrm{ nuclei}$
2. $1.04\textrm{ kg}$
Solution Video | 2021-11-29 15:47:22 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9526471495628357, "perplexity": 5746.453625921693}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-49/segments/1637964358774.44/warc/CC-MAIN-20211129134323-20211129164323-00587.warc.gz"} | 102 |
https://web.ti.bfh.ch/~blk2/Events/LI2007/zypen.html | This is joint work with Maria Luisa Colasante, Universidad de los Andes,
Venezuela.
Let X be a topological space. The topological
closure of the diagonal \Delta = {(x,x): x\in X} is a
symmetric relation on X. Our starting point is the
well-known proposition that a topological space
is T_2 if and only if cl(\Delta) = \Delta. We
investigate the closure of the diagonal on T_1
spaces and characterise those equivalence relations
that arise as the closure of the diagonal of some T_1
space. | 2017-10-19 03:21:03 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8506773114204407, "perplexity": 1723.9381546734598}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-43/segments/1508187823220.45/warc/CC-MAIN-20171019031425-20171019051425-00407.warc.gz"} | 128 |
http://www.gradesaver.com/textbooks/math/algebra/college-algebra-7th-edition/chapter-p-prerequisites-section-p-9-modeling-with-equations-p-9-exercises-page-70/5 | ## College Algebra 7th Edition
A painter paints a wall in $x$ hours, so the fraction of the wall that she paints in 1 hour is ___ 1 wall / x hours = 1/x___. | 2018-04-20 15:04:39 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.24619174003601074, "perplexity": 2243.0626643513756}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-17/segments/1524125938462.12/warc/CC-MAIN-20180420135859-20180420155859-00327.warc.gz"} | 46 |
https://www.shaalaa.com/question-bank-solutions/state-true-or-false-7-5-1-7-1-5-linear-inequations-in-one-variable_25823 | # State True Or False 7 > 5 => 1/7 < 1/5 - Mathematics
MCQ
True or False
State true or false
7 > 5 => 1/7 < 1/5
• True
• False
#### Solution
7 > 5 => 1/7 < 1/5
THe given statement is true
Is there an error in this question or solution?
#### APPEARS IN
Selina Concise Maths Class 10 ICSE
Chapter 4 Linear Inequations (In one variable)
Exercise 4 (A) | Q 1.4 | Page 44 | 2021-02-25 11:25:56 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.2329605221748352, "perplexity": 5211.111101424997}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-10/segments/1614178350942.3/warc/CC-MAIN-20210225095141-20210225125141-00287.warc.gz"} | 136 |
http://blog.milrr.com/2009/10/tech-set-gmail-to-handle-mailto-links.html | Friday, October 30, 2009
Tech: Set Gmail to handle MailTo links in Opera
For some reason unknown to me, Opera does not come with the ability to select Gmail as the default mail provider. However you can fix this with a small configuration file change. After installing Opera open up C:\Program Files (x86)\Opera\defaults\webmailproviders.ini (if you are not running a 64 bit system the (x86) wont be present). Open the file and add the following text to the end:
[Gmail]
ID=8 | 2019-03-19 00:40:04 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.821423351764679, "perplexity": 4291.890851932904}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-13/segments/1552912201812.2/warc/CC-MAIN-20190318232014-20190319014014-00134.warc.gz"} | 118 |
https://brilliant.org/problems/shrinking-squaresan-empirical-exploration/ | # Shrinking Squares.An empirical exploration
Level pending
Start with a sequence $$S=(a,b,c,d$$ of positive integers and find the derived sequence $$S_{1}=T(S)=(|a-b|,|b-c|,|c-d|,|d-a|$$.Define a sequence $$S,S_{1},S_{2}=T(S_{1}),S_{3}=T(S_{2}),...$$.
Let $$S_{i}$$ minimizes the sum of the four elements.What is the sum of the four elements of $$S_{i}$$?
× | 2017-10-19 14:48:34 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9168333411216736, "perplexity": 627.6952744468111}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-43/segments/1508187823309.55/warc/CC-MAIN-20171019141046-20171019161046-00398.warc.gz"} | 122 |
https://www.studysmarter.us/textbooks/physics/physics-for-scientists-and-engineers-a-strategic-approach-with-modern-physics-4th/relativity/q-33-a-particle-has-momentum-what-is-the-particles-speed-in-/ | Q. 33
Expert-verified
Found in: Page 1060
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics
Book edition 4th
Author(s) Randall D. Knight
Pages 1240 pages
ISBN 9780133942651
A particle has momentum . What is the particle’s speed in m/s?
See the step by step solution
Step 1: Given Information
We have given that a particle has momentum .
We have to find the particle’s speed in .
Step 2: Simplify
The momentum in relativity is given by
Here
and
So, the equation becomes | 2022-12-06 07:05:45 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9279996752738953, "perplexity": 4396.643469356315}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-49/segments/1669446711074.68/warc/CC-MAIN-20221206060908-20221206090908-00555.warc.gz"} | 131 |
https://brilliant.org/problems/practice-relative-mass/ | # Practice: Relative Mass
Chemistry Level 2
Calculate the mass percentage of element $\ce{N}$ in $\ce{NH_4{NO}_3}$. | 2019-08-23 02:17:14 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 2, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.949434220790863, "perplexity": 4811.290758575292}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-35/segments/1566027317688.48/warc/CC-MAIN-20190822235908-20190823021908-00259.warc.gz"} | 36 |
https://socratic.org/questions/which-element-on-the-periodic-table-has-a-total-of-16-protons | # Which element on the periodic table has a total of 16 protons?
$Z$, the atomic number is the number of protons, positively charged nuclear particles. But $Z$ defines the identity of the element, If $Z = 1$, the element is hydrogen, $Z = 2$, the element is helium, .............$Z = 16$, the element is sulfur. | 2020-10-27 01:24:48 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 5, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8062999248504639, "perplexity": 732.8747898584317}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-45/segments/1603107892710.59/warc/CC-MAIN-20201026234045-20201027024045-00088.warc.gz"} | 81 |
http://www.physicsforums.com/showthread.php?t=178384 | ## Photoelectric effect
I like to get the data of the actual photoelectric experimentation. I have tables with the work function, thus I can compute the threshold frequency, but I believe that introduces at least two errors. I would like to get the frequency obtained directly from experimentation. Anyone can help me? | 2013-05-26 00:08:14 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8024525046348572, "perplexity": 460.9865038508024}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2013-20/segments/1368706472050/warc/CC-MAIN-20130516121432-00033-ip-10-60-113-184.ec2.internal.warc.gz"} | 61 |
https://proofwiki.org/wiki/Asymptotic_Expansion_for_Cosine_Integral_Function | # Asymptotic Expansion for Cosine Integral Function
Jump to navigation Jump to search
## Theorem
$\displaystyle \map \Ci x \sim \frac {\cos x} x \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {2 n + 1}!} {x^{2 n + 1} } - \frac {\sin x} x \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {\paren {2 n}!} {x^{2 n} }$
where:
$\Ci$ denotes the cosine integral function
$\sim$ denotes asymptotic equivalence as $x \to \infty$. | 2019-11-22 08:45:32 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9999823570251465, "perplexity": 5673.661990428402}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": false}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-47/segments/1573496671245.92/warc/CC-MAIN-20191122065327-20191122093327-00295.warc.gz"} | 158 |
https://zbmath.org/?q=an:29.0223.05&format=complete | zbMATH — the first resource for mathematics
Derivation of the formula for the sum of positive integer powers of the sequence of natural numbers in independent form. (Ableitung der Formel für die Summe der positiven, ganzen Potenzen der natürlichen Zahlenreihe in independenter Form.) (Czech) JFM 29.0223.05
MSC:
11B57 Farey sequences; the sequences $$1^k, 2^k, \dots$$
Keywords:
Sums of powers of integers | 2021-07-26 03:33:26 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8771801590919495, "perplexity": 6962.298353638287}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-31/segments/1627046152000.25/warc/CC-MAIN-20210726031942-20210726061942-00205.warc.gz"} | 113 |
https://gamedev.stackexchange.com/questions/32653/change-the-title-name-of-a-xna-window | # Change the title name of a XNA window?
I have tried to change the title with this source:
http://msdn.microsoft.com/en-us/library/ff966436.aspx
but this isn't working!? Help preciated!
• You can do it with code by changing the value of Window.Title but both ways described in the link you posted also worked for me. Jul 20 '12 at 13:33
Window.Title = "My new title" | 2022-01-26 18:35:24 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7334689497947693, "perplexity": 1474.2206976584325}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-05/segments/1642320304959.80/warc/CC-MAIN-20220126162115-20220126192115-00232.warc.gz"} | 94 |
http://openstudy.com/updates/50c4a9e2e4b066f22e10c2ff | ## Lukecrayonz 2 years ago If the instructions for a problem ask you to use the smallest possible domain to completely graph two periods of y = 5 + 3 cos 2(x - π/3 ), what should be used for Xmin and Xmax?
set $$(x- \pi/3=0)$$ and $$(x-\pi/3 = 4\pi)$$ separately. that should give you endpoints of the two periods | 2015-05-04 21:10:18 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6241397857666016, "perplexity": 714.6448722588599}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2015-18/segments/1430455119811.95/warc/CC-MAIN-20150501043839-00054-ip-10-235-10-82.ec2.internal.warc.gz"} | 95 |
https://www.gradesaver.com/textbooks/math/algebra/algebra-1-common-core-15th-edition/chapter-11-rational-expressions-and-functions-11-1-simplifying-rational-expressions-practice-and-problem-solving-exercises-page-668/35 | ## Algebra 1: Common Core (15th Edition)
$\frac{3z+12}{z^3}$
$\frac{z(3z+12)}{z∗z^3}$ Factor out a z from the numerator and the denominator $\frac{3z+12}{z^3}$ | 2019-11-20 17:15:15 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9824929237365723, "perplexity": 1907.071155931912}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-47/segments/1573496670597.74/warc/CC-MAIN-20191120162215-20191120190215-00066.warc.gz"} | 65 |
http://ringtheory.herokuapp.com/rings/ring/12/ | # Ring detail
## Name: $M_n(F)$: the matrix ring over an infinite field
Description: The ring of $n \times n$ matrices with entries from a field $F$, $n$ a natural number greater than $1$, and $F$ an infinite field.
Notes:
Keywords matrix ring
Reference(s):
• (Citation needed)
• This ring has the following properties:
The ring lacks the following properties:
We don't know if the ring has or lacks the following properties: | 2017-12-17 14:03:20 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8167521953582764, "perplexity": 501.82439284232964}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-51/segments/1512948596051.82/warc/CC-MAIN-20171217132751-20171217154751-00706.warc.gz"} | 104 |
https://brilliant.org/problems/sonometer-experiment/ | # Sonometer experiment.
Classical Mechanics Level pending
A sonometer wire resonates with a given tuning fork forming standing waves with three antinodes between the two bridges when mass $$M$$ is suspended from the wire. When this mass is completely immersed in a liquid of density $$\rho_l$$, the wire resonates with same tuning fork forming five antinodes for the same position of the bridges. The ratio of density of liquid and density of mass $$M$$, $$\frac{\rho_l}{\rho_m}$$, is :
× | 2017-09-22 08:27:07 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4532598853111267, "perplexity": 1156.6140845126697}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-39/segments/1505818688926.38/warc/CC-MAIN-20170922074554-20170922094554-00360.warc.gz"} | 113 |
https://www.gradesaver.com/textbooks/math/calculus/calculus-10th-edition/chapter-7-applications-of-integration-7-3-exercises-page-462/9 | ## Calculus 10th Edition
$\frac{8\pi}{3}$
Setup the integration using shell method about the y-axis $2\pi \int_0^2 x(4-(4x-x^2))dx$ $2\pi \int_0^2 (4x-4x^2 +x^3)dx$, Integrate $2\pi (2x^2 - \frac{4}{3}x^3 + \frac{1}{4}x^4)]_0^2$, Take the definite integral $2\pi(8-\frac{32}{3} +4)-0$ $\frac{8\pi}{3}$ | 2018-12-18 14:47:57 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9993845820426941, "perplexity": 963.7877291373514}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-51/segments/1544376829429.94/warc/CC-MAIN-20181218143757-20181218165757-00552.warc.gz"} | 145 |
https://mully.net/en/area_of_circle_en/ | # Area of Circle
## How to calculate the area of a circle
If you cut the circles and stick them together, they gradually become more rectangular. In this rectangle, the width is half of the circumference, and the height is the radius.
Therefore, The area of a circle can be calculated as shown below.
Area of circle = 1/2 of circumference x radius | 2023-03-24 13:38:26 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8583356738090515, "perplexity": 538.610632862959}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-14/segments/1679296945282.33/warc/CC-MAIN-20230324113500-20230324143500-00052.warc.gz"} | 77 |
http://quant.stackexchange.com/tags/binomial-tree/new | # Tag Info
I think the point of this approach is to model the firm value $V(t)$ using some appropriate probability distribution, then deduce the dustribution of the CB price. Thus the CB price depends on the firm value, but not vice versa. | 2016-07-25 22:05:06 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8543448448181152, "perplexity": 769.8793249333789}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-30/segments/1469257824395.52/warc/CC-MAIN-20160723071024-00014-ip-10-185-27-174.ec2.internal.warc.gz"} | 54 |
https://www.fixedpoint.nl/ | # Welcome to FixedPoint
A fixed point is a point that does not change upon application of a map, system of differential equations, etc. In particular, a fixed point of a function $f(x)$ is a point $x_0$ such that
$$f(x_0) = x_0$$ | 2020-04-05 10:00:51 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.843235194683075, "perplexity": 102.76994350321249}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-16/segments/1585371576284.74/warc/CC-MAIN-20200405084121-20200405114121-00470.warc.gz"} | 64 |
https://eanswers.in/math/question5518255 | , 17.10.2019 23:00, sahini99
# Two no are in the ratio of 5: 8, if 12 is added in each , are in the ratio of 3: 4. find the sum of two no.
### Other questions on the subject: Math
Math, 19.08.2019 03:00, nikhil3810rhmschool
After 12 years suman will be 3 times as old as she was 4 years ago. find her present age
Math, 19.08.2019 05:00, yachna18
If 3 to the power of x-1=9 and 4 to the power of y+2= 64, find the value of x/y | 2020-11-28 22:26:19 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9118759036064148, "perplexity": 1509.6708769413087}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-50/segments/1606141195929.39/warc/CC-MAIN-20201128214643-20201129004643-00650.warc.gz"} | 169 |
https://brilliant.org/problems/if-you-want-to-die-this-problem-will-help-you/ | # Compliment me
Find the number of positive integers $n\leq 1991$ such that $6 | (n^{2} + 3n + 2)$.
× | 2021-02-28 07:34:48 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 2, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4032731354236603, "perplexity": 2061.9960141367646}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 5, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-10/segments/1614178360293.33/warc/CC-MAIN-20210228054509-20210228084509-00551.warc.gz"} | 41 |
https://www.lessonplanet.com/teachers/frames-of-reference-the-basics | # FRAMES OF REFERENCE: THE BASICS
##### This FRAMES OF REFERENCE: THE BASICS lesson plan also includes:
High schoolers examine the concept of frames of reference in physics: that two frames of reference, each moving with respect to the other with a constant velocity v, observe the same accelerations and therefore Newton's laws are the same in both. | 2020-07-07 07:33:46 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8091232776641846, "perplexity": 570.8239040191155}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-29/segments/1593655891654.18/warc/CC-MAIN-20200707044954-20200707074954-00083.warc.gz"} | 75 |
http://answerparty.com/question/answer/why-do-you-need-to-line-up-the-decimal-points-before-comparing-and-ordering-numbers-with-decimals | Question:
# Why do you need to line up the decimal points before comparing and ordering numbers with decimals?
Answer:
## It makes doing calculations, particularly totaling up numbers, a lot easier to do. It also makes it easier to compare the numbers when you line up the decimal points
Tags:
Elementary arithmetic
Numeral systems
Decimal
Fractions
Pi
Number
Hexadecimal
0.999...
Mathematics
Arithmetic
Linguistics
42 | 2014-03-09 09:22:17 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 1, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.887922465801239, "perplexity": 1110.3319031696503}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": false}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2014-10/segments/1393999676283/warc/CC-MAIN-20140305060756-00000-ip-10-183-142-35.ec2.internal.warc.gz"} | 94 |
https://ged-testprep.com/question/solve-the-given-equation-for-x-14x--84-4560743370326016/ | Scan QR code or get instant email to install app
Question:
# Solve the given equation for x. $14x = 84$
A x=6.
explanation
To undo the effect of multiplying by 14, divide both sides of the equation by 14. In this way, we will isolate an unknown value x.
$14x = 84$ Original equation.
$14x \div 14=84 \div 14=6$ | 2023-03-24 23:08:49 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.18482111394405365, "perplexity": 902.8865963743654}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-14/segments/1679296945289.9/warc/CC-MAIN-20230324211121-20230325001121-00007.warc.gz"} | 94 |
https://math.answers.com/Q/What_are_he_multiples_of_4 | 0
# What are he multiples of 4?
Wiki User
2013-03-04 02:29:41
The multiples of 4 are the values such that they are divisible by 4. For example, 4, 8, 12 and any integer multiplied by 4 to be the part of the multiples of 4.
Wiki User
2013-03-04 02:29:41
🙏
0
🤨
0
😮
0
Study guides
20 cards
➡️
See all cards
1 card
➡️
See all cards
96 cards
➡️
See all cards | 2021-11-30 10:00:37 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8328472971916199, "perplexity": 2579.4392409512516}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-49/segments/1637964358966.62/warc/CC-MAIN-20211130080511-20211130110511-00607.warc.gz"} | 141 |
https://www.studyadda.com/question-bank/mental-ability_q25/4563/361393 | • # question_answer There are 30 plants of chiku, Guava, Pineapple and mango in a row. There is one pair of mango plants after chiku and Guava and Mango plants are followed by one Chiku and One Pineapple plant and so on. If the row begins with a plant of Chiku, then which of the following will be the last in the row? A) Guava B) Mango C) Chiku D) Pineapple
The order of given plants is as follows: $\therefore$ The required 30th plant = Pineapple | 2020-09-23 12:58:14 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.808841347694397, "perplexity": 4573.396204208508}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-40/segments/1600400210996.32/warc/CC-MAIN-20200923113029-20200923143029-00482.warc.gz"} | 140 |
https://stacks.math.columbia.edu/tag/07YS | • for $(x, A)$ as in (1) and a ring map $A \to B$ setting $y = x|_{\mathop{\mathrm{Spec}}(B)}$ there is a functoriality map $E_ x \to E_ y$ in $D(A)$.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar). | 2022-06-25 17:20:45 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 2, "x-ck12": 0, "texerror": 0, "math_score": 0.9705182313919067, "perplexity": 593.8768058414807}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-27/segments/1656103036077.8/warc/CC-MAIN-20220625160220-20220625190220-00520.warc.gz"} | 108 |
http://geomblog.blogspot.com/2008/09/fonts.html?showComment=1220404380000 | Monday, September 01, 2008
Fonts !
John Holbo at CT does a not-review of books on fonts (or faces ? I'm confused now). In any case, this is clearly a book I need to get. | 2014-03-08 11:09:43 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.804970383644104, "perplexity": 4624.563381964}, "config": {"markdown_headings": false, "markdown_code": false, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2014-10/segments/1393999654345/warc/CC-MAIN-20140305060734-00047-ip-10-183-142-35.ec2.internal.warc.gz"} | 48 |
http://specialfunctionswiki.org/index.php/Bell_numbers | # Bell numbers
The Bell numbers $B_n$ are defined by the formula $$B_n = \displaystyle\sum_{k=0}^n S(n,k),$$ where $S(n,k)$ denotes the Stirling numbers of the second kind. | 2018-04-24 20:40:13 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.998284101486206, "perplexity": 47.58977404058948}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-17/segments/1524125947328.78/warc/CC-MAIN-20180424202213-20180424222213-00439.warc.gz"} | 53 |
https://www.vedantu.com/iit-jee/jee-advanced-hyperbola-important-questions | # JEE Advanced Hyperbola Important Questions
## JEE Advanced Important Questions of Hyperbola
Hyperbola is one of the important topics that come under the conic section in the syllabus of JEE Advanced 2020. The below PDF consists of important questions on Hyperbola for JEE Advanced and the solutions to the same. Hyperbola is a curve that can be defined to be the locus, of the points in the planar region -
• which have a constant positive difference
• between their distances from two fixed points. | 2020-08-04 18:09:55 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8980127573013306, "perplexity": 558.934094040849}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-34/segments/1596439735881.90/warc/CC-MAIN-20200804161521-20200804191521-00249.warc.gz"} | 112 |
http://clay6.com/qa/18527/if-a-and-b-are-square-matrices-of-the-same-order-and-ab-3i-then-a-is-equal- | Browse Questions
# If $A$ and $B$ are square matrices of the same order and $AB=3I$ then $A^{-1}$ is equal to
$(a)\;3B\qquad(b)\;\large\frac{1}{3}$$B\qquad(c)\;3B^{-1}\qquad(d)\;\large\frac{1}{3}$$B^{-1}$
Given
$AB=3I$
Multiply $A^{-1}$ on both the side
$A^{-1}(AB)=A^{-1}(3I)$
$B=3A^{-1}$
$A^{-1}=\large\frac{B}{3}$
Hence (b) is the correct answer.
edited Mar 19, 2014 | 2016-10-27 18:49:19 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8729745745658875, "perplexity": 415.8283118237033}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-44/segments/1476988721387.11/warc/CC-MAIN-20161020183841-00031-ip-10-171-6-4.ec2.internal.warc.gz"} | 164 |
http://www.mat.univie.ac.at/~kratt/artikel/heine.html | # Determinant evaluations and U(n) extensions of Heine's 2\phi1-transformations
### (6 pages)
Abstract. We give new proofs for U(n) extensions of Heine's three 2\phi1-transformation formulas that were recently discovered in another paper by the authors. These new proofs proceed by combining Heine's original transformation formulas with certain determinant evaluations. As a by-product we are able to generalize two of the U(n) transformation formulas.
The following versions are available: | 2017-12-13 09:19:19 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.932687520980835, "perplexity": 2116.933928837428}, "config": {"markdown_headings": true, "markdown_code": false, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-51/segments/1512948522343.41/warc/CC-MAIN-20171213084839-20171213104839-00390.warc.gz"} | 102 |
https://derive-it.com/tag/unit-vectors/ | Tag: unit vectors
Writing Unit Vectors for a Cartesian Coordinate System in Terms of Unit Vectors for a Spherical Coordinate SystemWriting Unit Vectors for a Cartesian Coordinate System in Terms of Unit Vectors for a Spherical Coordinate System
Objective of this Post The | 2022-05-22 11:30:29 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9104682207107544, "perplexity": 374.63953760919605}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-21/segments/1652662545326.51/warc/CC-MAIN-20220522094818-20220522124818-00088.warc.gz"} | 53 |
https://brilliant.org/problems/a-light-and-a-shadow/ | # A light and a shadow
Geometry Level 2
A rectangular billboard $ABCD$ is illuminated by a lantern $E$ and casts a shadow in the $xy$-plane. The positions $(x,y,z)$ of the lantern and the billboard's vertices are $A = (0,0,0), \quad B = (0,3,0), \quad C = (0,3,2), \quad D = (0, 0 ,2), \quad E = (3, -1, 4).$ What is the area of the shadow?
Assumptions: The light source is a point and the billboard has zero thickness. The ground is the $xy$-plane.
× | 2020-05-25 22:00:43 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 6, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6825132966041565, "perplexity": 773.730526767945}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-24/segments/1590347389355.2/warc/CC-MAIN-20200525192537-20200525222537-00265.warc.gz"} | 149 |
https://aif.centre-mersenne.org/ | # ANNALES DE L'INSTITUT FOURIER
The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French.
The electronic edition is fully open access and free of author charges.
#### New articles
Peternell, Thomas
Guedj, Vincent; Lu, Chinh H.; Zeriahi, Ahmed
View More | 2019-05-24 06:06:48 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 2, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4751420021057129, "perplexity": 5044.512631716636}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-22/segments/1558232257514.68/warc/CC-MAIN-20190524044320-20190524070320-00062.warc.gz"} | 88 |
http://docs.itascacg.com/3dec700/common/fish/doc/fish_manual/fish_fish/math_utilities/fish_math.mag2.html | # math.mag2
Syntax
f := math.mag2(v)
Get the squared vector magnitude. This is useful as a measure of vector length without the cost of calling the math.sqrt function.
Returns: f - vector squared magnitude v - vector (2D or 3D) | 2021-08-01 04:16:27 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9368138313293457, "perplexity": 2318.293756020524}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 5, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-31/segments/1627046154158.4/warc/CC-MAIN-20210801030158-20210801060158-00381.warc.gz"} | 57 |
http://mathhelpforum.com/calculus/52828-simple-integration.html | 1. ## simple integration
$
\int^{\infty}_{-\infty}x^{-1/2}e^{x/2}dx
$
2. Edit: sorry it was wrong
3. Hello,
This is weird because it is not defined for x<0...
$
Well intuitively when say x>1, $e^{x/2}$ grow faster then $\sqrt{x}$ . It follows that $\int_1^\infty \frac{e^{x/2}}{\sqrt{x}}\,dx$ diverges and hence so is the original integral. | 2017-05-24 12:23:02 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 5, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9944899082183838, "perplexity": 2330.1460321830505}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-22/segments/1495463607813.12/warc/CC-MAIN-20170524112717-20170524132717-00257.warc.gz"} | 121 |
https://www.gradesaver.com/textbooks/math/algebra/algebra-a-combined-approach-4th-edition/chapter-6-test-page-477/1 | # Chapter 6 - Test: 1
3x(3x-1)
#### Work Step by Step
9$x^{2}$-3x=3x(3x-1)
After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback. | 2018-07-20 09:23:30 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5910085439682007, "perplexity": 3030.012971343409}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 5, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-30/segments/1531676591575.49/warc/CC-MAIN-20180720080634-20180720100634-00275.warc.gz"} | 74 |
https://itectec.com/ubuntu/ubuntu-wireless-headset-cant-be-enabled/ | # Ubuntu – Wireless headset can’t be enabled
My Logitech H800 normally works fine with Ubuntu, but sometimes, I think when I unplug and replug the USB adapter, it stops working. It is listed in sound settings under outputs, and clicking it highlights it, but sound is still played through the builtin sound hardware. Running pactl list sinks does not show it.
My workaround is running pactl exit, after which all works fine. I just discovered it now but I don't expect it will be a permanent fix. | 2021-06-15 04:01:35 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.22217516601085663, "perplexity": 5023.895282547349}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 5, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-25/segments/1623487616657.20/warc/CC-MAIN-20210615022806-20210615052806-00072.warc.gz"} | 108 |
https://homework.cpm.org/category/MN/textbook/cc3mn/chapter/cc35/lesson/cc35.2.3/problem/5-49 | Home > CC3MN > Chapter cc35 > Lesson cc35.2.3 > Problem5-49
5-49.
Solve for the variable. Homework Help ✎
1. $\frac { 7 y } { 8 } - \frac { 3 y } { 5 } = \frac { 11 } { 2 }$
Multiply the entire equation by a common multiple of the denominators to get rid of the fractions.
$35y−24y=220$
Combine like terms.
$11y=220$
$y=20$
1. $\frac { a + 4 } { 3 } - \frac { a } { 7 } = \frac { a + 7 } { 5 }$
Follow the steps in part (a). | 2019-10-24 02:18:27 | {"extraction_info": {"found_math": true, "script_math_tex": 5, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5259914994239807, "perplexity": 4592.840891678769}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-43/segments/1570987838289.72/warc/CC-MAIN-20191024012613-20191024040113-00005.warc.gz"} | 164 |
https://mathvisions.wordpress.com/2017/05/19/homework-11-due-5-21-14-for-mrs22-3-or-5-22-14-for-mrs22-1/ | # Trigonometry Homework #12 due 5-25
Solve each equation for $x$
1. $2\sin{x}=\sin^2{x}+\cos^2{x}$
2. $3\tan^2{x}=1$
3. $\tan{x}-\cot{x}=\frac{\sin{x}-\cos{x}}{\sin{x}}$
4. $\cos^2\frac{x}{5}=\frac{1}{2}$
5. $\csc\left(x+\frac{2\pi}{5}\right)=1$
6. $\sqrt{\frac{1-\cos\frac{x}{4}}{2}}=\frac{\sqrt{3}}{2}$
7. $\tan{x}\cos{x}=0$
8. $\tan{x}=\frac{\sin\frac{5\pi}{6}}{1+\cos\frac{5\pi}{6}}$
9. $\sec^2{x}+1=5$
10. $\ln[-\cos(4x)]=0$ | 2017-05-30 01:19:27 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 11, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9433883428573608, "perplexity": 644.499243775454}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-22/segments/1495463613738.67/warc/CC-MAIN-20170530011338-20170530031338-00380.warc.gz"} | 221 |
https://www.doubtnut.com/question-answer-physics/a-parallel-plate-capacitor-has-smooth-square-plates-of-side-a-it-is-charged-by-a-battery-so-that-the-13079558 | Home
>
English
>
Class 12
>
Physics
>
Chapter
>
Capacitance
>
A parallel plate capacitor has...
Text Solution
The slab can execute SHM between the plates.The plate can execute oscillatory motion which is not SHMThe magnitude of the force experienced by the slab is constantThe magnitude of the force experienced by the slab is not constant.
Solution : Force on the slab is given by F=(dU)/(dx), where U is slab in it. Here F is not directly proportional to x, but depends on x. | 2022-10-01 01:20:54 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.35905954241752625, "perplexity": 1001.3394773689377}, "config": {"markdown_headings": true, "markdown_code": false, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-40/segments/1664030335514.65/warc/CC-MAIN-20221001003954-20221001033954-00237.warc.gz"} | 116 |
https://socratic.org/questions/how-do-you-find-the-slope-of-the-secant-lines-of-f-x-x-2-through-the-points-2-4 | # How do you find the slope of the secant lines of f(x) = -x^2 through the points: [-2, -4]?
Feb 8, 2018
$6$
#### Explanation:
$\text{the slope of the secant line is}$
•color(white)(x)(f(b)-f(a))/(b-a)
$f \left(b\right) = f \left(- 2\right) = - {\left(- 2\right)}^{2} = - 4$
$f \left(a\right) = f \left(- 4\right) = - {\left(- 4\right)}^{2} = - 16$
$\Rightarrow \frac{- 4 - \left(- 16\right)}{- 2 - \left(- 4\right)} = \frac{12}{2} = 6$ | 2021-10-23 01:37:18 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 6, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9169277548789978, "perplexity": 1373.0258913221603}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2021-43/segments/1634323585537.28/warc/CC-MAIN-20211023002852-20211023032852-00112.warc.gz"} | 185 |
http://www.chegg.com/homework-help/questions-and-answers/electron-photon-wavelength-019-nm-isthe-momentum-electron-b-photon-energy-c-electron-d-pho-q393230 | ## Tricky problem that no one solve
An electron and a photon each have a wavelength of 0.19 nm. What isthe momentum of the (a)electron and (b) photon?What is the energy of the (c) electron and (d) photon? | 2013-05-23 08:30:43 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8683975338935852, "perplexity": 2722.634294364119}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2013-20/segments/1368703035278/warc/CC-MAIN-20130516111715-00000-ip-10-60-113-184.ec2.internal.warc.gz"} | 57 |
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.mllib.linalg.Vector.html | # Vector¶
class pyspark.mllib.linalg.Vector[source]
Methods
Convert this vector to the new mllib-local representation. Convert the vector into an numpy.ndarray
Methods Documentation
asML()[source]
Convert this vector to the new mllib-local representation. This does NOT copy the data; it copies references.
Returns:
pyspark.ml.linalg.Vector
toArray()[source]
Convert the vector into an numpy.ndarray
Returns:
numpy.ndarray | 2023-02-08 20:45:45 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.39354243874549866, "perplexity": 7459.995563762569}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-06/segments/1674764500904.44/warc/CC-MAIN-20230208191211-20230208221211-00862.warc.gz"} | 89 |
https://brilliant.org/problems/not-a-normal-question/ | # Not a "normal" question
Calculus Level 3
Sketch the probability density function of a normal distribution with some mean and standard deviation. Call this graph $$f(x)$$.
Define $$g(n)=$$ number of turning points $$f^{(n)}(x)$$ has, where $$f^{(n)}(x)$$ is the $$n^{th}$$ derivative of $$f(x)$$.
What is the value of $$\sum_{n=0}^{20} g(n)$$?
BONUS: can you generalise this for $$\sum_{n=0}^{k} g(n)$$?
× | 2016-10-28 17:47:48 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7155380845069885, "perplexity": 282.542389270148}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-44/segments/1476988725451.13/warc/CC-MAIN-20161020183845-00215-ip-10-171-6-4.ec2.internal.warc.gz"} | 136 |
http://openstudy.com/updates/4d71b39edd6e8b0b72a5e440 | • anonymous
a. μ = 80 and σ = 10 b. μ = 80 and σ = 5 c. μ = 105 and σ = 10 d. μ = 105 and σ = 5 Make sure to indicate the direction (sign) of the z-scores.
Mathematics
Looking for something else?
Not the answer you are looking for? Search for more explanations. | 2017-03-30 12:43:23 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9251695871353149, "perplexity": 591.6940183629825}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-13/segments/1490218194600.27/warc/CC-MAIN-20170322212954-00399-ip-10-233-31-227.ec2.internal.warc.gz"} | 83 |
https://en.universaldenker.org/illustrations/1400 | A rotating rigid disk with moment of inertia $$I$$ has angular momentum $$L$$ and angular velocity $$\omega$$ due to rotation. Both point in the same direction. | 2022-10-04 13:24:56 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8924469947814941, "perplexity": 101.66771783967792}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-40/segments/1664030337504.21/warc/CC-MAIN-20221004121345-20221004151345-00327.warc.gz"} | 35 |
https://cracku.in/19-aparna-changes-the-marked-price-of-an-item-to-50-a-x-rrb-ntpc-12-april-2016-shift-3 | Question 19
# Aparna changes the marked price of an item to 50% above its C.P. What % of discount allowed in approximately to gain 10%?
Solution
Let CP =100
MP=150
SP=110
DISCOUNT=150-110=40
% DISCOUNT=$$(40\div 150)\times 100$$=26.67% | 2022-08-10 17:10:27 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.36039847135543823, "perplexity": 10483.036649919943}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-33/segments/1659882571198.57/warc/CC-MAIN-20220810161541-20220810191541-00470.warc.gz"} | 81 |
https://www.albert.io/learn/sat-math-1-and-2-subject-test/question/exponential-regression | Limited access
The population of a town in the year 1990 was $2800$ people. In 1995, it was $3200$, 2000 it was $3800$, and in 2005 it was $5500$ people.
Based on the exponential regression equation, what is the percent annual growth of the town's population
A
$3\%$
B
$4\%$
C
$5\%$
D
$6\%$
E
$7\%$
Select an assignment template | 2017-03-30 06:46:36 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.22379207611083984, "perplexity": 920.2272887360144}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-13/segments/1490218193284.93/warc/CC-MAIN-20170322212953-00420-ip-10-233-31-227.ec2.internal.warc.gz"} | 112 |
https://brilliant.org/problems/adding-arctan-2/ | Geometry Level 4
$\large \sum_{n=0}^\infty \text{arctan} \left( \dfrac1{n^2+n+1} \right)$
If the value of the summation above is in the form of $$\dfrac da \pi ^y$$, where $$a,d$$ and $$y$$ are positive integers with $$a,d$$ coprime, find $$d+a+y$$.
× | 2018-07-18 18:43:56 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9190708994865417, "perplexity": 141.23348154075123}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-30/segments/1531676590314.29/warc/CC-MAIN-20180718174111-20180718194111-00472.warc.gz"} | 95 |
https://www.gradesaver.com/textbooks/math/algebra/college-algebra-7th-edition/chapter-1-equations-and-graphs-section-1-6-solving-other-types-of-equations-1-6-exercises-page-139/67 | ## College Algebra 7th Edition
$x=-\frac{1}{2}$
$\displaystyle \frac{1}{x^{3}}+\frac{4}{x^{2}}+\frac{4}{x}=0$ We multiply through by $x^3$: $1+4x+4x^{2}=0$ Now we factor and solve: $(1+2x)^{2}=0$ $1+2x=0$ $2x=-1$ $x=-\frac{1}{2}$ | 2018-07-17 19:14:56 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9332643747329712, "perplexity": 688.7565145255722}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-30/segments/1531676589892.87/warc/CC-MAIN-20180717183929-20180717203929-00176.warc.gz"} | 111 |
https://brilliant.org/problems/cant-resist-from-determining-resistance/ | # Can't resist from determining resistance
Chemistry Level pending
Resistance of $$0.2\text{ M}$$ solution on an electrolyte is 50 ohm. The specific conductance of the solution is $$1.3 \text{ s/m}$$. If the resistance of the 0.4 M solution of the same electrolyte is 260 ohm, its molar conductivity is
Answer in decimal upto 6 digits after decimal.
× | 2017-05-25 16:23:59 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.6500741839408875, "perplexity": 2462.9735361962776}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-22/segments/1495463608107.28/warc/CC-MAIN-20170525155936-20170525175936-00354.warc.gz"} | 94 |
https://brilliant.org/problems/average-stress/ | # Average stress
Classical Mechanics Level 3
The average stress in the legs of a man standing upright is $$S$$. If the dimensions of the man are doubled while the average density of the body remains the same, the average stress in the legs would be
× | 2016-10-28 00:35:48 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.734684407711029, "perplexity": 618.9567576435272}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-44/segments/1476988721415.7/warc/CC-MAIN-20161020183841-00275-ip-10-171-6-4.ec2.internal.warc.gz"} | 56 |
https://access.openupresources.org/curricula/our-k5-math/grade-2/unit-6/section-a/lesson-5/student.html | # Lesson 5 Center Day 1
• Let’s work with shapes.
