Dataset Viewer
Auto-converted to Parquet
age
string
reference_genome
string
gene_annotation_version
string
alignment_software
string
intronic_reads_counted
string
library_id
string
assay_ontology_term_id
string
sequenced_fragment
string
cell_number_loaded
string
institute
string
is_primary_data
string
cell_type_ontology_term_id
string
author_cell_type
string
sample_id
string
sample_preservation_method
string
tissue_ontology_term_id
string
development_stage_ontology_term_id
string
sample_collection_method
string
donor_BMI_at_collection
string
tissue_type
string
suspension_derivation_process
string
suspension_enriched_cell_types
string
cell_viability_percentage
string
suspension_uuid
string
suspension_type
string
donor_id
string
self_reported_ethnicity_ontology_term_id
string
donor_living_at_sample_collection
string
disease_ontology_term_id
string
sex_ontology_term_id
string
nCount_RNA
string
nFeature_RNA
string
pMito
string
NODG
string
nUMI
string
Country
string
Annotation_Level1
string
Annotation_Level2
string
Annotation_Level3
string
Annotation_Level4
string
Smoking Status
string
cell_type
string
assay
string
disease
string
sex
string
tissue
string
self_reported_ethnicity
string
development_stage
string
observation_joinid
string
gene_sentence_all
string
gene_sentence_2000
string
gene_sentence_clock_product_2k_top_genes
string
gene_sentence_human_genage
string
gene_sentence_opengenes
string
dataset_id
string
collection_id
string
publication_title
string
publication_doi
null
publication_description
string
publication_contact_name
string
publication_contact_email
string
ethnicity_original
string
59.0
GRCh38
v98
DRAGEN RNA v3.8.4
no
f2b4f75b-4de2-4894-bdaa-3cbae7efc951
EFO:0009900
5 prime tag
40000 cells
Samsung Genome Institute
true
CL:0000785
atypical_B
bba6546f-9168-48e6-b2e2-0daf269b5267
other
UBERON:0000178
HsapDv:0000153
blood draw
NaN
tissue
density gradient centrifugation
peripheral blood mononuclear cell
95.5
bc60765d-69b8-430a-bad6-23be7e3b39f2
cell
KR_SGI_H105
HANCESTRO:0022
True
PATO:0000461
PATO:0000384
6123.0
2134
0.0390331536828352
2134
6123
KR
B
atypical_B
atypical_B
atypical_B_FCRL5hi_FCRL3hi
1
mature B cell
10x 5' v2
normal
male
blood
Korean
59-year-old stage
^CXBCmZKcc
"CD74 MALAT1 MT-CO1 B2M RPS12 EEF1A1 FOS FTH1 HLA-B RPL41 RPL28 RPL30 RPL10 RPLP1 RPS15A RPL32 HLA-D(...TRUNCATED)
"CD74 MALAT1 MT-CO1 B2M RPS12 EEF1A1 FOS FTH1 HLA-B RPL41 RPL28 RPL30 RPL10 RPLP1 RPS15A RPL32 HLA-D(...TRUNCATED)
"FTH1 RPLP1 HLA-DRA RPS18 LAPTM5 RPL29 RPL37 HLA-DMB KLF6 RPS26 MS4A1 GSTP1 CRIP1 MAP3K8 TMBIM6 TENT(...TRUNCATED)
"MT-CO1 EEF1A1 FOS JUND JUN NFKBIA GSTP1 EEF2 YWHAZ GRB2 HMGB1 TNF XRCC6 PARP1 PLCG2 HSP90AA1 TGFB1 (...TRUNCATED)
