Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K - 100K
License:
metadata
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: BioCreative V CDR
Dataset Card for "tner/bc5cdr"
Dataset Description
- Repository: T-NER
- Paper: https://academic.oup.com/database/article/doi/10.1093/database/baw032/2630271?login=true
- Dataset: BioCreative V CDR
- Domain: Biomedical
- Number of Entity: 2
Dataset Summary
BioCreative V CDR NER dataset formatted in a part of TNER project. The original dataset consists of long documents which cannot be fed on LM because of the length, so we split them into sentences to reduce their size.
- Entity Types:
Chemical
,Disease
Dataset Structure
Data Instances
An example of train
looks as follows.
{
'tags': [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0],
'tokens': ['Fasciculations', 'in', 'six', 'areas', 'of', 'the', 'body', 'were', 'scored', 'from', '0', 'to', '3', 'and', 'summated', 'as', 'a', 'total', 'fasciculation', 'score', '.']
}
Label ID
The label2id dictionary can be found at here.
{
"O": 0,
"B-Chemical": 1,
"B-Disease": 2,
"I-Disease": 3,
"I-Chemical": 4
}
Data Splits
name | train | validation | test |
---|---|---|---|
bc5cdr | 5228 | 5330 | 5865 |
Citation Information
@article{wei2016assessing,
title={Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task},
author={Wei, Chih-Hsuan and Peng, Yifan and Leaman, Robert and Davis, Allan Peter and Mattingly, Carolyn J and Li, Jiao and Wiegers, Thomas C and Lu, Zhiyong},
journal={Database},
volume={2016},
year={2016},
publisher={Oxford Academic}
}