## Warm-up Number Talk: Add 5
Find the value of each expression mentally.
## Activity 1 Introduce Which One?
We are going to learn a new way to play the Which One center.
## Activity 2 Introduce Can You Draw It?
We are going to learn a new way to play the Can You Draw It? center. | 2023-01-28 20:02:49 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 4, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.1725463569164276, "perplexity": 2493.100421343915}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-06/segments/1674764499654.54/warc/CC-MAIN-20230128184907-20230128214907-00769.warc.gz"} | 89 |
https://brilliant.org/problems/polynomial-arithmetic-applying-the-perfect-square/ | # Polynomial Arithmetic: Applying the Perfect Square Identity
Algebra Level 1
What is the coefficient of $x$ in the expansion of $(x+3 ) ^ 2$?
× | 2020-11-30 05:31:21 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 2, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.5380551815032959, "perplexity": 1346.553561209239}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-50/segments/1606141205147.57/warc/CC-MAIN-20201130035203-20201130065203-00432.warc.gz"} | 39 |
https://homework.cpm.org/category/CON_FOUND/textbook/a2c/chapter/9/lesson/9.2.2/problem/9-97 | ### Home > A2C > Chapter 9 > Lesson 9.2.2 > Problem9-97
9-97.
1. Given find: Homework Help ✎
1. CD
2. C + D
3. C2
4. X if 2X + C = D
Multiply each row of the first matrix into each column of the second matrix.
Add the numbers in the corresponding entries.
C 2 = C · C
2X + C = D
2X = D − C
$\textit{X}= \frac{(\textit{D}-\textit{C})}{2}$ | 2019-10-19 00:02:51 | {"extraction_info": {"found_math": true, "script_math_tex": 1, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.740213930606842, "perplexity": 5226.6864616834855}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.3, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-43/segments/1570986685915.43/warc/CC-MAIN-20191018231153-20191019014653-00333.warc.gz"} | 134 |
https://www.esaral.com/q/the-equation-of-the-curve-passing-through-27096 | Deepak Scored 45->99%ile with Bounce Back Crack Course. You can do it too!
# The equation of the curve passing through
Question:
The equation of the curve passing through the origin and satisfying the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=4 x^{2}$ is :
1. $\left(1+x^{2}\right) y=x^{3}$
2. $3\left(1+x^{2}\right) y=4 x^{3}$
3. $3\left(1+x^{2}\right) y=2 x^{3}$
4. $\left(1+x^{2}\right) y=3 x^{3}$
Correct Option: , 2
Solution: | 2023-01-28 23:31:35 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8599520325660706, "perplexity": 1790.5866234491873}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-06/segments/1674764499695.59/warc/CC-MAIN-20230128220716-20230129010716-00384.warc.gz"} | 170 |
https://proofwiki.org/wiki/Definition:Current_Time | # Definition:Current Time
## Definition
The current time in the context of time series analysis is the timestamp of the most recent observation.
By the very nature of time itself, the current time is always going to be some non-zero instant in the past.
## Sources
$1$: Introduction:
$1.1$ Four Important Practical Problems:
$1.1.1$ Forecasting Time Series | 2022-07-01 04:35:55 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.4929778575897217, "perplexity": 1662.4266512498284}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-27/segments/1656103920118.49/warc/CC-MAIN-20220701034437-20220701064437-00528.warc.gz"} | 81 |
https://socratic.org/questions/how-do-you-find-the-taylor-series-for-e-x-2 | # How do you find the taylor series for e^(x^2)?
1+x^2+(x^4)/(2!)+(x^6)/(3!)+(x^8)/(4!)+cdots. This converges to ${e}^{{x}^{2}}$ for all values of $x$.
This can be obtained most simply by taking the well-known Taylor series for ${e}^{x}$ centered at 0, which is 1+x+x^2/(2!)+x^3/(3!)+x^4/(4!)+cdots, and replacing $x$ with ${x}^{2}$.
You can also try using the formula f(0)+f'(0)x+(f''(0))/(2!)x^2+(f'''(0))/(3!)x^3+(f''''(0))/(4!)x^4+cdots, but that is a much less pleasant approach. | 2022-01-21 23:00:38 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 8, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 1, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9909208416938782, "perplexity": 153.37156341267752}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-05/segments/1642320303717.35/warc/CC-MAIN-20220121222643-20220122012643-00389.warc.gz"} | 197 |
https://brilliant.org/problems/an-algebra-problem-by-k-j-w-2/ | # A number theory problem by K. J. W.
Number Theory Level 1
Find the largest positive integer n so that n < 100 and
$$n!+\left( n+1 \right) !+\left( n+2 \right) !={ q }^{ 2 }$$
where q is a positive integer.
× | 2016-10-27 20:49:40 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.45177826285362244, "perplexity": 1505.1966088534227}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2016-44/segments/1476988721392.72/warc/CC-MAIN-20161020183841-00333-ip-10-171-6-4.ec2.internal.warc.gz"} | 72 |
http://dev.goldbook.iupac.org/terms/view/E01956 | ## Wikipedia - Electrode potential electrode potential, $$E$$
https://doi.org/10.1351/goldbook.E01956
@E01974@ of a cell in which the electrode on the left is a @S05917@ and the electrode on the right is the electrode in question.