"MT-CO1 EEF1A1 HLA-B HLA-DRA HLA-C ZFP36 HLA-DRB5 TSC22D3 HLA-DRB1 NR4A2 RPS21 JUN FTL NFKBIA H3-3B (...TRUNCATED)
9deda9ad-6a71-401e-b909-5263919d85f9
ced320a1-29f3-47c1-a735-513c7084d508
Asian Immune Diversity Atlas (AIDA)
null
"The relationships of human diversity with biomedical phenotypes are pervasive, yet remain understud(...TRUNCATED)
Shyam Prabhakar
prabhakars@gis.a-star.edu.sg
missing
62.0
GRCh38
v98
DRAGEN RNA v3.8.4
no
dc6ba966-a025-4222-a671-ffb5519a0a24
EFO:0009900
5 prime tag
40000 cells
Samsung Genome Institute
true
CL:0000784
pDC
297918c9-faeb-439e-8925-572fb8f6589a
other
UBERON:0000178
HsapDv:0000156
blood draw
NaN
tissue
density gradient centrifugation
peripheral blood mononuclear cell
94.7
0325bb82-d990-4c5f-beaf-c0d8d867c812
cell
KR_SGI_H071
HANCESTRO:0022
True
PATO:0000461
PATO:0000383
10015.0
3322
0.0220668996505242
3322
10015
KR
DC
pDC
pDC
pDC
0
plasmacytoid dendritic cell
10x 5' v2
normal
female
blood
Korean
62-year-old stage
E!&8jo&z89
"MALAT1 CD74 TPT1 MT-CO1 EEF1A1 RPL13 RPLP1 RPS8 B2M RPS27 RPL41 RPS4X TMSB4X RPS14 RPS12 RPS18 ACTB(...TRUNCATED)
"MALAT1 CD74 TPT1 MT-CO1 EEF1A1 RPL13 RPLP1 RPS8 B2M RPS27 RPL41 RPS4X TMSB4X RPS14 RPS12 RPS18 ACTB(...TRUNCATED)
"RPLP1 RPS18 RPL37 FTH1 KLF6 TAGLN2 HLA-DRA RPL29 IRF8 LILRA4 RPL31 MZB1 ARL4C LTB TGFBI GRN CRIP1 R(...TRUNCATED)
"MT-CO1 EEF1A1 APP EEF2 FOS JUND GRN HSPA8 TXN UCP2 HSP90AA1 YWHAZ GSTP1 UBB RB1 GRB2 VCP XRCC6 PRDX(...TRUNCATED)
"MT-CO1 EEF1A1 HLA-B RPL3 KLF6 HLA-DRA IRF7 HLA-DRB1 RPS21 HLA-C APP ZFP36 H3-3B FCER1G MCL1 PPIA FT(...TRUNCATED)
9deda9ad-6a71-401e-b909-5263919d85f9
ced320a1-29f3-47c1-a735-513c7084d508
Asian Immune Diversity Atlas (AIDA)
null
"The relationships of human diversity with biomedical phenotypes are pervasive, yet remain understud(...TRUNCATED)
Shyam Prabhakar
prabhakars@gis.a-star.edu.sg
missing
33.0
GRCh38
v98
DRAGEN RNA v4
yes
c0eb5cbc-7a22-4e4a-bc48-f15219ea2d0e
EFO:0009900
5 prime tag
40000 cells
Genome Institute of Singapore
true
CL:0000939
CD16+_NK
85efe858-da61-48b8-9191-0170e74d011b
other
UBERON:0000178
HsapDv:0000127
blood draw
26.0
tissue
leukapheresis
peripheral blood mononuclear cell
89.0
aa25051c-158c-4e33-8772-3dea42805c49
cell
LONZA3030004
unknown
True
PATO:0000461
PATO:0000384
5015.0
2280
0.0233300099700897
2280
5015
SG
NK
CD16+_NK
CD16+_NK
CD16+_NK_FCER1Ghi_KLRC2lo
1
CD16-positive, CD56-dim natural killer cell, human
10x 5' v2
normal
male
blood
unknown
33-year-old stage
4l?hLXI3R1
"MALAT1 B2M TMSB4X ACTB RPL41 NKG7 EEF1A1 HLA-B MT-CO1 TPT1 RPL28 RPS27 RPLP1 ACTG1 RPL10 GNLY RPS18(...TRUNCATED)
"MALAT1 B2M TMSB4X ACTB RPL41 NKG7 EEF1A1 HLA-B MT-CO1 TPT1 RPL28 RPS27 RPLP1 ACTG1 RPL10 GNLY RPS18(...TRUNCATED)
