Search is not available for this dataset
image
imagewidth (px)
126
224
label
class label
2 classes
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
0hotdog
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

🌭 Hotdog or Not Hotdog? πŸ”

Welcome to the Silicon Valley inspired dataset: Hotdog or Not Hotdog! This repository contains images of hotdogs and other foods, perfectly curated for all your machine learning shenanigans.

Hotdog or Not Hotdog

Why Hotdog or Not Hotdog? πŸ€”

Inspired by the iconic Jian-Yang's app from the TV series Silicon Valley, this dataset is your gateway to mastering the subtle art of food recognition. Whether you're building the next revolutionary food identification app or just having fun with deep learning, we've got you covered.

Dataset Contents 🍽️

The dataset is organized into two main folders:

  • hotdog/: Pictures of the glorious, delicious hotdogs.
  • not_hotdog/: Pictures of other foods (burgers, pizzas, sushi, you name it).

Here's a sneak peek:

train/
β”œβ”€β”€ hotdog/
β”‚ β”œβ”€β”€ hotdog1.jpg
β”‚ β”œβ”€β”€ hotdog2.jpg
β”‚ └── ...
└── not_hotdog/
β”œβ”€β”€ not_hotdog1.jpg
β”œβ”€β”€ not_hotdog2.jpg
└── ...

Usage πŸš€

  1. Clone the repo:

    git clone https://github.com/truepositive/hotdog_nothotdog
    
  2. Train your model: Use your favorite machine learning framework to train a classifier on the dataset. Here's an example using TensorFlow/Keras:

    from tensorflow.keras.preprocessing.image import ImageDataGenerator
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
    
    # Prepare data generators
    datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)
    train_generator = datagen.flow_from_directory('data/', target_size=(150, 150), batch_size=32, class_mode='binary', subset='training')
    validation_generator = datagen.flow_from_directory('data/', target_size=(150, 150), batch_size=32, class_mode='binary', subset='validation')
    
    # Build the model
    model = Sequential([
        Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
        MaxPooling2D((2, 2)),
        Conv2D(64, (3, 3), activation='relu'),
        MaxPooling2D((2, 2)),
        Flatten(),
        Dense(128, activation='relu'),
        Dense(1, activation='sigmoid')
    ])
    
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    model.fit(train_generator, epochs=10, validation_data=validation_generator)
    
  3. Predict the hotdog-ness:

    from tensorflow.keras.preprocessing import image
    import numpy as np
    
    def is_hotdog(img_path):
        img = image.load_img(img_path, target_size=(150, 150))
        img_array = image.img_to_array(img) / 255.0
        img_array = np.expand_dims(img_array, axis=0)
        prediction = model.predict(img_array)
        return "Hotdog!" if prediction[0][0] > 0.5 else "Not Hotdog!"
    
    print(is_hotdog('path/to/your/test/image.jpg'))
    

Contributing 🀝

Feel free to fork this repository, open issues, and submit pull requests. We welcome contributions from all food enthusiasts and tech geeks alike!

License πŸ“œ

This project is licensed under the AGPL-3.0 License - see the LICENSE file for details.

Acknowledgments 🫢

  • Thanks to HBO's "Silicon Valley" for the hilarious inspiration.
  • Shoutout to all foodies and machine learning enthusiasts for making data science delicious!

Disclaimer : No hotdogs were harmed in the making of this dataset.

Downloads last month
66
Edit dataset card