Sources:
Green Book, 2nd ed., p. 61 [Terms] [Book]
PAC, 1996, 68, 957. (Glossary of terms in quantities and units in Clinical Chemistry (IUPAC-IFCC Recommendations 1996)) on page 971 [Terms] [Paper] | 2019-08-24 04:35:21 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.45309919118881226, "perplexity": 5195.146375405064}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2019-35/segments/1566027319724.97/warc/CC-MAIN-20190824041053-20190824063053-00456.warc.gz"} | 131 |
http://residuetheorem.com/2014/04/ | ## Monthly Archives: April 2014
### Generalizing an already tough integral
I did the case $p=1$ here. The generalization to higher $p$ may involve higher-order derivatives as follows: \begin{align}K_p &= \int_0^{\pi/2} dx \frac{x^{2 p}}{1+\cos^2{x}} = \frac1{2^{4 p-1}} \int_{-\pi}^{\pi} dy \frac{y^{2 p}}{3+\cos{y}} \end{align} So define, as before, $$J(a) = \int_{-\pi}^{\pi} dy \frac{e^{i a y}}{3+\cos{y}}$$ Then $$K_p = \frac{(-1)^p}{2^{4 p-1}} \left [\frac{d^{2 p}}{da^{2 p}} J(a) \right ]_{a=0}$$ […] | 2017-11-23 21:52:09 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 1, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9998390674591064, "perplexity": 14779.841854205588}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-47/segments/1510934806979.99/warc/CC-MAIN-20171123214752-20171123234752-00663.warc.gz"} | 209 |
https://topospaces.subwiki.org/wiki/Tame_submanifold | # Tame submanifold
Let $M$ be a manifold of dimension $m$ and $N$ a submanifold of dimension $n$. Then $N$ is termed tame in $M$ if for every point $x \in N$, there exists a neighbourhood $U$ of $x$ in $M$ such that the pair $(U, U \cap N)$ is homeomorphic to the pair $(\R^m,\R^n)$ where $\R^n$ is viewed as a linear subspace of $\R^m$.
An example of a submanifold which is not tame is the Alexander horned sphere in $\R^3$. | 2022-05-26 03:57:20 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 15, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.8909761309623718, "perplexity": 32.74544875589103}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2022-21/segments/1652662601401.72/warc/CC-MAIN-20220526035036-20220526065036-00437.warc.gz"} | 137 |
https://gateoverflow.in/155684/discrete | 51 views
Let G be a connected 3 - regular graph. Each edge of G lies on some cycle. Let S⊆V and C1,C2,…,Cm,m=Codd(G−S), be the odd component of G−S. Let eG(Ci,S) denote the number of edges with one- end in Ci and the other in S. Then
∑(i=1 to m) eG(Ci−S) is
(1) ≤m
(2) ≥5m
(3) ≥3m
in Revision | 51 views | 2020-01-23 04:42:11 | {"extraction_info": {"found_math": false, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 0, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.922614336013794, "perplexity": 5152.407053564408}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-05/segments/1579250608295.52/warc/CC-MAIN-20200123041345-20200123070345-00366.warc.gz"} | 128 |
https://brilliant.org/problems/recursive-digit-sum/ | # Recursive Digit Sum
Given a positive integer $$n$$, let $$S(n)$$ denote the digit sum of $$n$$. Consider the sequence of numbers given by
$\begin{cases} n_1 = S(n) \\ n_k = S(n_{k-1} ) & k \geq 2 \\ \end{cases}$
For how many positive integers $$n \le 2013$$ does the sequence $$\{ n_k \}$$ contain the number $$9$$?
× | 2017-05-28 22:25:47 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9560379385948181, "perplexity": 201.37075761571703}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2017-22/segments/1495463611569.86/warc/CC-MAIN-20170528220125-20170529000125-00424.warc.gz"} | 106 |
https://www.gradesaver.com/textbooks/math/algebra/introductory-algebra-for-college-students-7th-edition/chapter-8-section-8-3-operations-with-radicals-exercise-set-page-592/91 | ## Introductory Algebra for College Students (7th Edition)
Perimeter=$2+2\sqrt2$ inches Area=$1$ square inch
Perimeter is the sum of the lengths of the sides. $P=2+\sqrt2+\sqrt2$ Combine like radicals. $P=2+2\sqrt2$ The area of a triangle is one half the product of the base and height. $A=\frac{1}{2}bh$ $A=\frac{1}{2}(\sqrt2)(\sqrt2)$ Use the product rule for square roots. $A=\frac{1}{2}\times2$ Simplify. $A=1$ | 2018-11-18 18:09:50 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.7671777606010437, "perplexity": 467.41204825978184}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2018-47/segments/1542039744561.78/warc/CC-MAIN-20181118180446-20181118202446-00192.warc.gz"} | 139 |
https://axiomsofchoice.org/countable_base_for_a_topology | Countable base for a topology
Set
context $\langle X,T\rangle$ … topological space definiendum $B\in$ it postulate $B$ … base postulate $B$ … countable | 2023-03-31 10:15:28 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 0, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9649487137794495, "perplexity": 6932.636397864106}, "config": {"markdown_headings": false, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 10, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2023-14/segments/1679296949598.87/warc/CC-MAIN-20230331082653-20230331112653-00493.warc.gz"} | 45 |
https://www.gradesaver.com/textbooks/math/calculus/calculus-3rd-edition/chapter-11-infinite-series-11-3-convergence-of-series-with-positive-terms-exercises-page-556/30 | ## Calculus (3rd Edition)
Given $$\sum_{n=1}^{\infty}\frac{n !}{n^{3}}$$ Compare with $\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^{2}}$, which is a convergent series ( $p-$series with $p=2$) and for $n\geq 1$ \begin{align*} \frac{n !}{n^{3}}&=\frac{n \times(n-1) !}{n^{3}}\\ \frac{n !}{n^{3}}&=\frac{(n-1) !}{n^{2}}\\ & \geq \frac{1}{n^2} \end{align*} Then $\displaystyle\sum_{n=1}^{\infty} \frac{n !}{n^{3}}$ also converges. | 2020-01-20 17:57:37 | {"extraction_info": {"found_math": true, "script_math_tex": 0, "script_math_asciimath": 0, "math_annotations": 0, "math_alttext": 0, "mathml": 0, "mathjax_tag": 0, "mathjax_inline_tex": 1, "mathjax_display_tex": 1, "mathjax_asciimath": 0, "img_math": 0, "codecogs_latex": 0, "wp_latex": 0, "mimetex.cgi": 0, "/images/math/codecogs": 0, "mathtex.cgi": 0, "katex": 0, "math-container": 0, "wp-katex-eq": 0, "align": 0, "equation": 0, "x-ck12": 0, "texerror": 0, "math_score": 0.9991952776908875, "perplexity": 4995.28278606694}, "config": {"markdown_headings": true, "markdown_code": true, "boilerplate_config": {"ratio_threshold": 0.18, "absolute_threshold": 20, "end_threshold": 15, "enable": true}, "remove_buttons": true, "remove_image_figures": true, "remove_link_clusters": true, "table_config": {"min_rows": 2, "min_cols": 3, "format": "plain"}, "remove_chinese": true, "remove_edit_buttons": true, "extract_latex": true}, "warc_path": "s3://commoncrawl/crawl-data/CC-MAIN-2020-05/segments/1579250599718.13/warc/CC-MAIN-20200120165335-20200120194335-00385.warc.gz"} | 190 |