"RPLP1 RPS18 RPL37 RPL29 CRIP1 CD247 RPS26 ARL4C HSP90AA1 RPL31 RNF213 COPS9 SIGIRR LAPTM5 IL16 RAP1(...TRUNCATED)
"EEF1A1 MT-CO1 EEF2 JUN HSPA8 HSP90AA1 HMGB1 MIF IL2RG EMD UBE2I YWHAZ HIF1A TGFB1 UBB MAPK14 XRCC6 (...TRUNCATED)
"EEF1A1 HLA-B MT-CO1 ACTG1 TXNIP HLA-C CCL5 RPL3 PPIA EEF2 JUN FTL PTPN6 MYL12A H1-10 RAC2 FCER1G RP(...TRUNCATED)
9deda9ad-6a71-401e-b909-5263919d85f9
ced320a1-29f3-47c1-a735-513c7084d508
Asian Immune Diversity Atlas (AIDA)
null
"The relationships of human diversity with biomedical phenotypes are pervasive, yet remain understud(...TRUNCATED)
Shyam Prabhakar
prabhakars@gis.a-star.edu.sg
missing
41.0
GRCh38
v98
DRAGEN RNA v3.8.4
no
5205817f-44c5-468b-9d41-043ecacb7dbb
EFO:0009900
5 prime tag
40000 cells
Riken
true
CL:0000784
pDC
178f2690-42da-40cf-82f2-48e02466f573
other
UBERON:0000178
HsapDv:0000135
blood draw
24.3
tissue
density gradient centrifugation
peripheral blood mononuclear cell
95.0
ee7fc829-4659-4491-be09-1861789d5a00
cell
JP_RIK_H036
HANCESTRO:0019
True
PATO:0000461
PATO:0000384
9265.0
2681
0.0293577981651376
2681
9265
JP
DC
pDC
pDC
pDC
1
plasmacytoid dendritic cell
10x 5' v2
normal
male
blood
Japanese
41-year-old stage
KQpcyBVd!_
"MALAT1 PTGDS RPL41 CD74 RPLP1 RPL10 RPS8 RPS28 RPS27 RPL13 MT-CO1 RPL32 RPS23 RPS12 EEF1A1 RPL37 RP(...TRUNCATED)
"MALAT1 PTGDS RPL41 CD74 RPLP1 RPL10 RPS8 RPS28 RPS27 RPL13 MT-CO1 RPL32 RPS23 RPS12 EEF1A1 RPL37 RP(...TRUNCATED)
"RPLP1 RPL37 RPS18 RPL29 HLA-DRA FTH1 IRF8 TAGLN2 GABARAP MZB1 CRIP1 LILRA4 ATP5MC2 LGALS1 KLF6 RPS2(...TRUNCATED)
"MT-CO1 EEF1A1 JUN FOS EEF2 TXN UCP2 MIF APP HMGB1 HSP90AA1 JUND GRN GSTP1 HSPD1 UBB XPA STAT3 GPX4 (...TRUNCATED)
"MT-CO1 EEF1A1 RPS21 RPL3 RPL22 HLA-DRA HLA-DPB1 PPIA JUN HLA-B FCER1G COX4I1 HLA-DRB5 NPM1 FTL EEF2(...TRUNCATED)
9deda9ad-6a71-401e-b909-5263919d85f9
ced320a1-29f3-47c1-a735-513c7084d508
Asian Immune Diversity Atlas (AIDA)
null
"The relationships of human diversity with biomedical phenotypes are pervasive, yet remain understud(...TRUNCATED)
Shyam Prabhakar
prabhakars@gis.a-star.edu.sg
missing
49.0
GRCh38
v98
DRAGEN RNA v4
yes
38f769ce-583e-4e9b-9434-2042d3649f6e
EFO:0009900
5 prime tag
40000 cells
Genome Institute of Singapore
true
CL:0000624
CD4+_T_unknown
ac210178-f913-4703-b5d4-7aaab819ccef
other
UBERON:0000178
HsapDv:0000143
blood draw
27.7
tissue
density gradient centrifugation
peripheral blood mononuclear cell
85.0
a36c1b61-5ccb-4e17-a68c-e665137b274d
cell
SG_HEL_H301
HANCESTRO:0598
True
PATO:0000461
PATO:0000383
6262.0
2051
0.0111785372085596
2051
6262
SG
T
CD4+_T
CD4+_T
CD4+_T_unknown
0
CD4-positive, alpha-beta T cell
10x 5' v2
normal
female
blood
Singaporean Indian
49-year-old stage
haI_?MUcKx
"MALAT1 RPS12 RPS27 RPL13 RPL41 EEF1A1 RPL10 RPL28 RPL30 RPL34 RPS28 RPS15A RPL32 FOS B2M RPS4X RPS1(...TRUNCATED)
"MALAT1 RPS12 RPS27 RPL13 RPL41 EEF1A1 RPL10 RPL28 RPL30 RPL34 RPS28 RPS15A RPL32 FOS B2M RPS4X RPS1(...TRUNCATED)
"RPL37 RPL29 RPLP1 RPS18 RPS26 SOCS3 DDIT4 FTH1 LAPTM5 LTB ATP5MC2 HNRNPF KLF6 HSP90AA1 MX1 IL7R RPL(...TRUNCATED)
"EEF1A1 FOS JUN EGR1 MT-CO1 EEF2 HSPA8 MYC MIF IL2RG UBB HSP90AA1 APEX1 IL7R LMNB1 NFE2L2 SOD1 NOG C(...TRUNCATED)
"EEF1A1 JUN RPL3 HLA-B RPS21 RPL22 HLA-C H3-3B FTL EGR1 MT-CO1 ZFP36 SOCS3 EEF2 ACTG1 NPM1 HSPA8 DDI(...TRUNCATED)
9deda9ad-6a71-401e-b909-5263919d85f9
ced320a1-29f3-47c1-a735-513c7084d508
Asian Immune Diversity Atlas (AIDA)
null
"The relationships of human diversity with biomedical phenotypes are pervasive, yet remain understud(...TRUNCATED)
Shyam Prabhakar
prabhakars@gis.a-star.edu.sg
missing
30.0
GRCh38
v98
DRAGEN RNA v3.8.4
no
57aa8942-f88d-4b83-9888-f6f5917a84a9
EFO:0009900
5 prime tag
40000 cells
Samsung Genome Institute
true
CL:0002010
DC_SIGLEC6hi
9e249452-467f-416d-9fb2-3a92f072f43f
other
UBERON:0000178
HsapDv:0000124
blood draw
NaN
tissue
density gradient centrifugation
peripheral blood mononuclear cell
96.2
1de46ed1-b382-4730-86a6-77773ad1991b
cell
KR_SGI_H007
HANCESTRO:0022
True
PATO:0000461
PATO:0000383
20225.0
4222
0.0383683559950556
4222
20225
KR
DC
DC
DC_SIGLEC6hi
DC_SIGLEC6hi
0
pre-conventional dendritic cell
10x 5' v2
normal
female
blood
Korean
30-year-old stage
k=HjHe5~Hi
"CD74 ACTB MALAT1 HLA-DRA MT-CO1 FTH1 HLA-DRB1 B2M CST3 EEF1A1 FOS HLA-DPA1 TMSB10 TMSB4X TPT1 VIM R(...TRUNCATED)
"CD74 ACTB MALAT1 HLA-DRA MT-CO1 FTH1 HLA-DRB1 B2M CST3 EEF1A1 FOS HLA-DPA1 TMSB10 TMSB4X TPT1 VIM R(...TRUNCATED)
"HLA-DRA FTH1 RPS18 RPLP1 CEBPD RPL29 RPL37 TAGLN2 KLF6 LAPTM5 ARL4C GABARAP HSP90AA1 RPL31 ANXA1 GS(...TRUNCATED)
"MT-CO1 EEF1A1 FOS JUN HSP90AA1 EEF2 GSTP1 JUND GRN YWHAZ HSPA8 HMGB1 GRB2 UCP2 CDC42 TGFB1 XRCC6 EG(...TRUNCATED)
"HLA-DRA MT-CO1 HLA-DRB1 EEF1A1 HLA-DQB1 HLA-DPB1 ZFP36 HLA-C ACTG1 HLA-DQA1 RPL3 HLA-B S100A4 H3-3B(...TRUNCATED)
9deda9ad-6a71-401e-b909-5263919d85f9
ced320a1-29f3-47c1-a735-513c7084d508
Asian Immune Diversity Atlas (AIDA)
null
"The relationships of human diversity with biomedical phenotypes are pervasive, yet remain understud(...TRUNCATED)
Shyam Prabhakar
prabhakars@gis.a-star.edu.sg
missing
68.0
GRCh38
v98
DRAGEN RNA v4
yes
c8ee9b8a-793e-4712-bc91-0c9cd291a698
EFO:0009900
5 prime tag
40000 cells
Genome Institute of Singapore
true
CL:0000794
CD8+_T_GZMBhi
b11ac6d2-4552-431f-8497-504ceb13e683
other
UBERON:0000178
HsapDv:0000162
blood draw
27.6
tissue
density gradient centrifugation
peripheral blood mononuclear cell
92.0
96328c01-39c6-4c06-b0e8-7679fca112e3
cell
SG_HEL_H16a
HANCESTRO:0597
True
PATO:0000461
PATO:0000384
6853.0
2486
0.0325404932146505
2486
6853
SG
T
CD8+_T
CD8+_T_GZMBhi
CD8+_T_GZMBhi
1
CD8-positive, alpha-beta cytotoxic T cell
10x 5' v2
normal
male
blood
Singaporean Malay
68-year-old stage
f*efR@7qBE
"MALAT1 B2M HLA-B MT-CO1 RPL10 EEF1A1 RPS27 RPL41 RPLP1 RPL34 RPS12 RPL13 RPS3A ACTB RPL19 RPS15A RP(...TRUNCATED)
"MALAT1 B2M HLA-B MT-CO1 RPL10 EEF1A1 RPS27 RPL41 RPLP1 RPL34 RPS12 RPL13 RPS3A ACTB RPL19 RPS15A RP(...TRUNCATED)
"RPLP1 RPS18 RPL29 RPS26 RPL37 FTH1 KLF6 IL7R LAPTM5 CD8A LGALS1 PLEK TMBIM6 LSM7 LIME1 SIGIRR RASAL(...TRUNCATED)
"MT-CO1 EEF1A1 JUN FOS IL7R JUND EEF2 YWHAZ NCOR1 HSPA8 TGFB1 HSP90AA1 IL2RG HMGB1 NFKBIA MIF EMD GP(...TRUNCATED)
"HLA-B MT-CO1 EEF1A1 CCL5 HLA-C RPL3 JUN S100A4 RPS21 CALM1 FTL RPL22 KLF6 MYL12A TSC22D3 ITM2B FLNA(...TRUNCATED)
9deda9ad-6a71-401e-b909-5263919d85f9
ced320a1-29f3-47c1-a735-513c7084d508
Asian Immune Diversity Atlas (AIDA)
null
"The relationships of human diversity with biomedical phenotypes are pervasive, yet remain understud(...TRUNCATED)
Shyam Prabhakar
prabhakars@gis.a-star.edu.sg
missing
47.0
GRCh38
v98
DRAGEN RNA v3.8.4
no
10a42edf-8fd3-4e25-900c-5a8e4890bcc8
EFO:0009900
5 prime tag
40000 cells
Riken
true
CL:0000784
pDC
c6422892-f55d-43e7-95a2-fe49e0177e2a
other
UBERON:0000178
HsapDv:0000141
blood draw
NaN
tissue
density gradient centrifugation
peripheral blood mononuclear cell
94.0
46ac0ff5-8cb8-4437-9542-b2a4c5814c5a
cell
JP_RIK_H017
HANCESTRO:0019
True
PATO:0000461
PATO:0000383
11007.0
3194
0.0206232397565186
3194
11007
JP
DC
pDC
pDC
pDC
1
plasmacytoid dendritic cell
10x 5' v2
normal
female
blood
Japanese
47-year-old stage
LdelFr+@v<
"CD74 MALAT1 RPS8 EEF1A1 ACTB RPS27 RPL41 MT-CO1 RPLP1 B2M RPS12 RPS3A TPT1 RPS23 RPS18 RPL10 RPS13 (...TRUNCATED)
"CD74 MALAT1 RPS8 EEF1A1 ACTB RPS27 RPL41 MT-CO1 RPLP1 B2M RPS12 RPS3A TPT1 RPS23 RPS18 RPL10 RPS13 (...TRUNCATED)
"RPLP1 RPS18 RPL37 HLA-DRA FTH1 TAGLN2 RPL29 PLEK IRF8 GABARAP LILRA4 RPL31 LTB PTPRE GRN HSP90AA1 K(...TRUNCATED)
"EEF1A1 MT-CO1 TXN UCP2 JUND UBB EEF2 HMGB1 GRN FOS HSP90AA1 APP HSPA8 IL2RG ERCC1 GPX4 YWHAZ GSTP1 (...TRUNCATED)
"EEF1A1 MT-CO1 HLA-DRA RPL3 RPS21 TXN H3-3B PLEK HLA-DPB1 FTL HLA-B RPL22 IRF7 PPIA MYL12A ACTG1 HLA(...TRUNCATED)
9deda9ad-6a71-401e-b909-5263919d85f9
ced320a1-29f3-47c1-a735-513c7084d508
Asian Immune Diversity Atlas (AIDA)
null
"The relationships of human diversity with biomedical phenotypes are pervasive, yet remain understud(...TRUNCATED)
Shyam Prabhakar
prabhakars@gis.a-star.edu.sg
missing
33.0
GRCh38
v98
DRAGEN RNA v4
yes
49dc02c4-bd12-4148-a760-d5631154a019
EFO:0009900
5 prime tag
40000 cells
Genome Institute of Singapore
true
CL:0000787
memory_B_IGHMlo
3ff17eac-51b4-44c4-a7ac-eabebfef2c1d
other
UBERON:0000178
HsapDv:0000127
blood draw
23.2
tissue
density gradient centrifugation
peripheral blood mononuclear cell
84.0
0dd508c0-6f8c-456d-83b4-ebfbac666b62
cell
SG_HEL_H099
HANCESTRO:0025
True
PATO:0000461
PATO:0000383
8765.0
2778
0.0341129492298916
2778
8765
SG
B
memory_B
memory_B_IGHMlo
memory_B_IGHMlo
0
memory B cell
10x 5' v2
normal
female
blood
Singaporean Chinese
33-year-old stage
CQV5kVc5JP
"CD74 MALAT1 RPLP1 RPL41 RPL13 EEF1A1 B2M RPS12 RPL30 RPS8 RPL32 RPS7 RPL10 RPL19 ACTB MT-CO1 RPS27 (...TRUNCATED)
"CD74 MALAT1 RPLP1 RPL41 RPL13 EEF1A1 B2M RPS12 RPL30 RPS8 RPL32 RPS7 RPL10 RPL19 ACTB MT-CO1 RPS27 (...TRUNCATED)
"RPLP1 RPL37 HLA-DRA RPL29 RPS18 LTB FTH1 CRIP1 MS4A1 RPL31 LAPTM5 KLF6 TAGLN2 ITGB1 MBD4 GPX4 RNF21(...TRUNCATED)
"EEF1A1 MT-CO1 FOS EGR1 EEF2 JUN NFKBIA HSPA8 MIF GRB2 PTPN1 YWHAZ GPX4 UBB XRCC5 PDPK1 PARP1 IL2RG (...TRUNCATED)
"EEF1A1 MT-CO1 HLA-DRA HLA-B RPL3 HLA-DRB1 RPS21 EGR1 DUSP2 HLA-C HLA-DPB1 EEF2 JUN ZFP36 RPL22 NFKB(...TRUNCATED)
9deda9ad-6a71-401e-b909-5263919d85f9
ced320a1-29f3-47c1-a735-513c7084d508
Asian Immune Diversity Atlas (AIDA)
null
"The relationships of human diversity with biomedical phenotypes are pervasive, yet remain understud(...TRUNCATED)
Shyam Prabhakar
prabhakars@gis.a-star.edu.sg
missing
61.0
GRCh38
v98
DRAGEN RNA v4
yes
53539254-c074-4fc6-b902-ce2a795057ef
EFO:0009900
5 prime tag
40000 cells
Genome Institute of Singapore
true
CL:0001065
ILC
b25106c8-4dbb-4642-b785-eede4cb15fe5
other
UBERON:0000178
HsapDv:0000155
blood draw
23.9
tissue
density gradient centrifugation
peripheral blood mononuclear cell
93.0
a6ae1fc0-5793-44d6-9257-c4ad07c7dedb
cell
SG_HEL_H069
HANCESTRO:0025
True
PATO:0000461
PATO:0000383
4967.0
1931
0.0233541373062211
1931
4967
SG
ILC
ILC
ILC
ILC_XCL1hi
0
innate lymphoid cell
10x 5' v2
normal
female
blood
Singaporean Chinese
61-year-old stage
d64a5%YES;
"MALAT1 FOS EEF1A1 B2M RPS12 RPL41 RPLP1 RPL10 RPL13 RPS27A RPL32 RPS19 RPL28 TPT1 DUSP1 RPL11 RPS27(...TRUNCATED)
"MALAT1 FOS EEF1A1 B2M RPS12 RPL41 RPLP1 RPL10 RPL13 RPS27A RPL32 RPS19 RPL28 TPT1 DUSP1 RPL11 RPS27(...TRUNCATED)
"RPLP1 RPS18 RPL29 RPS26 TAGLN2 RPL37 ATP5MC2 ANXA1 CRIP1 FTH1 HSP90AA1 IL7R LTB RPL31 RHOC LGALS1 I(...TRUNCATED)
"FOS EEF1A1 MT-CO1 EEF2 HSP90AA1 MIF IL7R HSPA8 TGFB1 SQSTM1 IL2RG UBB NFKBIA MSRA JUN HDAC1 POLG SH(...TRUNCATED)
"EEF1A1 ACTG1 HLA-B TXNIP RPL3 ZFP36 MT-CO1 S100A4 HSP90AB1 RPS21 HLA-C RPL22 ANXA1 FTL HNRNPA1 EEF2(...TRUNCATED)
9deda9ad-6a71-401e-b909-5263919d85f9
ced320a1-29f3-47c1-a735-513c7084d508
Asian Immune Diversity Atlas (AIDA)
null
"The relationships of human diversity with biomedical phenotypes are pervasive, yet remain understud(...TRUNCATED)
Shyam Prabhakar
prabhakars@gis.a-star.edu.sg
missing
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

AIDA Asian PBMC Cell Age-Related Cell Sentence Diverse 60K Dataset

Overview

This dataset contains 60,000 diverse single-cell RNA-seq samples (50k train + 10k test) selected from 1.2 million cells using weighted diversity sampling. Each sample includes multiple gene sentence representations optimized for longevity and aging research.

Dataset Creation

Source Data

  • Original dataset: longevity-genie/cell2sentence4longevity-data
  • Source folder: 9deda9ad-6a71-401e-b909-5263919d85f9/train
  • Files processed: 159 parquet files
  • Total source rows: 1,202,886 cells
  • Final dataset: 60,000 diverse samples (5% of source)

Diversity Sampling Algorithm

We applied weighted diversity sampling across 7 demographic and biological dimensions to ensure balanced representation:

Diversity Dimensions

  1. Sex: male, female
  2. Disease: health conditions
  3. Tissue: tissue type (blood)
  4. Cell type: 32 different cell types (T cells, B cells, monocytes, etc.)
  5. Age: binned into decades (0-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 81-90, 91+)
  6. Self-reported ethnicity: 8 categories
  7. Ethnicity original: original ethnicity annotations

Sampling Procedure

# 1. Create diversity key from all dimensions
diversity_key = sex | disease | tissue | cell_type | age_bin | ethnicity

# 2. Calculate frequency of each combination
frequency = count(diversity_key)

# 3. Assign inverse frequency weights (rare combinations get higher weight)
weight = max_frequency / frequency

# 4. Normalize to probabilities
probability = weight / sum(weights)

# 5. Sample without replacement using weighted probabilities
samples = weighted_random_sample(n=60000, p=probability)

This approach ensures:

  • Rare combinations are proportionally over-sampled
  • Common combinations are proportionally under-sampled
  • Maximum diversity in the final dataset
  • Reproducibility (random seed = 42)

Dataset Statistics

Overall

  • Train samples: 50,000
  • Test samples: 10,000
  • Features: 62 columns
  • Unique diversity combinations (train): 8,365 (16.7% uniqueness ratio)
  • Unique diversity combinations (test): 4,933 (49.3% uniqueness ratio)

Diversity Scores (Train Split)

Normalized entropy scores (0=concentrated, 1=uniform distribution):

Dimension Unique Values Top 1% Top 5% Top 10% Diversity Score
Sex 2 52.7% 100% 100% 0.998
Cell Type 32 4.4% 21.3% 41.1% 0.973
Age 55 5.0% 20.4% 35.4% 0.956
Self-reported Ethnicity 8 18.7% 77.8% 100% 0.942
Disease 1 100% 100% 100% 0.000
Tissue 1 100% 100% 100% 0.000
Ethnicity Original 1 100% 100% 100% 0.000

Age Distribution (Train)

  • Range: 19-77 years
  • Mean: 44.4 years
  • Median: 43.0 years
  • Std Dev: 14.3 years
Age Range Count Percentage
0-20 1,252 2.5%
21-30 8,434 16.9%
31-40 11,650 23.3%
41-50 12,098 24.2%
51-60 6,037 12.1%
61-70 9,638 19.3%
71-80 891 1.8%

Gene Sentence Columns

Each sample includes 5 different gene sentence representations:

  1. gene_sentence_all: All expressed genes
  2. gene_sentence_2000: Top 2000 expressed genes
  3. gene_sentence_clock_product_2k_top_genes: Top 2k genes from clock product
  4. gene_sentence_human_genage: Human aging-related genes (GenAge database)
  5. gene_sentence_opengenes: Genes from OpenGenes database

These representations are optimized for different downstream tasks in longevity and aging research.

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("transhumanist-already-exists/aida-asian-pbmc-cell-age-related-cell-sentence-diverse-60k")

# Access train and test splits
train_data = dataset['train']
test_data = dataset['test']

# Example: Get a sample
sample = train_data[0]
print(f"Age: {sample['age']}")
print(f"Cell type: {sample['cell_type']}")
print(f"Sex: {sample['sex']}")
print(f"Gene sentence (top 2000): {sample['gene_sentence_2000']}")

Intended Use

This dataset is designed for:

  • Longevity research: Analyzing age-related gene expression patterns
  • Cell type classification: Multi-class classification across 32 cell types
  • Demographic modeling: Understanding biological variation across age, sex, and ethnicity
  • Language model training: Pre-training or fine-tuning models on biological sequences
  • Transfer learning: As a diverse foundation for specialized single-cell tasks

Limitations

  • Tissue limitation: Only blood/PBMC samples (tissue diversity score = 0)
  • Disease limitation: Limited disease annotations (disease diversity score = 0)
  • Ethnicity: Primarily Asian population (from AIDA dataset)
  • Age range: 19-77 years (limited pediatric and very elderly samples)
  • Sample size: 60k samples may be small for some deep learning applications

Citation

If you use this dataset, please cite:

@dataset{aida_pbmc_diverse_60k_2025,
  title={AIDA Asian PBMC Cell Age-Related Cell Sentence Diverse 60K Dataset},
  author={Transhumanist-Already-Exists},
  year={2025},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/datasets/transhumanist-already-exists/aida-asian-pbmc-cell-age-related-cell-sentence-diverse-60k}}
}

And the original source dataset:

@dataset{cell2sentence4longevity_2024,
  title={Cell2Sentence for Longevity Data},
  author={Longevity Genie},
  year={2024},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/datasets/longevity-genie/cell2sentence4longevity-data}}
}

License

This dataset inherits the license from the source dataset. Please refer to the original dataset for licensing information.

Contact

For questions or issues, please open an issue on the dataset repository.


Dataset Statistics Generated: 2025-11-13
Sampling Method: Weighted diversity sampling with inverse frequency weighting
Random Seed: 42
Processing Threads: 256

Downloads last month
57