|
|
--- |
|
|
license: cc-by-4.0 |
|
|
language: |
|
|
- tr |
|
|
task_categories: |
|
|
- text-classification |
|
|
- text-generation |
|
|
- summarization |
|
|
- question-answering |
|
|
tags: |
|
|
- medical |
|
|
size_categories: |
|
|
- 10K<n<100K |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: acibadem |
|
|
path: data/acibadem-* |
|
|
- split: anadolusaglik |
|
|
path: data/anadolusaglik-* |
|
|
- split: atlas |
|
|
path: data/atlas-* |
|
|
- split: baskentistanbul |
|
|
path: data/baskentistanbul-* |
|
|
- split: bayindir |
|
|
path: data/bayindir-* |
|
|
- split: florence |
|
|
path: data/florence-* |
|
|
- split: guven |
|
|
path: data/guven-* |
|
|
- split: liv |
|
|
path: data/liv-* |
|
|
- split: medicalpark |
|
|
path: data/medicalpark-* |
|
|
- split: medicalpoint |
|
|
path: data/medicalpoint-* |
|
|
- split: medicana |
|
|
path: data/medicana-* |
|
|
- split: medipol |
|
|
path: data/medipol-* |
|
|
- split: memorial |
|
|
path: data/memorial-* |
|
|
- split: yeditepe |
|
|
path: data/yeditepe-* |
|
|
dataset_info: |
|
|
features: |
|
|
- name: url |
|
|
dtype: string |
|
|
- name: title |
|
|
dtype: string |
|
|
- name: text |
|
|
dtype: string |
|
|
- name: publish_date |
|
|
dtype: string |
|
|
- name: update_date |
|
|
dtype: string |
|
|
- name: scrape_date |
|
|
dtype: string |
|
|
splits: |
|
|
- name: acibadem |
|
|
num_bytes: 59871616 |
|
|
num_examples: 6339 |
|
|
- name: anadolusaglik |
|
|
num_bytes: 7711085 |
|
|
num_examples: 1012 |
|
|
- name: atlas |
|
|
num_bytes: 659835 |
|
|
num_examples: 130 |
|
|
- name: baskentistanbul |
|
|
num_bytes: 1632855 |
|
|
num_examples: 394 |
|
|
- name: bayindir |
|
|
num_bytes: 3985692 |
|
|
num_examples: 690 |
|
|
- name: florence |
|
|
num_bytes: 12815638 |
|
|
num_examples: 1641 |
|
|
- name: guven |
|
|
num_bytes: 4279987 |
|
|
num_examples: 666 |
|
|
- name: liv |
|
|
num_bytes: 19820891 |
|
|
num_examples: 2836 |
|
|
- name: medicalpark |
|
|
num_bytes: 3323029 |
|
|
num_examples: 371 |
|
|
- name: medicalpoint |
|
|
num_bytes: 2374940 |
|
|
num_examples: 654 |
|
|
- name: medicana |
|
|
num_bytes: 17090402 |
|
|
num_examples: 2163 |
|
|
- name: medipol |
|
|
num_bytes: 7876549 |
|
|
num_examples: 1380 |
|
|
- name: memorial |
|
|
num_bytes: 44864194 |
|
|
num_examples: 5338 |
|
|
- name: yeditepe |
|
|
num_bytes: 5203404 |
|
|
num_examples: 998 |
|
|
download_size: 89711227 |
|
|
dataset_size: 191510117 |
|
|
--- |
|
|
|
|
|
# 🏥 Turkish Medical Articles from 14 Hospital Websites |
|
|
|
|
|
This dataset contains Turkish-language medical articles scraped from **14 official hospital and healthcare provider websites** in Turkey. Each file corresponds to one source and is stored in efficient `.parquet` format. |
|
|
|
|
|
It is designed for training and evaluating **Turkish NLP models in the medical domain**, including large language models (LLMs), health chatbots, summarizers, and classifiers. |
|
|
|
|
|
> 🧾 Total articles: ~ 25,000 |
|
|
> 📦 Total file size: ~95MB |
|
|
> 🗂️ Format: `.parquet` |
|
|
> 👤 Curated by: [umutertugrul](https://huggingface.co/umutertugrul) |
|
|
> 🔓 License: [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) |
|
|
|
|
|
--- |
|
|
|
|
|
## 🏷️ Included Sources |
|
|
|
|
|
| Filename | Source Institution | |
|
|
|---------------------------|----------------------------| |
|
|
| `acibadem.parquet` | Acıbadem Hospital | |
|
|
| `anadolusaglik.parquet` | Anadolu Sağlık | |
|
|
| `atlas.parquet` | Atlas Hospital | |
|
|
| `baskentistanbul.parquet` | Başkent İstanbul | |
|
|
| `bayindir.parquet` | Bayındır Hospital | |
|
|
| `florence.parquet` | Florence Nightingale | |
|
|
| `guven.parquet` | Güven Hospital | |
|
|
| `liv.parquet` | Liv Hospital | |
|
|
| `medicalpark.parquet` | Medical Park | |
|
|
| `medicalpoint.parquet` | Medical Point | |
|
|
| `medicana.parquet` | Medicana Hospitals | |
|
|
| `medipol.parquet` | Medipol University Hospital| |
|
|
| `memorial.parquet` | Memorial Hospital | |
|
|
| `yeditepe.parquet` | Yeditepe University | |
|
|
|
|
|
Each file contains articles specific to that institution, covering a wide range of medical topics and specialties. |
|
|
|
|
|
--- |
|
|
|
|
|
## 🔤 Schema |
|
|
|
|
|
Each `.parquet` file may contain the following fields: |
|
|
|
|
|
- `url`: Original article URL |
|
|
- `title`: Title of the article |
|
|
- `headings`: Section headings or subtopics (if available) |
|
|
- `text`: Full body content of the article |
|
|
- `publish_date`: Date the article was originally published |
|
|
- `update_date`: Last updated date (if available) |
|
|
- `scrape_date`: Date when the article was collected |
|
|
- `__source`: Hospital/source name (automatically added during conversion) |
|
|
|
|
|
--- |
|
|
|
|
|
## 🚀 Example Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset, Features, Value |
|
|
|
|
|
files = { |
|
|
"acibadem": "acibadem.parquet", |
|
|
"anadolusaglik": "anadolusaglik.parquet", |
|
|
"atlas": "atlas.parquet", |
|
|
"baskentistanbul": "baskentistanbul.parquet", |
|
|
"bayindir": "bayindir.parquet", |
|
|
"florence": "florence.parquet", |
|
|
"guven": "guven.parquet", |
|
|
"liv": "liv.parquet", |
|
|
"medicalpark": "medicalpark.parquet", |
|
|
"medicalpoint": "medicalpoint.parquet", |
|
|
"medicana": "medicana.parquet", |
|
|
"medipol": "medipol.parquet", |
|
|
"memorial": "memorial.parquet", |
|
|
"yeditepe": "yeditepe.parquet" |
|
|
} |
|
|
|
|
|
features = Features({ |
|
|
"url": Value("string"), |
|
|
"title": Value("string"), |
|
|
"headings": Value("string"), |
|
|
"text": Value("string"), |
|
|
"publish_date": Value("string"), |
|
|
"update_date": Value("string"), |
|
|
"scrape_date": Value("string"), |
|
|
"__source": Value("string") |
|
|
}) |
|
|
|
|
|
ds_healthcare_1 = load_dataset( |
|
|
"umutertugrul/turkish-hospital-medical-articles", |
|
|
data_files=files, |
|
|
features=features |
|
|
) |
|
|
``` |