|
--- |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
dataset_info: |
|
features: |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-ORG |
|
'2': I-ORG |
|
splits: |
|
- name: train |
|
num_bytes: 40381520.59961503 |
|
num_examples: 109424 |
|
- name: validation |
|
num_bytes: 5782294.96333573 |
|
num_examples: 15908 |
|
- name: test |
|
num_bytes: 10727120.198367199 |
|
num_examples: 28124 |
|
download_size: 14938552 |
|
dataset_size: 56890935.76131796 |
|
--- |
|
# Dataset Card for "ner-orgs" |
|
|
|
This dataset is a concatenation of subsets of [Few-NERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd), [CoNLL 2003](https://huggingface.co/datasets/conll2003) and [OntoNotes v5](https://huggingface.co/datasets/tner/ontonotes5), but only the "B-ORG" and "I-ORG" labels. |
|
|
|
Exactly half of the samples per split contain organisations, while the other half do not contain any. |
|
|
|
It was generated using the following script: |
|
|
|
```py |
|
import random |
|
from datasets import load_dataset, concatenate_datasets, Features, Sequence, ClassLabel, Value, DatasetDict |
|
|
|
|
|
FEATURES = Features( |
|
{ |
|
"tokens": Sequence(feature=Value(dtype="string")), |
|
"ner_tags": Sequence(feature=ClassLabel(names=["O", "B-ORG", "I-ORG"])), |
|
} |
|
) |
|
|
|
|
|
def load_fewnerd(): |
|
def mapper(sample): |
|
sample["ner_tags"] = [int(tag == 5) for tag in sample["ner_tags"]] |
|
sample["ner_tags"] = [ |
|
2 if tag == 1 and idx > 0 and sample["ner_tags"][idx - 1] == 1 else tag |
|
for idx, tag in enumerate(sample["ner_tags"]) |
|
] |
|
return sample |
|
|
|
dataset = load_dataset("DFKI-SLT/few-nerd", "supervised") |
|
dataset = dataset.map(mapper, remove_columns=["id", "fine_ner_tags"]) |
|
dataset = dataset.cast(FEATURES) |
|
return dataset |
|
|
|
|
|
def load_conll(): |
|
label_mapping = {3: 1, 4: 2} |
|
|
|
def mapper(sample): |
|
sample["ner_tags"] = [label_mapping.get(tag, 0) for tag in sample["ner_tags"]] |
|
return sample |
|
|
|
dataset = load_dataset("conll2003") |
|
dataset = dataset.map(mapper, remove_columns=["id", "pos_tags", "chunk_tags"]) |
|
dataset = dataset.cast(FEATURES) |
|
return dataset |
|
|
|
|
|
def load_ontonotes(): |
|
label_mapping = {11: 1, 12: 2} |
|
|
|
def mapper(sample): |
|
sample["ner_tags"] = [label_mapping.get(tag, 0) for tag in sample["ner_tags"]] |
|
return sample |
|
|
|
dataset = load_dataset("tner/ontonotes5") |
|
dataset = dataset.rename_column("tags", "ner_tags") |
|
dataset = dataset.map(mapper) |
|
dataset = dataset.cast(FEATURES) |
|
return dataset |
|
|
|
|
|
def has_org(sample): |
|
return bool(sum(sample["ner_tags"])) |
|
|
|
|
|
def has_no_org(sample): |
|
return not has_org(sample) |
|
|
|
|
|
def preprocess_raw_dataset(raw_dataset): |
|
# Set the number of sentences without an org equal to the number of sentences with an org |
|
dataset_org = raw_dataset.filter(has_org) |
|
dataset_no_org = raw_dataset.filter(has_no_org) |
|
dataset_no_org = dataset_no_org.select(random.sample(range(len(dataset_no_org)), k=len(dataset_org))) |
|
dataset = concatenate_datasets([dataset_org, dataset_no_org]) |
|
return dataset |
|
|
|
|
|
def main() -> None: |
|
fewnerd_dataset = load_fewnerd() |
|
conll_dataset = load_conll() |
|
ontonotes_dataset = load_ontonotes() |
|
|
|
raw_train_dataset = concatenate_datasets([fewnerd_dataset["train"], conll_dataset["train"], ontonotes_dataset["train"]]) |
|
raw_eval_dataset = concatenate_datasets([fewnerd_dataset["validation"], conll_dataset["validation"], ontonotes_dataset["validation"]]) |
|
raw_test_dataset = concatenate_datasets([fewnerd_dataset["test"], conll_dataset["test"], ontonotes_dataset["test"]]) |
|
|
|
train_dataset = preprocess_raw_dataset(raw_train_dataset) |
|
eval_dataset = preprocess_raw_dataset(raw_eval_dataset) |
|
test_dataset = preprocess_raw_dataset(raw_test_dataset) |
|
|
|
dataset_dict = DatasetDict( |
|
{ |
|
"train": train_dataset, |
|
"validation": eval_dataset, |
|
"test": test_dataset, |
|
} |
|
) |
|
dataset_dict.push_to_hub("ner-orgs", private=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |